Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(625)

Side by Side Diff: mojo/edk/system/ref_ptr.h

Issue 1423713009: EDK: Move ref counting classes to mojo/edk/util. (Closed) Base URL: https://github.com/domokit/mojo.git@master
Patch Set: Created 5 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « mojo/edk/system/ref_counted_unittest.cc ('k') | mojo/edk/system/ref_ptr_internal.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Provides a smart pointer class for intrusively reference-counted objects.
6
7 #ifndef MOJO_EDK_SYSTEM_REF_PTR_H_
8 #define MOJO_EDK_SYSTEM_REF_PTR_H_
9
10 #include <assert.h>
11
12 #include <cstddef>
13 #include <utility>
14
15 #include "mojo/edk/system/ref_ptr_internal.h"
16 #include "mojo/public/cpp/system/macros.h"
17
18 namespace mojo {
19 namespace system {
20
21 // A smart pointer class for intrusively reference-counted objects (e.g., those
22 // subclassing |RefCountedThreadSafe| -- see ref_counted.h).
23 //
24 // Such objects require *adoption* to obtain the first |RefPtr|, which is
25 // accomplished using |AdoptRef| (see below). (This is due to such objects being
26 // constructed with a reference count of 1. The adoption requirement is
27 // enforced, at least in Debug builds, by assertions.)
28 //
29 // E.g., if |Foo| is an intrusively reference-counted class:
30 //
31 // // The |AdoptRef| may be put in a static factory method (e.g., if |Foo|'s
32 // // constructor is private).
33 // RefPtr<Foo> my_foo_ptr(AdoptRef(new Foo()));
34 //
35 // // Now OK, since "my Foo" has been adopted ...
36 // RefPtr<Foo> another_ptr_to_my_foo(my_foo_ptr.get());
37 //
38 // // ... though this would preferable in this situation.
39 // RefPtr<Foo> yet_another_ptr_to_my_foo(my_foo_ptr);
40 //
41 // Unlike Chromium's |scoped_refptr|, |RefPtr| is only explicitly constructible
42 // from a plain pointer (and not assignable). It is however implicitly
43 // constructible from |nullptr|. So:
44 //
45 // RefPtr<Foo> foo(plain_ptr_to_adopted_foo); // OK.
46 // foo = plain_ptr_to_adopted_foo; // Not OK (doesn't compile).
47 // foo = RefPtr<Foo>(plain_ptr_to_adopted_foo); // OK.
48 // foo = nullptr; // OK.
49 //
50 // And if we have |void MyFunction(RefPtr<Foo> foo)|, calling it using
51 // |MyFunction(nullptr)| is also valid.
52 //
53 // Implementation note: For copy/move constructors/operator=s, we often have
54 // templated versions, so that the operation can be done on a |RefPtr<U>|, where
55 // |U| is a subclass of |T|. However, we also have non-templated versions with
56 // |U = T|, since the templated versions don't count as copy/move
57 // constructors/operator=s for the purposes of causing the default copy
58 // constructor/operator= to be deleted. E.g., if we didn't declare any
59 // non-templated versions, we'd get the default copy constructor/operator= (we'd
60 // only not get the default move constructor/operator= by virtue of having a
61 // destructor)! (In fact, it'd suffice to only declare a non-templated move
62 // constructor or move operator=, which would cause the copy
63 // constructor/operator= to be deleted, but for clarity we include explicit
64 // non-templated versions of everything.)
65 template <typename T>
66 class RefPtr {
67 public:
68 RefPtr() : ptr_(nullptr) {}
69 RefPtr(std::nullptr_t) : ptr_(nullptr) {}
70
71 // Explicit constructor from a plain pointer (to an object that must have
72 // already been adopted). (Note that in |T::T()|, references to |this| cannot
73 // be taken, since the object being constructed will not have been adopted
74 // yet.)
75 template <typename U>
76 explicit RefPtr(U* p)
77 : ptr_(p) {
78 if (ptr_)
79 ptr_->AddRef();
80 }
81
82 // Copy constructor.
83 RefPtr(const RefPtr<T>& r) : ptr_(r.ptr_) {
84 if (ptr_)
85 ptr_->AddRef();
86 }
87
88 template <typename U>
89 RefPtr(const RefPtr<U>& r)
90 : ptr_(r.ptr_) {
91 if (ptr_)
92 ptr_->AddRef();
93 }
94
95 // Move constructor.
96 RefPtr(RefPtr<T>&& r) : ptr_(r.ptr_) { r.ptr_ = nullptr; }
97
98 template <typename U>
99 RefPtr(RefPtr<U>&& r)
100 : ptr_(r.ptr_) {
101 r.ptr_ = nullptr;
102 }
103
104 // Destructor.
105 ~RefPtr() {
106 if (ptr_)
107 ptr_->Release();
108 }
109
110 T* get() const { return ptr_; }
111
112 T& operator*() const {
113 assert(ptr_);
114 return *ptr_;
115 }
116
117 T* operator->() const {
118 assert(ptr_);
119 return ptr_;
120 }
121
122 // Copy assignment.
123 RefPtr<T>& operator=(const RefPtr<T>& r) {
124 // Call |AddRef()| first so self-assignments work.
125 if (r.ptr_)
126 r.ptr_->AddRef();
127 T* old_ptr = ptr_;
128 ptr_ = r.ptr_;
129 if (old_ptr)
130 old_ptr->Release();
131 return *this;
132 }
133
134 template <typename U>
135 RefPtr<T>& operator=(const RefPtr<U>& r) {
136 // Call |AddRef()| first so self-assignments work.
137 if (r.ptr_)
138 r.ptr_->AddRef();
139 T* old_ptr = ptr_;
140 ptr_ = r.ptr_;
141 if (old_ptr)
142 old_ptr->Release();
143 return *this;
144 }
145
146 // Move assignment.
147 // Note: Like |std::shared_ptr|, we support self-move and move assignment is
148 // equivalent to |RefPtr<T>(std::move(r)).swap(*this)|.
149 RefPtr<T>& operator=(RefPtr<T>&& r) {
150 RefPtr<T>(std::move(r)).swap(*this);
151 return *this;
152 }
153
154 template <typename U>
155 RefPtr<T>& operator=(RefPtr<U>&& r) {
156 RefPtr<T>(std::move(r)).swap(*this);
157 return *this;
158 }
159
160 void swap(RefPtr<T>& r) {
161 T* p = ptr_;
162 ptr_ = r.ptr_;
163 r.ptr_ = p;
164 }
165
166 // Returns a new |RefPtr<T>| with the same contents as this pointer. Useful
167 // when a function takes a |RefPtr<T>&&| argument and the caller wants to
168 // retain its reference (rather than moving it).
169 RefPtr<T> Clone() const { return *this; }
170
171 // For compatibility with base.
172 // TODO(vtl): Remove this when we can.
173 RefPtr<T>&& Pass() MOJO_WARN_UNUSED_RESULT { return std::move(*this); }
174
175 explicit operator bool() const { return !!ptr_; }
176
177 template <typename U>
178 bool operator==(const RefPtr<U>& rhs) const {
179 return ptr_ == rhs.ptr_;
180 }
181
182 template <typename U>
183 bool operator!=(const RefPtr<U>& rhs) const {
184 return !operator==(rhs);
185 }
186
187 template <typename U>
188 bool operator<(const RefPtr<U>& rhs) const {
189 return ptr_ < rhs.ptr_;
190 }
191
192 private:
193 template <typename U>
194 friend class RefPtr;
195
196 friend RefPtr<T> AdoptRef<T>(T*);
197
198 enum AdoptTag { ADOPT };
199 RefPtr(T* ptr, AdoptTag) : ptr_(ptr) { assert(ptr_); }
200
201 T* ptr_;
202 };
203
204 // Adopts a newly-created |T|. Typically used in a static factory method, like:
205 //
206 // // static
207 // RefPtr<Foo> Foo::Create() {
208 // return AdoptRef(new Foo());
209 // }
210 template <typename T>
211 inline RefPtr<T> AdoptRef(T* ptr) {
212 #ifndef NDEBUG
213 ptr->Adopt();
214 #endif
215 return RefPtr<T>(ptr, RefPtr<T>::ADOPT);
216 }
217
218 // Creates an intrusively reference counted |T|, producing a |RefPtr<T>| (and
219 // performing the required adoption). Use like:
220 //
221 // auto my_foo = MakeRefCounted<Foo>(ctor_arg1, ctor_arg2);
222 //
223 // (|my_foo| will be of type |RefPtr<Foo>|.)
224 template <typename T, typename... Args>
225 RefPtr<T> MakeRefCounted(Args&&... args) {
226 return internal::MakeRefCountedHelper<T>::MakeRefCounted(
227 std::forward<Args>(args)...);
228 }
229
230 } // namespace system
231 } // namespace mojo
232
233 #endif // MOJO_EDK_SYSTEM_REF_PTR_H_
OLDNEW
« no previous file with comments | « mojo/edk/system/ref_counted_unittest.cc ('k') | mojo/edk/system/ref_ptr_internal.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698