OLD | NEW |
---|---|
1 // Copyright 2015 The Chromium Authors. All rights reserved. | 1 // Copyright 2015 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "cc/tiles/image_decode_controller.h" | 5 #include "cc/tiles/image_decode_controller.h" |
6 | 6 |
7 #include "base/memory/discardable_memory.h" | |
7 #include "cc/debug/devtools_instrumentation.h" | 8 #include "cc/debug/devtools_instrumentation.h" |
9 #include "third_party/skia/include/core/SkCanvas.h" | |
10 #include "third_party/skia/include/core/SkImage.h" | |
11 #include "ui/gfx/skia_util.h" | |
8 | 12 |
9 namespace cc { | 13 namespace cc { |
10 namespace { | 14 namespace { |
11 | 15 |
16 // The amount of memory we can lock ahead of time (128MB). This limit is only | |
17 // used to inform the caller of the amount of space available in the cache. The | |
18 // caller can still request tasks which can cause this limit to be breached. | |
19 const size_t kLockedMemoryLimitBytes = 128 * 1024 * 1024; | |
20 | |
21 // The largest single high quality image to try and process. Images above this | |
22 // size will drop down to medium quality. | |
23 const size_t kMaxHighQualityImageSizeBytes = 64 * 1024 * 1024; | |
24 | |
25 // The number of entries to keep around in the cache. This limit can be breached | |
26 // if more items are locked. That is, locked items ignore this limit. | |
27 const size_t kMaxItemsInCache = 100; | |
28 | |
12 class ImageDecodeTaskImpl : public ImageDecodeTask { | 29 class ImageDecodeTaskImpl : public ImageDecodeTask { |
13 public: | 30 public: |
14 ImageDecodeTaskImpl(ImageDecodeController* controller, | 31 ImageDecodeTaskImpl(ImageDecodeController* controller, |
15 const SkImage* image, | 32 const ImageDecodeController::ImageKey& image_key, |
16 int layer_id, | 33 const DrawImage& image, |
17 uint64_t source_prepare_tiles_id) | 34 uint64_t source_prepare_tiles_id) |
18 : controller_(controller), | 35 : controller_(controller), |
19 image_(skia::SharePtr(image)), | 36 image_key_(image_key), |
20 layer_id_(layer_id), | 37 image_(image), |
38 image_ref_(skia::SharePtr(image.image())), | |
21 source_prepare_tiles_id_(source_prepare_tiles_id) {} | 39 source_prepare_tiles_id_(source_prepare_tiles_id) {} |
22 | 40 |
23 // Overridden from Task: | 41 // Overridden from Task: |
24 void RunOnWorkerThread() override { | 42 void RunOnWorkerThread() override { |
25 TRACE_EVENT1("cc", "ImageDecodeTaskImpl::RunOnWorkerThread", | 43 TRACE_EVENT1("cc", "ImageDecodeTaskImpl::RunOnWorkerThread", |
26 "source_prepare_tiles_id", source_prepare_tiles_id_); | 44 "source_prepare_tiles_id", source_prepare_tiles_id_); |
27 devtools_instrumentation::ScopedImageDecodeTask image_decode_task( | 45 devtools_instrumentation::ScopedImageDecodeTask image_decode_task( |
28 image_.get()); | 46 image_ref_.get()); |
29 controller_->DecodeImage(image_.get()); | 47 controller_->DecodeImage(image_key_, image_); |
30 | |
31 // Release the reference after decoding image to ensure that it is not kept | |
32 // alive unless needed. | |
33 image_.clear(); | |
34 } | 48 } |
35 | 49 |
36 // Overridden from TileTask: | 50 // Overridden from TileTask: |
37 void ScheduleOnOriginThread(TileTaskClient* client) override {} | 51 void ScheduleOnOriginThread(TileTaskClient* client) override {} |
38 void CompleteOnOriginThread(TileTaskClient* client) override { | 52 void CompleteOnOriginThread(TileTaskClient* client) override { |
39 controller_->OnImageDecodeTaskCompleted(layer_id_, image_.get(), | 53 controller_->RemovePendingTask(image_key_); |
40 !HasFinishedRunning()); | |
41 } | 54 } |
42 | 55 |
43 protected: | 56 protected: |
44 ~ImageDecodeTaskImpl() override {} | 57 ~ImageDecodeTaskImpl() override {} |
45 | 58 |
46 private: | 59 private: |
47 ImageDecodeController* controller_; | 60 ImageDecodeController* controller_; |
48 skia::RefPtr<const SkImage> image_; | 61 ImageDecodeController::ImageKey image_key_; |
49 int layer_id_; | 62 DrawImage image_; |
63 skia::RefPtr<const SkImage> image_ref_; | |
50 uint64_t source_prepare_tiles_id_; | 64 uint64_t source_prepare_tiles_id_; |
51 | 65 |
52 DISALLOW_COPY_AND_ASSIGN(ImageDecodeTaskImpl); | 66 DISALLOW_COPY_AND_ASSIGN(ImageDecodeTaskImpl); |
53 }; | 67 }; |
54 | 68 |
69 template <typename Type> | |
70 typename std::deque<Type>::iterator FindImage( | |
71 std::deque<Type>* collection, | |
72 const ImageDecodeControllerKey& key) { | |
73 return std::find_if(collection->begin(), collection->end(), | |
74 [key](const Type& image) { return image.first == key; }); | |
75 } | |
76 | |
77 SkSize GetScaleAdjustment(const ImageDecodeControllerKey& key, | |
78 const SkImage* original_image) { | |
79 float x_scale = | |
80 key.target_size().width() / static_cast<float>(original_image->width()); | |
81 float y_scale = | |
82 key.target_size().height() / static_cast<float>(original_image->height()); | |
83 return SkSize::Make(x_scale, y_scale); | |
84 } | |
85 | |
55 } // namespace | 86 } // namespace |
56 | 87 |
57 ImageDecodeController::ImageDecodeController() {} | 88 ImageDecodeController::ImageDecodeController() |
58 | 89 : is_using_gpu_rasterization_(false), |
59 ImageDecodeController::~ImageDecodeController() {} | 90 locked_images_budget_(kLockedMemoryLimitBytes) {} |
60 | 91 |
61 scoped_refptr<ImageDecodeTask> ImageDecodeController::GetTaskForImage( | 92 ImageDecodeController::~ImageDecodeController() { |
93 DCHECK_EQ(0u, decoded_images_ref_counts_.size()); | |
94 DCHECK_EQ(0u, at_raster_decoded_images_ref_counts_.size()); | |
95 } | |
96 | |
97 bool ImageDecodeController::GetTaskForImageAndRef( | |
62 const DrawImage& image, | 98 const DrawImage& image, |
63 int layer_id, | 99 uint64_t prepare_tiles_id, |
64 uint64_t prepare_tiles_id) { | 100 scoped_refptr<ImageDecodeTask>* task) { |
65 uint32_t generation_id = image.image()->uniqueID(); | 101 // If the image already exists or if we're going to create a task for it, then |
66 scoped_refptr<ImageDecodeTask>& decode_task = | 102 // we'll likely need to ref this image (the exception is if we're prerolling |
67 image_decode_tasks_[layer_id][generation_id]; | 103 // the image only). That means the image is or will be in the cache. When the |
68 if (!decode_task) | 104 // ref goes to 0, it will be unpinned but will remain in the cache. If the |
69 decode_task = CreateTaskForImage(image.image(), layer_id, prepare_tiles_id); | 105 // image does not fit into the budget, then we don't ref this image, since it |
70 return decode_task; | 106 // will be decoded at raster time which is when it will be temporarily put in |
71 } | 107 // the cache. |
72 | 108 ImageKey key = ImageKey::FromDrawImage(image); |
73 scoped_refptr<ImageDecodeTask> ImageDecodeController::CreateTaskForImage( | 109 TRACE_EVENT1("cc", "ImageDecodeController::GetTaskForImageAndRef", "key", |
74 const SkImage* image, | 110 key.ToString()); |
75 int layer_id, | 111 // If we're not going to do a scale, we will just create a task to preroll the |
76 uint64_t prepare_tiles_id) { | 112 // image the first time we see it. This doesn't need to account for memory. |
113 // TODO(vmpstr): We can also lock the original sized image, in which case it | |
114 // does require memory bookkeeping. | |
115 if (!ShouldDecodeAndScaleImage(key, image)) { | |
116 base::AutoLock lock(lock_); | |
117 if (prerolled_images_.count(key.image_id()) == 0) { | |
118 scoped_refptr<ImageDecodeTask>& existing_task = pending_image_tasks_[key]; | |
119 if (!existing_task) { | |
120 existing_task = make_scoped_refptr( | |
121 new ImageDecodeTaskImpl(this, key, image, prepare_tiles_id)); | |
122 } | |
123 *task = existing_task; | |
124 } else { | |
125 *task = nullptr; | |
126 } | |
127 return false; | |
128 } | |
129 | |
130 base::AutoLock lock(lock_); | |
131 | |
132 // If we already have the image in cache, then we can return it. | |
133 auto decoded_it = FindImage(&decoded_images_, key); | |
134 bool new_image_fits_in_memory = | |
135 locked_images_budget_.AvailableMemoryBytes() >= key.target_bytes(); | |
136 if (decoded_it != decoded_images_.end()) { | |
137 if (decoded_it->second->is_locked() || | |
138 (new_image_fits_in_memory && decoded_it->second->Lock())) { | |
139 RefImage(key); | |
140 *task = nullptr; | |
141 SanityCheckState(__LINE__, true); | |
142 return true; | |
143 } | |
144 // If the image fits in memory, then we at least tried to lock it and | |
145 // failed. This means that it's not valid anymore. | |
146 if (new_image_fits_in_memory) | |
147 decoded_images_.erase(decoded_it); | |
148 } | |
149 | |
150 // If the task exists, return it. | |
151 scoped_refptr<ImageDecodeTask>& existing_task = pending_image_tasks_[key]; | |
152 if (existing_task) { | |
153 RefImage(key); | |
154 *task = existing_task; | |
155 SanityCheckState(__LINE__, true); | |
156 return true; | |
157 } | |
158 | |
159 // At this point, we have to create a new image/task, so we need to abort if | |
160 // it doesn't fit into memory and there are currently no raster tasks that | |
161 // would have already accounted for memory. The latter part is possible if | |
162 // there's a running raster task that could not be canceled, and still has a | |
163 // ref to the image that is now being reffed for the new schedule. | |
164 if (!new_image_fits_in_memory && (decoded_images_ref_counts_.find(key) == | |
165 decoded_images_ref_counts_.end())) { | |
166 *task = nullptr; | |
167 SanityCheckState(__LINE__, true); | |
168 return false; | |
169 } | |
170 | |
171 // Actually create the task. RefImage will account for memory on the first | |
172 // ref. | |
173 RefImage(key); | |
174 existing_task = make_scoped_refptr( | |
175 new ImageDecodeTaskImpl(this, key, image, prepare_tiles_id)); | |
176 *task = existing_task; | |
177 SanityCheckState(__LINE__, true); | |
178 return true; | |
179 } | |
180 | |
181 void ImageDecodeController::RefImage(const ImageKey& key) { | |
182 TRACE_EVENT1("cc", "ImageDecodeController::RefImage", "key", key.ToString()); | |
183 lock_.AssertAcquired(); | |
184 int ref = ++decoded_images_ref_counts_[key]; | |
185 if (ref == 1) { | |
186 DCHECK_GE(locked_images_budget_.AvailableMemoryBytes(), key.target_bytes()); | |
187 locked_images_budget_.AddUsage(key.target_bytes()); | |
188 } | |
189 } | |
190 | |
191 void ImageDecodeController::UnrefImage(const DrawImage& image) { | |
192 // When we unref the image, there are several situations we need to consider: | |
193 // 1. The ref did not reach 0, which means we have to keep the image locked. | |
194 // 2. The ref reached 0, we should unlock it. | |
195 // 2a. The image isn't in the locked cache because we didn't get to decode | |
196 // it yet. | |
197 // 2b. Unlock the image but keep it in list. | |
198 const ImageKey& key = ImageKey::FromDrawImage(image); | |
199 DCHECK(ShouldDecodeAndScaleImage(key, image)); | |
200 TRACE_EVENT1("cc", "ImageDecodeController::UnrefImage", "key", | |
201 key.ToString()); | |
202 | |
203 base::AutoLock lock(lock_); | |
204 auto ref_count_it = decoded_images_ref_counts_.find(key); | |
205 DCHECK(ref_count_it != decoded_images_ref_counts_.end()); | |
206 | |
207 --ref_count_it->second; | |
208 if (ref_count_it->second == 0) { | |
209 decoded_images_ref_counts_.erase(ref_count_it); | |
210 locked_images_budget_.SubtractUsage(key.target_bytes()); | |
211 | |
212 auto decoded_image_it = FindImage(&decoded_images_, key); | |
213 // If we've never decoded the image before ref reached 0, then we wouldn't | |
214 // have it in our cache. This would happen if we canceled tasks. | |
215 if (decoded_image_it == decoded_images_.end()) { | |
216 SanityCheckState(__LINE__, true); | |
217 return; | |
218 } | |
219 DCHECK(decoded_image_it->second->is_locked()); | |
220 decoded_image_it->second->Unlock(); | |
221 } | |
222 SanityCheckState(__LINE__, true); | |
223 } | |
224 | |
225 void ImageDecodeController::DecodeImage(const ImageKey& key, | |
226 const DrawImage& image) { | |
227 TRACE_EVENT1("cc", "ImageDecodeController::DecodeImage", "key", | |
228 key.ToString()); | |
229 if (!ShouldDecodeAndScaleImage(key, image)) { | |
230 image.image()->preroll(); | |
231 | |
232 base::AutoLock lock(lock_); | |
233 prerolled_images_.insert(key.image_id()); | |
234 // Erase the pending task from the queue, since the task won't be doing | |
235 // anything useful after this function terminates. Since we don't preroll | |
236 // images twice, this is actually not necessary but it behaves similar to | |
237 // the other code path: when this function finishes, the task isn't in the | |
238 // pending_image_tasks_ list. | |
239 pending_image_tasks_.erase(key); | |
240 return; | |
241 } | |
242 | |
243 base::AutoLock lock(lock_); | |
244 | |
245 auto image_it = FindImage(&decoded_images_, key); | |
246 if (image_it != decoded_images_.end()) { | |
247 if (image_it->second->is_locked() || image_it->second->Lock()) { | |
248 pending_image_tasks_.erase(key); | |
249 return; | |
250 } | |
251 decoded_images_.erase(image_it); | |
252 } | |
253 | |
254 scoped_refptr<DecodedImage> decoded_image; | |
255 { | |
256 base::AutoUnlock unlock(lock_); | |
257 decoded_image = DecodeImageInternal(key, image.image()); | |
258 } | |
259 | |
260 // Erase the pending task from the queue, since the task won't be doing | |
261 // anything useful after this function terminates. That is, if this image | |
262 // needs to be decoded again, we have to create a new task. | |
263 pending_image_tasks_.erase(key); | |
264 | |
265 // We could have finished all of the raster tasks (cancelled) while this image | |
266 // decode task was running, which means that we now have a locked image but no | |
267 // ref counts. Unlock it immediately in this case. | |
268 if (decoded_images_ref_counts_.find(key) == | |
269 decoded_images_ref_counts_.end()) { | |
270 decoded_image->Unlock(); | |
271 } | |
272 | |
273 // At this point, it could have been the case that this image was decoded in | |
274 // place by an already running raster task from a previous schedule. If that's | |
275 // the case, then it would have already been placed into the cache (possibly | |
276 // locked). Remove it if that was the case. | |
277 image_it = FindImage(&decoded_images_, key); | |
278 if (image_it != decoded_images_.end()) { | |
279 if (image_it->second->is_locked() || image_it->second->Lock()) { | |
280 pending_image_tasks_.erase(key); | |
281 return; | |
282 } | |
283 decoded_images_.erase(image_it); | |
284 } | |
285 decoded_images_.push_back(AnnotatedDecodedImage(key, decoded_image)); | |
286 SanityCheckState(__LINE__, true); | |
287 } | |
288 | |
289 scoped_refptr<ImageDecodeController::DecodedImage> | |
290 ImageDecodeController::DecodeImageInternal(const ImageKey& key, | |
reed1
2015/12/08 22:01:18
I think this code is doing the following (but I ma
vmpstr
2015/12/08 22:04:49
Yeah you're right that this is what the code is do
reed1
2015/12/09 16:03:04
Got it, thanks.
| |
291 const SkImage* image) { | |
292 TRACE_EVENT1("cc", "ImageDecodeController::DecodeImageInternal", "key", | |
293 key.ToString()); | |
294 | |
295 // Get the decoded image first (at the original scale). | |
296 SkImageInfo decoded_info = SkImageInfo::MakeN32Premul( | |
297 key.src_rect().width(), key.src_rect().height()); | |
298 scoped_ptr<uint8_t[]> decoded_pixels( | |
299 new uint8_t[decoded_info.minRowBytes() * decoded_info.height()]); | |
300 bool result = image->readPixels( | |
301 decoded_info, decoded_pixels.get(), decoded_info.minRowBytes(), | |
302 key.src_rect().x(), key.src_rect().y(), SkImage::kAllow_CachingHint); | |
303 DCHECK(result); | |
304 | |
305 skia::RefPtr<SkImage> decoded_image = skia::AdoptRef(SkImage::NewFromRaster( | |
reed1
2015/12/09 16:03:04
Do you need decoded_image? If the only use is so y
vmpstr
2015/12/09 23:53:41
Cool, thanks! Done.
| |
306 decoded_info, decoded_pixels.get(), decoded_info.minRowBytes(), | |
307 [](const void* pixels, void* context) {}, nullptr)); | |
308 | |
309 // TODO(vmpstr): This scale is used to compute the target size to begin with, | |
310 // see if transporting it in the key is reasonable. | |
ericrk
2015/12/08 21:34:26
in what cases is the target_size not equal to the
vmpstr
2015/12/08 22:04:49
The size is different, because target_size refers
ericrk
2015/12/08 22:12:23
yup - seems fine, just potentially less efficient
| |
311 float x_scale = | |
312 key.target_size().width() / static_cast<float>(image->width()); | |
313 float y_scale = | |
314 key.target_size().height() / static_cast<float>(image->height()); | |
315 | |
316 int new_target_width = SkScalarRoundToInt(key.src_rect().width() * x_scale); | |
317 int new_target_height = SkScalarRoundToInt(key.src_rect().height() * y_scale); | |
318 | |
319 // Now scale the pixels into the destination size. | |
320 SkImageInfo scaled_info = | |
321 SkImageInfo::MakeN32Premul(new_target_width, new_target_height); | |
322 scoped_ptr<base::DiscardableMemory> scaled_pixels = | |
323 base::DiscardableMemoryAllocator::GetInstance() | |
324 ->AllocateLockedDiscardableMemory(scaled_info.minRowBytes() * | |
325 scaled_info.height()); | |
326 SkPixmap scaled_pixmap(scaled_info, scaled_pixels->data(), | |
327 scaled_info.minRowBytes()); | |
328 // TODO(vmpstr): Start handling more than just high filter quality. | |
329 DCHECK_EQ(kHigh_SkFilterQuality, key.filter_quality()); | |
330 result = decoded_image->scalePixels(scaled_pixmap, kHigh_SkFilterQuality, | |
331 SkImage::kDisallow_CachingHint); | |
332 DCHECK(result); | |
77 return make_scoped_refptr( | 333 return make_scoped_refptr( |
78 new ImageDecodeTaskImpl(this, image, layer_id, prepare_tiles_id)); | 334 new DecodedImage(scaled_info, std::move(scaled_pixels), |
79 } | 335 SkSize::Make(-key.src_rect().x(), -key.src_rect().y()))); |
80 | 336 } |
81 void ImageDecodeController::DecodeImage(const SkImage* image) { | 337 |
82 image->preroll(); | 338 DecodedDrawImage ImageDecodeController::GetDecodedImageForDraw( |
83 } | 339 const DrawImage& draw_image) { |
84 | 340 ImageKey key = ImageKey::FromDrawImage(draw_image); |
85 void ImageDecodeController::AddLayerUsedCount(int layer_id) { | 341 TRACE_EVENT1("cc", "ImageDecodeController::GetDecodedImageAndRef", "key", |
86 ++used_layer_counts_[layer_id]; | 342 key.ToString()); |
87 } | 343 if (!ShouldDecodeAndScaleImage(key, draw_image)) |
88 | 344 return DecodedDrawImage(draw_image.image(), draw_image.filter_quality()); |
89 void ImageDecodeController::SubtractLayerUsedCount(int layer_id) { | 345 |
90 if (--used_layer_counts_[layer_id]) | 346 base::AutoLock lock(lock_); |
347 auto decoded_images_it = FindImage(&decoded_images_, key); | |
348 // If we found the image and it's locked, then return it. If it's not locked, | |
349 // erase it from the cache since it might be put into the at-raster cache. | |
350 scoped_refptr<DecodedImage> decoded_image; | |
351 if (decoded_images_it != decoded_images_.end()) { | |
352 decoded_image = decoded_images_it->second; | |
353 if (decoded_image->is_locked()) { | |
354 RefImage(key); | |
355 SanityCheckState(__LINE__, true); | |
356 return DecodedDrawImage( | |
357 decoded_image->image(), decoded_image->src_rect_offset(), | |
358 GetScaleAdjustment(key, draw_image.image()), kLow_SkFilterQuality); | |
359 } else { | |
360 decoded_images_.erase(decoded_images_it); | |
361 } | |
362 } | |
363 | |
364 // See if another thread already decoded this image at raster time. If so, we | |
365 // can just use that result directly. | |
366 auto at_raster_images_it = FindImage(&at_raster_decoded_images_, key); | |
367 if (at_raster_images_it != at_raster_decoded_images_.end()) { | |
368 DCHECK(at_raster_images_it->second->is_locked()); | |
369 RefAtRasterImage(key); | |
370 SanityCheckState(__LINE__, true); | |
371 auto decoded_draw_image = DecodedDrawImage( | |
372 at_raster_images_it->second->image(), | |
373 at_raster_images_it->second->src_rect_offset(), | |
374 GetScaleAdjustment(key, draw_image.image()), kLow_SkFilterQuality); | |
375 decoded_draw_image.set_at_raster_decode(true); | |
376 return decoded_draw_image; | |
377 } | |
378 | |
379 // Now we know that we don't have a locked image, and we seem to be the first | |
380 // thread encountering this image (that might not be true, since other threads | |
381 // might be decoding it already). This means that we need to decode the image | |
382 // assuming we can't lock the one we found in the cache. | |
383 bool check_at_raster_cache = false; | |
384 if (!decoded_image || !decoded_image->Lock()) { | |
385 // Note that we have to release the lock, since this lock is also accessed | |
386 // on the compositor thread. This means holding on to the lock might stall | |
387 // the compositor thread for the duration of the decode! | |
388 base::AutoUnlock unlock(lock_); | |
389 decoded_image = DecodeImageInternal(key, draw_image.image()); | |
390 check_at_raster_cache = true; | |
391 } | |
392 | |
393 // While we unlocked the lock, it could be the case that another thread | |
394 // already decoded this already and put it in the at-raster cache. Look it up | |
395 // first. | |
396 bool need_to_add_image_to_cache = true; | |
397 if (check_at_raster_cache) { | |
398 at_raster_images_it = FindImage(&at_raster_decoded_images_, key); | |
399 if (at_raster_images_it != at_raster_decoded_images_.end()) { | |
400 // We have to drop our decode, since the one in the cache is being used by | |
401 // another thread. | |
402 decoded_image->Unlock(); | |
403 decoded_image = at_raster_images_it->second; | |
404 need_to_add_image_to_cache = false; | |
405 } | |
406 } | |
407 | |
408 // If we really are the first ones, or if the other thread already unlocked | |
409 // the image, then put our work into at-raster time cache. | |
410 if (need_to_add_image_to_cache) { | |
411 at_raster_decoded_images_.push_back( | |
412 AnnotatedDecodedImage(key, decoded_image)); | |
413 } | |
414 | |
415 DCHECK(decoded_image); | |
416 DCHECK(decoded_image->is_locked()); | |
417 RefAtRasterImage(key); | |
418 SanityCheckState(__LINE__, true); | |
419 auto decoded_draw_image = DecodedDrawImage( | |
420 decoded_image->image(), decoded_image->src_rect_offset(), | |
421 GetScaleAdjustment(key, draw_image.image()), kLow_SkFilterQuality); | |
422 decoded_draw_image.set_at_raster_decode(true); | |
423 return decoded_draw_image; | |
424 } | |
425 | |
426 void ImageDecodeController::DrawWithImageFinished( | |
427 const DrawImage& image, | |
428 const DecodedDrawImage& decoded_image) { | |
429 TRACE_EVENT1("cc", "ImageDecodeController::DrawWithImageFinished", "key", | |
430 ImageKey::FromDrawImage(image).ToString()); | |
431 ImageKey key = ImageKey::FromDrawImage(image); | |
432 if (!ShouldDecodeAndScaleImage(key, image)) | |
91 return; | 433 return; |
92 | 434 |
93 // Clean up decode tasks once a layer is no longer used. | 435 if (decoded_image.is_at_raster_decode()) |
94 used_layer_counts_.erase(layer_id); | 436 UnrefAtRasterImage(key); |
95 image_decode_tasks_.erase(layer_id); | 437 else |
96 } | 438 UnrefImage(image); |
97 | 439 SanityCheckState(__LINE__, false); |
98 void ImageDecodeController::OnImageDecodeTaskCompleted(int layer_id, | 440 } |
99 const SkImage* image, | 441 |
100 bool was_canceled) { | 442 void ImageDecodeController::RefAtRasterImage(const ImageKey& key) { |
101 // If the task has successfully finished, then keep the task until the layer | 443 TRACE_EVENT1("cc", "ImageDecodeController::RefAtRasterImage", "key", |
102 // is no longer in use. This ensures that we only decode a image once. | 444 key.ToString()); |
103 // TODO(vmpstr): Remove this when decode lifetime is controlled by cc. | 445 DCHECK(FindImage(&at_raster_decoded_images_, key) != |
104 if (!was_canceled) | 446 at_raster_decoded_images_.end()); |
447 ++at_raster_decoded_images_ref_counts_[key]; | |
448 } | |
449 | |
450 void ImageDecodeController::UnrefAtRasterImage(const ImageKey& key) { | |
451 TRACE_EVENT1("cc", "ImageDecodeController::UnrefAtRasterImage", "key", | |
452 key.ToString()); | |
453 base::AutoLock lock(lock_); | |
454 | |
455 auto ref_it = at_raster_decoded_images_ref_counts_.find(key); | |
456 DCHECK(ref_it != at_raster_decoded_images_ref_counts_.end()); | |
457 --ref_it->second; | |
458 if (ref_it->second == 0) { | |
459 at_raster_decoded_images_ref_counts_.erase(ref_it); | |
460 auto at_raster_image_it = FindImage(&at_raster_decoded_images_, key); | |
461 DCHECK(at_raster_image_it != at_raster_decoded_images_.end()); | |
462 | |
463 // The ref for our image reached 0 and it's still locked. We need to figure | |
464 // out what the best thing to do with the image. There are several | |
465 // situations: | |
466 // 1. The image is not in the main cache and... | |
467 // 1a. ... its ref count is 0: unlock our image and put it in the main | |
468 // cache. | |
469 // 1b. ... ref count is not 0: keep the image locked and put it in the | |
470 // main cache. | |
471 // 2. The image is in the main cache... | |
472 // 2a. ... and is locked: unlock our image and discard it | |
473 // 2b. ... and is unlocked and... | |
474 // 2b1. ... its ref count is 0: unlock our image and replace the | |
475 // existing one with ours. | |
476 // 2b2. ... its ref count is not 0: this shouldn't be possible. | |
477 auto image_it = FindImage(&decoded_images_, key); | |
478 if (image_it == decoded_images_.end()) { | |
479 if (decoded_images_ref_counts_.find(key) == | |
480 decoded_images_ref_counts_.end()) { | |
481 at_raster_image_it->second->Unlock(); | |
482 } | |
483 decoded_images_.push_back(*at_raster_image_it); | |
484 } else if (image_it->second->is_locked()) { | |
485 at_raster_image_it->second->Unlock(); | |
486 } else { | |
487 DCHECK(decoded_images_ref_counts_.find(key) == | |
488 decoded_images_ref_counts_.end()); | |
489 at_raster_image_it->second->Unlock(); | |
490 decoded_images_.erase(image_it); | |
491 decoded_images_.push_back(*at_raster_image_it); | |
492 } | |
493 at_raster_decoded_images_.erase(at_raster_image_it); | |
494 } | |
495 } | |
496 | |
497 bool ImageDecodeController::ShouldDecodeAndScaleImage(const ImageKey& key, | |
498 const DrawImage& image) { | |
499 // TODO(vmpstr): Handle GPU rasterization. | |
500 if (is_using_gpu_rasterization_) | |
501 return false; | |
502 if (!CanHandleFilterQuality(key.filter_quality())) | |
503 return false; | |
504 return true; | |
505 } | |
506 | |
507 bool ImageDecodeController::CanHandleFilterQuality( | |
508 SkFilterQuality filter_quality) { | |
509 // We don't need to handle low quality filters. | |
510 if (filter_quality == kLow_SkFilterQuality || | |
511 filter_quality == kNone_SkFilterQuality) { | |
512 return false; | |
513 } | |
514 | |
515 // TODO(vmpstr): We need to start caching mipmaps for medium quality and | |
516 // caching the interpolated values from those. For now, we don't have this. | |
517 if (filter_quality == kMedium_SkFilterQuality) | |
518 return false; | |
519 DCHECK(filter_quality == kHigh_SkFilterQuality); | |
520 return true; | |
521 } | |
522 | |
523 void ImageDecodeController::ReduceCacheUsage() { | |
524 TRACE_EVENT0("cc", "ImageDecodeController::ReduceCacheUsage"); | |
525 base::AutoLock lock(lock_); | |
526 size_t num_to_remove = (decoded_images_.size() > kMaxItemsInCache) | |
527 ? (decoded_images_.size() - kMaxItemsInCache) | |
528 : 0; | |
529 for (auto it = decoded_images_.begin(); | |
530 num_to_remove != 0 && it != decoded_images_.end();) { | |
531 if (it->second->is_locked()) { | |
532 ++it; | |
533 continue; | |
534 } | |
535 | |
536 it = decoded_images_.erase(it); | |
537 --num_to_remove; | |
538 } | |
539 } | |
540 | |
541 void ImageDecodeController::RemovePendingTask(const ImageKey& key) { | |
542 base::AutoLock lock(lock_); | |
543 pending_image_tasks_.erase(key); | |
544 } | |
545 | |
546 void ImageDecodeController::SetIsUsingGpuRasterization( | |
547 bool is_using_gpu_rasterization) { | |
548 if (is_using_gpu_rasterization_ == is_using_gpu_rasterization) | |
105 return; | 549 return; |
106 | 550 is_using_gpu_rasterization_ = is_using_gpu_rasterization; |
107 // Otherwise, we have to clean up the task so that a new one can be created if | 551 |
108 // we need to decode the image again. | 552 base::AutoLock lock(lock_); |
109 LayerImageTaskMap::iterator layer_it = image_decode_tasks_.find(layer_id); | 553 |
110 if (layer_it == image_decode_tasks_.end()) | 554 DCHECK_EQ(0u, decoded_images_ref_counts_.size()); |
111 return; | 555 DCHECK_EQ(0u, at_raster_decoded_images_ref_counts_.size()); |
112 | 556 DCHECK(std::find_if(decoded_images_.begin(), decoded_images_.end(), |
113 ImageTaskMap& image_tasks = layer_it->second; | 557 [](const AnnotatedDecodedImage& image) { |
114 ImageTaskMap::iterator task_it = image_tasks.find(image->uniqueID()); | 558 return image.second->is_locked(); |
115 if (task_it == image_tasks.end()) | 559 }) == decoded_images_.end()); |
116 return; | 560 DCHECK(std::find_if(at_raster_decoded_images_.begin(), |
117 image_tasks.erase(task_it); | 561 at_raster_decoded_images_.end(), |
562 [](const AnnotatedDecodedImage& image) { | |
563 return image.second->is_locked(); | |
564 }) == at_raster_decoded_images_.end()); | |
565 decoded_images_.clear(); | |
566 at_raster_decoded_images_.clear(); | |
567 } | |
568 | |
569 size_t ImageDecodeController::SanityCheckState(int line, bool lock_acquired) { | |
enne (OOO)
2015/12/08 23:27:24
Why does this return something?
vmpstr
2015/12/09 23:53:41
Removed the return.
| |
570 #if DCHECK_IS_ON() | |
571 if (!lock_acquired) { | |
572 base::AutoLock lock(lock_); | |
573 return SanityCheckState(line, true); | |
574 } | |
575 | |
576 MemoryBudget budget(kLockedMemoryLimitBytes); | |
577 for (const auto& annotated_image : decoded_images_) { | |
578 auto ref_it = decoded_images_ref_counts_.find(annotated_image.first); | |
579 if (annotated_image.second->is_locked()) { | |
580 budget.AddUsage(annotated_image.first.target_bytes()); | |
581 DCHECK(ref_it != decoded_images_ref_counts_.end()) << line; | |
582 } else { | |
583 DCHECK(ref_it == decoded_images_ref_counts_.end() || | |
584 pending_image_tasks_.find(annotated_image.first) != | |
585 pending_image_tasks_.end()) | |
586 << line; | |
587 } | |
588 } | |
589 DCHECK_GE(budget.AvailableMemoryBytes(), | |
590 locked_images_budget_.AvailableMemoryBytes()) | |
591 << line; | |
592 return budget.AvailableMemoryBytes(); | |
593 #else | |
594 return 0u; | |
595 #endif // DCHECK_IS_ON() | |
596 } | |
597 | |
598 // ImageDecodeControllerKey | |
599 ImageDecodeControllerKey ImageDecodeControllerKey::FromDrawImage( | |
600 const DrawImage& image) { | |
601 const SkSize& scale = image.scale(); | |
602 gfx::Size target_size( | |
603 SkScalarRoundToInt(std::abs(image.image()->width() * scale.width())), | |
604 SkScalarRoundToInt(std::abs(image.image()->height() * scale.height()))); | |
605 | |
606 // Start with the quality that was requested, but drop down immediately to low | |
607 // if we're not actually going to do any scale. | |
608 SkFilterQuality quality = image.filter_quality(); | |
609 if (target_size.width() == image.image()->width() && | |
610 target_size.height() == image.image()->height()) { | |
611 quality = std::min(quality, kLow_SkFilterQuality); | |
612 } | |
613 | |
614 // Drop from high to medium if the image has perspective applied, the matrix | |
615 // we applied wasn't decomposable, or if the scaled image will be too large. | |
616 if (quality == kHigh_SkFilterQuality) { | |
617 if (image.matrix_has_perspective() || !image.matrix_is_decomposable()) { | |
618 quality = kMedium_SkFilterQuality; | |
619 } else { | |
620 base::CheckedNumeric<size_t> size = 4u; | |
621 size *= target_size.width(); | |
622 size *= target_size.height(); | |
623 if (size.ValueOrDefault(std::numeric_limits<size_t>::max()) > | |
624 kMaxHighQualityImageSizeBytes) { | |
625 quality = kMedium_SkFilterQuality; | |
626 } | |
627 } | |
628 } | |
629 | |
630 // Drop from medium to low if the matrix we applied wasn't decomposable or if | |
631 // we're enlarging the image in both dimensions. | |
632 if (quality == kMedium_SkFilterQuality) { | |
633 if (!image.matrix_is_decomposable() || | |
634 (scale.width() >= 1.f && scale.height() >= 1.f)) { | |
635 quality = kLow_SkFilterQuality; | |
636 } | |
637 } | |
638 | |
639 return ImageDecodeControllerKey(image.image()->uniqueID(), | |
640 gfx::SkIRectToRect(image.src_rect()), | |
641 target_size, quality); | |
642 } | |
643 | |
644 ImageDecodeControllerKey::ImageDecodeControllerKey( | |
645 uint32_t image_id, | |
646 const gfx::Rect& src_rect, | |
647 const gfx::Size& size, | |
648 SkFilterQuality filter_quality) | |
649 : image_id_(image_id), | |
650 src_rect_(src_rect), | |
651 size_(size), | |
652 filter_quality_(filter_quality) {} | |
653 | |
654 std::string ImageDecodeControllerKey::ToString() const { | |
655 std::ostringstream str; | |
656 str << "id[" << image_id_ << "] src_rect[" << src_rect_.x() << "," | |
657 << src_rect_.y() << " " << src_rect_.width() << "x" << src_rect_.height() | |
658 << "] size[" << size_.width() << "x" << size_.height() | |
659 << "] filter_quality[" << filter_quality_ << "]"; | |
660 return str.str(); | |
661 } | |
662 | |
663 // DecodedImage | |
664 ImageDecodeController::DecodedImage::DecodedImage( | |
665 const SkImageInfo& info, | |
666 scoped_ptr<base::DiscardableMemory> memory, | |
667 const SkSize& src_rect_offset) | |
668 : locked_(true), | |
669 image_info_(info), | |
670 memory_(memory.Pass()), | |
671 src_rect_offset_(src_rect_offset) { | |
672 image_ = skia::AdoptRef(SkImage::NewFromRaster( | |
673 image_info_, memory_->data(), image_info_.minRowBytes(), | |
674 [](const void* pixels, void* context) {}, nullptr)); | |
675 } | |
676 | |
677 ImageDecodeController::DecodedImage::~DecodedImage() {} | |
678 | |
679 bool ImageDecodeController::DecodedImage::Lock() { | |
680 DCHECK(!locked_); | |
681 bool success = memory_->Lock(); | |
682 if (!success) | |
683 return false; | |
684 locked_ = true; | |
685 return true; | |
686 } | |
687 | |
688 void ImageDecodeController::DecodedImage::Unlock() { | |
689 DCHECK(locked_); | |
690 memory_->Unlock(); | |
691 locked_ = false; | |
692 } | |
693 | |
694 // MemoryBudget | |
695 ImageDecodeController::MemoryBudget::MemoryBudget(size_t limit_bytes) | |
696 : limit_bytes_(limit_bytes), current_usage_bytes_(0u) {} | |
697 | |
698 size_t ImageDecodeController::MemoryBudget::AvailableMemoryBytes() const { | |
699 size_t usage = GetCurrentUsageSafe(); | |
700 return usage >= limit_bytes_ ? 0u : (limit_bytes_ - usage); | |
701 } | |
702 | |
703 void ImageDecodeController::MemoryBudget::AddUsage(size_t usage) { | |
704 current_usage_bytes_ += usage; | |
705 } | |
706 | |
707 void ImageDecodeController::MemoryBudget::SubtractUsage(size_t usage) { | |
708 DCHECK_GE(current_usage_bytes_.ValueOrDefault(0u), usage); | |
709 current_usage_bytes_ -= usage; | |
710 } | |
711 | |
712 void ImageDecodeController::MemoryBudget::ResetUsage() { | |
713 current_usage_bytes_ = 0; | |
714 } | |
715 | |
716 size_t ImageDecodeController::MemoryBudget::GetCurrentUsageSafe() const { | |
717 return current_usage_bytes_.ValueOrDie(); | |
118 } | 718 } |
119 | 719 |
120 } // namespace cc | 720 } // namespace cc |
OLD | NEW |