Chromium Code Reviews| Index: base/numerics/safe_math_impl.h |
| diff --git a/base/numerics/safe_math_impl.h b/base/numerics/safe_math_impl.h |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..637eda7f3db7dab1f002a1a412e5c500e3d3ffef |
| --- /dev/null |
| +++ b/base/numerics/safe_math_impl.h |
| @@ -0,0 +1,481 @@ |
| +// Copyright 2014 The Chromium Authors. All rights reserved. |
| +// Use of this source code is governed by a BSD-style license that can be |
| +// found in the LICENSE file. |
| + |
| +#ifndef SAFE_MATH_IMPL_H_ |
| +#define SAFE_MATH_IMPL_H_ |
| + |
| +#include <stdint.h> |
| + |
| +#include <cmath> |
| +#include <cstdlib> |
| +#include <limits> |
| + |
| +#include "base/compiler_specific.h" |
| +#include "base/macros.h" |
| +#include "base/template_util.h" |
| + |
| +namespace base { |
| +namespace internal { |
| + |
| +using std::numeric_limits; |
| + |
| +// Everything from here up to the floating point operations is portable C++, |
| +// but it may not be fast. This code could be split based on |
| +// platform/architecture and replaced with potentially faster implementations. |
| + |
| +// Integer promotion templates used by the portable checked integer arithmetic. |
| +template <size_t Size, bool IsSigned> |
| +struct IntegerForSizeAndSign {}; |
|
awong
2014/02/11 20:14:12
Here and elsewhere, don't provide a definition for
jschuh
2014/02/21 19:22:28
Done.
|
| +template <> |
| +struct IntegerForSizeAndSign<1, true> { |
| + typedef int8_t type; |
| +}; |
| +template <> |
| +struct IntegerForSizeAndSign<1, false> { |
| + typedef uint8_t type; |
| +}; |
| +template <> |
| +struct IntegerForSizeAndSign<2, true> { |
| + typedef int16_t type; |
| +}; |
| +template <> |
| +struct IntegerForSizeAndSign<2, false> { |
| + typedef uint16_t type; |
| +}; |
| +template <> |
| +struct IntegerForSizeAndSign<4, true> { |
| + typedef int32_t type; |
| +}; |
| +template <> |
| +struct IntegerForSizeAndSign<4, false> { |
| + typedef uint32_t type; |
| +}; |
| +template <> |
| +struct IntegerForSizeAndSign<8, true> { |
| + typedef int64_t type; |
| +}; |
| +template <> |
| +struct IntegerForSizeAndSign<8, false> { |
| + typedef uint64_t type; |
| +}; |
| +// The ArithmeticPromotion template below will need to be updated (or more |
|
awong
2014/02/11 20:14:12
This looks like a TODO. Make it into a TODO?
Also
jschuh
2014/02/21 19:22:28
We don't support 128-bit math today, so it's a war
|
| +// likely replaced with decltype) if we add support for 128-bit integers). |
| + |
| +template <typename Integer> |
| +struct UnsignedIntegerForSize { |
| + typedef typename enable_if< |
|
awong
2014/02/11 20:14:12
Why do we need an enable_if here? Normally you use
jschuh
2014/02/21 19:22:28
I'm preventing this:
UnsignedIntegerForSize<flo
|
| + numeric_limits<Integer>::is_integer, |
| + typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type; |
| +}; |
| + |
| +template <typename Integer> |
| +struct SignedIntegerForSize { |
| + typedef typename enable_if< |
| + numeric_limits<Integer>::is_integer, |
| + typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type; |
| +}; |
| + |
| +template <typename Integer> |
| +struct TwiceWiderInteger { |
| + typedef typename enable_if< |
| + numeric_limits<Integer>::is_integer, |
| + typename IntegerForSizeAndSign< |
| + sizeof(Integer) * 2, |
| + numeric_limits<Integer>::is_signed>::type>::type type; |
| +}; |
| + |
| +template <typename Integer> |
| +struct PositionOfSignBit { |
| + static const typename enable_if<numeric_limits<Integer>::is_integer, |
| + size_t>::type value = 8 * sizeof(Integer) - 1; |
| +}; |
| + |
| +// Helper templates for integer manipulations. |
| + |
| +template <typename T> |
| +bool HasSignBit(T x) { |
| + // Cast to unsigned since right shift on signed is undefined. |
| + return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >> |
| + PositionOfSignBit<T>::value); |
| +} |
| + |
| +// This wrapper undoes the standard integer promotions. |
| +template <typename T> |
| +T BinaryComplement(T x) { |
| + return ~x; |
| +} |
| + |
| +// Here are the actual portable checked integer implementations. |
| + |
| +template <typename T> |
| +typename enable_if<numeric_limits<T>::is_integer, T>::type |
| +CheckedAdd(T x, T y, RangeCheckId* validity) { |
| + // Since the value of x+y is undefined if we have a signed type, we compute |
| + // it using the unsigned type of the same size. |
| + typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; |
| + UnsignedDst ux = static_cast<UnsignedDst>(x); |
| + UnsignedDst uy = static_cast<UnsignedDst>(y); |
| + UnsignedDst uresult = ux + uy; |
| + // Addition is valid if the sign of (x + y) is equal to either that of x or |
| + // that of y. |
| + if (numeric_limits<T>::is_signed) { |
| + if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy)))) |
| + *validity = TYPE_VALID; |
| + else // Direction of wrap is inverse of result sign. |
| + *validity = HasSignBit(uresult) ? TYPE_OVERFLOW : TYPE_UNDERFLOW; |
| + |
| + } else { // Unsigned is either valid or overflow. |
| + *validity = BinaryComplement(x) >= y ? TYPE_VALID : TYPE_OVERFLOW; |
| + } |
| + return static_cast<T>(uresult); |
| +} |
| + |
| +template <typename T> |
| +typename enable_if<numeric_limits<T>::is_integer, T>::type |
| +CheckedSub(T x, T y, RangeCheckId* validity) { |
| + // Since the value of x+y is undefined if we have a signed type, we compute |
| + // it using the unsigned type of the same size. |
| + typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; |
| + UnsignedDst ux = static_cast<UnsignedDst>(x); |
| + UnsignedDst uy = static_cast<UnsignedDst>(y); |
| + UnsignedDst uresult = ux - uy; |
| + // Subtraction is valid if either x and y have same sign, or (x-y) and x have |
| + // the same sign. |
| + if (numeric_limits<T>::is_signed) { |
| + if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy)))) |
| + *validity = TYPE_VALID; |
| + else // Direction of wrap is inverse of result sign. |
| + *validity = HasSignBit(uresult) ? TYPE_OVERFLOW : TYPE_UNDERFLOW; |
| + |
| + } else { // Unsigned is either valid or underflow. |
| + *validity = x >= y ? TYPE_VALID : TYPE_UNDERFLOW; |
| + } |
| + return static_cast<T>(uresult); |
| +} |
| + |
| +// Integer multiplication is a bit complicated. In the fast case we just |
| +// we just promote to a twice wider type, and range check the result. In the |
| +// slow case we need to manually check that the result won't be truncated by |
| +// checking with division against the appropriate bound. |
| +template <typename T> |
| +typename enable_if< |
| + numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t), |
| + T>::type |
| +CheckedMul(T x, T y, RangeCheckId* validity) { |
| + typedef typename TwiceWiderInteger<T>::type IntermediateType; |
| + IntermediateType tmp = |
| + static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y); |
| + *validity = RangeCheck<T>(tmp); |
| + return static_cast<T>(tmp); |
| +} |
| + |
| +template <typename T> |
| +typename enable_if<numeric_limits<T>::is_integer&& numeric_limits< |
|
awong
2014/02/11 20:14:12
Yes...it's looking like you're using enable_if to
jschuh
2014/02/21 19:22:28
This is breaking out the specializations. Based on
|
| + T>::is_signed&&(sizeof(T) * 2 > sizeof(uintmax_t)), |
| + T>::type |
| +CheckedMul(T x, T y, RangeCheckId* validity) { |
| + // if either side is zero then the result will be zero. |
| + if (!(x || y)) { |
| + return TYPE_VALID; |
| + |
| + } else if (x > 0) { |
| + if (y > 0) |
| + *validity = |
| + x <= numeric_limits<T>::max() / y ? TYPE_VALID : TYPE_OVERFLOW; |
| + else |
| + *validity = |
| + y >= numeric_limits<T>::min() / x ? TYPE_VALID : TYPE_UNDERFLOW; |
| + |
| + } else { |
| + if (y > 0) |
| + *validity = |
| + x >= numeric_limits<T>::min() / y ? TYPE_VALID : TYPE_UNDERFLOW; |
| + else |
| + *validity = |
| + y >= numeric_limits<T>::max() / x ? TYPE_VALID : TYPE_OVERFLOW; |
| + } |
| + |
| + return x * y; |
| +} |
| + |
| +template <typename T> |
| +typename enable_if<numeric_limits<T>::is_integer && |
| + !numeric_limits<T>::is_signed && |
| + (sizeof(T) * 2 > sizeof(uintmax_t)), |
| + T>::type |
| +CheckedMul(T x, T y, RangeCheckId* validity) { |
| + *validity = (y == 0 || x <= numeric_limits<T>::max() / y) ? TYPE_VALID |
| + : TYPE_OVERFLOW; |
| + return x * y; |
| +} |
| + |
| +// Division just requires a check for an invalid negation on signed min/-1. |
| +template <typename T> |
| +T CheckedDiv(T x, |
| + T y, |
| + RangeCheckId* validity, |
| + typename enable_if<numeric_limits<T>::is_integer, int>::type = 0) { |
| + if (numeric_limits<T>::is_signed && x == numeric_limits<T>::min() && |
| + y == static_cast<T>(-1)) { |
| + *validity = TYPE_OVERFLOW; |
| + return numeric_limits<T>::min(); |
| + } |
| + |
| + *validity = TYPE_VALID; |
| + return x / y; |
| +} |
| + |
| +template <typename T> |
| +typename enable_if<numeric_limits<T>::is_integer&& numeric_limits<T>::is_signed, |
| + T>::type |
| +CheckedMod(T x, T y, RangeCheckId* validity) { |
| + *validity = y > 0 ? TYPE_VALID : TYPE_INVALID; |
| + return x % y; |
| +} |
| + |
| +template <typename T> |
| +typename enable_if< |
| + numeric_limits<T>::is_integer && !numeric_limits<T>::is_signed, |
| + T>::type |
| +CheckedMod(T x, T y, RangeCheckId* validity) { |
| + *validity = TYPE_VALID; |
| + return x % y; |
| +} |
| + |
| +template <typename T> |
| +typename enable_if<numeric_limits<T>::is_integer&& numeric_limits<T>::is_signed, |
| + T>::type |
| +CheckedNeg(T value, RangeCheckId* validity) { |
| + *validity = value != numeric_limits<T>::min() ? TYPE_VALID : TYPE_OVERFLOW; |
| + // The negation of signed min is min, so catch that one. |
| + return -value; |
| +} |
| + |
| +template <typename T> |
| +typename enable_if< |
| + numeric_limits<T>::is_integer && !numeric_limits<T>::is_signed, |
| + T>::type |
| +CheckedNeg(T value, RangeCheckId* validity) { |
| + // The only legal unsigned negation is zero. |
| + *validity = value ? TYPE_UNDERFLOW : TYPE_VALID; |
| + return static_cast<T>( |
| + -static_cast<typename SignedIntegerForSize<T>::type>(value)); |
| +} |
| + |
| +template <typename T> |
| +typename enable_if<numeric_limits<T>::is_integer&& numeric_limits<T>::is_signed, |
| + T>::type |
| +CheckedAbs(T value, RangeCheckId* validity) { |
| + *validity = value != numeric_limits<T>::min() ? TYPE_VALID : TYPE_OVERFLOW; |
| + return std::abs(value); |
| +} |
| + |
| +template <typename T> |
| +typename enable_if< |
| + numeric_limits<T>::is_integer && !numeric_limits<T>::is_signed, |
| + T>::type |
| +CheckedAbs(T value, RangeCheckId* validity) { |
| + // Absolute value of a positive is just its identiy. |
| + *validity = TYPE_VALID; |
| + return value; |
| +} |
| + |
| +// These are the floating point stubs that the compiler needs to see. Only the |
| +// negation operation is ever called. |
| +#define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \ |
| + template <typename T> \ |
| + typename enable_if<numeric_limits<T>::is_iec559, T>::type Checked##NAME( \ |
| + T, T, RangeCheckId*) { \ |
| + NOTREACHED(); \ |
| + return 0; \ |
| + } |
| + |
| +BASE_FLOAT_ARITHMETIC_STUBS(Add) |
| +BASE_FLOAT_ARITHMETIC_STUBS(Sub) |
| +BASE_FLOAT_ARITHMETIC_STUBS(Mul) |
| +BASE_FLOAT_ARITHMETIC_STUBS(Div) |
| +BASE_FLOAT_ARITHMETIC_STUBS(Mod) |
| + |
| +#undef BASE_FLOAT_ARITHMETIC_STUBS |
| + |
| +template <typename T> |
| +typename enable_if<numeric_limits<T>::is_iec559, T>::type CheckedNeg( |
| + T value, |
| + RangeCheckId*) { |
| + return -value; |
| +} |
| + |
| +template <typename T> |
| +typename enable_if<numeric_limits<T>::is_iec559, T>::type CheckedAbs( |
| + T value, |
| + RangeCheckId*) { |
| + return std::abs(value); |
| +} |
| + |
| +// Floats carry around their validity state with them, but integers do not. So, |
| +// we wrap the underlying value in a specialization in order to hide that detail |
| +// and expose an interface via accessors. |
| +enum NumericTypeId { NUMERIC_INTEGER, NUMERIC_FLOATING, NUMERIC_UNKNOWN }; |
| + |
| +template <typename NumericType> |
| +struct GetNumericTypeId { |
| + static const NumericTypeId value = |
| + numeric_limits<NumericType>::is_integer |
| + ? NUMERIC_INTEGER |
| + : (numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING |
| + : NUMERIC_UNKNOWN); |
| +}; |
| + |
| +template <typename T, NumericTypeId type = GetNumericTypeId<T>::value> |
| +class CheckedNumericState {}; |
| + |
| +// Integrals require quite a bit of additional housekeeping to manage state. |
| +template <typename T> |
| +class CheckedNumericState<T, NUMERIC_INTEGER> { |
| + private: |
| + T value_; |
| + RangeCheckId validity_; |
| + |
| + public: |
| + template <typename Src, NumericTypeId type> |
| + friend class CheckedNumericState; |
| + |
| + CheckedNumericState() : value_(0), validity_(TYPE_VALID) {} |
| + |
| + template <typename Src> |
| + CheckedNumericState(Src value, RangeCheckId validity) |
| + : value_(value), |
| + validity_(static_cast<RangeCheckId>(validity | RangeCheck<T>(value))) { |
| + COMPILE_ASSERT(numeric_limits<Src>::is_specialized, |
| + argument_must_be_numeric); |
| + } |
| + |
| + // Copy constructor. |
| + template <typename Src> |
| + CheckedNumericState(const CheckedNumericState<Src>& rhs) |
| + : value_(static_cast<T>(rhs.value())), |
| + validity_(static_cast<RangeCheckId>(rhs.validity() | |
| + RangeCheck<T>(rhs.value()))) {} |
| + |
| + template <typename Src> |
| + explicit CheckedNumericState( |
| + Src value, |
| + typename enable_if<numeric_limits<Src>::is_specialized, int>::type = 0) |
| + : value_(static_cast<T>(value)), validity_(RangeCheck<T>(value)) {} |
| + |
| + RangeCheckId validity() const { return validity_; } |
| + T value() const { return value_; } |
| +}; |
| + |
| +// Floating points maintain their own validity, but need translation wrappers. |
| +template <typename T> |
| +class CheckedNumericState<T, NUMERIC_FLOATING> { |
| + private: |
| + T value_; |
| + |
| + public: |
| + template <typename Src, NumericTypeId type> |
| + friend class CheckedNumericState; |
| + |
| + CheckedNumericState() : value_(0.0) {} |
| + |
| + template <typename Src> |
| + CheckedNumericState( |
| + Src value, |
| + RangeCheckId validity, |
| + typename enable_if<numeric_limits<Src>::is_integer, int>::type = 0) { |
| + switch (RangeCheck<T>(value)) { |
| + case TYPE_VALID: |
| + value_ = static_cast<T>(value); |
| + break; |
| + |
| + case TYPE_UNDERFLOW: |
| + value_ = -numeric_limits<T>::infinity(); |
| + break; |
| + |
| + case TYPE_OVERFLOW: |
| + value_ = numeric_limits<T>::infinity(); |
| + break; |
| + |
| + case TYPE_INVALID: |
| + value_ = numeric_limits<T>::quiet_NaN(); |
| + break; |
| + |
| + default: |
| + NOTREACHED(); |
| + } |
| + } |
| + |
| + template <typename Src> |
| + explicit CheckedNumericState( |
| + Src value, |
| + typename enable_if<numeric_limits<Src>::is_specialized, int>::type = 0) |
| + : value_(static_cast<T>(value)) {} |
| + |
| + // Copy constructor. |
| + template <typename Src> |
| + CheckedNumericState(const CheckedNumericState<Src>& rhs) |
| + : value_(static_cast<T>(rhs.value())) {} |
| + |
| + RangeCheckId validity() const { |
| + return BASE_NUMERIC_RANGE_CHECK_RESULT(value_ <= numeric_limits<T>::max(), |
| + value_ >= -numeric_limits<T>::max()); |
| + } |
| + T value() const { return value_; } |
| +}; |
| + |
| +// For integers less than 128-bit and floats 32-bit or larger, we can distil |
| +// C/C++ arithmetic promotions down to two simple rules: |
| +// 1. The type with the larger maximum exponent always takes precedence. |
| +// 2. The resulting type must be promoted to at least an int. |
| +// The following template specializations implement that promotion logic. |
| +enum ArithmeticPromotionId { |
| + LEFT_PROMOTION, |
| + RIGHT_PROMOTION, |
| + DEFAULT_PROMOTION |
| +}; |
| + |
| +template <typename Lhs, |
| + typename Rhs = Lhs, |
| + ArithmeticPromotionId Promotion = |
| + (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) |
| + ? (MaxExponent<Lhs>::value > MaxExponent<int>::value |
| + ? LEFT_PROMOTION |
| + : DEFAULT_PROMOTION) |
| + : (MaxExponent<Rhs>::value > MaxExponent<int>::value |
| + ? RIGHT_PROMOTION |
| + : DEFAULT_PROMOTION) > struct ArithmeticPromotion {}; |
| + |
| +template <typename Lhs, typename Rhs> |
| +struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> { |
| + typedef Lhs type; |
| +}; |
| + |
| +template <typename Lhs, typename Rhs> |
| +struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> { |
| + typedef Rhs type; |
| +}; |
| + |
| +template <typename Lhs, typename Rhs> |
| +struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> { |
| + typedef int type; |
| +}; |
| + |
| +// We can statically check if operations on the provided types can wrap, so we |
| +// can skip the checked operations if they're not needed. So, for an integer we |
| +// care if the destination type preserves the sign and is twice the width of |
| +// the source. |
| +template <typename T, typename Lhs, typename Rhs> |
| +struct IsIntegerArithmeticSafe { |
| + static const bool value = !numeric_limits<T>::is_iec559 && |
| + StaticRangeCheck<T, Lhs>::value == CONTAINS_RANGE && |
| + sizeof(T) >= (2 * sizeof(Lhs)) && |
| + StaticRangeCheck<T, Rhs>::value != CONTAINS_RANGE && |
| + sizeof(T) >= (2 * sizeof(Rhs)); |
| +}; |
| + |
| +} // namespace internal |
| +} // namespace base |
| + |
| +#endif // SAFE_MATH_IMPL_H_ |