| Index: src/pathops/SkPathOpsConic.cpp
|
| diff --git a/src/pathops/SkPathOpsConic.cpp b/src/pathops/SkPathOpsConic.cpp
|
| index 013136bd8279a67781be68f915de1d52588cb52a..3bb8b65351a1dbd2f48a1fe5715cc04b7abf5eb0 100644
|
| --- a/src/pathops/SkPathOpsConic.cpp
|
| +++ b/src/pathops/SkPathOpsConic.cpp
|
| @@ -96,7 +96,27 @@ SkDPoint SkDConic::ptAtT(double t) const {
|
| return result;
|
| }
|
|
|
| -/* see quad subdivide for rationale */
|
| +/* see quad subdivide for point rationale */
|
| +/* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c
|
| + values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume
|
| + that it is the same as the point on the new curve t==(0+1)/2.
|
| +
|
| + d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5);
|
| +
|
| + conic_poly(dst, unknownW, .5)
|
| + = a / 4 + (b * unknownW) / 2 + c / 4
|
| + = (a + c) / 4 + (bx * unknownW) / 2
|
| +
|
| + conic_weight(unknownW, .5)
|
| + = unknownW / 2 + 1 / 2
|
| +
|
| + d / dz == ((a + c) / 2 + b * unknownW) / (unknownW + 1)
|
| + d / dz * (unknownW + 1) == (a + c) / 2 + b * unknownW
|
| + unknownW = ((a + c) / 2 - d / dz) / (d / dz - b)
|
| +
|
| + Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the
|
| + distance of the on-curve point to the control point.
|
| + */
|
| SkDConic SkDConic::subDivide(double t1, double t2) const {
|
| double ax, ay, az;
|
| if (t1 == 0) {
|
| @@ -133,11 +153,13 @@ SkDConic SkDConic::subDivide(double t1, double t2) const {
|
| double bx = 2 * dx - (ax + cx) / 2;
|
| double by = 2 * dy - (ay + cy) / 2;
|
| double bz = 2 * dz - (az + cz) / 2;
|
| - double dt = t2 - t1;
|
| - double dt_1 = 1 - dt;
|
| - SkScalar w = SkDoubleToScalar((1 + dt * (fWeight - 1))
|
| - / sqrt(dt * dt + 2 * dt * dt_1 * fWeight + dt_1 * dt_1));
|
| - SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}}, w };
|
| + SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}}, 0 };
|
| + SkDPoint dMidAC = { (dst.fPts[0].fX + dst.fPts[2].fX) / 2,
|
| + (dst.fPts[0].fY + dst.fPts[2].fY) / 2 };
|
| + SkDPoint dMid = { dx / dz, dy / dz };
|
| + SkDVector dWNumer = dMidAC - dMid;
|
| + SkDVector dWDenom = dMid - dst.fPts[1];
|
| + dst.fWeight = dWNumer.length() / dWDenom.length();
|
| return dst;
|
| }
|
|
|
|
|