| Index: base/metrics/persistent_memory_allocator_unittest.cc
|
| diff --git a/base/metrics/persistent_memory_allocator_unittest.cc b/base/metrics/persistent_memory_allocator_unittest.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..a89267ac4ed9b4446035508368771d3a9f2e3ceb
|
| --- /dev/null
|
| +++ b/base/metrics/persistent_memory_allocator_unittest.cc
|
| @@ -0,0 +1,507 @@
|
| +// Copyright 2015 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "base/metrics/persistent_memory_allocator.h"
|
| +
|
| +#include "base/files/file.h"
|
| +#include "base/files/file_util.h"
|
| +#include "base/files/memory_mapped_file.h"
|
| +#include "base/files/scoped_temp_dir.h"
|
| +#include "base/memory/scoped_ptr.h"
|
| +#include "base/metrics/histogram.h"
|
| +#include "base/rand_util.h"
|
| +#include "base/strings/safe_sprintf.h"
|
| +#include "base/threading/simple_thread.h"
|
| +#include "testing/gmock/include/gmock/gmock.h"
|
| +
|
| +namespace {
|
| +
|
| +const uint32_t TEST_MEMORY_SIZE = 1 << 20; // 1 MiB
|
| +const uint32_t TEST_MEMORY_PAGE = 64 << 10; // 64 KiB
|
| +const uint32_t TEST_ID = 12345;
|
| +const char TEST_NAME[] = "TestAllocator";
|
| +
|
| +} // namespace
|
| +
|
| +namespace base {
|
| +
|
| +typedef PersistentMemoryAllocator::Reference Reference;
|
| +
|
| +class PersistentMemoryAllocatorTest : public testing::Test {
|
| + public:
|
| + // This can't be statically initialized because it's value isn't defined
|
| + // in the PersistentMemoryAllocator header file. Instead, it's simply set
|
| + // in the constructor.
|
| + uint32_t kAllocAlignment;
|
| +
|
| + struct TestObject1 {
|
| + int onething;
|
| + char oranother;
|
| + };
|
| +
|
| + struct TestObject2 {
|
| + int thiis;
|
| + long that;
|
| + float andthe;
|
| + char other;
|
| + double thing;
|
| + };
|
| +
|
| + PersistentMemoryAllocatorTest() {
|
| + kAllocAlignment = PersistentMemoryAllocator::kAllocAlignment;
|
| + mem_segment_.reset(new char[TEST_MEMORY_SIZE]);
|
| + }
|
| +
|
| + void SetUp() override {
|
| + allocator_.reset();
|
| + ::memset(mem_segment_.get(), 0, TEST_MEMORY_SIZE);
|
| + allocator_.reset(new PersistentMemoryAllocator(
|
| + mem_segment_.get(), TEST_MEMORY_SIZE, TEST_MEMORY_PAGE,
|
| + TEST_ID, TEST_NAME, false));
|
| + allocator_->CreateTrackingHistograms(allocator_->Name());
|
| + }
|
| +
|
| + void TearDown() override {
|
| + allocator_.reset();
|
| + }
|
| +
|
| + unsigned CountIterables() {
|
| + PersistentMemoryAllocator::Iterator iter;
|
| + uint32_t type;
|
| + unsigned count = 0;
|
| + for (allocator_->CreateIterator(&iter);
|
| + allocator_->GetNextIterable(&iter, &type) != 0;) {
|
| + count++;
|
| + }
|
| + return count;
|
| + }
|
| +
|
| + protected:
|
| + scoped_ptr<char[]> mem_segment_;
|
| + scoped_ptr<PersistentMemoryAllocator> allocator_;
|
| +};
|
| +
|
| +TEST_F(PersistentMemoryAllocatorTest, AllocateAndIterate) {
|
| + std::string base_name(TEST_NAME);
|
| + EXPECT_EQ(TEST_ID, allocator_->Id());
|
| + EXPECT_TRUE(allocator_->used_histogram_);
|
| + EXPECT_EQ(base_name + ".UsedKiB",
|
| + allocator_->used_histogram_->histogram_name());
|
| + EXPECT_TRUE(allocator_->allocs_histogram_);
|
| + EXPECT_EQ(base_name + ".Allocs",
|
| + allocator_->allocs_histogram_->histogram_name());
|
| +
|
| + // Get base memory info for later comparison.
|
| + PersistentMemoryAllocator::MemoryInfo meminfo0;
|
| + allocator_->GetMemoryInfo(&meminfo0);
|
| + EXPECT_EQ(TEST_MEMORY_SIZE, meminfo0.total);
|
| + EXPECT_GT(meminfo0.total, meminfo0.free);
|
| +
|
| + // Validate allocation of test object and make sure it can be referenced
|
| + // and all metadata looks correct.
|
| + Reference block1 = allocator_->Allocate(sizeof(TestObject1), 1);
|
| + EXPECT_NE(0U, block1);
|
| + EXPECT_NE(nullptr, allocator_->GetAsObject<TestObject1>(block1, 1));
|
| + EXPECT_EQ(nullptr, allocator_->GetAsObject<TestObject2>(block1, 1));
|
| + EXPECT_LE(sizeof(TestObject1), allocator_->GetAllocSize(block1));
|
| + EXPECT_GT(sizeof(TestObject1) + kAllocAlignment,
|
| + allocator_->GetAllocSize(block1));
|
| + PersistentMemoryAllocator::MemoryInfo meminfo1;
|
| + allocator_->GetMemoryInfo(&meminfo1);
|
| + EXPECT_EQ(meminfo0.total, meminfo1.total);
|
| + EXPECT_GT(meminfo0.free, meminfo1.free);
|
| +
|
| + // Ensure that the test-object can be made iterable.
|
| + PersistentMemoryAllocator::Iterator iter;
|
| + uint32_t type;
|
| + allocator_->CreateIterator(&iter);
|
| + EXPECT_EQ(0U, allocator_->GetNextIterable(&iter, &type));
|
| + allocator_->MakeIterable(block1);
|
| + EXPECT_EQ(block1, allocator_->GetNextIterable(&iter, &type));
|
| + EXPECT_EQ(1U, type);
|
| + EXPECT_EQ(0U, allocator_->GetNextIterable(&iter, &type));
|
| +
|
| + // Create second test-object and ensure everything is good and it cannot
|
| + // be confused with test-object of another type.
|
| + Reference block2 = allocator_->Allocate(sizeof(TestObject2), 2);
|
| + EXPECT_NE(0U, block2);
|
| + EXPECT_NE(nullptr, allocator_->GetAsObject<TestObject2>(block2, 2));
|
| + EXPECT_EQ(nullptr, allocator_->GetAsObject<TestObject2>(block2, 1));
|
| + EXPECT_LE(sizeof(TestObject2), allocator_->GetAllocSize(block2));
|
| + EXPECT_GT(sizeof(TestObject2) + kAllocAlignment,
|
| + allocator_->GetAllocSize(block2));
|
| + PersistentMemoryAllocator::MemoryInfo meminfo2;
|
| + allocator_->GetMemoryInfo(&meminfo2);
|
| + EXPECT_EQ(meminfo1.total, meminfo2.total);
|
| + EXPECT_GT(meminfo1.free, meminfo2.free);
|
| +
|
| + // Ensure that second test-object can also be made iterable.
|
| + allocator_->MakeIterable(block2);
|
| + EXPECT_EQ(block2, allocator_->GetNextIterable(&iter, &type));
|
| + EXPECT_EQ(2U, type);
|
| + EXPECT_EQ(0U, allocator_->GetNextIterable(&iter, &type));
|
| +
|
| + // Check that iteration can begin after an arbitrary location.
|
| + allocator_->CreateIterator(&iter, block1);
|
| + EXPECT_EQ(block2, allocator_->GetNextIterable(&iter, &type));
|
| + EXPECT_EQ(0U, allocator_->GetNextIterable(&iter, &type));
|
| +
|
| + // Ensure nothing has gone noticably wrong.
|
| + EXPECT_FALSE(allocator_->IsFull());
|
| + EXPECT_FALSE(allocator_->IsCorrupt());
|
| +
|
| + // Check the internal histogram record of used memory.
|
| + allocator_->UpdateTrackingHistograms();
|
| + scoped_ptr<HistogramSamples> used_samples(
|
| + allocator_->used_histogram_->SnapshotSamples());
|
| + EXPECT_TRUE(used_samples);
|
| + EXPECT_EQ(1, used_samples->TotalCount());
|
| +
|
| + // Check the internal histogram record of allocation requests.
|
| + scoped_ptr<HistogramSamples> allocs_samples(
|
| + allocator_->allocs_histogram_->SnapshotSamples());
|
| + EXPECT_TRUE(allocs_samples);
|
| + EXPECT_EQ(2, allocs_samples->TotalCount());
|
| + EXPECT_EQ(0, allocs_samples->GetCount(0));
|
| + EXPECT_EQ(1, allocs_samples->GetCount(sizeof(TestObject1)));
|
| + EXPECT_EQ(1, allocs_samples->GetCount(sizeof(TestObject2)));
|
| +#if !DCHECK_IS_ON() // DCHECK builds will die at a NOTREACHED().
|
| + EXPECT_EQ(0U, allocator_->Allocate(TEST_MEMORY_SIZE + 1, 0));
|
| + allocs_samples = allocator_->allocs_histogram_->SnapshotSamples();
|
| + EXPECT_EQ(3, allocs_samples->TotalCount());
|
| + EXPECT_EQ(1, allocs_samples->GetCount(0));
|
| +#endif
|
| +
|
| + // Check that an objcet's type can be changed.
|
| + EXPECT_EQ(2U, allocator_->GetType(block2));
|
| + allocator_->SetType(block2, 3);
|
| + EXPECT_EQ(3U, allocator_->GetType(block2));
|
| + allocator_->SetType(block2, 2);
|
| + EXPECT_EQ(2U, allocator_->GetType(block2));
|
| +
|
| + // Create second allocator (read/write) using the same memory segment.
|
| + scoped_ptr<PersistentMemoryAllocator> allocator2(
|
| + new PersistentMemoryAllocator(
|
| + mem_segment_.get(), TEST_MEMORY_SIZE, TEST_MEMORY_PAGE, 0, "",
|
| + false));
|
| + EXPECT_EQ(TEST_ID, allocator2->Id());
|
| + EXPECT_FALSE(allocator2->used_histogram_);
|
| + EXPECT_FALSE(allocator2->allocs_histogram_);
|
| + EXPECT_NE(allocator2->allocs_histogram_, allocator_->allocs_histogram_);
|
| +
|
| + // Ensure that iteration and access through second allocator works.
|
| + allocator2->CreateIterator(&iter);
|
| + EXPECT_EQ(block1, allocator2->GetNextIterable(&iter, &type));
|
| + EXPECT_EQ(block2, allocator2->GetNextIterable(&iter, &type));
|
| + EXPECT_EQ(0U, allocator2->GetNextIterable(&iter, &type));
|
| + EXPECT_NE(nullptr, allocator2->GetAsObject<TestObject1>(block1, 1));
|
| + EXPECT_NE(nullptr, allocator2->GetAsObject<TestObject2>(block2, 2));
|
| +
|
| + // Create a third allocator (read-only) using the same memory segment.
|
| + scoped_ptr<const PersistentMemoryAllocator> allocator3(
|
| + new PersistentMemoryAllocator(
|
| + mem_segment_.get(), TEST_MEMORY_SIZE, TEST_MEMORY_PAGE, 0, "", true));
|
| + EXPECT_EQ(TEST_ID, allocator3->Id());
|
| + EXPECT_FALSE(allocator3->used_histogram_);
|
| + EXPECT_FALSE(allocator3->allocs_histogram_);
|
| +
|
| + // Ensure that iteration and access through third allocator works.
|
| + allocator3->CreateIterator(&iter);
|
| + EXPECT_EQ(block1, allocator3->GetNextIterable(&iter, &type));
|
| + EXPECT_EQ(block2, allocator3->GetNextIterable(&iter, &type));
|
| + EXPECT_EQ(0U, allocator3->GetNextIterable(&iter, &type));
|
| + EXPECT_NE(nullptr, allocator3->GetAsObject<TestObject1>(block1, 1));
|
| + EXPECT_NE(nullptr, allocator3->GetAsObject<TestObject2>(block2, 2));
|
| +}
|
| +
|
| +TEST_F(PersistentMemoryAllocatorTest, PageTest) {
|
| + // This allocation will go into the first memory page.
|
| + Reference block1 = allocator_->Allocate(TEST_MEMORY_PAGE / 2, 1);
|
| + EXPECT_LT(0U, block1);
|
| + EXPECT_GT(TEST_MEMORY_PAGE, block1);
|
| +
|
| + // This allocation won't fit in same page as previous block.
|
| + Reference block2 =
|
| + allocator_->Allocate(TEST_MEMORY_PAGE - 2 * kAllocAlignment, 2);
|
| + EXPECT_EQ(TEST_MEMORY_PAGE, block2);
|
| +
|
| + // This allocation will also require a new page.
|
| + Reference block3 = allocator_->Allocate(2 * kAllocAlignment + 99, 3);
|
| + EXPECT_EQ(2U * TEST_MEMORY_PAGE, block3);
|
| +}
|
| +
|
| +// A simple thread that takes an allocator and repeatedly allocates random-
|
| +// sized chunks from it until no more can be done.
|
| +class AllocatorThread : public SimpleThread {
|
| + public:
|
| + AllocatorThread(const std::string& name,
|
| + void* base,
|
| + uint32_t size,
|
| + uint32_t page_size)
|
| + : SimpleThread(name, Options()),
|
| + count_(0),
|
| + iterable_(0),
|
| + allocator_(base, size, page_size, 0, std::string(), false) {}
|
| +
|
| + void Run() override {
|
| + for (;;) {
|
| + uint32_t size = RandInt(1, 99);
|
| + uint32_t type = RandInt(100, 999);
|
| + Reference block = allocator_.Allocate(size, type);
|
| + if (!block)
|
| + break;
|
| +
|
| + count_++;
|
| + if (RandInt(0, 1)) {
|
| + allocator_.MakeIterable(block);
|
| + iterable_++;
|
| + }
|
| + }
|
| + }
|
| +
|
| + unsigned iterable() { return iterable_; }
|
| + unsigned count() { return count_; }
|
| +
|
| + private:
|
| + unsigned count_;
|
| + unsigned iterable_;
|
| + PersistentMemoryAllocator allocator_;
|
| +};
|
| +
|
| +// Test parallel allocation/iteration and ensure consistency across all
|
| +// instances.
|
| +TEST_F(PersistentMemoryAllocatorTest, ParallelismTest) {
|
| + void* memory = mem_segment_.get();
|
| + AllocatorThread t1("t1", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
|
| + AllocatorThread t2("t2", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
|
| + AllocatorThread t3("t3", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
|
| + AllocatorThread t4("t4", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
|
| + AllocatorThread t5("t5", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
|
| +
|
| + t1.Start();
|
| + t2.Start();
|
| + t3.Start();
|
| + t4.Start();
|
| + t5.Start();
|
| +
|
| + unsigned last_count = 0;
|
| + do {
|
| + unsigned count = CountIterables();
|
| + EXPECT_LE(last_count, count);
|
| + } while (!allocator_->IsCorrupt() && !allocator_->IsFull());
|
| +
|
| + t1.Join();
|
| + t2.Join();
|
| + t3.Join();
|
| + t4.Join();
|
| + t5.Join();
|
| +
|
| + EXPECT_FALSE(allocator_->IsCorrupt());
|
| + EXPECT_TRUE(allocator_->IsFull());
|
| + EXPECT_EQ(CountIterables(),
|
| + t1.iterable() + t2.iterable() + t3.iterable() + t4.iterable() +
|
| + t5.iterable());
|
| +}
|
| +
|
| +// This test doesn't verify anything other than it doesn't crash. Its goal
|
| +// is to find coding errors that aren't otherwise tested for, much like a
|
| +// "fuzzer" would.
|
| +TEST_F(PersistentMemoryAllocatorTest, CorruptionTest) {
|
| + char* memory = mem_segment_.get();
|
| + AllocatorThread t1("t1", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
|
| + AllocatorThread t2("t2", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
|
| + AllocatorThread t3("t3", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
|
| + AllocatorThread t4("t4", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
|
| + AllocatorThread t5("t5", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
|
| +
|
| + t1.Start();
|
| + t2.Start();
|
| + t3.Start();
|
| + t4.Start();
|
| + t5.Start();
|
| +
|
| + do {
|
| + size_t offset = RandInt(0, TEST_MEMORY_SIZE - 1);
|
| + char value = RandInt(0, 255);
|
| + memory[offset] = value;
|
| + } while (!allocator_->IsCorrupt() && !allocator_->IsFull());
|
| +
|
| + t1.Join();
|
| + t2.Join();
|
| + t3.Join();
|
| + t4.Join();
|
| + t5.Join();
|
| +
|
| + CountIterables();
|
| +}
|
| +
|
| +// Attempt to cause crashes or loops by expressly creating dangerous conditions.
|
| +TEST_F(PersistentMemoryAllocatorTest, MaliciousTest) {
|
| + Reference block1 = allocator_->Allocate(sizeof(TestObject1), 1);
|
| + Reference block2 = allocator_->Allocate(sizeof(TestObject1), 2);
|
| + Reference block3 = allocator_->Allocate(sizeof(TestObject1), 3);
|
| + Reference block4 = allocator_->Allocate(sizeof(TestObject1), 3);
|
| + Reference block5 = allocator_->Allocate(sizeof(TestObject1), 3);
|
| + allocator_->MakeIterable(block1);
|
| + allocator_->MakeIterable(block2);
|
| + allocator_->MakeIterable(block3);
|
| + allocator_->MakeIterable(block4);
|
| + allocator_->MakeIterable(block5);
|
| + EXPECT_EQ(5U, CountIterables());
|
| + EXPECT_FALSE(allocator_->IsCorrupt());
|
| +
|
| + // Create loop in iterable list and ensure it doesn't hang. The return value
|
| + // from CountIterables() in these cases is unpredictable. If there is a
|
| + // failure, the call will hang and the test killed for taking too long.
|
| + uint32_t* header4 = (uint32_t*)(mem_segment_.get() + block4);
|
| + EXPECT_EQ(block5, header4[3]);
|
| + header4[3] = block4;
|
| + CountIterables(); // loop: 1-2-3-4-4
|
| + EXPECT_TRUE(allocator_->IsCorrupt());
|
| +
|
| + // Test where loop goes back to previous block.
|
| + header4[3] = block3;
|
| + CountIterables(); // loop: 1-2-3-4-3
|
| +
|
| + // Test where loop goes back to the beginning.
|
| + header4[3] = block1;
|
| + CountIterables(); // loop: 1-2-3-4-1
|
| +}
|
| +
|
| +
|
| +//----- LocalPersistentMemoryAllocator -----------------------------------------
|
| +
|
| +TEST(LocalPersistentMemoryAllocatorTest, CreationTest) {
|
| + LocalPersistentMemoryAllocator allocator(TEST_MEMORY_SIZE, 42, "");
|
| + EXPECT_EQ(42U, allocator.Id());
|
| + EXPECT_NE(0U, allocator.Allocate(24, 1));
|
| + EXPECT_FALSE(allocator.IsFull());
|
| + EXPECT_FALSE(allocator.IsCorrupt());
|
| +}
|
| +
|
| +
|
| +//----- FilePersistentMemoryAllocator ------------------------------------------
|
| +
|
| +TEST(FilePersistentMemoryAllocatorTest, CreationTest) {
|
| + ScopedTempDir temp_dir;
|
| + ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
|
| + FilePath file_path = temp_dir.path().AppendASCII("persistent_memory");
|
| +
|
| + PersistentMemoryAllocator::MemoryInfo meminfo1;
|
| + Reference r123, r456, r789;
|
| + {
|
| + LocalPersistentMemoryAllocator local(TEST_MEMORY_SIZE, TEST_ID, "");
|
| + EXPECT_FALSE(local.IsReadonly());
|
| + r123 = local.Allocate(123, 123);
|
| + r456 = local.Allocate(456, 456);
|
| + r789 = local.Allocate(789, 789);
|
| + local.MakeIterable(r123);
|
| + local.SetType(r456, 654);
|
| + local.MakeIterable(r789);
|
| + local.GetMemoryInfo(&meminfo1);
|
| + EXPECT_FALSE(local.IsFull());
|
| + EXPECT_FALSE(local.IsCorrupt());
|
| +
|
| + File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
|
| + ASSERT_TRUE(writer.IsValid());
|
| + writer.Write(0, (const char*)local.data(), local.used());
|
| + }
|
| +
|
| + scoped_ptr<MemoryMappedFile> mmfile(new MemoryMappedFile());
|
| + mmfile->Initialize(file_path);
|
| + EXPECT_TRUE(mmfile->IsValid());
|
| + const size_t mmlength = mmfile->length();
|
| + EXPECT_GE(meminfo1.total, mmlength);
|
| +
|
| + FilePersistentMemoryAllocator file(mmfile.release(), 0, "");
|
| + EXPECT_TRUE(file.IsReadonly());
|
| + EXPECT_EQ(TEST_ID, file.Id());
|
| + EXPECT_FALSE(file.IsFull());
|
| + EXPECT_FALSE(file.IsCorrupt());
|
| +
|
| + PersistentMemoryAllocator::Iterator iter;
|
| + uint32_t type;
|
| + file.CreateIterator(&iter);
|
| + EXPECT_EQ(r123, file.GetNextIterable(&iter, &type));
|
| + EXPECT_EQ(r789, file.GetNextIterable(&iter, &type));
|
| + EXPECT_EQ(0U, file.GetNextIterable(&iter, &type));
|
| +
|
| + EXPECT_EQ(123U, file.GetType(r123));
|
| + EXPECT_EQ(654U, file.GetType(r456));
|
| + EXPECT_EQ(789U, file.GetType(r789));
|
| +
|
| + PersistentMemoryAllocator::MemoryInfo meminfo2;
|
| + file.GetMemoryInfo(&meminfo2);
|
| + EXPECT_GE(meminfo1.total, meminfo2.total);
|
| + EXPECT_GE(meminfo1.free, meminfo2.free);
|
| + EXPECT_EQ(mmlength, meminfo2.total);
|
| + EXPECT_EQ(0U, meminfo2.free);
|
| +}
|
| +
|
| +TEST(FilePersistentMemoryAllocatorTest, AcceptableTest) {
|
| + ScopedTempDir temp_dir;
|
| + ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
|
| + FilePath file_path_base = temp_dir.path().AppendASCII("persistent_memory_");
|
| +
|
| + LocalPersistentMemoryAllocator local(TEST_MEMORY_SIZE, TEST_ID, "");
|
| + const size_t minsize = local.used();
|
| + scoped_ptr<char[]> garbage(new char[minsize]);
|
| + RandBytes(garbage.get(), minsize);
|
| +
|
| + scoped_ptr<MemoryMappedFile> mmfile;
|
| + char filename[100];
|
| + for (size_t filesize = minsize; filesize > 0; --filesize) {
|
| + strings::SafeSPrintf(filename, "memory_%d_A", filesize);
|
| + FilePath file_path = temp_dir.path().AppendASCII(filename);
|
| + ASSERT_FALSE(PathExists(file_path));
|
| + {
|
| + File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
|
| + ASSERT_TRUE(writer.IsValid());
|
| + writer.Write(0, (const char*)local.data(), filesize);
|
| + }
|
| + ASSERT_TRUE(PathExists(file_path));
|
| +
|
| + mmfile.reset(new MemoryMappedFile());
|
| + mmfile->Initialize(file_path);
|
| + EXPECT_EQ(filesize, mmfile->length());
|
| + if (FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile)) {
|
| + // Just need to make sure it doesn't crash.
|
| + FilePersistentMemoryAllocator allocator(mmfile.release(), 0, "");
|
| + (void)allocator; // Ensure compiler can't optimize-out above variable.
|
| + } else {
|
| + // For filesize >= minsize, the file must be acceptable. This
|
| + // else clause (file-not-acceptable) should be reached only if
|
| + // filesize < minsize.
|
| + EXPECT_LT(filesize, minsize);
|
| + }
|
| +
|
| +#if !DCHECK_IS_ON() // DCHECK builds will die at a NOTREACHED().
|
| + strings::SafeSPrintf(filename, "memory_%d_B", filesize);
|
| + file_path = temp_dir.path().AppendASCII(filename);
|
| + ASSERT_FALSE(PathExists(file_path));
|
| + {
|
| + File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
|
| + ASSERT_TRUE(writer.IsValid());
|
| + writer.Write(0, (const char*)garbage.get(), filesize);
|
| + }
|
| + ASSERT_TRUE(PathExists(file_path));
|
| +
|
| + mmfile.reset(new MemoryMappedFile());
|
| + mmfile->Initialize(file_path);
|
| + EXPECT_EQ(filesize, mmfile->length());
|
| + if (FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile)) {
|
| + // Just need to make sure it doesn't crash.
|
| + FilePersistentMemoryAllocator allocator(mmfile.release(), 0, "") ;
|
| + EXPECT_TRUE(allocator.IsCorrupt()); // Garbage data so it should be.
|
| + } else {
|
| + // For filesize >= minsize, the file must be acceptable. This
|
| + // else clause (file-not-acceptable) should be reached only if
|
| + // filesize < minsize.
|
| + EXPECT_GT(minsize, filesize);
|
| + }
|
| +#endif
|
| + }
|
| +}
|
| +
|
| +} // namespace base
|
|
|