Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright (c) 2015 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "base/memory/persistent_memory_allocator.h" | |
| 6 | |
| 7 #include <assert.h> | |
| 8 #include <algorithm> | |
| 9 | |
| 10 #include "base/logging.h" | |
| 11 #include "base/metrics/histogram_macros.h" | |
| 12 | |
| 13 // All integer constants in this file are signed because Atomic32 is signed | |
| 14 // and keeping all others consistent with this avoids a lot of unnecessary | |
| 15 // casting to avoid signed/unsigned operations just to avoid compiler errors. | |
| 16 // This means an occasonal cast of a constant from sizeof() to "int" but | |
| 17 // is far simpler than the alternative. Only the external interface uses | |
| 18 // size_t for simplicity to the caller. | |
| 19 | |
| 20 namespace { | |
| 21 | |
| 22 // Required range of memory segment sizes. It has to fit in a signed 32-bit | |
| 23 // number and should be a power of 2 in order to accomodate almost any page | |
| 24 // size. | |
| 25 const int32_t kSegmentMinSize = 1 << 10; // 1 KiB | |
| 26 const int32_t kSegmentMaxSize = 1 << 30; // 1 GiB | |
| 27 | |
| 28 // All allocations and data-structures must be aligned to this byte boundary. | |
| 29 // Alignment as large as the physical bus between CPU and RAM is _required_ | |
| 30 // for some architectures, is simply more efficient on other CPUs, and | |
| 31 // generally a Good Idea(tm) for all platforms as it reduces/eliminates the | |
| 32 // chance that a type will span cache lines. Alignment mustn't be less | |
| 33 // than 8 to ensure proper alignment for all types. The rest is a balance | |
| 34 // between reducing spans across multiple cache lines and wasted space spent | |
| 35 // padding out allocations. An alignment of 16 would ensure that the block | |
| 36 // header structure always sits in a single cache line. An average of about | |
| 37 // 1/2 this value will be wasted with every allocation. | |
| 38 const int32_t kAllocAlignment = 8; | |
| 39 | |
| 40 // A constant (random) value placed in the shared metadata to identify | |
| 41 // an already initialized memory segment. | |
| 42 const int32_t kGlobalCookie = 0x408305DC; | |
| 43 | |
| 44 // The current version of the metadata. If updates are made that change | |
| 45 // the metadata, the version number can be queried to operate in a backward- | |
| 46 // compatible manner until the memory segment is completely re-initalized. | |
| 47 const int32_t kGlobalVersion = 1; | |
| 48 | |
| 49 // Constant values placed in the block headers to indicate its state. | |
| 50 const int32_t kBlockCookieFree = 0; | |
| 51 const int32_t kBlockCookieQueue = 1; | |
| 52 const int32_t kBlockCookieWasted = -1; | |
| 53 const int32_t kBlockCookieAllocated = 0xC8799269; | |
| 54 | |
| 55 // TODO(bcwhite): When acceptable, consider moving flags to std::atomic<char> | |
| 56 // types rather than combined bitfield. | |
| 57 | |
| 58 // Flags stored in the flags_ field of the SharedMetaData structure below. | |
| 59 enum : int32_t { | |
| 60 kFlagCorrupt = 1 << 0, | |
| 61 kFlagFull = 1 << 1 | |
| 62 }; | |
| 63 | |
| 64 bool CheckFlag(base::subtle::Atomic32* flags, int flag) { | |
| 65 base::subtle::Atomic32 loaded_flags = base::subtle::Acquire_Load(flags); | |
| 66 return (loaded_flags & flag) != 0; | |
| 67 } | |
| 68 | |
| 69 void SetFlag(base::subtle::Atomic32* flags, int flag) { | |
| 70 for (;;) { | |
| 71 base::subtle::Atomic32 loaded_flags = base::subtle::Acquire_Load(flags); | |
| 72 base::subtle::Atomic32 new_flags = | |
| 73 (loaded_flags & ~flag) | flag; | |
| 74 if (base::subtle::Release_CompareAndSwap( | |
| 75 flags, loaded_flags, new_flags) == loaded_flags) { | |
| 76 break; | |
| 77 } | |
| 78 } | |
| 79 } | |
| 80 | |
| 81 } // namespace | |
| 82 | |
| 83 namespace base { | |
| 84 | |
| 85 // The block-header is placed at the top of every allocation within the | |
| 86 // segment to describe the data that follows it. | |
| 87 struct PersistentMemoryAllocator::BlockHeader { | |
| 88 int32_t size; // Number of bytes in this block, including header. | |
| 89 int32_t cookie; // Constant value indicating completed allocation. | |
| 90 uint32_t type_id; // A number provided by caller indicating data type. | |
| 91 subtle::Atomic32 next; // Pointer to the next block when iterating. | |
| 92 }; | |
| 93 | |
| 94 // The shared metadata exists once at the top of the memory segment to | |
| 95 // describe the state of the allocator to all processes. | |
| 96 struct PersistentMemoryAllocator::SharedMetadata { | |
| 97 int32_t cookie; // Some value that indicates complete initialization. | |
| 98 int32_t size; // Total size of memory segment. | |
| 99 int32_t page_size; // Paging size within memory segment. | |
| 100 int32_t version; // Version code so upgrades don't break. | |
| 101 subtle::Atomic32 freeptr; // Offset/ref to first free space in the segment. | |
| 102 subtle::Atomic32 flags; // Bitfield of information flags. | |
| 103 int32_t name; // Reference to stored name string. | |
| 104 | |
| 105 // The "iterable" queue is an M&S Queue as described here, append-only: | |
| 106 // https://www.research.ibm.com/people/m/michael/podc-1996.pdf | |
| 107 subtle::Atomic32 tailptr; // Last block available for iteration. | |
| 108 BlockHeader queue; // Empty block for linked-list head/tail. (must be last) | |
| 109 }; | |
| 110 | |
| 111 // The "queue" block header is used to detect "last node" so that zero/null | |
| 112 // can be used to indicate that it hasn't been added at all. It is part of | |
| 113 // the SharedMetadata structure which itself is always located at offset zero. | |
| 114 const PersistentMemoryAllocator::Reference | |
| 115 PersistentMemoryAllocator::kReferenceQueue = | |
| 116 offsetof(SharedMetadata, queue); | |
| 117 const PersistentMemoryAllocator::Reference | |
| 118 PersistentMemoryAllocator::kReferenceNull = 0; | |
| 119 | |
| 120 PersistentMemoryAllocator::PersistentMemoryAllocator(void* base, | |
| 121 size_t size, | |
| 122 size_t page_size, | |
| 123 const std::string& name) | |
| 124 : mem_base_(static_cast<char*>(base)), | |
| 125 mem_size_(static_cast<int32_t>(size)), | |
| 126 mem_page_(static_cast<int32_t>((page_size ? page_size : size))), | |
| 127 corrupted_(0), | |
| 128 allocs_histogram_(nullptr), | |
| 129 used_histogram_(nullptr) { | |
| 130 static_assert(sizeof(BlockHeader) % kAllocAlignment == 0, | |
| 131 "BlockHeader is not a multiple of kAllocAlignment"); | |
| 132 static_assert(sizeof(SharedMetadata) % kAllocAlignment == 0, | |
| 133 "SharedMetadata is not a multiple of kAllocAlignment"); | |
| 134 | |
| 135 CHECK(base && reinterpret_cast<uintptr_t>(base) % kAllocAlignment == 0); | |
| 136 CHECK(size >= kSegmentMinSize && size <= kSegmentMaxSize && | |
| 137 size % kAllocAlignment == 0); | |
| 138 CHECK(page_size == 0 || size % page_size == 0); | |
| 139 | |
| 140 if (shared_meta()->cookie != kGlobalCookie) { | |
| 141 // This block is only executed when a completely new memory segment is | |
| 142 // being initialized. It's unshared and single-threaded... | |
| 143 const BlockHeader* first_block = reinterpret_cast<BlockHeader*>( | |
| 144 mem_base_ + sizeof(SharedMetadata)); | |
| 145 if (shared_meta()->cookie != 0 || | |
| 146 shared_meta()->size != 0 || | |
| 147 shared_meta()->version != 0 || | |
| 148 subtle::NoBarrier_Load(&shared_meta()->freeptr) != 0 || | |
| 149 subtle::NoBarrier_Load(&shared_meta()->flags) != 0 || | |
| 150 shared_meta()->name != 0 || | |
| 151 shared_meta()->tailptr != 0 || | |
| 152 shared_meta()->queue.cookie != 0 || | |
| 153 subtle::NoBarrier_Load(&shared_meta()->queue.next) != 0 || | |
| 154 first_block->size != 0 || | |
| 155 first_block->cookie != 0 || | |
| 156 first_block->type_id != 0 || | |
| 157 first_block->next != 0) { | |
| 158 // ...or something malicious has been playing with the metadata. | |
| 159 NOTREACHED(); | |
| 160 SetCorrupt(); | |
| 161 } | |
| 162 | |
| 163 // This is still safe to do even if corruption has been detected. | |
| 164 shared_meta()->cookie = kGlobalCookie; | |
| 165 shared_meta()->size = mem_size_; | |
| 166 shared_meta()->page_size = mem_page_; | |
| 167 shared_meta()->version = kGlobalVersion; | |
| 168 subtle::NoBarrier_Store(&shared_meta()->freeptr, sizeof(SharedMetadata)); | |
| 169 | |
| 170 // Set up the queue of iterable allocations. | |
| 171 shared_meta()->queue.size = sizeof(BlockHeader); | |
| 172 shared_meta()->queue.cookie = kBlockCookieQueue; | |
| 173 subtle::NoBarrier_Store(&shared_meta()->queue.next, kReferenceQueue); | |
| 174 subtle::NoBarrier_Store(&shared_meta()->tailptr, kReferenceQueue); | |
| 175 | |
| 176 // Allocate space for the name so other processes can learn it. | |
| 177 if (!name.empty()) { | |
| 178 const size_t name_length = name.length() + 1; | |
| 179 shared_meta()->name = Allocate(name_length, 0); | |
| 180 char* name_cstr = GetAsObject<char>(shared_meta()->name, 0); | |
| 181 if (name_cstr) | |
| 182 strcpy(name_cstr, name.c_str()); | |
| 183 } | |
| 184 } else { | |
| 185 // The allocator is attaching to a previously initialized segment of | |
| 186 // memory. Make sure the embedded data matches what has been passed. | |
| 187 if (shared_meta()->size != mem_size_ || | |
| 188 shared_meta()->page_size != mem_page_) { | |
| 189 NOTREACHED(); | |
| 190 SetCorrupt(); | |
| 191 } | |
| 192 } | |
| 193 | |
| 194 // Metrics are created here so there is no recursion from Allocate | |
| 195 // trying to update a histogram that needs to be created and in turn | |
| 196 // calls Allocate again. | |
| 197 // Some metrics are only active on the primary owner. | |
| 198 if (!name.empty()) { | |
| 199 used_histogram_ = Histogram::FactoryGet( | |
| 200 name + ".UsedKiB", 1, 256 << 10, 100, HistogramBase::kNoFlags); | |
| 201 } | |
| 202 | |
| 203 // Other metrics are active on all users of the memory segment. | |
| 204 Reference name_ref = shared_meta()->name; | |
| 205 char* name_cstr = GetAsObject<char>(name_ref, 0); | |
| 206 if (name_cstr) { | |
| 207 size_t name_length = GetAllocSize(name_ref); | |
| 208 while (name_length > 0 && name_cstr[name_length - 1] != '\0') | |
| 209 --name_length; | |
| 210 if (name_length > 0) { | |
| 211 std::string shared_name(name_cstr, name_length); | |
| 212 allocs_histogram_ = Histogram::FactoryGet( | |
| 213 shared_name + ".Allocs", 1, 10000, 50, HistogramBase::kNoFlags); | |
| 214 } | |
| 215 } | |
| 216 } | |
| 217 | |
| 218 PersistentMemoryAllocator::~PersistentMemoryAllocator() {} | |
| 219 | |
| 220 size_t PersistentMemoryAllocator::GetAllocSize(Reference ref) { | |
| 221 BlockHeader* block = GetBlock(ref, 0, 0, false, false); | |
| 222 if (!block) | |
| 223 return 0; | |
| 224 int32_t size = block->size; | |
| 225 // Header was verified by GetBlock() but a malicious actor could change | |
| 226 // the value between there and here. Check it again. | |
| 227 if (size <= (int)sizeof(BlockHeader) || ref + size >= mem_size_) | |
| 228 return 0; | |
| 229 return static_cast<size_t>(size - sizeof(BlockHeader)); | |
| 230 } | |
| 231 | |
| 232 int32_t PersistentMemoryAllocator::Allocate(size_t usize, uint32_t type_id) { | |
| 233 // Round up the requested size, plus header, to the next allocation alignment. | |
| 234 int32_t size = static_cast<int32_t>(usize + sizeof(BlockHeader)); | |
|
Alexander Potapenko
2015/11/16 16:01:51
Can "usize + sizeof(BlockHeader)" overflow int32_t
bcwhite
2015/11/17 01:35:08
Yes, but then... umm, yeah. Right. I used to hav
bcwhite
2015/11/17 02:39:26
Oh, wait. There is a "usize > int32::max" as well
Alexander Potapenko
2015/11/17 10:39:15
Consider usize = int32::max - 1.
In the case sizeo
| |
| 235 size = (size + (kAllocAlignment - 1)) & ~(kAllocAlignment - 1); | |
| 236 if (usize > (size_t)std::numeric_limits<int32_t>::max() || | |
| 237 size <= (int)sizeof(BlockHeader) || size > mem_page_) { | |
| 238 NOTREACHED(); | |
| 239 return kReferenceNull; | |
| 240 } | |
| 241 | |
| 242 // Allocation is lockless so we do all our caculation and then, if saving | |
| 243 // indicates a change has occurred since we started, scrap everything and | |
| 244 // start over. | |
| 245 for (;;) { | |
| 246 if (IsCorrupt()) | |
| 247 return kReferenceNull; | |
| 248 | |
| 249 // Get the current start of unallocated memory. Other threads may | |
| 250 // update this at any time and cause us to retry these operations. | |
| 251 const int32_t freeptr = subtle::NoBarrier_Load(&shared_meta()->freeptr); | |
| 252 if (freeptr + size > mem_size_) { | |
| 253 SetFlag(&shared_meta()->flags, kFlagFull); | |
| 254 return kReferenceNull; | |
| 255 } | |
| 256 | |
| 257 // Get pointer to the "free" block. It doesn't even have a header; pass | |
| 258 // -sizeof(header) so accouting for that will yield an expected size of | |
| 259 // zero which is what will be stored at that location. If something | |
| 260 // has been allocated since the load of freeptr above, it is still safe | |
| 261 // as nothing will be written to that location until after the CAS below. | |
| 262 BlockHeader* const block = GetBlock(freeptr, 0, 0, false, true); | |
| 263 if (!block) { | |
| 264 SetCorrupt(); | |
| 265 return kReferenceNull; | |
| 266 } | |
| 267 | |
| 268 // An allocation cannot cross page boundaries. If it would, create a | |
| 269 // "wasted" block and begin again at the top of the next page. This | |
| 270 // area could just be left empty but we fill in the block header just | |
| 271 // for completeness sake. | |
| 272 const int32_t page_free = mem_page_ - freeptr % mem_page_; | |
| 273 if (size > page_free) { | |
| 274 if (page_free <= (int)sizeof(BlockHeader)) { | |
| 275 SetCorrupt(); | |
| 276 return kReferenceNull; | |
| 277 } | |
| 278 const int32_t new_freeptr = freeptr + page_free; | |
| 279 if (subtle::NoBarrier_CompareAndSwap( | |
| 280 &shared_meta()->freeptr, freeptr, new_freeptr) == freeptr) { | |
| 281 block->size = page_free; | |
| 282 block->cookie = kBlockCookieWasted; | |
| 283 } | |
| 284 continue; | |
| 285 } | |
| 286 | |
| 287 // Don't leave a slice at the end of a page too small for anything. This | |
| 288 // can result in an allocation up to two alignment-sizes greater than the | |
| 289 // minimum required by requested-size + header + alignment. | |
| 290 if (page_free - size < (int)(sizeof(BlockHeader) + kAllocAlignment)) | |
| 291 size = page_free; | |
| 292 | |
| 293 const int32_t new_freeptr = freeptr + size; | |
| 294 if (new_freeptr > mem_size_) { | |
| 295 SetCorrupt(); | |
| 296 return kReferenceNull; | |
| 297 } | |
| 298 | |
| 299 if (subtle::NoBarrier_CompareAndSwap( | |
| 300 &shared_meta()->freeptr, freeptr, new_freeptr) != freeptr) { | |
| 301 // Another thread must have completed an allocation while we were working. | |
| 302 // Try again. | |
| 303 continue; | |
| 304 } | |
| 305 | |
| 306 // Record this allocation in usage stats (if active). This is safe | |
| 307 // to call at this point because the allocation is complete. | |
| 308 if (allocs_histogram_) | |
| 309 allocs_histogram_->Add(static_cast<HistogramBase::Sample>(usize)); | |
| 310 | |
| 311 // Given that all memory was zeroed before ever being given to an instance | |
| 312 // of this class and given that we only allocate in a monotomic fashion | |
| 313 // going forward, it must be that the newly allocated block is completely | |
| 314 // full of zeros. If we find anything in the block header that is NOT a | |
| 315 // zero then something must have previously run amuck through memory, | |
| 316 // writing beyond the allocated space and into unallocated space. | |
| 317 if (block->size != 0 || | |
| 318 block->cookie != kBlockCookieFree || | |
| 319 block->type_id != 0 || | |
| 320 subtle::NoBarrier_Load(&block->next) != 0) { | |
| 321 SetCorrupt(); | |
| 322 return kReferenceNull; | |
| 323 } | |
| 324 | |
| 325 block->size = size; | |
| 326 block->cookie = kBlockCookieAllocated; | |
| 327 block->type_id = type_id; | |
| 328 return freeptr; | |
| 329 } | |
| 330 } | |
| 331 | |
| 332 void PersistentMemoryAllocator::GetMemoryInfo(MemoryInfo* meminfo) { | |
| 333 int32_t remaining = | |
| 334 mem_size_ - subtle::NoBarrier_Load(&shared_meta()->freeptr); | |
| 335 meminfo->total = mem_size_; | |
| 336 meminfo->free = IsCorrupt() ? 0 : remaining - sizeof(BlockHeader); | |
| 337 } | |
| 338 | |
| 339 void PersistentMemoryAllocator::MakeIterable(Reference ref) { | |
| 340 if (IsCorrupt()) | |
| 341 return; | |
| 342 BlockHeader* block = GetBlock(ref, 0, 0, false, false); | |
| 343 if (!block) // invalid reference | |
| 344 return; | |
| 345 if (subtle::Acquire_Load(&block->next) != 0) // previously set iterable | |
| 346 return; | |
| 347 subtle::Release_Store(&block->next, kReferenceQueue); // will be tail block | |
| 348 | |
| 349 // Try to add this block to the tail of the queue. May take multiple tries. | |
| 350 int32_t tail; | |
| 351 for (;;) { | |
| 352 // Acquire the current tail-pointer released by previous call to this | |
| 353 // method and validate it. | |
| 354 tail = subtle::Acquire_Load(&shared_meta()->tailptr); | |
| 355 block = GetBlock(tail, 0, 0, true, false); | |
| 356 if (!block) { | |
| 357 SetCorrupt(); | |
| 358 return; | |
| 359 } | |
| 360 | |
| 361 // Try to insert the block at the tail of the queue. The tail node always | |
| 362 // has an existing value of kReferenceQueue; if that is not the value | |
| 363 // returned, another thread has acted in the meantime. | |
| 364 int32_t next = subtle::Release_CompareAndSwap( | |
| 365 &block->next, kReferenceQueue, ref); | |
| 366 if (next == kReferenceQueue) { | |
| 367 // Update the tail pointer to the new offset. If the "else" clause did | |
| 368 // not exist, then this could be a simple Release_Store to set the new | |
| 369 // value but because it does, it's possible that other threads could add | |
| 370 // one or more nodes at the tail before reaching this point. We don't | |
| 371 // have to check the return value because it either operates correctly | |
| 372 // or the exact same operation has already been done (by the "else" | |
| 373 // clause). | |
| 374 subtle::Release_CompareAndSwap(&shared_meta()->tailptr, tail, ref); | |
| 375 return; | |
| 376 } else { | |
| 377 // In the unlikely case that a thread crashed or was killed between the | |
| 378 // update of "next" and the update of "tailptr", it is necessary to | |
| 379 // perform the operation that would have been done. There's no explicit | |
| 380 // check for crash/kill which means that this operation may also happen | |
| 381 // even when the other thread is in perfect working order which is what | |
| 382 // necessitates the CompareAndSwap above. | |
| 383 subtle::Release_CompareAndSwap(&shared_meta()->tailptr, tail, next); | |
| 384 } | |
| 385 } | |
| 386 } | |
| 387 | |
| 388 void PersistentMemoryAllocator::CreateIterator(Iterator* state) { | |
| 389 state->last = kReferenceQueue; | |
| 390 state->niter = 0; | |
| 391 } | |
| 392 | |
| 393 int32_t PersistentMemoryAllocator::GetNextIterable(Iterator* state, | |
| 394 uint32_t* type_id) { | |
| 395 const BlockHeader* block = GetBlock(state->last, 0, 0, true, false); | |
| 396 if (!block) // invalid iterator state | |
| 397 return kReferenceNull; | |
| 398 | |
| 399 // The compiler and CPU can freely reorder all memory accesses on which | |
| 400 // there are no dependencies. It could, for example, move the load of | |
| 401 // "freeptr" above this point because there are no explicit dependencies | |
| 402 // between it and "next". If it did, however, then another block could | |
| 403 // be queued after that but before the following load meaning there is | |
| 404 // one more queued block than the future "detect loop by having more | |
| 405 // blocks that could fit before freeptr" will allow. | |
| 406 // | |
| 407 // By "acquiring" the "next" value here, it's synchronized to the enqueue | |
| 408 // of the node which in turn is synchronized to the allocation (which sets | |
| 409 // freeptr). Thus, the scenario above cannot happen. | |
| 410 int32_t next = subtle::Acquire_Load(&block->next); | |
| 411 block = GetBlock(next, 0, 0, false, false); | |
| 412 if (!block) // no next allocation in queue | |
| 413 return kReferenceNull; | |
| 414 | |
| 415 // Memory corruption could cause a loop in the list. We need to detect | |
| 416 // that so as to not cause an infinite loop in the caller. We do this | |
| 417 // simply by making sure we don't iterate more than the absolute maximum | |
| 418 // number of allocations that could have been made. Callers are likely | |
| 419 // to loop multiple times before it is detected but at least it stops. | |
| 420 int32_t freeptr = std::min(subtle::Acquire_Load(&shared_meta()->freeptr), | |
| 421 mem_size_); | |
| 422 if (state->niter > freeptr / (sizeof(BlockHeader) + kAllocAlignment)) { | |
| 423 SetCorrupt(); | |
| 424 return kReferenceNull; | |
| 425 } | |
| 426 | |
| 427 state->last = next; | |
| 428 state->niter++; | |
| 429 *type_id = block->type_id; | |
| 430 | |
| 431 return next; | |
| 432 } | |
| 433 | |
| 434 // The "corrupted" state is held both locally and globally (shared). The | |
| 435 // shared flag can't be trusted since a malicious actor could overwrite it. | |
| 436 // The local version is immune to foreign actors. Thus, if seen shared, | |
| 437 // copy it locally and, once known, always restore it globally. | |
| 438 void PersistentMemoryAllocator::SetCorrupt() { | |
| 439 LOG(ERROR) << "Corruption detected in shared-memory segment."; | |
| 440 subtle::NoBarrier_Store(&corrupted_, 1); | |
| 441 SetFlag(&shared_meta()->flags, kFlagCorrupt); | |
| 442 } | |
| 443 | |
| 444 bool PersistentMemoryAllocator::IsCorrupt() { | |
| 445 if (subtle::NoBarrier_Load(&corrupted_) || | |
| 446 CheckFlag(&shared_meta()->flags, kFlagCorrupt)) { | |
| 447 SetCorrupt(); // Make sure all indicators are set. | |
| 448 return true; | |
| 449 } | |
| 450 return false; | |
| 451 } | |
| 452 | |
| 453 bool PersistentMemoryAllocator::IsFull() { | |
| 454 return CheckFlag(&shared_meta()->flags, kFlagFull); | |
| 455 } | |
| 456 | |
| 457 // Dereference a block |ref| and ensure that it's valid for the desired | |
| 458 // |type_id| and |size|. |special| indicates that we may try to access block | |
| 459 // headers not available to callers but still accessed by this module. By | |
| 460 // having internal dereferences go through this same function, the allocator | |
| 461 // is hardened against corruption. | |
| 462 PersistentMemoryAllocator::BlockHeader* PersistentMemoryAllocator::GetBlock( | |
| 463 Reference ref, | |
| 464 uint32_t type_id, | |
| 465 int32_t size, | |
| 466 bool queue_ok, | |
| 467 bool free_ok) { | |
| 468 // Validation of parameters. | |
| 469 if (ref % kAllocAlignment != 0) | |
| 470 return nullptr; | |
| 471 if (ref < (int)(queue_ok ? kReferenceQueue : sizeof(SharedMetadata))) | |
| 472 return nullptr; | |
| 473 size += sizeof(BlockHeader); | |
| 474 if (ref + size > mem_size_) | |
| 475 return nullptr; | |
| 476 | |
| 477 // Validation of referenced block-header. | |
| 478 if (!free_ok) { | |
| 479 int32_t freeptr = subtle::NoBarrier_Load(&shared_meta()->freeptr); | |
| 480 if (ref + size > freeptr) | |
| 481 return nullptr; | |
| 482 const BlockHeader* block = | |
| 483 reinterpret_cast<BlockHeader*>(mem_base_ + ref); | |
| 484 if (block->size < size) | |
| 485 return nullptr; | |
| 486 if (ref != kReferenceQueue && block->cookie != kBlockCookieAllocated) | |
| 487 return nullptr; | |
| 488 if (type_id != 0 && block->type_id != type_id) | |
| 489 return nullptr; | |
| 490 } | |
| 491 | |
| 492 // Return pointer to block data. | |
| 493 return reinterpret_cast<BlockHeader*>(mem_base_ + ref); | |
| 494 } | |
| 495 | |
| 496 void* PersistentMemoryAllocator::GetBlockData(Reference ref, | |
| 497 uint32_t type_id, | |
| 498 int32_t size) { | |
| 499 DCHECK(size > 0); | |
| 500 BlockHeader* block = GetBlock(ref, type_id, size, false, false); | |
| 501 if (!block) | |
| 502 return nullptr; | |
| 503 return reinterpret_cast<char*>(block) + sizeof(BlockHeader); | |
| 504 } | |
| 505 | |
| 506 void PersistentMemoryAllocator::UpdateStaticHistograms() { | |
| 507 if (used_histogram_) { | |
| 508 MemoryInfo meminfo; | |
| 509 GetMemoryInfo(&meminfo); | |
| 510 HistogramBase::Sample usedkb = static_cast<HistogramBase::Sample>( | |
| 511 (meminfo.total - meminfo.free) >> 10); | |
| 512 used_histogram_->Add(usedkb); | |
| 513 } | |
| 514 } | |
| 515 | |
| 516 } // namespace base | |
| OLD | NEW |