Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1703)

Side by Side Diff: base/memory/shared_memory_allocator.cc

Issue 1410213004: Create "persistent memory allocator" for persisting and sharing objects. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: good grief -- when will it end? Created 5 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright (c) 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/memory/shared_memory_allocator.h"
6
7 #include <assert.h>
8 #include <algorithm>
9
10 #include "base/logging.h"
11
12 // All integer constants in this file are signed because Atomic32 is signed
13 // and keeping all others consistent with this avoids a lot of unnecessary
14 // casting to avoid signed/unsigned operations just to avoid compiler errors.
15 // This means an occasonal cast of a constant from sizeof() to "int" but
16 // is far simpler than the alternative.
17
18 namespace {
19
20 // Required range of memory segment sizes. It has to fit in a signed 32-bit
21 // number and should be a power of 2 in order to accomodate almost any page
22 // size.
23 const int32_t kSegmentMinSize = 1 << 10; // 1 KiB
24 const int32_t kSegmentMaxSize = 1 << 30; // 1 GiB
25
26 // All allocations and data-structures must be aligned to this byte boundary.
27 // Alignment as large as the physical bus between CPU and RAM is _required_
28 // for some architectures, is simply more efficient on other CPUs, and
29 // generally a Good Idea(tm) for all platforms as it reduces/eliminates the
30 // chance that a type will span cache lines. Alignment mustn't be less
31 // than 8 to ensure proper alignment for all types. The rest is a balance
32 // between reducing spans across multiple cache lines and wasted space spent
33 // padding out allocations. An alignment of 16 would ensure that the block
34 // header structure always sits in a single cache line. An average of about
35 // 1/2 this value will be wasted with every allocation.
36 const int32_t kAllocAlignment = 8;
37
38 // A constant (random) value placed in the shared metadata to identify
39 // an already initialized memory segment.
40 const int32_t kGlobalCookie = 0x408305DC;
41
42 // The current version of the metadata. If updates are made that change
43 // the metadata, the version number can be queried to operate in a backward-
44 // compatible manner until the memory segment is completely re-initalized.
45 const int32_t kGlobalVersion = 1;
46
47 // Constant values placed in the block headers to indicate its state.
48 const int32_t kBlockCookieFree = 0;
49 const int32_t kBlockCookieQueue = 1;
50 const int32_t kBlockCookieWasted = -1;
51 const int32_t kBlockCookieAllocated = 0xC8799269;
52
53 // TODO(bcwhite): When acceptable, consider moving flags to std::atomic<char>
54 // types rather than combined bitfield.
55
56 enum {
chrisha 2015/11/09 16:53:51 You can type this to be the same as the 'flags_' f
bcwhite 2015/11/09 18:02:05 Done.
57 kFlagCorrupt,
chrisha 2015/11/09 16:53:51 It's more common in Chrome to define the flags in
bcwhite 2015/11/09 18:02:05 Done.
58 kFlagFull
59 };
60
61 bool CheckFlag(base::subtle::Atomic32* flags, int flag) {
62 base::subtle::Atomic32 loaded_flags = base::subtle::Acquire_Load(flags);
63 return (loaded_flags & 1 << flag) != 0;
64 }
65
66 void SetFlag(base::subtle::Atomic32* flags, int flag) {
67 for (;;) {
68 base::subtle::Atomic32 loaded_flags = base::subtle::Acquire_Load(flags);
69 base::subtle::Atomic32 new_flags =
70 (loaded_flags & ~(1 << flag)) | (1 << flag);
71 if (base::subtle::Release_CompareAndSwap(
72 flags, loaded_flags, new_flags) == loaded_flags) {
chrisha 2015/11/09 16:53:51 All of this is more readable if you hide the bitsh
bcwhite 2015/11/09 18:02:05 Done.
73 break;
74 }
75 }
76 }
77
78 } // namespace
79
80 namespace base {
81
82 // The block-header is placed at the top of every allocation within the
83 // segment to describe the data that follows it.
84 struct SharedMemoryAllocator::BlockHeader {
85 int32_t size; // Number of bytes in this block, including header.
86 int32_t cookie; // Constant value indicating completed allocation.
87 uint32_t type_id; // A number provided by caller indicating data type.
88 subtle::Atomic32 next; // Pointer to the next block when iterating.
89 };
90
91 // The shared metadata exists once at the top of the memory segment to
92 // describe the state of the allocator to all processes.
93 struct SharedMemoryAllocator::SharedMetadata {
94 int32_t cookie; // Some value that indicates complete initialization.
95 int32_t size; // Total size of memory segment.
96 int32_t page_size; // Paging size within memory segment.
97 int32_t version; // Version code so upgrades don't break.
98 subtle::Atomic32 freeptr; // Offset/ref to first free space in the segment.
99 subtle::Atomic32 flags; // Bitfield of information flags.
100 int32_t reserved; // Padding to ensure size is multiple of alignment.
101
102 // The "iterable" queue is an M&S Queue as described here, append-only:
103 // https://www.research.ibm.com/people/m/michael/podc-1996.pdf
104 subtle::Atomic32 tailptr; // Last block available for iteration.
105 BlockHeader queue; // Empty block for linked-list head/tail. (must be last)
106 };
107
108 // The "queue" block header is used to detect "last node" so that zero/null
109 // can be used to indicate that it hasn't been added at all. It is part of
110 // the SharedMetadata structure which itself is always located at offset zero.
111 // This can't be a constant because SharedMetadata is a private definition.
112 #define REF_QUEUE offsetof(SharedMetadata, queue)
113 #define REF_NULL 0 // the equivalest NULL value for a reference
114
115 SharedMemoryAllocator::SharedMemoryAllocator(void* base,
116 size_t size,
117 size_t page_size)
118 : shared_meta_(static_cast<SharedMetadata*>(base)),
119 mem_base_(static_cast<char*>(base)),
120 mem_size_((int32_t)size),
121 mem_page_((int32_t)(page_size ? page_size : size)),
122 corrupted_(0) {
123 static_assert(sizeof(BlockHeader) % kAllocAlignment == 0,
124 "BlockHeader is not a multiple of kAllocAlignment");
125 static_assert(sizeof(SharedMetadata) % kAllocAlignment == 0,
126 "SharedMetadata is not a multiple of kAllocAlignment");
127
128 CHECK(base && reinterpret_cast<uintptr_t>(base) % kAllocAlignment == 0);
129 CHECK(size >= kSegmentMinSize && size <= kSegmentMaxSize &&
130 size % kAllocAlignment == 0);
131 CHECK(page_size == 0 || size % page_size == 0);
132
133 if (shared_meta_->cookie != kGlobalCookie) {
134 // This block is only executed when a completely new memory segment is
135 // being initialized. It's unshared and single-threaded...
136 const BlockHeader* first_block = reinterpret_cast<BlockHeader*>(
137 mem_base_ + sizeof(SharedMetadata));
138 if (shared_meta_->cookie != 0 ||
139 shared_meta_->size != 0 ||
140 shared_meta_->version != 0 ||
141 subtle::NoBarrier_Load(&shared_meta_->freeptr) != 0 ||
142 subtle::NoBarrier_Load(&shared_meta_->flags) != 0 ||
143 shared_meta_->tailptr != 0 ||
144 shared_meta_->queue.cookie != 0 ||
145 subtle::NoBarrier_Load(&shared_meta_->queue.next) != 0 ||
146 first_block->size != 0 ||
147 first_block->cookie != 0 ||
148 first_block->type_id != 0 ||
149 first_block->next != 0) {
150 // ...or something malicious has been playing with the metadata.
151 NOTREACHED();
152 SetCorrupt();
153 }
154
155 // This is still safe to do even if corruption has been detected.
156 shared_meta_->cookie = kGlobalCookie;
157 shared_meta_->size = mem_size_;
158 shared_meta_->page_size = mem_page_;
159 shared_meta_->version = kGlobalVersion;
160 subtle::NoBarrier_Store(&shared_meta_->freeptr, sizeof(SharedMetadata));
161
162 // Set up the queue of iterable allocations.
163 shared_meta_->queue.size = sizeof(BlockHeader);
164 shared_meta_->queue.cookie = kBlockCookieQueue;
165 subtle::NoBarrier_Store(&shared_meta_->queue.next, REF_QUEUE);
166 subtle::NoBarrier_Store(&shared_meta_->tailptr, REF_QUEUE);
167 } else {
168 // The allocator is attaching to a previously initialized segment of
169 // memory. Make sure the embedded data matches what has been passed.
170 if (shared_meta_->size != mem_size_ ||
171 shared_meta_->page_size != mem_page_) {
172 NOTREACHED();
173 SetCorrupt();
174 }
175 }
176 }
177
178 SharedMemoryAllocator::~SharedMemoryAllocator() {}
179
180 size_t SharedMemoryAllocator::GetAllocSize(Reference ref) {
181 BlockHeader* block = GetBlock(ref, 0, 0, false, false);
182 if (!block)
183 return 0;
184 int32_t size = block->size;
185 // Header was verified by GetBlock() but a malicious actor could change
186 // the value between there and here. Check it again.
187 if (size <= (int)sizeof(BlockHeader) || ref + size >= mem_size_)
188 return 0;
189 return (size_t)size - sizeof(BlockHeader);
190 }
191
192 int32_t SharedMemoryAllocator::Allocate(size_t usize, uint32_t type_id) {
193 // Round up the requested size, plus header, to the next allocation alignment.
194 int32_t size = (int)usize + sizeof(BlockHeader);
195 size = (size + (kAllocAlignment - 1)) & ~(kAllocAlignment - 1);
196 if (usize > (size_t)std::numeric_limits<int32_t>::max() ||
197 size <= (int)sizeof(BlockHeader) || size > mem_page_) {
198 NOTREACHED();
199 return REF_NULL;
200 }
201
202 // Allocation is lockless so we do all our caculation and then, if saving
203 // indicates a change has occurred since we started, scrap everything and
204 // start over.
205 for (;;) {
206 if (IsCorrupt())
207 return REF_NULL;
208
209 // Get the current start of unallocated memory. Other threads may
210 // update this at any time and cause us to retry these operations.
211 int32_t freeptr = subtle::NoBarrier_Load(&shared_meta_->freeptr);
212 if (freeptr + size > mem_size_) {
213 SetFlag(&shared_meta_->flags, kFlagFull);
214 return REF_NULL;
215 }
216
217 // Get pointer to the "free" block. It doesn't even have a header; pass
218 // -sizeof(header) so accouting for that will yield an expected size of
219 // zero which is what will be stored at that location. If something
220 // has been allocated since the load of freeptr above, it is still safe
221 // as nothing will be written to that location until after the CAS below.
222 BlockHeader* block = GetBlock(freeptr, 0, 0, false, true);
223 if (!block) {
224 SetCorrupt();
225 return REF_NULL;
226 }
227
228 // An allocation cannot cross page boundaries. If it would, create a
229 // "wasted" block and begin again at the top of the next page. This
230 // area could just be left empty but we fill in the block header just
231 // for completeness sake.
chrisha 2015/11/09 16:53:51 What will your hardening code make of a partial bl
bcwhite 2015/11/09 18:02:05 There is code below to round-up an allocation size
232 int32_t page_free = mem_page_ - freeptr % mem_page_;
233 if (size > page_free) {
234 int32_t new_freeptr = freeptr + page_free;
235 if (subtle::NoBarrier_CompareAndSwap(
236 &shared_meta_->freeptr, freeptr, new_freeptr) == freeptr) {
237 block->size = page_free;
238 block->cookie = kBlockCookieWasted;
239 }
240 continue;
241 }
242
243 // Don't leave a slice at the end of a page too small for anything. This
244 // can result in an allocation up to two alignment-sizes greater than the
245 // minimum required by requested-size + header + alignment.
246 if (page_free - size < (int)(sizeof(BlockHeader) + kAllocAlignment))
247 size = page_free;
248
249 int32_t new_freeptr = freeptr + size;
250 if (new_freeptr > mem_size_) {
251 SetCorrupt();
252 return REF_NULL;
253 }
254
255 if (subtle::NoBarrier_CompareAndSwap(
256 &shared_meta_->freeptr, freeptr, new_freeptr) != freeptr) {
257 // Another thread must have completed an allocation while we were working.
258 // Try again.
259 continue;
260 }
261
262 // Given that all memory was zeroed before ever being given to an instance
263 // of this class and given that we only allocate in a monotomic fashion
264 // going forward, it must be that the newly allocated block is completely
265 // full of zeros. If we find anything in the block header that is NOT a
266 // zero then something must have previously run amuck through memory,
267 // writing beyond the allocated space and into unallocated space.
268 if (block->size != 0 ||
269 block->cookie != kBlockCookieFree ||
270 block->type_id != 0 ||
271 subtle::NoBarrier_Load(&block->next) != 0) {
272 SetCorrupt();
273 return REF_NULL;
274 }
275
276 block->size = size;
277 block->cookie = kBlockCookieAllocated;
278 block->type_id = type_id;
279 return freeptr;
280 }
281 }
282
283 void SharedMemoryAllocator::GetMemoryInfo(MemoryInfo* meminfo) {
284 int32_t remaining =
285 mem_size_ - subtle::NoBarrier_Load(&shared_meta_->freeptr);
286 meminfo->total = mem_size_;
287 meminfo->free = IsCorrupt() ? 0 : remaining - sizeof(BlockHeader);
288 }
289
290 void SharedMemoryAllocator::MakeIterable(Reference ref) {
291 if (IsCorrupt())
292 return;
293 BlockHeader* block = GetBlock(ref, 0, 0, false, false);
294 if (!block) // invalid reference
295 return;
296 if (subtle::Acquire_Load(&block->next) != 0) // previously set iterable
297 return;
298 subtle::Release_Store(&block->next, REF_QUEUE); // will be tail block
299
300 // Try to add this block to the tail of the queue. May take multiple tries.
301 int32_t tail;
302 for (;;) {
303 // Acquire the current tail-pointer released by previous call to this
304 // method and validate it.
305 tail = subtle::Acquire_Load(&shared_meta_->tailptr);
306 block = GetBlock(tail, 0, 0, true, false);
307 if (!block) {
308 SetCorrupt();
309 return;
310 }
311
312 // Try to insert the block at the tail of the queue. The tail node always
313 // has an existing value of REF_QUEUE; if that is not the value returned,
314 // another thread has acted in the meantime.
315 int32_t next = subtle::Release_CompareAndSwap(&block->next, REF_QUEUE, ref);
316 if (next == REF_QUEUE) {
317 // Update the tail pointer to the new offset. If the "else" clause did
318 // not exist, then this could be a simple Release_Store to set the new
319 // value but because it does, it's possible that other threads could add
320 // one or more nodes at the tail before reaching this point. We don't
321 // have to check the return value because it either operates correctly
322 // or the exact same operation has already been done (by the "else"
323 // clause).
324 subtle::Release_CompareAndSwap(&shared_meta_->tailptr, tail, ref);
325 return;
326 } else {
327 // In the unlikely case that a thread crashed or was killed between the
328 // update of "next" and the update of "tailptr", it is necessary to
329 // perform the operation that would have been done. There's no explicit
330 // check for crash/kill which means that this operation may also happen
331 // even when the other thread is in perfect working order which is what
332 // necessitates the CompareAndSwap above.
333 subtle::Release_CompareAndSwap(&shared_meta_->tailptr, tail, next);
334 }
335 }
336 }
337
338 void SharedMemoryAllocator::CreateIterator(Iterator* state) {
339 state->last = REF_QUEUE;
340 state->niter = 0;
341 }
342
343 int32_t SharedMemoryAllocator::GetNextIterable(Iterator* state,
344 uint32_t* type_id) {
345 const BlockHeader* block = GetBlock(state->last, 0, 0, true, false);
346 if (!block) // invalid iterator state
347 return REF_NULL;
348
349 // The compiler and CPU can freely reorder all memory accesses on which
350 // there are no dependencies. It could, for example, move the load of
351 // "freeptr" above this point because there are no explicit dependencies
352 // between it and "next". If it did, however, then another block could
353 // be queued after that but before the following load meaning there is
354 // one more queued block than the future "detect loop by having more
355 // blocks that could fit before freeptr" will allow.
356 //
357 // By "acquiring" the "next" value here, it's synchronized to the enqueue
358 // of the node which in turn is synchronized to the allocation (which sets
359 // freeptr). Thus, the scenario above cannot happen.
360 int32_t next = subtle::Acquire_Load(&block->next);
361 block = GetBlock(next, 0, 0, false, false);
362 if (!block) // no next allocation in queue
363 return REF_NULL;
364
365 // Memory corruption could cause a loop in the list. We need to detect
366 // that so as to not cause an infinite loop in the caller. We do this
367 // simply by making sure we don't iterate more than the absolute maximum
368 // number of allocations that could have been made. Callers are likely
369 // to loop multiple times before it is detected but at least it stops.
370 int32_t freeptr = std::min(subtle::Acquire_Load(&shared_meta_->freeptr),
371 mem_size_);
372 if (state->niter > freeptr / (sizeof(BlockHeader) + kAllocAlignment)) {
373 SetCorrupt();
374 return REF_NULL;
375 }
376
377 state->last = next;
378 state->niter++;
379 *type_id = block->type_id;
380
381 return next;
382 }
383
384 // The "corrupted" state is held both locally and globally (shared). The
385 // shared flag can't be trusted since a malicious actor could overwrite it.
386 // The local version is immune to foreign actors. Thus, if seen shared,
387 // copy it locally and, once known, always restore it globally.
388 void SharedMemoryAllocator::SetCorrupt() {
389 LOG(ERROR) << "Corruption detected in shared-memory segment.";
390 subtle::NoBarrier_Store(&corrupted_, 1);
391 SetFlag(&shared_meta_->flags, kFlagCorrupt);
392 }
393
394 bool SharedMemoryAllocator::IsCorrupt() {
395 if (subtle::NoBarrier_Load(&corrupted_) ||
396 CheckFlag(&shared_meta_->flags, kFlagCorrupt)) {
397 SetCorrupt(); // Make sure all indicators are set.
398 return true;
399 }
400 return false;
401 }
402
403 bool SharedMemoryAllocator::IsFull() {
404 return CheckFlag(&shared_meta_->flags, kFlagFull);
405 }
406
407 // Dereference a block |ref| and ensure that it's valid for the desired
408 // |type_id| and |size|. |special| indicates that we may try to access block
409 // headers not available to callers but still accessed by this module. By
410 // having internal dereferences go through this same function, the allocator
411 // is hardened against corruption.
412 SharedMemoryAllocator::BlockHeader* SharedMemoryAllocator::GetBlock(
413 Reference ref,
414 uint32_t type_id,
415 int32_t size,
416 bool queue_ok,
417 bool free_ok) {
418 // Validation of parameters.
419 if (ref % kAllocAlignment != 0)
420 return nullptr;
421 if (ref < (int)(queue_ok ? REF_QUEUE : sizeof(SharedMetadata)))
422 return nullptr;
423 size += sizeof(BlockHeader);
424 if (ref + size > mem_size_)
425 return nullptr;
426
427 // Validation of referenced block-header.
428 if (!free_ok) {
429 int32_t freeptr = subtle::NoBarrier_Load(&shared_meta_->freeptr);
430 if (ref + size > freeptr)
431 return nullptr;
432 const BlockHeader* block =
433 reinterpret_cast<BlockHeader*>(mem_base_ + ref);
434 if (block->size < size)
435 return nullptr;
436 if (ref != REF_QUEUE && block->cookie != kBlockCookieAllocated)
437 return nullptr;
438 if (type_id != 0 && block->type_id != type_id)
439 return nullptr;
440 }
441
442 // Return pointer to block data.
443 return reinterpret_cast<BlockHeader*>(mem_base_ + ref);
444 }
445
446 void* SharedMemoryAllocator::GetBlockData(Reference ref,
447 uint32_t type_id,
448 int32_t size) {
449 DCHECK(size > 0);
450 BlockHeader* block = GetBlock(ref, type_id, size, false, false);
451 if (!block)
452 return nullptr;
453 return reinterpret_cast<char*>(block) + sizeof(BlockHeader);
454 }
455
456 } // namespace base
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698