Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(24)

Side by Side Diff: base/metrics/persistent_memory_allocator.cc

Issue 1410213004: Create "persistent memory allocator" for persisting and sharing objects. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: addressed review comments by Chris Created 4 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright (c) 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/metrics/persistent_memory_allocator.h"
6
7 #include <assert.h>
8 #include <algorithm>
9
10 #include "base/files/memory_mapped_file.h"
11 #include "base/logging.h"
12 #include "base/metrics/histogram_macros.h"
13
14 namespace {
15
16 // Required range of memory segment sizes. It has to fit in an unsigned 32-bit
17 // number and should be a power of 2 in order to accomodate almost any page
18 // size.
19 const uint32_t kSegmentMinSize = 1 << 10; // 1 KiB
20 const uint32_t kSegmentMaxSize = 1 << 30; // 1 GiB
21
22 // A constant (random) value placed in the shared metadata to identify
23 // an already initialized memory segment.
24 const uint32_t kGlobalCookie = 0x408305DC;
25
26 // The current version of the metadata. If updates are made that change
27 // the metadata, the version number can be queried to operate in a backward-
28 // compatible manner until the memory segment is completely re-initalized.
29 const uint32_t kGlobalVersion = 1;
30
31 // Constant values placed in the block headers to indicate its state.
32 const uint32_t kBlockCookieFree = 0;
33 const uint32_t kBlockCookieQueue = 1;
34 const uint32_t kBlockCookieWasted = (uint32_t)-1;
35 const uint32_t kBlockCookieAllocated = 0xC8799269;
36
37 // TODO(bcwhite): When acceptable, consider moving flags to std::atomic<char>
38 // types rather than combined bitfield.
39
40 // Flags stored in the flags_ field of the SharedMetaData structure below.
41 enum : int {
42 kFlagCorrupt = 1 << 0,
43 kFlagFull = 1 << 1
44 };
45
46 bool CheckFlag(const volatile std::atomic<uint32_t>* flags, int flag) {
47 uint32_t loaded_flags = flags->load();
48 return (loaded_flags & flag) != 0;
49 }
50
51 void SetFlag(volatile std::atomic<uint32_t>* flags, int flag) {
52 uint32_t loaded_flags = flags->load();
53 for (;;) {
54 uint32_t new_flags = (loaded_flags & ~flag) | flag;
55 // In the failue case, actual "flags" value stored in loaded_flags.
56 if (flags->compare_exchange_weak(loaded_flags, new_flags))
57 break;
58 }
59 }
60
61 } // namespace
62
63 namespace base {
64
65 // All allocations and data-structures must be aligned to this byte boundary.
66 // Alignment as large as the physical bus between CPU and RAM is _required_
67 // for some architectures, is simply more efficient on other CPUs, and
68 // generally a Good Idea(tm) for all platforms as it reduces/eliminates the
69 // chance that a type will span cache lines. Alignment mustn't be less
70 // than 8 to ensure proper alignment for all types. The rest is a balance
71 // between reducing spans across multiple cache lines and wasted space spent
72 // padding out allocations. An alignment of 16 would ensure that the block
73 // header structure always sits in a single cache line. An average of about
74 // 1/2 this value will be wasted with every allocation.
75 const uint32_t PersistentMemoryAllocator::kAllocAlignment = 8;
76
77 // The block-header is placed at the top of every allocation within the
78 // segment to describe the data that follows it.
79 struct PersistentMemoryAllocator::BlockHeader {
80 uint32_t size; // Number of bytes in this block, including header.
81 uint32_t cookie; // Constant value indicating completed allocation.
82 uint32_t type_id; // A number provided by caller indicating data type.
83 std::atomic<uint32_t> next; // Pointer to the next block when iterating.
84 };
85
86 // The shared metadata exists once at the top of the memory segment to
87 // describe the state of the allocator to all processes.
88 struct PersistentMemoryAllocator::SharedMetadata {
89 uint32_t cookie; // Some value that indicates complete initialization.
90 uint32_t size; // Total size of memory segment.
91 uint32_t page_size; // Paging size within memory segment.
92 uint32_t version; // Version code so upgrades don't break.
93 std::atomic<uint32_t> freeptr; // Offset/ref to first free space in segment.
94 std::atomic<uint32_t> flags; // Bitfield of information flags.
95 uint64_t id; // Arbitrary ID number given by creator.
96 uint32_t name; // Reference to stored name string.
97
98 // The "iterable" queue is an M&S Queue as described here, append-only:
99 // https://www.research.ibm.com/people/m/michael/podc-1996.pdf
100 std::atomic<uint32_t> tailptr; // Last block available for iteration.
101 BlockHeader queue; // Empty block for linked-list head/tail. (must be last)
102 };
103
104 // The "queue" block header is used to detect "last node" so that zero/null
105 // can be used to indicate that it hasn't been added at all. It is part of
106 // the SharedMetadata structure which itself is always located at offset zero.
107 const PersistentMemoryAllocator::Reference
108 PersistentMemoryAllocator::kReferenceQueue =
109 offsetof(SharedMetadata, queue);
110 const PersistentMemoryAllocator::Reference
111 PersistentMemoryAllocator::kReferenceNull = 0;
112
113
114 // static
115 bool PersistentMemoryAllocator::IsMemoryAcceptable(const void* base,
116 size_t size,
117 size_t page_size,
118 bool readonly) {
119 return ((base && reinterpret_cast<uintptr_t>(base) % kAllocAlignment == 0) &&
120 (size >= sizeof(SharedMetadata) && size <= kSegmentMaxSize) &&
121 (size >= kSegmentMinSize || readonly) &&
122 (size % kAllocAlignment == 0 || readonly) &&
123 (page_size == 0 || size % page_size == 0 || readonly));
124 }
125
126 PersistentMemoryAllocator::PersistentMemoryAllocator(void* base,
127 size_t size,
128 size_t page_size,
129 uint64_t id,
130 const std::string& name,
131 bool readonly)
132 : mem_base_(static_cast<char*>(base)),
133 mem_size_(static_cast<uint32_t>(size)),
134 mem_page_(static_cast<uint32_t>((page_size ? page_size : size))),
135 readonly_(readonly),
136 corrupt_(0),
137 allocs_histogram_(nullptr),
138 used_histogram_(nullptr) {
139 static_assert(sizeof(BlockHeader) % kAllocAlignment == 0,
140 "BlockHeader is not a multiple of kAllocAlignment");
141 static_assert(sizeof(SharedMetadata) % kAllocAlignment == 0,
142 "SharedMetadata is not a multiple of kAllocAlignment");
143 static_assert(kReferenceQueue % kAllocAlignment == 0,
144 "\"queue\" is not aligned properly; must be at end of struct");
145
146 // Ensure that memory segment is of acceptable size.
147 CHECK(IsMemoryAcceptable(base, size, page_size, readonly));
148
149 // These atomics operate inter-process and so must be lock-free. The local
150 // casts are to make sure it can be evaluated at compile time to a constant.
151 CHECK(((SharedMetadata*)0)->freeptr.is_lock_free());
152 CHECK(((SharedMetadata*)0)->flags.is_lock_free());
153 CHECK(((BlockHeader*)0)->next.is_lock_free());
154 CHECK(corrupt_.is_lock_free());
155
156 if (shared_meta()->cookie != kGlobalCookie) {
157 if (readonly) {
158 NOTREACHED();
159 SetCorrupt();
160 return;
161 }
162
163 // This block is only executed when a completely new memory segment is
164 // being initialized. It's unshared and single-threaded...
165 volatile BlockHeader* const first_block =
166 reinterpret_cast<volatile BlockHeader*>(mem_base_ +
167 sizeof(SharedMetadata));
168 if (shared_meta()->cookie != 0 ||
169 shared_meta()->size != 0 ||
170 shared_meta()->version != 0 ||
171 shared_meta()->freeptr.load() != 0 ||
172 shared_meta()->flags.load() != 0 ||
173 shared_meta()->id != 0 ||
174 shared_meta()->name != 0 ||
175 shared_meta()->tailptr != 0 ||
176 shared_meta()->queue.cookie != 0 ||
177 shared_meta()->queue.next.load() != 0 ||
178 first_block->size != 0 ||
179 first_block->cookie != 0 ||
180 first_block->type_id != 0 ||
181 first_block->next != 0) {
182 // ...or something malicious has been playing with the metadata.
183 NOTREACHED();
184 SetCorrupt();
185 }
186
187 // This is still safe to do even if corruption has been detected.
188 shared_meta()->cookie = kGlobalCookie;
189 shared_meta()->size = mem_size_;
190 shared_meta()->page_size = mem_page_;
191 shared_meta()->version = kGlobalVersion;
192 shared_meta()->id = id;
193 shared_meta()->freeptr.store(sizeof(SharedMetadata));
194
195 // Set up the queue of iterable allocations.
196 shared_meta()->queue.size = sizeof(BlockHeader);
197 shared_meta()->queue.cookie = kBlockCookieQueue;
198 shared_meta()->queue.next.store(kReferenceQueue);
199 shared_meta()->tailptr.store(kReferenceQueue);
200
201 // Allocate space for the name so other processes can learn it.
202 if (!name.empty()) {
203 const size_t name_length = name.length() + 1;
204 shared_meta()->name = Allocate(name_length, 0);
205 char* name_cstr = GetAsObject<char>(shared_meta()->name, 0);
206 if (name_cstr)
207 strcpy(name_cstr, name.c_str());
208 }
209 } else {
210 if (readonly) {
211 // For read-only access, validate reasonable ctor parameters.
212 DCHECK_GE(mem_size_, shared_meta()->freeptr.load());
213 } else {
214 // The allocator is attaching to a previously initialized segment of
215 // memory. Make sure the embedded data matches what has been passed.
216 if (shared_meta()->size != mem_size_ ||
217 shared_meta()->page_size != mem_page_) {
218 NOTREACHED();
219 SetCorrupt();
220 }
221 }
222 }
223 }
224
225 PersistentMemoryAllocator::~PersistentMemoryAllocator() {
226 // It's strictly forbidden to do any memory access here in case there is
227 // some issue with the underlying memory segment. The "Local" allocator
228 // makes use of this to allow deletion of the segment on the heap from
229 // within its destructor.
230 }
231
232 uint64_t PersistentMemoryAllocator::Id() const {
233 return shared_meta()->id;
234 }
235
236 const char* PersistentMemoryAllocator::Name() const {
237 Reference name_ref = shared_meta()->name;
238 const char* name_cstr = GetAsObject<char>(name_ref, 0);
239 if (!name_cstr)
240 return "";
241
242 size_t name_length = GetAllocSize(name_ref);
243 if (name_cstr[name_length - 1] != '\0') {
244 NOTREACHED();
245 SetCorrupt();
246 return "";
247 }
248
249 return name_cstr;
250 }
251
252 void PersistentMemoryAllocator::CreateTrackingHistograms(
253 const std::string& name) {
254 if (name.empty() || readonly_)
255 return;
256
257 DCHECK(!used_histogram_);
258 used_histogram_ = Histogram::FactoryGet(
259 name + ".UsedKiB", 1, 256 << 10, 100, HistogramBase::kNoFlags);
260
261 DCHECK(!allocs_histogram_);
262 allocs_histogram_ = Histogram::FactoryGet(
263 name + ".Allocs", 1, 10000, 50, HistogramBase::kNoFlags);
264 }
265
266 size_t PersistentMemoryAllocator::used() const {
267 return std::min(shared_meta()->freeptr.load(), mem_size_);
268 }
269
270 size_t PersistentMemoryAllocator::GetAllocSize(Reference ref) const {
271 const volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
272 if (!block)
273 return 0;
274 uint32_t size = block->size;
275 // Header was verified by GetBlock() but a malicious actor could change
276 // the value between there and here. Check it again.
277 if (size <= sizeof(BlockHeader) || ref + size >= mem_size_) {
278 SetCorrupt();
279 return 0;
280 }
281 return size - sizeof(BlockHeader);
282 }
283
284 uint32_t PersistentMemoryAllocator::GetType(Reference ref) const {
285 const volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
286 if (!block)
287 return 0;
288 return block->type_id;
289 }
290
291 void PersistentMemoryAllocator::SetType(Reference ref, uint32_t type_id) {
292 DCHECK(!readonly_);
293 volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
294 if (!block)
295 return;
296 block->type_id = type_id;
297 }
298
299 PersistentMemoryAllocator::Reference PersistentMemoryAllocator::Allocate(
300 size_t req_size,
301 uint32_t type_id) {
302 Reference ref = AllocateImpl(req_size, type_id);
303 if (ref) {
304 // Success: Record this allocation in usage stats (if active).
305 if (allocs_histogram_)
306 allocs_histogram_->Add(static_cast<HistogramBase::Sample>(req_size));
307 } else {
308 // Failure: Record an allocation of zero for tracking.
309 if (allocs_histogram_)
310 allocs_histogram_->Add(0);
311 }
312 return ref;
313 }
314
315 PersistentMemoryAllocator::Reference PersistentMemoryAllocator::AllocateImpl(
316 size_t req_size,
317 uint32_t type_id) {
318 DCHECK(!readonly_);
319
320 // Validate req_size to ensure it won't overflow when used as 32-bit value.
321 if (req_size > kSegmentMaxSize - sizeof(BlockHeader)) {
322 NOTREACHED();
323 return kReferenceNull;
324 }
325
326 // Round up the requested size, plus header, to the next allocation alignment.
327 uint32_t size = static_cast<uint32_t>(req_size + sizeof(BlockHeader));
328 size = (size + (kAllocAlignment - 1)) & ~(kAllocAlignment - 1);
329 if (size <= sizeof(BlockHeader) || size > mem_page_) {
330 NOTREACHED();
331 return kReferenceNull;
332 }
333
334 // Get the current start of unallocated memory. Other threads may
335 // update this at any time and cause us to retry these operations.
336 // This value should be treated as "const" to avoid confusion through
337 // the code below but recognize that any failed compare-exchange operation
338 // involving it will cause it to be loaded with a more recent value. The
339 // code should either exit or restart the loop in that case.
340 /* const */ uint32_t freeptr = shared_meta()->freeptr.load();
341
342 // Allocation is lockless so we do all our caculation and then, if saving
343 // indicates a change has occurred since we started, scrap everything and
344 // start over.
345 for (;;) {
346 if (IsCorrupt())
347 return kReferenceNull;
348
349 if (freeptr + size > mem_size_) {
350 SetFlag(&shared_meta()->flags, kFlagFull);
351 return kReferenceNull;
352 }
353
354 // Get pointer to the "free" block. If something has been allocated since
355 // the load of freeptr above, it is still safe as nothing will be written
356 // to that location until after the compare-exchange below.
357 volatile BlockHeader* const block = GetBlock(freeptr, 0, 0, false, true);
358 if (!block) {
359 SetCorrupt();
360 return kReferenceNull;
361 }
362
363 // An allocation cannot cross page boundaries. If it would, create a
364 // "wasted" block and begin again at the top of the next page. This
365 // area could just be left empty but we fill in the block header just
366 // for completeness sake.
367 const uint32_t page_free = mem_page_ - freeptr % mem_page_;
368 if (size > page_free) {
369 if (page_free <= sizeof(BlockHeader)) {
370 SetCorrupt();
371 return kReferenceNull;
372 }
373 const uint32_t new_freeptr = freeptr + page_free;
374 if (shared_meta()->freeptr.compare_exchange_strong(freeptr,
375 new_freeptr)) {
376 block->size = page_free;
377 block->cookie = kBlockCookieWasted;
378 }
379 continue;
380 }
381
382 // Don't leave a slice at the end of a page too small for anything. This
383 // can result in an allocation up to two alignment-sizes greater than the
384 // minimum required by requested-size + header + alignment.
385 if (page_free - size < sizeof(BlockHeader) + kAllocAlignment)
386 size = page_free;
387
388 const uint32_t new_freeptr = freeptr + size;
389 if (new_freeptr > mem_size_) {
390 SetCorrupt();
391 return kReferenceNull;
392 }
393
394 // Save our work. Try again if another thread has completed an allocation
395 // while we were processing. A "weak" exchange would be permissable here
396 // because the code will just loop and try again but the above processing
397 // is significant so make the extra effort of a "strong" exchange.
398 if (!shared_meta()->freeptr.compare_exchange_strong(freeptr, new_freeptr))
399 continue;
400
401 // Given that all memory was zeroed before ever being given to an instance
402 // of this class and given that we only allocate in a monotomic fashion
403 // going forward, it must be that the newly allocated block is completely
404 // full of zeros. If we find anything in the block header that is NOT a
405 // zero then something must have previously run amuck through memory,
406 // writing beyond the allocated space and into unallocated space.
407 if (block->size != 0 ||
408 block->cookie != kBlockCookieFree ||
409 block->type_id != 0 ||
410 block->next.load() != 0) {
411 SetCorrupt();
412 return kReferenceNull;
413 }
414
415 block->size = size;
416 block->cookie = kBlockCookieAllocated;
417 block->type_id = type_id;
418 return freeptr;
419 }
420 }
421
422 void PersistentMemoryAllocator::GetMemoryInfo(MemoryInfo* meminfo) const {
423 uint32_t remaining = std::max(mem_size_ - shared_meta()->freeptr.load(),
424 (uint32_t)sizeof(BlockHeader));
425 meminfo->total = mem_size_;
426 meminfo->free = IsCorrupt() ? 0 : remaining - sizeof(BlockHeader);
427 }
428
429 void PersistentMemoryAllocator::MakeIterable(Reference ref) {
430 DCHECK(!readonly_);
431 if (IsCorrupt())
432 return;
433 volatile BlockHeader* block = GetBlock(ref, 0, 0, false, false);
434 if (!block) // invalid reference
435 return;
436 if (block->next.load(std::memory_order_acquire) != 0) // Already iterable.
437 return;
438 block->next.store(kReferenceQueue, std::memory_order_release); // New tail.
439
440 // Try to add this block to the tail of the queue. May take multiple tries.
441 // If so, tail will be automatically updated with a more recent value during
442 // compare-exchange operations.
443 uint32_t tail = shared_meta()->tailptr.load(std::memory_order_acquire);
444 for (;;) {
445 // Acquire the current tail-pointer released by previous call to this
446 // method and validate it.
447 block = GetBlock(tail, 0, 0, true, false);
448 if (!block) {
449 SetCorrupt();
450 return;
451 }
452
453 // Try to insert the block at the tail of the queue. The tail node always
454 // has an existing value of kReferenceQueue; if that is somehow not the
455 // existing value then another thread has acted in the meantime. A "strong"
456 // exchange is necessary so the "else" block does not get executed when
457 // that is not actually the case (which can happen with a "weak" exchange).
458 uint32_t next = kReferenceQueue; // Will get replaced with existing value.
459 if (block->next.compare_exchange_strong(next, ref,
460 std::memory_order_acq_rel,
461 std::memory_order_acquire)) {
462 // Update the tail pointer to the new offset. If the "else" clause did
463 // not exist, then this could be a simple Release_Store to set the new
464 // value but because it does, it's possible that other threads could add
465 // one or more nodes at the tail before reaching this point. We don't
466 // have to check the return value because it either operates correctly
467 // or the exact same operation has already been done (by the "else"
468 // clause) on some other thread.
469 shared_meta()->tailptr.compare_exchange_strong(tail, ref,
470 std::memory_order_release,
471 std::memory_order_relaxed);
472 return;
473 } else {
474 // In the unlikely case that a thread crashed or was killed between the
475 // update of "next" and the update of "tailptr", it is necessary to
476 // perform the operation that would have been done. There's no explicit
477 // check for crash/kill which means that this operation may also happen
478 // even when the other thread is in perfect working order which is what
479 // necessitates the CompareAndSwap above.
480 shared_meta()->tailptr.compare_exchange_strong(tail, next,
481 std::memory_order_acq_rel,
482 std::memory_order_acquire);
483 }
484 }
485 }
486
487 void PersistentMemoryAllocator::CreateIterator(Iterator* state,
488 Reference starting_after) const {
489 if (starting_after) {
490 // Ensure that the starting point is a valid, iterable block.
491 const volatile BlockHeader* block =
492 GetBlock(starting_after, 0, 0, false, false);
493 if (!block || !block->next.load()) {
494 NOTREACHED();
495 starting_after = kReferenceQueue;
496 }
497 } else {
498 // A zero beginning is really the Queue reference.
499 starting_after = kReferenceQueue;
500 }
501
502 state->last = starting_after;
503 state->niter = 0;
504 }
505
506 PersistentMemoryAllocator::Reference PersistentMemoryAllocator::GetNextIterable(
507 Iterator* state,
508 uint32_t* type_id) const {
509 const volatile BlockHeader* block = GetBlock(state->last, 0, 0, true, false);
510 if (!block) // invalid iterator state
511 return kReferenceNull;
512
513 // The compiler and CPU can freely reorder all memory accesses on which
514 // there are no dependencies. It could, for example, move the load of
515 // "freeptr" above this point because there are no explicit dependencies
516 // between it and "next". If it did, however, then another block could
517 // be queued after that but before the following load meaning there is
518 // one more queued block than the future "detect loop by having more
519 // blocks that could fit before freeptr" will allow.
520 //
521 // By "acquiring" the "next" value here, it's synchronized to the enqueue
522 // of the node which in turn is synchronized to the allocation (which sets
523 // freeptr). Thus, the scenario above cannot happen.
524 uint32_t next = block->next.load(std::memory_order_acquire);
525 block = GetBlock(next, 0, 0, false, false);
526 if (!block) // no next allocation in queue
527 return kReferenceNull;
528
529 // Memory corruption could cause a loop in the list. We need to detect
530 // that so as to not cause an infinite loop in the caller. We do this
531 // simply by making sure we don't iterate more than the absolute maximum
532 // number of allocations that could have been made. Callers are likely
533 // to loop multiple times before it is detected but at least it stops.
534 uint32_t freeptr = std::min(
535 shared_meta()->freeptr.load(std::memory_order_acquire),
536 mem_size_);
537 if (state->niter > freeptr / (sizeof(BlockHeader) + kAllocAlignment)) {
538 SetCorrupt();
539 return kReferenceNull;
540 }
541
542 state->last = next;
543 state->niter++;
544 *type_id = block->type_id;
545
546 return next;
547 }
548
549 // The "corrupted" state is held both locally and globally (shared). The
550 // shared flag can't be trusted since a malicious actor could overwrite it.
551 // Because corruption can be detected during read-only operations such as
552 // iteration, this method may be called by other "const" methods. In this
553 // case, it's safe to discard the constness and modify the local flag and
554 // maybe even the shared flag if the underlying data isn't actually read-only.
555 void PersistentMemoryAllocator::SetCorrupt() const {
556 LOG(ERROR) << "Corruption detected in shared-memory segment.";
557 const_cast<std::atomic<bool>*>(&corrupt_)->store(true);
558 if (!readonly_) {
559 SetFlag(const_cast<volatile std::atomic<uint32_t>*>(&shared_meta()->flags),
560 kFlagCorrupt);
561 }
562 }
563
564 bool PersistentMemoryAllocator::IsCorrupt() const {
565 if (corrupt_.load() || CheckFlag(&shared_meta()->flags, kFlagCorrupt)) {
566 SetCorrupt(); // Make sure all indicators are set.
567 return true;
568 }
569 return false;
570 }
571
572 bool PersistentMemoryAllocator::IsFull() const {
573 return CheckFlag(&shared_meta()->flags, kFlagFull);
574 }
575
576 // Dereference a block |ref| and ensure that it's valid for the desired
577 // |type_id| and |size|. |special| indicates that we may try to access block
578 // headers not available to callers but still accessed by this module. By
579 // having internal dereferences go through this same function, the allocator
580 // is hardened against corruption.
581 const volatile PersistentMemoryAllocator::BlockHeader*
582 PersistentMemoryAllocator::GetBlock(Reference ref, uint32_t type_id,
583 uint32_t size, bool queue_ok,
584 bool free_ok) const {
585 // Validation of parameters.
586 if (ref % kAllocAlignment != 0)
587 return nullptr;
588 if (ref < (queue_ok ? kReferenceQueue : sizeof(SharedMetadata)))
589 return nullptr;
590 size += sizeof(BlockHeader);
591 if (ref + size > mem_size_)
592 return nullptr;
593
594 // Validation of referenced block-header.
595 if (!free_ok) {
596 uint32_t freeptr = shared_meta()->freeptr.load();
597 if (ref + size > freeptr)
598 return nullptr;
599 const volatile BlockHeader* const block =
600 reinterpret_cast<volatile BlockHeader*>(mem_base_ + ref);
601 if (block->size < size)
602 return nullptr;
603 if (ref != kReferenceQueue && block->cookie != kBlockCookieAllocated)
604 return nullptr;
605 if (type_id != 0 && block->type_id != type_id)
606 return nullptr;
607 }
608
609 // Return pointer to block data.
610 return reinterpret_cast<const volatile BlockHeader*>(mem_base_ + ref);
611 }
612
613 const volatile void* PersistentMemoryAllocator::GetBlockData(
614 Reference ref,
615 uint32_t type_id,
616 uint32_t size) const {
617 DCHECK(size > 0);
618 const volatile BlockHeader* block =
619 GetBlock(ref, type_id, size, false, false);
620 if (!block)
621 return nullptr;
622 return reinterpret_cast<const volatile char*>(block) + sizeof(BlockHeader);
623 }
624
625 void PersistentMemoryAllocator::UpdateTrackingHistograms() {
626 DCHECK(!readonly_);
627 if (used_histogram_) {
628 MemoryInfo meminfo;
629 GetMemoryInfo(&meminfo);
630 HistogramBase::Sample usedkb = static_cast<HistogramBase::Sample>(
631 (meminfo.total - meminfo.free) >> 10);
632 used_histogram_->Add(usedkb);
633 }
634 }
635
636
637 //----- LocalPersistentMemoryAllocator -----------------------------------------
638
639 LocalPersistentMemoryAllocator::LocalPersistentMemoryAllocator(
640 size_t size,
641 uint64_t id,
642 const std::string& name)
643 : PersistentMemoryAllocator(memset(new char[size], 0, size),
644 size, 0, id, name, false) {}
645
646 LocalPersistentMemoryAllocator::~LocalPersistentMemoryAllocator() {
647 delete [] mem_base_;
648 }
649
650
651 //----- FilePersistentMemoryAllocator ------------------------------------------
652
653 FilePersistentMemoryAllocator::FilePersistentMemoryAllocator(
654 MemoryMappedFile* file,
655 uint64_t id,
656 const std::string& name)
657 : PersistentMemoryAllocator(const_cast<uint8_t*>(file->data()),
658 file->length(), 0, id, name, true),
659 mapped_file_(file) {}
660
661 FilePersistentMemoryAllocator::~FilePersistentMemoryAllocator() {
662 }
663
664 // static
665 bool FilePersistentMemoryAllocator::IsFileAcceptable(
666 const MemoryMappedFile& file) {
667 return IsMemoryAcceptable(file.data(), file.length(), 0, true);
668 }
669
670 } // namespace base
OLDNEW
« no previous file with comments | « base/metrics/persistent_memory_allocator.h ('k') | base/metrics/persistent_memory_allocator_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698