Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(304)

Side by Side Diff: base/metrics/persistent_memory_allocator.cc

Issue 1410213004: Create "persistent memory allocator" for persisting and sharing objects. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: addessed more comments by Alexander Potapenko Created 4 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright (c) 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/metrics/persistent_memory_allocator.h"
6
7 #include <assert.h>
8 #include <algorithm>
9
10 #include "base/files/memory_mapped_file.h"
11 #include "base/logging.h"
12 #include "base/metrics/histogram_macros.h"
13
14 namespace {
15
16 // Required range of memory segment sizes. It has to fit in an unsigned 32-bit
17 // number and should be a power of 2 in order to accomodate almost any page
18 // size.
19 const uint32_t kSegmentMinSize = 1 << 10; // 1 KiB
20 const uint32_t kSegmentMaxSize = 1 << 30; // 1 GiB
21
22 // All allocations and data-structures must be aligned to this byte boundary.
23 // Alignment as large as the physical bus between CPU and RAM is _required_
24 // for some architectures, is simply more efficient on other CPUs, and
25 // generally a Good Idea(tm) for all platforms as it reduces/eliminates the
26 // chance that a type will span cache lines. Alignment mustn't be less
27 // than 8 to ensure proper alignment for all types. The rest is a balance
28 // between reducing spans across multiple cache lines and wasted space spent
29 // padding out allocations. An alignment of 16 would ensure that the block
30 // header structure always sits in a single cache line. An average of about
31 // 1/2 this value will be wasted with every allocation.
32 const uint32_t kAllocAlignment = 8;
33
34 // A constant (random) value placed in the shared metadata to identify
35 // an already initialized memory segment.
36 const uint32_t kGlobalCookie = 0x408305DC;
37
38 // The current version of the metadata. If updates are made that change
39 // the metadata, the version number can be queried to operate in a backward-
40 // compatible manner until the memory segment is completely re-initalized.
41 const uint32_t kGlobalVersion = 1;
42
43 // Constant values placed in the block headers to indicate its state.
44 const uint32_t kBlockCookieFree = 0;
45 const uint32_t kBlockCookieQueue = 1;
46 const uint32_t kBlockCookieWasted = (uint32_t)-1;
47 const uint32_t kBlockCookieAllocated = 0xC8799269;
chrisha 2016/01/19 16:37:41 Worth putting these values in a typed enum? Say,
bcwhite 2016/01/19 19:49:40 I don't think so. It's not an "enumeration" and n
48
49 // TODO(bcwhite): When acceptable, consider moving flags to std::atomic<char>
50 // types rather than combined bitfield.
51
52 // Flags stored in the flags_ field of the SharedMetaData structure below.
53 enum : int {
54 kFlagCorrupt = 1 << 0,
55 kFlagFull = 1 << 1
56 };
57
58 bool CheckFlag(const volatile std::atomic<uint32_t>* flags, int flag) {
59 uint32_t loaded_flags = flags->load();
60 return (loaded_flags & flag) != 0;
61 }
62
63 void SetFlag(volatile std::atomic<uint32_t>* flags, int flag) {
64 uint32_t loaded_flags = flags->load();
65 for (;;) {
66 uint32_t new_flags = (loaded_flags & ~flag) | flag;
67 // In the failue case, actual "flags" value stored in loaded_flags.
68 if (flags->compare_exchange_weak(loaded_flags, new_flags))
69 break;
70 }
71 }
72
73 } // namespace
74
75 namespace base {
76
77 // The block-header is placed at the top of every allocation within the
78 // segment to describe the data that follows it.
79 struct PersistentMemoryAllocator::BlockHeader {
80 uint32_t size; // Number of bytes in this block, including header.
81 uint32_t cookie; // Constant value indicating completed allocation.
82 uint32_t type_id; // A number provided by caller indicating data type.
83 std::atomic<uint32_t> next; // Pointer to the next block when iterating.
84 };
85
86 // The shared metadata exists once at the top of the memory segment to
87 // describe the state of the allocator to all processes.
88 struct PersistentMemoryAllocator::SharedMetadata {
89 uint32_t cookie; // Some value that indicates complete initialization.
90 uint32_t size; // Total size of memory segment.
91 uint32_t page_size; // Paging size within memory segment.
92 uint32_t version; // Version code so upgrades don't break.
93 std::atomic<uint32_t> freeptr; // Offset/ref to first free space in segment.
94 std::atomic<uint32_t> flags; // Bitfield of information flags.
95 uint32_t id; // Arbitrary ID number given by creator.
96 uint32_t name; // Reference to stored name string.
97 uint32_t _padding_; // Padding to match required allocation size.
chrisha 2016/01/19 16:37:41 Why the trailing and leading underscores for this
bcwhite 2016/01/19 19:49:40 Just to indicate that it's not something that shou
Alexander Potapenko 2016/01/20 14:13:43 For the future: please avoid using leading undersc
98
99 // The "iterable" queue is an M&S Queue as described here, append-only:
100 // https://www.research.ibm.com/people/m/michael/podc-1996.pdf
101 std::atomic<uint32_t> tailptr; // Last block available for iteration.
102 BlockHeader queue; // Empty block for linked-list head/tail. (must be last)
103 };
104
105 // The "queue" block header is used to detect "last node" so that zero/null
106 // can be used to indicate that it hasn't been added at all. It is part of
107 // the SharedMetadata structure which itself is always located at offset zero.
108 const PersistentMemoryAllocator::Reference
109 PersistentMemoryAllocator::kReferenceQueue =
110 offsetof(SharedMetadata, queue);
111 const PersistentMemoryAllocator::Reference
112 PersistentMemoryAllocator::kReferenceNull = 0;
113
114
115 // static
116 bool PersistentMemoryAllocator::IsMemoryAcceptable(const void* base,
117 size_t size,
118 size_t page_size,
119 bool readonly) {
120 return ((base && reinterpret_cast<uintptr_t>(base) % kAllocAlignment == 0) &&
121 (size >= sizeof(SharedMetadata) && size <= kSegmentMaxSize) &&
122 (size >= kSegmentMinSize || readonly) &&
123 (size % kAllocAlignment == 0 || readonly) &&
124 (page_size == 0 || size % page_size == 0 || readonly));
125 }
126
127 PersistentMemoryAllocator::PersistentMemoryAllocator(void* base,
128 size_t size,
129 size_t page_size,
130 uint32_t id,
131 const std::string& name,
132 bool readonly)
133 : mem_base_(static_cast<char*>(base)),
134 mem_size_(static_cast<uint32_t>(size)),
135 mem_page_(static_cast<uint32_t>((page_size ? page_size : size))),
136 readonly_(readonly),
137 corrupt_(0),
138 allocs_histogram_(nullptr),
139 used_histogram_(nullptr) {
140 static_assert(sizeof(BlockHeader) % kAllocAlignment == 0,
141 "BlockHeader is not a multiple of kAllocAlignment");
142 static_assert(sizeof(SharedMetadata) % kAllocAlignment == 0,
143 "SharedMetadata is not a multiple of kAllocAlignment");
chrisha 2016/01/19 16:37:41 static_asserts don't need to be in functions... pl
bcwhite 2016/01/19 19:49:40 They have to be in the scope of the class to be ab
144
145 // Ensure that memory segment is of acceptable size.
146 CHECK(IsMemoryAcceptable(base, size, page_size, readonly));
147
148 // These atomics operate inter-process and so must be lock-free. The local
149 // casts are to make sure it can be evaluated at compile time to a constant.
150 CHECK(((SharedMetadata*)0)->freeptr.is_lock_free());
151 CHECK(((SharedMetadata*)0)->flags.is_lock_free());
152 CHECK(((BlockHeader*)0)->next.is_lock_free());
153 CHECK(corrupt_.is_lock_free());
154
155 if (shared_meta()->cookie != kGlobalCookie) {
156 if (readonly) {
157 NOTREACHED();
158 SetCorrupt();
159 return;
160 }
161
162 // This block is only executed when a completely new memory segment is
163 // being initialized. It's unshared and single-threaded...
164 volatile BlockHeader* const first_block =
165 reinterpret_cast<volatile BlockHeader*>(mem_base_ +
166 sizeof(SharedMetadata));
167 if (shared_meta()->cookie != 0 ||
168 shared_meta()->size != 0 ||
169 shared_meta()->version != 0 ||
170 shared_meta()->freeptr.load() != 0 ||
171 shared_meta()->flags.load() != 0 ||
172 shared_meta()->id != 0 ||
173 shared_meta()->name != 0 ||
174 shared_meta()->tailptr != 0 ||
175 shared_meta()->queue.cookie != 0 ||
176 shared_meta()->queue.next.load() != 0 ||
177 first_block->size != 0 ||
178 first_block->cookie != 0 ||
179 first_block->type_id != 0 ||
180 first_block->next != 0) {
181 // ...or something malicious has been playing with the metadata.
182 NOTREACHED();
183 SetCorrupt();
184 }
185
186 // This is still safe to do even if corruption has been detected.
187 shared_meta()->cookie = kGlobalCookie;
188 shared_meta()->size = mem_size_;
189 shared_meta()->page_size = mem_page_;
190 shared_meta()->version = kGlobalVersion;
191 shared_meta()->id = id;
192 shared_meta()->freeptr.store(sizeof(SharedMetadata));
193
194 // Set up the queue of iterable allocations.
195 shared_meta()->queue.size = sizeof(BlockHeader);
196 shared_meta()->queue.cookie = kBlockCookieQueue;
197 shared_meta()->queue.next.store(kReferenceQueue);
198 shared_meta()->tailptr.store(kReferenceQueue);
199
200 // Allocate space for the name so other processes can learn it.
201 if (!name.empty()) {
202 const size_t name_length = name.length() + 1;
203 shared_meta()->name = Allocate(name_length, 0);
204 char* name_cstr = GetAsObject<char>(shared_meta()->name, 0);
205 if (name_cstr)
206 strcpy(name_cstr, name.c_str());
207 }
208 } else {
209 if (readonly) {
210 // For read-only access, validate reasonable ctor parameters.
211 DCHECK(mem_size_ >= shared_meta()->freeptr.load());
chrisha 2016/01/19 16:37:41 Can't use DCHECK_GE?
bcwhite 2016/01/19 19:49:40 Done.
212 } else {
213 // The allocator is attaching to a previously initialized segment of
214 // memory. Make sure the embedded data matches what has been passed.
215 if (shared_meta()->size != mem_size_ ||
216 shared_meta()->page_size != mem_page_) {
217 NOTREACHED();
218 SetCorrupt();
219 }
220 }
221 }
222 }
223
224 PersistentMemoryAllocator::~PersistentMemoryAllocator() {
225 // It's strictly forbidden to do any memory access here in case there is
226 // some issue with the underlying memory segment. The "Local" allocator
227 // makes use of this to allow deletion of the segment on the heap from
228 // within its destructor.
229 }
230
231 uint32_t PersistentMemoryAllocator::Id() const {
232 return shared_meta()->id;
233 }
234
235 const char* PersistentMemoryAllocator::Name() const {
236 Reference name_ref = shared_meta()->name;
237 const char* name_cstr = GetAsObject<char>(name_ref, 0);
238 if (!name_cstr)
239 return "";
240
241 size_t name_length = GetAllocSize(name_ref);
242 if (name_cstr[name_length - 1] != '\0') {
243 NOTREACHED();
244 SetCorrupt();
245 return "";
246 }
247
248 return name_cstr;
249 }
250
251 void PersistentMemoryAllocator::CreateHistograms(const std::string& name) {
252 if (name.empty() || readonly_)
253 return;
254
255 DCHECK(!used_histogram_);
256 used_histogram_ = Histogram::FactoryGet(
257 name + ".UsedKiB", 1, 256 << 10, 100, HistogramBase::kNoFlags);
chrisha 2016/01/19 16:37:41 Where is the storage for these histograms? How wil
bcwhite 2016/01/19 19:49:40 Storage is wherever the histogram factory chooses
258
259 DCHECK(!allocs_histogram_);
260 allocs_histogram_ = Histogram::FactoryGet(
261 name + ".Allocs", 1, 10000, 50, HistogramBase::kNoFlags);
262 }
263
264 size_t PersistentMemoryAllocator::used() const {
265 return std::min(shared_meta()->freeptr.load(), mem_size_);
266 }
267
268 size_t PersistentMemoryAllocator::GetAllocSize(Reference ref) const {
269 const volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
270 if (!block)
271 return 0;
272 uint32_t size = block->size;
273 // Header was verified by GetBlock() but a malicious actor could change
274 // the value between there and here. Check it again.
275 if (size <= sizeof(BlockHeader) || ref + size >= mem_size_)
chrisha 2016/01/19 16:37:40 Wouldn't this imply corruption?
bcwhite 2016/01/19 19:49:40 Done.
276 return 0;
277 return size - sizeof(BlockHeader);
278 }
279
280 uint32_t PersistentMemoryAllocator::GetType(Reference ref) const {
281 const volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
282 if (!block)
283 return 0;
284 return block->type_id;
285 }
286
287 void PersistentMemoryAllocator::SetType(Reference ref, uint32_t type_id) {
288 DCHECK(!readonly_);
289 volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
290 if (!block)
291 return;
292 block->type_id = type_id;
293 }
294
295 PersistentMemoryAllocator::Reference PersistentMemoryAllocator::Allocate(
296 size_t req_size,
297 uint32_t type_id) {
298 Reference ref = AllocateImpl(req_size, type_id);
299 if (ref) {
300 // Success: Record this allocation in usage stats (if active).
301 if (allocs_histogram_)
302 allocs_histogram_->Add(static_cast<HistogramBase::Sample>(req_size));
303 } else {
304 // Failure: Record an allocation of zero for tracking.
305 if (allocs_histogram_)
306 allocs_histogram_->Add(0);
307 }
308 return ref;
309 }
310
311 PersistentMemoryAllocator::Reference PersistentMemoryAllocator::AllocateImpl(
312 size_t req_size,
313 uint32_t type_id) {
314 DCHECK(!readonly_);
315
316 // Validate req_size to ensure it won't overflow when used as 32-bit value.
317 if (req_size > kSegmentMaxSize - sizeof(BlockHeader)) {
318 NOTREACHED();
319 return kReferenceNull;
320 }
321
322 // Round up the requested size, plus header, to the next allocation alignment.
323 uint32_t size = static_cast<uint32_t>(req_size + sizeof(BlockHeader));
324 size = (size + (kAllocAlignment - 1)) & ~(kAllocAlignment - 1);
325 if (size <= sizeof(BlockHeader) || size > mem_page_) {
326 NOTREACHED();
327 return kReferenceNull;
328 }
329
330 // Get the current start of unallocated memory. Other threads may
331 // update this at any time and cause us to retry these operations.
332 // This value should be treated as "const" to avoid confusion through
333 // the code below but recognize that any failed compare-exchange operation
334 // involving it will cause it to be loaded with a more recent value. The
335 // code should either exit or restart the loop in that case.
336 /* const */ uint32_t freeptr = shared_meta()->freeptr.load();
337
338 // Allocation is lockless so we do all our caculation and then, if saving
339 // indicates a change has occurred since we started, scrap everything and
340 // start over.
341 for (;;) {
342 if (IsCorrupt())
343 return kReferenceNull;
344
345 if (freeptr + size > mem_size_) {
346 SetFlag(&shared_meta()->flags, kFlagFull);
347 return kReferenceNull;
348 }
349
350 // Get pointer to the "free" block. If something has been allocated since
351 // the load of freeptr above, it is still safe as nothing will be written
352 // to that location until after the compare-exchange below.
353 volatile BlockHeader* const block = GetBlock(freeptr, 0, 0, false, true);
354 if (!block) {
355 SetCorrupt();
356 return kReferenceNull;
357 }
358
359 // An allocation cannot cross page boundaries. If it would, create a
360 // "wasted" block and begin again at the top of the next page. This
361 // area could just be left empty but we fill in the block header just
362 // for completeness sake.
363 const uint32_t page_free = mem_page_ - freeptr % mem_page_;
364 if (size > page_free) {
365 if (page_free <= sizeof(BlockHeader)) {
366 SetCorrupt();
367 return kReferenceNull;
368 }
369 const uint32_t new_freeptr = freeptr + page_free;
370 if (shared_meta()->freeptr.compare_exchange_strong(freeptr,
371 new_freeptr)) {
372 block->size = page_free;
373 block->cookie = kBlockCookieWasted;
374 }
375 continue;
376 }
377
378 // Don't leave a slice at the end of a page too small for anything. This
379 // can result in an allocation up to two alignment-sizes greater than the
380 // minimum required by requested-size + header + alignment.
381 if (page_free - size < sizeof(BlockHeader) + kAllocAlignment)
382 size = page_free;
383
384 const uint32_t new_freeptr = freeptr + size;
385 if (new_freeptr > mem_size_) {
386 SetCorrupt();
387 return kReferenceNull;
388 }
389
390 // Save our work. Try again if another thread has completed an allocation
391 // while we were processing. A "weak" exchange would be permissable here
392 // because the code will just loop and try again but the above processing
393 // is significant so make the extra effort of a "strong" exchange.
394 if (!shared_meta()->freeptr.compare_exchange_strong(freeptr, new_freeptr))
395 continue;
396
397 // Given that all memory was zeroed before ever being given to an instance
398 // of this class and given that we only allocate in a monotomic fashion
399 // going forward, it must be that the newly allocated block is completely
400 // full of zeros. If we find anything in the block header that is NOT a
401 // zero then something must have previously run amuck through memory,
402 // writing beyond the allocated space and into unallocated space.
chrisha 2016/01/19 16:37:41 Not worth checking the block body? Maybe at least
bcwhite 2016/01/19 19:49:40 Tough call. I could be useful on a release build
403 if (block->size != 0 ||
404 block->cookie != kBlockCookieFree ||
405 block->type_id != 0 ||
406 block->next.load() != 0) {
407 SetCorrupt();
408 return kReferenceNull;
409 }
410
411 block->size = size;
412 block->cookie = kBlockCookieAllocated;
413 block->type_id = type_id;
414 return freeptr;
415 }
416 }
417
418 void PersistentMemoryAllocator::GetMemoryInfo(MemoryInfo* meminfo) const {
419 uint32_t remaining = std::max(mem_size_ - shared_meta()->freeptr.load(),
420 (uint32_t)sizeof(BlockHeader));
421 meminfo->total = mem_size_;
422 meminfo->free = IsCorrupt() ? 0 : remaining - sizeof(BlockHeader);
423 }
424
425 void PersistentMemoryAllocator::MakeIterable(Reference ref) {
426 DCHECK(!readonly_);
427 if (IsCorrupt())
428 return;
429 volatile BlockHeader* block = GetBlock(ref, 0, 0, false, false);
430 if (!block) // invalid reference
431 return;
432 if (block->next.load(std::memory_order_acquire) != 0) // Already iterable.
433 return;
434 block->next.store(kReferenceQueue, std::memory_order_release); // New tail.
435
436 // Try to add this block to the tail of the queue. May take multiple tries.
437 // If so, tail will be automatically updated with a more recent value during
438 // compare-exchange operations.
439 uint32_t tail = shared_meta()->tailptr.load(std::memory_order_acquire);
440 for (;;) {
441 // Acquire the current tail-pointer released by previous call to this
442 // method and validate it.
443 block = GetBlock(tail, 0, 0, true, false);
444 if (!block) {
445 SetCorrupt();
446 return;
447 }
448
449 // Try to insert the block at the tail of the queue. The tail node always
450 // has an existing value of kReferenceQueue; if that is somehow not the
451 // existing value then another thread has acted in the meantime. A "strong"
452 // exchange is necessary so the "else" block does not get executed when
453 // that is not actually the case (which can happen with a "weak" exchange).
454 uint32_t next = kReferenceQueue; // Will get replaced with existing value.
455 if (block->next.compare_exchange_strong(next, ref,
456 std::memory_order_acq_rel,
457 std::memory_order_acquire)) {
458 // Update the tail pointer to the new offset. If the "else" clause did
459 // not exist, then this could be a simple Release_Store to set the new
460 // value but because it does, it's possible that other threads could add
461 // one or more nodes at the tail before reaching this point. We don't
462 // have to check the return value because it either operates correctly
463 // or the exact same operation has already been done (by the "else"
464 // clause) on some other thread.
465 shared_meta()->tailptr.compare_exchange_strong(tail, ref,
466 std::memory_order_release,
467 std::memory_order_relaxed);
468 return;
469 } else {
470 // In the unlikely case that a thread crashed or was killed between the
471 // update of "next" and the update of "tailptr", it is necessary to
472 // perform the operation that would have been done. There's no explicit
473 // check for crash/kill which means that this operation may also happen
474 // even when the other thread is in perfect working order which is what
475 // necessitates the CompareAndSwap above.
476 shared_meta()->tailptr.compare_exchange_strong(tail, next,
477 std::memory_order_acq_rel,
478 std::memory_order_acquire);
479 }
480 }
481 }
482
483 void PersistentMemoryAllocator::CreateIterator(Iterator* state,
484 Reference starting_after) const {
485 if (starting_after) {
486 // Ensure that the starting point is a valid, iterable block.
487 const volatile BlockHeader* block =
488 GetBlock(starting_after, 0, 0, false, false);
489 if (!block || !block->next.load()) {
490 NOTREACHED();
491 starting_after = kReferenceQueue;
492 }
493 } else {
494 // A zero beginning is really the Queue reference.
495 starting_after = kReferenceQueue;
496 }
497
498 state->last = starting_after;
499 state->niter = 0;
500 }
501
502 PersistentMemoryAllocator::Reference PersistentMemoryAllocator::GetNextIterable(
503 Iterator* state,
504 uint32_t* type_id) const {
505 const volatile BlockHeader* block = GetBlock(state->last, 0, 0, true, false);
506 if (!block) // invalid iterator state
507 return kReferenceNull;
508
509 // The compiler and CPU can freely reorder all memory accesses on which
510 // there are no dependencies. It could, for example, move the load of
511 // "freeptr" above this point because there are no explicit dependencies
512 // between it and "next". If it did, however, then another block could
513 // be queued after that but before the following load meaning there is
514 // one more queued block than the future "detect loop by having more
515 // blocks that could fit before freeptr" will allow.
516 //
517 // By "acquiring" the "next" value here, it's synchronized to the enqueue
518 // of the node which in turn is synchronized to the allocation (which sets
519 // freeptr). Thus, the scenario above cannot happen.
520 uint32_t next = block->next.load(std::memory_order_acquire);
521 block = GetBlock(next, 0, 0, false, false);
522 if (!block) // no next allocation in queue
523 return kReferenceNull;
524
525 // Memory corruption could cause a loop in the list. We need to detect
526 // that so as to not cause an infinite loop in the caller. We do this
527 // simply by making sure we don't iterate more than the absolute maximum
528 // number of allocations that could have been made. Callers are likely
529 // to loop multiple times before it is detected but at least it stops.
530 uint32_t freeptr = std::min(
531 shared_meta()->freeptr.load(std::memory_order_acquire),
532 mem_size_);
533 if (state->niter > freeptr / (sizeof(BlockHeader) + kAllocAlignment)) {
534 SetCorrupt();
535 return kReferenceNull;
536 }
537
538 state->last = next;
539 state->niter++;
540 *type_id = block->type_id;
541
542 return next;
543 }
544
545 // The "corrupted" state is held both locally and globally (shared). The
546 // shared flag can't be trusted since a malicious actor could overwrite it.
547 // Because corruption can be detected during read-only operations such as
548 // iteration, this method may be called by other "const" methods. In this
549 // case, it's safe to discard the constness and modify the local flag and
550 // maybe even the shared flag if the underlying data isn't actually read-only.
551 void PersistentMemoryAllocator::SetCorrupt() const {
552 LOG(ERROR) << "Corruption detected in shared-memory segment.";
553 const_cast<std::atomic<bool>*>(&corrupt_)->store(true);
554 if (!readonly_)
555 SetFlag(const_cast<volatile std::atomic<uint32_t>*>(&shared_meta()->flags),
chrisha 2016/01/19 16:37:41 Multiline "if" body requires braces.
bcwhite 2016/01/19 19:49:40 Done.
556 kFlagCorrupt);
557 }
558
559 bool PersistentMemoryAllocator::IsCorrupt() const {
560 if (corrupt_.load() || CheckFlag(&shared_meta()->flags, kFlagCorrupt)) {
561 SetCorrupt(); // Make sure all indicators are set.
562 return true;
563 }
564 return false;
565 }
566
567 bool PersistentMemoryAllocator::IsFull() const {
568 return CheckFlag(&shared_meta()->flags, kFlagFull);
569 }
570
571 // Dereference a block |ref| and ensure that it's valid for the desired
572 // |type_id| and |size|. |special| indicates that we may try to access block
573 // headers not available to callers but still accessed by this module. By
574 // having internal dereferences go through this same function, the allocator
575 // is hardened against corruption.
576 const volatile PersistentMemoryAllocator::BlockHeader*
577 PersistentMemoryAllocator::GetBlock(Reference ref, uint32_t type_id,
578 uint32_t size, bool queue_ok,
579 bool free_ok) const {
580 // Validation of parameters.
581 if (ref % kAllocAlignment != 0)
582 return nullptr;
583 if (ref < (queue_ok ? kReferenceQueue : sizeof(SharedMetadata)))
584 return nullptr;
585 size += sizeof(BlockHeader);
586 if (ref + size > mem_size_)
587 return nullptr;
588
589 // Validation of referenced block-header.
590 if (!free_ok) {
591 uint32_t freeptr = shared_meta()->freeptr.load();
592 if (ref + size > freeptr)
593 return nullptr;
594 const volatile BlockHeader* const block =
595 reinterpret_cast<volatile BlockHeader*>(mem_base_ + ref);
596 if (block->size < size)
597 return nullptr;
598 if (ref != kReferenceQueue && block->cookie != kBlockCookieAllocated)
599 return nullptr;
600 if (type_id != 0 && block->type_id != type_id)
601 return nullptr;
602 }
603
604 // Return pointer to block data.
605 return reinterpret_cast<const volatile BlockHeader*>(mem_base_ + ref);
606 }
607
608 const volatile void* PersistentMemoryAllocator::GetBlockData(
609 Reference ref,
610 uint32_t type_id,
611 uint32_t size) const {
612 DCHECK(size > 0);
613 const volatile BlockHeader* block =
614 GetBlock(ref, type_id, size, false, false);
615 if (!block)
616 return nullptr;
617 return reinterpret_cast<const volatile char*>(block) + sizeof(BlockHeader);
618 }
619
620 void PersistentMemoryAllocator::UpdateStaticHistograms() {
621 DCHECK(!readonly_);
622 if (used_histogram_) {
623 MemoryInfo meminfo;
624 GetMemoryInfo(&meminfo);
625 HistogramBase::Sample usedkb = static_cast<HistogramBase::Sample>(
626 (meminfo.total - meminfo.free) >> 10);
627 used_histogram_->Add(usedkb);
628 }
629 }
630
631
632 //----- LocalPersistentMemoryAllocator -----------------------------------------
633
634 LocalPersistentMemoryAllocator::LocalPersistentMemoryAllocator(
635 size_t size,
636 uint32_t id,
637 const std::string& name)
638 : PersistentMemoryAllocator(memset(new char[size], 0, size),
639 size, 0, id, name, false) {}
640
641 LocalPersistentMemoryAllocator::~LocalPersistentMemoryAllocator() {
642 delete [] mem_base_;
643 }
644
645
646 //----- FilePersistentMemoryAllocator ------------------------------------------
647
648 FilePersistentMemoryAllocator::FilePersistentMemoryAllocator(
649 MemoryMappedFile* file,
650 uint32_t id,
651 const std::string& name)
652 : PersistentMemoryAllocator(const_cast<uint8_t*>(file->data()),
653 file->length(), 0, id, name, true),
654 mapped_file_(file) {}
655
656 FilePersistentMemoryAllocator::~FilePersistentMemoryAllocator() {
657 }
658
659 // static
660 bool FilePersistentMemoryAllocator::IsFileAcceptable(
661 const MemoryMappedFile& file) {
662 return IsMemoryAcceptable(file.data(), file.length(), 0, true);
663 }
664
665 } // namespace base
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698