| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 #include "SkIntersections.h" | 7 #include "SkIntersections.h" |
| 8 #include "SkLineParameters.h" | 8 #include "SkLineParameters.h" |
| 9 #include "SkPathOpsConic.h" | 9 #include "SkPathOpsConic.h" |
| 10 #include "SkPathOpsCubic.h" | 10 #include "SkPathOpsCubic.h" |
| (...skipping 78 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 89 return fPts[2]; | 89 return fPts[2]; |
| 90 } | 90 } |
| 91 double denominator = conic_eval_denominator(fWeight, t); | 91 double denominator = conic_eval_denominator(fWeight, t); |
| 92 SkDPoint result = { | 92 SkDPoint result = { |
| 93 conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator, | 93 conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator, |
| 94 conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator | 94 conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator |
| 95 }; | 95 }; |
| 96 return result; | 96 return result; |
| 97 } | 97 } |
| 98 | 98 |
| 99 /* see quad subdivide for point rationale */ | 99 /* see quad subdivide for rationale */ |
| 100 /* w rationale : the mid point between t1 and t2 could be determined from the co
mputed a/b/c | |
| 101 values if the computed w was known. Since we know the mid point at (t1+t2)/2,
we'll assume | |
| 102 that it is the same as the point on the new curve t==(0+1)/2. | |
| 103 | |
| 104 d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5); | |
| 105 | |
| 106 conic_poly(dst, unknownW, .5) | |
| 107 = a / 4 + (b * unknownW) / 2 + c / 4 | |
| 108 = (a + c) / 4 + (bx * unknownW) / 2 | |
| 109 | |
| 110 conic_weight(unknownW, .5) | |
| 111 = unknownW / 2 + 1 / 2 | |
| 112 | |
| 113 d / dz == ((a + c) / 2 + b * unknownW) / (unknownW + 1) | |
| 114 d / dz * (unknownW + 1) == (a + c) / 2 + b * unknownW | |
| 115 unknownW = ((a + c) / 2 - d / dz) / (d / dz - b) | |
| 116 | |
| 117 Thus, w is the ratio of the distance from the mid of end points to the on-cu
rve point, and the | |
| 118 distance of the on-curve point to the control point. | |
| 119 */ | |
| 120 SkDConic SkDConic::subDivide(double t1, double t2) const { | 100 SkDConic SkDConic::subDivide(double t1, double t2) const { |
| 121 double ax, ay, az; | 101 double ax, ay, az; |
| 122 if (t1 == 0) { | 102 if (t1 == 0) { |
| 123 ax = fPts[0].fX; | 103 ax = fPts[0].fX; |
| 124 ay = fPts[0].fY; | 104 ay = fPts[0].fY; |
| 125 az = 1; | 105 az = 1; |
| 126 } else if (t1 != 1) { | 106 } else if (t1 != 1) { |
| 127 ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1); | 107 ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1); |
| 128 ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1); | 108 ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1); |
| 129 az = conic_eval_denominator(fWeight, t1); | 109 az = conic_eval_denominator(fWeight, t1); |
| (...skipping 16 matching lines...) Expand all Loading... |
| 146 cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2); | 126 cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2); |
| 147 cz = conic_eval_denominator(fWeight, t2); | 127 cz = conic_eval_denominator(fWeight, t2); |
| 148 } else { | 128 } else { |
| 149 cx = fPts[0].fX; | 129 cx = fPts[0].fX; |
| 150 cy = fPts[0].fY; | 130 cy = fPts[0].fY; |
| 151 cz = 1; | 131 cz = 1; |
| 152 } | 132 } |
| 153 double bx = 2 * dx - (ax + cx) / 2; | 133 double bx = 2 * dx - (ax + cx) / 2; |
| 154 double by = 2 * dy - (ay + cy) / 2; | 134 double by = 2 * dy - (ay + cy) / 2; |
| 155 double bz = 2 * dz - (az + cz) / 2; | 135 double bz = 2 * dz - (az + cz) / 2; |
| 156 SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}
}}, 0 }; | 136 double dt = t2 - t1; |
| 157 SkDPoint dMidAC = { (dst.fPts[0].fX + dst.fPts[2].fX) / 2, | 137 double dt_1 = 1 - dt; |
| 158 (dst.fPts[0].fY + dst.fPts[2].fY) / 2 }; | 138 SkScalar w = SkDoubleToScalar((1 + dt * (fWeight - 1)) |
| 159 SkDPoint dMid = { dx / dz, dy / dz }; | 139 / sqrt(dt * dt + 2 * dt * dt_1 * fWeight + dt_1 * dt_1)); |
| 160 SkDVector dWNumer = dMidAC - dMid; | 140 SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}
}}, w }; |
| 161 SkDVector dWDenom = dMid - dst.fPts[1]; | |
| 162 dst.fWeight = dWNumer.length() / dWDenom.length(); | |
| 163 return dst; | 141 return dst; |
| 164 } | 142 } |
| 165 | 143 |
| 166 SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, do
uble t2, | 144 SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, do
uble t2, |
| 167 SkScalar* weight) const { | 145 SkScalar* weight) const { |
| 168 SkDConic chopped = this->subDivide(t1, t2); | 146 SkDConic chopped = this->subDivide(t1, t2); |
| 169 *weight = chopped.fWeight; | 147 *weight = chopped.fWeight; |
| 170 return chopped[1]; | 148 return chopped[1]; |
| 171 } | 149 } |
| OLD | NEW |