Index: src/pathops/SkPathOpsConic.cpp |
diff --git a/src/pathops/SkPathOpsConic.cpp b/src/pathops/SkPathOpsConic.cpp |
index 013136bd8279a67781be68f915de1d52588cb52a..3bb8b65351a1dbd2f48a1fe5715cc04b7abf5eb0 100644 |
--- a/src/pathops/SkPathOpsConic.cpp |
+++ b/src/pathops/SkPathOpsConic.cpp |
@@ -96,7 +96,27 @@ |
return result; |
} |
-/* see quad subdivide for rationale */ |
+/* see quad subdivide for point rationale */ |
+/* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c |
+ values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume |
+ that it is the same as the point on the new curve t==(0+1)/2. |
+ |
+ d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5); |
+ |
+ conic_poly(dst, unknownW, .5) |
+ = a / 4 + (b * unknownW) / 2 + c / 4 |
+ = (a + c) / 4 + (bx * unknownW) / 2 |
+ |
+ conic_weight(unknownW, .5) |
+ = unknownW / 2 + 1 / 2 |
+ |
+ d / dz == ((a + c) / 2 + b * unknownW) / (unknownW + 1) |
+ d / dz * (unknownW + 1) == (a + c) / 2 + b * unknownW |
+ unknownW = ((a + c) / 2 - d / dz) / (d / dz - b) |
+ |
+ Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the |
+ distance of the on-curve point to the control point. |
+ */ |
SkDConic SkDConic::subDivide(double t1, double t2) const { |
double ax, ay, az; |
if (t1 == 0) { |
@@ -133,11 +153,13 @@ |
double bx = 2 * dx - (ax + cx) / 2; |
double by = 2 * dy - (ay + cy) / 2; |
double bz = 2 * dz - (az + cz) / 2; |
- double dt = t2 - t1; |
- double dt_1 = 1 - dt; |
- SkScalar w = SkDoubleToScalar((1 + dt * (fWeight - 1)) |
- / sqrt(dt * dt + 2 * dt * dt_1 * fWeight + dt_1 * dt_1)); |
- SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}}, w }; |
+ SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}}, 0 }; |
+ SkDPoint dMidAC = { (dst.fPts[0].fX + dst.fPts[2].fX) / 2, |
+ (dst.fPts[0].fY + dst.fPts[2].fY) / 2 }; |
+ SkDPoint dMid = { dx / dz, dy / dz }; |
+ SkDVector dWNumer = dMidAC - dMid; |
+ SkDVector dWDenom = dMid - dst.fPts[1]; |
+ dst.fWeight = dWNumer.length() / dWDenom.length(); |
return dst; |
} |