Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(369)

Unified Diff: src/hydrogen-instructions.cc

Issue 1405363003: Move Hydrogen and Lithium to src/crankshaft/ (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: rebased Created 5 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/hydrogen-instructions.h ('k') | src/hydrogen-load-elimination.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/hydrogen-instructions.cc
diff --git a/src/hydrogen-instructions.cc b/src/hydrogen-instructions.cc
deleted file mode 100644
index 4482155fbead2242b6785ad60ddd8d5d8729c731..0000000000000000000000000000000000000000
--- a/src/hydrogen-instructions.cc
+++ /dev/null
@@ -1,4716 +0,0 @@
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/hydrogen-instructions.h"
-
-#include "src/base/bits.h"
-#include "src/double.h"
-#include "src/elements.h"
-#include "src/factory.h"
-#include "src/hydrogen-infer-representation.h"
-
-#if V8_TARGET_ARCH_IA32
-#include "src/ia32/lithium-ia32.h" // NOLINT
-#elif V8_TARGET_ARCH_X64
-#include "src/x64/lithium-x64.h" // NOLINT
-#elif V8_TARGET_ARCH_ARM64
-#include "src/arm64/lithium-arm64.h" // NOLINT
-#elif V8_TARGET_ARCH_ARM
-#include "src/arm/lithium-arm.h" // NOLINT
-#elif V8_TARGET_ARCH_PPC
-#include "src/ppc/lithium-ppc.h" // NOLINT
-#elif V8_TARGET_ARCH_MIPS
-#include "src/mips/lithium-mips.h" // NOLINT
-#elif V8_TARGET_ARCH_MIPS64
-#include "src/mips64/lithium-mips64.h" // NOLINT
-#elif V8_TARGET_ARCH_X87
-#include "src/x87/lithium-x87.h" // NOLINT
-#else
-#error Unsupported target architecture.
-#endif
-
-#include "src/base/safe_math.h"
-
-namespace v8 {
-namespace internal {
-
-#define DEFINE_COMPILE(type) \
- LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) { \
- return builder->Do##type(this); \
- }
-HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
-#undef DEFINE_COMPILE
-
-
-Isolate* HValue::isolate() const {
- DCHECK(block() != NULL);
- return block()->isolate();
-}
-
-
-void HValue::AssumeRepresentation(Representation r) {
- if (CheckFlag(kFlexibleRepresentation)) {
- ChangeRepresentation(r);
- // The representation of the value is dictated by type feedback and
- // will not be changed later.
- ClearFlag(kFlexibleRepresentation);
- }
-}
-
-
-void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) {
- DCHECK(CheckFlag(kFlexibleRepresentation));
- Representation new_rep = RepresentationFromInputs();
- UpdateRepresentation(new_rep, h_infer, "inputs");
- new_rep = RepresentationFromUses();
- UpdateRepresentation(new_rep, h_infer, "uses");
- if (representation().IsSmi() && HasNonSmiUse()) {
- UpdateRepresentation(
- Representation::Integer32(), h_infer, "use requirements");
- }
-}
-
-
-Representation HValue::RepresentationFromUses() {
- if (HasNoUses()) return Representation::None();
- Representation result = Representation::None();
-
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- HValue* use = it.value();
- Representation rep = use->observed_input_representation(it.index());
- result = result.generalize(rep);
-
- if (FLAG_trace_representation) {
- PrintF("#%d %s is used by #%d %s as %s%s\n",
- id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(),
- (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
- }
- }
- if (IsPhi()) {
- result = result.generalize(
- HPhi::cast(this)->representation_from_indirect_uses());
- }
-
- // External representations are dealt with separately.
- return result.IsExternal() ? Representation::None() : result;
-}
-
-
-void HValue::UpdateRepresentation(Representation new_rep,
- HInferRepresentationPhase* h_infer,
- const char* reason) {
- Representation r = representation();
- if (new_rep.is_more_general_than(r)) {
- if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return;
- if (FLAG_trace_representation) {
- PrintF("Changing #%d %s representation %s -> %s based on %s\n",
- id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
- }
- ChangeRepresentation(new_rep);
- AddDependantsToWorklist(h_infer);
- }
-}
-
-
-void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) {
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- h_infer->AddToWorklist(it.value());
- }
- for (int i = 0; i < OperandCount(); ++i) {
- h_infer->AddToWorklist(OperandAt(i));
- }
-}
-
-
-static int32_t ConvertAndSetOverflow(Representation r,
- int64_t result,
- bool* overflow) {
- if (r.IsSmi()) {
- if (result > Smi::kMaxValue) {
- *overflow = true;
- return Smi::kMaxValue;
- }
- if (result < Smi::kMinValue) {
- *overflow = true;
- return Smi::kMinValue;
- }
- } else {
- if (result > kMaxInt) {
- *overflow = true;
- return kMaxInt;
- }
- if (result < kMinInt) {
- *overflow = true;
- return kMinInt;
- }
- }
- return static_cast<int32_t>(result);
-}
-
-
-static int32_t AddWithoutOverflow(Representation r,
- int32_t a,
- int32_t b,
- bool* overflow) {
- int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
- return ConvertAndSetOverflow(r, result, overflow);
-}
-
-
-static int32_t SubWithoutOverflow(Representation r,
- int32_t a,
- int32_t b,
- bool* overflow) {
- int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
- return ConvertAndSetOverflow(r, result, overflow);
-}
-
-
-static int32_t MulWithoutOverflow(const Representation& r,
- int32_t a,
- int32_t b,
- bool* overflow) {
- int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
- return ConvertAndSetOverflow(r, result, overflow);
-}
-
-
-int32_t Range::Mask() const {
- if (lower_ == upper_) return lower_;
- if (lower_ >= 0) {
- int32_t res = 1;
- while (res < upper_) {
- res = (res << 1) | 1;
- }
- return res;
- }
- return 0xffffffff;
-}
-
-
-void Range::AddConstant(int32_t value) {
- if (value == 0) return;
- bool may_overflow = false; // Overflow is ignored here.
- Representation r = Representation::Integer32();
- lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow);
- upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow);
-#ifdef DEBUG
- Verify();
-#endif
-}
-
-
-void Range::Intersect(Range* other) {
- upper_ = Min(upper_, other->upper_);
- lower_ = Max(lower_, other->lower_);
- bool b = CanBeMinusZero() && other->CanBeMinusZero();
- set_can_be_minus_zero(b);
-}
-
-
-void Range::Union(Range* other) {
- upper_ = Max(upper_, other->upper_);
- lower_ = Min(lower_, other->lower_);
- bool b = CanBeMinusZero() || other->CanBeMinusZero();
- set_can_be_minus_zero(b);
-}
-
-
-void Range::CombinedMax(Range* other) {
- upper_ = Max(upper_, other->upper_);
- lower_ = Max(lower_, other->lower_);
- set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
-}
-
-
-void Range::CombinedMin(Range* other) {
- upper_ = Min(upper_, other->upper_);
- lower_ = Min(lower_, other->lower_);
- set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
-}
-
-
-void Range::Sar(int32_t value) {
- int32_t bits = value & 0x1F;
- lower_ = lower_ >> bits;
- upper_ = upper_ >> bits;
- set_can_be_minus_zero(false);
-}
-
-
-void Range::Shl(int32_t value) {
- int32_t bits = value & 0x1F;
- int old_lower = lower_;
- int old_upper = upper_;
- lower_ = lower_ << bits;
- upper_ = upper_ << bits;
- if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
- upper_ = kMaxInt;
- lower_ = kMinInt;
- }
- set_can_be_minus_zero(false);
-}
-
-
-bool Range::AddAndCheckOverflow(const Representation& r, Range* other) {
- bool may_overflow = false;
- lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow);
- upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow);
- KeepOrder();
-#ifdef DEBUG
- Verify();
-#endif
- return may_overflow;
-}
-
-
-bool Range::SubAndCheckOverflow(const Representation& r, Range* other) {
- bool may_overflow = false;
- lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow);
- upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow);
- KeepOrder();
-#ifdef DEBUG
- Verify();
-#endif
- return may_overflow;
-}
-
-
-void Range::KeepOrder() {
- if (lower_ > upper_) {
- int32_t tmp = lower_;
- lower_ = upper_;
- upper_ = tmp;
- }
-}
-
-
-#ifdef DEBUG
-void Range::Verify() const {
- DCHECK(lower_ <= upper_);
-}
-#endif
-
-
-bool Range::MulAndCheckOverflow(const Representation& r, Range* other) {
- bool may_overflow = false;
- int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow);
- int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow);
- int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow);
- int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow);
- lower_ = Min(Min(v1, v2), Min(v3, v4));
- upper_ = Max(Max(v1, v2), Max(v3, v4));
-#ifdef DEBUG
- Verify();
-#endif
- return may_overflow;
-}
-
-
-bool HValue::IsDefinedAfter(HBasicBlock* other) const {
- return block()->block_id() > other->block_id();
-}
-
-
-HUseListNode* HUseListNode::tail() {
- // Skip and remove dead items in the use list.
- while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
- tail_ = tail_->tail_;
- }
- return tail_;
-}
-
-
-bool HValue::CheckUsesForFlag(Flag f) const {
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- if (it.value()->IsSimulate()) continue;
- if (!it.value()->CheckFlag(f)) return false;
- }
- return true;
-}
-
-
-bool HValue::CheckUsesForFlag(Flag f, HValue** value) const {
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- if (it.value()->IsSimulate()) continue;
- if (!it.value()->CheckFlag(f)) {
- *value = it.value();
- return false;
- }
- }
- return true;
-}
-
-
-bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const {
- bool return_value = false;
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- if (it.value()->IsSimulate()) continue;
- if (!it.value()->CheckFlag(f)) return false;
- return_value = true;
- }
- return return_value;
-}
-
-
-HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
- Advance();
-}
-
-
-void HUseIterator::Advance() {
- current_ = next_;
- if (current_ != NULL) {
- next_ = current_->tail();
- value_ = current_->value();
- index_ = current_->index();
- }
-}
-
-
-int HValue::UseCount() const {
- int count = 0;
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
- return count;
-}
-
-
-HUseListNode* HValue::RemoveUse(HValue* value, int index) {
- HUseListNode* previous = NULL;
- HUseListNode* current = use_list_;
- while (current != NULL) {
- if (current->value() == value && current->index() == index) {
- if (previous == NULL) {
- use_list_ = current->tail();
- } else {
- previous->set_tail(current->tail());
- }
- break;
- }
-
- previous = current;
- current = current->tail();
- }
-
-#ifdef DEBUG
- // Do not reuse use list nodes in debug mode, zap them.
- if (current != NULL) {
- HUseListNode* temp =
- new(block()->zone())
- HUseListNode(current->value(), current->index(), NULL);
- current->Zap();
- current = temp;
- }
-#endif
- return current;
-}
-
-
-bool HValue::Equals(HValue* other) {
- if (other->opcode() != opcode()) return false;
- if (!other->representation().Equals(representation())) return false;
- if (!other->type_.Equals(type_)) return false;
- if (other->flags() != flags()) return false;
- if (OperandCount() != other->OperandCount()) return false;
- for (int i = 0; i < OperandCount(); ++i) {
- if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
- }
- bool result = DataEquals(other);
- DCHECK(!result || Hashcode() == other->Hashcode());
- return result;
-}
-
-
-intptr_t HValue::Hashcode() {
- intptr_t result = opcode();
- int count = OperandCount();
- for (int i = 0; i < count; ++i) {
- result = result * 19 + OperandAt(i)->id() + (result >> 7);
- }
- return result;
-}
-
-
-const char* HValue::Mnemonic() const {
- switch (opcode()) {
-#define MAKE_CASE(type) case k##type: return #type;
- HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
-#undef MAKE_CASE
- case kPhi: return "Phi";
- default: return "";
- }
-}
-
-
-bool HValue::CanReplaceWithDummyUses() {
- return FLAG_unreachable_code_elimination &&
- !(block()->IsReachable() ||
- IsBlockEntry() ||
- IsControlInstruction() ||
- IsArgumentsObject() ||
- IsCapturedObject() ||
- IsSimulate() ||
- IsEnterInlined() ||
- IsLeaveInlined());
-}
-
-
-bool HValue::IsInteger32Constant() {
- return IsConstant() && HConstant::cast(this)->HasInteger32Value();
-}
-
-
-int32_t HValue::GetInteger32Constant() {
- return HConstant::cast(this)->Integer32Value();
-}
-
-
-bool HValue::EqualsInteger32Constant(int32_t value) {
- return IsInteger32Constant() && GetInteger32Constant() == value;
-}
-
-
-void HValue::SetOperandAt(int index, HValue* value) {
- RegisterUse(index, value);
- InternalSetOperandAt(index, value);
-}
-
-
-void HValue::DeleteAndReplaceWith(HValue* other) {
- // We replace all uses first, so Delete can assert that there are none.
- if (other != NULL) ReplaceAllUsesWith(other);
- Kill();
- DeleteFromGraph();
-}
-
-
-void HValue::ReplaceAllUsesWith(HValue* other) {
- while (use_list_ != NULL) {
- HUseListNode* list_node = use_list_;
- HValue* value = list_node->value();
- DCHECK(!value->block()->IsStartBlock());
- value->InternalSetOperandAt(list_node->index(), other);
- use_list_ = list_node->tail();
- list_node->set_tail(other->use_list_);
- other->use_list_ = list_node;
- }
-}
-
-
-void HValue::Kill() {
- // Instead of going through the entire use list of each operand, we only
- // check the first item in each use list and rely on the tail() method to
- // skip dead items, removing them lazily next time we traverse the list.
- SetFlag(kIsDead);
- for (int i = 0; i < OperandCount(); ++i) {
- HValue* operand = OperandAt(i);
- if (operand == NULL) continue;
- HUseListNode* first = operand->use_list_;
- if (first != NULL && first->value()->CheckFlag(kIsDead)) {
- operand->use_list_ = first->tail();
- }
- }
-}
-
-
-void HValue::SetBlock(HBasicBlock* block) {
- DCHECK(block_ == NULL || block == NULL);
- block_ = block;
- if (id_ == kNoNumber && block != NULL) {
- id_ = block->graph()->GetNextValueID(this);
- }
-}
-
-
-std::ostream& operator<<(std::ostream& os, const HValue& v) {
- return v.PrintTo(os);
-}
-
-
-std::ostream& operator<<(std::ostream& os, const TypeOf& t) {
- if (t.value->representation().IsTagged() &&
- !t.value->type().Equals(HType::Tagged()))
- return os;
- return os << " type:" << t.value->type();
-}
-
-
-std::ostream& operator<<(std::ostream& os, const ChangesOf& c) {
- GVNFlagSet changes_flags = c.value->ChangesFlags();
- if (changes_flags.IsEmpty()) return os;
- os << " changes[";
- if (changes_flags == c.value->AllSideEffectsFlagSet()) {
- os << "*";
- } else {
- bool add_comma = false;
-#define PRINT_DO(Type) \
- if (changes_flags.Contains(k##Type)) { \
- if (add_comma) os << ","; \
- add_comma = true; \
- os << #Type; \
- }
- GVN_TRACKED_FLAG_LIST(PRINT_DO);
- GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
-#undef PRINT_DO
- }
- return os << "]";
-}
-
-
-bool HValue::HasMonomorphicJSObjectType() {
- return !GetMonomorphicJSObjectMap().is_null();
-}
-
-
-bool HValue::UpdateInferredType() {
- HType type = CalculateInferredType();
- bool result = (!type.Equals(type_));
- type_ = type;
- return result;
-}
-
-
-void HValue::RegisterUse(int index, HValue* new_value) {
- HValue* old_value = OperandAt(index);
- if (old_value == new_value) return;
-
- HUseListNode* removed = NULL;
- if (old_value != NULL) {
- removed = old_value->RemoveUse(this, index);
- }
-
- if (new_value != NULL) {
- if (removed == NULL) {
- new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
- this, index, new_value->use_list_);
- } else {
- removed->set_tail(new_value->use_list_);
- new_value->use_list_ = removed;
- }
- }
-}
-
-
-void HValue::AddNewRange(Range* r, Zone* zone) {
- if (!HasRange()) ComputeInitialRange(zone);
- if (!HasRange()) range_ = new(zone) Range();
- DCHECK(HasRange());
- r->StackUpon(range_);
- range_ = r;
-}
-
-
-void HValue::RemoveLastAddedRange() {
- DCHECK(HasRange());
- DCHECK(range_->next() != NULL);
- range_ = range_->next();
-}
-
-
-void HValue::ComputeInitialRange(Zone* zone) {
- DCHECK(!HasRange());
- range_ = InferRange(zone);
- DCHECK(HasRange());
-}
-
-
-std::ostream& HInstruction::PrintTo(std::ostream& os) const { // NOLINT
- os << Mnemonic() << " ";
- PrintDataTo(os) << ChangesOf(this) << TypeOf(this);
- if (CheckFlag(HValue::kHasNoObservableSideEffects)) os << " [noOSE]";
- if (CheckFlag(HValue::kIsDead)) os << " [dead]";
- return os;
-}
-
-
-std::ostream& HInstruction::PrintDataTo(std::ostream& os) const { // NOLINT
- for (int i = 0; i < OperandCount(); ++i) {
- if (i > 0) os << " ";
- os << NameOf(OperandAt(i));
- }
- return os;
-}
-
-
-void HInstruction::Unlink() {
- DCHECK(IsLinked());
- DCHECK(!IsControlInstruction()); // Must never move control instructions.
- DCHECK(!IsBlockEntry()); // Doesn't make sense to delete these.
- DCHECK(previous_ != NULL);
- previous_->next_ = next_;
- if (next_ == NULL) {
- DCHECK(block()->last() == this);
- block()->set_last(previous_);
- } else {
- next_->previous_ = previous_;
- }
- clear_block();
-}
-
-
-void HInstruction::InsertBefore(HInstruction* next) {
- DCHECK(!IsLinked());
- DCHECK(!next->IsBlockEntry());
- DCHECK(!IsControlInstruction());
- DCHECK(!next->block()->IsStartBlock());
- DCHECK(next->previous_ != NULL);
- HInstruction* prev = next->previous();
- prev->next_ = this;
- next->previous_ = this;
- next_ = next;
- previous_ = prev;
- SetBlock(next->block());
- if (!has_position() && next->has_position()) {
- set_position(next->position());
- }
-}
-
-
-void HInstruction::InsertAfter(HInstruction* previous) {
- DCHECK(!IsLinked());
- DCHECK(!previous->IsControlInstruction());
- DCHECK(!IsControlInstruction() || previous->next_ == NULL);
- HBasicBlock* block = previous->block();
- // Never insert anything except constants into the start block after finishing
- // it.
- if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
- DCHECK(block->end()->SecondSuccessor() == NULL);
- InsertAfter(block->end()->FirstSuccessor()->first());
- return;
- }
-
- // If we're inserting after an instruction with side-effects that is
- // followed by a simulate instruction, we need to insert after the
- // simulate instruction instead.
- HInstruction* next = previous->next_;
- if (previous->HasObservableSideEffects() && next != NULL) {
- DCHECK(next->IsSimulate());
- previous = next;
- next = previous->next_;
- }
-
- previous_ = previous;
- next_ = next;
- SetBlock(block);
- previous->next_ = this;
- if (next != NULL) next->previous_ = this;
- if (block->last() == previous) {
- block->set_last(this);
- }
- if (!has_position() && previous->has_position()) {
- set_position(previous->position());
- }
-}
-
-
-bool HInstruction::Dominates(HInstruction* other) {
- if (block() != other->block()) {
- return block()->Dominates(other->block());
- }
- // Both instructions are in the same basic block. This instruction
- // should precede the other one in order to dominate it.
- for (HInstruction* instr = next(); instr != NULL; instr = instr->next()) {
- if (instr == other) {
- return true;
- }
- }
- return false;
-}
-
-
-#ifdef DEBUG
-void HInstruction::Verify() {
- // Verify that input operands are defined before use.
- HBasicBlock* cur_block = block();
- for (int i = 0; i < OperandCount(); ++i) {
- HValue* other_operand = OperandAt(i);
- if (other_operand == NULL) continue;
- HBasicBlock* other_block = other_operand->block();
- if (cur_block == other_block) {
- if (!other_operand->IsPhi()) {
- HInstruction* cur = this->previous();
- while (cur != NULL) {
- if (cur == other_operand) break;
- cur = cur->previous();
- }
- // Must reach other operand in the same block!
- DCHECK(cur == other_operand);
- }
- } else {
- // If the following assert fires, you may have forgotten an
- // AddInstruction.
- DCHECK(other_block->Dominates(cur_block));
- }
- }
-
- // Verify that instructions that may have side-effects are followed
- // by a simulate instruction.
- if (HasObservableSideEffects() && !IsOsrEntry()) {
- DCHECK(next()->IsSimulate());
- }
-
- // Verify that instructions that can be eliminated by GVN have overridden
- // HValue::DataEquals. The default implementation is UNREACHABLE. We
- // don't actually care whether DataEquals returns true or false here.
- if (CheckFlag(kUseGVN)) DataEquals(this);
-
- // Verify that all uses are in the graph.
- for (HUseIterator use = uses(); !use.Done(); use.Advance()) {
- if (use.value()->IsInstruction()) {
- DCHECK(HInstruction::cast(use.value())->IsLinked());
- }
- }
-}
-#endif
-
-
-bool HInstruction::CanDeoptimize() {
- // TODO(titzer): make this a virtual method?
- switch (opcode()) {
- case HValue::kAbnormalExit:
- case HValue::kAccessArgumentsAt:
- case HValue::kAllocate:
- case HValue::kArgumentsElements:
- case HValue::kArgumentsLength:
- case HValue::kArgumentsObject:
- case HValue::kBlockEntry:
- case HValue::kBoundsCheckBaseIndexInformation:
- case HValue::kCallFunction:
- case HValue::kCallNew:
- case HValue::kCallNewArray:
- case HValue::kCallStub:
- case HValue::kCapturedObject:
- case HValue::kClassOfTestAndBranch:
- case HValue::kCompareGeneric:
- case HValue::kCompareHoleAndBranch:
- case HValue::kCompareMap:
- case HValue::kCompareMinusZeroAndBranch:
- case HValue::kCompareNumericAndBranch:
- case HValue::kCompareObjectEqAndBranch:
- case HValue::kConstant:
- case HValue::kConstructDouble:
- case HValue::kContext:
- case HValue::kDebugBreak:
- case HValue::kDeclareGlobals:
- case HValue::kDoubleBits:
- case HValue::kDummyUse:
- case HValue::kEnterInlined:
- case HValue::kEnvironmentMarker:
- case HValue::kForceRepresentation:
- case HValue::kGetCachedArrayIndex:
- case HValue::kGoto:
- case HValue::kHasCachedArrayIndexAndBranch:
- case HValue::kHasInstanceTypeAndBranch:
- case HValue::kInnerAllocatedObject:
- case HValue::kInstanceOf:
- case HValue::kIsConstructCallAndBranch:
- case HValue::kHasInPrototypeChainAndBranch:
- case HValue::kIsSmiAndBranch:
- case HValue::kIsStringAndBranch:
- case HValue::kIsUndetectableAndBranch:
- case HValue::kLeaveInlined:
- case HValue::kLoadFieldByIndex:
- case HValue::kLoadGlobalGeneric:
- case HValue::kLoadGlobalViaContext:
- case HValue::kLoadNamedField:
- case HValue::kLoadNamedGeneric:
- case HValue::kLoadRoot:
- case HValue::kMapEnumLength:
- case HValue::kMathMinMax:
- case HValue::kParameter:
- case HValue::kPhi:
- case HValue::kPushArguments:
- case HValue::kRegExpLiteral:
- case HValue::kReturn:
- case HValue::kSeqStringGetChar:
- case HValue::kStoreCodeEntry:
- case HValue::kStoreFrameContext:
- case HValue::kStoreGlobalViaContext:
- case HValue::kStoreKeyed:
- case HValue::kStoreNamedField:
- case HValue::kStoreNamedGeneric:
- case HValue::kStringCharCodeAt:
- case HValue::kStringCharFromCode:
- case HValue::kThisFunction:
- case HValue::kTypeofIsAndBranch:
- case HValue::kUnknownOSRValue:
- case HValue::kUseConst:
- return false;
-
- case HValue::kAdd:
- case HValue::kAllocateBlockContext:
- case HValue::kApplyArguments:
- case HValue::kBitwise:
- case HValue::kBoundsCheck:
- case HValue::kBranch:
- case HValue::kCallJSFunction:
- case HValue::kCallRuntime:
- case HValue::kCallWithDescriptor:
- case HValue::kChange:
- case HValue::kCheckArrayBufferNotNeutered:
- case HValue::kCheckHeapObject:
- case HValue::kCheckInstanceType:
- case HValue::kCheckMapValue:
- case HValue::kCheckMaps:
- case HValue::kCheckSmi:
- case HValue::kCheckValue:
- case HValue::kClampToUint8:
- case HValue::kDateField:
- case HValue::kDeoptimize:
- case HValue::kDiv:
- case HValue::kForInCacheArray:
- case HValue::kForInPrepareMap:
- case HValue::kInvokeFunction:
- case HValue::kLoadContextSlot:
- case HValue::kLoadFunctionPrototype:
- case HValue::kLoadKeyed:
- case HValue::kLoadKeyedGeneric:
- case HValue::kMathFloorOfDiv:
- case HValue::kMaybeGrowElements:
- case HValue::kMod:
- case HValue::kMul:
- case HValue::kOsrEntry:
- case HValue::kPower:
- case HValue::kPrologue:
- case HValue::kRor:
- case HValue::kSar:
- case HValue::kSeqStringSetChar:
- case HValue::kShl:
- case HValue::kShr:
- case HValue::kSimulate:
- case HValue::kStackCheck:
- case HValue::kStoreContextSlot:
- case HValue::kStoreKeyedGeneric:
- case HValue::kStringAdd:
- case HValue::kStringCompareAndBranch:
- case HValue::kSub:
- case HValue::kToFastProperties:
- case HValue::kTransitionElementsKind:
- case HValue::kTrapAllocationMemento:
- case HValue::kTypeof:
- case HValue::kUnaryMathOperation:
- case HValue::kWrapReceiver:
- return true;
- }
- UNREACHABLE();
- return true;
-}
-
-
-std::ostream& operator<<(std::ostream& os, const NameOf& v) {
- return os << v.value->representation().Mnemonic() << v.value->id();
-}
-
-std::ostream& HDummyUse::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(value());
-}
-
-
-std::ostream& HEnvironmentMarker::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << (kind() == BIND ? "bind" : "lookup") << " var[" << index()
- << "]";
-}
-
-
-std::ostream& HUnaryCall::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(value()) << " #" << argument_count();
-}
-
-
-std::ostream& HCallJSFunction::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(function()) << " #" << argument_count();
-}
-
-
-HCallJSFunction* HCallJSFunction::New(Isolate* isolate, Zone* zone,
- HValue* context, HValue* function,
- int argument_count) {
- bool has_stack_check = false;
- if (function->IsConstant()) {
- HConstant* fun_const = HConstant::cast(function);
- Handle<JSFunction> jsfun =
- Handle<JSFunction>::cast(fun_const->handle(isolate));
- has_stack_check = !jsfun.is_null() &&
- (jsfun->code()->kind() == Code::FUNCTION ||
- jsfun->code()->kind() == Code::OPTIMIZED_FUNCTION);
- }
-
- return new (zone) HCallJSFunction(function, argument_count, has_stack_check);
-}
-
-
-std::ostream& HBinaryCall::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(first()) << " " << NameOf(second()) << " #"
- << argument_count();
-}
-
-
-std::ostream& HCallFunction::PrintDataTo(std::ostream& os) const { // NOLINT
- os << NameOf(context()) << " " << NameOf(function());
- if (HasVectorAndSlot()) {
- os << " (type-feedback-vector icslot " << slot().ToInt() << ")";
- }
- return os;
-}
-
-
-void HBoundsCheck::ApplyIndexChange() {
- if (skip_check()) return;
-
- DecompositionResult decomposition;
- bool index_is_decomposable = index()->TryDecompose(&decomposition);
- if (index_is_decomposable) {
- DCHECK(decomposition.base() == base());
- if (decomposition.offset() == offset() &&
- decomposition.scale() == scale()) return;
- } else {
- return;
- }
-
- ReplaceAllUsesWith(index());
-
- HValue* current_index = decomposition.base();
- int actual_offset = decomposition.offset() + offset();
- int actual_scale = decomposition.scale() + scale();
-
- HGraph* graph = block()->graph();
- Isolate* isolate = graph->isolate();
- Zone* zone = graph->zone();
- HValue* context = graph->GetInvalidContext();
- if (actual_offset != 0) {
- HConstant* add_offset =
- HConstant::New(isolate, zone, context, actual_offset);
- add_offset->InsertBefore(this);
- HInstruction* add =
- HAdd::New(isolate, zone, context, current_index, add_offset);
- add->InsertBefore(this);
- add->AssumeRepresentation(index()->representation());
- add->ClearFlag(kCanOverflow);
- current_index = add;
- }
-
- if (actual_scale != 0) {
- HConstant* sar_scale = HConstant::New(isolate, zone, context, actual_scale);
- sar_scale->InsertBefore(this);
- HInstruction* sar =
- HSar::New(isolate, zone, context, current_index, sar_scale);
- sar->InsertBefore(this);
- sar->AssumeRepresentation(index()->representation());
- current_index = sar;
- }
-
- SetOperandAt(0, current_index);
-
- base_ = NULL;
- offset_ = 0;
- scale_ = 0;
-}
-
-
-std::ostream& HBoundsCheck::PrintDataTo(std::ostream& os) const { // NOLINT
- os << NameOf(index()) << " " << NameOf(length());
- if (base() != NULL && (offset() != 0 || scale() != 0)) {
- os << " base: ((";
- if (base() != index()) {
- os << NameOf(index());
- } else {
- os << "index";
- }
- os << " + " << offset() << ") >> " << scale() << ")";
- }
- if (skip_check()) os << " [DISABLED]";
- return os;
-}
-
-
-void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) {
- DCHECK(CheckFlag(kFlexibleRepresentation));
- HValue* actual_index = index()->ActualValue();
- HValue* actual_length = length()->ActualValue();
- Representation index_rep = actual_index->representation();
- Representation length_rep = actual_length->representation();
- if (index_rep.IsTagged() && actual_index->type().IsSmi()) {
- index_rep = Representation::Smi();
- }
- if (length_rep.IsTagged() && actual_length->type().IsSmi()) {
- length_rep = Representation::Smi();
- }
- Representation r = index_rep.generalize(length_rep);
- if (r.is_more_general_than(Representation::Integer32())) {
- r = Representation::Integer32();
- }
- UpdateRepresentation(r, h_infer, "boundscheck");
-}
-
-
-Range* HBoundsCheck::InferRange(Zone* zone) {
- Representation r = representation();
- if (r.IsSmiOrInteger32() && length()->HasRange()) {
- int upper = length()->range()->upper() - (allow_equality() ? 0 : 1);
- int lower = 0;
-
- Range* result = new(zone) Range(lower, upper);
- if (index()->HasRange()) {
- result->Intersect(index()->range());
- }
-
- // In case of Smi representation, clamp result to Smi::kMaxValue.
- if (r.IsSmi()) result->ClampToSmi();
- return result;
- }
- return HValue::InferRange(zone);
-}
-
-
-std::ostream& HBoundsCheckBaseIndexInformation::PrintDataTo(
- std::ostream& os) const { // NOLINT
- // TODO(svenpanne) This 2nd base_index() looks wrong...
- return os << "base: " << NameOf(base_index())
- << ", check: " << NameOf(base_index());
-}
-
-
-std::ostream& HCallWithDescriptor::PrintDataTo(
- std::ostream& os) const { // NOLINT
- for (int i = 0; i < OperandCount(); i++) {
- os << NameOf(OperandAt(i)) << " ";
- }
- return os << "#" << argument_count();
-}
-
-
-std::ostream& HCallNewArray::PrintDataTo(std::ostream& os) const { // NOLINT
- os << ElementsKindToString(elements_kind()) << " ";
- return HBinaryCall::PrintDataTo(os);
-}
-
-
-std::ostream& HCallRuntime::PrintDataTo(std::ostream& os) const { // NOLINT
- os << function()->name << " ";
- if (save_doubles() == kSaveFPRegs) os << "[save doubles] ";
- return os << "#" << argument_count();
-}
-
-
-std::ostream& HClassOfTestAndBranch::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << "class_of_test(" << NameOf(value()) << ", \""
- << class_name()->ToCString().get() << "\")";
-}
-
-
-std::ostream& HWrapReceiver::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(receiver()) << " " << NameOf(function());
-}
-
-
-std::ostream& HAccessArgumentsAt::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << NameOf(arguments()) << "[" << NameOf(index()) << "], length "
- << NameOf(length());
-}
-
-
-std::ostream& HAllocateBlockContext::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << NameOf(context()) << " " << NameOf(function());
-}
-
-
-std::ostream& HControlInstruction::PrintDataTo(
- std::ostream& os) const { // NOLINT
- os << " goto (";
- bool first_block = true;
- for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
- if (!first_block) os << ", ";
- os << *it.Current();
- first_block = false;
- }
- return os << ")";
-}
-
-
-std::ostream& HUnaryControlInstruction::PrintDataTo(
- std::ostream& os) const { // NOLINT
- os << NameOf(value());
- return HControlInstruction::PrintDataTo(os);
-}
-
-
-std::ostream& HReturn::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(value()) << " (pop " << NameOf(parameter_count())
- << " values)";
-}
-
-
-Representation HBranch::observed_input_representation(int index) {
- if (expected_input_types_.Contains(ToBooleanStub::NULL_TYPE) ||
- expected_input_types_.Contains(ToBooleanStub::SPEC_OBJECT) ||
- expected_input_types_.Contains(ToBooleanStub::STRING) ||
- expected_input_types_.Contains(ToBooleanStub::SYMBOL) ||
- expected_input_types_.Contains(ToBooleanStub::SIMD_VALUE)) {
- return Representation::Tagged();
- }
- if (expected_input_types_.Contains(ToBooleanStub::UNDEFINED)) {
- if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
- return Representation::Double();
- }
- return Representation::Tagged();
- }
- if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
- return Representation::Double();
- }
- if (expected_input_types_.Contains(ToBooleanStub::SMI)) {
- return Representation::Smi();
- }
- return Representation::None();
-}
-
-
-bool HBranch::KnownSuccessorBlock(HBasicBlock** block) {
- HValue* value = this->value();
- if (value->EmitAtUses()) {
- DCHECK(value->IsConstant());
- DCHECK(!value->representation().IsDouble());
- *block = HConstant::cast(value)->BooleanValue()
- ? FirstSuccessor()
- : SecondSuccessor();
- return true;
- }
- *block = NULL;
- return false;
-}
-
-
-std::ostream& HBranch::PrintDataTo(std::ostream& os) const { // NOLINT
- return HUnaryControlInstruction::PrintDataTo(os) << " "
- << expected_input_types();
-}
-
-
-std::ostream& HCompareMap::PrintDataTo(std::ostream& os) const { // NOLINT
- os << NameOf(value()) << " (" << *map().handle() << ")";
- HControlInstruction::PrintDataTo(os);
- if (known_successor_index() == 0) {
- os << " [true]";
- } else if (known_successor_index() == 1) {
- os << " [false]";
- }
- return os;
-}
-
-
-const char* HUnaryMathOperation::OpName() const {
- switch (op()) {
- case kMathFloor:
- return "floor";
- case kMathFround:
- return "fround";
- case kMathRound:
- return "round";
- case kMathAbs:
- return "abs";
- case kMathLog:
- return "log";
- case kMathExp:
- return "exp";
- case kMathSqrt:
- return "sqrt";
- case kMathPowHalf:
- return "pow-half";
- case kMathClz32:
- return "clz32";
- default:
- UNREACHABLE();
- return NULL;
- }
-}
-
-
-Range* HUnaryMathOperation::InferRange(Zone* zone) {
- Representation r = representation();
- if (op() == kMathClz32) return new(zone) Range(0, 32);
- if (r.IsSmiOrInteger32() && value()->HasRange()) {
- if (op() == kMathAbs) {
- int upper = value()->range()->upper();
- int lower = value()->range()->lower();
- bool spans_zero = value()->range()->CanBeZero();
- // Math.abs(kMinInt) overflows its representation, on which the
- // instruction deopts. Hence clamp it to kMaxInt.
- int abs_upper = upper == kMinInt ? kMaxInt : abs(upper);
- int abs_lower = lower == kMinInt ? kMaxInt : abs(lower);
- Range* result =
- new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper),
- Max(abs_lower, abs_upper));
- // In case of Smi representation, clamp Math.abs(Smi::kMinValue) to
- // Smi::kMaxValue.
- if (r.IsSmi()) result->ClampToSmi();
- return result;
- }
- }
- return HValue::InferRange(zone);
-}
-
-
-std::ostream& HUnaryMathOperation::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << OpName() << " " << NameOf(value());
-}
-
-
-std::ostream& HUnaryOperation::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(value());
-}
-
-
-std::ostream& HHasInstanceTypeAndBranch::PrintDataTo(
- std::ostream& os) const { // NOLINT
- os << NameOf(value());
- switch (from_) {
- case FIRST_JS_RECEIVER_TYPE:
- if (to_ == LAST_TYPE) os << " spec_object";
- break;
- case JS_REGEXP_TYPE:
- if (to_ == JS_REGEXP_TYPE) os << " reg_exp";
- break;
- case JS_ARRAY_TYPE:
- if (to_ == JS_ARRAY_TYPE) os << " array";
- break;
- case JS_FUNCTION_TYPE:
- if (to_ == JS_FUNCTION_TYPE) os << " function";
- break;
- default:
- break;
- }
- return os;
-}
-
-
-std::ostream& HTypeofIsAndBranch::PrintDataTo(
- std::ostream& os) const { // NOLINT
- os << NameOf(value()) << " == " << type_literal()->ToCString().get();
- return HControlInstruction::PrintDataTo(os);
-}
-
-
-namespace {
-
-String* TypeOfString(HConstant* constant, Isolate* isolate) {
- Heap* heap = isolate->heap();
- if (constant->HasNumberValue()) return heap->number_string();
- if (constant->IsUndetectable()) return heap->undefined_string();
- if (constant->HasStringValue()) return heap->string_string();
- switch (constant->GetInstanceType()) {
- case ODDBALL_TYPE: {
- Unique<Object> unique = constant->GetUnique();
- if (unique.IsKnownGlobal(heap->true_value()) ||
- unique.IsKnownGlobal(heap->false_value())) {
- return heap->boolean_string();
- }
- if (unique.IsKnownGlobal(heap->null_value())) {
- return heap->object_string();
- }
- DCHECK(unique.IsKnownGlobal(heap->undefined_value()));
- return heap->undefined_string();
- }
- case SYMBOL_TYPE:
- return heap->symbol_string();
- case SIMD128_VALUE_TYPE: {
- Unique<Map> map = constant->ObjectMap();
-#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
- if (map.IsKnownGlobal(heap->type##_map())) { \
- return heap->type##_string(); \
- }
- SIMD128_TYPES(SIMD128_TYPE)
-#undef SIMD128_TYPE
- UNREACHABLE();
- return nullptr;
- }
- default:
- if (constant->IsCallable()) return heap->function_string();
- return heap->object_string();
- }
-}
-
-} // namespace
-
-
-bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
- if (FLAG_fold_constants && value()->IsConstant()) {
- HConstant* constant = HConstant::cast(value());
- String* type_string = TypeOfString(constant, isolate());
- bool same_type = type_literal_.IsKnownGlobal(type_string);
- *block = same_type ? FirstSuccessor() : SecondSuccessor();
- return true;
- } else if (value()->representation().IsSpecialization()) {
- bool number_type =
- type_literal_.IsKnownGlobal(isolate()->heap()->number_string());
- *block = number_type ? FirstSuccessor() : SecondSuccessor();
- return true;
- }
- *block = NULL;
- return false;
-}
-
-
-std::ostream& HCheckMapValue::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(value()) << " " << NameOf(map());
-}
-
-
-HValue* HCheckMapValue::Canonicalize() {
- if (map()->IsConstant()) {
- HConstant* c_map = HConstant::cast(map());
- return HCheckMaps::CreateAndInsertAfter(
- block()->graph()->zone(), value(), c_map->MapValue(),
- c_map->HasStableMapValue(), this);
- }
- return this;
-}
-
-
-std::ostream& HForInPrepareMap::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(enumerable());
-}
-
-
-std::ostream& HForInCacheArray::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(enumerable()) << " " << NameOf(map()) << "[" << idx_
- << "]";
-}
-
-
-std::ostream& HLoadFieldByIndex::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << NameOf(object()) << " " << NameOf(index());
-}
-
-
-static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) {
- if (!l->EqualsInteger32Constant(~0)) return false;
- *negated = r;
- return true;
-}
-
-
-static bool MatchNegationViaXor(HValue* instr, HValue** negated) {
- if (!instr->IsBitwise()) return false;
- HBitwise* b = HBitwise::cast(instr);
- return (b->op() == Token::BIT_XOR) &&
- (MatchLeftIsOnes(b->left(), b->right(), negated) ||
- MatchLeftIsOnes(b->right(), b->left(), negated));
-}
-
-
-static bool MatchDoubleNegation(HValue* instr, HValue** arg) {
- HValue* negated;
- return MatchNegationViaXor(instr, &negated) &&
- MatchNegationViaXor(negated, arg);
-}
-
-
-HValue* HBitwise::Canonicalize() {
- if (!representation().IsSmiOrInteger32()) return this;
- // If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
- int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
- if (left()->EqualsInteger32Constant(nop_constant) &&
- !right()->CheckFlag(kUint32)) {
- return right();
- }
- if (right()->EqualsInteger32Constant(nop_constant) &&
- !left()->CheckFlag(kUint32)) {
- return left();
- }
- // Optimize double negation, a common pattern used for ToInt32(x).
- HValue* arg;
- if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) {
- return arg;
- }
- return this;
-}
-
-
-// static
-HInstruction* HAdd::New(Isolate* isolate, Zone* zone, HValue* context,
- HValue* left, HValue* right, Strength strength,
- ExternalAddType external_add_type) {
- // For everything else, you should use the other factory method without
- // ExternalAddType.
- DCHECK_EQ(external_add_type, AddOfExternalAndTagged);
- return new (zone) HAdd(context, left, right, strength, external_add_type);
-}
-
-
-Representation HAdd::RepresentationFromInputs() {
- Representation left_rep = left()->representation();
- if (left_rep.IsExternal()) {
- return Representation::External();
- }
- return HArithmeticBinaryOperation::RepresentationFromInputs();
-}
-
-
-Representation HAdd::RequiredInputRepresentation(int index) {
- if (index == 2) {
- Representation left_rep = left()->representation();
- if (left_rep.IsExternal()) {
- if (external_add_type_ == AddOfExternalAndTagged) {
- return Representation::Tagged();
- } else {
- return Representation::Integer32();
- }
- }
- }
- return HArithmeticBinaryOperation::RequiredInputRepresentation(index);
-}
-
-
-static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) {
- return arg1->representation().IsSpecialization() &&
- arg2->EqualsInteger32Constant(identity);
-}
-
-
-HValue* HAdd::Canonicalize() {
- // Adding 0 is an identity operation except in case of -0: -0 + 0 = +0
- if (IsIdentityOperation(left(), right(), 0) &&
- !left()->representation().IsDouble()) { // Left could be -0.
- return left();
- }
- if (IsIdentityOperation(right(), left(), 0) &&
- !left()->representation().IsDouble()) { // Right could be -0.
- return right();
- }
- return this;
-}
-
-
-HValue* HSub::Canonicalize() {
- if (IsIdentityOperation(left(), right(), 0)) return left();
- return this;
-}
-
-
-HValue* HMul::Canonicalize() {
- if (IsIdentityOperation(left(), right(), 1)) return left();
- if (IsIdentityOperation(right(), left(), 1)) return right();
- return this;
-}
-
-
-bool HMul::MulMinusOne() {
- if (left()->EqualsInteger32Constant(-1) ||
- right()->EqualsInteger32Constant(-1)) {
- return true;
- }
-
- return false;
-}
-
-
-HValue* HMod::Canonicalize() {
- return this;
-}
-
-
-HValue* HDiv::Canonicalize() {
- if (IsIdentityOperation(left(), right(), 1)) return left();
- return this;
-}
-
-
-HValue* HChange::Canonicalize() {
- return (from().Equals(to())) ? value() : this;
-}
-
-
-HValue* HWrapReceiver::Canonicalize() {
- if (HasNoUses()) return NULL;
- if (receiver()->type().IsJSObject()) {
- return receiver();
- }
- return this;
-}
-
-
-std::ostream& HTypeof::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(value());
-}
-
-
-HInstruction* HForceRepresentation::New(Isolate* isolate, Zone* zone,
- HValue* context, HValue* value,
- Representation representation) {
- if (FLAG_fold_constants && value->IsConstant()) {
- HConstant* c = HConstant::cast(value);
- c = c->CopyToRepresentation(representation, zone);
- if (c != NULL) return c;
- }
- return new(zone) HForceRepresentation(value, representation);
-}
-
-
-std::ostream& HForceRepresentation::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << representation().Mnemonic() << " " << NameOf(value());
-}
-
-
-std::ostream& HChange::PrintDataTo(std::ostream& os) const { // NOLINT
- HUnaryOperation::PrintDataTo(os);
- os << " " << from().Mnemonic() << " to " << to().Mnemonic();
-
- if (CanTruncateToSmi()) os << " truncating-smi";
- if (CanTruncateToInt32()) os << " truncating-int32";
- if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
- if (CheckFlag(kAllowUndefinedAsNaN)) os << " allow-undefined-as-nan";
- return os;
-}
-
-
-HValue* HUnaryMathOperation::Canonicalize() {
- if (op() == kMathRound || op() == kMathFloor) {
- HValue* val = value();
- if (val->IsChange()) val = HChange::cast(val)->value();
- if (val->representation().IsSmiOrInteger32()) {
- if (val->representation().Equals(representation())) return val;
- return Prepend(new(block()->zone()) HChange(
- val, representation(), false, false));
- }
- }
- if (op() == kMathFloor && value()->IsDiv() && value()->HasOneUse()) {
- HDiv* hdiv = HDiv::cast(value());
-
- HValue* left = hdiv->left();
- if (left->representation().IsInteger32()) {
- // A value with an integer representation does not need to be transformed.
- } else if (left->IsChange() && HChange::cast(left)->from().IsInteger32()) {
- // A change from an integer32 can be replaced by the integer32 value.
- left = HChange::cast(left)->value();
- } else if (hdiv->observed_input_representation(1).IsSmiOrInteger32()) {
- left = Prepend(new(block()->zone()) HChange(
- left, Representation::Integer32(), false, false));
- } else {
- return this;
- }
-
- HValue* right = hdiv->right();
- if (right->IsInteger32Constant()) {
- right = Prepend(HConstant::cast(right)->CopyToRepresentation(
- Representation::Integer32(), right->block()->zone()));
- } else if (right->representation().IsInteger32()) {
- // A value with an integer representation does not need to be transformed.
- } else if (right->IsChange() &&
- HChange::cast(right)->from().IsInteger32()) {
- // A change from an integer32 can be replaced by the integer32 value.
- right = HChange::cast(right)->value();
- } else if (hdiv->observed_input_representation(2).IsSmiOrInteger32()) {
- right = Prepend(new(block()->zone()) HChange(
- right, Representation::Integer32(), false, false));
- } else {
- return this;
- }
-
- return Prepend(HMathFloorOfDiv::New(
- block()->graph()->isolate(), block()->zone(), context(), left, right));
- }
- return this;
-}
-
-
-HValue* HCheckInstanceType::Canonicalize() {
- if ((check_ == IS_SPEC_OBJECT && value()->type().IsJSObject()) ||
- (check_ == IS_JS_ARRAY && value()->type().IsJSArray()) ||
- (check_ == IS_STRING && value()->type().IsString())) {
- return value();
- }
-
- if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) {
- if (HConstant::cast(value())->HasInternalizedStringValue()) {
- return value();
- }
- }
- return this;
-}
-
-
-void HCheckInstanceType::GetCheckInterval(InstanceType* first,
- InstanceType* last) {
- DCHECK(is_interval_check());
- switch (check_) {
- case IS_SPEC_OBJECT:
- *first = FIRST_SPEC_OBJECT_TYPE;
- *last = LAST_SPEC_OBJECT_TYPE;
- return;
- case IS_JS_ARRAY:
- *first = *last = JS_ARRAY_TYPE;
- return;
- case IS_JS_DATE:
- *first = *last = JS_DATE_TYPE;
- return;
- default:
- UNREACHABLE();
- }
-}
-
-
-void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
- DCHECK(!is_interval_check());
- switch (check_) {
- case IS_STRING:
- *mask = kIsNotStringMask;
- *tag = kStringTag;
- return;
- case IS_INTERNALIZED_STRING:
- *mask = kIsNotStringMask | kIsNotInternalizedMask;
- *tag = kInternalizedTag;
- return;
- default:
- UNREACHABLE();
- }
-}
-
-
-std::ostream& HCheckMaps::PrintDataTo(std::ostream& os) const { // NOLINT
- os << NameOf(value()) << " [" << *maps()->at(0).handle();
- for (int i = 1; i < maps()->size(); ++i) {
- os << "," << *maps()->at(i).handle();
- }
- os << "]";
- if (IsStabilityCheck()) os << "(stability-check)";
- return os;
-}
-
-
-HValue* HCheckMaps::Canonicalize() {
- if (!IsStabilityCheck() && maps_are_stable() && value()->IsConstant()) {
- HConstant* c_value = HConstant::cast(value());
- if (c_value->HasObjectMap()) {
- for (int i = 0; i < maps()->size(); ++i) {
- if (c_value->ObjectMap() == maps()->at(i)) {
- if (maps()->size() > 1) {
- set_maps(new(block()->graph()->zone()) UniqueSet<Map>(
- maps()->at(i), block()->graph()->zone()));
- }
- MarkAsStabilityCheck();
- break;
- }
- }
- }
- }
- return this;
-}
-
-
-std::ostream& HCheckValue::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(value()) << " " << Brief(*object().handle());
-}
-
-
-HValue* HCheckValue::Canonicalize() {
- return (value()->IsConstant() &&
- HConstant::cast(value())->EqualsUnique(object_)) ? NULL : this;
-}
-
-
-const char* HCheckInstanceType::GetCheckName() const {
- switch (check_) {
- case IS_SPEC_OBJECT: return "object";
- case IS_JS_ARRAY: return "array";
- case IS_JS_DATE:
- return "date";
- case IS_STRING: return "string";
- case IS_INTERNALIZED_STRING: return "internalized_string";
- }
- UNREACHABLE();
- return "";
-}
-
-
-std::ostream& HCheckInstanceType::PrintDataTo(
- std::ostream& os) const { // NOLINT
- os << GetCheckName() << " ";
- return HUnaryOperation::PrintDataTo(os);
-}
-
-
-std::ostream& HCallStub::PrintDataTo(std::ostream& os) const { // NOLINT
- os << CodeStub::MajorName(major_key_) << " ";
- return HUnaryCall::PrintDataTo(os);
-}
-
-
-std::ostream& HUnknownOSRValue::PrintDataTo(std::ostream& os) const { // NOLINT
- const char* type = "expression";
- if (environment_->is_local_index(index_)) type = "local";
- if (environment_->is_special_index(index_)) type = "special";
- if (environment_->is_parameter_index(index_)) type = "parameter";
- return os << type << " @ " << index_;
-}
-
-
-std::ostream& HInstanceOf::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(left()) << " " << NameOf(right()) << " "
- << NameOf(context());
-}
-
-
-Range* HValue::InferRange(Zone* zone) {
- Range* result;
- if (representation().IsSmi() || type().IsSmi()) {
- result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue);
- result->set_can_be_minus_zero(false);
- } else {
- result = new(zone) Range();
- result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32));
- // TODO(jkummerow): The range cannot be minus zero when the upper type
- // bound is Integer32.
- }
- return result;
-}
-
-
-Range* HChange::InferRange(Zone* zone) {
- Range* input_range = value()->range();
- if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) &&
- (to().IsSmi() ||
- (to().IsTagged() &&
- input_range != NULL &&
- input_range->IsInSmiRange()))) {
- set_type(HType::Smi());
- ClearChangesFlag(kNewSpacePromotion);
- }
- if (to().IsSmiOrTagged() &&
- input_range != NULL &&
- input_range->IsInSmiRange() &&
- (!SmiValuesAre32Bits() ||
- !value()->CheckFlag(HValue::kUint32) ||
- input_range->upper() != kMaxInt)) {
- // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
- // interval, so we treat kMaxInt as a sentinel for this entire interval.
- ClearFlag(kCanOverflow);
- }
- Range* result = (input_range != NULL)
- ? input_range->Copy(zone)
- : HValue::InferRange(zone);
- result->set_can_be_minus_zero(!to().IsSmiOrInteger32() ||
- !(CheckFlag(kAllUsesTruncatingToInt32) ||
- CheckFlag(kAllUsesTruncatingToSmi)));
- if (to().IsSmi()) result->ClampToSmi();
- return result;
-}
-
-
-Range* HConstant::InferRange(Zone* zone) {
- if (HasInteger32Value()) {
- Range* result = new(zone) Range(int32_value_, int32_value_);
- result->set_can_be_minus_zero(false);
- return result;
- }
- return HValue::InferRange(zone);
-}
-
-
-SourcePosition HPhi::position() const { return block()->first()->position(); }
-
-
-Range* HPhi::InferRange(Zone* zone) {
- Representation r = representation();
- if (r.IsSmiOrInteger32()) {
- if (block()->IsLoopHeader()) {
- Range* range = r.IsSmi()
- ? new(zone) Range(Smi::kMinValue, Smi::kMaxValue)
- : new(zone) Range(kMinInt, kMaxInt);
- return range;
- } else {
- Range* range = OperandAt(0)->range()->Copy(zone);
- for (int i = 1; i < OperandCount(); ++i) {
- range->Union(OperandAt(i)->range());
- }
- return range;
- }
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-Range* HAdd::InferRange(Zone* zone) {
- Representation r = representation();
- if (r.IsSmiOrInteger32()) {
- Range* a = left()->range();
- Range* b = right()->range();
- Range* res = a->Copy(zone);
- if (!res->AddAndCheckOverflow(r, b) ||
- (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
- (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
- ClearFlag(kCanOverflow);
- }
- res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
- !CheckFlag(kAllUsesTruncatingToInt32) &&
- a->CanBeMinusZero() && b->CanBeMinusZero());
- return res;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-Range* HSub::InferRange(Zone* zone) {
- Representation r = representation();
- if (r.IsSmiOrInteger32()) {
- Range* a = left()->range();
- Range* b = right()->range();
- Range* res = a->Copy(zone);
- if (!res->SubAndCheckOverflow(r, b) ||
- (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
- (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
- ClearFlag(kCanOverflow);
- }
- res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
- !CheckFlag(kAllUsesTruncatingToInt32) &&
- a->CanBeMinusZero() && b->CanBeZero());
- return res;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-Range* HMul::InferRange(Zone* zone) {
- Representation r = representation();
- if (r.IsSmiOrInteger32()) {
- Range* a = left()->range();
- Range* b = right()->range();
- Range* res = a->Copy(zone);
- if (!res->MulAndCheckOverflow(r, b) ||
- (((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
- (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) &&
- MulMinusOne())) {
- // Truncated int multiplication is too precise and therefore not the
- // same as converting to Double and back.
- // Handle truncated integer multiplication by -1 special.
- ClearFlag(kCanOverflow);
- }
- res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
- !CheckFlag(kAllUsesTruncatingToInt32) &&
- ((a->CanBeZero() && b->CanBeNegative()) ||
- (a->CanBeNegative() && b->CanBeZero())));
- return res;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-Range* HDiv::InferRange(Zone* zone) {
- if (representation().IsInteger32()) {
- Range* a = left()->range();
- Range* b = right()->range();
- Range* result = new(zone) Range();
- result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
- (a->CanBeMinusZero() ||
- (a->CanBeZero() && b->CanBeNegative())));
- if (!a->Includes(kMinInt) || !b->Includes(-1)) {
- ClearFlag(kCanOverflow);
- }
-
- if (!b->CanBeZero()) {
- ClearFlag(kCanBeDivByZero);
- }
- return result;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-Range* HMathFloorOfDiv::InferRange(Zone* zone) {
- if (representation().IsInteger32()) {
- Range* a = left()->range();
- Range* b = right()->range();
- Range* result = new(zone) Range();
- result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
- (a->CanBeMinusZero() ||
- (a->CanBeZero() && b->CanBeNegative())));
- if (!a->Includes(kMinInt)) {
- ClearFlag(kLeftCanBeMinInt);
- }
-
- if (!a->CanBeNegative()) {
- ClearFlag(HValue::kLeftCanBeNegative);
- }
-
- if (!a->CanBePositive()) {
- ClearFlag(HValue::kLeftCanBePositive);
- }
-
- if (!a->Includes(kMinInt) || !b->Includes(-1)) {
- ClearFlag(kCanOverflow);
- }
-
- if (!b->CanBeZero()) {
- ClearFlag(kCanBeDivByZero);
- }
- return result;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-// Returns the absolute value of its argument minus one, avoiding undefined
-// behavior at kMinInt.
-static int32_t AbsMinus1(int32_t a) { return a < 0 ? -(a + 1) : (a - 1); }
-
-
-Range* HMod::InferRange(Zone* zone) {
- if (representation().IsInteger32()) {
- Range* a = left()->range();
- Range* b = right()->range();
-
- // The magnitude of the modulus is bounded by the right operand.
- int32_t positive_bound = Max(AbsMinus1(b->lower()), AbsMinus1(b->upper()));
-
- // The result of the modulo operation has the sign of its left operand.
- bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative();
- Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0,
- a->CanBePositive() ? positive_bound : 0);
-
- result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
- left_can_be_negative);
-
- if (!a->CanBeNegative()) {
- ClearFlag(HValue::kLeftCanBeNegative);
- }
-
- if (!a->Includes(kMinInt) || !b->Includes(-1)) {
- ClearFlag(HValue::kCanOverflow);
- }
-
- if (!b->CanBeZero()) {
- ClearFlag(HValue::kCanBeDivByZero);
- }
- return result;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-InductionVariableData* InductionVariableData::ExaminePhi(HPhi* phi) {
- if (phi->block()->loop_information() == NULL) return NULL;
- if (phi->OperandCount() != 2) return NULL;
- int32_t candidate_increment;
-
- candidate_increment = ComputeIncrement(phi, phi->OperandAt(0));
- if (candidate_increment != 0) {
- return new(phi->block()->graph()->zone())
- InductionVariableData(phi, phi->OperandAt(1), candidate_increment);
- }
-
- candidate_increment = ComputeIncrement(phi, phi->OperandAt(1));
- if (candidate_increment != 0) {
- return new(phi->block()->graph()->zone())
- InductionVariableData(phi, phi->OperandAt(0), candidate_increment);
- }
-
- return NULL;
-}
-
-
-/*
- * This function tries to match the following patterns (and all the relevant
- * variants related to |, & and + being commutative):
- * base | constant_or_mask
- * base & constant_and_mask
- * (base + constant_offset) & constant_and_mask
- * (base - constant_offset) & constant_and_mask
- */
-void InductionVariableData::DecomposeBitwise(
- HValue* value,
- BitwiseDecompositionResult* result) {
- HValue* base = IgnoreOsrValue(value);
- result->base = value;
-
- if (!base->representation().IsInteger32()) return;
-
- if (base->IsBitwise()) {
- bool allow_offset = false;
- int32_t mask = 0;
-
- HBitwise* bitwise = HBitwise::cast(base);
- if (bitwise->right()->IsInteger32Constant()) {
- mask = bitwise->right()->GetInteger32Constant();
- base = bitwise->left();
- } else if (bitwise->left()->IsInteger32Constant()) {
- mask = bitwise->left()->GetInteger32Constant();
- base = bitwise->right();
- } else {
- return;
- }
- if (bitwise->op() == Token::BIT_AND) {
- result->and_mask = mask;
- allow_offset = true;
- } else if (bitwise->op() == Token::BIT_OR) {
- result->or_mask = mask;
- } else {
- return;
- }
-
- result->context = bitwise->context();
-
- if (allow_offset) {
- if (base->IsAdd()) {
- HAdd* add = HAdd::cast(base);
- if (add->right()->IsInteger32Constant()) {
- base = add->left();
- } else if (add->left()->IsInteger32Constant()) {
- base = add->right();
- }
- } else if (base->IsSub()) {
- HSub* sub = HSub::cast(base);
- if (sub->right()->IsInteger32Constant()) {
- base = sub->left();
- }
- }
- }
-
- result->base = base;
- }
-}
-
-
-void InductionVariableData::AddCheck(HBoundsCheck* check,
- int32_t upper_limit) {
- DCHECK(limit_validity() != NULL);
- if (limit_validity() != check->block() &&
- !limit_validity()->Dominates(check->block())) return;
- if (!phi()->block()->current_loop()->IsNestedInThisLoop(
- check->block()->current_loop())) return;
-
- ChecksRelatedToLength* length_checks = checks();
- while (length_checks != NULL) {
- if (length_checks->length() == check->length()) break;
- length_checks = length_checks->next();
- }
- if (length_checks == NULL) {
- length_checks = new(check->block()->zone())
- ChecksRelatedToLength(check->length(), checks());
- checks_ = length_checks;
- }
-
- length_checks->AddCheck(check, upper_limit);
-}
-
-
-void InductionVariableData::ChecksRelatedToLength::CloseCurrentBlock() {
- if (checks() != NULL) {
- InductionVariableCheck* c = checks();
- HBasicBlock* current_block = c->check()->block();
- while (c != NULL && c->check()->block() == current_block) {
- c->set_upper_limit(current_upper_limit_);
- c = c->next();
- }
- }
-}
-
-
-void InductionVariableData::ChecksRelatedToLength::UseNewIndexInCurrentBlock(
- Token::Value token,
- int32_t mask,
- HValue* index_base,
- HValue* context) {
- DCHECK(first_check_in_block() != NULL);
- HValue* previous_index = first_check_in_block()->index();
- DCHECK(context != NULL);
-
- Zone* zone = index_base->block()->graph()->zone();
- Isolate* isolate = index_base->block()->graph()->isolate();
- set_added_constant(HConstant::New(isolate, zone, context, mask));
- if (added_index() != NULL) {
- added_constant()->InsertBefore(added_index());
- } else {
- added_constant()->InsertBefore(first_check_in_block());
- }
-
- if (added_index() == NULL) {
- first_check_in_block()->ReplaceAllUsesWith(first_check_in_block()->index());
- HInstruction* new_index = HBitwise::New(isolate, zone, context, token,
- index_base, added_constant());
- DCHECK(new_index->IsBitwise());
- new_index->ClearAllSideEffects();
- new_index->AssumeRepresentation(Representation::Integer32());
- set_added_index(HBitwise::cast(new_index));
- added_index()->InsertBefore(first_check_in_block());
- }
- DCHECK(added_index()->op() == token);
-
- added_index()->SetOperandAt(1, index_base);
- added_index()->SetOperandAt(2, added_constant());
- first_check_in_block()->SetOperandAt(0, added_index());
- if (previous_index->HasNoUses()) {
- previous_index->DeleteAndReplaceWith(NULL);
- }
-}
-
-void InductionVariableData::ChecksRelatedToLength::AddCheck(
- HBoundsCheck* check,
- int32_t upper_limit) {
- BitwiseDecompositionResult decomposition;
- InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
-
- if (first_check_in_block() == NULL ||
- first_check_in_block()->block() != check->block()) {
- CloseCurrentBlock();
-
- first_check_in_block_ = check;
- set_added_index(NULL);
- set_added_constant(NULL);
- current_and_mask_in_block_ = decomposition.and_mask;
- current_or_mask_in_block_ = decomposition.or_mask;
- current_upper_limit_ = upper_limit;
-
- InductionVariableCheck* new_check = new(check->block()->graph()->zone())
- InductionVariableCheck(check, checks_, upper_limit);
- checks_ = new_check;
- return;
- }
-
- if (upper_limit > current_upper_limit()) {
- current_upper_limit_ = upper_limit;
- }
-
- if (decomposition.and_mask != 0 &&
- current_or_mask_in_block() == 0) {
- if (current_and_mask_in_block() == 0 ||
- decomposition.and_mask > current_and_mask_in_block()) {
- UseNewIndexInCurrentBlock(Token::BIT_AND,
- decomposition.and_mask,
- decomposition.base,
- decomposition.context);
- current_and_mask_in_block_ = decomposition.and_mask;
- }
- check->set_skip_check();
- }
- if (current_and_mask_in_block() == 0) {
- if (decomposition.or_mask > current_or_mask_in_block()) {
- UseNewIndexInCurrentBlock(Token::BIT_OR,
- decomposition.or_mask,
- decomposition.base,
- decomposition.context);
- current_or_mask_in_block_ = decomposition.or_mask;
- }
- check->set_skip_check();
- }
-
- if (!check->skip_check()) {
- InductionVariableCheck* new_check = new(check->block()->graph()->zone())
- InductionVariableCheck(check, checks_, upper_limit);
- checks_ = new_check;
- }
-}
-
-
-/*
- * This method detects if phi is an induction variable, with phi_operand as
- * its "incremented" value (the other operand would be the "base" value).
- *
- * It cheks is phi_operand has the form "phi + constant".
- * If yes, the constant is the increment that the induction variable gets at
- * every loop iteration.
- * Otherwise it returns 0.
- */
-int32_t InductionVariableData::ComputeIncrement(HPhi* phi,
- HValue* phi_operand) {
- if (!phi_operand->representation().IsSmiOrInteger32()) return 0;
-
- if (phi_operand->IsAdd()) {
- HAdd* operation = HAdd::cast(phi_operand);
- if (operation->left() == phi &&
- operation->right()->IsInteger32Constant()) {
- return operation->right()->GetInteger32Constant();
- } else if (operation->right() == phi &&
- operation->left()->IsInteger32Constant()) {
- return operation->left()->GetInteger32Constant();
- }
- } else if (phi_operand->IsSub()) {
- HSub* operation = HSub::cast(phi_operand);
- if (operation->left() == phi &&
- operation->right()->IsInteger32Constant()) {
- int constant = operation->right()->GetInteger32Constant();
- if (constant == kMinInt) return 0;
- return -constant;
- }
- }
-
- return 0;
-}
-
-
-/*
- * Swaps the information in "update" with the one contained in "this".
- * The swapping is important because this method is used while doing a
- * dominator tree traversal, and "update" will retain the old data that
- * will be restored while backtracking.
- */
-void InductionVariableData::UpdateAdditionalLimit(
- InductionVariableLimitUpdate* update) {
- DCHECK(update->updated_variable == this);
- if (update->limit_is_upper) {
- swap(&additional_upper_limit_, &update->limit);
- swap(&additional_upper_limit_is_included_, &update->limit_is_included);
- } else {
- swap(&additional_lower_limit_, &update->limit);
- swap(&additional_lower_limit_is_included_, &update->limit_is_included);
- }
-}
-
-
-int32_t InductionVariableData::ComputeUpperLimit(int32_t and_mask,
- int32_t or_mask) {
- // Should be Smi::kMaxValue but it must fit 32 bits; lower is safe anyway.
- const int32_t MAX_LIMIT = 1 << 30;
-
- int32_t result = MAX_LIMIT;
-
- if (limit() != NULL &&
- limit()->IsInteger32Constant()) {
- int32_t limit_value = limit()->GetInteger32Constant();
- if (!limit_included()) {
- limit_value--;
- }
- if (limit_value < result) result = limit_value;
- }
-
- if (additional_upper_limit() != NULL &&
- additional_upper_limit()->IsInteger32Constant()) {
- int32_t limit_value = additional_upper_limit()->GetInteger32Constant();
- if (!additional_upper_limit_is_included()) {
- limit_value--;
- }
- if (limit_value < result) result = limit_value;
- }
-
- if (and_mask > 0 && and_mask < MAX_LIMIT) {
- if (and_mask < result) result = and_mask;
- return result;
- }
-
- // Add the effect of the or_mask.
- result |= or_mask;
-
- return result >= MAX_LIMIT ? kNoLimit : result;
-}
-
-
-HValue* InductionVariableData::IgnoreOsrValue(HValue* v) {
- if (!v->IsPhi()) return v;
- HPhi* phi = HPhi::cast(v);
- if (phi->OperandCount() != 2) return v;
- if (phi->OperandAt(0)->block()->is_osr_entry()) {
- return phi->OperandAt(1);
- } else if (phi->OperandAt(1)->block()->is_osr_entry()) {
- return phi->OperandAt(0);
- } else {
- return v;
- }
-}
-
-
-InductionVariableData* InductionVariableData::GetInductionVariableData(
- HValue* v) {
- v = IgnoreOsrValue(v);
- if (v->IsPhi()) {
- return HPhi::cast(v)->induction_variable_data();
- }
- return NULL;
-}
-
-
-/*
- * Check if a conditional branch to "current_branch" with token "token" is
- * the branch that keeps the induction loop running (and, conversely, will
- * terminate it if the "other_branch" is taken).
- *
- * Three conditions must be met:
- * - "current_branch" must be in the induction loop.
- * - "other_branch" must be out of the induction loop.
- * - "token" and the induction increment must be "compatible": the token should
- * be a condition that keeps the execution inside the loop until the limit is
- * reached.
- */
-bool InductionVariableData::CheckIfBranchIsLoopGuard(
- Token::Value token,
- HBasicBlock* current_branch,
- HBasicBlock* other_branch) {
- if (!phi()->block()->current_loop()->IsNestedInThisLoop(
- current_branch->current_loop())) {
- return false;
- }
-
- if (phi()->block()->current_loop()->IsNestedInThisLoop(
- other_branch->current_loop())) {
- return false;
- }
-
- if (increment() > 0 && (token == Token::LT || token == Token::LTE)) {
- return true;
- }
- if (increment() < 0 && (token == Token::GT || token == Token::GTE)) {
- return true;
- }
- if (Token::IsInequalityOp(token) && (increment() == 1 || increment() == -1)) {
- return true;
- }
-
- return false;
-}
-
-
-void InductionVariableData::ComputeLimitFromPredecessorBlock(
- HBasicBlock* block,
- LimitFromPredecessorBlock* result) {
- if (block->predecessors()->length() != 1) return;
- HBasicBlock* predecessor = block->predecessors()->at(0);
- HInstruction* end = predecessor->last();
-
- if (!end->IsCompareNumericAndBranch()) return;
- HCompareNumericAndBranch* branch = HCompareNumericAndBranch::cast(end);
-
- Token::Value token = branch->token();
- if (!Token::IsArithmeticCompareOp(token)) return;
-
- HBasicBlock* other_target;
- if (block == branch->SuccessorAt(0)) {
- other_target = branch->SuccessorAt(1);
- } else {
- other_target = branch->SuccessorAt(0);
- token = Token::NegateCompareOp(token);
- DCHECK(block == branch->SuccessorAt(1));
- }
-
- InductionVariableData* data;
-
- data = GetInductionVariableData(branch->left());
- HValue* limit = branch->right();
- if (data == NULL) {
- data = GetInductionVariableData(branch->right());
- token = Token::ReverseCompareOp(token);
- limit = branch->left();
- }
-
- if (data != NULL) {
- result->variable = data;
- result->token = token;
- result->limit = limit;
- result->other_target = other_target;
- }
-}
-
-
-/*
- * Compute the limit that is imposed on an induction variable when entering
- * "block" (if any).
- * If the limit is the "proper" induction limit (the one that makes the loop
- * terminate when the induction variable reaches it) it is stored directly in
- * the induction variable data.
- * Otherwise the limit is written in "additional_limit" and the method
- * returns true.
- */
-bool InductionVariableData::ComputeInductionVariableLimit(
- HBasicBlock* block,
- InductionVariableLimitUpdate* additional_limit) {
- LimitFromPredecessorBlock limit;
- ComputeLimitFromPredecessorBlock(block, &limit);
- if (!limit.LimitIsValid()) return false;
-
- if (limit.variable->CheckIfBranchIsLoopGuard(limit.token,
- block,
- limit.other_target)) {
- limit.variable->limit_ = limit.limit;
- limit.variable->limit_included_ = limit.LimitIsIncluded();
- limit.variable->limit_validity_ = block;
- limit.variable->induction_exit_block_ = block->predecessors()->at(0);
- limit.variable->induction_exit_target_ = limit.other_target;
- return false;
- } else {
- additional_limit->updated_variable = limit.variable;
- additional_limit->limit = limit.limit;
- additional_limit->limit_is_upper = limit.LimitIsUpper();
- additional_limit->limit_is_included = limit.LimitIsIncluded();
- return true;
- }
-}
-
-
-Range* HMathMinMax::InferRange(Zone* zone) {
- if (representation().IsSmiOrInteger32()) {
- Range* a = left()->range();
- Range* b = right()->range();
- Range* res = a->Copy(zone);
- if (operation_ == kMathMax) {
- res->CombinedMax(b);
- } else {
- DCHECK(operation_ == kMathMin);
- res->CombinedMin(b);
- }
- return res;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-void HPushArguments::AddInput(HValue* value) {
- inputs_.Add(NULL, value->block()->zone());
- SetOperandAt(OperandCount() - 1, value);
-}
-
-
-std::ostream& HPhi::PrintTo(std::ostream& os) const { // NOLINT
- os << "[";
- for (int i = 0; i < OperandCount(); ++i) {
- os << " " << NameOf(OperandAt(i)) << " ";
- }
- return os << " uses" << UseCount()
- << representation_from_indirect_uses().Mnemonic() << " "
- << TypeOf(this) << "]";
-}
-
-
-void HPhi::AddInput(HValue* value) {
- inputs_.Add(NULL, value->block()->zone());
- SetOperandAt(OperandCount() - 1, value);
- // Mark phis that may have 'arguments' directly or indirectly as an operand.
- if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
- SetFlag(kIsArguments);
- }
-}
-
-
-bool HPhi::HasRealUses() {
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- if (!it.value()->IsPhi()) return true;
- }
- return false;
-}
-
-
-HValue* HPhi::GetRedundantReplacement() {
- HValue* candidate = NULL;
- int count = OperandCount();
- int position = 0;
- while (position < count && candidate == NULL) {
- HValue* current = OperandAt(position++);
- if (current != this) candidate = current;
- }
- while (position < count) {
- HValue* current = OperandAt(position++);
- if (current != this && current != candidate) return NULL;
- }
- DCHECK(candidate != this);
- return candidate;
-}
-
-
-void HPhi::DeleteFromGraph() {
- DCHECK(block() != NULL);
- block()->RemovePhi(this);
- DCHECK(block() == NULL);
-}
-
-
-void HPhi::InitRealUses(int phi_id) {
- // Initialize real uses.
- phi_id_ = phi_id;
- // Compute a conservative approximation of truncating uses before inferring
- // representations. The proper, exact computation will be done later, when
- // inserting representation changes.
- SetFlag(kTruncatingToSmi);
- SetFlag(kTruncatingToInt32);
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- HValue* value = it.value();
- if (!value->IsPhi()) {
- Representation rep = value->observed_input_representation(it.index());
- representation_from_non_phi_uses_ =
- representation_from_non_phi_uses().generalize(rep);
- if (rep.IsSmi() || rep.IsInteger32() || rep.IsDouble()) {
- has_type_feedback_from_uses_ = true;
- }
-
- if (FLAG_trace_representation) {
- PrintF("#%d Phi is used by real #%d %s as %s\n",
- id(), value->id(), value->Mnemonic(), rep.Mnemonic());
- }
- if (!value->IsSimulate()) {
- if (!value->CheckFlag(kTruncatingToSmi)) {
- ClearFlag(kTruncatingToSmi);
- }
- if (!value->CheckFlag(kTruncatingToInt32)) {
- ClearFlag(kTruncatingToInt32);
- }
- }
- }
- }
-}
-
-
-void HPhi::AddNonPhiUsesFrom(HPhi* other) {
- if (FLAG_trace_representation) {
- PrintF(
- "generalizing use representation '%s' of #%d Phi "
- "with uses of #%d Phi '%s'\n",
- representation_from_indirect_uses().Mnemonic(), id(), other->id(),
- other->representation_from_non_phi_uses().Mnemonic());
- }
-
- representation_from_indirect_uses_ =
- representation_from_indirect_uses().generalize(
- other->representation_from_non_phi_uses());
-}
-
-
-void HSimulate::MergeWith(ZoneList<HSimulate*>* list) {
- while (!list->is_empty()) {
- HSimulate* from = list->RemoveLast();
- ZoneList<HValue*>* from_values = &from->values_;
- for (int i = 0; i < from_values->length(); ++i) {
- if (from->HasAssignedIndexAt(i)) {
- int index = from->GetAssignedIndexAt(i);
- if (HasValueForIndex(index)) continue;
- AddAssignedValue(index, from_values->at(i));
- } else {
- if (pop_count_ > 0) {
- pop_count_--;
- } else {
- AddPushedValue(from_values->at(i));
- }
- }
- }
- pop_count_ += from->pop_count_;
- from->DeleteAndReplaceWith(NULL);
- }
-}
-
-
-std::ostream& HSimulate::PrintDataTo(std::ostream& os) const { // NOLINT
- os << "id=" << ast_id().ToInt();
- if (pop_count_ > 0) os << " pop " << pop_count_;
- if (values_.length() > 0) {
- if (pop_count_ > 0) os << " /";
- for (int i = values_.length() - 1; i >= 0; --i) {
- if (HasAssignedIndexAt(i)) {
- os << " var[" << GetAssignedIndexAt(i) << "] = ";
- } else {
- os << " push ";
- }
- os << NameOf(values_[i]);
- if (i > 0) os << ",";
- }
- }
- return os;
-}
-
-
-void HSimulate::ReplayEnvironment(HEnvironment* env) {
- if (is_done_with_replay()) return;
- DCHECK(env != NULL);
- env->set_ast_id(ast_id());
- env->Drop(pop_count());
- for (int i = values()->length() - 1; i >= 0; --i) {
- HValue* value = values()->at(i);
- if (HasAssignedIndexAt(i)) {
- env->Bind(GetAssignedIndexAt(i), value);
- } else {
- env->Push(value);
- }
- }
- set_done_with_replay();
-}
-
-
-static void ReplayEnvironmentNested(const ZoneList<HValue*>* values,
- HCapturedObject* other) {
- for (int i = 0; i < values->length(); ++i) {
- HValue* value = values->at(i);
- if (value->IsCapturedObject()) {
- if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) {
- values->at(i) = other;
- } else {
- ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other);
- }
- }
- }
-}
-
-
-// Replay captured objects by replacing all captured objects with the
-// same capture id in the current and all outer environments.
-void HCapturedObject::ReplayEnvironment(HEnvironment* env) {
- DCHECK(env != NULL);
- while (env != NULL) {
- ReplayEnvironmentNested(env->values(), this);
- env = env->outer();
- }
-}
-
-
-std::ostream& HCapturedObject::PrintDataTo(std::ostream& os) const { // NOLINT
- os << "#" << capture_id() << " ";
- return HDematerializedObject::PrintDataTo(os);
-}
-
-
-void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target,
- Zone* zone) {
- DCHECK(return_target->IsInlineReturnTarget());
- return_targets_.Add(return_target, zone);
-}
-
-
-std::ostream& HEnterInlined::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << function()->debug_name()->ToCString().get();
-}
-
-
-static bool IsInteger32(double value) {
- if (value >= std::numeric_limits<int32_t>::min() &&
- value <= std::numeric_limits<int32_t>::max()) {
- double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
- return bit_cast<int64_t>(roundtrip_value) == bit_cast<int64_t>(value);
- }
- return false;
-}
-
-
-HConstant::HConstant(Special special)
- : HTemplateInstruction<0>(HType::TaggedNumber()),
- object_(Handle<Object>::null()),
- object_map_(Handle<Map>::null()),
- bit_field_(HasDoubleValueField::encode(true) |
- InstanceTypeField::encode(kUnknownInstanceType)),
- int32_value_(0) {
- DCHECK_EQ(kHoleNaN, special);
- std::memcpy(&double_value_, &kHoleNanInt64, sizeof(double_value_));
- Initialize(Representation::Double());
-}
-
-
-HConstant::HConstant(Handle<Object> object, Representation r)
- : HTemplateInstruction<0>(HType::FromValue(object)),
- object_(Unique<Object>::CreateUninitialized(object)),
- object_map_(Handle<Map>::null()),
- bit_field_(
- HasStableMapValueField::encode(false) |
- HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) |
- HasDoubleValueField::encode(false) |
- HasExternalReferenceValueField::encode(false) |
- IsNotInNewSpaceField::encode(true) |
- BooleanValueField::encode(object->BooleanValue()) |
- IsUndetectableField::encode(false) | IsCallableField::encode(false) |
- InstanceTypeField::encode(kUnknownInstanceType)) {
- if (object->IsHeapObject()) {
- Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
- Isolate* isolate = heap_object->GetIsolate();
- Handle<Map> map(heap_object->map(), isolate);
- bit_field_ = IsNotInNewSpaceField::update(
- bit_field_, !isolate->heap()->InNewSpace(*object));
- bit_field_ = InstanceTypeField::update(bit_field_, map->instance_type());
- bit_field_ =
- IsUndetectableField::update(bit_field_, map->is_undetectable());
- bit_field_ = IsCallableField::update(bit_field_, map->is_callable());
- if (map->is_stable()) object_map_ = Unique<Map>::CreateImmovable(map);
- bit_field_ = HasStableMapValueField::update(
- bit_field_,
- HasMapValue() && Handle<Map>::cast(heap_object)->is_stable());
- }
- if (object->IsNumber()) {
- double n = object->Number();
- bool has_int32_value = IsInteger32(n);
- bit_field_ = HasInt32ValueField::update(bit_field_, has_int32_value);
- int32_value_ = DoubleToInt32(n);
- bit_field_ = HasSmiValueField::update(
- bit_field_, has_int32_value && Smi::IsValid(int32_value_));
- double_value_ = n;
- bit_field_ = HasDoubleValueField::update(bit_field_, true);
- // TODO(titzer): if this heap number is new space, tenure a new one.
- }
-
- Initialize(r);
-}
-
-
-HConstant::HConstant(Unique<Object> object, Unique<Map> object_map,
- bool has_stable_map_value, Representation r, HType type,
- bool is_not_in_new_space, bool boolean_value,
- bool is_undetectable, InstanceType instance_type)
- : HTemplateInstruction<0>(type),
- object_(object),
- object_map_(object_map),
- bit_field_(HasStableMapValueField::encode(has_stable_map_value) |
- HasSmiValueField::encode(false) |
- HasInt32ValueField::encode(false) |
- HasDoubleValueField::encode(false) |
- HasExternalReferenceValueField::encode(false) |
- IsNotInNewSpaceField::encode(is_not_in_new_space) |
- BooleanValueField::encode(boolean_value) |
- IsUndetectableField::encode(is_undetectable) |
- InstanceTypeField::encode(instance_type)) {
- DCHECK(!object.handle().is_null());
- DCHECK(!type.IsTaggedNumber() || type.IsNone());
- Initialize(r);
-}
-
-
-HConstant::HConstant(int32_t integer_value, Representation r,
- bool is_not_in_new_space, Unique<Object> object)
- : object_(object),
- object_map_(Handle<Map>::null()),
- bit_field_(HasStableMapValueField::encode(false) |
- HasSmiValueField::encode(Smi::IsValid(integer_value)) |
- HasInt32ValueField::encode(true) |
- HasDoubleValueField::encode(true) |
- HasExternalReferenceValueField::encode(false) |
- IsNotInNewSpaceField::encode(is_not_in_new_space) |
- BooleanValueField::encode(integer_value != 0) |
- IsUndetectableField::encode(false) |
- InstanceTypeField::encode(kUnknownInstanceType)),
- int32_value_(integer_value),
- double_value_(FastI2D(integer_value)) {
- // It's possible to create a constant with a value in Smi-range but stored
- // in a (pre-existing) HeapNumber. See crbug.com/349878.
- bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
- bool is_smi = HasSmiValue() && !could_be_heapobject;
- set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
- Initialize(r);
-}
-
-
-HConstant::HConstant(double double_value, Representation r,
- bool is_not_in_new_space, Unique<Object> object)
- : object_(object),
- object_map_(Handle<Map>::null()),
- bit_field_(HasStableMapValueField::encode(false) |
- HasInt32ValueField::encode(IsInteger32(double_value)) |
- HasDoubleValueField::encode(true) |
- HasExternalReferenceValueField::encode(false) |
- IsNotInNewSpaceField::encode(is_not_in_new_space) |
- BooleanValueField::encode(double_value != 0 &&
- !std::isnan(double_value)) |
- IsUndetectableField::encode(false) |
- InstanceTypeField::encode(kUnknownInstanceType)),
- int32_value_(DoubleToInt32(double_value)),
- double_value_(double_value) {
- bit_field_ = HasSmiValueField::update(
- bit_field_, HasInteger32Value() && Smi::IsValid(int32_value_));
- // It's possible to create a constant with a value in Smi-range but stored
- // in a (pre-existing) HeapNumber. See crbug.com/349878.
- bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
- bool is_smi = HasSmiValue() && !could_be_heapobject;
- set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
- Initialize(r);
-}
-
-
-HConstant::HConstant(ExternalReference reference)
- : HTemplateInstruction<0>(HType::Any()),
- object_(Unique<Object>(Handle<Object>::null())),
- object_map_(Handle<Map>::null()),
- bit_field_(
- HasStableMapValueField::encode(false) |
- HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) |
- HasDoubleValueField::encode(false) |
- HasExternalReferenceValueField::encode(true) |
- IsNotInNewSpaceField::encode(true) | BooleanValueField::encode(true) |
- IsUndetectableField::encode(false) |
- InstanceTypeField::encode(kUnknownInstanceType)),
- external_reference_value_(reference) {
- Initialize(Representation::External());
-}
-
-
-void HConstant::Initialize(Representation r) {
- if (r.IsNone()) {
- if (HasSmiValue() && SmiValuesAre31Bits()) {
- r = Representation::Smi();
- } else if (HasInteger32Value()) {
- r = Representation::Integer32();
- } else if (HasDoubleValue()) {
- r = Representation::Double();
- } else if (HasExternalReferenceValue()) {
- r = Representation::External();
- } else {
- Handle<Object> object = object_.handle();
- if (object->IsJSObject()) {
- // Try to eagerly migrate JSObjects that have deprecated maps.
- Handle<JSObject> js_object = Handle<JSObject>::cast(object);
- if (js_object->map()->is_deprecated()) {
- JSObject::TryMigrateInstance(js_object);
- }
- }
- r = Representation::Tagged();
- }
- }
- if (r.IsSmi()) {
- // If we have an existing handle, zap it, because it might be a heap
- // number which we must not re-use when copying this HConstant to
- // Tagged representation later, because having Smi representation now
- // could cause heap object checks not to get emitted.
- object_ = Unique<Object>(Handle<Object>::null());
- }
- if (r.IsSmiOrInteger32() && object_.handle().is_null()) {
- // If it's not a heap object, it can't be in new space.
- bit_field_ = IsNotInNewSpaceField::update(bit_field_, true);
- }
- set_representation(r);
- SetFlag(kUseGVN);
-}
-
-
-bool HConstant::ImmortalImmovable() const {
- if (HasInteger32Value()) {
- return false;
- }
- if (HasDoubleValue()) {
- if (IsSpecialDouble()) {
- return true;
- }
- return false;
- }
- if (HasExternalReferenceValue()) {
- return false;
- }
-
- DCHECK(!object_.handle().is_null());
- Heap* heap = isolate()->heap();
- DCHECK(!object_.IsKnownGlobal(heap->minus_zero_value()));
- DCHECK(!object_.IsKnownGlobal(heap->nan_value()));
- return
-#define IMMORTAL_IMMOVABLE_ROOT(name) \
- object_.IsKnownGlobal(heap->root(Heap::k##name##RootIndex)) ||
- IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT)
-#undef IMMORTAL_IMMOVABLE_ROOT
-#define INTERNALIZED_STRING(name, value) \
- object_.IsKnownGlobal(heap->name()) ||
- INTERNALIZED_STRING_LIST(INTERNALIZED_STRING)
-#undef INTERNALIZED_STRING
-#define STRING_TYPE(NAME, size, name, Name) \
- object_.IsKnownGlobal(heap->name##_map()) ||
- STRING_TYPE_LIST(STRING_TYPE)
-#undef STRING_TYPE
- false;
-}
-
-
-bool HConstant::EmitAtUses() {
- DCHECK(IsLinked());
- if (block()->graph()->has_osr() &&
- block()->graph()->IsStandardConstant(this)) {
- // TODO(titzer): this seems like a hack that should be fixed by custom OSR.
- return true;
- }
- if (HasNoUses()) return true;
- if (IsCell()) return false;
- if (representation().IsDouble()) return false;
- if (representation().IsExternal()) return false;
- return true;
-}
-
-
-HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
- if (r.IsSmi() && !HasSmiValue()) return NULL;
- if (r.IsInteger32() && !HasInteger32Value()) return NULL;
- if (r.IsDouble() && !HasDoubleValue()) return NULL;
- if (r.IsExternal() && !HasExternalReferenceValue()) return NULL;
- if (HasInteger32Value()) {
- return new (zone) HConstant(int32_value_, r, NotInNewSpace(), object_);
- }
- if (HasDoubleValue()) {
- return new (zone) HConstant(double_value_, r, NotInNewSpace(), object_);
- }
- if (HasExternalReferenceValue()) {
- return new(zone) HConstant(external_reference_value_);
- }
- DCHECK(!object_.handle().is_null());
- return new (zone) HConstant(object_, object_map_, HasStableMapValue(), r,
- type_, NotInNewSpace(), BooleanValue(),
- IsUndetectable(), GetInstanceType());
-}
-
-
-Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) {
- HConstant* res = NULL;
- if (HasInteger32Value()) {
- res = new (zone) HConstant(int32_value_, Representation::Integer32(),
- NotInNewSpace(), object_);
- } else if (HasDoubleValue()) {
- res = new (zone)
- HConstant(DoubleToInt32(double_value_), Representation::Integer32(),
- NotInNewSpace(), object_);
- }
- return res != NULL ? Just(res) : Nothing<HConstant*>();
-}
-
-
-Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Isolate* isolate,
- Zone* zone) {
- HConstant* res = NULL;
- Handle<Object> handle = this->handle(isolate);
- if (handle->IsBoolean()) {
- res = handle->BooleanValue() ?
- new(zone) HConstant(1) : new(zone) HConstant(0);
- } else if (handle->IsUndefined()) {
- res = new (zone) HConstant(std::numeric_limits<double>::quiet_NaN());
- } else if (handle->IsNull()) {
- res = new(zone) HConstant(0);
- }
- return res != NULL ? Just(res) : Nothing<HConstant*>();
-}
-
-
-std::ostream& HConstant::PrintDataTo(std::ostream& os) const { // NOLINT
- if (HasInteger32Value()) {
- os << int32_value_ << " ";
- } else if (HasDoubleValue()) {
- os << double_value_ << " ";
- } else if (HasExternalReferenceValue()) {
- os << reinterpret_cast<void*>(external_reference_value_.address()) << " ";
- } else {
- // The handle() method is silently and lazily mutating the object.
- Handle<Object> h = const_cast<HConstant*>(this)->handle(isolate());
- os << Brief(*h) << " ";
- if (HasStableMapValue()) os << "[stable-map] ";
- if (HasObjectMap()) os << "[map " << *ObjectMap().handle() << "] ";
- }
- if (!NotInNewSpace()) os << "[new space] ";
- return os;
-}
-
-
-std::ostream& HBinaryOperation::PrintDataTo(std::ostream& os) const { // NOLINT
- os << NameOf(left()) << " " << NameOf(right());
- if (CheckFlag(kCanOverflow)) os << " !";
- if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
- return os;
-}
-
-
-void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) {
- DCHECK(CheckFlag(kFlexibleRepresentation));
- Representation new_rep = RepresentationFromInputs();
- UpdateRepresentation(new_rep, h_infer, "inputs");
-
- if (representation().IsSmi() && HasNonSmiUse()) {
- UpdateRepresentation(
- Representation::Integer32(), h_infer, "use requirements");
- }
-
- if (observed_output_representation_.IsNone()) {
- new_rep = RepresentationFromUses();
- UpdateRepresentation(new_rep, h_infer, "uses");
- } else {
- new_rep = RepresentationFromOutput();
- UpdateRepresentation(new_rep, h_infer, "output");
- }
-}
-
-
-Representation HBinaryOperation::RepresentationFromInputs() {
- // Determine the worst case of observed input representations and
- // the currently assumed output representation.
- Representation rep = representation();
- for (int i = 1; i <= 2; ++i) {
- rep = rep.generalize(observed_input_representation(i));
- }
- // If any of the actual input representation is more general than what we
- // have so far but not Tagged, use that representation instead.
- Representation left_rep = left()->representation();
- Representation right_rep = right()->representation();
- if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
- if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
-
- return rep;
-}
-
-
-bool HBinaryOperation::IgnoreObservedOutputRepresentation(
- Representation current_rep) {
- return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) ||
- (current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) &&
- // Mul in Integer32 mode would be too precise.
- (!this->IsMul() || HMul::cast(this)->MulMinusOne());
-}
-
-
-Representation HBinaryOperation::RepresentationFromOutput() {
- Representation rep = representation();
- // Consider observed output representation, but ignore it if it's Double,
- // this instruction is not a division, and all its uses are truncating
- // to Integer32.
- if (observed_output_representation_.is_more_general_than(rep) &&
- !IgnoreObservedOutputRepresentation(rep)) {
- return observed_output_representation_;
- }
- return Representation::None();
-}
-
-
-void HBinaryOperation::AssumeRepresentation(Representation r) {
- set_observed_input_representation(1, r);
- set_observed_input_representation(2, r);
- HValue::AssumeRepresentation(r);
-}
-
-
-void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) {
- DCHECK(CheckFlag(kFlexibleRepresentation));
- Representation new_rep = RepresentationFromInputs();
- UpdateRepresentation(new_rep, h_infer, "inputs");
- // Do not care about uses.
-}
-
-
-Range* HBitwise::InferRange(Zone* zone) {
- if (op() == Token::BIT_XOR) {
- if (left()->HasRange() && right()->HasRange()) {
- // The maximum value has the high bit, and all bits below, set:
- // (1 << high) - 1.
- // If the range can be negative, the minimum int is a negative number with
- // the high bit, and all bits below, unset:
- // -(1 << high).
- // If it cannot be negative, conservatively choose 0 as minimum int.
- int64_t left_upper = left()->range()->upper();
- int64_t left_lower = left()->range()->lower();
- int64_t right_upper = right()->range()->upper();
- int64_t right_lower = right()->range()->lower();
-
- if (left_upper < 0) left_upper = ~left_upper;
- if (left_lower < 0) left_lower = ~left_lower;
- if (right_upper < 0) right_upper = ~right_upper;
- if (right_lower < 0) right_lower = ~right_lower;
-
- int high = MostSignificantBit(
- static_cast<uint32_t>(
- left_upper | left_lower | right_upper | right_lower));
-
- int64_t limit = 1;
- limit <<= high;
- int32_t min = (left()->range()->CanBeNegative() ||
- right()->range()->CanBeNegative())
- ? static_cast<int32_t>(-limit) : 0;
- return new(zone) Range(min, static_cast<int32_t>(limit - 1));
- }
- Range* result = HValue::InferRange(zone);
- result->set_can_be_minus_zero(false);
- return result;
- }
- const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
- int32_t left_mask = (left()->range() != NULL)
- ? left()->range()->Mask()
- : kDefaultMask;
- int32_t right_mask = (right()->range() != NULL)
- ? right()->range()->Mask()
- : kDefaultMask;
- int32_t result_mask = (op() == Token::BIT_AND)
- ? left_mask & right_mask
- : left_mask | right_mask;
- if (result_mask >= 0) return new(zone) Range(0, result_mask);
-
- Range* result = HValue::InferRange(zone);
- result->set_can_be_minus_zero(false);
- return result;
-}
-
-
-Range* HSar::InferRange(Zone* zone) {
- if (right()->IsConstant()) {
- HConstant* c = HConstant::cast(right());
- if (c->HasInteger32Value()) {
- Range* result = (left()->range() != NULL)
- ? left()->range()->Copy(zone)
- : new(zone) Range();
- result->Sar(c->Integer32Value());
- return result;
- }
- }
- return HValue::InferRange(zone);
-}
-
-
-Range* HShr::InferRange(Zone* zone) {
- if (right()->IsConstant()) {
- HConstant* c = HConstant::cast(right());
- if (c->HasInteger32Value()) {
- int shift_count = c->Integer32Value() & 0x1f;
- if (left()->range()->CanBeNegative()) {
- // Only compute bounds if the result always fits into an int32.
- return (shift_count >= 1)
- ? new(zone) Range(0,
- static_cast<uint32_t>(0xffffffff) >> shift_count)
- : new(zone) Range();
- } else {
- // For positive inputs we can use the >> operator.
- Range* result = (left()->range() != NULL)
- ? left()->range()->Copy(zone)
- : new(zone) Range();
- result->Sar(c->Integer32Value());
- return result;
- }
- }
- }
- return HValue::InferRange(zone);
-}
-
-
-Range* HShl::InferRange(Zone* zone) {
- if (right()->IsConstant()) {
- HConstant* c = HConstant::cast(right());
- if (c->HasInteger32Value()) {
- Range* result = (left()->range() != NULL)
- ? left()->range()->Copy(zone)
- : new(zone) Range();
- result->Shl(c->Integer32Value());
- return result;
- }
- }
- return HValue::InferRange(zone);
-}
-
-
-Range* HLoadNamedField::InferRange(Zone* zone) {
- if (access().representation().IsInteger8()) {
- return new(zone) Range(kMinInt8, kMaxInt8);
- }
- if (access().representation().IsUInteger8()) {
- return new(zone) Range(kMinUInt8, kMaxUInt8);
- }
- if (access().representation().IsInteger16()) {
- return new(zone) Range(kMinInt16, kMaxInt16);
- }
- if (access().representation().IsUInteger16()) {
- return new(zone) Range(kMinUInt16, kMaxUInt16);
- }
- if (access().IsStringLength()) {
- return new(zone) Range(0, String::kMaxLength);
- }
- return HValue::InferRange(zone);
-}
-
-
-Range* HLoadKeyed::InferRange(Zone* zone) {
- switch (elements_kind()) {
- case INT8_ELEMENTS:
- return new(zone) Range(kMinInt8, kMaxInt8);
- case UINT8_ELEMENTS:
- case UINT8_CLAMPED_ELEMENTS:
- return new(zone) Range(kMinUInt8, kMaxUInt8);
- case INT16_ELEMENTS:
- return new(zone) Range(kMinInt16, kMaxInt16);
- case UINT16_ELEMENTS:
- return new(zone) Range(kMinUInt16, kMaxUInt16);
- default:
- return HValue::InferRange(zone);
- }
-}
-
-
-std::ostream& HCompareGeneric::PrintDataTo(std::ostream& os) const { // NOLINT
- os << Token::Name(token()) << " ";
- return HBinaryOperation::PrintDataTo(os);
-}
-
-
-std::ostream& HStringCompareAndBranch::PrintDataTo(
- std::ostream& os) const { // NOLINT
- os << Token::Name(token()) << " ";
- return HControlInstruction::PrintDataTo(os);
-}
-
-
-std::ostream& HCompareNumericAndBranch::PrintDataTo(
- std::ostream& os) const { // NOLINT
- os << Token::Name(token()) << " " << NameOf(left()) << " " << NameOf(right());
- return HControlInstruction::PrintDataTo(os);
-}
-
-
-std::ostream& HCompareObjectEqAndBranch::PrintDataTo(
- std::ostream& os) const { // NOLINT
- os << NameOf(left()) << " " << NameOf(right());
- return HControlInstruction::PrintDataTo(os);
-}
-
-
-bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
- if (known_successor_index() != kNoKnownSuccessorIndex) {
- *block = SuccessorAt(known_successor_index());
- return true;
- }
- if (FLAG_fold_constants && left()->IsConstant() && right()->IsConstant()) {
- *block = HConstant::cast(left())->DataEquals(HConstant::cast(right()))
- ? FirstSuccessor() : SecondSuccessor();
- return true;
- }
- *block = NULL;
- return false;
-}
-
-
-bool HIsStringAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
- if (known_successor_index() != kNoKnownSuccessorIndex) {
- *block = SuccessorAt(known_successor_index());
- return true;
- }
- if (FLAG_fold_constants && value()->IsConstant()) {
- *block = HConstant::cast(value())->HasStringValue()
- ? FirstSuccessor() : SecondSuccessor();
- return true;
- }
- if (value()->type().IsString()) {
- *block = FirstSuccessor();
- return true;
- }
- if (value()->type().IsSmi() ||
- value()->type().IsNull() ||
- value()->type().IsBoolean() ||
- value()->type().IsUndefined() ||
- value()->type().IsJSObject()) {
- *block = SecondSuccessor();
- return true;
- }
- *block = NULL;
- return false;
-}
-
-
-bool HIsUndetectableAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
- if (FLAG_fold_constants && value()->IsConstant()) {
- *block = HConstant::cast(value())->IsUndetectable()
- ? FirstSuccessor() : SecondSuccessor();
- return true;
- }
- *block = NULL;
- return false;
-}
-
-
-bool HHasInstanceTypeAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
- if (FLAG_fold_constants && value()->IsConstant()) {
- InstanceType type = HConstant::cast(value())->GetInstanceType();
- *block = (from_ <= type) && (type <= to_)
- ? FirstSuccessor() : SecondSuccessor();
- return true;
- }
- *block = NULL;
- return false;
-}
-
-
-void HCompareHoleAndBranch::InferRepresentation(
- HInferRepresentationPhase* h_infer) {
- ChangeRepresentation(value()->representation());
-}
-
-
-bool HCompareNumericAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
- if (left() == right() &&
- left()->representation().IsSmiOrInteger32()) {
- *block = (token() == Token::EQ ||
- token() == Token::EQ_STRICT ||
- token() == Token::LTE ||
- token() == Token::GTE)
- ? FirstSuccessor() : SecondSuccessor();
- return true;
- }
- *block = NULL;
- return false;
-}
-
-
-bool HCompareMinusZeroAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
- if (FLAG_fold_constants && value()->IsConstant()) {
- HConstant* constant = HConstant::cast(value());
- if (constant->HasDoubleValue()) {
- *block = IsMinusZero(constant->DoubleValue())
- ? FirstSuccessor() : SecondSuccessor();
- return true;
- }
- }
- if (value()->representation().IsSmiOrInteger32()) {
- // A Smi or Integer32 cannot contain minus zero.
- *block = SecondSuccessor();
- return true;
- }
- *block = NULL;
- return false;
-}
-
-
-void HCompareMinusZeroAndBranch::InferRepresentation(
- HInferRepresentationPhase* h_infer) {
- ChangeRepresentation(value()->representation());
-}
-
-
-std::ostream& HGoto::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << *SuccessorAt(0);
-}
-
-
-void HCompareNumericAndBranch::InferRepresentation(
- HInferRepresentationPhase* h_infer) {
- Representation left_rep = left()->representation();
- Representation right_rep = right()->representation();
- Representation observed_left = observed_input_representation(0);
- Representation observed_right = observed_input_representation(1);
-
- Representation rep = Representation::None();
- rep = rep.generalize(observed_left);
- rep = rep.generalize(observed_right);
- if (rep.IsNone() || rep.IsSmiOrInteger32()) {
- if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
- if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
- } else {
- rep = Representation::Double();
- }
-
- if (rep.IsDouble()) {
- // According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
- // and !=) have special handling of undefined, e.g. undefined == undefined
- // is 'true'. Relational comparisons have a different semantic, first
- // calling ToPrimitive() on their arguments. The standard Crankshaft
- // tagged-to-double conversion to ensure the HCompareNumericAndBranch's
- // inputs are doubles caused 'undefined' to be converted to NaN. That's
- // compatible out-of-the box with ordered relational comparisons (<, >, <=,
- // >=). However, for equality comparisons (and for 'in' and 'instanceof'),
- // it is not consistent with the spec. For example, it would cause undefined
- // == undefined (should be true) to be evaluated as NaN == NaN
- // (false). Therefore, any comparisons other than ordered relational
- // comparisons must cause a deopt when one of their arguments is undefined.
- // See also v8:1434
- if (Token::IsOrderedRelationalCompareOp(token_) && !is_strong(strength())) {
- SetFlag(kAllowUndefinedAsNaN);
- }
- }
- ChangeRepresentation(rep);
-}
-
-
-std::ostream& HParameter::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << index();
-}
-
-
-std::ostream& HLoadNamedField::PrintDataTo(std::ostream& os) const { // NOLINT
- os << NameOf(object()) << access_;
-
- if (maps() != NULL) {
- os << " [" << *maps()->at(0).handle();
- for (int i = 1; i < maps()->size(); ++i) {
- os << "," << *maps()->at(i).handle();
- }
- os << "]";
- }
-
- if (HasDependency()) os << " " << NameOf(dependency());
- return os;
-}
-
-
-std::ostream& HLoadNamedGeneric::PrintDataTo(
- std::ostream& os) const { // NOLINT
- Handle<String> n = Handle<String>::cast(name());
- return os << NameOf(object()) << "." << n->ToCString().get();
-}
-
-
-std::ostream& HLoadKeyed::PrintDataTo(std::ostream& os) const { // NOLINT
- if (!is_fixed_typed_array()) {
- os << NameOf(elements());
- } else {
- DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND &&
- elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
- os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
- }
-
- os << "[" << NameOf(key());
- if (IsDehoisted()) os << " + " << base_offset();
- os << "]";
-
- if (HasDependency()) os << " " << NameOf(dependency());
- if (RequiresHoleCheck()) os << " check_hole";
- return os;
-}
-
-
-bool HLoadKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
- // The base offset is usually simply the size of the array header, except
- // with dehoisting adds an addition offset due to a array index key
- // manipulation, in which case it becomes (array header size +
- // constant-offset-from-key * kPointerSize)
- uint32_t base_offset = BaseOffsetField::decode(bit_field_);
- v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset;
- addition_result += increase_by_value;
- if (!addition_result.IsValid()) return false;
- base_offset = addition_result.ValueOrDie();
- if (!BaseOffsetField::is_valid(base_offset)) return false;
- bit_field_ = BaseOffsetField::update(bit_field_, base_offset);
- return true;
-}
-
-
-bool HLoadKeyed::UsesMustHandleHole() const {
- if (IsFastPackedElementsKind(elements_kind())) {
- return false;
- }
-
- if (IsFixedTypedArrayElementsKind(elements_kind())) {
- return false;
- }
-
- if (hole_mode() == ALLOW_RETURN_HOLE) {
- if (IsFastDoubleElementsKind(elements_kind())) {
- return AllUsesCanTreatHoleAsNaN();
- }
- return true;
- }
-
- if (IsFastDoubleElementsKind(elements_kind())) {
- return false;
- }
-
- // Holes are only returned as tagged values.
- if (!representation().IsTagged()) {
- return false;
- }
-
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- HValue* use = it.value();
- if (!use->IsChange()) return false;
- }
-
- return true;
-}
-
-
-bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const {
- return IsFastDoubleElementsKind(elements_kind()) &&
- CheckUsesForFlag(HValue::kAllowUndefinedAsNaN);
-}
-
-
-bool HLoadKeyed::RequiresHoleCheck() const {
- if (IsFastPackedElementsKind(elements_kind())) {
- return false;
- }
-
- if (IsFixedTypedArrayElementsKind(elements_kind())) {
- return false;
- }
-
- if (hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
- return false;
- }
-
- return !UsesMustHandleHole();
-}
-
-
-std::ostream& HLoadKeyedGeneric::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << NameOf(object()) << "[" << NameOf(key()) << "]";
-}
-
-
-HValue* HLoadKeyedGeneric::Canonicalize() {
- // Recognize generic keyed loads that use property name generated
- // by for-in statement as a key and rewrite them into fast property load
- // by index.
- if (key()->IsLoadKeyed()) {
- HLoadKeyed* key_load = HLoadKeyed::cast(key());
- if (key_load->elements()->IsForInCacheArray()) {
- HForInCacheArray* names_cache =
- HForInCacheArray::cast(key_load->elements());
-
- if (names_cache->enumerable() == object()) {
- HForInCacheArray* index_cache =
- names_cache->index_cache();
- HCheckMapValue* map_check = HCheckMapValue::New(
- block()->graph()->isolate(), block()->graph()->zone(),
- block()->graph()->GetInvalidContext(), object(),
- names_cache->map());
- HInstruction* index = HLoadKeyed::New(
- block()->graph()->isolate(), block()->graph()->zone(),
- block()->graph()->GetInvalidContext(), index_cache, key_load->key(),
- key_load->key(), key_load->elements_kind());
- map_check->InsertBefore(this);
- index->InsertBefore(this);
- return Prepend(new(block()->zone()) HLoadFieldByIndex(
- object(), index));
- }
- }
- }
-
- return this;
-}
-
-
-std::ostream& HStoreNamedGeneric::PrintDataTo(
- std::ostream& os) const { // NOLINT
- Handle<String> n = Handle<String>::cast(name());
- return os << NameOf(object()) << "." << n->ToCString().get() << " = "
- << NameOf(value());
-}
-
-
-std::ostream& HStoreGlobalViaContext::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << " depth:" << depth() << " slot:" << slot_index() << " = "
- << NameOf(value());
-}
-
-
-std::ostream& HStoreNamedField::PrintDataTo(std::ostream& os) const { // NOLINT
- os << NameOf(object()) << access_ << " = " << NameOf(value());
- if (NeedsWriteBarrier()) os << " (write-barrier)";
- if (has_transition()) os << " (transition map " << *transition_map() << ")";
- return os;
-}
-
-
-std::ostream& HStoreKeyed::PrintDataTo(std::ostream& os) const { // NOLINT
- if (!is_fixed_typed_array()) {
- os << NameOf(elements());
- } else {
- DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND &&
- elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
- os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
- }
-
- os << "[" << NameOf(key());
- if (IsDehoisted()) os << " + " << base_offset();
- return os << "] = " << NameOf(value());
-}
-
-
-std::ostream& HStoreKeyedGeneric::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << NameOf(object()) << "[" << NameOf(key())
- << "] = " << NameOf(value());
-}
-
-
-std::ostream& HTransitionElementsKind::PrintDataTo(
- std::ostream& os) const { // NOLINT
- os << NameOf(object());
- ElementsKind from_kind = original_map().handle()->elements_kind();
- ElementsKind to_kind = transitioned_map().handle()->elements_kind();
- os << " " << *original_map().handle() << " ["
- << ElementsAccessor::ForKind(from_kind)->name() << "] -> "
- << *transitioned_map().handle() << " ["
- << ElementsAccessor::ForKind(to_kind)->name() << "]";
- if (IsSimpleMapChangeTransition(from_kind, to_kind)) os << " (simple)";
- return os;
-}
-
-
-std::ostream& HLoadGlobalGeneric::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << name()->ToCString().get() << " ";
-}
-
-
-std::ostream& HLoadGlobalViaContext::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << "depth:" << depth() << " slot:" << slot_index();
-}
-
-
-std::ostream& HInnerAllocatedObject::PrintDataTo(
- std::ostream& os) const { // NOLINT
- os << NameOf(base_object()) << " offset ";
- return offset()->PrintTo(os);
-}
-
-
-std::ostream& HLoadContextSlot::PrintDataTo(std::ostream& os) const { // NOLINT
- return os << NameOf(value()) << "[" << slot_index() << "]";
-}
-
-
-std::ostream& HStoreContextSlot::PrintDataTo(
- std::ostream& os) const { // NOLINT
- return os << NameOf(context()) << "[" << slot_index()
- << "] = " << NameOf(value());
-}
-
-
-// Implementation of type inference and type conversions. Calculates
-// the inferred type of this instruction based on the input operands.
-
-HType HValue::CalculateInferredType() {
- return type_;
-}
-
-
-HType HPhi::CalculateInferredType() {
- if (OperandCount() == 0) return HType::Tagged();
- HType result = OperandAt(0)->type();
- for (int i = 1; i < OperandCount(); ++i) {
- HType current = OperandAt(i)->type();
- result = result.Combine(current);
- }
- return result;
-}
-
-
-HType HChange::CalculateInferredType() {
- if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
- return type();
-}
-
-
-Representation HUnaryMathOperation::RepresentationFromInputs() {
- if (SupportsFlexibleFloorAndRound() &&
- (op_ == kMathFloor || op_ == kMathRound)) {
- // Floor and Round always take a double input. The integral result can be
- // used as an integer or a double. Infer the representation from the uses.
- return Representation::None();
- }
- Representation rep = representation();
- // If any of the actual input representation is more general than what we
- // have so far but not Tagged, use that representation instead.
- Representation input_rep = value()->representation();
- if (!input_rep.IsTagged()) {
- rep = rep.generalize(input_rep);
- }
- return rep;
-}
-
-
-bool HAllocate::HandleSideEffectDominator(GVNFlag side_effect,
- HValue* dominator) {
- DCHECK(side_effect == kNewSpacePromotion);
- Zone* zone = block()->zone();
- Isolate* isolate = block()->isolate();
- if (!FLAG_use_allocation_folding) return false;
-
- // Try to fold allocations together with their dominating allocations.
- if (!dominator->IsAllocate()) {
- if (FLAG_trace_allocation_folding) {
- PrintF("#%d (%s) cannot fold into #%d (%s)\n",
- id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
- }
- return false;
- }
-
- // Check whether we are folding within the same block for local folding.
- if (FLAG_use_local_allocation_folding && dominator->block() != block()) {
- if (FLAG_trace_allocation_folding) {
- PrintF("#%d (%s) cannot fold into #%d (%s), crosses basic blocks\n",
- id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
- }
- return false;
- }
-
- HAllocate* dominator_allocate = HAllocate::cast(dominator);
- HValue* dominator_size = dominator_allocate->size();
- HValue* current_size = size();
-
- // TODO(hpayer): Add support for non-constant allocation in dominator.
- if (!dominator_size->IsInteger32Constant()) {
- if (FLAG_trace_allocation_folding) {
- PrintF("#%d (%s) cannot fold into #%d (%s), "
- "dynamic allocation size in dominator\n",
- id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
- }
- return false;
- }
-
-
- if (!IsFoldable(dominator_allocate)) {
- if (FLAG_trace_allocation_folding) {
- PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n", id(),
- Mnemonic(), dominator->id(), dominator->Mnemonic());
- }
- return false;
- }
-
- if (!has_size_upper_bound()) {
- if (FLAG_trace_allocation_folding) {
- PrintF("#%d (%s) cannot fold into #%d (%s), "
- "can't estimate total allocation size\n",
- id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
- }
- return false;
- }
-
- if (!current_size->IsInteger32Constant()) {
- // If it's not constant then it is a size_in_bytes calculation graph
- // like this: (const_header_size + const_element_size * size).
- DCHECK(current_size->IsInstruction());
-
- HInstruction* current_instr = HInstruction::cast(current_size);
- if (!current_instr->Dominates(dominator_allocate)) {
- if (FLAG_trace_allocation_folding) {
- PrintF("#%d (%s) cannot fold into #%d (%s), dynamic size "
- "value does not dominate target allocation\n",
- id(), Mnemonic(), dominator_allocate->id(),
- dominator_allocate->Mnemonic());
- }
- return false;
- }
- }
-
- DCHECK(
- (IsNewSpaceAllocation() && dominator_allocate->IsNewSpaceAllocation()) ||
- (IsOldSpaceAllocation() && dominator_allocate->IsOldSpaceAllocation()));
-
- // First update the size of the dominator allocate instruction.
- dominator_size = dominator_allocate->size();
- int32_t original_object_size =
- HConstant::cast(dominator_size)->GetInteger32Constant();
- int32_t dominator_size_constant = original_object_size;
-
- if (MustAllocateDoubleAligned()) {
- if ((dominator_size_constant & kDoubleAlignmentMask) != 0) {
- dominator_size_constant += kDoubleSize / 2;
- }
- }
-
- int32_t current_size_max_value = size_upper_bound()->GetInteger32Constant();
- int32_t new_dominator_size = dominator_size_constant + current_size_max_value;
-
- // Since we clear the first word after folded memory, we cannot use the
- // whole Page::kMaxRegularHeapObjectSize memory.
- if (new_dominator_size > Page::kMaxRegularHeapObjectSize - kPointerSize) {
- if (FLAG_trace_allocation_folding) {
- PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n",
- id(), Mnemonic(), dominator_allocate->id(),
- dominator_allocate->Mnemonic(), new_dominator_size);
- }
- return false;
- }
-
- HInstruction* new_dominator_size_value;
-
- if (current_size->IsInteger32Constant()) {
- new_dominator_size_value = HConstant::CreateAndInsertBefore(
- isolate, zone, context(), new_dominator_size, Representation::None(),
- dominator_allocate);
- } else {
- HValue* new_dominator_size_constant = HConstant::CreateAndInsertBefore(
- isolate, zone, context(), dominator_size_constant,
- Representation::Integer32(), dominator_allocate);
-
- // Add old and new size together and insert.
- current_size->ChangeRepresentation(Representation::Integer32());
-
- new_dominator_size_value = HAdd::New(
- isolate, zone, context(), new_dominator_size_constant, current_size);
- new_dominator_size_value->ClearFlag(HValue::kCanOverflow);
- new_dominator_size_value->ChangeRepresentation(Representation::Integer32());
-
- new_dominator_size_value->InsertBefore(dominator_allocate);
- }
-
- dominator_allocate->UpdateSize(new_dominator_size_value);
-
- if (MustAllocateDoubleAligned()) {
- if (!dominator_allocate->MustAllocateDoubleAligned()) {
- dominator_allocate->MakeDoubleAligned();
- }
- }
-
- bool keep_new_space_iterable = FLAG_log_gc || FLAG_heap_stats;
-#ifdef VERIFY_HEAP
- keep_new_space_iterable = keep_new_space_iterable || FLAG_verify_heap;
-#endif
-
- if (keep_new_space_iterable && dominator_allocate->IsNewSpaceAllocation()) {
- dominator_allocate->MakePrefillWithFiller();
- } else {
- // TODO(hpayer): This is a short-term hack to make allocation mementos
- // work again in new space.
- dominator_allocate->ClearNextMapWord(original_object_size);
- }
-
- dominator_allocate->UpdateClearNextMapWord(MustClearNextMapWord());
-
- // After that replace the dominated allocate instruction.
- HInstruction* inner_offset = HConstant::CreateAndInsertBefore(
- isolate, zone, context(), dominator_size_constant, Representation::None(),
- this);
-
- HInstruction* dominated_allocate_instr = HInnerAllocatedObject::New(
- isolate, zone, context(), dominator_allocate, inner_offset, type());
- dominated_allocate_instr->InsertBefore(this);
- DeleteAndReplaceWith(dominated_allocate_instr);
- if (FLAG_trace_allocation_folding) {
- PrintF("#%d (%s) folded into #%d (%s)\n",
- id(), Mnemonic(), dominator_allocate->id(),
- dominator_allocate->Mnemonic());
- }
- return true;
-}
-
-
-void HAllocate::UpdateFreeSpaceFiller(int32_t free_space_size) {
- DCHECK(filler_free_space_size_ != NULL);
- Zone* zone = block()->zone();
- // We must explicitly force Smi representation here because on x64 we
- // would otherwise automatically choose int32, but the actual store
- // requires a Smi-tagged value.
- HConstant* new_free_space_size = HConstant::CreateAndInsertBefore(
- block()->isolate(), zone, context(),
- filler_free_space_size_->value()->GetInteger32Constant() +
- free_space_size,
- Representation::Smi(), filler_free_space_size_);
- filler_free_space_size_->UpdateValue(new_free_space_size);
-}
-
-
-void HAllocate::CreateFreeSpaceFiller(int32_t free_space_size) {
- DCHECK(filler_free_space_size_ == NULL);
- Isolate* isolate = block()->isolate();
- Zone* zone = block()->zone();
- HInstruction* free_space_instr =
- HInnerAllocatedObject::New(isolate, zone, context(), dominating_allocate_,
- dominating_allocate_->size(), type());
- free_space_instr->InsertBefore(this);
- HConstant* filler_map = HConstant::CreateAndInsertAfter(
- zone, Unique<Map>::CreateImmovable(isolate->factory()->free_space_map()),
- true, free_space_instr);
- HInstruction* store_map =
- HStoreNamedField::New(isolate, zone, context(), free_space_instr,
- HObjectAccess::ForMap(), filler_map);
- store_map->SetFlag(HValue::kHasNoObservableSideEffects);
- store_map->InsertAfter(filler_map);
-
- // We must explicitly force Smi representation here because on x64 we
- // would otherwise automatically choose int32, but the actual store
- // requires a Smi-tagged value.
- HConstant* filler_size =
- HConstant::CreateAndInsertAfter(isolate, zone, context(), free_space_size,
- Representation::Smi(), store_map);
- // Must force Smi representation for x64 (see comment above).
- HObjectAccess access = HObjectAccess::ForMapAndOffset(
- isolate->factory()->free_space_map(), FreeSpace::kSizeOffset,
- Representation::Smi());
- HStoreNamedField* store_size = HStoreNamedField::New(
- isolate, zone, context(), free_space_instr, access, filler_size);
- store_size->SetFlag(HValue::kHasNoObservableSideEffects);
- store_size->InsertAfter(filler_size);
- filler_free_space_size_ = store_size;
-}
-
-
-void HAllocate::ClearNextMapWord(int offset) {
- if (MustClearNextMapWord()) {
- Zone* zone = block()->zone();
- HObjectAccess access =
- HObjectAccess::ForObservableJSObjectOffset(offset);
- HStoreNamedField* clear_next_map =
- HStoreNamedField::New(block()->isolate(), zone, context(), this, access,
- block()->graph()->GetConstant0());
- clear_next_map->ClearAllSideEffects();
- clear_next_map->InsertAfter(this);
- }
-}
-
-
-std::ostream& HAllocate::PrintDataTo(std::ostream& os) const { // NOLINT
- os << NameOf(size()) << " (";
- if (IsNewSpaceAllocation()) os << "N";
- if (IsOldSpaceAllocation()) os << "P";
- if (MustAllocateDoubleAligned()) os << "A";
- if (MustPrefillWithFiller()) os << "F";
- return os << ")";
-}
-
-
-bool HStoreKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
- // The base offset is usually simply the size of the array header, except
- // with dehoisting adds an addition offset due to a array index key
- // manipulation, in which case it becomes (array header size +
- // constant-offset-from-key * kPointerSize)
- v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset_;
- addition_result += increase_by_value;
- if (!addition_result.IsValid()) return false;
- base_offset_ = addition_result.ValueOrDie();
- return true;
-}
-
-
-bool HStoreKeyed::NeedsCanonicalization() {
- switch (value()->opcode()) {
- case kLoadKeyed: {
- ElementsKind load_kind = HLoadKeyed::cast(value())->elements_kind();
- return IsFixedFloatElementsKind(load_kind);
- }
- case kChange: {
- Representation from = HChange::cast(value())->from();
- return from.IsTagged() || from.IsHeapObject();
- }
- case kLoadNamedField:
- case kPhi: {
- // Better safe than sorry...
- return true;
- }
- default:
- return false;
- }
-}
-
-
-#define H_CONSTANT_INT(val) \
- HConstant::New(isolate, zone, context, static_cast<int32_t>(val))
-#define H_CONSTANT_DOUBLE(val) \
- HConstant::New(isolate, zone, context, static_cast<double>(val))
-
-#define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op) \
- HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context, \
- HValue* left, HValue* right, Strength strength) { \
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \
- HConstant* c_left = HConstant::cast(left); \
- HConstant* c_right = HConstant::cast(right); \
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \
- double double_res = c_left->DoubleValue() op c_right->DoubleValue(); \
- if (IsInt32Double(double_res)) { \
- return H_CONSTANT_INT(double_res); \
- } \
- return H_CONSTANT_DOUBLE(double_res); \
- } \
- } \
- return new (zone) HInstr(context, left, right, strength); \
- }
-
-
-DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
-DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
-DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
-
-#undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
-
-
-HInstruction* HStringAdd::New(Isolate* isolate, Zone* zone, HValue* context,
- HValue* left, HValue* right,
- PretenureFlag pretenure_flag,
- StringAddFlags flags,
- Handle<AllocationSite> allocation_site) {
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_right = HConstant::cast(right);
- HConstant* c_left = HConstant::cast(left);
- if (c_left->HasStringValue() && c_right->HasStringValue()) {
- Handle<String> left_string = c_left->StringValue();
- Handle<String> right_string = c_right->StringValue();
- // Prevent possible exception by invalid string length.
- if (left_string->length() + right_string->length() < String::kMaxLength) {
- MaybeHandle<String> concat = isolate->factory()->NewConsString(
- c_left->StringValue(), c_right->StringValue());
- return HConstant::New(isolate, zone, context, concat.ToHandleChecked());
- }
- }
- }
- return new (zone)
- HStringAdd(context, left, right, pretenure_flag, flags, allocation_site);
-}
-
-
-std::ostream& HStringAdd::PrintDataTo(std::ostream& os) const { // NOLINT
- if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
- os << "_CheckBoth";
- } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) {
- os << "_CheckLeft";
- } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) {
- os << "_CheckRight";
- }
- HBinaryOperation::PrintDataTo(os);
- os << " (";
- if (pretenure_flag() == NOT_TENURED)
- os << "N";
- else if (pretenure_flag() == TENURED)
- os << "D";
- return os << ")";
-}
-
-
-HInstruction* HStringCharFromCode::New(Isolate* isolate, Zone* zone,
- HValue* context, HValue* char_code) {
- if (FLAG_fold_constants && char_code->IsConstant()) {
- HConstant* c_code = HConstant::cast(char_code);
- if (c_code->HasNumberValue()) {
- if (std::isfinite(c_code->DoubleValue())) {
- uint32_t code = c_code->NumberValueAsInteger32() & 0xffff;
- return HConstant::New(
- isolate, zone, context,
- isolate->factory()->LookupSingleCharacterStringFromCode(code));
- }
- return HConstant::New(isolate, zone, context,
- isolate->factory()->empty_string());
- }
- }
- return new(zone) HStringCharFromCode(context, char_code);
-}
-
-
-HInstruction* HUnaryMathOperation::New(Isolate* isolate, Zone* zone,
- HValue* context, HValue* value,
- BuiltinFunctionId op) {
- do {
- if (!FLAG_fold_constants) break;
- if (!value->IsConstant()) break;
- HConstant* constant = HConstant::cast(value);
- if (!constant->HasNumberValue()) break;
- double d = constant->DoubleValue();
- if (std::isnan(d)) { // NaN poisons everything.
- return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN());
- }
- if (std::isinf(d)) { // +Infinity and -Infinity.
- switch (op) {
- case kMathExp:
- return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0);
- case kMathLog:
- case kMathSqrt:
- return H_CONSTANT_DOUBLE(
- (d > 0.0) ? d : std::numeric_limits<double>::quiet_NaN());
- case kMathPowHalf:
- case kMathAbs:
- return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d);
- case kMathRound:
- case kMathFround:
- case kMathFloor:
- return H_CONSTANT_DOUBLE(d);
- case kMathClz32:
- return H_CONSTANT_INT(32);
- default:
- UNREACHABLE();
- break;
- }
- }
- switch (op) {
- case kMathExp:
- return H_CONSTANT_DOUBLE(fast_exp(d));
- case kMathLog:
- return H_CONSTANT_DOUBLE(std::log(d));
- case kMathSqrt:
- return H_CONSTANT_DOUBLE(fast_sqrt(d));
- case kMathPowHalf:
- return H_CONSTANT_DOUBLE(power_double_double(d, 0.5));
- case kMathAbs:
- return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d);
- case kMathRound:
- // -0.5 .. -0.0 round to -0.0.
- if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0);
- // Doubles are represented as Significant * 2 ^ Exponent. If the
- // Exponent is not negative, the double value is already an integer.
- if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d);
- return H_CONSTANT_DOUBLE(Floor(d + 0.5));
- case kMathFround:
- return H_CONSTANT_DOUBLE(static_cast<double>(static_cast<float>(d)));
- case kMathFloor:
- return H_CONSTANT_DOUBLE(Floor(d));
- case kMathClz32: {
- uint32_t i = DoubleToUint32(d);
- return H_CONSTANT_INT(base::bits::CountLeadingZeros32(i));
- }
- default:
- UNREACHABLE();
- break;
- }
- } while (false);
- return new(zone) HUnaryMathOperation(context, value, op);
-}
-
-
-Representation HUnaryMathOperation::RepresentationFromUses() {
- if (op_ != kMathFloor && op_ != kMathRound) {
- return HValue::RepresentationFromUses();
- }
-
- // The instruction can have an int32 or double output. Prefer a double
- // representation if there are double uses.
- bool use_double = false;
-
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- HValue* use = it.value();
- int use_index = it.index();
- Representation rep_observed = use->observed_input_representation(use_index);
- Representation rep_required = use->RequiredInputRepresentation(use_index);
- use_double |= (rep_observed.IsDouble() || rep_required.IsDouble());
- if (use_double && !FLAG_trace_representation) {
- // Having seen one double is enough.
- break;
- }
- if (FLAG_trace_representation) {
- if (!rep_required.IsDouble() || rep_observed.IsDouble()) {
- PrintF("#%d %s is used by #%d %s as %s%s\n",
- id(), Mnemonic(), use->id(),
- use->Mnemonic(), rep_observed.Mnemonic(),
- (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
- } else {
- PrintF("#%d %s is required by #%d %s as %s%s\n",
- id(), Mnemonic(), use->id(),
- use->Mnemonic(), rep_required.Mnemonic(),
- (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
- }
- }
- }
- return use_double ? Representation::Double() : Representation::Integer32();
-}
-
-
-HInstruction* HPower::New(Isolate* isolate, Zone* zone, HValue* context,
- HValue* left, HValue* right) {
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_left = HConstant::cast(left);
- HConstant* c_right = HConstant::cast(right);
- if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
- double result = power_helper(c_left->DoubleValue(),
- c_right->DoubleValue());
- return H_CONSTANT_DOUBLE(std::isnan(result)
- ? std::numeric_limits<double>::quiet_NaN()
- : result);
- }
- }
- return new(zone) HPower(left, right);
-}
-
-
-HInstruction* HMathMinMax::New(Isolate* isolate, Zone* zone, HValue* context,
- HValue* left, HValue* right, Operation op) {
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_left = HConstant::cast(left);
- HConstant* c_right = HConstant::cast(right);
- if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
- double d_left = c_left->DoubleValue();
- double d_right = c_right->DoubleValue();
- if (op == kMathMin) {
- if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right);
- if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left);
- if (d_left == d_right) {
- // Handle +0 and -0.
- return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left
- : d_right);
- }
- } else {
- if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right);
- if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left);
- if (d_left == d_right) {
- // Handle +0 and -0.
- return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right
- : d_left);
- }
- }
- // All comparisons failed, must be NaN.
- return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN());
- }
- }
- return new(zone) HMathMinMax(context, left, right, op);
-}
-
-
-HInstruction* HMod::New(Isolate* isolate, Zone* zone, HValue* context,
- HValue* left, HValue* right, Strength strength) {
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_left = HConstant::cast(left);
- HConstant* c_right = HConstant::cast(right);
- if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
- int32_t dividend = c_left->Integer32Value();
- int32_t divisor = c_right->Integer32Value();
- if (dividend == kMinInt && divisor == -1) {
- return H_CONSTANT_DOUBLE(-0.0);
- }
- if (divisor != 0) {
- int32_t res = dividend % divisor;
- if ((res == 0) && (dividend < 0)) {
- return H_CONSTANT_DOUBLE(-0.0);
- }
- return H_CONSTANT_INT(res);
- }
- }
- }
- return new (zone) HMod(context, left, right, strength);
-}
-
-
-HInstruction* HDiv::New(Isolate* isolate, Zone* zone, HValue* context,
- HValue* left, HValue* right, Strength strength) {
- // If left and right are constant values, try to return a constant value.
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_left = HConstant::cast(left);
- HConstant* c_right = HConstant::cast(right);
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
- if (c_right->DoubleValue() != 0) {
- double double_res = c_left->DoubleValue() / c_right->DoubleValue();
- if (IsInt32Double(double_res)) {
- return H_CONSTANT_INT(double_res);
- }
- return H_CONSTANT_DOUBLE(double_res);
- } else {
- int sign = Double(c_left->DoubleValue()).Sign() *
- Double(c_right->DoubleValue()).Sign(); // Right could be -0.
- return H_CONSTANT_DOUBLE(sign * V8_INFINITY);
- }
- }
- }
- return new (zone) HDiv(context, left, right, strength);
-}
-
-
-HInstruction* HBitwise::New(Isolate* isolate, Zone* zone, HValue* context,
- Token::Value op, HValue* left, HValue* right,
- Strength strength) {
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_left = HConstant::cast(left);
- HConstant* c_right = HConstant::cast(right);
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
- int32_t result;
- int32_t v_left = c_left->NumberValueAsInteger32();
- int32_t v_right = c_right->NumberValueAsInteger32();
- switch (op) {
- case Token::BIT_XOR:
- result = v_left ^ v_right;
- break;
- case Token::BIT_AND:
- result = v_left & v_right;
- break;
- case Token::BIT_OR:
- result = v_left | v_right;
- break;
- default:
- result = 0; // Please the compiler.
- UNREACHABLE();
- }
- return H_CONSTANT_INT(result);
- }
- }
- return new (zone) HBitwise(context, op, left, right, strength);
-}
-
-
-#define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result) \
- HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context, \
- HValue* left, HValue* right, Strength strength) { \
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \
- HConstant* c_left = HConstant::cast(left); \
- HConstant* c_right = HConstant::cast(right); \
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \
- return H_CONSTANT_INT(result); \
- } \
- } \
- return new (zone) HInstr(context, left, right, strength); \
- }
-
-
-DEFINE_NEW_H_BITWISE_INSTR(HSar,
-c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
-DEFINE_NEW_H_BITWISE_INSTR(HShl,
-c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
-
-#undef DEFINE_NEW_H_BITWISE_INSTR
-
-
-HInstruction* HShr::New(Isolate* isolate, Zone* zone, HValue* context,
- HValue* left, HValue* right, Strength strength) {
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_left = HConstant::cast(left);
- HConstant* c_right = HConstant::cast(right);
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
- int32_t left_val = c_left->NumberValueAsInteger32();
- int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
- if ((right_val == 0) && (left_val < 0)) {
- return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val));
- }
- return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val);
- }
- }
- return new (zone) HShr(context, left, right, strength);
-}
-
-
-HInstruction* HSeqStringGetChar::New(Isolate* isolate, Zone* zone,
- HValue* context, String::Encoding encoding,
- HValue* string, HValue* index) {
- if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) {
- HConstant* c_string = HConstant::cast(string);
- HConstant* c_index = HConstant::cast(index);
- if (c_string->HasStringValue() && c_index->HasInteger32Value()) {
- Handle<String> s = c_string->StringValue();
- int32_t i = c_index->Integer32Value();
- DCHECK_LE(0, i);
- DCHECK_LT(i, s->length());
- return H_CONSTANT_INT(s->Get(i));
- }
- }
- return new(zone) HSeqStringGetChar(encoding, string, index);
-}
-
-
-#undef H_CONSTANT_INT
-#undef H_CONSTANT_DOUBLE
-
-
-std::ostream& HBitwise::PrintDataTo(std::ostream& os) const { // NOLINT
- os << Token::Name(op_) << " ";
- return HBitwiseBinaryOperation::PrintDataTo(os);
-}
-
-
-void HPhi::SimplifyConstantInputs() {
- // Convert constant inputs to integers when all uses are truncating.
- // This must happen before representation inference takes place.
- if (!CheckUsesForFlag(kTruncatingToInt32)) return;
- for (int i = 0; i < OperandCount(); ++i) {
- if (!OperandAt(i)->IsConstant()) return;
- }
- HGraph* graph = block()->graph();
- for (int i = 0; i < OperandCount(); ++i) {
- HConstant* operand = HConstant::cast(OperandAt(i));
- if (operand->HasInteger32Value()) {
- continue;
- } else if (operand->HasDoubleValue()) {
- HConstant* integer_input = HConstant::New(
- graph->isolate(), graph->zone(), graph->GetInvalidContext(),
- DoubleToInt32(operand->DoubleValue()));
- integer_input->InsertAfter(operand);
- SetOperandAt(i, integer_input);
- } else if (operand->HasBooleanValue()) {
- SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1()
- : graph->GetConstant0());
- } else if (operand->ImmortalImmovable()) {
- SetOperandAt(i, graph->GetConstant0());
- }
- }
- // Overwrite observed input representations because they are likely Tagged.
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- HValue* use = it.value();
- if (use->IsBinaryOperation()) {
- HBinaryOperation::cast(use)->set_observed_input_representation(
- it.index(), Representation::Smi());
- }
- }
-}
-
-
-void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) {
- DCHECK(CheckFlag(kFlexibleRepresentation));
- Representation new_rep = RepresentationFromUses();
- UpdateRepresentation(new_rep, h_infer, "uses");
- new_rep = RepresentationFromInputs();
- UpdateRepresentation(new_rep, h_infer, "inputs");
- new_rep = RepresentationFromUseRequirements();
- UpdateRepresentation(new_rep, h_infer, "use requirements");
-}
-
-
-Representation HPhi::RepresentationFromInputs() {
- Representation r = representation();
- for (int i = 0; i < OperandCount(); ++i) {
- // Ignore conservative Tagged assumption of parameters if we have
- // reason to believe that it's too conservative.
- if (has_type_feedback_from_uses() && OperandAt(i)->IsParameter()) {
- continue;
- }
-
- r = r.generalize(OperandAt(i)->KnownOptimalRepresentation());
- }
- return r;
-}
-
-
-// Returns a representation if all uses agree on the same representation.
-// Integer32 is also returned when some uses are Smi but others are Integer32.
-Representation HValue::RepresentationFromUseRequirements() {
- Representation rep = Representation::None();
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- // Ignore the use requirement from never run code
- if (it.value()->block()->IsUnreachable()) continue;
-
- // We check for observed_input_representation elsewhere.
- Representation use_rep =
- it.value()->RequiredInputRepresentation(it.index());
- if (rep.IsNone()) {
- rep = use_rep;
- continue;
- }
- if (use_rep.IsNone() || rep.Equals(use_rep)) continue;
- if (rep.generalize(use_rep).IsInteger32()) {
- rep = Representation::Integer32();
- continue;
- }
- return Representation::None();
- }
- return rep;
-}
-
-
-bool HValue::HasNonSmiUse() {
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- // We check for observed_input_representation elsewhere.
- Representation use_rep =
- it.value()->RequiredInputRepresentation(it.index());
- if (!use_rep.IsNone() &&
- !use_rep.IsSmi() &&
- !use_rep.IsTagged()) {
- return true;
- }
- }
- return false;
-}
-
-
-// Node-specific verification code is only included in debug mode.
-#ifdef DEBUG
-
-void HPhi::Verify() {
- DCHECK(OperandCount() == block()->predecessors()->length());
- for (int i = 0; i < OperandCount(); ++i) {
- HValue* value = OperandAt(i);
- HBasicBlock* defining_block = value->block();
- HBasicBlock* predecessor_block = block()->predecessors()->at(i);
- DCHECK(defining_block == predecessor_block ||
- defining_block->Dominates(predecessor_block));
- }
-}
-
-
-void HSimulate::Verify() {
- HInstruction::Verify();
- DCHECK(HasAstId() || next()->IsEnterInlined());
-}
-
-
-void HCheckHeapObject::Verify() {
- HInstruction::Verify();
- DCHECK(HasNoUses());
-}
-
-
-void HCheckValue::Verify() {
- HInstruction::Verify();
- DCHECK(HasNoUses());
-}
-
-#endif
-
-
-HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) {
- DCHECK(offset >= 0);
- DCHECK(offset < FixedArray::kHeaderSize);
- if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength();
- return HObjectAccess(kInobject, offset);
-}
-
-
-HObjectAccess HObjectAccess::ForMapAndOffset(Handle<Map> map, int offset,
- Representation representation) {
- DCHECK(offset >= 0);
- Portion portion = kInobject;
-
- if (offset == JSObject::kElementsOffset) {
- portion = kElementsPointer;
- } else if (offset == JSObject::kMapOffset) {
- portion = kMaps;
- }
- bool existing_inobject_property = true;
- if (!map.is_null()) {
- existing_inobject_property = (offset <
- map->instance_size() - map->unused_property_fields() * kPointerSize);
- }
- return HObjectAccess(portion, offset, representation, Handle<String>::null(),
- false, existing_inobject_property);
-}
-
-
-HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) {
- switch (offset) {
- case AllocationSite::kTransitionInfoOffset:
- return HObjectAccess(kInobject, offset, Representation::Tagged());
- case AllocationSite::kNestedSiteOffset:
- return HObjectAccess(kInobject, offset, Representation::Tagged());
- case AllocationSite::kPretenureDataOffset:
- return HObjectAccess(kInobject, offset, Representation::Smi());
- case AllocationSite::kPretenureCreateCountOffset:
- return HObjectAccess(kInobject, offset, Representation::Smi());
- case AllocationSite::kDependentCodeOffset:
- return HObjectAccess(kInobject, offset, Representation::Tagged());
- case AllocationSite::kWeakNextOffset:
- return HObjectAccess(kInobject, offset, Representation::Tagged());
- default:
- UNREACHABLE();
- }
- return HObjectAccess(kInobject, offset);
-}
-
-
-HObjectAccess HObjectAccess::ForContextSlot(int index) {
- DCHECK(index >= 0);
- Portion portion = kInobject;
- int offset = Context::kHeaderSize + index * kPointerSize;
- DCHECK_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag);
- return HObjectAccess(portion, offset, Representation::Tagged());
-}
-
-
-HObjectAccess HObjectAccess::ForScriptContext(int index) {
- DCHECK(index >= 0);
- Portion portion = kInobject;
- int offset = ScriptContextTable::GetContextOffset(index);
- return HObjectAccess(portion, offset, Representation::Tagged());
-}
-
-
-HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) {
- DCHECK(offset >= 0);
- Portion portion = kInobject;
-
- if (offset == JSObject::kElementsOffset) {
- portion = kElementsPointer;
- } else if (offset == JSArray::kLengthOffset) {
- portion = kArrayLengths;
- } else if (offset == JSObject::kMapOffset) {
- portion = kMaps;
- }
- return HObjectAccess(portion, offset);
-}
-
-
-HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset,
- Representation representation) {
- DCHECK(offset >= 0);
- return HObjectAccess(kBackingStore, offset, representation,
- Handle<String>::null(), false, false);
-}
-
-
-HObjectAccess HObjectAccess::ForField(Handle<Map> map, int index,
- Representation representation,
- Handle<Name> name) {
- if (index < 0) {
- // Negative property indices are in-object properties, indexed
- // from the end of the fixed part of the object.
- int offset = (index * kPointerSize) + map->instance_size();
- return HObjectAccess(kInobject, offset, representation, name, false, true);
- } else {
- // Non-negative property indices are in the properties array.
- int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
- return HObjectAccess(kBackingStore, offset, representation, name,
- false, false);
- }
-}
-
-
-void HObjectAccess::SetGVNFlags(HValue *instr, PropertyAccessType access_type) {
- // set the appropriate GVN flags for a given load or store instruction
- if (access_type == STORE) {
- // track dominating allocations in order to eliminate write barriers
- instr->SetDependsOnFlag(::v8::internal::kNewSpacePromotion);
- instr->SetFlag(HValue::kTrackSideEffectDominators);
- } else {
- // try to GVN loads, but don't hoist above map changes
- instr->SetFlag(HValue::kUseGVN);
- instr->SetDependsOnFlag(::v8::internal::kMaps);
- }
-
- switch (portion()) {
- case kArrayLengths:
- if (access_type == STORE) {
- instr->SetChangesFlag(::v8::internal::kArrayLengths);
- } else {
- instr->SetDependsOnFlag(::v8::internal::kArrayLengths);
- }
- break;
- case kStringLengths:
- if (access_type == STORE) {
- instr->SetChangesFlag(::v8::internal::kStringLengths);
- } else {
- instr->SetDependsOnFlag(::v8::internal::kStringLengths);
- }
- break;
- case kInobject:
- if (access_type == STORE) {
- instr->SetChangesFlag(::v8::internal::kInobjectFields);
- } else {
- instr->SetDependsOnFlag(::v8::internal::kInobjectFields);
- }
- break;
- case kDouble:
- if (access_type == STORE) {
- instr->SetChangesFlag(::v8::internal::kDoubleFields);
- } else {
- instr->SetDependsOnFlag(::v8::internal::kDoubleFields);
- }
- break;
- case kBackingStore:
- if (access_type == STORE) {
- instr->SetChangesFlag(::v8::internal::kBackingStoreFields);
- } else {
- instr->SetDependsOnFlag(::v8::internal::kBackingStoreFields);
- }
- break;
- case kElementsPointer:
- if (access_type == STORE) {
- instr->SetChangesFlag(::v8::internal::kElementsPointer);
- } else {
- instr->SetDependsOnFlag(::v8::internal::kElementsPointer);
- }
- break;
- case kMaps:
- if (access_type == STORE) {
- instr->SetChangesFlag(::v8::internal::kMaps);
- } else {
- instr->SetDependsOnFlag(::v8::internal::kMaps);
- }
- break;
- case kExternalMemory:
- if (access_type == STORE) {
- instr->SetChangesFlag(::v8::internal::kExternalMemory);
- } else {
- instr->SetDependsOnFlag(::v8::internal::kExternalMemory);
- }
- break;
- }
-}
-
-
-std::ostream& operator<<(std::ostream& os, const HObjectAccess& access) {
- os << ".";
-
- switch (access.portion()) {
- case HObjectAccess::kArrayLengths:
- case HObjectAccess::kStringLengths:
- os << "%length";
- break;
- case HObjectAccess::kElementsPointer:
- os << "%elements";
- break;
- case HObjectAccess::kMaps:
- os << "%map";
- break;
- case HObjectAccess::kDouble: // fall through
- case HObjectAccess::kInobject:
- if (!access.name().is_null()) {
- os << Handle<String>::cast(access.name())->ToCString().get();
- }
- os << "[in-object]";
- break;
- case HObjectAccess::kBackingStore:
- if (!access.name().is_null()) {
- os << Handle<String>::cast(access.name())->ToCString().get();
- }
- os << "[backing-store]";
- break;
- case HObjectAccess::kExternalMemory:
- os << "[external-memory]";
- break;
- }
-
- return os << "@" << access.offset();
-}
-
-} // namespace internal
-} // namespace v8
« no previous file with comments | « src/hydrogen-instructions.h ('k') | src/hydrogen-load-elimination.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698