Index: src/hydrogen-instructions.cc |
diff --git a/src/hydrogen-instructions.cc b/src/hydrogen-instructions.cc |
deleted file mode 100644 |
index 4482155fbead2242b6785ad60ddd8d5d8729c731..0000000000000000000000000000000000000000 |
--- a/src/hydrogen-instructions.cc |
+++ /dev/null |
@@ -1,4716 +0,0 @@ |
-// Copyright 2012 the V8 project authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "src/hydrogen-instructions.h" |
- |
-#include "src/base/bits.h" |
-#include "src/double.h" |
-#include "src/elements.h" |
-#include "src/factory.h" |
-#include "src/hydrogen-infer-representation.h" |
- |
-#if V8_TARGET_ARCH_IA32 |
-#include "src/ia32/lithium-ia32.h" // NOLINT |
-#elif V8_TARGET_ARCH_X64 |
-#include "src/x64/lithium-x64.h" // NOLINT |
-#elif V8_TARGET_ARCH_ARM64 |
-#include "src/arm64/lithium-arm64.h" // NOLINT |
-#elif V8_TARGET_ARCH_ARM |
-#include "src/arm/lithium-arm.h" // NOLINT |
-#elif V8_TARGET_ARCH_PPC |
-#include "src/ppc/lithium-ppc.h" // NOLINT |
-#elif V8_TARGET_ARCH_MIPS |
-#include "src/mips/lithium-mips.h" // NOLINT |
-#elif V8_TARGET_ARCH_MIPS64 |
-#include "src/mips64/lithium-mips64.h" // NOLINT |
-#elif V8_TARGET_ARCH_X87 |
-#include "src/x87/lithium-x87.h" // NOLINT |
-#else |
-#error Unsupported target architecture. |
-#endif |
- |
-#include "src/base/safe_math.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
-#define DEFINE_COMPILE(type) \ |
- LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) { \ |
- return builder->Do##type(this); \ |
- } |
-HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE) |
-#undef DEFINE_COMPILE |
- |
- |
-Isolate* HValue::isolate() const { |
- DCHECK(block() != NULL); |
- return block()->isolate(); |
-} |
- |
- |
-void HValue::AssumeRepresentation(Representation r) { |
- if (CheckFlag(kFlexibleRepresentation)) { |
- ChangeRepresentation(r); |
- // The representation of the value is dictated by type feedback and |
- // will not be changed later. |
- ClearFlag(kFlexibleRepresentation); |
- } |
-} |
- |
- |
-void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) { |
- DCHECK(CheckFlag(kFlexibleRepresentation)); |
- Representation new_rep = RepresentationFromInputs(); |
- UpdateRepresentation(new_rep, h_infer, "inputs"); |
- new_rep = RepresentationFromUses(); |
- UpdateRepresentation(new_rep, h_infer, "uses"); |
- if (representation().IsSmi() && HasNonSmiUse()) { |
- UpdateRepresentation( |
- Representation::Integer32(), h_infer, "use requirements"); |
- } |
-} |
- |
- |
-Representation HValue::RepresentationFromUses() { |
- if (HasNoUses()) return Representation::None(); |
- Representation result = Representation::None(); |
- |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) { |
- HValue* use = it.value(); |
- Representation rep = use->observed_input_representation(it.index()); |
- result = result.generalize(rep); |
- |
- if (FLAG_trace_representation) { |
- PrintF("#%d %s is used by #%d %s as %s%s\n", |
- id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(), |
- (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : "")); |
- } |
- } |
- if (IsPhi()) { |
- result = result.generalize( |
- HPhi::cast(this)->representation_from_indirect_uses()); |
- } |
- |
- // External representations are dealt with separately. |
- return result.IsExternal() ? Representation::None() : result; |
-} |
- |
- |
-void HValue::UpdateRepresentation(Representation new_rep, |
- HInferRepresentationPhase* h_infer, |
- const char* reason) { |
- Representation r = representation(); |
- if (new_rep.is_more_general_than(r)) { |
- if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return; |
- if (FLAG_trace_representation) { |
- PrintF("Changing #%d %s representation %s -> %s based on %s\n", |
- id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason); |
- } |
- ChangeRepresentation(new_rep); |
- AddDependantsToWorklist(h_infer); |
- } |
-} |
- |
- |
-void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) { |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) { |
- h_infer->AddToWorklist(it.value()); |
- } |
- for (int i = 0; i < OperandCount(); ++i) { |
- h_infer->AddToWorklist(OperandAt(i)); |
- } |
-} |
- |
- |
-static int32_t ConvertAndSetOverflow(Representation r, |
- int64_t result, |
- bool* overflow) { |
- if (r.IsSmi()) { |
- if (result > Smi::kMaxValue) { |
- *overflow = true; |
- return Smi::kMaxValue; |
- } |
- if (result < Smi::kMinValue) { |
- *overflow = true; |
- return Smi::kMinValue; |
- } |
- } else { |
- if (result > kMaxInt) { |
- *overflow = true; |
- return kMaxInt; |
- } |
- if (result < kMinInt) { |
- *overflow = true; |
- return kMinInt; |
- } |
- } |
- return static_cast<int32_t>(result); |
-} |
- |
- |
-static int32_t AddWithoutOverflow(Representation r, |
- int32_t a, |
- int32_t b, |
- bool* overflow) { |
- int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b); |
- return ConvertAndSetOverflow(r, result, overflow); |
-} |
- |
- |
-static int32_t SubWithoutOverflow(Representation r, |
- int32_t a, |
- int32_t b, |
- bool* overflow) { |
- int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b); |
- return ConvertAndSetOverflow(r, result, overflow); |
-} |
- |
- |
-static int32_t MulWithoutOverflow(const Representation& r, |
- int32_t a, |
- int32_t b, |
- bool* overflow) { |
- int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b); |
- return ConvertAndSetOverflow(r, result, overflow); |
-} |
- |
- |
-int32_t Range::Mask() const { |
- if (lower_ == upper_) return lower_; |
- if (lower_ >= 0) { |
- int32_t res = 1; |
- while (res < upper_) { |
- res = (res << 1) | 1; |
- } |
- return res; |
- } |
- return 0xffffffff; |
-} |
- |
- |
-void Range::AddConstant(int32_t value) { |
- if (value == 0) return; |
- bool may_overflow = false; // Overflow is ignored here. |
- Representation r = Representation::Integer32(); |
- lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow); |
- upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow); |
-#ifdef DEBUG |
- Verify(); |
-#endif |
-} |
- |
- |
-void Range::Intersect(Range* other) { |
- upper_ = Min(upper_, other->upper_); |
- lower_ = Max(lower_, other->lower_); |
- bool b = CanBeMinusZero() && other->CanBeMinusZero(); |
- set_can_be_minus_zero(b); |
-} |
- |
- |
-void Range::Union(Range* other) { |
- upper_ = Max(upper_, other->upper_); |
- lower_ = Min(lower_, other->lower_); |
- bool b = CanBeMinusZero() || other->CanBeMinusZero(); |
- set_can_be_minus_zero(b); |
-} |
- |
- |
-void Range::CombinedMax(Range* other) { |
- upper_ = Max(upper_, other->upper_); |
- lower_ = Max(lower_, other->lower_); |
- set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero()); |
-} |
- |
- |
-void Range::CombinedMin(Range* other) { |
- upper_ = Min(upper_, other->upper_); |
- lower_ = Min(lower_, other->lower_); |
- set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero()); |
-} |
- |
- |
-void Range::Sar(int32_t value) { |
- int32_t bits = value & 0x1F; |
- lower_ = lower_ >> bits; |
- upper_ = upper_ >> bits; |
- set_can_be_minus_zero(false); |
-} |
- |
- |
-void Range::Shl(int32_t value) { |
- int32_t bits = value & 0x1F; |
- int old_lower = lower_; |
- int old_upper = upper_; |
- lower_ = lower_ << bits; |
- upper_ = upper_ << bits; |
- if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) { |
- upper_ = kMaxInt; |
- lower_ = kMinInt; |
- } |
- set_can_be_minus_zero(false); |
-} |
- |
- |
-bool Range::AddAndCheckOverflow(const Representation& r, Range* other) { |
- bool may_overflow = false; |
- lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow); |
- upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow); |
- KeepOrder(); |
-#ifdef DEBUG |
- Verify(); |
-#endif |
- return may_overflow; |
-} |
- |
- |
-bool Range::SubAndCheckOverflow(const Representation& r, Range* other) { |
- bool may_overflow = false; |
- lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow); |
- upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow); |
- KeepOrder(); |
-#ifdef DEBUG |
- Verify(); |
-#endif |
- return may_overflow; |
-} |
- |
- |
-void Range::KeepOrder() { |
- if (lower_ > upper_) { |
- int32_t tmp = lower_; |
- lower_ = upper_; |
- upper_ = tmp; |
- } |
-} |
- |
- |
-#ifdef DEBUG |
-void Range::Verify() const { |
- DCHECK(lower_ <= upper_); |
-} |
-#endif |
- |
- |
-bool Range::MulAndCheckOverflow(const Representation& r, Range* other) { |
- bool may_overflow = false; |
- int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow); |
- int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow); |
- int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow); |
- int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow); |
- lower_ = Min(Min(v1, v2), Min(v3, v4)); |
- upper_ = Max(Max(v1, v2), Max(v3, v4)); |
-#ifdef DEBUG |
- Verify(); |
-#endif |
- return may_overflow; |
-} |
- |
- |
-bool HValue::IsDefinedAfter(HBasicBlock* other) const { |
- return block()->block_id() > other->block_id(); |
-} |
- |
- |
-HUseListNode* HUseListNode::tail() { |
- // Skip and remove dead items in the use list. |
- while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) { |
- tail_ = tail_->tail_; |
- } |
- return tail_; |
-} |
- |
- |
-bool HValue::CheckUsesForFlag(Flag f) const { |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) { |
- if (it.value()->IsSimulate()) continue; |
- if (!it.value()->CheckFlag(f)) return false; |
- } |
- return true; |
-} |
- |
- |
-bool HValue::CheckUsesForFlag(Flag f, HValue** value) const { |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) { |
- if (it.value()->IsSimulate()) continue; |
- if (!it.value()->CheckFlag(f)) { |
- *value = it.value(); |
- return false; |
- } |
- } |
- return true; |
-} |
- |
- |
-bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const { |
- bool return_value = false; |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) { |
- if (it.value()->IsSimulate()) continue; |
- if (!it.value()->CheckFlag(f)) return false; |
- return_value = true; |
- } |
- return return_value; |
-} |
- |
- |
-HUseIterator::HUseIterator(HUseListNode* head) : next_(head) { |
- Advance(); |
-} |
- |
- |
-void HUseIterator::Advance() { |
- current_ = next_; |
- if (current_ != NULL) { |
- next_ = current_->tail(); |
- value_ = current_->value(); |
- index_ = current_->index(); |
- } |
-} |
- |
- |
-int HValue::UseCount() const { |
- int count = 0; |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count; |
- return count; |
-} |
- |
- |
-HUseListNode* HValue::RemoveUse(HValue* value, int index) { |
- HUseListNode* previous = NULL; |
- HUseListNode* current = use_list_; |
- while (current != NULL) { |
- if (current->value() == value && current->index() == index) { |
- if (previous == NULL) { |
- use_list_ = current->tail(); |
- } else { |
- previous->set_tail(current->tail()); |
- } |
- break; |
- } |
- |
- previous = current; |
- current = current->tail(); |
- } |
- |
-#ifdef DEBUG |
- // Do not reuse use list nodes in debug mode, zap them. |
- if (current != NULL) { |
- HUseListNode* temp = |
- new(block()->zone()) |
- HUseListNode(current->value(), current->index(), NULL); |
- current->Zap(); |
- current = temp; |
- } |
-#endif |
- return current; |
-} |
- |
- |
-bool HValue::Equals(HValue* other) { |
- if (other->opcode() != opcode()) return false; |
- if (!other->representation().Equals(representation())) return false; |
- if (!other->type_.Equals(type_)) return false; |
- if (other->flags() != flags()) return false; |
- if (OperandCount() != other->OperandCount()) return false; |
- for (int i = 0; i < OperandCount(); ++i) { |
- if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false; |
- } |
- bool result = DataEquals(other); |
- DCHECK(!result || Hashcode() == other->Hashcode()); |
- return result; |
-} |
- |
- |
-intptr_t HValue::Hashcode() { |
- intptr_t result = opcode(); |
- int count = OperandCount(); |
- for (int i = 0; i < count; ++i) { |
- result = result * 19 + OperandAt(i)->id() + (result >> 7); |
- } |
- return result; |
-} |
- |
- |
-const char* HValue::Mnemonic() const { |
- switch (opcode()) { |
-#define MAKE_CASE(type) case k##type: return #type; |
- HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE) |
-#undef MAKE_CASE |
- case kPhi: return "Phi"; |
- default: return ""; |
- } |
-} |
- |
- |
-bool HValue::CanReplaceWithDummyUses() { |
- return FLAG_unreachable_code_elimination && |
- !(block()->IsReachable() || |
- IsBlockEntry() || |
- IsControlInstruction() || |
- IsArgumentsObject() || |
- IsCapturedObject() || |
- IsSimulate() || |
- IsEnterInlined() || |
- IsLeaveInlined()); |
-} |
- |
- |
-bool HValue::IsInteger32Constant() { |
- return IsConstant() && HConstant::cast(this)->HasInteger32Value(); |
-} |
- |
- |
-int32_t HValue::GetInteger32Constant() { |
- return HConstant::cast(this)->Integer32Value(); |
-} |
- |
- |
-bool HValue::EqualsInteger32Constant(int32_t value) { |
- return IsInteger32Constant() && GetInteger32Constant() == value; |
-} |
- |
- |
-void HValue::SetOperandAt(int index, HValue* value) { |
- RegisterUse(index, value); |
- InternalSetOperandAt(index, value); |
-} |
- |
- |
-void HValue::DeleteAndReplaceWith(HValue* other) { |
- // We replace all uses first, so Delete can assert that there are none. |
- if (other != NULL) ReplaceAllUsesWith(other); |
- Kill(); |
- DeleteFromGraph(); |
-} |
- |
- |
-void HValue::ReplaceAllUsesWith(HValue* other) { |
- while (use_list_ != NULL) { |
- HUseListNode* list_node = use_list_; |
- HValue* value = list_node->value(); |
- DCHECK(!value->block()->IsStartBlock()); |
- value->InternalSetOperandAt(list_node->index(), other); |
- use_list_ = list_node->tail(); |
- list_node->set_tail(other->use_list_); |
- other->use_list_ = list_node; |
- } |
-} |
- |
- |
-void HValue::Kill() { |
- // Instead of going through the entire use list of each operand, we only |
- // check the first item in each use list and rely on the tail() method to |
- // skip dead items, removing them lazily next time we traverse the list. |
- SetFlag(kIsDead); |
- for (int i = 0; i < OperandCount(); ++i) { |
- HValue* operand = OperandAt(i); |
- if (operand == NULL) continue; |
- HUseListNode* first = operand->use_list_; |
- if (first != NULL && first->value()->CheckFlag(kIsDead)) { |
- operand->use_list_ = first->tail(); |
- } |
- } |
-} |
- |
- |
-void HValue::SetBlock(HBasicBlock* block) { |
- DCHECK(block_ == NULL || block == NULL); |
- block_ = block; |
- if (id_ == kNoNumber && block != NULL) { |
- id_ = block->graph()->GetNextValueID(this); |
- } |
-} |
- |
- |
-std::ostream& operator<<(std::ostream& os, const HValue& v) { |
- return v.PrintTo(os); |
-} |
- |
- |
-std::ostream& operator<<(std::ostream& os, const TypeOf& t) { |
- if (t.value->representation().IsTagged() && |
- !t.value->type().Equals(HType::Tagged())) |
- return os; |
- return os << " type:" << t.value->type(); |
-} |
- |
- |
-std::ostream& operator<<(std::ostream& os, const ChangesOf& c) { |
- GVNFlagSet changes_flags = c.value->ChangesFlags(); |
- if (changes_flags.IsEmpty()) return os; |
- os << " changes["; |
- if (changes_flags == c.value->AllSideEffectsFlagSet()) { |
- os << "*"; |
- } else { |
- bool add_comma = false; |
-#define PRINT_DO(Type) \ |
- if (changes_flags.Contains(k##Type)) { \ |
- if (add_comma) os << ","; \ |
- add_comma = true; \ |
- os << #Type; \ |
- } |
- GVN_TRACKED_FLAG_LIST(PRINT_DO); |
- GVN_UNTRACKED_FLAG_LIST(PRINT_DO); |
-#undef PRINT_DO |
- } |
- return os << "]"; |
-} |
- |
- |
-bool HValue::HasMonomorphicJSObjectType() { |
- return !GetMonomorphicJSObjectMap().is_null(); |
-} |
- |
- |
-bool HValue::UpdateInferredType() { |
- HType type = CalculateInferredType(); |
- bool result = (!type.Equals(type_)); |
- type_ = type; |
- return result; |
-} |
- |
- |
-void HValue::RegisterUse(int index, HValue* new_value) { |
- HValue* old_value = OperandAt(index); |
- if (old_value == new_value) return; |
- |
- HUseListNode* removed = NULL; |
- if (old_value != NULL) { |
- removed = old_value->RemoveUse(this, index); |
- } |
- |
- if (new_value != NULL) { |
- if (removed == NULL) { |
- new_value->use_list_ = new(new_value->block()->zone()) HUseListNode( |
- this, index, new_value->use_list_); |
- } else { |
- removed->set_tail(new_value->use_list_); |
- new_value->use_list_ = removed; |
- } |
- } |
-} |
- |
- |
-void HValue::AddNewRange(Range* r, Zone* zone) { |
- if (!HasRange()) ComputeInitialRange(zone); |
- if (!HasRange()) range_ = new(zone) Range(); |
- DCHECK(HasRange()); |
- r->StackUpon(range_); |
- range_ = r; |
-} |
- |
- |
-void HValue::RemoveLastAddedRange() { |
- DCHECK(HasRange()); |
- DCHECK(range_->next() != NULL); |
- range_ = range_->next(); |
-} |
- |
- |
-void HValue::ComputeInitialRange(Zone* zone) { |
- DCHECK(!HasRange()); |
- range_ = InferRange(zone); |
- DCHECK(HasRange()); |
-} |
- |
- |
-std::ostream& HInstruction::PrintTo(std::ostream& os) const { // NOLINT |
- os << Mnemonic() << " "; |
- PrintDataTo(os) << ChangesOf(this) << TypeOf(this); |
- if (CheckFlag(HValue::kHasNoObservableSideEffects)) os << " [noOSE]"; |
- if (CheckFlag(HValue::kIsDead)) os << " [dead]"; |
- return os; |
-} |
- |
- |
-std::ostream& HInstruction::PrintDataTo(std::ostream& os) const { // NOLINT |
- for (int i = 0; i < OperandCount(); ++i) { |
- if (i > 0) os << " "; |
- os << NameOf(OperandAt(i)); |
- } |
- return os; |
-} |
- |
- |
-void HInstruction::Unlink() { |
- DCHECK(IsLinked()); |
- DCHECK(!IsControlInstruction()); // Must never move control instructions. |
- DCHECK(!IsBlockEntry()); // Doesn't make sense to delete these. |
- DCHECK(previous_ != NULL); |
- previous_->next_ = next_; |
- if (next_ == NULL) { |
- DCHECK(block()->last() == this); |
- block()->set_last(previous_); |
- } else { |
- next_->previous_ = previous_; |
- } |
- clear_block(); |
-} |
- |
- |
-void HInstruction::InsertBefore(HInstruction* next) { |
- DCHECK(!IsLinked()); |
- DCHECK(!next->IsBlockEntry()); |
- DCHECK(!IsControlInstruction()); |
- DCHECK(!next->block()->IsStartBlock()); |
- DCHECK(next->previous_ != NULL); |
- HInstruction* prev = next->previous(); |
- prev->next_ = this; |
- next->previous_ = this; |
- next_ = next; |
- previous_ = prev; |
- SetBlock(next->block()); |
- if (!has_position() && next->has_position()) { |
- set_position(next->position()); |
- } |
-} |
- |
- |
-void HInstruction::InsertAfter(HInstruction* previous) { |
- DCHECK(!IsLinked()); |
- DCHECK(!previous->IsControlInstruction()); |
- DCHECK(!IsControlInstruction() || previous->next_ == NULL); |
- HBasicBlock* block = previous->block(); |
- // Never insert anything except constants into the start block after finishing |
- // it. |
- if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) { |
- DCHECK(block->end()->SecondSuccessor() == NULL); |
- InsertAfter(block->end()->FirstSuccessor()->first()); |
- return; |
- } |
- |
- // If we're inserting after an instruction with side-effects that is |
- // followed by a simulate instruction, we need to insert after the |
- // simulate instruction instead. |
- HInstruction* next = previous->next_; |
- if (previous->HasObservableSideEffects() && next != NULL) { |
- DCHECK(next->IsSimulate()); |
- previous = next; |
- next = previous->next_; |
- } |
- |
- previous_ = previous; |
- next_ = next; |
- SetBlock(block); |
- previous->next_ = this; |
- if (next != NULL) next->previous_ = this; |
- if (block->last() == previous) { |
- block->set_last(this); |
- } |
- if (!has_position() && previous->has_position()) { |
- set_position(previous->position()); |
- } |
-} |
- |
- |
-bool HInstruction::Dominates(HInstruction* other) { |
- if (block() != other->block()) { |
- return block()->Dominates(other->block()); |
- } |
- // Both instructions are in the same basic block. This instruction |
- // should precede the other one in order to dominate it. |
- for (HInstruction* instr = next(); instr != NULL; instr = instr->next()) { |
- if (instr == other) { |
- return true; |
- } |
- } |
- return false; |
-} |
- |
- |
-#ifdef DEBUG |
-void HInstruction::Verify() { |
- // Verify that input operands are defined before use. |
- HBasicBlock* cur_block = block(); |
- for (int i = 0; i < OperandCount(); ++i) { |
- HValue* other_operand = OperandAt(i); |
- if (other_operand == NULL) continue; |
- HBasicBlock* other_block = other_operand->block(); |
- if (cur_block == other_block) { |
- if (!other_operand->IsPhi()) { |
- HInstruction* cur = this->previous(); |
- while (cur != NULL) { |
- if (cur == other_operand) break; |
- cur = cur->previous(); |
- } |
- // Must reach other operand in the same block! |
- DCHECK(cur == other_operand); |
- } |
- } else { |
- // If the following assert fires, you may have forgotten an |
- // AddInstruction. |
- DCHECK(other_block->Dominates(cur_block)); |
- } |
- } |
- |
- // Verify that instructions that may have side-effects are followed |
- // by a simulate instruction. |
- if (HasObservableSideEffects() && !IsOsrEntry()) { |
- DCHECK(next()->IsSimulate()); |
- } |
- |
- // Verify that instructions that can be eliminated by GVN have overridden |
- // HValue::DataEquals. The default implementation is UNREACHABLE. We |
- // don't actually care whether DataEquals returns true or false here. |
- if (CheckFlag(kUseGVN)) DataEquals(this); |
- |
- // Verify that all uses are in the graph. |
- for (HUseIterator use = uses(); !use.Done(); use.Advance()) { |
- if (use.value()->IsInstruction()) { |
- DCHECK(HInstruction::cast(use.value())->IsLinked()); |
- } |
- } |
-} |
-#endif |
- |
- |
-bool HInstruction::CanDeoptimize() { |
- // TODO(titzer): make this a virtual method? |
- switch (opcode()) { |
- case HValue::kAbnormalExit: |
- case HValue::kAccessArgumentsAt: |
- case HValue::kAllocate: |
- case HValue::kArgumentsElements: |
- case HValue::kArgumentsLength: |
- case HValue::kArgumentsObject: |
- case HValue::kBlockEntry: |
- case HValue::kBoundsCheckBaseIndexInformation: |
- case HValue::kCallFunction: |
- case HValue::kCallNew: |
- case HValue::kCallNewArray: |
- case HValue::kCallStub: |
- case HValue::kCapturedObject: |
- case HValue::kClassOfTestAndBranch: |
- case HValue::kCompareGeneric: |
- case HValue::kCompareHoleAndBranch: |
- case HValue::kCompareMap: |
- case HValue::kCompareMinusZeroAndBranch: |
- case HValue::kCompareNumericAndBranch: |
- case HValue::kCompareObjectEqAndBranch: |
- case HValue::kConstant: |
- case HValue::kConstructDouble: |
- case HValue::kContext: |
- case HValue::kDebugBreak: |
- case HValue::kDeclareGlobals: |
- case HValue::kDoubleBits: |
- case HValue::kDummyUse: |
- case HValue::kEnterInlined: |
- case HValue::kEnvironmentMarker: |
- case HValue::kForceRepresentation: |
- case HValue::kGetCachedArrayIndex: |
- case HValue::kGoto: |
- case HValue::kHasCachedArrayIndexAndBranch: |
- case HValue::kHasInstanceTypeAndBranch: |
- case HValue::kInnerAllocatedObject: |
- case HValue::kInstanceOf: |
- case HValue::kIsConstructCallAndBranch: |
- case HValue::kHasInPrototypeChainAndBranch: |
- case HValue::kIsSmiAndBranch: |
- case HValue::kIsStringAndBranch: |
- case HValue::kIsUndetectableAndBranch: |
- case HValue::kLeaveInlined: |
- case HValue::kLoadFieldByIndex: |
- case HValue::kLoadGlobalGeneric: |
- case HValue::kLoadGlobalViaContext: |
- case HValue::kLoadNamedField: |
- case HValue::kLoadNamedGeneric: |
- case HValue::kLoadRoot: |
- case HValue::kMapEnumLength: |
- case HValue::kMathMinMax: |
- case HValue::kParameter: |
- case HValue::kPhi: |
- case HValue::kPushArguments: |
- case HValue::kRegExpLiteral: |
- case HValue::kReturn: |
- case HValue::kSeqStringGetChar: |
- case HValue::kStoreCodeEntry: |
- case HValue::kStoreFrameContext: |
- case HValue::kStoreGlobalViaContext: |
- case HValue::kStoreKeyed: |
- case HValue::kStoreNamedField: |
- case HValue::kStoreNamedGeneric: |
- case HValue::kStringCharCodeAt: |
- case HValue::kStringCharFromCode: |
- case HValue::kThisFunction: |
- case HValue::kTypeofIsAndBranch: |
- case HValue::kUnknownOSRValue: |
- case HValue::kUseConst: |
- return false; |
- |
- case HValue::kAdd: |
- case HValue::kAllocateBlockContext: |
- case HValue::kApplyArguments: |
- case HValue::kBitwise: |
- case HValue::kBoundsCheck: |
- case HValue::kBranch: |
- case HValue::kCallJSFunction: |
- case HValue::kCallRuntime: |
- case HValue::kCallWithDescriptor: |
- case HValue::kChange: |
- case HValue::kCheckArrayBufferNotNeutered: |
- case HValue::kCheckHeapObject: |
- case HValue::kCheckInstanceType: |
- case HValue::kCheckMapValue: |
- case HValue::kCheckMaps: |
- case HValue::kCheckSmi: |
- case HValue::kCheckValue: |
- case HValue::kClampToUint8: |
- case HValue::kDateField: |
- case HValue::kDeoptimize: |
- case HValue::kDiv: |
- case HValue::kForInCacheArray: |
- case HValue::kForInPrepareMap: |
- case HValue::kInvokeFunction: |
- case HValue::kLoadContextSlot: |
- case HValue::kLoadFunctionPrototype: |
- case HValue::kLoadKeyed: |
- case HValue::kLoadKeyedGeneric: |
- case HValue::kMathFloorOfDiv: |
- case HValue::kMaybeGrowElements: |
- case HValue::kMod: |
- case HValue::kMul: |
- case HValue::kOsrEntry: |
- case HValue::kPower: |
- case HValue::kPrologue: |
- case HValue::kRor: |
- case HValue::kSar: |
- case HValue::kSeqStringSetChar: |
- case HValue::kShl: |
- case HValue::kShr: |
- case HValue::kSimulate: |
- case HValue::kStackCheck: |
- case HValue::kStoreContextSlot: |
- case HValue::kStoreKeyedGeneric: |
- case HValue::kStringAdd: |
- case HValue::kStringCompareAndBranch: |
- case HValue::kSub: |
- case HValue::kToFastProperties: |
- case HValue::kTransitionElementsKind: |
- case HValue::kTrapAllocationMemento: |
- case HValue::kTypeof: |
- case HValue::kUnaryMathOperation: |
- case HValue::kWrapReceiver: |
- return true; |
- } |
- UNREACHABLE(); |
- return true; |
-} |
- |
- |
-std::ostream& operator<<(std::ostream& os, const NameOf& v) { |
- return os << v.value->representation().Mnemonic() << v.value->id(); |
-} |
- |
-std::ostream& HDummyUse::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(value()); |
-} |
- |
- |
-std::ostream& HEnvironmentMarker::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << (kind() == BIND ? "bind" : "lookup") << " var[" << index() |
- << "]"; |
-} |
- |
- |
-std::ostream& HUnaryCall::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(value()) << " #" << argument_count(); |
-} |
- |
- |
-std::ostream& HCallJSFunction::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(function()) << " #" << argument_count(); |
-} |
- |
- |
-HCallJSFunction* HCallJSFunction::New(Isolate* isolate, Zone* zone, |
- HValue* context, HValue* function, |
- int argument_count) { |
- bool has_stack_check = false; |
- if (function->IsConstant()) { |
- HConstant* fun_const = HConstant::cast(function); |
- Handle<JSFunction> jsfun = |
- Handle<JSFunction>::cast(fun_const->handle(isolate)); |
- has_stack_check = !jsfun.is_null() && |
- (jsfun->code()->kind() == Code::FUNCTION || |
- jsfun->code()->kind() == Code::OPTIMIZED_FUNCTION); |
- } |
- |
- return new (zone) HCallJSFunction(function, argument_count, has_stack_check); |
-} |
- |
- |
-std::ostream& HBinaryCall::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(first()) << " " << NameOf(second()) << " #" |
- << argument_count(); |
-} |
- |
- |
-std::ostream& HCallFunction::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << NameOf(context()) << " " << NameOf(function()); |
- if (HasVectorAndSlot()) { |
- os << " (type-feedback-vector icslot " << slot().ToInt() << ")"; |
- } |
- return os; |
-} |
- |
- |
-void HBoundsCheck::ApplyIndexChange() { |
- if (skip_check()) return; |
- |
- DecompositionResult decomposition; |
- bool index_is_decomposable = index()->TryDecompose(&decomposition); |
- if (index_is_decomposable) { |
- DCHECK(decomposition.base() == base()); |
- if (decomposition.offset() == offset() && |
- decomposition.scale() == scale()) return; |
- } else { |
- return; |
- } |
- |
- ReplaceAllUsesWith(index()); |
- |
- HValue* current_index = decomposition.base(); |
- int actual_offset = decomposition.offset() + offset(); |
- int actual_scale = decomposition.scale() + scale(); |
- |
- HGraph* graph = block()->graph(); |
- Isolate* isolate = graph->isolate(); |
- Zone* zone = graph->zone(); |
- HValue* context = graph->GetInvalidContext(); |
- if (actual_offset != 0) { |
- HConstant* add_offset = |
- HConstant::New(isolate, zone, context, actual_offset); |
- add_offset->InsertBefore(this); |
- HInstruction* add = |
- HAdd::New(isolate, zone, context, current_index, add_offset); |
- add->InsertBefore(this); |
- add->AssumeRepresentation(index()->representation()); |
- add->ClearFlag(kCanOverflow); |
- current_index = add; |
- } |
- |
- if (actual_scale != 0) { |
- HConstant* sar_scale = HConstant::New(isolate, zone, context, actual_scale); |
- sar_scale->InsertBefore(this); |
- HInstruction* sar = |
- HSar::New(isolate, zone, context, current_index, sar_scale); |
- sar->InsertBefore(this); |
- sar->AssumeRepresentation(index()->representation()); |
- current_index = sar; |
- } |
- |
- SetOperandAt(0, current_index); |
- |
- base_ = NULL; |
- offset_ = 0; |
- scale_ = 0; |
-} |
- |
- |
-std::ostream& HBoundsCheck::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << NameOf(index()) << " " << NameOf(length()); |
- if (base() != NULL && (offset() != 0 || scale() != 0)) { |
- os << " base: (("; |
- if (base() != index()) { |
- os << NameOf(index()); |
- } else { |
- os << "index"; |
- } |
- os << " + " << offset() << ") >> " << scale() << ")"; |
- } |
- if (skip_check()) os << " [DISABLED]"; |
- return os; |
-} |
- |
- |
-void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) { |
- DCHECK(CheckFlag(kFlexibleRepresentation)); |
- HValue* actual_index = index()->ActualValue(); |
- HValue* actual_length = length()->ActualValue(); |
- Representation index_rep = actual_index->representation(); |
- Representation length_rep = actual_length->representation(); |
- if (index_rep.IsTagged() && actual_index->type().IsSmi()) { |
- index_rep = Representation::Smi(); |
- } |
- if (length_rep.IsTagged() && actual_length->type().IsSmi()) { |
- length_rep = Representation::Smi(); |
- } |
- Representation r = index_rep.generalize(length_rep); |
- if (r.is_more_general_than(Representation::Integer32())) { |
- r = Representation::Integer32(); |
- } |
- UpdateRepresentation(r, h_infer, "boundscheck"); |
-} |
- |
- |
-Range* HBoundsCheck::InferRange(Zone* zone) { |
- Representation r = representation(); |
- if (r.IsSmiOrInteger32() && length()->HasRange()) { |
- int upper = length()->range()->upper() - (allow_equality() ? 0 : 1); |
- int lower = 0; |
- |
- Range* result = new(zone) Range(lower, upper); |
- if (index()->HasRange()) { |
- result->Intersect(index()->range()); |
- } |
- |
- // In case of Smi representation, clamp result to Smi::kMaxValue. |
- if (r.IsSmi()) result->ClampToSmi(); |
- return result; |
- } |
- return HValue::InferRange(zone); |
-} |
- |
- |
-std::ostream& HBoundsCheckBaseIndexInformation::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- // TODO(svenpanne) This 2nd base_index() looks wrong... |
- return os << "base: " << NameOf(base_index()) |
- << ", check: " << NameOf(base_index()); |
-} |
- |
- |
-std::ostream& HCallWithDescriptor::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- for (int i = 0; i < OperandCount(); i++) { |
- os << NameOf(OperandAt(i)) << " "; |
- } |
- return os << "#" << argument_count(); |
-} |
- |
- |
-std::ostream& HCallNewArray::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << ElementsKindToString(elements_kind()) << " "; |
- return HBinaryCall::PrintDataTo(os); |
-} |
- |
- |
-std::ostream& HCallRuntime::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << function()->name << " "; |
- if (save_doubles() == kSaveFPRegs) os << "[save doubles] "; |
- return os << "#" << argument_count(); |
-} |
- |
- |
-std::ostream& HClassOfTestAndBranch::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << "class_of_test(" << NameOf(value()) << ", \"" |
- << class_name()->ToCString().get() << "\")"; |
-} |
- |
- |
-std::ostream& HWrapReceiver::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(receiver()) << " " << NameOf(function()); |
-} |
- |
- |
-std::ostream& HAccessArgumentsAt::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << NameOf(arguments()) << "[" << NameOf(index()) << "], length " |
- << NameOf(length()); |
-} |
- |
- |
-std::ostream& HAllocateBlockContext::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << NameOf(context()) << " " << NameOf(function()); |
-} |
- |
- |
-std::ostream& HControlInstruction::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- os << " goto ("; |
- bool first_block = true; |
- for (HSuccessorIterator it(this); !it.Done(); it.Advance()) { |
- if (!first_block) os << ", "; |
- os << *it.Current(); |
- first_block = false; |
- } |
- return os << ")"; |
-} |
- |
- |
-std::ostream& HUnaryControlInstruction::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- os << NameOf(value()); |
- return HControlInstruction::PrintDataTo(os); |
-} |
- |
- |
-std::ostream& HReturn::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(value()) << " (pop " << NameOf(parameter_count()) |
- << " values)"; |
-} |
- |
- |
-Representation HBranch::observed_input_representation(int index) { |
- if (expected_input_types_.Contains(ToBooleanStub::NULL_TYPE) || |
- expected_input_types_.Contains(ToBooleanStub::SPEC_OBJECT) || |
- expected_input_types_.Contains(ToBooleanStub::STRING) || |
- expected_input_types_.Contains(ToBooleanStub::SYMBOL) || |
- expected_input_types_.Contains(ToBooleanStub::SIMD_VALUE)) { |
- return Representation::Tagged(); |
- } |
- if (expected_input_types_.Contains(ToBooleanStub::UNDEFINED)) { |
- if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) { |
- return Representation::Double(); |
- } |
- return Representation::Tagged(); |
- } |
- if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) { |
- return Representation::Double(); |
- } |
- if (expected_input_types_.Contains(ToBooleanStub::SMI)) { |
- return Representation::Smi(); |
- } |
- return Representation::None(); |
-} |
- |
- |
-bool HBranch::KnownSuccessorBlock(HBasicBlock** block) { |
- HValue* value = this->value(); |
- if (value->EmitAtUses()) { |
- DCHECK(value->IsConstant()); |
- DCHECK(!value->representation().IsDouble()); |
- *block = HConstant::cast(value)->BooleanValue() |
- ? FirstSuccessor() |
- : SecondSuccessor(); |
- return true; |
- } |
- *block = NULL; |
- return false; |
-} |
- |
- |
-std::ostream& HBranch::PrintDataTo(std::ostream& os) const { // NOLINT |
- return HUnaryControlInstruction::PrintDataTo(os) << " " |
- << expected_input_types(); |
-} |
- |
- |
-std::ostream& HCompareMap::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << NameOf(value()) << " (" << *map().handle() << ")"; |
- HControlInstruction::PrintDataTo(os); |
- if (known_successor_index() == 0) { |
- os << " [true]"; |
- } else if (known_successor_index() == 1) { |
- os << " [false]"; |
- } |
- return os; |
-} |
- |
- |
-const char* HUnaryMathOperation::OpName() const { |
- switch (op()) { |
- case kMathFloor: |
- return "floor"; |
- case kMathFround: |
- return "fround"; |
- case kMathRound: |
- return "round"; |
- case kMathAbs: |
- return "abs"; |
- case kMathLog: |
- return "log"; |
- case kMathExp: |
- return "exp"; |
- case kMathSqrt: |
- return "sqrt"; |
- case kMathPowHalf: |
- return "pow-half"; |
- case kMathClz32: |
- return "clz32"; |
- default: |
- UNREACHABLE(); |
- return NULL; |
- } |
-} |
- |
- |
-Range* HUnaryMathOperation::InferRange(Zone* zone) { |
- Representation r = representation(); |
- if (op() == kMathClz32) return new(zone) Range(0, 32); |
- if (r.IsSmiOrInteger32() && value()->HasRange()) { |
- if (op() == kMathAbs) { |
- int upper = value()->range()->upper(); |
- int lower = value()->range()->lower(); |
- bool spans_zero = value()->range()->CanBeZero(); |
- // Math.abs(kMinInt) overflows its representation, on which the |
- // instruction deopts. Hence clamp it to kMaxInt. |
- int abs_upper = upper == kMinInt ? kMaxInt : abs(upper); |
- int abs_lower = lower == kMinInt ? kMaxInt : abs(lower); |
- Range* result = |
- new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper), |
- Max(abs_lower, abs_upper)); |
- // In case of Smi representation, clamp Math.abs(Smi::kMinValue) to |
- // Smi::kMaxValue. |
- if (r.IsSmi()) result->ClampToSmi(); |
- return result; |
- } |
- } |
- return HValue::InferRange(zone); |
-} |
- |
- |
-std::ostream& HUnaryMathOperation::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << OpName() << " " << NameOf(value()); |
-} |
- |
- |
-std::ostream& HUnaryOperation::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(value()); |
-} |
- |
- |
-std::ostream& HHasInstanceTypeAndBranch::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- os << NameOf(value()); |
- switch (from_) { |
- case FIRST_JS_RECEIVER_TYPE: |
- if (to_ == LAST_TYPE) os << " spec_object"; |
- break; |
- case JS_REGEXP_TYPE: |
- if (to_ == JS_REGEXP_TYPE) os << " reg_exp"; |
- break; |
- case JS_ARRAY_TYPE: |
- if (to_ == JS_ARRAY_TYPE) os << " array"; |
- break; |
- case JS_FUNCTION_TYPE: |
- if (to_ == JS_FUNCTION_TYPE) os << " function"; |
- break; |
- default: |
- break; |
- } |
- return os; |
-} |
- |
- |
-std::ostream& HTypeofIsAndBranch::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- os << NameOf(value()) << " == " << type_literal()->ToCString().get(); |
- return HControlInstruction::PrintDataTo(os); |
-} |
- |
- |
-namespace { |
- |
-String* TypeOfString(HConstant* constant, Isolate* isolate) { |
- Heap* heap = isolate->heap(); |
- if (constant->HasNumberValue()) return heap->number_string(); |
- if (constant->IsUndetectable()) return heap->undefined_string(); |
- if (constant->HasStringValue()) return heap->string_string(); |
- switch (constant->GetInstanceType()) { |
- case ODDBALL_TYPE: { |
- Unique<Object> unique = constant->GetUnique(); |
- if (unique.IsKnownGlobal(heap->true_value()) || |
- unique.IsKnownGlobal(heap->false_value())) { |
- return heap->boolean_string(); |
- } |
- if (unique.IsKnownGlobal(heap->null_value())) { |
- return heap->object_string(); |
- } |
- DCHECK(unique.IsKnownGlobal(heap->undefined_value())); |
- return heap->undefined_string(); |
- } |
- case SYMBOL_TYPE: |
- return heap->symbol_string(); |
- case SIMD128_VALUE_TYPE: { |
- Unique<Map> map = constant->ObjectMap(); |
-#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ |
- if (map.IsKnownGlobal(heap->type##_map())) { \ |
- return heap->type##_string(); \ |
- } |
- SIMD128_TYPES(SIMD128_TYPE) |
-#undef SIMD128_TYPE |
- UNREACHABLE(); |
- return nullptr; |
- } |
- default: |
- if (constant->IsCallable()) return heap->function_string(); |
- return heap->object_string(); |
- } |
-} |
- |
-} // namespace |
- |
- |
-bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) { |
- if (FLAG_fold_constants && value()->IsConstant()) { |
- HConstant* constant = HConstant::cast(value()); |
- String* type_string = TypeOfString(constant, isolate()); |
- bool same_type = type_literal_.IsKnownGlobal(type_string); |
- *block = same_type ? FirstSuccessor() : SecondSuccessor(); |
- return true; |
- } else if (value()->representation().IsSpecialization()) { |
- bool number_type = |
- type_literal_.IsKnownGlobal(isolate()->heap()->number_string()); |
- *block = number_type ? FirstSuccessor() : SecondSuccessor(); |
- return true; |
- } |
- *block = NULL; |
- return false; |
-} |
- |
- |
-std::ostream& HCheckMapValue::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(value()) << " " << NameOf(map()); |
-} |
- |
- |
-HValue* HCheckMapValue::Canonicalize() { |
- if (map()->IsConstant()) { |
- HConstant* c_map = HConstant::cast(map()); |
- return HCheckMaps::CreateAndInsertAfter( |
- block()->graph()->zone(), value(), c_map->MapValue(), |
- c_map->HasStableMapValue(), this); |
- } |
- return this; |
-} |
- |
- |
-std::ostream& HForInPrepareMap::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(enumerable()); |
-} |
- |
- |
-std::ostream& HForInCacheArray::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(enumerable()) << " " << NameOf(map()) << "[" << idx_ |
- << "]"; |
-} |
- |
- |
-std::ostream& HLoadFieldByIndex::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << NameOf(object()) << " " << NameOf(index()); |
-} |
- |
- |
-static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) { |
- if (!l->EqualsInteger32Constant(~0)) return false; |
- *negated = r; |
- return true; |
-} |
- |
- |
-static bool MatchNegationViaXor(HValue* instr, HValue** negated) { |
- if (!instr->IsBitwise()) return false; |
- HBitwise* b = HBitwise::cast(instr); |
- return (b->op() == Token::BIT_XOR) && |
- (MatchLeftIsOnes(b->left(), b->right(), negated) || |
- MatchLeftIsOnes(b->right(), b->left(), negated)); |
-} |
- |
- |
-static bool MatchDoubleNegation(HValue* instr, HValue** arg) { |
- HValue* negated; |
- return MatchNegationViaXor(instr, &negated) && |
- MatchNegationViaXor(negated, arg); |
-} |
- |
- |
-HValue* HBitwise::Canonicalize() { |
- if (!representation().IsSmiOrInteger32()) return this; |
- // If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x. |
- int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0; |
- if (left()->EqualsInteger32Constant(nop_constant) && |
- !right()->CheckFlag(kUint32)) { |
- return right(); |
- } |
- if (right()->EqualsInteger32Constant(nop_constant) && |
- !left()->CheckFlag(kUint32)) { |
- return left(); |
- } |
- // Optimize double negation, a common pattern used for ToInt32(x). |
- HValue* arg; |
- if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) { |
- return arg; |
- } |
- return this; |
-} |
- |
- |
-// static |
-HInstruction* HAdd::New(Isolate* isolate, Zone* zone, HValue* context, |
- HValue* left, HValue* right, Strength strength, |
- ExternalAddType external_add_type) { |
- // For everything else, you should use the other factory method without |
- // ExternalAddType. |
- DCHECK_EQ(external_add_type, AddOfExternalAndTagged); |
- return new (zone) HAdd(context, left, right, strength, external_add_type); |
-} |
- |
- |
-Representation HAdd::RepresentationFromInputs() { |
- Representation left_rep = left()->representation(); |
- if (left_rep.IsExternal()) { |
- return Representation::External(); |
- } |
- return HArithmeticBinaryOperation::RepresentationFromInputs(); |
-} |
- |
- |
-Representation HAdd::RequiredInputRepresentation(int index) { |
- if (index == 2) { |
- Representation left_rep = left()->representation(); |
- if (left_rep.IsExternal()) { |
- if (external_add_type_ == AddOfExternalAndTagged) { |
- return Representation::Tagged(); |
- } else { |
- return Representation::Integer32(); |
- } |
- } |
- } |
- return HArithmeticBinaryOperation::RequiredInputRepresentation(index); |
-} |
- |
- |
-static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) { |
- return arg1->representation().IsSpecialization() && |
- arg2->EqualsInteger32Constant(identity); |
-} |
- |
- |
-HValue* HAdd::Canonicalize() { |
- // Adding 0 is an identity operation except in case of -0: -0 + 0 = +0 |
- if (IsIdentityOperation(left(), right(), 0) && |
- !left()->representation().IsDouble()) { // Left could be -0. |
- return left(); |
- } |
- if (IsIdentityOperation(right(), left(), 0) && |
- !left()->representation().IsDouble()) { // Right could be -0. |
- return right(); |
- } |
- return this; |
-} |
- |
- |
-HValue* HSub::Canonicalize() { |
- if (IsIdentityOperation(left(), right(), 0)) return left(); |
- return this; |
-} |
- |
- |
-HValue* HMul::Canonicalize() { |
- if (IsIdentityOperation(left(), right(), 1)) return left(); |
- if (IsIdentityOperation(right(), left(), 1)) return right(); |
- return this; |
-} |
- |
- |
-bool HMul::MulMinusOne() { |
- if (left()->EqualsInteger32Constant(-1) || |
- right()->EqualsInteger32Constant(-1)) { |
- return true; |
- } |
- |
- return false; |
-} |
- |
- |
-HValue* HMod::Canonicalize() { |
- return this; |
-} |
- |
- |
-HValue* HDiv::Canonicalize() { |
- if (IsIdentityOperation(left(), right(), 1)) return left(); |
- return this; |
-} |
- |
- |
-HValue* HChange::Canonicalize() { |
- return (from().Equals(to())) ? value() : this; |
-} |
- |
- |
-HValue* HWrapReceiver::Canonicalize() { |
- if (HasNoUses()) return NULL; |
- if (receiver()->type().IsJSObject()) { |
- return receiver(); |
- } |
- return this; |
-} |
- |
- |
-std::ostream& HTypeof::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(value()); |
-} |
- |
- |
-HInstruction* HForceRepresentation::New(Isolate* isolate, Zone* zone, |
- HValue* context, HValue* value, |
- Representation representation) { |
- if (FLAG_fold_constants && value->IsConstant()) { |
- HConstant* c = HConstant::cast(value); |
- c = c->CopyToRepresentation(representation, zone); |
- if (c != NULL) return c; |
- } |
- return new(zone) HForceRepresentation(value, representation); |
-} |
- |
- |
-std::ostream& HForceRepresentation::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << representation().Mnemonic() << " " << NameOf(value()); |
-} |
- |
- |
-std::ostream& HChange::PrintDataTo(std::ostream& os) const { // NOLINT |
- HUnaryOperation::PrintDataTo(os); |
- os << " " << from().Mnemonic() << " to " << to().Mnemonic(); |
- |
- if (CanTruncateToSmi()) os << " truncating-smi"; |
- if (CanTruncateToInt32()) os << " truncating-int32"; |
- if (CheckFlag(kBailoutOnMinusZero)) os << " -0?"; |
- if (CheckFlag(kAllowUndefinedAsNaN)) os << " allow-undefined-as-nan"; |
- return os; |
-} |
- |
- |
-HValue* HUnaryMathOperation::Canonicalize() { |
- if (op() == kMathRound || op() == kMathFloor) { |
- HValue* val = value(); |
- if (val->IsChange()) val = HChange::cast(val)->value(); |
- if (val->representation().IsSmiOrInteger32()) { |
- if (val->representation().Equals(representation())) return val; |
- return Prepend(new(block()->zone()) HChange( |
- val, representation(), false, false)); |
- } |
- } |
- if (op() == kMathFloor && value()->IsDiv() && value()->HasOneUse()) { |
- HDiv* hdiv = HDiv::cast(value()); |
- |
- HValue* left = hdiv->left(); |
- if (left->representation().IsInteger32()) { |
- // A value with an integer representation does not need to be transformed. |
- } else if (left->IsChange() && HChange::cast(left)->from().IsInteger32()) { |
- // A change from an integer32 can be replaced by the integer32 value. |
- left = HChange::cast(left)->value(); |
- } else if (hdiv->observed_input_representation(1).IsSmiOrInteger32()) { |
- left = Prepend(new(block()->zone()) HChange( |
- left, Representation::Integer32(), false, false)); |
- } else { |
- return this; |
- } |
- |
- HValue* right = hdiv->right(); |
- if (right->IsInteger32Constant()) { |
- right = Prepend(HConstant::cast(right)->CopyToRepresentation( |
- Representation::Integer32(), right->block()->zone())); |
- } else if (right->representation().IsInteger32()) { |
- // A value with an integer representation does not need to be transformed. |
- } else if (right->IsChange() && |
- HChange::cast(right)->from().IsInteger32()) { |
- // A change from an integer32 can be replaced by the integer32 value. |
- right = HChange::cast(right)->value(); |
- } else if (hdiv->observed_input_representation(2).IsSmiOrInteger32()) { |
- right = Prepend(new(block()->zone()) HChange( |
- right, Representation::Integer32(), false, false)); |
- } else { |
- return this; |
- } |
- |
- return Prepend(HMathFloorOfDiv::New( |
- block()->graph()->isolate(), block()->zone(), context(), left, right)); |
- } |
- return this; |
-} |
- |
- |
-HValue* HCheckInstanceType::Canonicalize() { |
- if ((check_ == IS_SPEC_OBJECT && value()->type().IsJSObject()) || |
- (check_ == IS_JS_ARRAY && value()->type().IsJSArray()) || |
- (check_ == IS_STRING && value()->type().IsString())) { |
- return value(); |
- } |
- |
- if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) { |
- if (HConstant::cast(value())->HasInternalizedStringValue()) { |
- return value(); |
- } |
- } |
- return this; |
-} |
- |
- |
-void HCheckInstanceType::GetCheckInterval(InstanceType* first, |
- InstanceType* last) { |
- DCHECK(is_interval_check()); |
- switch (check_) { |
- case IS_SPEC_OBJECT: |
- *first = FIRST_SPEC_OBJECT_TYPE; |
- *last = LAST_SPEC_OBJECT_TYPE; |
- return; |
- case IS_JS_ARRAY: |
- *first = *last = JS_ARRAY_TYPE; |
- return; |
- case IS_JS_DATE: |
- *first = *last = JS_DATE_TYPE; |
- return; |
- default: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) { |
- DCHECK(!is_interval_check()); |
- switch (check_) { |
- case IS_STRING: |
- *mask = kIsNotStringMask; |
- *tag = kStringTag; |
- return; |
- case IS_INTERNALIZED_STRING: |
- *mask = kIsNotStringMask | kIsNotInternalizedMask; |
- *tag = kInternalizedTag; |
- return; |
- default: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-std::ostream& HCheckMaps::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << NameOf(value()) << " [" << *maps()->at(0).handle(); |
- for (int i = 1; i < maps()->size(); ++i) { |
- os << "," << *maps()->at(i).handle(); |
- } |
- os << "]"; |
- if (IsStabilityCheck()) os << "(stability-check)"; |
- return os; |
-} |
- |
- |
-HValue* HCheckMaps::Canonicalize() { |
- if (!IsStabilityCheck() && maps_are_stable() && value()->IsConstant()) { |
- HConstant* c_value = HConstant::cast(value()); |
- if (c_value->HasObjectMap()) { |
- for (int i = 0; i < maps()->size(); ++i) { |
- if (c_value->ObjectMap() == maps()->at(i)) { |
- if (maps()->size() > 1) { |
- set_maps(new(block()->graph()->zone()) UniqueSet<Map>( |
- maps()->at(i), block()->graph()->zone())); |
- } |
- MarkAsStabilityCheck(); |
- break; |
- } |
- } |
- } |
- } |
- return this; |
-} |
- |
- |
-std::ostream& HCheckValue::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(value()) << " " << Brief(*object().handle()); |
-} |
- |
- |
-HValue* HCheckValue::Canonicalize() { |
- return (value()->IsConstant() && |
- HConstant::cast(value())->EqualsUnique(object_)) ? NULL : this; |
-} |
- |
- |
-const char* HCheckInstanceType::GetCheckName() const { |
- switch (check_) { |
- case IS_SPEC_OBJECT: return "object"; |
- case IS_JS_ARRAY: return "array"; |
- case IS_JS_DATE: |
- return "date"; |
- case IS_STRING: return "string"; |
- case IS_INTERNALIZED_STRING: return "internalized_string"; |
- } |
- UNREACHABLE(); |
- return ""; |
-} |
- |
- |
-std::ostream& HCheckInstanceType::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- os << GetCheckName() << " "; |
- return HUnaryOperation::PrintDataTo(os); |
-} |
- |
- |
-std::ostream& HCallStub::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << CodeStub::MajorName(major_key_) << " "; |
- return HUnaryCall::PrintDataTo(os); |
-} |
- |
- |
-std::ostream& HUnknownOSRValue::PrintDataTo(std::ostream& os) const { // NOLINT |
- const char* type = "expression"; |
- if (environment_->is_local_index(index_)) type = "local"; |
- if (environment_->is_special_index(index_)) type = "special"; |
- if (environment_->is_parameter_index(index_)) type = "parameter"; |
- return os << type << " @ " << index_; |
-} |
- |
- |
-std::ostream& HInstanceOf::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(left()) << " " << NameOf(right()) << " " |
- << NameOf(context()); |
-} |
- |
- |
-Range* HValue::InferRange(Zone* zone) { |
- Range* result; |
- if (representation().IsSmi() || type().IsSmi()) { |
- result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue); |
- result->set_can_be_minus_zero(false); |
- } else { |
- result = new(zone) Range(); |
- result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32)); |
- // TODO(jkummerow): The range cannot be minus zero when the upper type |
- // bound is Integer32. |
- } |
- return result; |
-} |
- |
- |
-Range* HChange::InferRange(Zone* zone) { |
- Range* input_range = value()->range(); |
- if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) && |
- (to().IsSmi() || |
- (to().IsTagged() && |
- input_range != NULL && |
- input_range->IsInSmiRange()))) { |
- set_type(HType::Smi()); |
- ClearChangesFlag(kNewSpacePromotion); |
- } |
- if (to().IsSmiOrTagged() && |
- input_range != NULL && |
- input_range->IsInSmiRange() && |
- (!SmiValuesAre32Bits() || |
- !value()->CheckFlag(HValue::kUint32) || |
- input_range->upper() != kMaxInt)) { |
- // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32] |
- // interval, so we treat kMaxInt as a sentinel for this entire interval. |
- ClearFlag(kCanOverflow); |
- } |
- Range* result = (input_range != NULL) |
- ? input_range->Copy(zone) |
- : HValue::InferRange(zone); |
- result->set_can_be_minus_zero(!to().IsSmiOrInteger32() || |
- !(CheckFlag(kAllUsesTruncatingToInt32) || |
- CheckFlag(kAllUsesTruncatingToSmi))); |
- if (to().IsSmi()) result->ClampToSmi(); |
- return result; |
-} |
- |
- |
-Range* HConstant::InferRange(Zone* zone) { |
- if (HasInteger32Value()) { |
- Range* result = new(zone) Range(int32_value_, int32_value_); |
- result->set_can_be_minus_zero(false); |
- return result; |
- } |
- return HValue::InferRange(zone); |
-} |
- |
- |
-SourcePosition HPhi::position() const { return block()->first()->position(); } |
- |
- |
-Range* HPhi::InferRange(Zone* zone) { |
- Representation r = representation(); |
- if (r.IsSmiOrInteger32()) { |
- if (block()->IsLoopHeader()) { |
- Range* range = r.IsSmi() |
- ? new(zone) Range(Smi::kMinValue, Smi::kMaxValue) |
- : new(zone) Range(kMinInt, kMaxInt); |
- return range; |
- } else { |
- Range* range = OperandAt(0)->range()->Copy(zone); |
- for (int i = 1; i < OperandCount(); ++i) { |
- range->Union(OperandAt(i)->range()); |
- } |
- return range; |
- } |
- } else { |
- return HValue::InferRange(zone); |
- } |
-} |
- |
- |
-Range* HAdd::InferRange(Zone* zone) { |
- Representation r = representation(); |
- if (r.IsSmiOrInteger32()) { |
- Range* a = left()->range(); |
- Range* b = right()->range(); |
- Range* res = a->Copy(zone); |
- if (!res->AddAndCheckOverflow(r, b) || |
- (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) || |
- (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) { |
- ClearFlag(kCanOverflow); |
- } |
- res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) && |
- !CheckFlag(kAllUsesTruncatingToInt32) && |
- a->CanBeMinusZero() && b->CanBeMinusZero()); |
- return res; |
- } else { |
- return HValue::InferRange(zone); |
- } |
-} |
- |
- |
-Range* HSub::InferRange(Zone* zone) { |
- Representation r = representation(); |
- if (r.IsSmiOrInteger32()) { |
- Range* a = left()->range(); |
- Range* b = right()->range(); |
- Range* res = a->Copy(zone); |
- if (!res->SubAndCheckOverflow(r, b) || |
- (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) || |
- (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) { |
- ClearFlag(kCanOverflow); |
- } |
- res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) && |
- !CheckFlag(kAllUsesTruncatingToInt32) && |
- a->CanBeMinusZero() && b->CanBeZero()); |
- return res; |
- } else { |
- return HValue::InferRange(zone); |
- } |
-} |
- |
- |
-Range* HMul::InferRange(Zone* zone) { |
- Representation r = representation(); |
- if (r.IsSmiOrInteger32()) { |
- Range* a = left()->range(); |
- Range* b = right()->range(); |
- Range* res = a->Copy(zone); |
- if (!res->MulAndCheckOverflow(r, b) || |
- (((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) || |
- (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) && |
- MulMinusOne())) { |
- // Truncated int multiplication is too precise and therefore not the |
- // same as converting to Double and back. |
- // Handle truncated integer multiplication by -1 special. |
- ClearFlag(kCanOverflow); |
- } |
- res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) && |
- !CheckFlag(kAllUsesTruncatingToInt32) && |
- ((a->CanBeZero() && b->CanBeNegative()) || |
- (a->CanBeNegative() && b->CanBeZero()))); |
- return res; |
- } else { |
- return HValue::InferRange(zone); |
- } |
-} |
- |
- |
-Range* HDiv::InferRange(Zone* zone) { |
- if (representation().IsInteger32()) { |
- Range* a = left()->range(); |
- Range* b = right()->range(); |
- Range* result = new(zone) Range(); |
- result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) && |
- (a->CanBeMinusZero() || |
- (a->CanBeZero() && b->CanBeNegative()))); |
- if (!a->Includes(kMinInt) || !b->Includes(-1)) { |
- ClearFlag(kCanOverflow); |
- } |
- |
- if (!b->CanBeZero()) { |
- ClearFlag(kCanBeDivByZero); |
- } |
- return result; |
- } else { |
- return HValue::InferRange(zone); |
- } |
-} |
- |
- |
-Range* HMathFloorOfDiv::InferRange(Zone* zone) { |
- if (representation().IsInteger32()) { |
- Range* a = left()->range(); |
- Range* b = right()->range(); |
- Range* result = new(zone) Range(); |
- result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) && |
- (a->CanBeMinusZero() || |
- (a->CanBeZero() && b->CanBeNegative()))); |
- if (!a->Includes(kMinInt)) { |
- ClearFlag(kLeftCanBeMinInt); |
- } |
- |
- if (!a->CanBeNegative()) { |
- ClearFlag(HValue::kLeftCanBeNegative); |
- } |
- |
- if (!a->CanBePositive()) { |
- ClearFlag(HValue::kLeftCanBePositive); |
- } |
- |
- if (!a->Includes(kMinInt) || !b->Includes(-1)) { |
- ClearFlag(kCanOverflow); |
- } |
- |
- if (!b->CanBeZero()) { |
- ClearFlag(kCanBeDivByZero); |
- } |
- return result; |
- } else { |
- return HValue::InferRange(zone); |
- } |
-} |
- |
- |
-// Returns the absolute value of its argument minus one, avoiding undefined |
-// behavior at kMinInt. |
-static int32_t AbsMinus1(int32_t a) { return a < 0 ? -(a + 1) : (a - 1); } |
- |
- |
-Range* HMod::InferRange(Zone* zone) { |
- if (representation().IsInteger32()) { |
- Range* a = left()->range(); |
- Range* b = right()->range(); |
- |
- // The magnitude of the modulus is bounded by the right operand. |
- int32_t positive_bound = Max(AbsMinus1(b->lower()), AbsMinus1(b->upper())); |
- |
- // The result of the modulo operation has the sign of its left operand. |
- bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative(); |
- Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0, |
- a->CanBePositive() ? positive_bound : 0); |
- |
- result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) && |
- left_can_be_negative); |
- |
- if (!a->CanBeNegative()) { |
- ClearFlag(HValue::kLeftCanBeNegative); |
- } |
- |
- if (!a->Includes(kMinInt) || !b->Includes(-1)) { |
- ClearFlag(HValue::kCanOverflow); |
- } |
- |
- if (!b->CanBeZero()) { |
- ClearFlag(HValue::kCanBeDivByZero); |
- } |
- return result; |
- } else { |
- return HValue::InferRange(zone); |
- } |
-} |
- |
- |
-InductionVariableData* InductionVariableData::ExaminePhi(HPhi* phi) { |
- if (phi->block()->loop_information() == NULL) return NULL; |
- if (phi->OperandCount() != 2) return NULL; |
- int32_t candidate_increment; |
- |
- candidate_increment = ComputeIncrement(phi, phi->OperandAt(0)); |
- if (candidate_increment != 0) { |
- return new(phi->block()->graph()->zone()) |
- InductionVariableData(phi, phi->OperandAt(1), candidate_increment); |
- } |
- |
- candidate_increment = ComputeIncrement(phi, phi->OperandAt(1)); |
- if (candidate_increment != 0) { |
- return new(phi->block()->graph()->zone()) |
- InductionVariableData(phi, phi->OperandAt(0), candidate_increment); |
- } |
- |
- return NULL; |
-} |
- |
- |
-/* |
- * This function tries to match the following patterns (and all the relevant |
- * variants related to |, & and + being commutative): |
- * base | constant_or_mask |
- * base & constant_and_mask |
- * (base + constant_offset) & constant_and_mask |
- * (base - constant_offset) & constant_and_mask |
- */ |
-void InductionVariableData::DecomposeBitwise( |
- HValue* value, |
- BitwiseDecompositionResult* result) { |
- HValue* base = IgnoreOsrValue(value); |
- result->base = value; |
- |
- if (!base->representation().IsInteger32()) return; |
- |
- if (base->IsBitwise()) { |
- bool allow_offset = false; |
- int32_t mask = 0; |
- |
- HBitwise* bitwise = HBitwise::cast(base); |
- if (bitwise->right()->IsInteger32Constant()) { |
- mask = bitwise->right()->GetInteger32Constant(); |
- base = bitwise->left(); |
- } else if (bitwise->left()->IsInteger32Constant()) { |
- mask = bitwise->left()->GetInteger32Constant(); |
- base = bitwise->right(); |
- } else { |
- return; |
- } |
- if (bitwise->op() == Token::BIT_AND) { |
- result->and_mask = mask; |
- allow_offset = true; |
- } else if (bitwise->op() == Token::BIT_OR) { |
- result->or_mask = mask; |
- } else { |
- return; |
- } |
- |
- result->context = bitwise->context(); |
- |
- if (allow_offset) { |
- if (base->IsAdd()) { |
- HAdd* add = HAdd::cast(base); |
- if (add->right()->IsInteger32Constant()) { |
- base = add->left(); |
- } else if (add->left()->IsInteger32Constant()) { |
- base = add->right(); |
- } |
- } else if (base->IsSub()) { |
- HSub* sub = HSub::cast(base); |
- if (sub->right()->IsInteger32Constant()) { |
- base = sub->left(); |
- } |
- } |
- } |
- |
- result->base = base; |
- } |
-} |
- |
- |
-void InductionVariableData::AddCheck(HBoundsCheck* check, |
- int32_t upper_limit) { |
- DCHECK(limit_validity() != NULL); |
- if (limit_validity() != check->block() && |
- !limit_validity()->Dominates(check->block())) return; |
- if (!phi()->block()->current_loop()->IsNestedInThisLoop( |
- check->block()->current_loop())) return; |
- |
- ChecksRelatedToLength* length_checks = checks(); |
- while (length_checks != NULL) { |
- if (length_checks->length() == check->length()) break; |
- length_checks = length_checks->next(); |
- } |
- if (length_checks == NULL) { |
- length_checks = new(check->block()->zone()) |
- ChecksRelatedToLength(check->length(), checks()); |
- checks_ = length_checks; |
- } |
- |
- length_checks->AddCheck(check, upper_limit); |
-} |
- |
- |
-void InductionVariableData::ChecksRelatedToLength::CloseCurrentBlock() { |
- if (checks() != NULL) { |
- InductionVariableCheck* c = checks(); |
- HBasicBlock* current_block = c->check()->block(); |
- while (c != NULL && c->check()->block() == current_block) { |
- c->set_upper_limit(current_upper_limit_); |
- c = c->next(); |
- } |
- } |
-} |
- |
- |
-void InductionVariableData::ChecksRelatedToLength::UseNewIndexInCurrentBlock( |
- Token::Value token, |
- int32_t mask, |
- HValue* index_base, |
- HValue* context) { |
- DCHECK(first_check_in_block() != NULL); |
- HValue* previous_index = first_check_in_block()->index(); |
- DCHECK(context != NULL); |
- |
- Zone* zone = index_base->block()->graph()->zone(); |
- Isolate* isolate = index_base->block()->graph()->isolate(); |
- set_added_constant(HConstant::New(isolate, zone, context, mask)); |
- if (added_index() != NULL) { |
- added_constant()->InsertBefore(added_index()); |
- } else { |
- added_constant()->InsertBefore(first_check_in_block()); |
- } |
- |
- if (added_index() == NULL) { |
- first_check_in_block()->ReplaceAllUsesWith(first_check_in_block()->index()); |
- HInstruction* new_index = HBitwise::New(isolate, zone, context, token, |
- index_base, added_constant()); |
- DCHECK(new_index->IsBitwise()); |
- new_index->ClearAllSideEffects(); |
- new_index->AssumeRepresentation(Representation::Integer32()); |
- set_added_index(HBitwise::cast(new_index)); |
- added_index()->InsertBefore(first_check_in_block()); |
- } |
- DCHECK(added_index()->op() == token); |
- |
- added_index()->SetOperandAt(1, index_base); |
- added_index()->SetOperandAt(2, added_constant()); |
- first_check_in_block()->SetOperandAt(0, added_index()); |
- if (previous_index->HasNoUses()) { |
- previous_index->DeleteAndReplaceWith(NULL); |
- } |
-} |
- |
-void InductionVariableData::ChecksRelatedToLength::AddCheck( |
- HBoundsCheck* check, |
- int32_t upper_limit) { |
- BitwiseDecompositionResult decomposition; |
- InductionVariableData::DecomposeBitwise(check->index(), &decomposition); |
- |
- if (first_check_in_block() == NULL || |
- first_check_in_block()->block() != check->block()) { |
- CloseCurrentBlock(); |
- |
- first_check_in_block_ = check; |
- set_added_index(NULL); |
- set_added_constant(NULL); |
- current_and_mask_in_block_ = decomposition.and_mask; |
- current_or_mask_in_block_ = decomposition.or_mask; |
- current_upper_limit_ = upper_limit; |
- |
- InductionVariableCheck* new_check = new(check->block()->graph()->zone()) |
- InductionVariableCheck(check, checks_, upper_limit); |
- checks_ = new_check; |
- return; |
- } |
- |
- if (upper_limit > current_upper_limit()) { |
- current_upper_limit_ = upper_limit; |
- } |
- |
- if (decomposition.and_mask != 0 && |
- current_or_mask_in_block() == 0) { |
- if (current_and_mask_in_block() == 0 || |
- decomposition.and_mask > current_and_mask_in_block()) { |
- UseNewIndexInCurrentBlock(Token::BIT_AND, |
- decomposition.and_mask, |
- decomposition.base, |
- decomposition.context); |
- current_and_mask_in_block_ = decomposition.and_mask; |
- } |
- check->set_skip_check(); |
- } |
- if (current_and_mask_in_block() == 0) { |
- if (decomposition.or_mask > current_or_mask_in_block()) { |
- UseNewIndexInCurrentBlock(Token::BIT_OR, |
- decomposition.or_mask, |
- decomposition.base, |
- decomposition.context); |
- current_or_mask_in_block_ = decomposition.or_mask; |
- } |
- check->set_skip_check(); |
- } |
- |
- if (!check->skip_check()) { |
- InductionVariableCheck* new_check = new(check->block()->graph()->zone()) |
- InductionVariableCheck(check, checks_, upper_limit); |
- checks_ = new_check; |
- } |
-} |
- |
- |
-/* |
- * This method detects if phi is an induction variable, with phi_operand as |
- * its "incremented" value (the other operand would be the "base" value). |
- * |
- * It cheks is phi_operand has the form "phi + constant". |
- * If yes, the constant is the increment that the induction variable gets at |
- * every loop iteration. |
- * Otherwise it returns 0. |
- */ |
-int32_t InductionVariableData::ComputeIncrement(HPhi* phi, |
- HValue* phi_operand) { |
- if (!phi_operand->representation().IsSmiOrInteger32()) return 0; |
- |
- if (phi_operand->IsAdd()) { |
- HAdd* operation = HAdd::cast(phi_operand); |
- if (operation->left() == phi && |
- operation->right()->IsInteger32Constant()) { |
- return operation->right()->GetInteger32Constant(); |
- } else if (operation->right() == phi && |
- operation->left()->IsInteger32Constant()) { |
- return operation->left()->GetInteger32Constant(); |
- } |
- } else if (phi_operand->IsSub()) { |
- HSub* operation = HSub::cast(phi_operand); |
- if (operation->left() == phi && |
- operation->right()->IsInteger32Constant()) { |
- int constant = operation->right()->GetInteger32Constant(); |
- if (constant == kMinInt) return 0; |
- return -constant; |
- } |
- } |
- |
- return 0; |
-} |
- |
- |
-/* |
- * Swaps the information in "update" with the one contained in "this". |
- * The swapping is important because this method is used while doing a |
- * dominator tree traversal, and "update" will retain the old data that |
- * will be restored while backtracking. |
- */ |
-void InductionVariableData::UpdateAdditionalLimit( |
- InductionVariableLimitUpdate* update) { |
- DCHECK(update->updated_variable == this); |
- if (update->limit_is_upper) { |
- swap(&additional_upper_limit_, &update->limit); |
- swap(&additional_upper_limit_is_included_, &update->limit_is_included); |
- } else { |
- swap(&additional_lower_limit_, &update->limit); |
- swap(&additional_lower_limit_is_included_, &update->limit_is_included); |
- } |
-} |
- |
- |
-int32_t InductionVariableData::ComputeUpperLimit(int32_t and_mask, |
- int32_t or_mask) { |
- // Should be Smi::kMaxValue but it must fit 32 bits; lower is safe anyway. |
- const int32_t MAX_LIMIT = 1 << 30; |
- |
- int32_t result = MAX_LIMIT; |
- |
- if (limit() != NULL && |
- limit()->IsInteger32Constant()) { |
- int32_t limit_value = limit()->GetInteger32Constant(); |
- if (!limit_included()) { |
- limit_value--; |
- } |
- if (limit_value < result) result = limit_value; |
- } |
- |
- if (additional_upper_limit() != NULL && |
- additional_upper_limit()->IsInteger32Constant()) { |
- int32_t limit_value = additional_upper_limit()->GetInteger32Constant(); |
- if (!additional_upper_limit_is_included()) { |
- limit_value--; |
- } |
- if (limit_value < result) result = limit_value; |
- } |
- |
- if (and_mask > 0 && and_mask < MAX_LIMIT) { |
- if (and_mask < result) result = and_mask; |
- return result; |
- } |
- |
- // Add the effect of the or_mask. |
- result |= or_mask; |
- |
- return result >= MAX_LIMIT ? kNoLimit : result; |
-} |
- |
- |
-HValue* InductionVariableData::IgnoreOsrValue(HValue* v) { |
- if (!v->IsPhi()) return v; |
- HPhi* phi = HPhi::cast(v); |
- if (phi->OperandCount() != 2) return v; |
- if (phi->OperandAt(0)->block()->is_osr_entry()) { |
- return phi->OperandAt(1); |
- } else if (phi->OperandAt(1)->block()->is_osr_entry()) { |
- return phi->OperandAt(0); |
- } else { |
- return v; |
- } |
-} |
- |
- |
-InductionVariableData* InductionVariableData::GetInductionVariableData( |
- HValue* v) { |
- v = IgnoreOsrValue(v); |
- if (v->IsPhi()) { |
- return HPhi::cast(v)->induction_variable_data(); |
- } |
- return NULL; |
-} |
- |
- |
-/* |
- * Check if a conditional branch to "current_branch" with token "token" is |
- * the branch that keeps the induction loop running (and, conversely, will |
- * terminate it if the "other_branch" is taken). |
- * |
- * Three conditions must be met: |
- * - "current_branch" must be in the induction loop. |
- * - "other_branch" must be out of the induction loop. |
- * - "token" and the induction increment must be "compatible": the token should |
- * be a condition that keeps the execution inside the loop until the limit is |
- * reached. |
- */ |
-bool InductionVariableData::CheckIfBranchIsLoopGuard( |
- Token::Value token, |
- HBasicBlock* current_branch, |
- HBasicBlock* other_branch) { |
- if (!phi()->block()->current_loop()->IsNestedInThisLoop( |
- current_branch->current_loop())) { |
- return false; |
- } |
- |
- if (phi()->block()->current_loop()->IsNestedInThisLoop( |
- other_branch->current_loop())) { |
- return false; |
- } |
- |
- if (increment() > 0 && (token == Token::LT || token == Token::LTE)) { |
- return true; |
- } |
- if (increment() < 0 && (token == Token::GT || token == Token::GTE)) { |
- return true; |
- } |
- if (Token::IsInequalityOp(token) && (increment() == 1 || increment() == -1)) { |
- return true; |
- } |
- |
- return false; |
-} |
- |
- |
-void InductionVariableData::ComputeLimitFromPredecessorBlock( |
- HBasicBlock* block, |
- LimitFromPredecessorBlock* result) { |
- if (block->predecessors()->length() != 1) return; |
- HBasicBlock* predecessor = block->predecessors()->at(0); |
- HInstruction* end = predecessor->last(); |
- |
- if (!end->IsCompareNumericAndBranch()) return; |
- HCompareNumericAndBranch* branch = HCompareNumericAndBranch::cast(end); |
- |
- Token::Value token = branch->token(); |
- if (!Token::IsArithmeticCompareOp(token)) return; |
- |
- HBasicBlock* other_target; |
- if (block == branch->SuccessorAt(0)) { |
- other_target = branch->SuccessorAt(1); |
- } else { |
- other_target = branch->SuccessorAt(0); |
- token = Token::NegateCompareOp(token); |
- DCHECK(block == branch->SuccessorAt(1)); |
- } |
- |
- InductionVariableData* data; |
- |
- data = GetInductionVariableData(branch->left()); |
- HValue* limit = branch->right(); |
- if (data == NULL) { |
- data = GetInductionVariableData(branch->right()); |
- token = Token::ReverseCompareOp(token); |
- limit = branch->left(); |
- } |
- |
- if (data != NULL) { |
- result->variable = data; |
- result->token = token; |
- result->limit = limit; |
- result->other_target = other_target; |
- } |
-} |
- |
- |
-/* |
- * Compute the limit that is imposed on an induction variable when entering |
- * "block" (if any). |
- * If the limit is the "proper" induction limit (the one that makes the loop |
- * terminate when the induction variable reaches it) it is stored directly in |
- * the induction variable data. |
- * Otherwise the limit is written in "additional_limit" and the method |
- * returns true. |
- */ |
-bool InductionVariableData::ComputeInductionVariableLimit( |
- HBasicBlock* block, |
- InductionVariableLimitUpdate* additional_limit) { |
- LimitFromPredecessorBlock limit; |
- ComputeLimitFromPredecessorBlock(block, &limit); |
- if (!limit.LimitIsValid()) return false; |
- |
- if (limit.variable->CheckIfBranchIsLoopGuard(limit.token, |
- block, |
- limit.other_target)) { |
- limit.variable->limit_ = limit.limit; |
- limit.variable->limit_included_ = limit.LimitIsIncluded(); |
- limit.variable->limit_validity_ = block; |
- limit.variable->induction_exit_block_ = block->predecessors()->at(0); |
- limit.variable->induction_exit_target_ = limit.other_target; |
- return false; |
- } else { |
- additional_limit->updated_variable = limit.variable; |
- additional_limit->limit = limit.limit; |
- additional_limit->limit_is_upper = limit.LimitIsUpper(); |
- additional_limit->limit_is_included = limit.LimitIsIncluded(); |
- return true; |
- } |
-} |
- |
- |
-Range* HMathMinMax::InferRange(Zone* zone) { |
- if (representation().IsSmiOrInteger32()) { |
- Range* a = left()->range(); |
- Range* b = right()->range(); |
- Range* res = a->Copy(zone); |
- if (operation_ == kMathMax) { |
- res->CombinedMax(b); |
- } else { |
- DCHECK(operation_ == kMathMin); |
- res->CombinedMin(b); |
- } |
- return res; |
- } else { |
- return HValue::InferRange(zone); |
- } |
-} |
- |
- |
-void HPushArguments::AddInput(HValue* value) { |
- inputs_.Add(NULL, value->block()->zone()); |
- SetOperandAt(OperandCount() - 1, value); |
-} |
- |
- |
-std::ostream& HPhi::PrintTo(std::ostream& os) const { // NOLINT |
- os << "["; |
- for (int i = 0; i < OperandCount(); ++i) { |
- os << " " << NameOf(OperandAt(i)) << " "; |
- } |
- return os << " uses" << UseCount() |
- << representation_from_indirect_uses().Mnemonic() << " " |
- << TypeOf(this) << "]"; |
-} |
- |
- |
-void HPhi::AddInput(HValue* value) { |
- inputs_.Add(NULL, value->block()->zone()); |
- SetOperandAt(OperandCount() - 1, value); |
- // Mark phis that may have 'arguments' directly or indirectly as an operand. |
- if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) { |
- SetFlag(kIsArguments); |
- } |
-} |
- |
- |
-bool HPhi::HasRealUses() { |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) { |
- if (!it.value()->IsPhi()) return true; |
- } |
- return false; |
-} |
- |
- |
-HValue* HPhi::GetRedundantReplacement() { |
- HValue* candidate = NULL; |
- int count = OperandCount(); |
- int position = 0; |
- while (position < count && candidate == NULL) { |
- HValue* current = OperandAt(position++); |
- if (current != this) candidate = current; |
- } |
- while (position < count) { |
- HValue* current = OperandAt(position++); |
- if (current != this && current != candidate) return NULL; |
- } |
- DCHECK(candidate != this); |
- return candidate; |
-} |
- |
- |
-void HPhi::DeleteFromGraph() { |
- DCHECK(block() != NULL); |
- block()->RemovePhi(this); |
- DCHECK(block() == NULL); |
-} |
- |
- |
-void HPhi::InitRealUses(int phi_id) { |
- // Initialize real uses. |
- phi_id_ = phi_id; |
- // Compute a conservative approximation of truncating uses before inferring |
- // representations. The proper, exact computation will be done later, when |
- // inserting representation changes. |
- SetFlag(kTruncatingToSmi); |
- SetFlag(kTruncatingToInt32); |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) { |
- HValue* value = it.value(); |
- if (!value->IsPhi()) { |
- Representation rep = value->observed_input_representation(it.index()); |
- representation_from_non_phi_uses_ = |
- representation_from_non_phi_uses().generalize(rep); |
- if (rep.IsSmi() || rep.IsInteger32() || rep.IsDouble()) { |
- has_type_feedback_from_uses_ = true; |
- } |
- |
- if (FLAG_trace_representation) { |
- PrintF("#%d Phi is used by real #%d %s as %s\n", |
- id(), value->id(), value->Mnemonic(), rep.Mnemonic()); |
- } |
- if (!value->IsSimulate()) { |
- if (!value->CheckFlag(kTruncatingToSmi)) { |
- ClearFlag(kTruncatingToSmi); |
- } |
- if (!value->CheckFlag(kTruncatingToInt32)) { |
- ClearFlag(kTruncatingToInt32); |
- } |
- } |
- } |
- } |
-} |
- |
- |
-void HPhi::AddNonPhiUsesFrom(HPhi* other) { |
- if (FLAG_trace_representation) { |
- PrintF( |
- "generalizing use representation '%s' of #%d Phi " |
- "with uses of #%d Phi '%s'\n", |
- representation_from_indirect_uses().Mnemonic(), id(), other->id(), |
- other->representation_from_non_phi_uses().Mnemonic()); |
- } |
- |
- representation_from_indirect_uses_ = |
- representation_from_indirect_uses().generalize( |
- other->representation_from_non_phi_uses()); |
-} |
- |
- |
-void HSimulate::MergeWith(ZoneList<HSimulate*>* list) { |
- while (!list->is_empty()) { |
- HSimulate* from = list->RemoveLast(); |
- ZoneList<HValue*>* from_values = &from->values_; |
- for (int i = 0; i < from_values->length(); ++i) { |
- if (from->HasAssignedIndexAt(i)) { |
- int index = from->GetAssignedIndexAt(i); |
- if (HasValueForIndex(index)) continue; |
- AddAssignedValue(index, from_values->at(i)); |
- } else { |
- if (pop_count_ > 0) { |
- pop_count_--; |
- } else { |
- AddPushedValue(from_values->at(i)); |
- } |
- } |
- } |
- pop_count_ += from->pop_count_; |
- from->DeleteAndReplaceWith(NULL); |
- } |
-} |
- |
- |
-std::ostream& HSimulate::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << "id=" << ast_id().ToInt(); |
- if (pop_count_ > 0) os << " pop " << pop_count_; |
- if (values_.length() > 0) { |
- if (pop_count_ > 0) os << " /"; |
- for (int i = values_.length() - 1; i >= 0; --i) { |
- if (HasAssignedIndexAt(i)) { |
- os << " var[" << GetAssignedIndexAt(i) << "] = "; |
- } else { |
- os << " push "; |
- } |
- os << NameOf(values_[i]); |
- if (i > 0) os << ","; |
- } |
- } |
- return os; |
-} |
- |
- |
-void HSimulate::ReplayEnvironment(HEnvironment* env) { |
- if (is_done_with_replay()) return; |
- DCHECK(env != NULL); |
- env->set_ast_id(ast_id()); |
- env->Drop(pop_count()); |
- for (int i = values()->length() - 1; i >= 0; --i) { |
- HValue* value = values()->at(i); |
- if (HasAssignedIndexAt(i)) { |
- env->Bind(GetAssignedIndexAt(i), value); |
- } else { |
- env->Push(value); |
- } |
- } |
- set_done_with_replay(); |
-} |
- |
- |
-static void ReplayEnvironmentNested(const ZoneList<HValue*>* values, |
- HCapturedObject* other) { |
- for (int i = 0; i < values->length(); ++i) { |
- HValue* value = values->at(i); |
- if (value->IsCapturedObject()) { |
- if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) { |
- values->at(i) = other; |
- } else { |
- ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other); |
- } |
- } |
- } |
-} |
- |
- |
-// Replay captured objects by replacing all captured objects with the |
-// same capture id in the current and all outer environments. |
-void HCapturedObject::ReplayEnvironment(HEnvironment* env) { |
- DCHECK(env != NULL); |
- while (env != NULL) { |
- ReplayEnvironmentNested(env->values(), this); |
- env = env->outer(); |
- } |
-} |
- |
- |
-std::ostream& HCapturedObject::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << "#" << capture_id() << " "; |
- return HDematerializedObject::PrintDataTo(os); |
-} |
- |
- |
-void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target, |
- Zone* zone) { |
- DCHECK(return_target->IsInlineReturnTarget()); |
- return_targets_.Add(return_target, zone); |
-} |
- |
- |
-std::ostream& HEnterInlined::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << function()->debug_name()->ToCString().get(); |
-} |
- |
- |
-static bool IsInteger32(double value) { |
- if (value >= std::numeric_limits<int32_t>::min() && |
- value <= std::numeric_limits<int32_t>::max()) { |
- double roundtrip_value = static_cast<double>(static_cast<int32_t>(value)); |
- return bit_cast<int64_t>(roundtrip_value) == bit_cast<int64_t>(value); |
- } |
- return false; |
-} |
- |
- |
-HConstant::HConstant(Special special) |
- : HTemplateInstruction<0>(HType::TaggedNumber()), |
- object_(Handle<Object>::null()), |
- object_map_(Handle<Map>::null()), |
- bit_field_(HasDoubleValueField::encode(true) | |
- InstanceTypeField::encode(kUnknownInstanceType)), |
- int32_value_(0) { |
- DCHECK_EQ(kHoleNaN, special); |
- std::memcpy(&double_value_, &kHoleNanInt64, sizeof(double_value_)); |
- Initialize(Representation::Double()); |
-} |
- |
- |
-HConstant::HConstant(Handle<Object> object, Representation r) |
- : HTemplateInstruction<0>(HType::FromValue(object)), |
- object_(Unique<Object>::CreateUninitialized(object)), |
- object_map_(Handle<Map>::null()), |
- bit_field_( |
- HasStableMapValueField::encode(false) | |
- HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) | |
- HasDoubleValueField::encode(false) | |
- HasExternalReferenceValueField::encode(false) | |
- IsNotInNewSpaceField::encode(true) | |
- BooleanValueField::encode(object->BooleanValue()) | |
- IsUndetectableField::encode(false) | IsCallableField::encode(false) | |
- InstanceTypeField::encode(kUnknownInstanceType)) { |
- if (object->IsHeapObject()) { |
- Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object); |
- Isolate* isolate = heap_object->GetIsolate(); |
- Handle<Map> map(heap_object->map(), isolate); |
- bit_field_ = IsNotInNewSpaceField::update( |
- bit_field_, !isolate->heap()->InNewSpace(*object)); |
- bit_field_ = InstanceTypeField::update(bit_field_, map->instance_type()); |
- bit_field_ = |
- IsUndetectableField::update(bit_field_, map->is_undetectable()); |
- bit_field_ = IsCallableField::update(bit_field_, map->is_callable()); |
- if (map->is_stable()) object_map_ = Unique<Map>::CreateImmovable(map); |
- bit_field_ = HasStableMapValueField::update( |
- bit_field_, |
- HasMapValue() && Handle<Map>::cast(heap_object)->is_stable()); |
- } |
- if (object->IsNumber()) { |
- double n = object->Number(); |
- bool has_int32_value = IsInteger32(n); |
- bit_field_ = HasInt32ValueField::update(bit_field_, has_int32_value); |
- int32_value_ = DoubleToInt32(n); |
- bit_field_ = HasSmiValueField::update( |
- bit_field_, has_int32_value && Smi::IsValid(int32_value_)); |
- double_value_ = n; |
- bit_field_ = HasDoubleValueField::update(bit_field_, true); |
- // TODO(titzer): if this heap number is new space, tenure a new one. |
- } |
- |
- Initialize(r); |
-} |
- |
- |
-HConstant::HConstant(Unique<Object> object, Unique<Map> object_map, |
- bool has_stable_map_value, Representation r, HType type, |
- bool is_not_in_new_space, bool boolean_value, |
- bool is_undetectable, InstanceType instance_type) |
- : HTemplateInstruction<0>(type), |
- object_(object), |
- object_map_(object_map), |
- bit_field_(HasStableMapValueField::encode(has_stable_map_value) | |
- HasSmiValueField::encode(false) | |
- HasInt32ValueField::encode(false) | |
- HasDoubleValueField::encode(false) | |
- HasExternalReferenceValueField::encode(false) | |
- IsNotInNewSpaceField::encode(is_not_in_new_space) | |
- BooleanValueField::encode(boolean_value) | |
- IsUndetectableField::encode(is_undetectable) | |
- InstanceTypeField::encode(instance_type)) { |
- DCHECK(!object.handle().is_null()); |
- DCHECK(!type.IsTaggedNumber() || type.IsNone()); |
- Initialize(r); |
-} |
- |
- |
-HConstant::HConstant(int32_t integer_value, Representation r, |
- bool is_not_in_new_space, Unique<Object> object) |
- : object_(object), |
- object_map_(Handle<Map>::null()), |
- bit_field_(HasStableMapValueField::encode(false) | |
- HasSmiValueField::encode(Smi::IsValid(integer_value)) | |
- HasInt32ValueField::encode(true) | |
- HasDoubleValueField::encode(true) | |
- HasExternalReferenceValueField::encode(false) | |
- IsNotInNewSpaceField::encode(is_not_in_new_space) | |
- BooleanValueField::encode(integer_value != 0) | |
- IsUndetectableField::encode(false) | |
- InstanceTypeField::encode(kUnknownInstanceType)), |
- int32_value_(integer_value), |
- double_value_(FastI2D(integer_value)) { |
- // It's possible to create a constant with a value in Smi-range but stored |
- // in a (pre-existing) HeapNumber. See crbug.com/349878. |
- bool could_be_heapobject = r.IsTagged() && !object.handle().is_null(); |
- bool is_smi = HasSmiValue() && !could_be_heapobject; |
- set_type(is_smi ? HType::Smi() : HType::TaggedNumber()); |
- Initialize(r); |
-} |
- |
- |
-HConstant::HConstant(double double_value, Representation r, |
- bool is_not_in_new_space, Unique<Object> object) |
- : object_(object), |
- object_map_(Handle<Map>::null()), |
- bit_field_(HasStableMapValueField::encode(false) | |
- HasInt32ValueField::encode(IsInteger32(double_value)) | |
- HasDoubleValueField::encode(true) | |
- HasExternalReferenceValueField::encode(false) | |
- IsNotInNewSpaceField::encode(is_not_in_new_space) | |
- BooleanValueField::encode(double_value != 0 && |
- !std::isnan(double_value)) | |
- IsUndetectableField::encode(false) | |
- InstanceTypeField::encode(kUnknownInstanceType)), |
- int32_value_(DoubleToInt32(double_value)), |
- double_value_(double_value) { |
- bit_field_ = HasSmiValueField::update( |
- bit_field_, HasInteger32Value() && Smi::IsValid(int32_value_)); |
- // It's possible to create a constant with a value in Smi-range but stored |
- // in a (pre-existing) HeapNumber. See crbug.com/349878. |
- bool could_be_heapobject = r.IsTagged() && !object.handle().is_null(); |
- bool is_smi = HasSmiValue() && !could_be_heapobject; |
- set_type(is_smi ? HType::Smi() : HType::TaggedNumber()); |
- Initialize(r); |
-} |
- |
- |
-HConstant::HConstant(ExternalReference reference) |
- : HTemplateInstruction<0>(HType::Any()), |
- object_(Unique<Object>(Handle<Object>::null())), |
- object_map_(Handle<Map>::null()), |
- bit_field_( |
- HasStableMapValueField::encode(false) | |
- HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) | |
- HasDoubleValueField::encode(false) | |
- HasExternalReferenceValueField::encode(true) | |
- IsNotInNewSpaceField::encode(true) | BooleanValueField::encode(true) | |
- IsUndetectableField::encode(false) | |
- InstanceTypeField::encode(kUnknownInstanceType)), |
- external_reference_value_(reference) { |
- Initialize(Representation::External()); |
-} |
- |
- |
-void HConstant::Initialize(Representation r) { |
- if (r.IsNone()) { |
- if (HasSmiValue() && SmiValuesAre31Bits()) { |
- r = Representation::Smi(); |
- } else if (HasInteger32Value()) { |
- r = Representation::Integer32(); |
- } else if (HasDoubleValue()) { |
- r = Representation::Double(); |
- } else if (HasExternalReferenceValue()) { |
- r = Representation::External(); |
- } else { |
- Handle<Object> object = object_.handle(); |
- if (object->IsJSObject()) { |
- // Try to eagerly migrate JSObjects that have deprecated maps. |
- Handle<JSObject> js_object = Handle<JSObject>::cast(object); |
- if (js_object->map()->is_deprecated()) { |
- JSObject::TryMigrateInstance(js_object); |
- } |
- } |
- r = Representation::Tagged(); |
- } |
- } |
- if (r.IsSmi()) { |
- // If we have an existing handle, zap it, because it might be a heap |
- // number which we must not re-use when copying this HConstant to |
- // Tagged representation later, because having Smi representation now |
- // could cause heap object checks not to get emitted. |
- object_ = Unique<Object>(Handle<Object>::null()); |
- } |
- if (r.IsSmiOrInteger32() && object_.handle().is_null()) { |
- // If it's not a heap object, it can't be in new space. |
- bit_field_ = IsNotInNewSpaceField::update(bit_field_, true); |
- } |
- set_representation(r); |
- SetFlag(kUseGVN); |
-} |
- |
- |
-bool HConstant::ImmortalImmovable() const { |
- if (HasInteger32Value()) { |
- return false; |
- } |
- if (HasDoubleValue()) { |
- if (IsSpecialDouble()) { |
- return true; |
- } |
- return false; |
- } |
- if (HasExternalReferenceValue()) { |
- return false; |
- } |
- |
- DCHECK(!object_.handle().is_null()); |
- Heap* heap = isolate()->heap(); |
- DCHECK(!object_.IsKnownGlobal(heap->minus_zero_value())); |
- DCHECK(!object_.IsKnownGlobal(heap->nan_value())); |
- return |
-#define IMMORTAL_IMMOVABLE_ROOT(name) \ |
- object_.IsKnownGlobal(heap->root(Heap::k##name##RootIndex)) || |
- IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT) |
-#undef IMMORTAL_IMMOVABLE_ROOT |
-#define INTERNALIZED_STRING(name, value) \ |
- object_.IsKnownGlobal(heap->name()) || |
- INTERNALIZED_STRING_LIST(INTERNALIZED_STRING) |
-#undef INTERNALIZED_STRING |
-#define STRING_TYPE(NAME, size, name, Name) \ |
- object_.IsKnownGlobal(heap->name##_map()) || |
- STRING_TYPE_LIST(STRING_TYPE) |
-#undef STRING_TYPE |
- false; |
-} |
- |
- |
-bool HConstant::EmitAtUses() { |
- DCHECK(IsLinked()); |
- if (block()->graph()->has_osr() && |
- block()->graph()->IsStandardConstant(this)) { |
- // TODO(titzer): this seems like a hack that should be fixed by custom OSR. |
- return true; |
- } |
- if (HasNoUses()) return true; |
- if (IsCell()) return false; |
- if (representation().IsDouble()) return false; |
- if (representation().IsExternal()) return false; |
- return true; |
-} |
- |
- |
-HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const { |
- if (r.IsSmi() && !HasSmiValue()) return NULL; |
- if (r.IsInteger32() && !HasInteger32Value()) return NULL; |
- if (r.IsDouble() && !HasDoubleValue()) return NULL; |
- if (r.IsExternal() && !HasExternalReferenceValue()) return NULL; |
- if (HasInteger32Value()) { |
- return new (zone) HConstant(int32_value_, r, NotInNewSpace(), object_); |
- } |
- if (HasDoubleValue()) { |
- return new (zone) HConstant(double_value_, r, NotInNewSpace(), object_); |
- } |
- if (HasExternalReferenceValue()) { |
- return new(zone) HConstant(external_reference_value_); |
- } |
- DCHECK(!object_.handle().is_null()); |
- return new (zone) HConstant(object_, object_map_, HasStableMapValue(), r, |
- type_, NotInNewSpace(), BooleanValue(), |
- IsUndetectable(), GetInstanceType()); |
-} |
- |
- |
-Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) { |
- HConstant* res = NULL; |
- if (HasInteger32Value()) { |
- res = new (zone) HConstant(int32_value_, Representation::Integer32(), |
- NotInNewSpace(), object_); |
- } else if (HasDoubleValue()) { |
- res = new (zone) |
- HConstant(DoubleToInt32(double_value_), Representation::Integer32(), |
- NotInNewSpace(), object_); |
- } |
- return res != NULL ? Just(res) : Nothing<HConstant*>(); |
-} |
- |
- |
-Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Isolate* isolate, |
- Zone* zone) { |
- HConstant* res = NULL; |
- Handle<Object> handle = this->handle(isolate); |
- if (handle->IsBoolean()) { |
- res = handle->BooleanValue() ? |
- new(zone) HConstant(1) : new(zone) HConstant(0); |
- } else if (handle->IsUndefined()) { |
- res = new (zone) HConstant(std::numeric_limits<double>::quiet_NaN()); |
- } else if (handle->IsNull()) { |
- res = new(zone) HConstant(0); |
- } |
- return res != NULL ? Just(res) : Nothing<HConstant*>(); |
-} |
- |
- |
-std::ostream& HConstant::PrintDataTo(std::ostream& os) const { // NOLINT |
- if (HasInteger32Value()) { |
- os << int32_value_ << " "; |
- } else if (HasDoubleValue()) { |
- os << double_value_ << " "; |
- } else if (HasExternalReferenceValue()) { |
- os << reinterpret_cast<void*>(external_reference_value_.address()) << " "; |
- } else { |
- // The handle() method is silently and lazily mutating the object. |
- Handle<Object> h = const_cast<HConstant*>(this)->handle(isolate()); |
- os << Brief(*h) << " "; |
- if (HasStableMapValue()) os << "[stable-map] "; |
- if (HasObjectMap()) os << "[map " << *ObjectMap().handle() << "] "; |
- } |
- if (!NotInNewSpace()) os << "[new space] "; |
- return os; |
-} |
- |
- |
-std::ostream& HBinaryOperation::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << NameOf(left()) << " " << NameOf(right()); |
- if (CheckFlag(kCanOverflow)) os << " !"; |
- if (CheckFlag(kBailoutOnMinusZero)) os << " -0?"; |
- return os; |
-} |
- |
- |
-void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) { |
- DCHECK(CheckFlag(kFlexibleRepresentation)); |
- Representation new_rep = RepresentationFromInputs(); |
- UpdateRepresentation(new_rep, h_infer, "inputs"); |
- |
- if (representation().IsSmi() && HasNonSmiUse()) { |
- UpdateRepresentation( |
- Representation::Integer32(), h_infer, "use requirements"); |
- } |
- |
- if (observed_output_representation_.IsNone()) { |
- new_rep = RepresentationFromUses(); |
- UpdateRepresentation(new_rep, h_infer, "uses"); |
- } else { |
- new_rep = RepresentationFromOutput(); |
- UpdateRepresentation(new_rep, h_infer, "output"); |
- } |
-} |
- |
- |
-Representation HBinaryOperation::RepresentationFromInputs() { |
- // Determine the worst case of observed input representations and |
- // the currently assumed output representation. |
- Representation rep = representation(); |
- for (int i = 1; i <= 2; ++i) { |
- rep = rep.generalize(observed_input_representation(i)); |
- } |
- // If any of the actual input representation is more general than what we |
- // have so far but not Tagged, use that representation instead. |
- Representation left_rep = left()->representation(); |
- Representation right_rep = right()->representation(); |
- if (!left_rep.IsTagged()) rep = rep.generalize(left_rep); |
- if (!right_rep.IsTagged()) rep = rep.generalize(right_rep); |
- |
- return rep; |
-} |
- |
- |
-bool HBinaryOperation::IgnoreObservedOutputRepresentation( |
- Representation current_rep) { |
- return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) || |
- (current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) && |
- // Mul in Integer32 mode would be too precise. |
- (!this->IsMul() || HMul::cast(this)->MulMinusOne()); |
-} |
- |
- |
-Representation HBinaryOperation::RepresentationFromOutput() { |
- Representation rep = representation(); |
- // Consider observed output representation, but ignore it if it's Double, |
- // this instruction is not a division, and all its uses are truncating |
- // to Integer32. |
- if (observed_output_representation_.is_more_general_than(rep) && |
- !IgnoreObservedOutputRepresentation(rep)) { |
- return observed_output_representation_; |
- } |
- return Representation::None(); |
-} |
- |
- |
-void HBinaryOperation::AssumeRepresentation(Representation r) { |
- set_observed_input_representation(1, r); |
- set_observed_input_representation(2, r); |
- HValue::AssumeRepresentation(r); |
-} |
- |
- |
-void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) { |
- DCHECK(CheckFlag(kFlexibleRepresentation)); |
- Representation new_rep = RepresentationFromInputs(); |
- UpdateRepresentation(new_rep, h_infer, "inputs"); |
- // Do not care about uses. |
-} |
- |
- |
-Range* HBitwise::InferRange(Zone* zone) { |
- if (op() == Token::BIT_XOR) { |
- if (left()->HasRange() && right()->HasRange()) { |
- // The maximum value has the high bit, and all bits below, set: |
- // (1 << high) - 1. |
- // If the range can be negative, the minimum int is a negative number with |
- // the high bit, and all bits below, unset: |
- // -(1 << high). |
- // If it cannot be negative, conservatively choose 0 as minimum int. |
- int64_t left_upper = left()->range()->upper(); |
- int64_t left_lower = left()->range()->lower(); |
- int64_t right_upper = right()->range()->upper(); |
- int64_t right_lower = right()->range()->lower(); |
- |
- if (left_upper < 0) left_upper = ~left_upper; |
- if (left_lower < 0) left_lower = ~left_lower; |
- if (right_upper < 0) right_upper = ~right_upper; |
- if (right_lower < 0) right_lower = ~right_lower; |
- |
- int high = MostSignificantBit( |
- static_cast<uint32_t>( |
- left_upper | left_lower | right_upper | right_lower)); |
- |
- int64_t limit = 1; |
- limit <<= high; |
- int32_t min = (left()->range()->CanBeNegative() || |
- right()->range()->CanBeNegative()) |
- ? static_cast<int32_t>(-limit) : 0; |
- return new(zone) Range(min, static_cast<int32_t>(limit - 1)); |
- } |
- Range* result = HValue::InferRange(zone); |
- result->set_can_be_minus_zero(false); |
- return result; |
- } |
- const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff); |
- int32_t left_mask = (left()->range() != NULL) |
- ? left()->range()->Mask() |
- : kDefaultMask; |
- int32_t right_mask = (right()->range() != NULL) |
- ? right()->range()->Mask() |
- : kDefaultMask; |
- int32_t result_mask = (op() == Token::BIT_AND) |
- ? left_mask & right_mask |
- : left_mask | right_mask; |
- if (result_mask >= 0) return new(zone) Range(0, result_mask); |
- |
- Range* result = HValue::InferRange(zone); |
- result->set_can_be_minus_zero(false); |
- return result; |
-} |
- |
- |
-Range* HSar::InferRange(Zone* zone) { |
- if (right()->IsConstant()) { |
- HConstant* c = HConstant::cast(right()); |
- if (c->HasInteger32Value()) { |
- Range* result = (left()->range() != NULL) |
- ? left()->range()->Copy(zone) |
- : new(zone) Range(); |
- result->Sar(c->Integer32Value()); |
- return result; |
- } |
- } |
- return HValue::InferRange(zone); |
-} |
- |
- |
-Range* HShr::InferRange(Zone* zone) { |
- if (right()->IsConstant()) { |
- HConstant* c = HConstant::cast(right()); |
- if (c->HasInteger32Value()) { |
- int shift_count = c->Integer32Value() & 0x1f; |
- if (left()->range()->CanBeNegative()) { |
- // Only compute bounds if the result always fits into an int32. |
- return (shift_count >= 1) |
- ? new(zone) Range(0, |
- static_cast<uint32_t>(0xffffffff) >> shift_count) |
- : new(zone) Range(); |
- } else { |
- // For positive inputs we can use the >> operator. |
- Range* result = (left()->range() != NULL) |
- ? left()->range()->Copy(zone) |
- : new(zone) Range(); |
- result->Sar(c->Integer32Value()); |
- return result; |
- } |
- } |
- } |
- return HValue::InferRange(zone); |
-} |
- |
- |
-Range* HShl::InferRange(Zone* zone) { |
- if (right()->IsConstant()) { |
- HConstant* c = HConstant::cast(right()); |
- if (c->HasInteger32Value()) { |
- Range* result = (left()->range() != NULL) |
- ? left()->range()->Copy(zone) |
- : new(zone) Range(); |
- result->Shl(c->Integer32Value()); |
- return result; |
- } |
- } |
- return HValue::InferRange(zone); |
-} |
- |
- |
-Range* HLoadNamedField::InferRange(Zone* zone) { |
- if (access().representation().IsInteger8()) { |
- return new(zone) Range(kMinInt8, kMaxInt8); |
- } |
- if (access().representation().IsUInteger8()) { |
- return new(zone) Range(kMinUInt8, kMaxUInt8); |
- } |
- if (access().representation().IsInteger16()) { |
- return new(zone) Range(kMinInt16, kMaxInt16); |
- } |
- if (access().representation().IsUInteger16()) { |
- return new(zone) Range(kMinUInt16, kMaxUInt16); |
- } |
- if (access().IsStringLength()) { |
- return new(zone) Range(0, String::kMaxLength); |
- } |
- return HValue::InferRange(zone); |
-} |
- |
- |
-Range* HLoadKeyed::InferRange(Zone* zone) { |
- switch (elements_kind()) { |
- case INT8_ELEMENTS: |
- return new(zone) Range(kMinInt8, kMaxInt8); |
- case UINT8_ELEMENTS: |
- case UINT8_CLAMPED_ELEMENTS: |
- return new(zone) Range(kMinUInt8, kMaxUInt8); |
- case INT16_ELEMENTS: |
- return new(zone) Range(kMinInt16, kMaxInt16); |
- case UINT16_ELEMENTS: |
- return new(zone) Range(kMinUInt16, kMaxUInt16); |
- default: |
- return HValue::InferRange(zone); |
- } |
-} |
- |
- |
-std::ostream& HCompareGeneric::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << Token::Name(token()) << " "; |
- return HBinaryOperation::PrintDataTo(os); |
-} |
- |
- |
-std::ostream& HStringCompareAndBranch::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- os << Token::Name(token()) << " "; |
- return HControlInstruction::PrintDataTo(os); |
-} |
- |
- |
-std::ostream& HCompareNumericAndBranch::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- os << Token::Name(token()) << " " << NameOf(left()) << " " << NameOf(right()); |
- return HControlInstruction::PrintDataTo(os); |
-} |
- |
- |
-std::ostream& HCompareObjectEqAndBranch::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- os << NameOf(left()) << " " << NameOf(right()); |
- return HControlInstruction::PrintDataTo(os); |
-} |
- |
- |
-bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) { |
- if (known_successor_index() != kNoKnownSuccessorIndex) { |
- *block = SuccessorAt(known_successor_index()); |
- return true; |
- } |
- if (FLAG_fold_constants && left()->IsConstant() && right()->IsConstant()) { |
- *block = HConstant::cast(left())->DataEquals(HConstant::cast(right())) |
- ? FirstSuccessor() : SecondSuccessor(); |
- return true; |
- } |
- *block = NULL; |
- return false; |
-} |
- |
- |
-bool HIsStringAndBranch::KnownSuccessorBlock(HBasicBlock** block) { |
- if (known_successor_index() != kNoKnownSuccessorIndex) { |
- *block = SuccessorAt(known_successor_index()); |
- return true; |
- } |
- if (FLAG_fold_constants && value()->IsConstant()) { |
- *block = HConstant::cast(value())->HasStringValue() |
- ? FirstSuccessor() : SecondSuccessor(); |
- return true; |
- } |
- if (value()->type().IsString()) { |
- *block = FirstSuccessor(); |
- return true; |
- } |
- if (value()->type().IsSmi() || |
- value()->type().IsNull() || |
- value()->type().IsBoolean() || |
- value()->type().IsUndefined() || |
- value()->type().IsJSObject()) { |
- *block = SecondSuccessor(); |
- return true; |
- } |
- *block = NULL; |
- return false; |
-} |
- |
- |
-bool HIsUndetectableAndBranch::KnownSuccessorBlock(HBasicBlock** block) { |
- if (FLAG_fold_constants && value()->IsConstant()) { |
- *block = HConstant::cast(value())->IsUndetectable() |
- ? FirstSuccessor() : SecondSuccessor(); |
- return true; |
- } |
- *block = NULL; |
- return false; |
-} |
- |
- |
-bool HHasInstanceTypeAndBranch::KnownSuccessorBlock(HBasicBlock** block) { |
- if (FLAG_fold_constants && value()->IsConstant()) { |
- InstanceType type = HConstant::cast(value())->GetInstanceType(); |
- *block = (from_ <= type) && (type <= to_) |
- ? FirstSuccessor() : SecondSuccessor(); |
- return true; |
- } |
- *block = NULL; |
- return false; |
-} |
- |
- |
-void HCompareHoleAndBranch::InferRepresentation( |
- HInferRepresentationPhase* h_infer) { |
- ChangeRepresentation(value()->representation()); |
-} |
- |
- |
-bool HCompareNumericAndBranch::KnownSuccessorBlock(HBasicBlock** block) { |
- if (left() == right() && |
- left()->representation().IsSmiOrInteger32()) { |
- *block = (token() == Token::EQ || |
- token() == Token::EQ_STRICT || |
- token() == Token::LTE || |
- token() == Token::GTE) |
- ? FirstSuccessor() : SecondSuccessor(); |
- return true; |
- } |
- *block = NULL; |
- return false; |
-} |
- |
- |
-bool HCompareMinusZeroAndBranch::KnownSuccessorBlock(HBasicBlock** block) { |
- if (FLAG_fold_constants && value()->IsConstant()) { |
- HConstant* constant = HConstant::cast(value()); |
- if (constant->HasDoubleValue()) { |
- *block = IsMinusZero(constant->DoubleValue()) |
- ? FirstSuccessor() : SecondSuccessor(); |
- return true; |
- } |
- } |
- if (value()->representation().IsSmiOrInteger32()) { |
- // A Smi or Integer32 cannot contain minus zero. |
- *block = SecondSuccessor(); |
- return true; |
- } |
- *block = NULL; |
- return false; |
-} |
- |
- |
-void HCompareMinusZeroAndBranch::InferRepresentation( |
- HInferRepresentationPhase* h_infer) { |
- ChangeRepresentation(value()->representation()); |
-} |
- |
- |
-std::ostream& HGoto::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << *SuccessorAt(0); |
-} |
- |
- |
-void HCompareNumericAndBranch::InferRepresentation( |
- HInferRepresentationPhase* h_infer) { |
- Representation left_rep = left()->representation(); |
- Representation right_rep = right()->representation(); |
- Representation observed_left = observed_input_representation(0); |
- Representation observed_right = observed_input_representation(1); |
- |
- Representation rep = Representation::None(); |
- rep = rep.generalize(observed_left); |
- rep = rep.generalize(observed_right); |
- if (rep.IsNone() || rep.IsSmiOrInteger32()) { |
- if (!left_rep.IsTagged()) rep = rep.generalize(left_rep); |
- if (!right_rep.IsTagged()) rep = rep.generalize(right_rep); |
- } else { |
- rep = Representation::Double(); |
- } |
- |
- if (rep.IsDouble()) { |
- // According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, === |
- // and !=) have special handling of undefined, e.g. undefined == undefined |
- // is 'true'. Relational comparisons have a different semantic, first |
- // calling ToPrimitive() on their arguments. The standard Crankshaft |
- // tagged-to-double conversion to ensure the HCompareNumericAndBranch's |
- // inputs are doubles caused 'undefined' to be converted to NaN. That's |
- // compatible out-of-the box with ordered relational comparisons (<, >, <=, |
- // >=). However, for equality comparisons (and for 'in' and 'instanceof'), |
- // it is not consistent with the spec. For example, it would cause undefined |
- // == undefined (should be true) to be evaluated as NaN == NaN |
- // (false). Therefore, any comparisons other than ordered relational |
- // comparisons must cause a deopt when one of their arguments is undefined. |
- // See also v8:1434 |
- if (Token::IsOrderedRelationalCompareOp(token_) && !is_strong(strength())) { |
- SetFlag(kAllowUndefinedAsNaN); |
- } |
- } |
- ChangeRepresentation(rep); |
-} |
- |
- |
-std::ostream& HParameter::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << index(); |
-} |
- |
- |
-std::ostream& HLoadNamedField::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << NameOf(object()) << access_; |
- |
- if (maps() != NULL) { |
- os << " [" << *maps()->at(0).handle(); |
- for (int i = 1; i < maps()->size(); ++i) { |
- os << "," << *maps()->at(i).handle(); |
- } |
- os << "]"; |
- } |
- |
- if (HasDependency()) os << " " << NameOf(dependency()); |
- return os; |
-} |
- |
- |
-std::ostream& HLoadNamedGeneric::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- Handle<String> n = Handle<String>::cast(name()); |
- return os << NameOf(object()) << "." << n->ToCString().get(); |
-} |
- |
- |
-std::ostream& HLoadKeyed::PrintDataTo(std::ostream& os) const { // NOLINT |
- if (!is_fixed_typed_array()) { |
- os << NameOf(elements()); |
- } else { |
- DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND && |
- elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND); |
- os << NameOf(elements()) << "." << ElementsKindToString(elements_kind()); |
- } |
- |
- os << "[" << NameOf(key()); |
- if (IsDehoisted()) os << " + " << base_offset(); |
- os << "]"; |
- |
- if (HasDependency()) os << " " << NameOf(dependency()); |
- if (RequiresHoleCheck()) os << " check_hole"; |
- return os; |
-} |
- |
- |
-bool HLoadKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) { |
- // The base offset is usually simply the size of the array header, except |
- // with dehoisting adds an addition offset due to a array index key |
- // manipulation, in which case it becomes (array header size + |
- // constant-offset-from-key * kPointerSize) |
- uint32_t base_offset = BaseOffsetField::decode(bit_field_); |
- v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset; |
- addition_result += increase_by_value; |
- if (!addition_result.IsValid()) return false; |
- base_offset = addition_result.ValueOrDie(); |
- if (!BaseOffsetField::is_valid(base_offset)) return false; |
- bit_field_ = BaseOffsetField::update(bit_field_, base_offset); |
- return true; |
-} |
- |
- |
-bool HLoadKeyed::UsesMustHandleHole() const { |
- if (IsFastPackedElementsKind(elements_kind())) { |
- return false; |
- } |
- |
- if (IsFixedTypedArrayElementsKind(elements_kind())) { |
- return false; |
- } |
- |
- if (hole_mode() == ALLOW_RETURN_HOLE) { |
- if (IsFastDoubleElementsKind(elements_kind())) { |
- return AllUsesCanTreatHoleAsNaN(); |
- } |
- return true; |
- } |
- |
- if (IsFastDoubleElementsKind(elements_kind())) { |
- return false; |
- } |
- |
- // Holes are only returned as tagged values. |
- if (!representation().IsTagged()) { |
- return false; |
- } |
- |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) { |
- HValue* use = it.value(); |
- if (!use->IsChange()) return false; |
- } |
- |
- return true; |
-} |
- |
- |
-bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const { |
- return IsFastDoubleElementsKind(elements_kind()) && |
- CheckUsesForFlag(HValue::kAllowUndefinedAsNaN); |
-} |
- |
- |
-bool HLoadKeyed::RequiresHoleCheck() const { |
- if (IsFastPackedElementsKind(elements_kind())) { |
- return false; |
- } |
- |
- if (IsFixedTypedArrayElementsKind(elements_kind())) { |
- return false; |
- } |
- |
- if (hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { |
- return false; |
- } |
- |
- return !UsesMustHandleHole(); |
-} |
- |
- |
-std::ostream& HLoadKeyedGeneric::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << NameOf(object()) << "[" << NameOf(key()) << "]"; |
-} |
- |
- |
-HValue* HLoadKeyedGeneric::Canonicalize() { |
- // Recognize generic keyed loads that use property name generated |
- // by for-in statement as a key and rewrite them into fast property load |
- // by index. |
- if (key()->IsLoadKeyed()) { |
- HLoadKeyed* key_load = HLoadKeyed::cast(key()); |
- if (key_load->elements()->IsForInCacheArray()) { |
- HForInCacheArray* names_cache = |
- HForInCacheArray::cast(key_load->elements()); |
- |
- if (names_cache->enumerable() == object()) { |
- HForInCacheArray* index_cache = |
- names_cache->index_cache(); |
- HCheckMapValue* map_check = HCheckMapValue::New( |
- block()->graph()->isolate(), block()->graph()->zone(), |
- block()->graph()->GetInvalidContext(), object(), |
- names_cache->map()); |
- HInstruction* index = HLoadKeyed::New( |
- block()->graph()->isolate(), block()->graph()->zone(), |
- block()->graph()->GetInvalidContext(), index_cache, key_load->key(), |
- key_load->key(), key_load->elements_kind()); |
- map_check->InsertBefore(this); |
- index->InsertBefore(this); |
- return Prepend(new(block()->zone()) HLoadFieldByIndex( |
- object(), index)); |
- } |
- } |
- } |
- |
- return this; |
-} |
- |
- |
-std::ostream& HStoreNamedGeneric::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- Handle<String> n = Handle<String>::cast(name()); |
- return os << NameOf(object()) << "." << n->ToCString().get() << " = " |
- << NameOf(value()); |
-} |
- |
- |
-std::ostream& HStoreGlobalViaContext::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << " depth:" << depth() << " slot:" << slot_index() << " = " |
- << NameOf(value()); |
-} |
- |
- |
-std::ostream& HStoreNamedField::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << NameOf(object()) << access_ << " = " << NameOf(value()); |
- if (NeedsWriteBarrier()) os << " (write-barrier)"; |
- if (has_transition()) os << " (transition map " << *transition_map() << ")"; |
- return os; |
-} |
- |
- |
-std::ostream& HStoreKeyed::PrintDataTo(std::ostream& os) const { // NOLINT |
- if (!is_fixed_typed_array()) { |
- os << NameOf(elements()); |
- } else { |
- DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND && |
- elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND); |
- os << NameOf(elements()) << "." << ElementsKindToString(elements_kind()); |
- } |
- |
- os << "[" << NameOf(key()); |
- if (IsDehoisted()) os << " + " << base_offset(); |
- return os << "] = " << NameOf(value()); |
-} |
- |
- |
-std::ostream& HStoreKeyedGeneric::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << NameOf(object()) << "[" << NameOf(key()) |
- << "] = " << NameOf(value()); |
-} |
- |
- |
-std::ostream& HTransitionElementsKind::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- os << NameOf(object()); |
- ElementsKind from_kind = original_map().handle()->elements_kind(); |
- ElementsKind to_kind = transitioned_map().handle()->elements_kind(); |
- os << " " << *original_map().handle() << " [" |
- << ElementsAccessor::ForKind(from_kind)->name() << "] -> " |
- << *transitioned_map().handle() << " [" |
- << ElementsAccessor::ForKind(to_kind)->name() << "]"; |
- if (IsSimpleMapChangeTransition(from_kind, to_kind)) os << " (simple)"; |
- return os; |
-} |
- |
- |
-std::ostream& HLoadGlobalGeneric::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << name()->ToCString().get() << " "; |
-} |
- |
- |
-std::ostream& HLoadGlobalViaContext::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << "depth:" << depth() << " slot:" << slot_index(); |
-} |
- |
- |
-std::ostream& HInnerAllocatedObject::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- os << NameOf(base_object()) << " offset "; |
- return offset()->PrintTo(os); |
-} |
- |
- |
-std::ostream& HLoadContextSlot::PrintDataTo(std::ostream& os) const { // NOLINT |
- return os << NameOf(value()) << "[" << slot_index() << "]"; |
-} |
- |
- |
-std::ostream& HStoreContextSlot::PrintDataTo( |
- std::ostream& os) const { // NOLINT |
- return os << NameOf(context()) << "[" << slot_index() |
- << "] = " << NameOf(value()); |
-} |
- |
- |
-// Implementation of type inference and type conversions. Calculates |
-// the inferred type of this instruction based on the input operands. |
- |
-HType HValue::CalculateInferredType() { |
- return type_; |
-} |
- |
- |
-HType HPhi::CalculateInferredType() { |
- if (OperandCount() == 0) return HType::Tagged(); |
- HType result = OperandAt(0)->type(); |
- for (int i = 1; i < OperandCount(); ++i) { |
- HType current = OperandAt(i)->type(); |
- result = result.Combine(current); |
- } |
- return result; |
-} |
- |
- |
-HType HChange::CalculateInferredType() { |
- if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber(); |
- return type(); |
-} |
- |
- |
-Representation HUnaryMathOperation::RepresentationFromInputs() { |
- if (SupportsFlexibleFloorAndRound() && |
- (op_ == kMathFloor || op_ == kMathRound)) { |
- // Floor and Round always take a double input. The integral result can be |
- // used as an integer or a double. Infer the representation from the uses. |
- return Representation::None(); |
- } |
- Representation rep = representation(); |
- // If any of the actual input representation is more general than what we |
- // have so far but not Tagged, use that representation instead. |
- Representation input_rep = value()->representation(); |
- if (!input_rep.IsTagged()) { |
- rep = rep.generalize(input_rep); |
- } |
- return rep; |
-} |
- |
- |
-bool HAllocate::HandleSideEffectDominator(GVNFlag side_effect, |
- HValue* dominator) { |
- DCHECK(side_effect == kNewSpacePromotion); |
- Zone* zone = block()->zone(); |
- Isolate* isolate = block()->isolate(); |
- if (!FLAG_use_allocation_folding) return false; |
- |
- // Try to fold allocations together with their dominating allocations. |
- if (!dominator->IsAllocate()) { |
- if (FLAG_trace_allocation_folding) { |
- PrintF("#%d (%s) cannot fold into #%d (%s)\n", |
- id(), Mnemonic(), dominator->id(), dominator->Mnemonic()); |
- } |
- return false; |
- } |
- |
- // Check whether we are folding within the same block for local folding. |
- if (FLAG_use_local_allocation_folding && dominator->block() != block()) { |
- if (FLAG_trace_allocation_folding) { |
- PrintF("#%d (%s) cannot fold into #%d (%s), crosses basic blocks\n", |
- id(), Mnemonic(), dominator->id(), dominator->Mnemonic()); |
- } |
- return false; |
- } |
- |
- HAllocate* dominator_allocate = HAllocate::cast(dominator); |
- HValue* dominator_size = dominator_allocate->size(); |
- HValue* current_size = size(); |
- |
- // TODO(hpayer): Add support for non-constant allocation in dominator. |
- if (!dominator_size->IsInteger32Constant()) { |
- if (FLAG_trace_allocation_folding) { |
- PrintF("#%d (%s) cannot fold into #%d (%s), " |
- "dynamic allocation size in dominator\n", |
- id(), Mnemonic(), dominator->id(), dominator->Mnemonic()); |
- } |
- return false; |
- } |
- |
- |
- if (!IsFoldable(dominator_allocate)) { |
- if (FLAG_trace_allocation_folding) { |
- PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n", id(), |
- Mnemonic(), dominator->id(), dominator->Mnemonic()); |
- } |
- return false; |
- } |
- |
- if (!has_size_upper_bound()) { |
- if (FLAG_trace_allocation_folding) { |
- PrintF("#%d (%s) cannot fold into #%d (%s), " |
- "can't estimate total allocation size\n", |
- id(), Mnemonic(), dominator->id(), dominator->Mnemonic()); |
- } |
- return false; |
- } |
- |
- if (!current_size->IsInteger32Constant()) { |
- // If it's not constant then it is a size_in_bytes calculation graph |
- // like this: (const_header_size + const_element_size * size). |
- DCHECK(current_size->IsInstruction()); |
- |
- HInstruction* current_instr = HInstruction::cast(current_size); |
- if (!current_instr->Dominates(dominator_allocate)) { |
- if (FLAG_trace_allocation_folding) { |
- PrintF("#%d (%s) cannot fold into #%d (%s), dynamic size " |
- "value does not dominate target allocation\n", |
- id(), Mnemonic(), dominator_allocate->id(), |
- dominator_allocate->Mnemonic()); |
- } |
- return false; |
- } |
- } |
- |
- DCHECK( |
- (IsNewSpaceAllocation() && dominator_allocate->IsNewSpaceAllocation()) || |
- (IsOldSpaceAllocation() && dominator_allocate->IsOldSpaceAllocation())); |
- |
- // First update the size of the dominator allocate instruction. |
- dominator_size = dominator_allocate->size(); |
- int32_t original_object_size = |
- HConstant::cast(dominator_size)->GetInteger32Constant(); |
- int32_t dominator_size_constant = original_object_size; |
- |
- if (MustAllocateDoubleAligned()) { |
- if ((dominator_size_constant & kDoubleAlignmentMask) != 0) { |
- dominator_size_constant += kDoubleSize / 2; |
- } |
- } |
- |
- int32_t current_size_max_value = size_upper_bound()->GetInteger32Constant(); |
- int32_t new_dominator_size = dominator_size_constant + current_size_max_value; |
- |
- // Since we clear the first word after folded memory, we cannot use the |
- // whole Page::kMaxRegularHeapObjectSize memory. |
- if (new_dominator_size > Page::kMaxRegularHeapObjectSize - kPointerSize) { |
- if (FLAG_trace_allocation_folding) { |
- PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n", |
- id(), Mnemonic(), dominator_allocate->id(), |
- dominator_allocate->Mnemonic(), new_dominator_size); |
- } |
- return false; |
- } |
- |
- HInstruction* new_dominator_size_value; |
- |
- if (current_size->IsInteger32Constant()) { |
- new_dominator_size_value = HConstant::CreateAndInsertBefore( |
- isolate, zone, context(), new_dominator_size, Representation::None(), |
- dominator_allocate); |
- } else { |
- HValue* new_dominator_size_constant = HConstant::CreateAndInsertBefore( |
- isolate, zone, context(), dominator_size_constant, |
- Representation::Integer32(), dominator_allocate); |
- |
- // Add old and new size together and insert. |
- current_size->ChangeRepresentation(Representation::Integer32()); |
- |
- new_dominator_size_value = HAdd::New( |
- isolate, zone, context(), new_dominator_size_constant, current_size); |
- new_dominator_size_value->ClearFlag(HValue::kCanOverflow); |
- new_dominator_size_value->ChangeRepresentation(Representation::Integer32()); |
- |
- new_dominator_size_value->InsertBefore(dominator_allocate); |
- } |
- |
- dominator_allocate->UpdateSize(new_dominator_size_value); |
- |
- if (MustAllocateDoubleAligned()) { |
- if (!dominator_allocate->MustAllocateDoubleAligned()) { |
- dominator_allocate->MakeDoubleAligned(); |
- } |
- } |
- |
- bool keep_new_space_iterable = FLAG_log_gc || FLAG_heap_stats; |
-#ifdef VERIFY_HEAP |
- keep_new_space_iterable = keep_new_space_iterable || FLAG_verify_heap; |
-#endif |
- |
- if (keep_new_space_iterable && dominator_allocate->IsNewSpaceAllocation()) { |
- dominator_allocate->MakePrefillWithFiller(); |
- } else { |
- // TODO(hpayer): This is a short-term hack to make allocation mementos |
- // work again in new space. |
- dominator_allocate->ClearNextMapWord(original_object_size); |
- } |
- |
- dominator_allocate->UpdateClearNextMapWord(MustClearNextMapWord()); |
- |
- // After that replace the dominated allocate instruction. |
- HInstruction* inner_offset = HConstant::CreateAndInsertBefore( |
- isolate, zone, context(), dominator_size_constant, Representation::None(), |
- this); |
- |
- HInstruction* dominated_allocate_instr = HInnerAllocatedObject::New( |
- isolate, zone, context(), dominator_allocate, inner_offset, type()); |
- dominated_allocate_instr->InsertBefore(this); |
- DeleteAndReplaceWith(dominated_allocate_instr); |
- if (FLAG_trace_allocation_folding) { |
- PrintF("#%d (%s) folded into #%d (%s)\n", |
- id(), Mnemonic(), dominator_allocate->id(), |
- dominator_allocate->Mnemonic()); |
- } |
- return true; |
-} |
- |
- |
-void HAllocate::UpdateFreeSpaceFiller(int32_t free_space_size) { |
- DCHECK(filler_free_space_size_ != NULL); |
- Zone* zone = block()->zone(); |
- // We must explicitly force Smi representation here because on x64 we |
- // would otherwise automatically choose int32, but the actual store |
- // requires a Smi-tagged value. |
- HConstant* new_free_space_size = HConstant::CreateAndInsertBefore( |
- block()->isolate(), zone, context(), |
- filler_free_space_size_->value()->GetInteger32Constant() + |
- free_space_size, |
- Representation::Smi(), filler_free_space_size_); |
- filler_free_space_size_->UpdateValue(new_free_space_size); |
-} |
- |
- |
-void HAllocate::CreateFreeSpaceFiller(int32_t free_space_size) { |
- DCHECK(filler_free_space_size_ == NULL); |
- Isolate* isolate = block()->isolate(); |
- Zone* zone = block()->zone(); |
- HInstruction* free_space_instr = |
- HInnerAllocatedObject::New(isolate, zone, context(), dominating_allocate_, |
- dominating_allocate_->size(), type()); |
- free_space_instr->InsertBefore(this); |
- HConstant* filler_map = HConstant::CreateAndInsertAfter( |
- zone, Unique<Map>::CreateImmovable(isolate->factory()->free_space_map()), |
- true, free_space_instr); |
- HInstruction* store_map = |
- HStoreNamedField::New(isolate, zone, context(), free_space_instr, |
- HObjectAccess::ForMap(), filler_map); |
- store_map->SetFlag(HValue::kHasNoObservableSideEffects); |
- store_map->InsertAfter(filler_map); |
- |
- // We must explicitly force Smi representation here because on x64 we |
- // would otherwise automatically choose int32, but the actual store |
- // requires a Smi-tagged value. |
- HConstant* filler_size = |
- HConstant::CreateAndInsertAfter(isolate, zone, context(), free_space_size, |
- Representation::Smi(), store_map); |
- // Must force Smi representation for x64 (see comment above). |
- HObjectAccess access = HObjectAccess::ForMapAndOffset( |
- isolate->factory()->free_space_map(), FreeSpace::kSizeOffset, |
- Representation::Smi()); |
- HStoreNamedField* store_size = HStoreNamedField::New( |
- isolate, zone, context(), free_space_instr, access, filler_size); |
- store_size->SetFlag(HValue::kHasNoObservableSideEffects); |
- store_size->InsertAfter(filler_size); |
- filler_free_space_size_ = store_size; |
-} |
- |
- |
-void HAllocate::ClearNextMapWord(int offset) { |
- if (MustClearNextMapWord()) { |
- Zone* zone = block()->zone(); |
- HObjectAccess access = |
- HObjectAccess::ForObservableJSObjectOffset(offset); |
- HStoreNamedField* clear_next_map = |
- HStoreNamedField::New(block()->isolate(), zone, context(), this, access, |
- block()->graph()->GetConstant0()); |
- clear_next_map->ClearAllSideEffects(); |
- clear_next_map->InsertAfter(this); |
- } |
-} |
- |
- |
-std::ostream& HAllocate::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << NameOf(size()) << " ("; |
- if (IsNewSpaceAllocation()) os << "N"; |
- if (IsOldSpaceAllocation()) os << "P"; |
- if (MustAllocateDoubleAligned()) os << "A"; |
- if (MustPrefillWithFiller()) os << "F"; |
- return os << ")"; |
-} |
- |
- |
-bool HStoreKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) { |
- // The base offset is usually simply the size of the array header, except |
- // with dehoisting adds an addition offset due to a array index key |
- // manipulation, in which case it becomes (array header size + |
- // constant-offset-from-key * kPointerSize) |
- v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset_; |
- addition_result += increase_by_value; |
- if (!addition_result.IsValid()) return false; |
- base_offset_ = addition_result.ValueOrDie(); |
- return true; |
-} |
- |
- |
-bool HStoreKeyed::NeedsCanonicalization() { |
- switch (value()->opcode()) { |
- case kLoadKeyed: { |
- ElementsKind load_kind = HLoadKeyed::cast(value())->elements_kind(); |
- return IsFixedFloatElementsKind(load_kind); |
- } |
- case kChange: { |
- Representation from = HChange::cast(value())->from(); |
- return from.IsTagged() || from.IsHeapObject(); |
- } |
- case kLoadNamedField: |
- case kPhi: { |
- // Better safe than sorry... |
- return true; |
- } |
- default: |
- return false; |
- } |
-} |
- |
- |
-#define H_CONSTANT_INT(val) \ |
- HConstant::New(isolate, zone, context, static_cast<int32_t>(val)) |
-#define H_CONSTANT_DOUBLE(val) \ |
- HConstant::New(isolate, zone, context, static_cast<double>(val)) |
- |
-#define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op) \ |
- HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context, \ |
- HValue* left, HValue* right, Strength strength) { \ |
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \ |
- HConstant* c_left = HConstant::cast(left); \ |
- HConstant* c_right = HConstant::cast(right); \ |
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \ |
- double double_res = c_left->DoubleValue() op c_right->DoubleValue(); \ |
- if (IsInt32Double(double_res)) { \ |
- return H_CONSTANT_INT(double_res); \ |
- } \ |
- return H_CONSTANT_DOUBLE(double_res); \ |
- } \ |
- } \ |
- return new (zone) HInstr(context, left, right, strength); \ |
- } |
- |
- |
-DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +) |
-DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *) |
-DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -) |
- |
-#undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR |
- |
- |
-HInstruction* HStringAdd::New(Isolate* isolate, Zone* zone, HValue* context, |
- HValue* left, HValue* right, |
- PretenureFlag pretenure_flag, |
- StringAddFlags flags, |
- Handle<AllocationSite> allocation_site) { |
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { |
- HConstant* c_right = HConstant::cast(right); |
- HConstant* c_left = HConstant::cast(left); |
- if (c_left->HasStringValue() && c_right->HasStringValue()) { |
- Handle<String> left_string = c_left->StringValue(); |
- Handle<String> right_string = c_right->StringValue(); |
- // Prevent possible exception by invalid string length. |
- if (left_string->length() + right_string->length() < String::kMaxLength) { |
- MaybeHandle<String> concat = isolate->factory()->NewConsString( |
- c_left->StringValue(), c_right->StringValue()); |
- return HConstant::New(isolate, zone, context, concat.ToHandleChecked()); |
- } |
- } |
- } |
- return new (zone) |
- HStringAdd(context, left, right, pretenure_flag, flags, allocation_site); |
-} |
- |
- |
-std::ostream& HStringAdd::PrintDataTo(std::ostream& os) const { // NOLINT |
- if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) { |
- os << "_CheckBoth"; |
- } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) { |
- os << "_CheckLeft"; |
- } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) { |
- os << "_CheckRight"; |
- } |
- HBinaryOperation::PrintDataTo(os); |
- os << " ("; |
- if (pretenure_flag() == NOT_TENURED) |
- os << "N"; |
- else if (pretenure_flag() == TENURED) |
- os << "D"; |
- return os << ")"; |
-} |
- |
- |
-HInstruction* HStringCharFromCode::New(Isolate* isolate, Zone* zone, |
- HValue* context, HValue* char_code) { |
- if (FLAG_fold_constants && char_code->IsConstant()) { |
- HConstant* c_code = HConstant::cast(char_code); |
- if (c_code->HasNumberValue()) { |
- if (std::isfinite(c_code->DoubleValue())) { |
- uint32_t code = c_code->NumberValueAsInteger32() & 0xffff; |
- return HConstant::New( |
- isolate, zone, context, |
- isolate->factory()->LookupSingleCharacterStringFromCode(code)); |
- } |
- return HConstant::New(isolate, zone, context, |
- isolate->factory()->empty_string()); |
- } |
- } |
- return new(zone) HStringCharFromCode(context, char_code); |
-} |
- |
- |
-HInstruction* HUnaryMathOperation::New(Isolate* isolate, Zone* zone, |
- HValue* context, HValue* value, |
- BuiltinFunctionId op) { |
- do { |
- if (!FLAG_fold_constants) break; |
- if (!value->IsConstant()) break; |
- HConstant* constant = HConstant::cast(value); |
- if (!constant->HasNumberValue()) break; |
- double d = constant->DoubleValue(); |
- if (std::isnan(d)) { // NaN poisons everything. |
- return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN()); |
- } |
- if (std::isinf(d)) { // +Infinity and -Infinity. |
- switch (op) { |
- case kMathExp: |
- return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0); |
- case kMathLog: |
- case kMathSqrt: |
- return H_CONSTANT_DOUBLE( |
- (d > 0.0) ? d : std::numeric_limits<double>::quiet_NaN()); |
- case kMathPowHalf: |
- case kMathAbs: |
- return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d); |
- case kMathRound: |
- case kMathFround: |
- case kMathFloor: |
- return H_CONSTANT_DOUBLE(d); |
- case kMathClz32: |
- return H_CONSTANT_INT(32); |
- default: |
- UNREACHABLE(); |
- break; |
- } |
- } |
- switch (op) { |
- case kMathExp: |
- return H_CONSTANT_DOUBLE(fast_exp(d)); |
- case kMathLog: |
- return H_CONSTANT_DOUBLE(std::log(d)); |
- case kMathSqrt: |
- return H_CONSTANT_DOUBLE(fast_sqrt(d)); |
- case kMathPowHalf: |
- return H_CONSTANT_DOUBLE(power_double_double(d, 0.5)); |
- case kMathAbs: |
- return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d); |
- case kMathRound: |
- // -0.5 .. -0.0 round to -0.0. |
- if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0); |
- // Doubles are represented as Significant * 2 ^ Exponent. If the |
- // Exponent is not negative, the double value is already an integer. |
- if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d); |
- return H_CONSTANT_DOUBLE(Floor(d + 0.5)); |
- case kMathFround: |
- return H_CONSTANT_DOUBLE(static_cast<double>(static_cast<float>(d))); |
- case kMathFloor: |
- return H_CONSTANT_DOUBLE(Floor(d)); |
- case kMathClz32: { |
- uint32_t i = DoubleToUint32(d); |
- return H_CONSTANT_INT(base::bits::CountLeadingZeros32(i)); |
- } |
- default: |
- UNREACHABLE(); |
- break; |
- } |
- } while (false); |
- return new(zone) HUnaryMathOperation(context, value, op); |
-} |
- |
- |
-Representation HUnaryMathOperation::RepresentationFromUses() { |
- if (op_ != kMathFloor && op_ != kMathRound) { |
- return HValue::RepresentationFromUses(); |
- } |
- |
- // The instruction can have an int32 or double output. Prefer a double |
- // representation if there are double uses. |
- bool use_double = false; |
- |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) { |
- HValue* use = it.value(); |
- int use_index = it.index(); |
- Representation rep_observed = use->observed_input_representation(use_index); |
- Representation rep_required = use->RequiredInputRepresentation(use_index); |
- use_double |= (rep_observed.IsDouble() || rep_required.IsDouble()); |
- if (use_double && !FLAG_trace_representation) { |
- // Having seen one double is enough. |
- break; |
- } |
- if (FLAG_trace_representation) { |
- if (!rep_required.IsDouble() || rep_observed.IsDouble()) { |
- PrintF("#%d %s is used by #%d %s as %s%s\n", |
- id(), Mnemonic(), use->id(), |
- use->Mnemonic(), rep_observed.Mnemonic(), |
- (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : "")); |
- } else { |
- PrintF("#%d %s is required by #%d %s as %s%s\n", |
- id(), Mnemonic(), use->id(), |
- use->Mnemonic(), rep_required.Mnemonic(), |
- (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : "")); |
- } |
- } |
- } |
- return use_double ? Representation::Double() : Representation::Integer32(); |
-} |
- |
- |
-HInstruction* HPower::New(Isolate* isolate, Zone* zone, HValue* context, |
- HValue* left, HValue* right) { |
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { |
- HConstant* c_left = HConstant::cast(left); |
- HConstant* c_right = HConstant::cast(right); |
- if (c_left->HasNumberValue() && c_right->HasNumberValue()) { |
- double result = power_helper(c_left->DoubleValue(), |
- c_right->DoubleValue()); |
- return H_CONSTANT_DOUBLE(std::isnan(result) |
- ? std::numeric_limits<double>::quiet_NaN() |
- : result); |
- } |
- } |
- return new(zone) HPower(left, right); |
-} |
- |
- |
-HInstruction* HMathMinMax::New(Isolate* isolate, Zone* zone, HValue* context, |
- HValue* left, HValue* right, Operation op) { |
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { |
- HConstant* c_left = HConstant::cast(left); |
- HConstant* c_right = HConstant::cast(right); |
- if (c_left->HasNumberValue() && c_right->HasNumberValue()) { |
- double d_left = c_left->DoubleValue(); |
- double d_right = c_right->DoubleValue(); |
- if (op == kMathMin) { |
- if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right); |
- if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left); |
- if (d_left == d_right) { |
- // Handle +0 and -0. |
- return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left |
- : d_right); |
- } |
- } else { |
- if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right); |
- if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left); |
- if (d_left == d_right) { |
- // Handle +0 and -0. |
- return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right |
- : d_left); |
- } |
- } |
- // All comparisons failed, must be NaN. |
- return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN()); |
- } |
- } |
- return new(zone) HMathMinMax(context, left, right, op); |
-} |
- |
- |
-HInstruction* HMod::New(Isolate* isolate, Zone* zone, HValue* context, |
- HValue* left, HValue* right, Strength strength) { |
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { |
- HConstant* c_left = HConstant::cast(left); |
- HConstant* c_right = HConstant::cast(right); |
- if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) { |
- int32_t dividend = c_left->Integer32Value(); |
- int32_t divisor = c_right->Integer32Value(); |
- if (dividend == kMinInt && divisor == -1) { |
- return H_CONSTANT_DOUBLE(-0.0); |
- } |
- if (divisor != 0) { |
- int32_t res = dividend % divisor; |
- if ((res == 0) && (dividend < 0)) { |
- return H_CONSTANT_DOUBLE(-0.0); |
- } |
- return H_CONSTANT_INT(res); |
- } |
- } |
- } |
- return new (zone) HMod(context, left, right, strength); |
-} |
- |
- |
-HInstruction* HDiv::New(Isolate* isolate, Zone* zone, HValue* context, |
- HValue* left, HValue* right, Strength strength) { |
- // If left and right are constant values, try to return a constant value. |
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { |
- HConstant* c_left = HConstant::cast(left); |
- HConstant* c_right = HConstant::cast(right); |
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { |
- if (c_right->DoubleValue() != 0) { |
- double double_res = c_left->DoubleValue() / c_right->DoubleValue(); |
- if (IsInt32Double(double_res)) { |
- return H_CONSTANT_INT(double_res); |
- } |
- return H_CONSTANT_DOUBLE(double_res); |
- } else { |
- int sign = Double(c_left->DoubleValue()).Sign() * |
- Double(c_right->DoubleValue()).Sign(); // Right could be -0. |
- return H_CONSTANT_DOUBLE(sign * V8_INFINITY); |
- } |
- } |
- } |
- return new (zone) HDiv(context, left, right, strength); |
-} |
- |
- |
-HInstruction* HBitwise::New(Isolate* isolate, Zone* zone, HValue* context, |
- Token::Value op, HValue* left, HValue* right, |
- Strength strength) { |
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { |
- HConstant* c_left = HConstant::cast(left); |
- HConstant* c_right = HConstant::cast(right); |
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { |
- int32_t result; |
- int32_t v_left = c_left->NumberValueAsInteger32(); |
- int32_t v_right = c_right->NumberValueAsInteger32(); |
- switch (op) { |
- case Token::BIT_XOR: |
- result = v_left ^ v_right; |
- break; |
- case Token::BIT_AND: |
- result = v_left & v_right; |
- break; |
- case Token::BIT_OR: |
- result = v_left | v_right; |
- break; |
- default: |
- result = 0; // Please the compiler. |
- UNREACHABLE(); |
- } |
- return H_CONSTANT_INT(result); |
- } |
- } |
- return new (zone) HBitwise(context, op, left, right, strength); |
-} |
- |
- |
-#define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result) \ |
- HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context, \ |
- HValue* left, HValue* right, Strength strength) { \ |
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \ |
- HConstant* c_left = HConstant::cast(left); \ |
- HConstant* c_right = HConstant::cast(right); \ |
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \ |
- return H_CONSTANT_INT(result); \ |
- } \ |
- } \ |
- return new (zone) HInstr(context, left, right, strength); \ |
- } |
- |
- |
-DEFINE_NEW_H_BITWISE_INSTR(HSar, |
-c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f)) |
-DEFINE_NEW_H_BITWISE_INSTR(HShl, |
-c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f)) |
- |
-#undef DEFINE_NEW_H_BITWISE_INSTR |
- |
- |
-HInstruction* HShr::New(Isolate* isolate, Zone* zone, HValue* context, |
- HValue* left, HValue* right, Strength strength) { |
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { |
- HConstant* c_left = HConstant::cast(left); |
- HConstant* c_right = HConstant::cast(right); |
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { |
- int32_t left_val = c_left->NumberValueAsInteger32(); |
- int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f; |
- if ((right_val == 0) && (left_val < 0)) { |
- return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val)); |
- } |
- return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val); |
- } |
- } |
- return new (zone) HShr(context, left, right, strength); |
-} |
- |
- |
-HInstruction* HSeqStringGetChar::New(Isolate* isolate, Zone* zone, |
- HValue* context, String::Encoding encoding, |
- HValue* string, HValue* index) { |
- if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) { |
- HConstant* c_string = HConstant::cast(string); |
- HConstant* c_index = HConstant::cast(index); |
- if (c_string->HasStringValue() && c_index->HasInteger32Value()) { |
- Handle<String> s = c_string->StringValue(); |
- int32_t i = c_index->Integer32Value(); |
- DCHECK_LE(0, i); |
- DCHECK_LT(i, s->length()); |
- return H_CONSTANT_INT(s->Get(i)); |
- } |
- } |
- return new(zone) HSeqStringGetChar(encoding, string, index); |
-} |
- |
- |
-#undef H_CONSTANT_INT |
-#undef H_CONSTANT_DOUBLE |
- |
- |
-std::ostream& HBitwise::PrintDataTo(std::ostream& os) const { // NOLINT |
- os << Token::Name(op_) << " "; |
- return HBitwiseBinaryOperation::PrintDataTo(os); |
-} |
- |
- |
-void HPhi::SimplifyConstantInputs() { |
- // Convert constant inputs to integers when all uses are truncating. |
- // This must happen before representation inference takes place. |
- if (!CheckUsesForFlag(kTruncatingToInt32)) return; |
- for (int i = 0; i < OperandCount(); ++i) { |
- if (!OperandAt(i)->IsConstant()) return; |
- } |
- HGraph* graph = block()->graph(); |
- for (int i = 0; i < OperandCount(); ++i) { |
- HConstant* operand = HConstant::cast(OperandAt(i)); |
- if (operand->HasInteger32Value()) { |
- continue; |
- } else if (operand->HasDoubleValue()) { |
- HConstant* integer_input = HConstant::New( |
- graph->isolate(), graph->zone(), graph->GetInvalidContext(), |
- DoubleToInt32(operand->DoubleValue())); |
- integer_input->InsertAfter(operand); |
- SetOperandAt(i, integer_input); |
- } else if (operand->HasBooleanValue()) { |
- SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1() |
- : graph->GetConstant0()); |
- } else if (operand->ImmortalImmovable()) { |
- SetOperandAt(i, graph->GetConstant0()); |
- } |
- } |
- // Overwrite observed input representations because they are likely Tagged. |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) { |
- HValue* use = it.value(); |
- if (use->IsBinaryOperation()) { |
- HBinaryOperation::cast(use)->set_observed_input_representation( |
- it.index(), Representation::Smi()); |
- } |
- } |
-} |
- |
- |
-void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) { |
- DCHECK(CheckFlag(kFlexibleRepresentation)); |
- Representation new_rep = RepresentationFromUses(); |
- UpdateRepresentation(new_rep, h_infer, "uses"); |
- new_rep = RepresentationFromInputs(); |
- UpdateRepresentation(new_rep, h_infer, "inputs"); |
- new_rep = RepresentationFromUseRequirements(); |
- UpdateRepresentation(new_rep, h_infer, "use requirements"); |
-} |
- |
- |
-Representation HPhi::RepresentationFromInputs() { |
- Representation r = representation(); |
- for (int i = 0; i < OperandCount(); ++i) { |
- // Ignore conservative Tagged assumption of parameters if we have |
- // reason to believe that it's too conservative. |
- if (has_type_feedback_from_uses() && OperandAt(i)->IsParameter()) { |
- continue; |
- } |
- |
- r = r.generalize(OperandAt(i)->KnownOptimalRepresentation()); |
- } |
- return r; |
-} |
- |
- |
-// Returns a representation if all uses agree on the same representation. |
-// Integer32 is also returned when some uses are Smi but others are Integer32. |
-Representation HValue::RepresentationFromUseRequirements() { |
- Representation rep = Representation::None(); |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) { |
- // Ignore the use requirement from never run code |
- if (it.value()->block()->IsUnreachable()) continue; |
- |
- // We check for observed_input_representation elsewhere. |
- Representation use_rep = |
- it.value()->RequiredInputRepresentation(it.index()); |
- if (rep.IsNone()) { |
- rep = use_rep; |
- continue; |
- } |
- if (use_rep.IsNone() || rep.Equals(use_rep)) continue; |
- if (rep.generalize(use_rep).IsInteger32()) { |
- rep = Representation::Integer32(); |
- continue; |
- } |
- return Representation::None(); |
- } |
- return rep; |
-} |
- |
- |
-bool HValue::HasNonSmiUse() { |
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) { |
- // We check for observed_input_representation elsewhere. |
- Representation use_rep = |
- it.value()->RequiredInputRepresentation(it.index()); |
- if (!use_rep.IsNone() && |
- !use_rep.IsSmi() && |
- !use_rep.IsTagged()) { |
- return true; |
- } |
- } |
- return false; |
-} |
- |
- |
-// Node-specific verification code is only included in debug mode. |
-#ifdef DEBUG |
- |
-void HPhi::Verify() { |
- DCHECK(OperandCount() == block()->predecessors()->length()); |
- for (int i = 0; i < OperandCount(); ++i) { |
- HValue* value = OperandAt(i); |
- HBasicBlock* defining_block = value->block(); |
- HBasicBlock* predecessor_block = block()->predecessors()->at(i); |
- DCHECK(defining_block == predecessor_block || |
- defining_block->Dominates(predecessor_block)); |
- } |
-} |
- |
- |
-void HSimulate::Verify() { |
- HInstruction::Verify(); |
- DCHECK(HasAstId() || next()->IsEnterInlined()); |
-} |
- |
- |
-void HCheckHeapObject::Verify() { |
- HInstruction::Verify(); |
- DCHECK(HasNoUses()); |
-} |
- |
- |
-void HCheckValue::Verify() { |
- HInstruction::Verify(); |
- DCHECK(HasNoUses()); |
-} |
- |
-#endif |
- |
- |
-HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) { |
- DCHECK(offset >= 0); |
- DCHECK(offset < FixedArray::kHeaderSize); |
- if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength(); |
- return HObjectAccess(kInobject, offset); |
-} |
- |
- |
-HObjectAccess HObjectAccess::ForMapAndOffset(Handle<Map> map, int offset, |
- Representation representation) { |
- DCHECK(offset >= 0); |
- Portion portion = kInobject; |
- |
- if (offset == JSObject::kElementsOffset) { |
- portion = kElementsPointer; |
- } else if (offset == JSObject::kMapOffset) { |
- portion = kMaps; |
- } |
- bool existing_inobject_property = true; |
- if (!map.is_null()) { |
- existing_inobject_property = (offset < |
- map->instance_size() - map->unused_property_fields() * kPointerSize); |
- } |
- return HObjectAccess(portion, offset, representation, Handle<String>::null(), |
- false, existing_inobject_property); |
-} |
- |
- |
-HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) { |
- switch (offset) { |
- case AllocationSite::kTransitionInfoOffset: |
- return HObjectAccess(kInobject, offset, Representation::Tagged()); |
- case AllocationSite::kNestedSiteOffset: |
- return HObjectAccess(kInobject, offset, Representation::Tagged()); |
- case AllocationSite::kPretenureDataOffset: |
- return HObjectAccess(kInobject, offset, Representation::Smi()); |
- case AllocationSite::kPretenureCreateCountOffset: |
- return HObjectAccess(kInobject, offset, Representation::Smi()); |
- case AllocationSite::kDependentCodeOffset: |
- return HObjectAccess(kInobject, offset, Representation::Tagged()); |
- case AllocationSite::kWeakNextOffset: |
- return HObjectAccess(kInobject, offset, Representation::Tagged()); |
- default: |
- UNREACHABLE(); |
- } |
- return HObjectAccess(kInobject, offset); |
-} |
- |
- |
-HObjectAccess HObjectAccess::ForContextSlot(int index) { |
- DCHECK(index >= 0); |
- Portion portion = kInobject; |
- int offset = Context::kHeaderSize + index * kPointerSize; |
- DCHECK_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag); |
- return HObjectAccess(portion, offset, Representation::Tagged()); |
-} |
- |
- |
-HObjectAccess HObjectAccess::ForScriptContext(int index) { |
- DCHECK(index >= 0); |
- Portion portion = kInobject; |
- int offset = ScriptContextTable::GetContextOffset(index); |
- return HObjectAccess(portion, offset, Representation::Tagged()); |
-} |
- |
- |
-HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) { |
- DCHECK(offset >= 0); |
- Portion portion = kInobject; |
- |
- if (offset == JSObject::kElementsOffset) { |
- portion = kElementsPointer; |
- } else if (offset == JSArray::kLengthOffset) { |
- portion = kArrayLengths; |
- } else if (offset == JSObject::kMapOffset) { |
- portion = kMaps; |
- } |
- return HObjectAccess(portion, offset); |
-} |
- |
- |
-HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset, |
- Representation representation) { |
- DCHECK(offset >= 0); |
- return HObjectAccess(kBackingStore, offset, representation, |
- Handle<String>::null(), false, false); |
-} |
- |
- |
-HObjectAccess HObjectAccess::ForField(Handle<Map> map, int index, |
- Representation representation, |
- Handle<Name> name) { |
- if (index < 0) { |
- // Negative property indices are in-object properties, indexed |
- // from the end of the fixed part of the object. |
- int offset = (index * kPointerSize) + map->instance_size(); |
- return HObjectAccess(kInobject, offset, representation, name, false, true); |
- } else { |
- // Non-negative property indices are in the properties array. |
- int offset = (index * kPointerSize) + FixedArray::kHeaderSize; |
- return HObjectAccess(kBackingStore, offset, representation, name, |
- false, false); |
- } |
-} |
- |
- |
-void HObjectAccess::SetGVNFlags(HValue *instr, PropertyAccessType access_type) { |
- // set the appropriate GVN flags for a given load or store instruction |
- if (access_type == STORE) { |
- // track dominating allocations in order to eliminate write barriers |
- instr->SetDependsOnFlag(::v8::internal::kNewSpacePromotion); |
- instr->SetFlag(HValue::kTrackSideEffectDominators); |
- } else { |
- // try to GVN loads, but don't hoist above map changes |
- instr->SetFlag(HValue::kUseGVN); |
- instr->SetDependsOnFlag(::v8::internal::kMaps); |
- } |
- |
- switch (portion()) { |
- case kArrayLengths: |
- if (access_type == STORE) { |
- instr->SetChangesFlag(::v8::internal::kArrayLengths); |
- } else { |
- instr->SetDependsOnFlag(::v8::internal::kArrayLengths); |
- } |
- break; |
- case kStringLengths: |
- if (access_type == STORE) { |
- instr->SetChangesFlag(::v8::internal::kStringLengths); |
- } else { |
- instr->SetDependsOnFlag(::v8::internal::kStringLengths); |
- } |
- break; |
- case kInobject: |
- if (access_type == STORE) { |
- instr->SetChangesFlag(::v8::internal::kInobjectFields); |
- } else { |
- instr->SetDependsOnFlag(::v8::internal::kInobjectFields); |
- } |
- break; |
- case kDouble: |
- if (access_type == STORE) { |
- instr->SetChangesFlag(::v8::internal::kDoubleFields); |
- } else { |
- instr->SetDependsOnFlag(::v8::internal::kDoubleFields); |
- } |
- break; |
- case kBackingStore: |
- if (access_type == STORE) { |
- instr->SetChangesFlag(::v8::internal::kBackingStoreFields); |
- } else { |
- instr->SetDependsOnFlag(::v8::internal::kBackingStoreFields); |
- } |
- break; |
- case kElementsPointer: |
- if (access_type == STORE) { |
- instr->SetChangesFlag(::v8::internal::kElementsPointer); |
- } else { |
- instr->SetDependsOnFlag(::v8::internal::kElementsPointer); |
- } |
- break; |
- case kMaps: |
- if (access_type == STORE) { |
- instr->SetChangesFlag(::v8::internal::kMaps); |
- } else { |
- instr->SetDependsOnFlag(::v8::internal::kMaps); |
- } |
- break; |
- case kExternalMemory: |
- if (access_type == STORE) { |
- instr->SetChangesFlag(::v8::internal::kExternalMemory); |
- } else { |
- instr->SetDependsOnFlag(::v8::internal::kExternalMemory); |
- } |
- break; |
- } |
-} |
- |
- |
-std::ostream& operator<<(std::ostream& os, const HObjectAccess& access) { |
- os << "."; |
- |
- switch (access.portion()) { |
- case HObjectAccess::kArrayLengths: |
- case HObjectAccess::kStringLengths: |
- os << "%length"; |
- break; |
- case HObjectAccess::kElementsPointer: |
- os << "%elements"; |
- break; |
- case HObjectAccess::kMaps: |
- os << "%map"; |
- break; |
- case HObjectAccess::kDouble: // fall through |
- case HObjectAccess::kInobject: |
- if (!access.name().is_null()) { |
- os << Handle<String>::cast(access.name())->ToCString().get(); |
- } |
- os << "[in-object]"; |
- break; |
- case HObjectAccess::kBackingStore: |
- if (!access.name().is_null()) { |
- os << Handle<String>::cast(access.name())->ToCString().get(); |
- } |
- os << "[backing-store]"; |
- break; |
- case HObjectAccess::kExternalMemory: |
- os << "[external-memory]"; |
- break; |
- } |
- |
- return os << "@" << access.offset(); |
-} |
- |
-} // namespace internal |
-} // namespace v8 |