| Index: src/hydrogen-instructions.cc
 | 
| diff --git a/src/hydrogen-instructions.cc b/src/hydrogen-instructions.cc
 | 
| deleted file mode 100644
 | 
| index 4482155fbead2242b6785ad60ddd8d5d8729c731..0000000000000000000000000000000000000000
 | 
| --- a/src/hydrogen-instructions.cc
 | 
| +++ /dev/null
 | 
| @@ -1,4716 +0,0 @@
 | 
| -// Copyright 2012 the V8 project authors. All rights reserved.
 | 
| -// Use of this source code is governed by a BSD-style license that can be
 | 
| -// found in the LICENSE file.
 | 
| -
 | 
| -#include "src/hydrogen-instructions.h"
 | 
| -
 | 
| -#include "src/base/bits.h"
 | 
| -#include "src/double.h"
 | 
| -#include "src/elements.h"
 | 
| -#include "src/factory.h"
 | 
| -#include "src/hydrogen-infer-representation.h"
 | 
| -
 | 
| -#if V8_TARGET_ARCH_IA32
 | 
| -#include "src/ia32/lithium-ia32.h"  // NOLINT
 | 
| -#elif V8_TARGET_ARCH_X64
 | 
| -#include "src/x64/lithium-x64.h"  // NOLINT
 | 
| -#elif V8_TARGET_ARCH_ARM64
 | 
| -#include "src/arm64/lithium-arm64.h"  // NOLINT
 | 
| -#elif V8_TARGET_ARCH_ARM
 | 
| -#include "src/arm/lithium-arm.h"  // NOLINT
 | 
| -#elif V8_TARGET_ARCH_PPC
 | 
| -#include "src/ppc/lithium-ppc.h"  // NOLINT
 | 
| -#elif V8_TARGET_ARCH_MIPS
 | 
| -#include "src/mips/lithium-mips.h"  // NOLINT
 | 
| -#elif V8_TARGET_ARCH_MIPS64
 | 
| -#include "src/mips64/lithium-mips64.h"  // NOLINT
 | 
| -#elif V8_TARGET_ARCH_X87
 | 
| -#include "src/x87/lithium-x87.h"  // NOLINT
 | 
| -#else
 | 
| -#error Unsupported target architecture.
 | 
| -#endif
 | 
| -
 | 
| -#include "src/base/safe_math.h"
 | 
| -
 | 
| -namespace v8 {
 | 
| -namespace internal {
 | 
| -
 | 
| -#define DEFINE_COMPILE(type)                                         \
 | 
| -  LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) {  \
 | 
| -    return builder->Do##type(this);                                  \
 | 
| -  }
 | 
| -HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
 | 
| -#undef DEFINE_COMPILE
 | 
| -
 | 
| -
 | 
| -Isolate* HValue::isolate() const {
 | 
| -  DCHECK(block() != NULL);
 | 
| -  return block()->isolate();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::AssumeRepresentation(Representation r) {
 | 
| -  if (CheckFlag(kFlexibleRepresentation)) {
 | 
| -    ChangeRepresentation(r);
 | 
| -    // The representation of the value is dictated by type feedback and
 | 
| -    // will not be changed later.
 | 
| -    ClearFlag(kFlexibleRepresentation);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) {
 | 
| -  DCHECK(CheckFlag(kFlexibleRepresentation));
 | 
| -  Representation new_rep = RepresentationFromInputs();
 | 
| -  UpdateRepresentation(new_rep, h_infer, "inputs");
 | 
| -  new_rep = RepresentationFromUses();
 | 
| -  UpdateRepresentation(new_rep, h_infer, "uses");
 | 
| -  if (representation().IsSmi() && HasNonSmiUse()) {
 | 
| -    UpdateRepresentation(
 | 
| -        Representation::Integer32(), h_infer, "use requirements");
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Representation HValue::RepresentationFromUses() {
 | 
| -  if (HasNoUses()) return Representation::None();
 | 
| -  Representation result = Representation::None();
 | 
| -
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
 | 
| -    HValue* use = it.value();
 | 
| -    Representation rep = use->observed_input_representation(it.index());
 | 
| -    result = result.generalize(rep);
 | 
| -
 | 
| -    if (FLAG_trace_representation) {
 | 
| -      PrintF("#%d %s is used by #%d %s as %s%s\n",
 | 
| -             id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(),
 | 
| -             (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
 | 
| -    }
 | 
| -  }
 | 
| -  if (IsPhi()) {
 | 
| -    result = result.generalize(
 | 
| -        HPhi::cast(this)->representation_from_indirect_uses());
 | 
| -  }
 | 
| -
 | 
| -  // External representations are dealt with separately.
 | 
| -  return result.IsExternal() ? Representation::None() : result;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::UpdateRepresentation(Representation new_rep,
 | 
| -                                  HInferRepresentationPhase* h_infer,
 | 
| -                                  const char* reason) {
 | 
| -  Representation r = representation();
 | 
| -  if (new_rep.is_more_general_than(r)) {
 | 
| -    if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return;
 | 
| -    if (FLAG_trace_representation) {
 | 
| -      PrintF("Changing #%d %s representation %s -> %s based on %s\n",
 | 
| -             id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
 | 
| -    }
 | 
| -    ChangeRepresentation(new_rep);
 | 
| -    AddDependantsToWorklist(h_infer);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) {
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
 | 
| -    h_infer->AddToWorklist(it.value());
 | 
| -  }
 | 
| -  for (int i = 0; i < OperandCount(); ++i) {
 | 
| -    h_infer->AddToWorklist(OperandAt(i));
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -static int32_t ConvertAndSetOverflow(Representation r,
 | 
| -                                     int64_t result,
 | 
| -                                     bool* overflow) {
 | 
| -  if (r.IsSmi()) {
 | 
| -    if (result > Smi::kMaxValue) {
 | 
| -      *overflow = true;
 | 
| -      return Smi::kMaxValue;
 | 
| -    }
 | 
| -    if (result < Smi::kMinValue) {
 | 
| -      *overflow = true;
 | 
| -      return Smi::kMinValue;
 | 
| -    }
 | 
| -  } else {
 | 
| -    if (result > kMaxInt) {
 | 
| -      *overflow = true;
 | 
| -      return kMaxInt;
 | 
| -    }
 | 
| -    if (result < kMinInt) {
 | 
| -      *overflow = true;
 | 
| -      return kMinInt;
 | 
| -    }
 | 
| -  }
 | 
| -  return static_cast<int32_t>(result);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -static int32_t AddWithoutOverflow(Representation r,
 | 
| -                                  int32_t a,
 | 
| -                                  int32_t b,
 | 
| -                                  bool* overflow) {
 | 
| -  int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
 | 
| -  return ConvertAndSetOverflow(r, result, overflow);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -static int32_t SubWithoutOverflow(Representation r,
 | 
| -                                  int32_t a,
 | 
| -                                  int32_t b,
 | 
| -                                  bool* overflow) {
 | 
| -  int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
 | 
| -  return ConvertAndSetOverflow(r, result, overflow);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -static int32_t MulWithoutOverflow(const Representation& r,
 | 
| -                                  int32_t a,
 | 
| -                                  int32_t b,
 | 
| -                                  bool* overflow) {
 | 
| -  int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
 | 
| -  return ConvertAndSetOverflow(r, result, overflow);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -int32_t Range::Mask() const {
 | 
| -  if (lower_ == upper_) return lower_;
 | 
| -  if (lower_ >= 0) {
 | 
| -    int32_t res = 1;
 | 
| -    while (res < upper_) {
 | 
| -      res = (res << 1) | 1;
 | 
| -    }
 | 
| -    return res;
 | 
| -  }
 | 
| -  return 0xffffffff;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void Range::AddConstant(int32_t value) {
 | 
| -  if (value == 0) return;
 | 
| -  bool may_overflow = false;  // Overflow is ignored here.
 | 
| -  Representation r = Representation::Integer32();
 | 
| -  lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow);
 | 
| -  upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow);
 | 
| -#ifdef DEBUG
 | 
| -  Verify();
 | 
| -#endif
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void Range::Intersect(Range* other) {
 | 
| -  upper_ = Min(upper_, other->upper_);
 | 
| -  lower_ = Max(lower_, other->lower_);
 | 
| -  bool b = CanBeMinusZero() && other->CanBeMinusZero();
 | 
| -  set_can_be_minus_zero(b);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void Range::Union(Range* other) {
 | 
| -  upper_ = Max(upper_, other->upper_);
 | 
| -  lower_ = Min(lower_, other->lower_);
 | 
| -  bool b = CanBeMinusZero() || other->CanBeMinusZero();
 | 
| -  set_can_be_minus_zero(b);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void Range::CombinedMax(Range* other) {
 | 
| -  upper_ = Max(upper_, other->upper_);
 | 
| -  lower_ = Max(lower_, other->lower_);
 | 
| -  set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void Range::CombinedMin(Range* other) {
 | 
| -  upper_ = Min(upper_, other->upper_);
 | 
| -  lower_ = Min(lower_, other->lower_);
 | 
| -  set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void Range::Sar(int32_t value) {
 | 
| -  int32_t bits = value & 0x1F;
 | 
| -  lower_ = lower_ >> bits;
 | 
| -  upper_ = upper_ >> bits;
 | 
| -  set_can_be_minus_zero(false);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void Range::Shl(int32_t value) {
 | 
| -  int32_t bits = value & 0x1F;
 | 
| -  int old_lower = lower_;
 | 
| -  int old_upper = upper_;
 | 
| -  lower_ = lower_ << bits;
 | 
| -  upper_ = upper_ << bits;
 | 
| -  if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
 | 
| -    upper_ = kMaxInt;
 | 
| -    lower_ = kMinInt;
 | 
| -  }
 | 
| -  set_can_be_minus_zero(false);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool Range::AddAndCheckOverflow(const Representation& r, Range* other) {
 | 
| -  bool may_overflow = false;
 | 
| -  lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow);
 | 
| -  upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow);
 | 
| -  KeepOrder();
 | 
| -#ifdef DEBUG
 | 
| -  Verify();
 | 
| -#endif
 | 
| -  return may_overflow;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool Range::SubAndCheckOverflow(const Representation& r, Range* other) {
 | 
| -  bool may_overflow = false;
 | 
| -  lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow);
 | 
| -  upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow);
 | 
| -  KeepOrder();
 | 
| -#ifdef DEBUG
 | 
| -  Verify();
 | 
| -#endif
 | 
| -  return may_overflow;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void Range::KeepOrder() {
 | 
| -  if (lower_ > upper_) {
 | 
| -    int32_t tmp = lower_;
 | 
| -    lower_ = upper_;
 | 
| -    upper_ = tmp;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -#ifdef DEBUG
 | 
| -void Range::Verify() const {
 | 
| -  DCHECK(lower_ <= upper_);
 | 
| -}
 | 
| -#endif
 | 
| -
 | 
| -
 | 
| -bool Range::MulAndCheckOverflow(const Representation& r, Range* other) {
 | 
| -  bool may_overflow = false;
 | 
| -  int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow);
 | 
| -  int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow);
 | 
| -  int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow);
 | 
| -  int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow);
 | 
| -  lower_ = Min(Min(v1, v2), Min(v3, v4));
 | 
| -  upper_ = Max(Max(v1, v2), Max(v3, v4));
 | 
| -#ifdef DEBUG
 | 
| -  Verify();
 | 
| -#endif
 | 
| -  return may_overflow;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HValue::IsDefinedAfter(HBasicBlock* other) const {
 | 
| -  return block()->block_id() > other->block_id();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HUseListNode* HUseListNode::tail() {
 | 
| -  // Skip and remove dead items in the use list.
 | 
| -  while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
 | 
| -    tail_ = tail_->tail_;
 | 
| -  }
 | 
| -  return tail_;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HValue::CheckUsesForFlag(Flag f) const {
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
 | 
| -    if (it.value()->IsSimulate()) continue;
 | 
| -    if (!it.value()->CheckFlag(f)) return false;
 | 
| -  }
 | 
| -  return true;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HValue::CheckUsesForFlag(Flag f, HValue** value) const {
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
 | 
| -    if (it.value()->IsSimulate()) continue;
 | 
| -    if (!it.value()->CheckFlag(f)) {
 | 
| -      *value = it.value();
 | 
| -      return false;
 | 
| -    }
 | 
| -  }
 | 
| -  return true;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const {
 | 
| -  bool return_value = false;
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
 | 
| -    if (it.value()->IsSimulate()) continue;
 | 
| -    if (!it.value()->CheckFlag(f)) return false;
 | 
| -    return_value = true;
 | 
| -  }
 | 
| -  return return_value;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
 | 
| -  Advance();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HUseIterator::Advance() {
 | 
| -  current_ = next_;
 | 
| -  if (current_ != NULL) {
 | 
| -    next_ = current_->tail();
 | 
| -    value_ = current_->value();
 | 
| -    index_ = current_->index();
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -int HValue::UseCount() const {
 | 
| -  int count = 0;
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
 | 
| -  return count;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HUseListNode* HValue::RemoveUse(HValue* value, int index) {
 | 
| -  HUseListNode* previous = NULL;
 | 
| -  HUseListNode* current = use_list_;
 | 
| -  while (current != NULL) {
 | 
| -    if (current->value() == value && current->index() == index) {
 | 
| -      if (previous == NULL) {
 | 
| -        use_list_ = current->tail();
 | 
| -      } else {
 | 
| -        previous->set_tail(current->tail());
 | 
| -      }
 | 
| -      break;
 | 
| -    }
 | 
| -
 | 
| -    previous = current;
 | 
| -    current = current->tail();
 | 
| -  }
 | 
| -
 | 
| -#ifdef DEBUG
 | 
| -  // Do not reuse use list nodes in debug mode, zap them.
 | 
| -  if (current != NULL) {
 | 
| -    HUseListNode* temp =
 | 
| -        new(block()->zone())
 | 
| -        HUseListNode(current->value(), current->index(), NULL);
 | 
| -    current->Zap();
 | 
| -    current = temp;
 | 
| -  }
 | 
| -#endif
 | 
| -  return current;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HValue::Equals(HValue* other) {
 | 
| -  if (other->opcode() != opcode()) return false;
 | 
| -  if (!other->representation().Equals(representation())) return false;
 | 
| -  if (!other->type_.Equals(type_)) return false;
 | 
| -  if (other->flags() != flags()) return false;
 | 
| -  if (OperandCount() != other->OperandCount()) return false;
 | 
| -  for (int i = 0; i < OperandCount(); ++i) {
 | 
| -    if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
 | 
| -  }
 | 
| -  bool result = DataEquals(other);
 | 
| -  DCHECK(!result || Hashcode() == other->Hashcode());
 | 
| -  return result;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -intptr_t HValue::Hashcode() {
 | 
| -  intptr_t result = opcode();
 | 
| -  int count = OperandCount();
 | 
| -  for (int i = 0; i < count; ++i) {
 | 
| -    result = result * 19 + OperandAt(i)->id() + (result >> 7);
 | 
| -  }
 | 
| -  return result;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -const char* HValue::Mnemonic() const {
 | 
| -  switch (opcode()) {
 | 
| -#define MAKE_CASE(type) case k##type: return #type;
 | 
| -    HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
 | 
| -#undef MAKE_CASE
 | 
| -    case kPhi: return "Phi";
 | 
| -    default: return "";
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HValue::CanReplaceWithDummyUses() {
 | 
| -  return FLAG_unreachable_code_elimination &&
 | 
| -      !(block()->IsReachable() ||
 | 
| -        IsBlockEntry() ||
 | 
| -        IsControlInstruction() ||
 | 
| -        IsArgumentsObject() ||
 | 
| -        IsCapturedObject() ||
 | 
| -        IsSimulate() ||
 | 
| -        IsEnterInlined() ||
 | 
| -        IsLeaveInlined());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HValue::IsInteger32Constant() {
 | 
| -  return IsConstant() && HConstant::cast(this)->HasInteger32Value();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -int32_t HValue::GetInteger32Constant() {
 | 
| -  return HConstant::cast(this)->Integer32Value();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HValue::EqualsInteger32Constant(int32_t value) {
 | 
| -  return IsInteger32Constant() && GetInteger32Constant() == value;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::SetOperandAt(int index, HValue* value) {
 | 
| -  RegisterUse(index, value);
 | 
| -  InternalSetOperandAt(index, value);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::DeleteAndReplaceWith(HValue* other) {
 | 
| -  // We replace all uses first, so Delete can assert that there are none.
 | 
| -  if (other != NULL) ReplaceAllUsesWith(other);
 | 
| -  Kill();
 | 
| -  DeleteFromGraph();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::ReplaceAllUsesWith(HValue* other) {
 | 
| -  while (use_list_ != NULL) {
 | 
| -    HUseListNode* list_node = use_list_;
 | 
| -    HValue* value = list_node->value();
 | 
| -    DCHECK(!value->block()->IsStartBlock());
 | 
| -    value->InternalSetOperandAt(list_node->index(), other);
 | 
| -    use_list_ = list_node->tail();
 | 
| -    list_node->set_tail(other->use_list_);
 | 
| -    other->use_list_ = list_node;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::Kill() {
 | 
| -  // Instead of going through the entire use list of each operand, we only
 | 
| -  // check the first item in each use list and rely on the tail() method to
 | 
| -  // skip dead items, removing them lazily next time we traverse the list.
 | 
| -  SetFlag(kIsDead);
 | 
| -  for (int i = 0; i < OperandCount(); ++i) {
 | 
| -    HValue* operand = OperandAt(i);
 | 
| -    if (operand == NULL) continue;
 | 
| -    HUseListNode* first = operand->use_list_;
 | 
| -    if (first != NULL && first->value()->CheckFlag(kIsDead)) {
 | 
| -      operand->use_list_ = first->tail();
 | 
| -    }
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::SetBlock(HBasicBlock* block) {
 | 
| -  DCHECK(block_ == NULL || block == NULL);
 | 
| -  block_ = block;
 | 
| -  if (id_ == kNoNumber && block != NULL) {
 | 
| -    id_ = block->graph()->GetNextValueID(this);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& operator<<(std::ostream& os, const HValue& v) {
 | 
| -  return v.PrintTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& operator<<(std::ostream& os, const TypeOf& t) {
 | 
| -  if (t.value->representation().IsTagged() &&
 | 
| -      !t.value->type().Equals(HType::Tagged()))
 | 
| -    return os;
 | 
| -  return os << " type:" << t.value->type();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& operator<<(std::ostream& os, const ChangesOf& c) {
 | 
| -  GVNFlagSet changes_flags = c.value->ChangesFlags();
 | 
| -  if (changes_flags.IsEmpty()) return os;
 | 
| -  os << " changes[";
 | 
| -  if (changes_flags == c.value->AllSideEffectsFlagSet()) {
 | 
| -    os << "*";
 | 
| -  } else {
 | 
| -    bool add_comma = false;
 | 
| -#define PRINT_DO(Type)                   \
 | 
| -  if (changes_flags.Contains(k##Type)) { \
 | 
| -    if (add_comma) os << ",";            \
 | 
| -    add_comma = true;                    \
 | 
| -    os << #Type;                         \
 | 
| -  }
 | 
| -    GVN_TRACKED_FLAG_LIST(PRINT_DO);
 | 
| -    GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
 | 
| -#undef PRINT_DO
 | 
| -  }
 | 
| -  return os << "]";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HValue::HasMonomorphicJSObjectType() {
 | 
| -  return !GetMonomorphicJSObjectMap().is_null();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HValue::UpdateInferredType() {
 | 
| -  HType type = CalculateInferredType();
 | 
| -  bool result = (!type.Equals(type_));
 | 
| -  type_ = type;
 | 
| -  return result;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::RegisterUse(int index, HValue* new_value) {
 | 
| -  HValue* old_value = OperandAt(index);
 | 
| -  if (old_value == new_value) return;
 | 
| -
 | 
| -  HUseListNode* removed = NULL;
 | 
| -  if (old_value != NULL) {
 | 
| -    removed = old_value->RemoveUse(this, index);
 | 
| -  }
 | 
| -
 | 
| -  if (new_value != NULL) {
 | 
| -    if (removed == NULL) {
 | 
| -      new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
 | 
| -          this, index, new_value->use_list_);
 | 
| -    } else {
 | 
| -      removed->set_tail(new_value->use_list_);
 | 
| -      new_value->use_list_ = removed;
 | 
| -    }
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::AddNewRange(Range* r, Zone* zone) {
 | 
| -  if (!HasRange()) ComputeInitialRange(zone);
 | 
| -  if (!HasRange()) range_ = new(zone) Range();
 | 
| -  DCHECK(HasRange());
 | 
| -  r->StackUpon(range_);
 | 
| -  range_ = r;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::RemoveLastAddedRange() {
 | 
| -  DCHECK(HasRange());
 | 
| -  DCHECK(range_->next() != NULL);
 | 
| -  range_ = range_->next();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HValue::ComputeInitialRange(Zone* zone) {
 | 
| -  DCHECK(!HasRange());
 | 
| -  range_ = InferRange(zone);
 | 
| -  DCHECK(HasRange());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HInstruction::PrintTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << Mnemonic() << " ";
 | 
| -  PrintDataTo(os) << ChangesOf(this) << TypeOf(this);
 | 
| -  if (CheckFlag(HValue::kHasNoObservableSideEffects)) os << " [noOSE]";
 | 
| -  if (CheckFlag(HValue::kIsDead)) os << " [dead]";
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HInstruction::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  for (int i = 0; i < OperandCount(); ++i) {
 | 
| -    if (i > 0) os << " ";
 | 
| -    os << NameOf(OperandAt(i));
 | 
| -  }
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HInstruction::Unlink() {
 | 
| -  DCHECK(IsLinked());
 | 
| -  DCHECK(!IsControlInstruction());  // Must never move control instructions.
 | 
| -  DCHECK(!IsBlockEntry());  // Doesn't make sense to delete these.
 | 
| -  DCHECK(previous_ != NULL);
 | 
| -  previous_->next_ = next_;
 | 
| -  if (next_ == NULL) {
 | 
| -    DCHECK(block()->last() == this);
 | 
| -    block()->set_last(previous_);
 | 
| -  } else {
 | 
| -    next_->previous_ = previous_;
 | 
| -  }
 | 
| -  clear_block();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HInstruction::InsertBefore(HInstruction* next) {
 | 
| -  DCHECK(!IsLinked());
 | 
| -  DCHECK(!next->IsBlockEntry());
 | 
| -  DCHECK(!IsControlInstruction());
 | 
| -  DCHECK(!next->block()->IsStartBlock());
 | 
| -  DCHECK(next->previous_ != NULL);
 | 
| -  HInstruction* prev = next->previous();
 | 
| -  prev->next_ = this;
 | 
| -  next->previous_ = this;
 | 
| -  next_ = next;
 | 
| -  previous_ = prev;
 | 
| -  SetBlock(next->block());
 | 
| -  if (!has_position() && next->has_position()) {
 | 
| -    set_position(next->position());
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HInstruction::InsertAfter(HInstruction* previous) {
 | 
| -  DCHECK(!IsLinked());
 | 
| -  DCHECK(!previous->IsControlInstruction());
 | 
| -  DCHECK(!IsControlInstruction() || previous->next_ == NULL);
 | 
| -  HBasicBlock* block = previous->block();
 | 
| -  // Never insert anything except constants into the start block after finishing
 | 
| -  // it.
 | 
| -  if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
 | 
| -    DCHECK(block->end()->SecondSuccessor() == NULL);
 | 
| -    InsertAfter(block->end()->FirstSuccessor()->first());
 | 
| -    return;
 | 
| -  }
 | 
| -
 | 
| -  // If we're inserting after an instruction with side-effects that is
 | 
| -  // followed by a simulate instruction, we need to insert after the
 | 
| -  // simulate instruction instead.
 | 
| -  HInstruction* next = previous->next_;
 | 
| -  if (previous->HasObservableSideEffects() && next != NULL) {
 | 
| -    DCHECK(next->IsSimulate());
 | 
| -    previous = next;
 | 
| -    next = previous->next_;
 | 
| -  }
 | 
| -
 | 
| -  previous_ = previous;
 | 
| -  next_ = next;
 | 
| -  SetBlock(block);
 | 
| -  previous->next_ = this;
 | 
| -  if (next != NULL) next->previous_ = this;
 | 
| -  if (block->last() == previous) {
 | 
| -    block->set_last(this);
 | 
| -  }
 | 
| -  if (!has_position() && previous->has_position()) {
 | 
| -    set_position(previous->position());
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HInstruction::Dominates(HInstruction* other) {
 | 
| -  if (block() != other->block()) {
 | 
| -    return block()->Dominates(other->block());
 | 
| -  }
 | 
| -  // Both instructions are in the same basic block. This instruction
 | 
| -  // should precede the other one in order to dominate it.
 | 
| -  for (HInstruction* instr = next(); instr != NULL; instr = instr->next()) {
 | 
| -    if (instr == other) {
 | 
| -      return true;
 | 
| -    }
 | 
| -  }
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -#ifdef DEBUG
 | 
| -void HInstruction::Verify() {
 | 
| -  // Verify that input operands are defined before use.
 | 
| -  HBasicBlock* cur_block = block();
 | 
| -  for (int i = 0; i < OperandCount(); ++i) {
 | 
| -    HValue* other_operand = OperandAt(i);
 | 
| -    if (other_operand == NULL) continue;
 | 
| -    HBasicBlock* other_block = other_operand->block();
 | 
| -    if (cur_block == other_block) {
 | 
| -      if (!other_operand->IsPhi()) {
 | 
| -        HInstruction* cur = this->previous();
 | 
| -        while (cur != NULL) {
 | 
| -          if (cur == other_operand) break;
 | 
| -          cur = cur->previous();
 | 
| -        }
 | 
| -        // Must reach other operand in the same block!
 | 
| -        DCHECK(cur == other_operand);
 | 
| -      }
 | 
| -    } else {
 | 
| -      // If the following assert fires, you may have forgotten an
 | 
| -      // AddInstruction.
 | 
| -      DCHECK(other_block->Dominates(cur_block));
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  // Verify that instructions that may have side-effects are followed
 | 
| -  // by a simulate instruction.
 | 
| -  if (HasObservableSideEffects() && !IsOsrEntry()) {
 | 
| -    DCHECK(next()->IsSimulate());
 | 
| -  }
 | 
| -
 | 
| -  // Verify that instructions that can be eliminated by GVN have overridden
 | 
| -  // HValue::DataEquals.  The default implementation is UNREACHABLE.  We
 | 
| -  // don't actually care whether DataEquals returns true or false here.
 | 
| -  if (CheckFlag(kUseGVN)) DataEquals(this);
 | 
| -
 | 
| -  // Verify that all uses are in the graph.
 | 
| -  for (HUseIterator use = uses(); !use.Done(); use.Advance()) {
 | 
| -    if (use.value()->IsInstruction()) {
 | 
| -      DCHECK(HInstruction::cast(use.value())->IsLinked());
 | 
| -    }
 | 
| -  }
 | 
| -}
 | 
| -#endif
 | 
| -
 | 
| -
 | 
| -bool HInstruction::CanDeoptimize() {
 | 
| -  // TODO(titzer): make this a virtual method?
 | 
| -  switch (opcode()) {
 | 
| -    case HValue::kAbnormalExit:
 | 
| -    case HValue::kAccessArgumentsAt:
 | 
| -    case HValue::kAllocate:
 | 
| -    case HValue::kArgumentsElements:
 | 
| -    case HValue::kArgumentsLength:
 | 
| -    case HValue::kArgumentsObject:
 | 
| -    case HValue::kBlockEntry:
 | 
| -    case HValue::kBoundsCheckBaseIndexInformation:
 | 
| -    case HValue::kCallFunction:
 | 
| -    case HValue::kCallNew:
 | 
| -    case HValue::kCallNewArray:
 | 
| -    case HValue::kCallStub:
 | 
| -    case HValue::kCapturedObject:
 | 
| -    case HValue::kClassOfTestAndBranch:
 | 
| -    case HValue::kCompareGeneric:
 | 
| -    case HValue::kCompareHoleAndBranch:
 | 
| -    case HValue::kCompareMap:
 | 
| -    case HValue::kCompareMinusZeroAndBranch:
 | 
| -    case HValue::kCompareNumericAndBranch:
 | 
| -    case HValue::kCompareObjectEqAndBranch:
 | 
| -    case HValue::kConstant:
 | 
| -    case HValue::kConstructDouble:
 | 
| -    case HValue::kContext:
 | 
| -    case HValue::kDebugBreak:
 | 
| -    case HValue::kDeclareGlobals:
 | 
| -    case HValue::kDoubleBits:
 | 
| -    case HValue::kDummyUse:
 | 
| -    case HValue::kEnterInlined:
 | 
| -    case HValue::kEnvironmentMarker:
 | 
| -    case HValue::kForceRepresentation:
 | 
| -    case HValue::kGetCachedArrayIndex:
 | 
| -    case HValue::kGoto:
 | 
| -    case HValue::kHasCachedArrayIndexAndBranch:
 | 
| -    case HValue::kHasInstanceTypeAndBranch:
 | 
| -    case HValue::kInnerAllocatedObject:
 | 
| -    case HValue::kInstanceOf:
 | 
| -    case HValue::kIsConstructCallAndBranch:
 | 
| -    case HValue::kHasInPrototypeChainAndBranch:
 | 
| -    case HValue::kIsSmiAndBranch:
 | 
| -    case HValue::kIsStringAndBranch:
 | 
| -    case HValue::kIsUndetectableAndBranch:
 | 
| -    case HValue::kLeaveInlined:
 | 
| -    case HValue::kLoadFieldByIndex:
 | 
| -    case HValue::kLoadGlobalGeneric:
 | 
| -    case HValue::kLoadGlobalViaContext:
 | 
| -    case HValue::kLoadNamedField:
 | 
| -    case HValue::kLoadNamedGeneric:
 | 
| -    case HValue::kLoadRoot:
 | 
| -    case HValue::kMapEnumLength:
 | 
| -    case HValue::kMathMinMax:
 | 
| -    case HValue::kParameter:
 | 
| -    case HValue::kPhi:
 | 
| -    case HValue::kPushArguments:
 | 
| -    case HValue::kRegExpLiteral:
 | 
| -    case HValue::kReturn:
 | 
| -    case HValue::kSeqStringGetChar:
 | 
| -    case HValue::kStoreCodeEntry:
 | 
| -    case HValue::kStoreFrameContext:
 | 
| -    case HValue::kStoreGlobalViaContext:
 | 
| -    case HValue::kStoreKeyed:
 | 
| -    case HValue::kStoreNamedField:
 | 
| -    case HValue::kStoreNamedGeneric:
 | 
| -    case HValue::kStringCharCodeAt:
 | 
| -    case HValue::kStringCharFromCode:
 | 
| -    case HValue::kThisFunction:
 | 
| -    case HValue::kTypeofIsAndBranch:
 | 
| -    case HValue::kUnknownOSRValue:
 | 
| -    case HValue::kUseConst:
 | 
| -      return false;
 | 
| -
 | 
| -    case HValue::kAdd:
 | 
| -    case HValue::kAllocateBlockContext:
 | 
| -    case HValue::kApplyArguments:
 | 
| -    case HValue::kBitwise:
 | 
| -    case HValue::kBoundsCheck:
 | 
| -    case HValue::kBranch:
 | 
| -    case HValue::kCallJSFunction:
 | 
| -    case HValue::kCallRuntime:
 | 
| -    case HValue::kCallWithDescriptor:
 | 
| -    case HValue::kChange:
 | 
| -    case HValue::kCheckArrayBufferNotNeutered:
 | 
| -    case HValue::kCheckHeapObject:
 | 
| -    case HValue::kCheckInstanceType:
 | 
| -    case HValue::kCheckMapValue:
 | 
| -    case HValue::kCheckMaps:
 | 
| -    case HValue::kCheckSmi:
 | 
| -    case HValue::kCheckValue:
 | 
| -    case HValue::kClampToUint8:
 | 
| -    case HValue::kDateField:
 | 
| -    case HValue::kDeoptimize:
 | 
| -    case HValue::kDiv:
 | 
| -    case HValue::kForInCacheArray:
 | 
| -    case HValue::kForInPrepareMap:
 | 
| -    case HValue::kInvokeFunction:
 | 
| -    case HValue::kLoadContextSlot:
 | 
| -    case HValue::kLoadFunctionPrototype:
 | 
| -    case HValue::kLoadKeyed:
 | 
| -    case HValue::kLoadKeyedGeneric:
 | 
| -    case HValue::kMathFloorOfDiv:
 | 
| -    case HValue::kMaybeGrowElements:
 | 
| -    case HValue::kMod:
 | 
| -    case HValue::kMul:
 | 
| -    case HValue::kOsrEntry:
 | 
| -    case HValue::kPower:
 | 
| -    case HValue::kPrologue:
 | 
| -    case HValue::kRor:
 | 
| -    case HValue::kSar:
 | 
| -    case HValue::kSeqStringSetChar:
 | 
| -    case HValue::kShl:
 | 
| -    case HValue::kShr:
 | 
| -    case HValue::kSimulate:
 | 
| -    case HValue::kStackCheck:
 | 
| -    case HValue::kStoreContextSlot:
 | 
| -    case HValue::kStoreKeyedGeneric:
 | 
| -    case HValue::kStringAdd:
 | 
| -    case HValue::kStringCompareAndBranch:
 | 
| -    case HValue::kSub:
 | 
| -    case HValue::kToFastProperties:
 | 
| -    case HValue::kTransitionElementsKind:
 | 
| -    case HValue::kTrapAllocationMemento:
 | 
| -    case HValue::kTypeof:
 | 
| -    case HValue::kUnaryMathOperation:
 | 
| -    case HValue::kWrapReceiver:
 | 
| -      return true;
 | 
| -  }
 | 
| -  UNREACHABLE();
 | 
| -  return true;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& operator<<(std::ostream& os, const NameOf& v) {
 | 
| -  return os << v.value->representation().Mnemonic() << v.value->id();
 | 
| -}
 | 
| -
 | 
| -std::ostream& HDummyUse::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(value());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HEnvironmentMarker::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << (kind() == BIND ? "bind" : "lookup") << " var[" << index()
 | 
| -            << "]";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HUnaryCall::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(value()) << " #" << argument_count();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCallJSFunction::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(function()) << " #" << argument_count();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HCallJSFunction* HCallJSFunction::New(Isolate* isolate, Zone* zone,
 | 
| -                                      HValue* context, HValue* function,
 | 
| -                                      int argument_count) {
 | 
| -  bool has_stack_check = false;
 | 
| -  if (function->IsConstant()) {
 | 
| -    HConstant* fun_const = HConstant::cast(function);
 | 
| -    Handle<JSFunction> jsfun =
 | 
| -        Handle<JSFunction>::cast(fun_const->handle(isolate));
 | 
| -    has_stack_check = !jsfun.is_null() &&
 | 
| -        (jsfun->code()->kind() == Code::FUNCTION ||
 | 
| -         jsfun->code()->kind() == Code::OPTIMIZED_FUNCTION);
 | 
| -  }
 | 
| -
 | 
| -  return new (zone) HCallJSFunction(function, argument_count, has_stack_check);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HBinaryCall::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(first()) << " " << NameOf(second()) << " #"
 | 
| -            << argument_count();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCallFunction::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(context()) << " " << NameOf(function());
 | 
| -  if (HasVectorAndSlot()) {
 | 
| -    os << " (type-feedback-vector icslot " << slot().ToInt() << ")";
 | 
| -  }
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HBoundsCheck::ApplyIndexChange() {
 | 
| -  if (skip_check()) return;
 | 
| -
 | 
| -  DecompositionResult decomposition;
 | 
| -  bool index_is_decomposable = index()->TryDecompose(&decomposition);
 | 
| -  if (index_is_decomposable) {
 | 
| -    DCHECK(decomposition.base() == base());
 | 
| -    if (decomposition.offset() == offset() &&
 | 
| -        decomposition.scale() == scale()) return;
 | 
| -  } else {
 | 
| -    return;
 | 
| -  }
 | 
| -
 | 
| -  ReplaceAllUsesWith(index());
 | 
| -
 | 
| -  HValue* current_index = decomposition.base();
 | 
| -  int actual_offset = decomposition.offset() + offset();
 | 
| -  int actual_scale = decomposition.scale() + scale();
 | 
| -
 | 
| -  HGraph* graph = block()->graph();
 | 
| -  Isolate* isolate = graph->isolate();
 | 
| -  Zone* zone = graph->zone();
 | 
| -  HValue* context = graph->GetInvalidContext();
 | 
| -  if (actual_offset != 0) {
 | 
| -    HConstant* add_offset =
 | 
| -        HConstant::New(isolate, zone, context, actual_offset);
 | 
| -    add_offset->InsertBefore(this);
 | 
| -    HInstruction* add =
 | 
| -        HAdd::New(isolate, zone, context, current_index, add_offset);
 | 
| -    add->InsertBefore(this);
 | 
| -    add->AssumeRepresentation(index()->representation());
 | 
| -    add->ClearFlag(kCanOverflow);
 | 
| -    current_index = add;
 | 
| -  }
 | 
| -
 | 
| -  if (actual_scale != 0) {
 | 
| -    HConstant* sar_scale = HConstant::New(isolate, zone, context, actual_scale);
 | 
| -    sar_scale->InsertBefore(this);
 | 
| -    HInstruction* sar =
 | 
| -        HSar::New(isolate, zone, context, current_index, sar_scale);
 | 
| -    sar->InsertBefore(this);
 | 
| -    sar->AssumeRepresentation(index()->representation());
 | 
| -    current_index = sar;
 | 
| -  }
 | 
| -
 | 
| -  SetOperandAt(0, current_index);
 | 
| -
 | 
| -  base_ = NULL;
 | 
| -  offset_ = 0;
 | 
| -  scale_ = 0;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HBoundsCheck::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(index()) << " " << NameOf(length());
 | 
| -  if (base() != NULL && (offset() != 0 || scale() != 0)) {
 | 
| -    os << " base: ((";
 | 
| -    if (base() != index()) {
 | 
| -      os << NameOf(index());
 | 
| -    } else {
 | 
| -      os << "index";
 | 
| -    }
 | 
| -    os << " + " << offset() << ") >> " << scale() << ")";
 | 
| -  }
 | 
| -  if (skip_check()) os << " [DISABLED]";
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) {
 | 
| -  DCHECK(CheckFlag(kFlexibleRepresentation));
 | 
| -  HValue* actual_index = index()->ActualValue();
 | 
| -  HValue* actual_length = length()->ActualValue();
 | 
| -  Representation index_rep = actual_index->representation();
 | 
| -  Representation length_rep = actual_length->representation();
 | 
| -  if (index_rep.IsTagged() && actual_index->type().IsSmi()) {
 | 
| -    index_rep = Representation::Smi();
 | 
| -  }
 | 
| -  if (length_rep.IsTagged() && actual_length->type().IsSmi()) {
 | 
| -    length_rep = Representation::Smi();
 | 
| -  }
 | 
| -  Representation r = index_rep.generalize(length_rep);
 | 
| -  if (r.is_more_general_than(Representation::Integer32())) {
 | 
| -    r = Representation::Integer32();
 | 
| -  }
 | 
| -  UpdateRepresentation(r, h_infer, "boundscheck");
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HBoundsCheck::InferRange(Zone* zone) {
 | 
| -  Representation r = representation();
 | 
| -  if (r.IsSmiOrInteger32() && length()->HasRange()) {
 | 
| -    int upper = length()->range()->upper() - (allow_equality() ? 0 : 1);
 | 
| -    int lower = 0;
 | 
| -
 | 
| -    Range* result = new(zone) Range(lower, upper);
 | 
| -    if (index()->HasRange()) {
 | 
| -      result->Intersect(index()->range());
 | 
| -    }
 | 
| -
 | 
| -    // In case of Smi representation, clamp result to Smi::kMaxValue.
 | 
| -    if (r.IsSmi()) result->ClampToSmi();
 | 
| -    return result;
 | 
| -  }
 | 
| -  return HValue::InferRange(zone);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HBoundsCheckBaseIndexInformation::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  // TODO(svenpanne) This 2nd base_index() looks wrong...
 | 
| -  return os << "base: " << NameOf(base_index())
 | 
| -            << ", check: " << NameOf(base_index());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCallWithDescriptor::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  for (int i = 0; i < OperandCount(); i++) {
 | 
| -    os << NameOf(OperandAt(i)) << " ";
 | 
| -  }
 | 
| -  return os << "#" << argument_count();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCallNewArray::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << ElementsKindToString(elements_kind()) << " ";
 | 
| -  return HBinaryCall::PrintDataTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCallRuntime::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << function()->name << " ";
 | 
| -  if (save_doubles() == kSaveFPRegs) os << "[save doubles] ";
 | 
| -  return os << "#" << argument_count();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HClassOfTestAndBranch::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << "class_of_test(" << NameOf(value()) << ", \""
 | 
| -            << class_name()->ToCString().get() << "\")";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HWrapReceiver::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(receiver()) << " " << NameOf(function());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HAccessArgumentsAt::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(arguments()) << "[" << NameOf(index()) << "], length "
 | 
| -            << NameOf(length());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HAllocateBlockContext::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(context()) << " " << NameOf(function());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HControlInstruction::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  os << " goto (";
 | 
| -  bool first_block = true;
 | 
| -  for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
 | 
| -    if (!first_block) os << ", ";
 | 
| -    os << *it.Current();
 | 
| -    first_block = false;
 | 
| -  }
 | 
| -  return os << ")";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HUnaryControlInstruction::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(value());
 | 
| -  return HControlInstruction::PrintDataTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HReturn::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(value()) << " (pop " << NameOf(parameter_count())
 | 
| -            << " values)";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Representation HBranch::observed_input_representation(int index) {
 | 
| -  if (expected_input_types_.Contains(ToBooleanStub::NULL_TYPE) ||
 | 
| -      expected_input_types_.Contains(ToBooleanStub::SPEC_OBJECT) ||
 | 
| -      expected_input_types_.Contains(ToBooleanStub::STRING) ||
 | 
| -      expected_input_types_.Contains(ToBooleanStub::SYMBOL) ||
 | 
| -      expected_input_types_.Contains(ToBooleanStub::SIMD_VALUE)) {
 | 
| -    return Representation::Tagged();
 | 
| -  }
 | 
| -  if (expected_input_types_.Contains(ToBooleanStub::UNDEFINED)) {
 | 
| -    if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
 | 
| -      return Representation::Double();
 | 
| -    }
 | 
| -    return Representation::Tagged();
 | 
| -  }
 | 
| -  if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
 | 
| -    return Representation::Double();
 | 
| -  }
 | 
| -  if (expected_input_types_.Contains(ToBooleanStub::SMI)) {
 | 
| -    return Representation::Smi();
 | 
| -  }
 | 
| -  return Representation::None();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HBranch::KnownSuccessorBlock(HBasicBlock** block) {
 | 
| -  HValue* value = this->value();
 | 
| -  if (value->EmitAtUses()) {
 | 
| -    DCHECK(value->IsConstant());
 | 
| -    DCHECK(!value->representation().IsDouble());
 | 
| -    *block = HConstant::cast(value)->BooleanValue()
 | 
| -        ? FirstSuccessor()
 | 
| -        : SecondSuccessor();
 | 
| -    return true;
 | 
| -  }
 | 
| -  *block = NULL;
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HBranch::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return HUnaryControlInstruction::PrintDataTo(os) << " "
 | 
| -                                                   << expected_input_types();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCompareMap::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(value()) << " (" << *map().handle() << ")";
 | 
| -  HControlInstruction::PrintDataTo(os);
 | 
| -  if (known_successor_index() == 0) {
 | 
| -    os << " [true]";
 | 
| -  } else if (known_successor_index() == 1) {
 | 
| -    os << " [false]";
 | 
| -  }
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -const char* HUnaryMathOperation::OpName() const {
 | 
| -  switch (op()) {
 | 
| -    case kMathFloor:
 | 
| -      return "floor";
 | 
| -    case kMathFround:
 | 
| -      return "fround";
 | 
| -    case kMathRound:
 | 
| -      return "round";
 | 
| -    case kMathAbs:
 | 
| -      return "abs";
 | 
| -    case kMathLog:
 | 
| -      return "log";
 | 
| -    case kMathExp:
 | 
| -      return "exp";
 | 
| -    case kMathSqrt:
 | 
| -      return "sqrt";
 | 
| -    case kMathPowHalf:
 | 
| -      return "pow-half";
 | 
| -    case kMathClz32:
 | 
| -      return "clz32";
 | 
| -    default:
 | 
| -      UNREACHABLE();
 | 
| -      return NULL;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HUnaryMathOperation::InferRange(Zone* zone) {
 | 
| -  Representation r = representation();
 | 
| -  if (op() == kMathClz32) return new(zone) Range(0, 32);
 | 
| -  if (r.IsSmiOrInteger32() && value()->HasRange()) {
 | 
| -    if (op() == kMathAbs) {
 | 
| -      int upper = value()->range()->upper();
 | 
| -      int lower = value()->range()->lower();
 | 
| -      bool spans_zero = value()->range()->CanBeZero();
 | 
| -      // Math.abs(kMinInt) overflows its representation, on which the
 | 
| -      // instruction deopts. Hence clamp it to kMaxInt.
 | 
| -      int abs_upper = upper == kMinInt ? kMaxInt : abs(upper);
 | 
| -      int abs_lower = lower == kMinInt ? kMaxInt : abs(lower);
 | 
| -      Range* result =
 | 
| -          new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper),
 | 
| -                          Max(abs_lower, abs_upper));
 | 
| -      // In case of Smi representation, clamp Math.abs(Smi::kMinValue) to
 | 
| -      // Smi::kMaxValue.
 | 
| -      if (r.IsSmi()) result->ClampToSmi();
 | 
| -      return result;
 | 
| -    }
 | 
| -  }
 | 
| -  return HValue::InferRange(zone);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HUnaryMathOperation::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << OpName() << " " << NameOf(value());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HUnaryOperation::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(value());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HHasInstanceTypeAndBranch::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(value());
 | 
| -  switch (from_) {
 | 
| -    case FIRST_JS_RECEIVER_TYPE:
 | 
| -      if (to_ == LAST_TYPE) os << " spec_object";
 | 
| -      break;
 | 
| -    case JS_REGEXP_TYPE:
 | 
| -      if (to_ == JS_REGEXP_TYPE) os << " reg_exp";
 | 
| -      break;
 | 
| -    case JS_ARRAY_TYPE:
 | 
| -      if (to_ == JS_ARRAY_TYPE) os << " array";
 | 
| -      break;
 | 
| -    case JS_FUNCTION_TYPE:
 | 
| -      if (to_ == JS_FUNCTION_TYPE) os << " function";
 | 
| -      break;
 | 
| -    default:
 | 
| -      break;
 | 
| -  }
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HTypeofIsAndBranch::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(value()) << " == " << type_literal()->ToCString().get();
 | 
| -  return HControlInstruction::PrintDataTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -namespace {
 | 
| -
 | 
| -String* TypeOfString(HConstant* constant, Isolate* isolate) {
 | 
| -  Heap* heap = isolate->heap();
 | 
| -  if (constant->HasNumberValue()) return heap->number_string();
 | 
| -  if (constant->IsUndetectable()) return heap->undefined_string();
 | 
| -  if (constant->HasStringValue()) return heap->string_string();
 | 
| -  switch (constant->GetInstanceType()) {
 | 
| -    case ODDBALL_TYPE: {
 | 
| -      Unique<Object> unique = constant->GetUnique();
 | 
| -      if (unique.IsKnownGlobal(heap->true_value()) ||
 | 
| -          unique.IsKnownGlobal(heap->false_value())) {
 | 
| -        return heap->boolean_string();
 | 
| -      }
 | 
| -      if (unique.IsKnownGlobal(heap->null_value())) {
 | 
| -        return heap->object_string();
 | 
| -      }
 | 
| -      DCHECK(unique.IsKnownGlobal(heap->undefined_value()));
 | 
| -      return heap->undefined_string();
 | 
| -    }
 | 
| -    case SYMBOL_TYPE:
 | 
| -      return heap->symbol_string();
 | 
| -    case SIMD128_VALUE_TYPE: {
 | 
| -      Unique<Map> map = constant->ObjectMap();
 | 
| -#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
 | 
| -  if (map.IsKnownGlobal(heap->type##_map())) {                \
 | 
| -    return heap->type##_string();                             \
 | 
| -  }
 | 
| -      SIMD128_TYPES(SIMD128_TYPE)
 | 
| -#undef SIMD128_TYPE
 | 
| -      UNREACHABLE();
 | 
| -      return nullptr;
 | 
| -    }
 | 
| -    default:
 | 
| -      if (constant->IsCallable()) return heap->function_string();
 | 
| -      return heap->object_string();
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -}  // namespace
 | 
| -
 | 
| -
 | 
| -bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
 | 
| -  if (FLAG_fold_constants && value()->IsConstant()) {
 | 
| -    HConstant* constant = HConstant::cast(value());
 | 
| -    String* type_string = TypeOfString(constant, isolate());
 | 
| -    bool same_type = type_literal_.IsKnownGlobal(type_string);
 | 
| -    *block = same_type ? FirstSuccessor() : SecondSuccessor();
 | 
| -    return true;
 | 
| -  } else if (value()->representation().IsSpecialization()) {
 | 
| -    bool number_type =
 | 
| -        type_literal_.IsKnownGlobal(isolate()->heap()->number_string());
 | 
| -    *block = number_type ? FirstSuccessor() : SecondSuccessor();
 | 
| -    return true;
 | 
| -  }
 | 
| -  *block = NULL;
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCheckMapValue::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(value()) << " " << NameOf(map());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HCheckMapValue::Canonicalize() {
 | 
| -  if (map()->IsConstant()) {
 | 
| -    HConstant* c_map = HConstant::cast(map());
 | 
| -    return HCheckMaps::CreateAndInsertAfter(
 | 
| -        block()->graph()->zone(), value(), c_map->MapValue(),
 | 
| -        c_map->HasStableMapValue(), this);
 | 
| -  }
 | 
| -  return this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HForInPrepareMap::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(enumerable());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HForInCacheArray::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(enumerable()) << " " << NameOf(map()) << "[" << idx_
 | 
| -            << "]";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HLoadFieldByIndex::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(object()) << " " << NameOf(index());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) {
 | 
| -  if (!l->EqualsInteger32Constant(~0)) return false;
 | 
| -  *negated = r;
 | 
| -  return true;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -static bool MatchNegationViaXor(HValue* instr, HValue** negated) {
 | 
| -  if (!instr->IsBitwise()) return false;
 | 
| -  HBitwise* b = HBitwise::cast(instr);
 | 
| -  return (b->op() == Token::BIT_XOR) &&
 | 
| -      (MatchLeftIsOnes(b->left(), b->right(), negated) ||
 | 
| -       MatchLeftIsOnes(b->right(), b->left(), negated));
 | 
| -}
 | 
| -
 | 
| -
 | 
| -static bool MatchDoubleNegation(HValue* instr, HValue** arg) {
 | 
| -  HValue* negated;
 | 
| -  return MatchNegationViaXor(instr, &negated) &&
 | 
| -      MatchNegationViaXor(negated, arg);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HBitwise::Canonicalize() {
 | 
| -  if (!representation().IsSmiOrInteger32()) return this;
 | 
| -  // If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
 | 
| -  int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
 | 
| -  if (left()->EqualsInteger32Constant(nop_constant) &&
 | 
| -      !right()->CheckFlag(kUint32)) {
 | 
| -    return right();
 | 
| -  }
 | 
| -  if (right()->EqualsInteger32Constant(nop_constant) &&
 | 
| -      !left()->CheckFlag(kUint32)) {
 | 
| -    return left();
 | 
| -  }
 | 
| -  // Optimize double negation, a common pattern used for ToInt32(x).
 | 
| -  HValue* arg;
 | 
| -  if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) {
 | 
| -    return arg;
 | 
| -  }
 | 
| -  return this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -// static
 | 
| -HInstruction* HAdd::New(Isolate* isolate, Zone* zone, HValue* context,
 | 
| -                        HValue* left, HValue* right, Strength strength,
 | 
| -                        ExternalAddType external_add_type) {
 | 
| -  // For everything else, you should use the other factory method without
 | 
| -  // ExternalAddType.
 | 
| -  DCHECK_EQ(external_add_type, AddOfExternalAndTagged);
 | 
| -  return new (zone) HAdd(context, left, right, strength, external_add_type);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Representation HAdd::RepresentationFromInputs() {
 | 
| -  Representation left_rep = left()->representation();
 | 
| -  if (left_rep.IsExternal()) {
 | 
| -    return Representation::External();
 | 
| -  }
 | 
| -  return HArithmeticBinaryOperation::RepresentationFromInputs();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Representation HAdd::RequiredInputRepresentation(int index) {
 | 
| -  if (index == 2) {
 | 
| -    Representation left_rep = left()->representation();
 | 
| -    if (left_rep.IsExternal()) {
 | 
| -      if (external_add_type_ == AddOfExternalAndTagged) {
 | 
| -        return Representation::Tagged();
 | 
| -      } else {
 | 
| -        return Representation::Integer32();
 | 
| -      }
 | 
| -    }
 | 
| -  }
 | 
| -  return HArithmeticBinaryOperation::RequiredInputRepresentation(index);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) {
 | 
| -  return arg1->representation().IsSpecialization() &&
 | 
| -    arg2->EqualsInteger32Constant(identity);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HAdd::Canonicalize() {
 | 
| -  // Adding 0 is an identity operation except in case of -0: -0 + 0 = +0
 | 
| -  if (IsIdentityOperation(left(), right(), 0) &&
 | 
| -      !left()->representation().IsDouble()) {  // Left could be -0.
 | 
| -    return left();
 | 
| -  }
 | 
| -  if (IsIdentityOperation(right(), left(), 0) &&
 | 
| -      !left()->representation().IsDouble()) {  // Right could be -0.
 | 
| -    return right();
 | 
| -  }
 | 
| -  return this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HSub::Canonicalize() {
 | 
| -  if (IsIdentityOperation(left(), right(), 0)) return left();
 | 
| -  return this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HMul::Canonicalize() {
 | 
| -  if (IsIdentityOperation(left(), right(), 1)) return left();
 | 
| -  if (IsIdentityOperation(right(), left(), 1)) return right();
 | 
| -  return this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HMul::MulMinusOne() {
 | 
| -  if (left()->EqualsInteger32Constant(-1) ||
 | 
| -      right()->EqualsInteger32Constant(-1)) {
 | 
| -    return true;
 | 
| -  }
 | 
| -
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HMod::Canonicalize() {
 | 
| -  return this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HDiv::Canonicalize() {
 | 
| -  if (IsIdentityOperation(left(), right(), 1)) return left();
 | 
| -  return this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HChange::Canonicalize() {
 | 
| -  return (from().Equals(to())) ? value() : this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HWrapReceiver::Canonicalize() {
 | 
| -  if (HasNoUses()) return NULL;
 | 
| -  if (receiver()->type().IsJSObject()) {
 | 
| -    return receiver();
 | 
| -  }
 | 
| -  return this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HTypeof::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(value());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HInstruction* HForceRepresentation::New(Isolate* isolate, Zone* zone,
 | 
| -                                        HValue* context, HValue* value,
 | 
| -                                        Representation representation) {
 | 
| -  if (FLAG_fold_constants && value->IsConstant()) {
 | 
| -    HConstant* c = HConstant::cast(value);
 | 
| -    c = c->CopyToRepresentation(representation, zone);
 | 
| -    if (c != NULL) return c;
 | 
| -  }
 | 
| -  return new(zone) HForceRepresentation(value, representation);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HForceRepresentation::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << representation().Mnemonic() << " " << NameOf(value());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HChange::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  HUnaryOperation::PrintDataTo(os);
 | 
| -  os << " " << from().Mnemonic() << " to " << to().Mnemonic();
 | 
| -
 | 
| -  if (CanTruncateToSmi()) os << " truncating-smi";
 | 
| -  if (CanTruncateToInt32()) os << " truncating-int32";
 | 
| -  if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
 | 
| -  if (CheckFlag(kAllowUndefinedAsNaN)) os << " allow-undefined-as-nan";
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HUnaryMathOperation::Canonicalize() {
 | 
| -  if (op() == kMathRound || op() == kMathFloor) {
 | 
| -    HValue* val = value();
 | 
| -    if (val->IsChange()) val = HChange::cast(val)->value();
 | 
| -    if (val->representation().IsSmiOrInteger32()) {
 | 
| -      if (val->representation().Equals(representation())) return val;
 | 
| -      return Prepend(new(block()->zone()) HChange(
 | 
| -          val, representation(), false, false));
 | 
| -    }
 | 
| -  }
 | 
| -  if (op() == kMathFloor && value()->IsDiv() && value()->HasOneUse()) {
 | 
| -    HDiv* hdiv = HDiv::cast(value());
 | 
| -
 | 
| -    HValue* left = hdiv->left();
 | 
| -    if (left->representation().IsInteger32()) {
 | 
| -      // A value with an integer representation does not need to be transformed.
 | 
| -    } else if (left->IsChange() && HChange::cast(left)->from().IsInteger32()) {
 | 
| -      // A change from an integer32 can be replaced by the integer32 value.
 | 
| -      left = HChange::cast(left)->value();
 | 
| -    } else if (hdiv->observed_input_representation(1).IsSmiOrInteger32()) {
 | 
| -      left = Prepend(new(block()->zone()) HChange(
 | 
| -          left, Representation::Integer32(), false, false));
 | 
| -    } else {
 | 
| -      return this;
 | 
| -    }
 | 
| -
 | 
| -    HValue* right = hdiv->right();
 | 
| -    if (right->IsInteger32Constant()) {
 | 
| -      right = Prepend(HConstant::cast(right)->CopyToRepresentation(
 | 
| -          Representation::Integer32(), right->block()->zone()));
 | 
| -    } else if (right->representation().IsInteger32()) {
 | 
| -      // A value with an integer representation does not need to be transformed.
 | 
| -    } else if (right->IsChange() &&
 | 
| -               HChange::cast(right)->from().IsInteger32()) {
 | 
| -      // A change from an integer32 can be replaced by the integer32 value.
 | 
| -      right = HChange::cast(right)->value();
 | 
| -    } else if (hdiv->observed_input_representation(2).IsSmiOrInteger32()) {
 | 
| -      right = Prepend(new(block()->zone()) HChange(
 | 
| -          right, Representation::Integer32(), false, false));
 | 
| -    } else {
 | 
| -      return this;
 | 
| -    }
 | 
| -
 | 
| -    return Prepend(HMathFloorOfDiv::New(
 | 
| -        block()->graph()->isolate(), block()->zone(), context(), left, right));
 | 
| -  }
 | 
| -  return this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HCheckInstanceType::Canonicalize() {
 | 
| -  if ((check_ == IS_SPEC_OBJECT && value()->type().IsJSObject()) ||
 | 
| -      (check_ == IS_JS_ARRAY && value()->type().IsJSArray()) ||
 | 
| -      (check_ == IS_STRING && value()->type().IsString())) {
 | 
| -    return value();
 | 
| -  }
 | 
| -
 | 
| -  if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) {
 | 
| -    if (HConstant::cast(value())->HasInternalizedStringValue()) {
 | 
| -      return value();
 | 
| -    }
 | 
| -  }
 | 
| -  return this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HCheckInstanceType::GetCheckInterval(InstanceType* first,
 | 
| -                                          InstanceType* last) {
 | 
| -  DCHECK(is_interval_check());
 | 
| -  switch (check_) {
 | 
| -    case IS_SPEC_OBJECT:
 | 
| -      *first = FIRST_SPEC_OBJECT_TYPE;
 | 
| -      *last = LAST_SPEC_OBJECT_TYPE;
 | 
| -      return;
 | 
| -    case IS_JS_ARRAY:
 | 
| -      *first = *last = JS_ARRAY_TYPE;
 | 
| -      return;
 | 
| -    case IS_JS_DATE:
 | 
| -      *first = *last = JS_DATE_TYPE;
 | 
| -      return;
 | 
| -    default:
 | 
| -      UNREACHABLE();
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
 | 
| -  DCHECK(!is_interval_check());
 | 
| -  switch (check_) {
 | 
| -    case IS_STRING:
 | 
| -      *mask = kIsNotStringMask;
 | 
| -      *tag = kStringTag;
 | 
| -      return;
 | 
| -    case IS_INTERNALIZED_STRING:
 | 
| -      *mask = kIsNotStringMask | kIsNotInternalizedMask;
 | 
| -      *tag = kInternalizedTag;
 | 
| -      return;
 | 
| -    default:
 | 
| -      UNREACHABLE();
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCheckMaps::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(value()) << " [" << *maps()->at(0).handle();
 | 
| -  for (int i = 1; i < maps()->size(); ++i) {
 | 
| -    os << "," << *maps()->at(i).handle();
 | 
| -  }
 | 
| -  os << "]";
 | 
| -  if (IsStabilityCheck()) os << "(stability-check)";
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HCheckMaps::Canonicalize() {
 | 
| -  if (!IsStabilityCheck() && maps_are_stable() && value()->IsConstant()) {
 | 
| -    HConstant* c_value = HConstant::cast(value());
 | 
| -    if (c_value->HasObjectMap()) {
 | 
| -      for (int i = 0; i < maps()->size(); ++i) {
 | 
| -        if (c_value->ObjectMap() == maps()->at(i)) {
 | 
| -          if (maps()->size() > 1) {
 | 
| -            set_maps(new(block()->graph()->zone()) UniqueSet<Map>(
 | 
| -                    maps()->at(i), block()->graph()->zone()));
 | 
| -          }
 | 
| -          MarkAsStabilityCheck();
 | 
| -          break;
 | 
| -        }
 | 
| -      }
 | 
| -    }
 | 
| -  }
 | 
| -  return this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCheckValue::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(value()) << " " << Brief(*object().handle());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HCheckValue::Canonicalize() {
 | 
| -  return (value()->IsConstant() &&
 | 
| -          HConstant::cast(value())->EqualsUnique(object_)) ? NULL : this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -const char* HCheckInstanceType::GetCheckName() const {
 | 
| -  switch (check_) {
 | 
| -    case IS_SPEC_OBJECT: return "object";
 | 
| -    case IS_JS_ARRAY: return "array";
 | 
| -    case IS_JS_DATE:
 | 
| -      return "date";
 | 
| -    case IS_STRING: return "string";
 | 
| -    case IS_INTERNALIZED_STRING: return "internalized_string";
 | 
| -  }
 | 
| -  UNREACHABLE();
 | 
| -  return "";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCheckInstanceType::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  os << GetCheckName() << " ";
 | 
| -  return HUnaryOperation::PrintDataTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCallStub::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << CodeStub::MajorName(major_key_) << " ";
 | 
| -  return HUnaryCall::PrintDataTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HUnknownOSRValue::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  const char* type = "expression";
 | 
| -  if (environment_->is_local_index(index_)) type = "local";
 | 
| -  if (environment_->is_special_index(index_)) type = "special";
 | 
| -  if (environment_->is_parameter_index(index_)) type = "parameter";
 | 
| -  return os << type << " @ " << index_;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HInstanceOf::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(left()) << " " << NameOf(right()) << " "
 | 
| -            << NameOf(context());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HValue::InferRange(Zone* zone) {
 | 
| -  Range* result;
 | 
| -  if (representation().IsSmi() || type().IsSmi()) {
 | 
| -    result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue);
 | 
| -    result->set_can_be_minus_zero(false);
 | 
| -  } else {
 | 
| -    result = new(zone) Range();
 | 
| -    result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32));
 | 
| -    // TODO(jkummerow): The range cannot be minus zero when the upper type
 | 
| -    // bound is Integer32.
 | 
| -  }
 | 
| -  return result;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HChange::InferRange(Zone* zone) {
 | 
| -  Range* input_range = value()->range();
 | 
| -  if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) &&
 | 
| -      (to().IsSmi() ||
 | 
| -       (to().IsTagged() &&
 | 
| -        input_range != NULL &&
 | 
| -        input_range->IsInSmiRange()))) {
 | 
| -    set_type(HType::Smi());
 | 
| -    ClearChangesFlag(kNewSpacePromotion);
 | 
| -  }
 | 
| -  if (to().IsSmiOrTagged() &&
 | 
| -      input_range != NULL &&
 | 
| -      input_range->IsInSmiRange() &&
 | 
| -      (!SmiValuesAre32Bits() ||
 | 
| -       !value()->CheckFlag(HValue::kUint32) ||
 | 
| -       input_range->upper() != kMaxInt)) {
 | 
| -    // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
 | 
| -    // interval, so we treat kMaxInt as a sentinel for this entire interval.
 | 
| -    ClearFlag(kCanOverflow);
 | 
| -  }
 | 
| -  Range* result = (input_range != NULL)
 | 
| -      ? input_range->Copy(zone)
 | 
| -      : HValue::InferRange(zone);
 | 
| -  result->set_can_be_minus_zero(!to().IsSmiOrInteger32() ||
 | 
| -                                !(CheckFlag(kAllUsesTruncatingToInt32) ||
 | 
| -                                  CheckFlag(kAllUsesTruncatingToSmi)));
 | 
| -  if (to().IsSmi()) result->ClampToSmi();
 | 
| -  return result;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HConstant::InferRange(Zone* zone) {
 | 
| -  if (HasInteger32Value()) {
 | 
| -    Range* result = new(zone) Range(int32_value_, int32_value_);
 | 
| -    result->set_can_be_minus_zero(false);
 | 
| -    return result;
 | 
| -  }
 | 
| -  return HValue::InferRange(zone);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -SourcePosition HPhi::position() const { return block()->first()->position(); }
 | 
| -
 | 
| -
 | 
| -Range* HPhi::InferRange(Zone* zone) {
 | 
| -  Representation r = representation();
 | 
| -  if (r.IsSmiOrInteger32()) {
 | 
| -    if (block()->IsLoopHeader()) {
 | 
| -      Range* range = r.IsSmi()
 | 
| -          ? new(zone) Range(Smi::kMinValue, Smi::kMaxValue)
 | 
| -          : new(zone) Range(kMinInt, kMaxInt);
 | 
| -      return range;
 | 
| -    } else {
 | 
| -      Range* range = OperandAt(0)->range()->Copy(zone);
 | 
| -      for (int i = 1; i < OperandCount(); ++i) {
 | 
| -        range->Union(OperandAt(i)->range());
 | 
| -      }
 | 
| -      return range;
 | 
| -    }
 | 
| -  } else {
 | 
| -    return HValue::InferRange(zone);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HAdd::InferRange(Zone* zone) {
 | 
| -  Representation r = representation();
 | 
| -  if (r.IsSmiOrInteger32()) {
 | 
| -    Range* a = left()->range();
 | 
| -    Range* b = right()->range();
 | 
| -    Range* res = a->Copy(zone);
 | 
| -    if (!res->AddAndCheckOverflow(r, b) ||
 | 
| -        (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
 | 
| -        (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
 | 
| -      ClearFlag(kCanOverflow);
 | 
| -    }
 | 
| -    res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
 | 
| -                               !CheckFlag(kAllUsesTruncatingToInt32) &&
 | 
| -                               a->CanBeMinusZero() && b->CanBeMinusZero());
 | 
| -    return res;
 | 
| -  } else {
 | 
| -    return HValue::InferRange(zone);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HSub::InferRange(Zone* zone) {
 | 
| -  Representation r = representation();
 | 
| -  if (r.IsSmiOrInteger32()) {
 | 
| -    Range* a = left()->range();
 | 
| -    Range* b = right()->range();
 | 
| -    Range* res = a->Copy(zone);
 | 
| -    if (!res->SubAndCheckOverflow(r, b) ||
 | 
| -        (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
 | 
| -        (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
 | 
| -      ClearFlag(kCanOverflow);
 | 
| -    }
 | 
| -    res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
 | 
| -                               !CheckFlag(kAllUsesTruncatingToInt32) &&
 | 
| -                               a->CanBeMinusZero() && b->CanBeZero());
 | 
| -    return res;
 | 
| -  } else {
 | 
| -    return HValue::InferRange(zone);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HMul::InferRange(Zone* zone) {
 | 
| -  Representation r = representation();
 | 
| -  if (r.IsSmiOrInteger32()) {
 | 
| -    Range* a = left()->range();
 | 
| -    Range* b = right()->range();
 | 
| -    Range* res = a->Copy(zone);
 | 
| -    if (!res->MulAndCheckOverflow(r, b) ||
 | 
| -        (((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
 | 
| -         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) &&
 | 
| -         MulMinusOne())) {
 | 
| -      // Truncated int multiplication is too precise and therefore not the
 | 
| -      // same as converting to Double and back.
 | 
| -      // Handle truncated integer multiplication by -1 special.
 | 
| -      ClearFlag(kCanOverflow);
 | 
| -    }
 | 
| -    res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
 | 
| -                               !CheckFlag(kAllUsesTruncatingToInt32) &&
 | 
| -                               ((a->CanBeZero() && b->CanBeNegative()) ||
 | 
| -                                (a->CanBeNegative() && b->CanBeZero())));
 | 
| -    return res;
 | 
| -  } else {
 | 
| -    return HValue::InferRange(zone);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HDiv::InferRange(Zone* zone) {
 | 
| -  if (representation().IsInteger32()) {
 | 
| -    Range* a = left()->range();
 | 
| -    Range* b = right()->range();
 | 
| -    Range* result = new(zone) Range();
 | 
| -    result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
 | 
| -                                  (a->CanBeMinusZero() ||
 | 
| -                                   (a->CanBeZero() && b->CanBeNegative())));
 | 
| -    if (!a->Includes(kMinInt) || !b->Includes(-1)) {
 | 
| -      ClearFlag(kCanOverflow);
 | 
| -    }
 | 
| -
 | 
| -    if (!b->CanBeZero()) {
 | 
| -      ClearFlag(kCanBeDivByZero);
 | 
| -    }
 | 
| -    return result;
 | 
| -  } else {
 | 
| -    return HValue::InferRange(zone);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HMathFloorOfDiv::InferRange(Zone* zone) {
 | 
| -  if (representation().IsInteger32()) {
 | 
| -    Range* a = left()->range();
 | 
| -    Range* b = right()->range();
 | 
| -    Range* result = new(zone) Range();
 | 
| -    result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
 | 
| -                                  (a->CanBeMinusZero() ||
 | 
| -                                   (a->CanBeZero() && b->CanBeNegative())));
 | 
| -    if (!a->Includes(kMinInt)) {
 | 
| -      ClearFlag(kLeftCanBeMinInt);
 | 
| -    }
 | 
| -
 | 
| -    if (!a->CanBeNegative()) {
 | 
| -      ClearFlag(HValue::kLeftCanBeNegative);
 | 
| -    }
 | 
| -
 | 
| -    if (!a->CanBePositive()) {
 | 
| -      ClearFlag(HValue::kLeftCanBePositive);
 | 
| -    }
 | 
| -
 | 
| -    if (!a->Includes(kMinInt) || !b->Includes(-1)) {
 | 
| -      ClearFlag(kCanOverflow);
 | 
| -    }
 | 
| -
 | 
| -    if (!b->CanBeZero()) {
 | 
| -      ClearFlag(kCanBeDivByZero);
 | 
| -    }
 | 
| -    return result;
 | 
| -  } else {
 | 
| -    return HValue::InferRange(zone);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -// Returns the absolute value of its argument minus one, avoiding undefined
 | 
| -// behavior at kMinInt.
 | 
| -static int32_t AbsMinus1(int32_t a) { return a < 0 ? -(a + 1) : (a - 1); }
 | 
| -
 | 
| -
 | 
| -Range* HMod::InferRange(Zone* zone) {
 | 
| -  if (representation().IsInteger32()) {
 | 
| -    Range* a = left()->range();
 | 
| -    Range* b = right()->range();
 | 
| -
 | 
| -    // The magnitude of the modulus is bounded by the right operand.
 | 
| -    int32_t positive_bound = Max(AbsMinus1(b->lower()), AbsMinus1(b->upper()));
 | 
| -
 | 
| -    // The result of the modulo operation has the sign of its left operand.
 | 
| -    bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative();
 | 
| -    Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0,
 | 
| -                                    a->CanBePositive() ? positive_bound : 0);
 | 
| -
 | 
| -    result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
 | 
| -                                  left_can_be_negative);
 | 
| -
 | 
| -    if (!a->CanBeNegative()) {
 | 
| -      ClearFlag(HValue::kLeftCanBeNegative);
 | 
| -    }
 | 
| -
 | 
| -    if (!a->Includes(kMinInt) || !b->Includes(-1)) {
 | 
| -      ClearFlag(HValue::kCanOverflow);
 | 
| -    }
 | 
| -
 | 
| -    if (!b->CanBeZero()) {
 | 
| -      ClearFlag(HValue::kCanBeDivByZero);
 | 
| -    }
 | 
| -    return result;
 | 
| -  } else {
 | 
| -    return HValue::InferRange(zone);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -InductionVariableData* InductionVariableData::ExaminePhi(HPhi* phi) {
 | 
| -  if (phi->block()->loop_information() == NULL) return NULL;
 | 
| -  if (phi->OperandCount() != 2) return NULL;
 | 
| -  int32_t candidate_increment;
 | 
| -
 | 
| -  candidate_increment = ComputeIncrement(phi, phi->OperandAt(0));
 | 
| -  if (candidate_increment != 0) {
 | 
| -    return new(phi->block()->graph()->zone())
 | 
| -        InductionVariableData(phi, phi->OperandAt(1), candidate_increment);
 | 
| -  }
 | 
| -
 | 
| -  candidate_increment = ComputeIncrement(phi, phi->OperandAt(1));
 | 
| -  if (candidate_increment != 0) {
 | 
| -    return new(phi->block()->graph()->zone())
 | 
| -        InductionVariableData(phi, phi->OperandAt(0), candidate_increment);
 | 
| -  }
 | 
| -
 | 
| -  return NULL;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * This function tries to match the following patterns (and all the relevant
 | 
| - * variants related to |, & and + being commutative):
 | 
| - * base | constant_or_mask
 | 
| - * base & constant_and_mask
 | 
| - * (base + constant_offset) & constant_and_mask
 | 
| - * (base - constant_offset) & constant_and_mask
 | 
| - */
 | 
| -void InductionVariableData::DecomposeBitwise(
 | 
| -    HValue* value,
 | 
| -    BitwiseDecompositionResult* result) {
 | 
| -  HValue* base = IgnoreOsrValue(value);
 | 
| -  result->base = value;
 | 
| -
 | 
| -  if (!base->representation().IsInteger32()) return;
 | 
| -
 | 
| -  if (base->IsBitwise()) {
 | 
| -    bool allow_offset = false;
 | 
| -    int32_t mask = 0;
 | 
| -
 | 
| -    HBitwise* bitwise = HBitwise::cast(base);
 | 
| -    if (bitwise->right()->IsInteger32Constant()) {
 | 
| -      mask = bitwise->right()->GetInteger32Constant();
 | 
| -      base = bitwise->left();
 | 
| -    } else if (bitwise->left()->IsInteger32Constant()) {
 | 
| -      mask = bitwise->left()->GetInteger32Constant();
 | 
| -      base = bitwise->right();
 | 
| -    } else {
 | 
| -      return;
 | 
| -    }
 | 
| -    if (bitwise->op() == Token::BIT_AND) {
 | 
| -      result->and_mask = mask;
 | 
| -      allow_offset = true;
 | 
| -    } else if (bitwise->op() == Token::BIT_OR) {
 | 
| -      result->or_mask = mask;
 | 
| -    } else {
 | 
| -      return;
 | 
| -    }
 | 
| -
 | 
| -    result->context = bitwise->context();
 | 
| -
 | 
| -    if (allow_offset) {
 | 
| -      if (base->IsAdd()) {
 | 
| -        HAdd* add = HAdd::cast(base);
 | 
| -        if (add->right()->IsInteger32Constant()) {
 | 
| -          base = add->left();
 | 
| -        } else if (add->left()->IsInteger32Constant()) {
 | 
| -          base = add->right();
 | 
| -        }
 | 
| -      } else if (base->IsSub()) {
 | 
| -        HSub* sub = HSub::cast(base);
 | 
| -        if (sub->right()->IsInteger32Constant()) {
 | 
| -          base = sub->left();
 | 
| -        }
 | 
| -      }
 | 
| -    }
 | 
| -
 | 
| -    result->base = base;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void InductionVariableData::AddCheck(HBoundsCheck* check,
 | 
| -                                     int32_t upper_limit) {
 | 
| -  DCHECK(limit_validity() != NULL);
 | 
| -  if (limit_validity() != check->block() &&
 | 
| -      !limit_validity()->Dominates(check->block())) return;
 | 
| -  if (!phi()->block()->current_loop()->IsNestedInThisLoop(
 | 
| -      check->block()->current_loop())) return;
 | 
| -
 | 
| -  ChecksRelatedToLength* length_checks = checks();
 | 
| -  while (length_checks != NULL) {
 | 
| -    if (length_checks->length() == check->length()) break;
 | 
| -    length_checks = length_checks->next();
 | 
| -  }
 | 
| -  if (length_checks == NULL) {
 | 
| -    length_checks = new(check->block()->zone())
 | 
| -        ChecksRelatedToLength(check->length(), checks());
 | 
| -    checks_ = length_checks;
 | 
| -  }
 | 
| -
 | 
| -  length_checks->AddCheck(check, upper_limit);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void InductionVariableData::ChecksRelatedToLength::CloseCurrentBlock() {
 | 
| -  if (checks() != NULL) {
 | 
| -    InductionVariableCheck* c = checks();
 | 
| -    HBasicBlock* current_block = c->check()->block();
 | 
| -    while (c != NULL && c->check()->block() == current_block) {
 | 
| -      c->set_upper_limit(current_upper_limit_);
 | 
| -      c = c->next();
 | 
| -    }
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void InductionVariableData::ChecksRelatedToLength::UseNewIndexInCurrentBlock(
 | 
| -    Token::Value token,
 | 
| -    int32_t mask,
 | 
| -    HValue* index_base,
 | 
| -    HValue* context) {
 | 
| -  DCHECK(first_check_in_block() != NULL);
 | 
| -  HValue* previous_index = first_check_in_block()->index();
 | 
| -  DCHECK(context != NULL);
 | 
| -
 | 
| -  Zone* zone = index_base->block()->graph()->zone();
 | 
| -  Isolate* isolate = index_base->block()->graph()->isolate();
 | 
| -  set_added_constant(HConstant::New(isolate, zone, context, mask));
 | 
| -  if (added_index() != NULL) {
 | 
| -    added_constant()->InsertBefore(added_index());
 | 
| -  } else {
 | 
| -    added_constant()->InsertBefore(first_check_in_block());
 | 
| -  }
 | 
| -
 | 
| -  if (added_index() == NULL) {
 | 
| -    first_check_in_block()->ReplaceAllUsesWith(first_check_in_block()->index());
 | 
| -    HInstruction* new_index = HBitwise::New(isolate, zone, context, token,
 | 
| -                                            index_base, added_constant());
 | 
| -    DCHECK(new_index->IsBitwise());
 | 
| -    new_index->ClearAllSideEffects();
 | 
| -    new_index->AssumeRepresentation(Representation::Integer32());
 | 
| -    set_added_index(HBitwise::cast(new_index));
 | 
| -    added_index()->InsertBefore(first_check_in_block());
 | 
| -  }
 | 
| -  DCHECK(added_index()->op() == token);
 | 
| -
 | 
| -  added_index()->SetOperandAt(1, index_base);
 | 
| -  added_index()->SetOperandAt(2, added_constant());
 | 
| -  first_check_in_block()->SetOperandAt(0, added_index());
 | 
| -  if (previous_index->HasNoUses()) {
 | 
| -    previous_index->DeleteAndReplaceWith(NULL);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -void InductionVariableData::ChecksRelatedToLength::AddCheck(
 | 
| -    HBoundsCheck* check,
 | 
| -    int32_t upper_limit) {
 | 
| -  BitwiseDecompositionResult decomposition;
 | 
| -  InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
 | 
| -
 | 
| -  if (first_check_in_block() == NULL ||
 | 
| -      first_check_in_block()->block() != check->block()) {
 | 
| -    CloseCurrentBlock();
 | 
| -
 | 
| -    first_check_in_block_ = check;
 | 
| -    set_added_index(NULL);
 | 
| -    set_added_constant(NULL);
 | 
| -    current_and_mask_in_block_ = decomposition.and_mask;
 | 
| -    current_or_mask_in_block_ = decomposition.or_mask;
 | 
| -    current_upper_limit_ = upper_limit;
 | 
| -
 | 
| -    InductionVariableCheck* new_check = new(check->block()->graph()->zone())
 | 
| -        InductionVariableCheck(check, checks_, upper_limit);
 | 
| -    checks_ = new_check;
 | 
| -    return;
 | 
| -  }
 | 
| -
 | 
| -  if (upper_limit > current_upper_limit()) {
 | 
| -    current_upper_limit_ = upper_limit;
 | 
| -  }
 | 
| -
 | 
| -  if (decomposition.and_mask != 0 &&
 | 
| -      current_or_mask_in_block() == 0) {
 | 
| -    if (current_and_mask_in_block() == 0 ||
 | 
| -        decomposition.and_mask > current_and_mask_in_block()) {
 | 
| -      UseNewIndexInCurrentBlock(Token::BIT_AND,
 | 
| -                                decomposition.and_mask,
 | 
| -                                decomposition.base,
 | 
| -                                decomposition.context);
 | 
| -      current_and_mask_in_block_ = decomposition.and_mask;
 | 
| -    }
 | 
| -    check->set_skip_check();
 | 
| -  }
 | 
| -  if (current_and_mask_in_block() == 0) {
 | 
| -    if (decomposition.or_mask > current_or_mask_in_block()) {
 | 
| -      UseNewIndexInCurrentBlock(Token::BIT_OR,
 | 
| -                                decomposition.or_mask,
 | 
| -                                decomposition.base,
 | 
| -                                decomposition.context);
 | 
| -      current_or_mask_in_block_ = decomposition.or_mask;
 | 
| -    }
 | 
| -    check->set_skip_check();
 | 
| -  }
 | 
| -
 | 
| -  if (!check->skip_check()) {
 | 
| -    InductionVariableCheck* new_check = new(check->block()->graph()->zone())
 | 
| -        InductionVariableCheck(check, checks_, upper_limit);
 | 
| -    checks_ = new_check;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * This method detects if phi is an induction variable, with phi_operand as
 | 
| - * its "incremented" value (the other operand would be the "base" value).
 | 
| - *
 | 
| - * It cheks is phi_operand has the form "phi + constant".
 | 
| - * If yes, the constant is the increment that the induction variable gets at
 | 
| - * every loop iteration.
 | 
| - * Otherwise it returns 0.
 | 
| - */
 | 
| -int32_t InductionVariableData::ComputeIncrement(HPhi* phi,
 | 
| -                                                HValue* phi_operand) {
 | 
| -  if (!phi_operand->representation().IsSmiOrInteger32()) return 0;
 | 
| -
 | 
| -  if (phi_operand->IsAdd()) {
 | 
| -    HAdd* operation = HAdd::cast(phi_operand);
 | 
| -    if (operation->left() == phi &&
 | 
| -        operation->right()->IsInteger32Constant()) {
 | 
| -      return operation->right()->GetInteger32Constant();
 | 
| -    } else if (operation->right() == phi &&
 | 
| -               operation->left()->IsInteger32Constant()) {
 | 
| -      return operation->left()->GetInteger32Constant();
 | 
| -    }
 | 
| -  } else if (phi_operand->IsSub()) {
 | 
| -    HSub* operation = HSub::cast(phi_operand);
 | 
| -    if (operation->left() == phi &&
 | 
| -        operation->right()->IsInteger32Constant()) {
 | 
| -      int constant = operation->right()->GetInteger32Constant();
 | 
| -      if (constant == kMinInt) return 0;
 | 
| -      return -constant;
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  return 0;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Swaps the information in "update" with the one contained in "this".
 | 
| - * The swapping is important because this method is used while doing a
 | 
| - * dominator tree traversal, and "update" will retain the old data that
 | 
| - * will be restored while backtracking.
 | 
| - */
 | 
| -void InductionVariableData::UpdateAdditionalLimit(
 | 
| -    InductionVariableLimitUpdate* update) {
 | 
| -  DCHECK(update->updated_variable == this);
 | 
| -  if (update->limit_is_upper) {
 | 
| -    swap(&additional_upper_limit_, &update->limit);
 | 
| -    swap(&additional_upper_limit_is_included_, &update->limit_is_included);
 | 
| -  } else {
 | 
| -    swap(&additional_lower_limit_, &update->limit);
 | 
| -    swap(&additional_lower_limit_is_included_, &update->limit_is_included);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -int32_t InductionVariableData::ComputeUpperLimit(int32_t and_mask,
 | 
| -                                                 int32_t or_mask) {
 | 
| -  // Should be Smi::kMaxValue but it must fit 32 bits; lower is safe anyway.
 | 
| -  const int32_t MAX_LIMIT = 1 << 30;
 | 
| -
 | 
| -  int32_t result = MAX_LIMIT;
 | 
| -
 | 
| -  if (limit() != NULL &&
 | 
| -      limit()->IsInteger32Constant()) {
 | 
| -    int32_t limit_value = limit()->GetInteger32Constant();
 | 
| -    if (!limit_included()) {
 | 
| -      limit_value--;
 | 
| -    }
 | 
| -    if (limit_value < result) result = limit_value;
 | 
| -  }
 | 
| -
 | 
| -  if (additional_upper_limit() != NULL &&
 | 
| -      additional_upper_limit()->IsInteger32Constant()) {
 | 
| -    int32_t limit_value = additional_upper_limit()->GetInteger32Constant();
 | 
| -    if (!additional_upper_limit_is_included()) {
 | 
| -      limit_value--;
 | 
| -    }
 | 
| -    if (limit_value < result) result = limit_value;
 | 
| -  }
 | 
| -
 | 
| -  if (and_mask > 0 && and_mask < MAX_LIMIT) {
 | 
| -    if (and_mask < result) result = and_mask;
 | 
| -    return result;
 | 
| -  }
 | 
| -
 | 
| -  // Add the effect of the or_mask.
 | 
| -  result |= or_mask;
 | 
| -
 | 
| -  return result >= MAX_LIMIT ? kNoLimit : result;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* InductionVariableData::IgnoreOsrValue(HValue* v) {
 | 
| -  if (!v->IsPhi()) return v;
 | 
| -  HPhi* phi = HPhi::cast(v);
 | 
| -  if (phi->OperandCount() != 2) return v;
 | 
| -  if (phi->OperandAt(0)->block()->is_osr_entry()) {
 | 
| -    return phi->OperandAt(1);
 | 
| -  } else if (phi->OperandAt(1)->block()->is_osr_entry()) {
 | 
| -    return phi->OperandAt(0);
 | 
| -  } else {
 | 
| -    return v;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -InductionVariableData* InductionVariableData::GetInductionVariableData(
 | 
| -    HValue* v) {
 | 
| -  v = IgnoreOsrValue(v);
 | 
| -  if (v->IsPhi()) {
 | 
| -    return HPhi::cast(v)->induction_variable_data();
 | 
| -  }
 | 
| -  return NULL;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Check if a conditional branch to "current_branch" with token "token" is
 | 
| - * the branch that keeps the induction loop running (and, conversely, will
 | 
| - * terminate it if the "other_branch" is taken).
 | 
| - *
 | 
| - * Three conditions must be met:
 | 
| - * - "current_branch" must be in the induction loop.
 | 
| - * - "other_branch" must be out of the induction loop.
 | 
| - * - "token" and the induction increment must be "compatible": the token should
 | 
| - *   be a condition that keeps the execution inside the loop until the limit is
 | 
| - *   reached.
 | 
| - */
 | 
| -bool InductionVariableData::CheckIfBranchIsLoopGuard(
 | 
| -    Token::Value token,
 | 
| -    HBasicBlock* current_branch,
 | 
| -    HBasicBlock* other_branch) {
 | 
| -  if (!phi()->block()->current_loop()->IsNestedInThisLoop(
 | 
| -      current_branch->current_loop())) {
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  if (phi()->block()->current_loop()->IsNestedInThisLoop(
 | 
| -      other_branch->current_loop())) {
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  if (increment() > 0 && (token == Token::LT || token == Token::LTE)) {
 | 
| -    return true;
 | 
| -  }
 | 
| -  if (increment() < 0 && (token == Token::GT || token == Token::GTE)) {
 | 
| -    return true;
 | 
| -  }
 | 
| -  if (Token::IsInequalityOp(token) && (increment() == 1 || increment() == -1)) {
 | 
| -    return true;
 | 
| -  }
 | 
| -
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void InductionVariableData::ComputeLimitFromPredecessorBlock(
 | 
| -    HBasicBlock* block,
 | 
| -    LimitFromPredecessorBlock* result) {
 | 
| -  if (block->predecessors()->length() != 1) return;
 | 
| -  HBasicBlock* predecessor = block->predecessors()->at(0);
 | 
| -  HInstruction* end = predecessor->last();
 | 
| -
 | 
| -  if (!end->IsCompareNumericAndBranch()) return;
 | 
| -  HCompareNumericAndBranch* branch = HCompareNumericAndBranch::cast(end);
 | 
| -
 | 
| -  Token::Value token = branch->token();
 | 
| -  if (!Token::IsArithmeticCompareOp(token)) return;
 | 
| -
 | 
| -  HBasicBlock* other_target;
 | 
| -  if (block == branch->SuccessorAt(0)) {
 | 
| -    other_target = branch->SuccessorAt(1);
 | 
| -  } else {
 | 
| -    other_target = branch->SuccessorAt(0);
 | 
| -    token = Token::NegateCompareOp(token);
 | 
| -    DCHECK(block == branch->SuccessorAt(1));
 | 
| -  }
 | 
| -
 | 
| -  InductionVariableData* data;
 | 
| -
 | 
| -  data = GetInductionVariableData(branch->left());
 | 
| -  HValue* limit = branch->right();
 | 
| -  if (data == NULL) {
 | 
| -    data = GetInductionVariableData(branch->right());
 | 
| -    token = Token::ReverseCompareOp(token);
 | 
| -    limit = branch->left();
 | 
| -  }
 | 
| -
 | 
| -  if (data != NULL) {
 | 
| -    result->variable = data;
 | 
| -    result->token = token;
 | 
| -    result->limit = limit;
 | 
| -    result->other_target = other_target;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Compute the limit that is imposed on an induction variable when entering
 | 
| - * "block" (if any).
 | 
| - * If the limit is the "proper" induction limit (the one that makes the loop
 | 
| - * terminate when the induction variable reaches it) it is stored directly in
 | 
| - * the induction variable data.
 | 
| - * Otherwise the limit is written in "additional_limit" and the method
 | 
| - * returns true.
 | 
| - */
 | 
| -bool InductionVariableData::ComputeInductionVariableLimit(
 | 
| -    HBasicBlock* block,
 | 
| -    InductionVariableLimitUpdate* additional_limit) {
 | 
| -  LimitFromPredecessorBlock limit;
 | 
| -  ComputeLimitFromPredecessorBlock(block, &limit);
 | 
| -  if (!limit.LimitIsValid()) return false;
 | 
| -
 | 
| -  if (limit.variable->CheckIfBranchIsLoopGuard(limit.token,
 | 
| -                                               block,
 | 
| -                                               limit.other_target)) {
 | 
| -    limit.variable->limit_ = limit.limit;
 | 
| -    limit.variable->limit_included_ = limit.LimitIsIncluded();
 | 
| -    limit.variable->limit_validity_ = block;
 | 
| -    limit.variable->induction_exit_block_ = block->predecessors()->at(0);
 | 
| -    limit.variable->induction_exit_target_ = limit.other_target;
 | 
| -    return false;
 | 
| -  } else {
 | 
| -    additional_limit->updated_variable = limit.variable;
 | 
| -    additional_limit->limit = limit.limit;
 | 
| -    additional_limit->limit_is_upper = limit.LimitIsUpper();
 | 
| -    additional_limit->limit_is_included = limit.LimitIsIncluded();
 | 
| -    return true;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HMathMinMax::InferRange(Zone* zone) {
 | 
| -  if (representation().IsSmiOrInteger32()) {
 | 
| -    Range* a = left()->range();
 | 
| -    Range* b = right()->range();
 | 
| -    Range* res = a->Copy(zone);
 | 
| -    if (operation_ == kMathMax) {
 | 
| -      res->CombinedMax(b);
 | 
| -    } else {
 | 
| -      DCHECK(operation_ == kMathMin);
 | 
| -      res->CombinedMin(b);
 | 
| -    }
 | 
| -    return res;
 | 
| -  } else {
 | 
| -    return HValue::InferRange(zone);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HPushArguments::AddInput(HValue* value) {
 | 
| -  inputs_.Add(NULL, value->block()->zone());
 | 
| -  SetOperandAt(OperandCount() - 1, value);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HPhi::PrintTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << "[";
 | 
| -  for (int i = 0; i < OperandCount(); ++i) {
 | 
| -    os << " " << NameOf(OperandAt(i)) << " ";
 | 
| -  }
 | 
| -  return os << " uses" << UseCount()
 | 
| -            << representation_from_indirect_uses().Mnemonic() << " "
 | 
| -            << TypeOf(this) << "]";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HPhi::AddInput(HValue* value) {
 | 
| -  inputs_.Add(NULL, value->block()->zone());
 | 
| -  SetOperandAt(OperandCount() - 1, value);
 | 
| -  // Mark phis that may have 'arguments' directly or indirectly as an operand.
 | 
| -  if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
 | 
| -    SetFlag(kIsArguments);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HPhi::HasRealUses() {
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
 | 
| -    if (!it.value()->IsPhi()) return true;
 | 
| -  }
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HPhi::GetRedundantReplacement() {
 | 
| -  HValue* candidate = NULL;
 | 
| -  int count = OperandCount();
 | 
| -  int position = 0;
 | 
| -  while (position < count && candidate == NULL) {
 | 
| -    HValue* current = OperandAt(position++);
 | 
| -    if (current != this) candidate = current;
 | 
| -  }
 | 
| -  while (position < count) {
 | 
| -    HValue* current = OperandAt(position++);
 | 
| -    if (current != this && current != candidate) return NULL;
 | 
| -  }
 | 
| -  DCHECK(candidate != this);
 | 
| -  return candidate;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HPhi::DeleteFromGraph() {
 | 
| -  DCHECK(block() != NULL);
 | 
| -  block()->RemovePhi(this);
 | 
| -  DCHECK(block() == NULL);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HPhi::InitRealUses(int phi_id) {
 | 
| -  // Initialize real uses.
 | 
| -  phi_id_ = phi_id;
 | 
| -  // Compute a conservative approximation of truncating uses before inferring
 | 
| -  // representations. The proper, exact computation will be done later, when
 | 
| -  // inserting representation changes.
 | 
| -  SetFlag(kTruncatingToSmi);
 | 
| -  SetFlag(kTruncatingToInt32);
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
 | 
| -    HValue* value = it.value();
 | 
| -    if (!value->IsPhi()) {
 | 
| -      Representation rep = value->observed_input_representation(it.index());
 | 
| -      representation_from_non_phi_uses_ =
 | 
| -          representation_from_non_phi_uses().generalize(rep);
 | 
| -      if (rep.IsSmi() || rep.IsInteger32() || rep.IsDouble()) {
 | 
| -        has_type_feedback_from_uses_ = true;
 | 
| -      }
 | 
| -
 | 
| -      if (FLAG_trace_representation) {
 | 
| -        PrintF("#%d Phi is used by real #%d %s as %s\n",
 | 
| -               id(), value->id(), value->Mnemonic(), rep.Mnemonic());
 | 
| -      }
 | 
| -      if (!value->IsSimulate()) {
 | 
| -        if (!value->CheckFlag(kTruncatingToSmi)) {
 | 
| -          ClearFlag(kTruncatingToSmi);
 | 
| -        }
 | 
| -        if (!value->CheckFlag(kTruncatingToInt32)) {
 | 
| -          ClearFlag(kTruncatingToInt32);
 | 
| -        }
 | 
| -      }
 | 
| -    }
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HPhi::AddNonPhiUsesFrom(HPhi* other) {
 | 
| -  if (FLAG_trace_representation) {
 | 
| -    PrintF(
 | 
| -        "generalizing use representation '%s' of #%d Phi "
 | 
| -        "with uses of #%d Phi '%s'\n",
 | 
| -        representation_from_indirect_uses().Mnemonic(), id(), other->id(),
 | 
| -        other->representation_from_non_phi_uses().Mnemonic());
 | 
| -  }
 | 
| -
 | 
| -  representation_from_indirect_uses_ =
 | 
| -      representation_from_indirect_uses().generalize(
 | 
| -          other->representation_from_non_phi_uses());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HSimulate::MergeWith(ZoneList<HSimulate*>* list) {
 | 
| -  while (!list->is_empty()) {
 | 
| -    HSimulate* from = list->RemoveLast();
 | 
| -    ZoneList<HValue*>* from_values = &from->values_;
 | 
| -    for (int i = 0; i < from_values->length(); ++i) {
 | 
| -      if (from->HasAssignedIndexAt(i)) {
 | 
| -        int index = from->GetAssignedIndexAt(i);
 | 
| -        if (HasValueForIndex(index)) continue;
 | 
| -        AddAssignedValue(index, from_values->at(i));
 | 
| -      } else {
 | 
| -        if (pop_count_ > 0) {
 | 
| -          pop_count_--;
 | 
| -        } else {
 | 
| -          AddPushedValue(from_values->at(i));
 | 
| -        }
 | 
| -      }
 | 
| -    }
 | 
| -    pop_count_ += from->pop_count_;
 | 
| -    from->DeleteAndReplaceWith(NULL);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HSimulate::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << "id=" << ast_id().ToInt();
 | 
| -  if (pop_count_ > 0) os << " pop " << pop_count_;
 | 
| -  if (values_.length() > 0) {
 | 
| -    if (pop_count_ > 0) os << " /";
 | 
| -    for (int i = values_.length() - 1; i >= 0; --i) {
 | 
| -      if (HasAssignedIndexAt(i)) {
 | 
| -        os << " var[" << GetAssignedIndexAt(i) << "] = ";
 | 
| -      } else {
 | 
| -        os << " push ";
 | 
| -      }
 | 
| -      os << NameOf(values_[i]);
 | 
| -      if (i > 0) os << ",";
 | 
| -    }
 | 
| -  }
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HSimulate::ReplayEnvironment(HEnvironment* env) {
 | 
| -  if (is_done_with_replay()) return;
 | 
| -  DCHECK(env != NULL);
 | 
| -  env->set_ast_id(ast_id());
 | 
| -  env->Drop(pop_count());
 | 
| -  for (int i = values()->length() - 1; i >= 0; --i) {
 | 
| -    HValue* value = values()->at(i);
 | 
| -    if (HasAssignedIndexAt(i)) {
 | 
| -      env->Bind(GetAssignedIndexAt(i), value);
 | 
| -    } else {
 | 
| -      env->Push(value);
 | 
| -    }
 | 
| -  }
 | 
| -  set_done_with_replay();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -static void ReplayEnvironmentNested(const ZoneList<HValue*>* values,
 | 
| -                                    HCapturedObject* other) {
 | 
| -  for (int i = 0; i < values->length(); ++i) {
 | 
| -    HValue* value = values->at(i);
 | 
| -    if (value->IsCapturedObject()) {
 | 
| -      if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) {
 | 
| -        values->at(i) = other;
 | 
| -      } else {
 | 
| -        ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other);
 | 
| -      }
 | 
| -    }
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -// Replay captured objects by replacing all captured objects with the
 | 
| -// same capture id in the current and all outer environments.
 | 
| -void HCapturedObject::ReplayEnvironment(HEnvironment* env) {
 | 
| -  DCHECK(env != NULL);
 | 
| -  while (env != NULL) {
 | 
| -    ReplayEnvironmentNested(env->values(), this);
 | 
| -    env = env->outer();
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCapturedObject::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << "#" << capture_id() << " ";
 | 
| -  return HDematerializedObject::PrintDataTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target,
 | 
| -                                         Zone* zone) {
 | 
| -  DCHECK(return_target->IsInlineReturnTarget());
 | 
| -  return_targets_.Add(return_target, zone);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HEnterInlined::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << function()->debug_name()->ToCString().get();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -static bool IsInteger32(double value) {
 | 
| -  if (value >= std::numeric_limits<int32_t>::min() &&
 | 
| -      value <= std::numeric_limits<int32_t>::max()) {
 | 
| -    double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
 | 
| -    return bit_cast<int64_t>(roundtrip_value) == bit_cast<int64_t>(value);
 | 
| -  }
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HConstant::HConstant(Special special)
 | 
| -    : HTemplateInstruction<0>(HType::TaggedNumber()),
 | 
| -      object_(Handle<Object>::null()),
 | 
| -      object_map_(Handle<Map>::null()),
 | 
| -      bit_field_(HasDoubleValueField::encode(true) |
 | 
| -                 InstanceTypeField::encode(kUnknownInstanceType)),
 | 
| -      int32_value_(0) {
 | 
| -  DCHECK_EQ(kHoleNaN, special);
 | 
| -  std::memcpy(&double_value_, &kHoleNanInt64, sizeof(double_value_));
 | 
| -  Initialize(Representation::Double());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HConstant::HConstant(Handle<Object> object, Representation r)
 | 
| -    : HTemplateInstruction<0>(HType::FromValue(object)),
 | 
| -      object_(Unique<Object>::CreateUninitialized(object)),
 | 
| -      object_map_(Handle<Map>::null()),
 | 
| -      bit_field_(
 | 
| -          HasStableMapValueField::encode(false) |
 | 
| -          HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) |
 | 
| -          HasDoubleValueField::encode(false) |
 | 
| -          HasExternalReferenceValueField::encode(false) |
 | 
| -          IsNotInNewSpaceField::encode(true) |
 | 
| -          BooleanValueField::encode(object->BooleanValue()) |
 | 
| -          IsUndetectableField::encode(false) | IsCallableField::encode(false) |
 | 
| -          InstanceTypeField::encode(kUnknownInstanceType)) {
 | 
| -  if (object->IsHeapObject()) {
 | 
| -    Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
 | 
| -    Isolate* isolate = heap_object->GetIsolate();
 | 
| -    Handle<Map> map(heap_object->map(), isolate);
 | 
| -    bit_field_ = IsNotInNewSpaceField::update(
 | 
| -        bit_field_, !isolate->heap()->InNewSpace(*object));
 | 
| -    bit_field_ = InstanceTypeField::update(bit_field_, map->instance_type());
 | 
| -    bit_field_ =
 | 
| -        IsUndetectableField::update(bit_field_, map->is_undetectable());
 | 
| -    bit_field_ = IsCallableField::update(bit_field_, map->is_callable());
 | 
| -    if (map->is_stable()) object_map_ = Unique<Map>::CreateImmovable(map);
 | 
| -    bit_field_ = HasStableMapValueField::update(
 | 
| -        bit_field_,
 | 
| -        HasMapValue() && Handle<Map>::cast(heap_object)->is_stable());
 | 
| -  }
 | 
| -  if (object->IsNumber()) {
 | 
| -    double n = object->Number();
 | 
| -    bool has_int32_value = IsInteger32(n);
 | 
| -    bit_field_ = HasInt32ValueField::update(bit_field_, has_int32_value);
 | 
| -    int32_value_ = DoubleToInt32(n);
 | 
| -    bit_field_ = HasSmiValueField::update(
 | 
| -        bit_field_, has_int32_value && Smi::IsValid(int32_value_));
 | 
| -    double_value_ = n;
 | 
| -    bit_field_ = HasDoubleValueField::update(bit_field_, true);
 | 
| -    // TODO(titzer): if this heap number is new space, tenure a new one.
 | 
| -  }
 | 
| -
 | 
| -  Initialize(r);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HConstant::HConstant(Unique<Object> object, Unique<Map> object_map,
 | 
| -                     bool has_stable_map_value, Representation r, HType type,
 | 
| -                     bool is_not_in_new_space, bool boolean_value,
 | 
| -                     bool is_undetectable, InstanceType instance_type)
 | 
| -    : HTemplateInstruction<0>(type),
 | 
| -      object_(object),
 | 
| -      object_map_(object_map),
 | 
| -      bit_field_(HasStableMapValueField::encode(has_stable_map_value) |
 | 
| -                 HasSmiValueField::encode(false) |
 | 
| -                 HasInt32ValueField::encode(false) |
 | 
| -                 HasDoubleValueField::encode(false) |
 | 
| -                 HasExternalReferenceValueField::encode(false) |
 | 
| -                 IsNotInNewSpaceField::encode(is_not_in_new_space) |
 | 
| -                 BooleanValueField::encode(boolean_value) |
 | 
| -                 IsUndetectableField::encode(is_undetectable) |
 | 
| -                 InstanceTypeField::encode(instance_type)) {
 | 
| -  DCHECK(!object.handle().is_null());
 | 
| -  DCHECK(!type.IsTaggedNumber() || type.IsNone());
 | 
| -  Initialize(r);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HConstant::HConstant(int32_t integer_value, Representation r,
 | 
| -                     bool is_not_in_new_space, Unique<Object> object)
 | 
| -    : object_(object),
 | 
| -      object_map_(Handle<Map>::null()),
 | 
| -      bit_field_(HasStableMapValueField::encode(false) |
 | 
| -                 HasSmiValueField::encode(Smi::IsValid(integer_value)) |
 | 
| -                 HasInt32ValueField::encode(true) |
 | 
| -                 HasDoubleValueField::encode(true) |
 | 
| -                 HasExternalReferenceValueField::encode(false) |
 | 
| -                 IsNotInNewSpaceField::encode(is_not_in_new_space) |
 | 
| -                 BooleanValueField::encode(integer_value != 0) |
 | 
| -                 IsUndetectableField::encode(false) |
 | 
| -                 InstanceTypeField::encode(kUnknownInstanceType)),
 | 
| -      int32_value_(integer_value),
 | 
| -      double_value_(FastI2D(integer_value)) {
 | 
| -  // It's possible to create a constant with a value in Smi-range but stored
 | 
| -  // in a (pre-existing) HeapNumber. See crbug.com/349878.
 | 
| -  bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
 | 
| -  bool is_smi = HasSmiValue() && !could_be_heapobject;
 | 
| -  set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
 | 
| -  Initialize(r);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HConstant::HConstant(double double_value, Representation r,
 | 
| -                     bool is_not_in_new_space, Unique<Object> object)
 | 
| -    : object_(object),
 | 
| -      object_map_(Handle<Map>::null()),
 | 
| -      bit_field_(HasStableMapValueField::encode(false) |
 | 
| -                 HasInt32ValueField::encode(IsInteger32(double_value)) |
 | 
| -                 HasDoubleValueField::encode(true) |
 | 
| -                 HasExternalReferenceValueField::encode(false) |
 | 
| -                 IsNotInNewSpaceField::encode(is_not_in_new_space) |
 | 
| -                 BooleanValueField::encode(double_value != 0 &&
 | 
| -                                           !std::isnan(double_value)) |
 | 
| -                 IsUndetectableField::encode(false) |
 | 
| -                 InstanceTypeField::encode(kUnknownInstanceType)),
 | 
| -      int32_value_(DoubleToInt32(double_value)),
 | 
| -      double_value_(double_value) {
 | 
| -  bit_field_ = HasSmiValueField::update(
 | 
| -      bit_field_, HasInteger32Value() && Smi::IsValid(int32_value_));
 | 
| -  // It's possible to create a constant with a value in Smi-range but stored
 | 
| -  // in a (pre-existing) HeapNumber. See crbug.com/349878.
 | 
| -  bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
 | 
| -  bool is_smi = HasSmiValue() && !could_be_heapobject;
 | 
| -  set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
 | 
| -  Initialize(r);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HConstant::HConstant(ExternalReference reference)
 | 
| -    : HTemplateInstruction<0>(HType::Any()),
 | 
| -      object_(Unique<Object>(Handle<Object>::null())),
 | 
| -      object_map_(Handle<Map>::null()),
 | 
| -      bit_field_(
 | 
| -          HasStableMapValueField::encode(false) |
 | 
| -          HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) |
 | 
| -          HasDoubleValueField::encode(false) |
 | 
| -          HasExternalReferenceValueField::encode(true) |
 | 
| -          IsNotInNewSpaceField::encode(true) | BooleanValueField::encode(true) |
 | 
| -          IsUndetectableField::encode(false) |
 | 
| -          InstanceTypeField::encode(kUnknownInstanceType)),
 | 
| -      external_reference_value_(reference) {
 | 
| -  Initialize(Representation::External());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HConstant::Initialize(Representation r) {
 | 
| -  if (r.IsNone()) {
 | 
| -    if (HasSmiValue() && SmiValuesAre31Bits()) {
 | 
| -      r = Representation::Smi();
 | 
| -    } else if (HasInteger32Value()) {
 | 
| -      r = Representation::Integer32();
 | 
| -    } else if (HasDoubleValue()) {
 | 
| -      r = Representation::Double();
 | 
| -    } else if (HasExternalReferenceValue()) {
 | 
| -      r = Representation::External();
 | 
| -    } else {
 | 
| -      Handle<Object> object = object_.handle();
 | 
| -      if (object->IsJSObject()) {
 | 
| -        // Try to eagerly migrate JSObjects that have deprecated maps.
 | 
| -        Handle<JSObject> js_object = Handle<JSObject>::cast(object);
 | 
| -        if (js_object->map()->is_deprecated()) {
 | 
| -          JSObject::TryMigrateInstance(js_object);
 | 
| -        }
 | 
| -      }
 | 
| -      r = Representation::Tagged();
 | 
| -    }
 | 
| -  }
 | 
| -  if (r.IsSmi()) {
 | 
| -    // If we have an existing handle, zap it, because it might be a heap
 | 
| -    // number which we must not re-use when copying this HConstant to
 | 
| -    // Tagged representation later, because having Smi representation now
 | 
| -    // could cause heap object checks not to get emitted.
 | 
| -    object_ = Unique<Object>(Handle<Object>::null());
 | 
| -  }
 | 
| -  if (r.IsSmiOrInteger32() && object_.handle().is_null()) {
 | 
| -    // If it's not a heap object, it can't be in new space.
 | 
| -    bit_field_ = IsNotInNewSpaceField::update(bit_field_, true);
 | 
| -  }
 | 
| -  set_representation(r);
 | 
| -  SetFlag(kUseGVN);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HConstant::ImmortalImmovable() const {
 | 
| -  if (HasInteger32Value()) {
 | 
| -    return false;
 | 
| -  }
 | 
| -  if (HasDoubleValue()) {
 | 
| -    if (IsSpecialDouble()) {
 | 
| -      return true;
 | 
| -    }
 | 
| -    return false;
 | 
| -  }
 | 
| -  if (HasExternalReferenceValue()) {
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  DCHECK(!object_.handle().is_null());
 | 
| -  Heap* heap = isolate()->heap();
 | 
| -  DCHECK(!object_.IsKnownGlobal(heap->minus_zero_value()));
 | 
| -  DCHECK(!object_.IsKnownGlobal(heap->nan_value()));
 | 
| -  return
 | 
| -#define IMMORTAL_IMMOVABLE_ROOT(name) \
 | 
| -  object_.IsKnownGlobal(heap->root(Heap::k##name##RootIndex)) ||
 | 
| -      IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT)
 | 
| -#undef IMMORTAL_IMMOVABLE_ROOT
 | 
| -#define INTERNALIZED_STRING(name, value) \
 | 
| -      object_.IsKnownGlobal(heap->name()) ||
 | 
| -      INTERNALIZED_STRING_LIST(INTERNALIZED_STRING)
 | 
| -#undef INTERNALIZED_STRING
 | 
| -#define STRING_TYPE(NAME, size, name, Name) \
 | 
| -      object_.IsKnownGlobal(heap->name##_map()) ||
 | 
| -      STRING_TYPE_LIST(STRING_TYPE)
 | 
| -#undef STRING_TYPE
 | 
| -      false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HConstant::EmitAtUses() {
 | 
| -  DCHECK(IsLinked());
 | 
| -  if (block()->graph()->has_osr() &&
 | 
| -      block()->graph()->IsStandardConstant(this)) {
 | 
| -    // TODO(titzer): this seems like a hack that should be fixed by custom OSR.
 | 
| -    return true;
 | 
| -  }
 | 
| -  if (HasNoUses()) return true;
 | 
| -  if (IsCell()) return false;
 | 
| -  if (representation().IsDouble()) return false;
 | 
| -  if (representation().IsExternal()) return false;
 | 
| -  return true;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
 | 
| -  if (r.IsSmi() && !HasSmiValue()) return NULL;
 | 
| -  if (r.IsInteger32() && !HasInteger32Value()) return NULL;
 | 
| -  if (r.IsDouble() && !HasDoubleValue()) return NULL;
 | 
| -  if (r.IsExternal() && !HasExternalReferenceValue()) return NULL;
 | 
| -  if (HasInteger32Value()) {
 | 
| -    return new (zone) HConstant(int32_value_, r, NotInNewSpace(), object_);
 | 
| -  }
 | 
| -  if (HasDoubleValue()) {
 | 
| -    return new (zone) HConstant(double_value_, r, NotInNewSpace(), object_);
 | 
| -  }
 | 
| -  if (HasExternalReferenceValue()) {
 | 
| -    return new(zone) HConstant(external_reference_value_);
 | 
| -  }
 | 
| -  DCHECK(!object_.handle().is_null());
 | 
| -  return new (zone) HConstant(object_, object_map_, HasStableMapValue(), r,
 | 
| -                              type_, NotInNewSpace(), BooleanValue(),
 | 
| -                              IsUndetectable(), GetInstanceType());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) {
 | 
| -  HConstant* res = NULL;
 | 
| -  if (HasInteger32Value()) {
 | 
| -    res = new (zone) HConstant(int32_value_, Representation::Integer32(),
 | 
| -                               NotInNewSpace(), object_);
 | 
| -  } else if (HasDoubleValue()) {
 | 
| -    res = new (zone)
 | 
| -        HConstant(DoubleToInt32(double_value_), Representation::Integer32(),
 | 
| -                  NotInNewSpace(), object_);
 | 
| -  }
 | 
| -  return res != NULL ? Just(res) : Nothing<HConstant*>();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Isolate* isolate,
 | 
| -                                                   Zone* zone) {
 | 
| -  HConstant* res = NULL;
 | 
| -  Handle<Object> handle = this->handle(isolate);
 | 
| -  if (handle->IsBoolean()) {
 | 
| -    res = handle->BooleanValue() ?
 | 
| -      new(zone) HConstant(1) : new(zone) HConstant(0);
 | 
| -  } else if (handle->IsUndefined()) {
 | 
| -    res = new (zone) HConstant(std::numeric_limits<double>::quiet_NaN());
 | 
| -  } else if (handle->IsNull()) {
 | 
| -    res = new(zone) HConstant(0);
 | 
| -  }
 | 
| -  return res != NULL ? Just(res) : Nothing<HConstant*>();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HConstant::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  if (HasInteger32Value()) {
 | 
| -    os << int32_value_ << " ";
 | 
| -  } else if (HasDoubleValue()) {
 | 
| -    os << double_value_ << " ";
 | 
| -  } else if (HasExternalReferenceValue()) {
 | 
| -    os << reinterpret_cast<void*>(external_reference_value_.address()) << " ";
 | 
| -  } else {
 | 
| -    // The handle() method is silently and lazily mutating the object.
 | 
| -    Handle<Object> h = const_cast<HConstant*>(this)->handle(isolate());
 | 
| -    os << Brief(*h) << " ";
 | 
| -    if (HasStableMapValue()) os << "[stable-map] ";
 | 
| -    if (HasObjectMap()) os << "[map " << *ObjectMap().handle() << "] ";
 | 
| -  }
 | 
| -  if (!NotInNewSpace()) os << "[new space] ";
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HBinaryOperation::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(left()) << " " << NameOf(right());
 | 
| -  if (CheckFlag(kCanOverflow)) os << " !";
 | 
| -  if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) {
 | 
| -  DCHECK(CheckFlag(kFlexibleRepresentation));
 | 
| -  Representation new_rep = RepresentationFromInputs();
 | 
| -  UpdateRepresentation(new_rep, h_infer, "inputs");
 | 
| -
 | 
| -  if (representation().IsSmi() && HasNonSmiUse()) {
 | 
| -    UpdateRepresentation(
 | 
| -        Representation::Integer32(), h_infer, "use requirements");
 | 
| -  }
 | 
| -
 | 
| -  if (observed_output_representation_.IsNone()) {
 | 
| -    new_rep = RepresentationFromUses();
 | 
| -    UpdateRepresentation(new_rep, h_infer, "uses");
 | 
| -  } else {
 | 
| -    new_rep = RepresentationFromOutput();
 | 
| -    UpdateRepresentation(new_rep, h_infer, "output");
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Representation HBinaryOperation::RepresentationFromInputs() {
 | 
| -  // Determine the worst case of observed input representations and
 | 
| -  // the currently assumed output representation.
 | 
| -  Representation rep = representation();
 | 
| -  for (int i = 1; i <= 2; ++i) {
 | 
| -    rep = rep.generalize(observed_input_representation(i));
 | 
| -  }
 | 
| -  // If any of the actual input representation is more general than what we
 | 
| -  // have so far but not Tagged, use that representation instead.
 | 
| -  Representation left_rep = left()->representation();
 | 
| -  Representation right_rep = right()->representation();
 | 
| -  if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
 | 
| -  if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
 | 
| -
 | 
| -  return rep;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HBinaryOperation::IgnoreObservedOutputRepresentation(
 | 
| -    Representation current_rep) {
 | 
| -  return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) ||
 | 
| -          (current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) &&
 | 
| -         // Mul in Integer32 mode would be too precise.
 | 
| -         (!this->IsMul() || HMul::cast(this)->MulMinusOne());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Representation HBinaryOperation::RepresentationFromOutput() {
 | 
| -  Representation rep = representation();
 | 
| -  // Consider observed output representation, but ignore it if it's Double,
 | 
| -  // this instruction is not a division, and all its uses are truncating
 | 
| -  // to Integer32.
 | 
| -  if (observed_output_representation_.is_more_general_than(rep) &&
 | 
| -      !IgnoreObservedOutputRepresentation(rep)) {
 | 
| -    return observed_output_representation_;
 | 
| -  }
 | 
| -  return Representation::None();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HBinaryOperation::AssumeRepresentation(Representation r) {
 | 
| -  set_observed_input_representation(1, r);
 | 
| -  set_observed_input_representation(2, r);
 | 
| -  HValue::AssumeRepresentation(r);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) {
 | 
| -  DCHECK(CheckFlag(kFlexibleRepresentation));
 | 
| -  Representation new_rep = RepresentationFromInputs();
 | 
| -  UpdateRepresentation(new_rep, h_infer, "inputs");
 | 
| -  // Do not care about uses.
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HBitwise::InferRange(Zone* zone) {
 | 
| -  if (op() == Token::BIT_XOR) {
 | 
| -    if (left()->HasRange() && right()->HasRange()) {
 | 
| -      // The maximum value has the high bit, and all bits below, set:
 | 
| -      // (1 << high) - 1.
 | 
| -      // If the range can be negative, the minimum int is a negative number with
 | 
| -      // the high bit, and all bits below, unset:
 | 
| -      // -(1 << high).
 | 
| -      // If it cannot be negative, conservatively choose 0 as minimum int.
 | 
| -      int64_t left_upper = left()->range()->upper();
 | 
| -      int64_t left_lower = left()->range()->lower();
 | 
| -      int64_t right_upper = right()->range()->upper();
 | 
| -      int64_t right_lower = right()->range()->lower();
 | 
| -
 | 
| -      if (left_upper < 0) left_upper = ~left_upper;
 | 
| -      if (left_lower < 0) left_lower = ~left_lower;
 | 
| -      if (right_upper < 0) right_upper = ~right_upper;
 | 
| -      if (right_lower < 0) right_lower = ~right_lower;
 | 
| -
 | 
| -      int high = MostSignificantBit(
 | 
| -          static_cast<uint32_t>(
 | 
| -              left_upper | left_lower | right_upper | right_lower));
 | 
| -
 | 
| -      int64_t limit = 1;
 | 
| -      limit <<= high;
 | 
| -      int32_t min = (left()->range()->CanBeNegative() ||
 | 
| -                     right()->range()->CanBeNegative())
 | 
| -                    ? static_cast<int32_t>(-limit) : 0;
 | 
| -      return new(zone) Range(min, static_cast<int32_t>(limit - 1));
 | 
| -    }
 | 
| -    Range* result = HValue::InferRange(zone);
 | 
| -    result->set_can_be_minus_zero(false);
 | 
| -    return result;
 | 
| -  }
 | 
| -  const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
 | 
| -  int32_t left_mask = (left()->range() != NULL)
 | 
| -      ? left()->range()->Mask()
 | 
| -      : kDefaultMask;
 | 
| -  int32_t right_mask = (right()->range() != NULL)
 | 
| -      ? right()->range()->Mask()
 | 
| -      : kDefaultMask;
 | 
| -  int32_t result_mask = (op() == Token::BIT_AND)
 | 
| -      ? left_mask & right_mask
 | 
| -      : left_mask | right_mask;
 | 
| -  if (result_mask >= 0) return new(zone) Range(0, result_mask);
 | 
| -
 | 
| -  Range* result = HValue::InferRange(zone);
 | 
| -  result->set_can_be_minus_zero(false);
 | 
| -  return result;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HSar::InferRange(Zone* zone) {
 | 
| -  if (right()->IsConstant()) {
 | 
| -    HConstant* c = HConstant::cast(right());
 | 
| -    if (c->HasInteger32Value()) {
 | 
| -      Range* result = (left()->range() != NULL)
 | 
| -          ? left()->range()->Copy(zone)
 | 
| -          : new(zone) Range();
 | 
| -      result->Sar(c->Integer32Value());
 | 
| -      return result;
 | 
| -    }
 | 
| -  }
 | 
| -  return HValue::InferRange(zone);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HShr::InferRange(Zone* zone) {
 | 
| -  if (right()->IsConstant()) {
 | 
| -    HConstant* c = HConstant::cast(right());
 | 
| -    if (c->HasInteger32Value()) {
 | 
| -      int shift_count = c->Integer32Value() & 0x1f;
 | 
| -      if (left()->range()->CanBeNegative()) {
 | 
| -        // Only compute bounds if the result always fits into an int32.
 | 
| -        return (shift_count >= 1)
 | 
| -            ? new(zone) Range(0,
 | 
| -                              static_cast<uint32_t>(0xffffffff) >> shift_count)
 | 
| -            : new(zone) Range();
 | 
| -      } else {
 | 
| -        // For positive inputs we can use the >> operator.
 | 
| -        Range* result = (left()->range() != NULL)
 | 
| -            ? left()->range()->Copy(zone)
 | 
| -            : new(zone) Range();
 | 
| -        result->Sar(c->Integer32Value());
 | 
| -        return result;
 | 
| -      }
 | 
| -    }
 | 
| -  }
 | 
| -  return HValue::InferRange(zone);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HShl::InferRange(Zone* zone) {
 | 
| -  if (right()->IsConstant()) {
 | 
| -    HConstant* c = HConstant::cast(right());
 | 
| -    if (c->HasInteger32Value()) {
 | 
| -      Range* result = (left()->range() != NULL)
 | 
| -          ? left()->range()->Copy(zone)
 | 
| -          : new(zone) Range();
 | 
| -      result->Shl(c->Integer32Value());
 | 
| -      return result;
 | 
| -    }
 | 
| -  }
 | 
| -  return HValue::InferRange(zone);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HLoadNamedField::InferRange(Zone* zone) {
 | 
| -  if (access().representation().IsInteger8()) {
 | 
| -    return new(zone) Range(kMinInt8, kMaxInt8);
 | 
| -  }
 | 
| -  if (access().representation().IsUInteger8()) {
 | 
| -    return new(zone) Range(kMinUInt8, kMaxUInt8);
 | 
| -  }
 | 
| -  if (access().representation().IsInteger16()) {
 | 
| -    return new(zone) Range(kMinInt16, kMaxInt16);
 | 
| -  }
 | 
| -  if (access().representation().IsUInteger16()) {
 | 
| -    return new(zone) Range(kMinUInt16, kMaxUInt16);
 | 
| -  }
 | 
| -  if (access().IsStringLength()) {
 | 
| -    return new(zone) Range(0, String::kMaxLength);
 | 
| -  }
 | 
| -  return HValue::InferRange(zone);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Range* HLoadKeyed::InferRange(Zone* zone) {
 | 
| -  switch (elements_kind()) {
 | 
| -    case INT8_ELEMENTS:
 | 
| -      return new(zone) Range(kMinInt8, kMaxInt8);
 | 
| -    case UINT8_ELEMENTS:
 | 
| -    case UINT8_CLAMPED_ELEMENTS:
 | 
| -      return new(zone) Range(kMinUInt8, kMaxUInt8);
 | 
| -    case INT16_ELEMENTS:
 | 
| -      return new(zone) Range(kMinInt16, kMaxInt16);
 | 
| -    case UINT16_ELEMENTS:
 | 
| -      return new(zone) Range(kMinUInt16, kMaxUInt16);
 | 
| -    default:
 | 
| -      return HValue::InferRange(zone);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCompareGeneric::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << Token::Name(token()) << " ";
 | 
| -  return HBinaryOperation::PrintDataTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HStringCompareAndBranch::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  os << Token::Name(token()) << " ";
 | 
| -  return HControlInstruction::PrintDataTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCompareNumericAndBranch::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  os << Token::Name(token()) << " " << NameOf(left()) << " " << NameOf(right());
 | 
| -  return HControlInstruction::PrintDataTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HCompareObjectEqAndBranch::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(left()) << " " << NameOf(right());
 | 
| -  return HControlInstruction::PrintDataTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
 | 
| -  if (known_successor_index() != kNoKnownSuccessorIndex) {
 | 
| -    *block = SuccessorAt(known_successor_index());
 | 
| -    return true;
 | 
| -  }
 | 
| -  if (FLAG_fold_constants && left()->IsConstant() && right()->IsConstant()) {
 | 
| -    *block = HConstant::cast(left())->DataEquals(HConstant::cast(right()))
 | 
| -        ? FirstSuccessor() : SecondSuccessor();
 | 
| -    return true;
 | 
| -  }
 | 
| -  *block = NULL;
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HIsStringAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
 | 
| -  if (known_successor_index() != kNoKnownSuccessorIndex) {
 | 
| -    *block = SuccessorAt(known_successor_index());
 | 
| -    return true;
 | 
| -  }
 | 
| -  if (FLAG_fold_constants && value()->IsConstant()) {
 | 
| -    *block = HConstant::cast(value())->HasStringValue()
 | 
| -        ? FirstSuccessor() : SecondSuccessor();
 | 
| -    return true;
 | 
| -  }
 | 
| -  if (value()->type().IsString()) {
 | 
| -    *block = FirstSuccessor();
 | 
| -    return true;
 | 
| -  }
 | 
| -  if (value()->type().IsSmi() ||
 | 
| -      value()->type().IsNull() ||
 | 
| -      value()->type().IsBoolean() ||
 | 
| -      value()->type().IsUndefined() ||
 | 
| -      value()->type().IsJSObject()) {
 | 
| -    *block = SecondSuccessor();
 | 
| -    return true;
 | 
| -  }
 | 
| -  *block = NULL;
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HIsUndetectableAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
 | 
| -  if (FLAG_fold_constants && value()->IsConstant()) {
 | 
| -    *block = HConstant::cast(value())->IsUndetectable()
 | 
| -        ? FirstSuccessor() : SecondSuccessor();
 | 
| -    return true;
 | 
| -  }
 | 
| -  *block = NULL;
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HHasInstanceTypeAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
 | 
| -  if (FLAG_fold_constants && value()->IsConstant()) {
 | 
| -    InstanceType type = HConstant::cast(value())->GetInstanceType();
 | 
| -    *block = (from_ <= type) && (type <= to_)
 | 
| -        ? FirstSuccessor() : SecondSuccessor();
 | 
| -    return true;
 | 
| -  }
 | 
| -  *block = NULL;
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HCompareHoleAndBranch::InferRepresentation(
 | 
| -    HInferRepresentationPhase* h_infer) {
 | 
| -  ChangeRepresentation(value()->representation());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HCompareNumericAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
 | 
| -  if (left() == right() &&
 | 
| -      left()->representation().IsSmiOrInteger32()) {
 | 
| -    *block = (token() == Token::EQ ||
 | 
| -              token() == Token::EQ_STRICT ||
 | 
| -              token() == Token::LTE ||
 | 
| -              token() == Token::GTE)
 | 
| -        ? FirstSuccessor() : SecondSuccessor();
 | 
| -    return true;
 | 
| -  }
 | 
| -  *block = NULL;
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HCompareMinusZeroAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
 | 
| -  if (FLAG_fold_constants && value()->IsConstant()) {
 | 
| -    HConstant* constant = HConstant::cast(value());
 | 
| -    if (constant->HasDoubleValue()) {
 | 
| -      *block = IsMinusZero(constant->DoubleValue())
 | 
| -          ? FirstSuccessor() : SecondSuccessor();
 | 
| -      return true;
 | 
| -    }
 | 
| -  }
 | 
| -  if (value()->representation().IsSmiOrInteger32()) {
 | 
| -    // A Smi or Integer32 cannot contain minus zero.
 | 
| -    *block = SecondSuccessor();
 | 
| -    return true;
 | 
| -  }
 | 
| -  *block = NULL;
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HCompareMinusZeroAndBranch::InferRepresentation(
 | 
| -    HInferRepresentationPhase* h_infer) {
 | 
| -  ChangeRepresentation(value()->representation());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HGoto::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << *SuccessorAt(0);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HCompareNumericAndBranch::InferRepresentation(
 | 
| -    HInferRepresentationPhase* h_infer) {
 | 
| -  Representation left_rep = left()->representation();
 | 
| -  Representation right_rep = right()->representation();
 | 
| -  Representation observed_left = observed_input_representation(0);
 | 
| -  Representation observed_right = observed_input_representation(1);
 | 
| -
 | 
| -  Representation rep = Representation::None();
 | 
| -  rep = rep.generalize(observed_left);
 | 
| -  rep = rep.generalize(observed_right);
 | 
| -  if (rep.IsNone() || rep.IsSmiOrInteger32()) {
 | 
| -    if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
 | 
| -    if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
 | 
| -  } else {
 | 
| -    rep = Representation::Double();
 | 
| -  }
 | 
| -
 | 
| -  if (rep.IsDouble()) {
 | 
| -    // According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
 | 
| -    // and !=) have special handling of undefined, e.g. undefined == undefined
 | 
| -    // is 'true'. Relational comparisons have a different semantic, first
 | 
| -    // calling ToPrimitive() on their arguments.  The standard Crankshaft
 | 
| -    // tagged-to-double conversion to ensure the HCompareNumericAndBranch's
 | 
| -    // inputs are doubles caused 'undefined' to be converted to NaN. That's
 | 
| -    // compatible out-of-the box with ordered relational comparisons (<, >, <=,
 | 
| -    // >=). However, for equality comparisons (and for 'in' and 'instanceof'),
 | 
| -    // it is not consistent with the spec. For example, it would cause undefined
 | 
| -    // == undefined (should be true) to be evaluated as NaN == NaN
 | 
| -    // (false). Therefore, any comparisons other than ordered relational
 | 
| -    // comparisons must cause a deopt when one of their arguments is undefined.
 | 
| -    // See also v8:1434
 | 
| -    if (Token::IsOrderedRelationalCompareOp(token_) && !is_strong(strength())) {
 | 
| -      SetFlag(kAllowUndefinedAsNaN);
 | 
| -    }
 | 
| -  }
 | 
| -  ChangeRepresentation(rep);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HParameter::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << index();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HLoadNamedField::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(object()) << access_;
 | 
| -
 | 
| -  if (maps() != NULL) {
 | 
| -    os << " [" << *maps()->at(0).handle();
 | 
| -    for (int i = 1; i < maps()->size(); ++i) {
 | 
| -      os << "," << *maps()->at(i).handle();
 | 
| -    }
 | 
| -    os << "]";
 | 
| -  }
 | 
| -
 | 
| -  if (HasDependency()) os << " " << NameOf(dependency());
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HLoadNamedGeneric::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  Handle<String> n = Handle<String>::cast(name());
 | 
| -  return os << NameOf(object()) << "." << n->ToCString().get();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HLoadKeyed::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  if (!is_fixed_typed_array()) {
 | 
| -    os << NameOf(elements());
 | 
| -  } else {
 | 
| -    DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND &&
 | 
| -           elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
 | 
| -    os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
 | 
| -  }
 | 
| -
 | 
| -  os << "[" << NameOf(key());
 | 
| -  if (IsDehoisted()) os << " + " << base_offset();
 | 
| -  os << "]";
 | 
| -
 | 
| -  if (HasDependency()) os << " " << NameOf(dependency());
 | 
| -  if (RequiresHoleCheck()) os << " check_hole";
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HLoadKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
 | 
| -  // The base offset is usually simply the size of the array header, except
 | 
| -  // with dehoisting adds an addition offset due to a array index key
 | 
| -  // manipulation, in which case it becomes (array header size +
 | 
| -  // constant-offset-from-key * kPointerSize)
 | 
| -  uint32_t base_offset = BaseOffsetField::decode(bit_field_);
 | 
| -  v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset;
 | 
| -  addition_result += increase_by_value;
 | 
| -  if (!addition_result.IsValid()) return false;
 | 
| -  base_offset = addition_result.ValueOrDie();
 | 
| -  if (!BaseOffsetField::is_valid(base_offset)) return false;
 | 
| -  bit_field_ = BaseOffsetField::update(bit_field_, base_offset);
 | 
| -  return true;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HLoadKeyed::UsesMustHandleHole() const {
 | 
| -  if (IsFastPackedElementsKind(elements_kind())) {
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  if (IsFixedTypedArrayElementsKind(elements_kind())) {
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  if (hole_mode() == ALLOW_RETURN_HOLE) {
 | 
| -    if (IsFastDoubleElementsKind(elements_kind())) {
 | 
| -      return AllUsesCanTreatHoleAsNaN();
 | 
| -    }
 | 
| -    return true;
 | 
| -  }
 | 
| -
 | 
| -  if (IsFastDoubleElementsKind(elements_kind())) {
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  // Holes are only returned as tagged values.
 | 
| -  if (!representation().IsTagged()) {
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
 | 
| -    HValue* use = it.value();
 | 
| -    if (!use->IsChange()) return false;
 | 
| -  }
 | 
| -
 | 
| -  return true;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const {
 | 
| -  return IsFastDoubleElementsKind(elements_kind()) &&
 | 
| -      CheckUsesForFlag(HValue::kAllowUndefinedAsNaN);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HLoadKeyed::RequiresHoleCheck() const {
 | 
| -  if (IsFastPackedElementsKind(elements_kind())) {
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  if (IsFixedTypedArrayElementsKind(elements_kind())) {
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  if (hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  return !UsesMustHandleHole();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HLoadKeyedGeneric::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(object()) << "[" << NameOf(key()) << "]";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HValue* HLoadKeyedGeneric::Canonicalize() {
 | 
| -  // Recognize generic keyed loads that use property name generated
 | 
| -  // by for-in statement as a key and rewrite them into fast property load
 | 
| -  // by index.
 | 
| -  if (key()->IsLoadKeyed()) {
 | 
| -    HLoadKeyed* key_load = HLoadKeyed::cast(key());
 | 
| -    if (key_load->elements()->IsForInCacheArray()) {
 | 
| -      HForInCacheArray* names_cache =
 | 
| -          HForInCacheArray::cast(key_load->elements());
 | 
| -
 | 
| -      if (names_cache->enumerable() == object()) {
 | 
| -        HForInCacheArray* index_cache =
 | 
| -            names_cache->index_cache();
 | 
| -        HCheckMapValue* map_check = HCheckMapValue::New(
 | 
| -            block()->graph()->isolate(), block()->graph()->zone(),
 | 
| -            block()->graph()->GetInvalidContext(), object(),
 | 
| -            names_cache->map());
 | 
| -        HInstruction* index = HLoadKeyed::New(
 | 
| -            block()->graph()->isolate(), block()->graph()->zone(),
 | 
| -            block()->graph()->GetInvalidContext(), index_cache, key_load->key(),
 | 
| -            key_load->key(), key_load->elements_kind());
 | 
| -        map_check->InsertBefore(this);
 | 
| -        index->InsertBefore(this);
 | 
| -        return Prepend(new(block()->zone()) HLoadFieldByIndex(
 | 
| -            object(), index));
 | 
| -      }
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  return this;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HStoreNamedGeneric::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  Handle<String> n = Handle<String>::cast(name());
 | 
| -  return os << NameOf(object()) << "." << n->ToCString().get() << " = "
 | 
| -            << NameOf(value());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HStoreGlobalViaContext::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << " depth:" << depth() << " slot:" << slot_index() << " = "
 | 
| -            << NameOf(value());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HStoreNamedField::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(object()) << access_ << " = " << NameOf(value());
 | 
| -  if (NeedsWriteBarrier()) os << " (write-barrier)";
 | 
| -  if (has_transition()) os << " (transition map " << *transition_map() << ")";
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HStoreKeyed::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  if (!is_fixed_typed_array()) {
 | 
| -    os << NameOf(elements());
 | 
| -  } else {
 | 
| -    DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND &&
 | 
| -           elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
 | 
| -    os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
 | 
| -  }
 | 
| -
 | 
| -  os << "[" << NameOf(key());
 | 
| -  if (IsDehoisted()) os << " + " << base_offset();
 | 
| -  return os << "] = " << NameOf(value());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HStoreKeyedGeneric::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(object()) << "[" << NameOf(key())
 | 
| -            << "] = " << NameOf(value());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HTransitionElementsKind::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(object());
 | 
| -  ElementsKind from_kind = original_map().handle()->elements_kind();
 | 
| -  ElementsKind to_kind = transitioned_map().handle()->elements_kind();
 | 
| -  os << " " << *original_map().handle() << " ["
 | 
| -     << ElementsAccessor::ForKind(from_kind)->name() << "] -> "
 | 
| -     << *transitioned_map().handle() << " ["
 | 
| -     << ElementsAccessor::ForKind(to_kind)->name() << "]";
 | 
| -  if (IsSimpleMapChangeTransition(from_kind, to_kind)) os << " (simple)";
 | 
| -  return os;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HLoadGlobalGeneric::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << name()->ToCString().get() << " ";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HLoadGlobalViaContext::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << "depth:" << depth() << " slot:" << slot_index();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HInnerAllocatedObject::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(base_object()) << " offset ";
 | 
| -  return offset()->PrintTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HLoadContextSlot::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(value()) << "[" << slot_index() << "]";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HStoreContextSlot::PrintDataTo(
 | 
| -    std::ostream& os) const {  // NOLINT
 | 
| -  return os << NameOf(context()) << "[" << slot_index()
 | 
| -            << "] = " << NameOf(value());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -// Implementation of type inference and type conversions. Calculates
 | 
| -// the inferred type of this instruction based on the input operands.
 | 
| -
 | 
| -HType HValue::CalculateInferredType() {
 | 
| -  return type_;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HType HPhi::CalculateInferredType() {
 | 
| -  if (OperandCount() == 0) return HType::Tagged();
 | 
| -  HType result = OperandAt(0)->type();
 | 
| -  for (int i = 1; i < OperandCount(); ++i) {
 | 
| -    HType current = OperandAt(i)->type();
 | 
| -    result = result.Combine(current);
 | 
| -  }
 | 
| -  return result;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HType HChange::CalculateInferredType() {
 | 
| -  if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
 | 
| -  return type();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Representation HUnaryMathOperation::RepresentationFromInputs() {
 | 
| -  if (SupportsFlexibleFloorAndRound() &&
 | 
| -      (op_ == kMathFloor || op_ == kMathRound)) {
 | 
| -    // Floor and Round always take a double input. The integral result can be
 | 
| -    // used as an integer or a double. Infer the representation from the uses.
 | 
| -    return Representation::None();
 | 
| -  }
 | 
| -  Representation rep = representation();
 | 
| -  // If any of the actual input representation is more general than what we
 | 
| -  // have so far but not Tagged, use that representation instead.
 | 
| -  Representation input_rep = value()->representation();
 | 
| -  if (!input_rep.IsTagged()) {
 | 
| -    rep = rep.generalize(input_rep);
 | 
| -  }
 | 
| -  return rep;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HAllocate::HandleSideEffectDominator(GVNFlag side_effect,
 | 
| -                                          HValue* dominator) {
 | 
| -  DCHECK(side_effect == kNewSpacePromotion);
 | 
| -  Zone* zone = block()->zone();
 | 
| -  Isolate* isolate = block()->isolate();
 | 
| -  if (!FLAG_use_allocation_folding) return false;
 | 
| -
 | 
| -  // Try to fold allocations together with their dominating allocations.
 | 
| -  if (!dominator->IsAllocate()) {
 | 
| -    if (FLAG_trace_allocation_folding) {
 | 
| -      PrintF("#%d (%s) cannot fold into #%d (%s)\n",
 | 
| -          id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
 | 
| -    }
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  // Check whether we are folding within the same block for local folding.
 | 
| -  if (FLAG_use_local_allocation_folding && dominator->block() != block()) {
 | 
| -    if (FLAG_trace_allocation_folding) {
 | 
| -      PrintF("#%d (%s) cannot fold into #%d (%s), crosses basic blocks\n",
 | 
| -          id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
 | 
| -    }
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  HAllocate* dominator_allocate = HAllocate::cast(dominator);
 | 
| -  HValue* dominator_size = dominator_allocate->size();
 | 
| -  HValue* current_size = size();
 | 
| -
 | 
| -  // TODO(hpayer): Add support for non-constant allocation in dominator.
 | 
| -  if (!dominator_size->IsInteger32Constant()) {
 | 
| -    if (FLAG_trace_allocation_folding) {
 | 
| -      PrintF("#%d (%s) cannot fold into #%d (%s), "
 | 
| -             "dynamic allocation size in dominator\n",
 | 
| -          id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
 | 
| -    }
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -
 | 
| -  if (!IsFoldable(dominator_allocate)) {
 | 
| -    if (FLAG_trace_allocation_folding) {
 | 
| -      PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n", id(),
 | 
| -             Mnemonic(), dominator->id(), dominator->Mnemonic());
 | 
| -    }
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  if (!has_size_upper_bound()) {
 | 
| -    if (FLAG_trace_allocation_folding) {
 | 
| -      PrintF("#%d (%s) cannot fold into #%d (%s), "
 | 
| -             "can't estimate total allocation size\n",
 | 
| -          id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
 | 
| -    }
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  if (!current_size->IsInteger32Constant()) {
 | 
| -    // If it's not constant then it is a size_in_bytes calculation graph
 | 
| -    // like this: (const_header_size + const_element_size * size).
 | 
| -    DCHECK(current_size->IsInstruction());
 | 
| -
 | 
| -    HInstruction* current_instr = HInstruction::cast(current_size);
 | 
| -    if (!current_instr->Dominates(dominator_allocate)) {
 | 
| -      if (FLAG_trace_allocation_folding) {
 | 
| -        PrintF("#%d (%s) cannot fold into #%d (%s), dynamic size "
 | 
| -               "value does not dominate target allocation\n",
 | 
| -            id(), Mnemonic(), dominator_allocate->id(),
 | 
| -            dominator_allocate->Mnemonic());
 | 
| -      }
 | 
| -      return false;
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  DCHECK(
 | 
| -      (IsNewSpaceAllocation() && dominator_allocate->IsNewSpaceAllocation()) ||
 | 
| -      (IsOldSpaceAllocation() && dominator_allocate->IsOldSpaceAllocation()));
 | 
| -
 | 
| -  // First update the size of the dominator allocate instruction.
 | 
| -  dominator_size = dominator_allocate->size();
 | 
| -  int32_t original_object_size =
 | 
| -      HConstant::cast(dominator_size)->GetInteger32Constant();
 | 
| -  int32_t dominator_size_constant = original_object_size;
 | 
| -
 | 
| -  if (MustAllocateDoubleAligned()) {
 | 
| -    if ((dominator_size_constant & kDoubleAlignmentMask) != 0) {
 | 
| -      dominator_size_constant += kDoubleSize / 2;
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  int32_t current_size_max_value = size_upper_bound()->GetInteger32Constant();
 | 
| -  int32_t new_dominator_size = dominator_size_constant + current_size_max_value;
 | 
| -
 | 
| -  // Since we clear the first word after folded memory, we cannot use the
 | 
| -  // whole Page::kMaxRegularHeapObjectSize memory.
 | 
| -  if (new_dominator_size > Page::kMaxRegularHeapObjectSize - kPointerSize) {
 | 
| -    if (FLAG_trace_allocation_folding) {
 | 
| -      PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n",
 | 
| -          id(), Mnemonic(), dominator_allocate->id(),
 | 
| -          dominator_allocate->Mnemonic(), new_dominator_size);
 | 
| -    }
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  HInstruction* new_dominator_size_value;
 | 
| -
 | 
| -  if (current_size->IsInteger32Constant()) {
 | 
| -    new_dominator_size_value = HConstant::CreateAndInsertBefore(
 | 
| -        isolate, zone, context(), new_dominator_size, Representation::None(),
 | 
| -        dominator_allocate);
 | 
| -  } else {
 | 
| -    HValue* new_dominator_size_constant = HConstant::CreateAndInsertBefore(
 | 
| -        isolate, zone, context(), dominator_size_constant,
 | 
| -        Representation::Integer32(), dominator_allocate);
 | 
| -
 | 
| -    // Add old and new size together and insert.
 | 
| -    current_size->ChangeRepresentation(Representation::Integer32());
 | 
| -
 | 
| -    new_dominator_size_value = HAdd::New(
 | 
| -        isolate, zone, context(), new_dominator_size_constant, current_size);
 | 
| -    new_dominator_size_value->ClearFlag(HValue::kCanOverflow);
 | 
| -    new_dominator_size_value->ChangeRepresentation(Representation::Integer32());
 | 
| -
 | 
| -    new_dominator_size_value->InsertBefore(dominator_allocate);
 | 
| -  }
 | 
| -
 | 
| -  dominator_allocate->UpdateSize(new_dominator_size_value);
 | 
| -
 | 
| -  if (MustAllocateDoubleAligned()) {
 | 
| -    if (!dominator_allocate->MustAllocateDoubleAligned()) {
 | 
| -      dominator_allocate->MakeDoubleAligned();
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  bool keep_new_space_iterable = FLAG_log_gc || FLAG_heap_stats;
 | 
| -#ifdef VERIFY_HEAP
 | 
| -  keep_new_space_iterable = keep_new_space_iterable || FLAG_verify_heap;
 | 
| -#endif
 | 
| -
 | 
| -  if (keep_new_space_iterable && dominator_allocate->IsNewSpaceAllocation()) {
 | 
| -    dominator_allocate->MakePrefillWithFiller();
 | 
| -  } else {
 | 
| -    // TODO(hpayer): This is a short-term hack to make allocation mementos
 | 
| -    // work again in new space.
 | 
| -    dominator_allocate->ClearNextMapWord(original_object_size);
 | 
| -  }
 | 
| -
 | 
| -  dominator_allocate->UpdateClearNextMapWord(MustClearNextMapWord());
 | 
| -
 | 
| -  // After that replace the dominated allocate instruction.
 | 
| -  HInstruction* inner_offset = HConstant::CreateAndInsertBefore(
 | 
| -      isolate, zone, context(), dominator_size_constant, Representation::None(),
 | 
| -      this);
 | 
| -
 | 
| -  HInstruction* dominated_allocate_instr = HInnerAllocatedObject::New(
 | 
| -      isolate, zone, context(), dominator_allocate, inner_offset, type());
 | 
| -  dominated_allocate_instr->InsertBefore(this);
 | 
| -  DeleteAndReplaceWith(dominated_allocate_instr);
 | 
| -  if (FLAG_trace_allocation_folding) {
 | 
| -    PrintF("#%d (%s) folded into #%d (%s)\n",
 | 
| -        id(), Mnemonic(), dominator_allocate->id(),
 | 
| -        dominator_allocate->Mnemonic());
 | 
| -  }
 | 
| -  return true;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HAllocate::UpdateFreeSpaceFiller(int32_t free_space_size) {
 | 
| -  DCHECK(filler_free_space_size_ != NULL);
 | 
| -  Zone* zone = block()->zone();
 | 
| -  // We must explicitly force Smi representation here because on x64 we
 | 
| -  // would otherwise automatically choose int32, but the actual store
 | 
| -  // requires a Smi-tagged value.
 | 
| -  HConstant* new_free_space_size = HConstant::CreateAndInsertBefore(
 | 
| -      block()->isolate(), zone, context(),
 | 
| -      filler_free_space_size_->value()->GetInteger32Constant() +
 | 
| -          free_space_size,
 | 
| -      Representation::Smi(), filler_free_space_size_);
 | 
| -  filler_free_space_size_->UpdateValue(new_free_space_size);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HAllocate::CreateFreeSpaceFiller(int32_t free_space_size) {
 | 
| -  DCHECK(filler_free_space_size_ == NULL);
 | 
| -  Isolate* isolate = block()->isolate();
 | 
| -  Zone* zone = block()->zone();
 | 
| -  HInstruction* free_space_instr =
 | 
| -      HInnerAllocatedObject::New(isolate, zone, context(), dominating_allocate_,
 | 
| -                                 dominating_allocate_->size(), type());
 | 
| -  free_space_instr->InsertBefore(this);
 | 
| -  HConstant* filler_map = HConstant::CreateAndInsertAfter(
 | 
| -      zone, Unique<Map>::CreateImmovable(isolate->factory()->free_space_map()),
 | 
| -      true, free_space_instr);
 | 
| -  HInstruction* store_map =
 | 
| -      HStoreNamedField::New(isolate, zone, context(), free_space_instr,
 | 
| -                            HObjectAccess::ForMap(), filler_map);
 | 
| -  store_map->SetFlag(HValue::kHasNoObservableSideEffects);
 | 
| -  store_map->InsertAfter(filler_map);
 | 
| -
 | 
| -  // We must explicitly force Smi representation here because on x64 we
 | 
| -  // would otherwise automatically choose int32, but the actual store
 | 
| -  // requires a Smi-tagged value.
 | 
| -  HConstant* filler_size =
 | 
| -      HConstant::CreateAndInsertAfter(isolate, zone, context(), free_space_size,
 | 
| -                                      Representation::Smi(), store_map);
 | 
| -  // Must force Smi representation for x64 (see comment above).
 | 
| -  HObjectAccess access = HObjectAccess::ForMapAndOffset(
 | 
| -      isolate->factory()->free_space_map(), FreeSpace::kSizeOffset,
 | 
| -      Representation::Smi());
 | 
| -  HStoreNamedField* store_size = HStoreNamedField::New(
 | 
| -      isolate, zone, context(), free_space_instr, access, filler_size);
 | 
| -  store_size->SetFlag(HValue::kHasNoObservableSideEffects);
 | 
| -  store_size->InsertAfter(filler_size);
 | 
| -  filler_free_space_size_ = store_size;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HAllocate::ClearNextMapWord(int offset) {
 | 
| -  if (MustClearNextMapWord()) {
 | 
| -    Zone* zone = block()->zone();
 | 
| -    HObjectAccess access =
 | 
| -        HObjectAccess::ForObservableJSObjectOffset(offset);
 | 
| -    HStoreNamedField* clear_next_map =
 | 
| -        HStoreNamedField::New(block()->isolate(), zone, context(), this, access,
 | 
| -                              block()->graph()->GetConstant0());
 | 
| -    clear_next_map->ClearAllSideEffects();
 | 
| -    clear_next_map->InsertAfter(this);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HAllocate::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << NameOf(size()) << " (";
 | 
| -  if (IsNewSpaceAllocation()) os << "N";
 | 
| -  if (IsOldSpaceAllocation()) os << "P";
 | 
| -  if (MustAllocateDoubleAligned()) os << "A";
 | 
| -  if (MustPrefillWithFiller()) os << "F";
 | 
| -  return os << ")";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HStoreKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
 | 
| -  // The base offset is usually simply the size of the array header, except
 | 
| -  // with dehoisting adds an addition offset due to a array index key
 | 
| -  // manipulation, in which case it becomes (array header size +
 | 
| -  // constant-offset-from-key * kPointerSize)
 | 
| -  v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset_;
 | 
| -  addition_result += increase_by_value;
 | 
| -  if (!addition_result.IsValid()) return false;
 | 
| -  base_offset_ = addition_result.ValueOrDie();
 | 
| -  return true;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HStoreKeyed::NeedsCanonicalization() {
 | 
| -  switch (value()->opcode()) {
 | 
| -    case kLoadKeyed: {
 | 
| -      ElementsKind load_kind = HLoadKeyed::cast(value())->elements_kind();
 | 
| -      return IsFixedFloatElementsKind(load_kind);
 | 
| -    }
 | 
| -    case kChange: {
 | 
| -      Representation from = HChange::cast(value())->from();
 | 
| -      return from.IsTagged() || from.IsHeapObject();
 | 
| -    }
 | 
| -    case kLoadNamedField:
 | 
| -    case kPhi: {
 | 
| -      // Better safe than sorry...
 | 
| -      return true;
 | 
| -    }
 | 
| -    default:
 | 
| -      return false;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -#define H_CONSTANT_INT(val) \
 | 
| -  HConstant::New(isolate, zone, context, static_cast<int32_t>(val))
 | 
| -#define H_CONSTANT_DOUBLE(val) \
 | 
| -  HConstant::New(isolate, zone, context, static_cast<double>(val))
 | 
| -
 | 
| -#define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op)                      \
 | 
| -  HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context,    \
 | 
| -                            HValue* left, HValue* right, Strength strength) { \
 | 
| -    if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {   \
 | 
| -      HConstant* c_left = HConstant::cast(left);                              \
 | 
| -      HConstant* c_right = HConstant::cast(right);                            \
 | 
| -      if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {          \
 | 
| -        double double_res = c_left->DoubleValue() op c_right->DoubleValue();  \
 | 
| -        if (IsInt32Double(double_res)) {                                      \
 | 
| -          return H_CONSTANT_INT(double_res);                                  \
 | 
| -        }                                                                     \
 | 
| -        return H_CONSTANT_DOUBLE(double_res);                                 \
 | 
| -      }                                                                       \
 | 
| -    }                                                                         \
 | 
| -    return new (zone) HInstr(context, left, right, strength);                 \
 | 
| -  }
 | 
| -
 | 
| -
 | 
| -DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
 | 
| -DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
 | 
| -DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
 | 
| -
 | 
| -#undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
 | 
| -
 | 
| -
 | 
| -HInstruction* HStringAdd::New(Isolate* isolate, Zone* zone, HValue* context,
 | 
| -                              HValue* left, HValue* right,
 | 
| -                              PretenureFlag pretenure_flag,
 | 
| -                              StringAddFlags flags,
 | 
| -                              Handle<AllocationSite> allocation_site) {
 | 
| -  if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
 | 
| -    HConstant* c_right = HConstant::cast(right);
 | 
| -    HConstant* c_left = HConstant::cast(left);
 | 
| -    if (c_left->HasStringValue() && c_right->HasStringValue()) {
 | 
| -      Handle<String> left_string = c_left->StringValue();
 | 
| -      Handle<String> right_string = c_right->StringValue();
 | 
| -      // Prevent possible exception by invalid string length.
 | 
| -      if (left_string->length() + right_string->length() < String::kMaxLength) {
 | 
| -        MaybeHandle<String> concat = isolate->factory()->NewConsString(
 | 
| -            c_left->StringValue(), c_right->StringValue());
 | 
| -        return HConstant::New(isolate, zone, context, concat.ToHandleChecked());
 | 
| -      }
 | 
| -    }
 | 
| -  }
 | 
| -  return new (zone)
 | 
| -      HStringAdd(context, left, right, pretenure_flag, flags, allocation_site);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& HStringAdd::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
 | 
| -    os << "_CheckBoth";
 | 
| -  } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) {
 | 
| -    os << "_CheckLeft";
 | 
| -  } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) {
 | 
| -    os << "_CheckRight";
 | 
| -  }
 | 
| -  HBinaryOperation::PrintDataTo(os);
 | 
| -  os << " (";
 | 
| -  if (pretenure_flag() == NOT_TENURED)
 | 
| -    os << "N";
 | 
| -  else if (pretenure_flag() == TENURED)
 | 
| -    os << "D";
 | 
| -  return os << ")";
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HInstruction* HStringCharFromCode::New(Isolate* isolate, Zone* zone,
 | 
| -                                       HValue* context, HValue* char_code) {
 | 
| -  if (FLAG_fold_constants && char_code->IsConstant()) {
 | 
| -    HConstant* c_code = HConstant::cast(char_code);
 | 
| -    if (c_code->HasNumberValue()) {
 | 
| -      if (std::isfinite(c_code->DoubleValue())) {
 | 
| -        uint32_t code = c_code->NumberValueAsInteger32() & 0xffff;
 | 
| -        return HConstant::New(
 | 
| -            isolate, zone, context,
 | 
| -            isolate->factory()->LookupSingleCharacterStringFromCode(code));
 | 
| -      }
 | 
| -      return HConstant::New(isolate, zone, context,
 | 
| -                            isolate->factory()->empty_string());
 | 
| -    }
 | 
| -  }
 | 
| -  return new(zone) HStringCharFromCode(context, char_code);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HInstruction* HUnaryMathOperation::New(Isolate* isolate, Zone* zone,
 | 
| -                                       HValue* context, HValue* value,
 | 
| -                                       BuiltinFunctionId op) {
 | 
| -  do {
 | 
| -    if (!FLAG_fold_constants) break;
 | 
| -    if (!value->IsConstant()) break;
 | 
| -    HConstant* constant = HConstant::cast(value);
 | 
| -    if (!constant->HasNumberValue()) break;
 | 
| -    double d = constant->DoubleValue();
 | 
| -    if (std::isnan(d)) {  // NaN poisons everything.
 | 
| -      return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN());
 | 
| -    }
 | 
| -    if (std::isinf(d)) {  // +Infinity and -Infinity.
 | 
| -      switch (op) {
 | 
| -        case kMathExp:
 | 
| -          return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0);
 | 
| -        case kMathLog:
 | 
| -        case kMathSqrt:
 | 
| -          return H_CONSTANT_DOUBLE(
 | 
| -              (d > 0.0) ? d : std::numeric_limits<double>::quiet_NaN());
 | 
| -        case kMathPowHalf:
 | 
| -        case kMathAbs:
 | 
| -          return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d);
 | 
| -        case kMathRound:
 | 
| -        case kMathFround:
 | 
| -        case kMathFloor:
 | 
| -          return H_CONSTANT_DOUBLE(d);
 | 
| -        case kMathClz32:
 | 
| -          return H_CONSTANT_INT(32);
 | 
| -        default:
 | 
| -          UNREACHABLE();
 | 
| -          break;
 | 
| -      }
 | 
| -    }
 | 
| -    switch (op) {
 | 
| -      case kMathExp:
 | 
| -        return H_CONSTANT_DOUBLE(fast_exp(d));
 | 
| -      case kMathLog:
 | 
| -        return H_CONSTANT_DOUBLE(std::log(d));
 | 
| -      case kMathSqrt:
 | 
| -        return H_CONSTANT_DOUBLE(fast_sqrt(d));
 | 
| -      case kMathPowHalf:
 | 
| -        return H_CONSTANT_DOUBLE(power_double_double(d, 0.5));
 | 
| -      case kMathAbs:
 | 
| -        return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d);
 | 
| -      case kMathRound:
 | 
| -        // -0.5 .. -0.0 round to -0.0.
 | 
| -        if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0);
 | 
| -        // Doubles are represented as Significant * 2 ^ Exponent. If the
 | 
| -        // Exponent is not negative, the double value is already an integer.
 | 
| -        if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d);
 | 
| -        return H_CONSTANT_DOUBLE(Floor(d + 0.5));
 | 
| -      case kMathFround:
 | 
| -        return H_CONSTANT_DOUBLE(static_cast<double>(static_cast<float>(d)));
 | 
| -      case kMathFloor:
 | 
| -        return H_CONSTANT_DOUBLE(Floor(d));
 | 
| -      case kMathClz32: {
 | 
| -        uint32_t i = DoubleToUint32(d);
 | 
| -        return H_CONSTANT_INT(base::bits::CountLeadingZeros32(i));
 | 
| -      }
 | 
| -      default:
 | 
| -        UNREACHABLE();
 | 
| -        break;
 | 
| -    }
 | 
| -  } while (false);
 | 
| -  return new(zone) HUnaryMathOperation(context, value, op);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Representation HUnaryMathOperation::RepresentationFromUses() {
 | 
| -  if (op_ != kMathFloor && op_ != kMathRound) {
 | 
| -    return HValue::RepresentationFromUses();
 | 
| -  }
 | 
| -
 | 
| -  // The instruction can have an int32 or double output. Prefer a double
 | 
| -  // representation if there are double uses.
 | 
| -  bool use_double = false;
 | 
| -
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
 | 
| -    HValue* use = it.value();
 | 
| -    int use_index = it.index();
 | 
| -    Representation rep_observed = use->observed_input_representation(use_index);
 | 
| -    Representation rep_required = use->RequiredInputRepresentation(use_index);
 | 
| -    use_double |= (rep_observed.IsDouble() || rep_required.IsDouble());
 | 
| -    if (use_double && !FLAG_trace_representation) {
 | 
| -      // Having seen one double is enough.
 | 
| -      break;
 | 
| -    }
 | 
| -    if (FLAG_trace_representation) {
 | 
| -      if (!rep_required.IsDouble() || rep_observed.IsDouble()) {
 | 
| -        PrintF("#%d %s is used by #%d %s as %s%s\n",
 | 
| -               id(), Mnemonic(), use->id(),
 | 
| -               use->Mnemonic(), rep_observed.Mnemonic(),
 | 
| -               (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
 | 
| -      } else {
 | 
| -        PrintF("#%d %s is required by #%d %s as %s%s\n",
 | 
| -               id(), Mnemonic(), use->id(),
 | 
| -               use->Mnemonic(), rep_required.Mnemonic(),
 | 
| -               (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
 | 
| -      }
 | 
| -    }
 | 
| -  }
 | 
| -  return use_double ? Representation::Double() : Representation::Integer32();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HInstruction* HPower::New(Isolate* isolate, Zone* zone, HValue* context,
 | 
| -                          HValue* left, HValue* right) {
 | 
| -  if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
 | 
| -    HConstant* c_left = HConstant::cast(left);
 | 
| -    HConstant* c_right = HConstant::cast(right);
 | 
| -    if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
 | 
| -      double result = power_helper(c_left->DoubleValue(),
 | 
| -                                   c_right->DoubleValue());
 | 
| -      return H_CONSTANT_DOUBLE(std::isnan(result)
 | 
| -                                   ? std::numeric_limits<double>::quiet_NaN()
 | 
| -                                   : result);
 | 
| -    }
 | 
| -  }
 | 
| -  return new(zone) HPower(left, right);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HInstruction* HMathMinMax::New(Isolate* isolate, Zone* zone, HValue* context,
 | 
| -                               HValue* left, HValue* right, Operation op) {
 | 
| -  if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
 | 
| -    HConstant* c_left = HConstant::cast(left);
 | 
| -    HConstant* c_right = HConstant::cast(right);
 | 
| -    if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
 | 
| -      double d_left = c_left->DoubleValue();
 | 
| -      double d_right = c_right->DoubleValue();
 | 
| -      if (op == kMathMin) {
 | 
| -        if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right);
 | 
| -        if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left);
 | 
| -        if (d_left == d_right) {
 | 
| -          // Handle +0 and -0.
 | 
| -          return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left
 | 
| -                                                                 : d_right);
 | 
| -        }
 | 
| -      } else {
 | 
| -        if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right);
 | 
| -        if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left);
 | 
| -        if (d_left == d_right) {
 | 
| -          // Handle +0 and -0.
 | 
| -          return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right
 | 
| -                                                                 : d_left);
 | 
| -        }
 | 
| -      }
 | 
| -      // All comparisons failed, must be NaN.
 | 
| -      return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN());
 | 
| -    }
 | 
| -  }
 | 
| -  return new(zone) HMathMinMax(context, left, right, op);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HInstruction* HMod::New(Isolate* isolate, Zone* zone, HValue* context,
 | 
| -                        HValue* left, HValue* right, Strength strength) {
 | 
| -  if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
 | 
| -    HConstant* c_left = HConstant::cast(left);
 | 
| -    HConstant* c_right = HConstant::cast(right);
 | 
| -    if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
 | 
| -      int32_t dividend = c_left->Integer32Value();
 | 
| -      int32_t divisor = c_right->Integer32Value();
 | 
| -      if (dividend == kMinInt && divisor == -1) {
 | 
| -        return H_CONSTANT_DOUBLE(-0.0);
 | 
| -      }
 | 
| -      if (divisor != 0) {
 | 
| -        int32_t res = dividend % divisor;
 | 
| -        if ((res == 0) && (dividend < 0)) {
 | 
| -          return H_CONSTANT_DOUBLE(-0.0);
 | 
| -        }
 | 
| -        return H_CONSTANT_INT(res);
 | 
| -      }
 | 
| -    }
 | 
| -  }
 | 
| -  return new (zone) HMod(context, left, right, strength);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HInstruction* HDiv::New(Isolate* isolate, Zone* zone, HValue* context,
 | 
| -                        HValue* left, HValue* right, Strength strength) {
 | 
| -  // If left and right are constant values, try to return a constant value.
 | 
| -  if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
 | 
| -    HConstant* c_left = HConstant::cast(left);
 | 
| -    HConstant* c_right = HConstant::cast(right);
 | 
| -    if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
 | 
| -      if (c_right->DoubleValue() != 0) {
 | 
| -        double double_res = c_left->DoubleValue() / c_right->DoubleValue();
 | 
| -        if (IsInt32Double(double_res)) {
 | 
| -          return H_CONSTANT_INT(double_res);
 | 
| -        }
 | 
| -        return H_CONSTANT_DOUBLE(double_res);
 | 
| -      } else {
 | 
| -        int sign = Double(c_left->DoubleValue()).Sign() *
 | 
| -                   Double(c_right->DoubleValue()).Sign();  // Right could be -0.
 | 
| -        return H_CONSTANT_DOUBLE(sign * V8_INFINITY);
 | 
| -      }
 | 
| -    }
 | 
| -  }
 | 
| -  return new (zone) HDiv(context, left, right, strength);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HInstruction* HBitwise::New(Isolate* isolate, Zone* zone, HValue* context,
 | 
| -                            Token::Value op, HValue* left, HValue* right,
 | 
| -                            Strength strength) {
 | 
| -  if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
 | 
| -    HConstant* c_left = HConstant::cast(left);
 | 
| -    HConstant* c_right = HConstant::cast(right);
 | 
| -    if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
 | 
| -      int32_t result;
 | 
| -      int32_t v_left = c_left->NumberValueAsInteger32();
 | 
| -      int32_t v_right = c_right->NumberValueAsInteger32();
 | 
| -      switch (op) {
 | 
| -        case Token::BIT_XOR:
 | 
| -          result = v_left ^ v_right;
 | 
| -          break;
 | 
| -        case Token::BIT_AND:
 | 
| -          result = v_left & v_right;
 | 
| -          break;
 | 
| -        case Token::BIT_OR:
 | 
| -          result = v_left | v_right;
 | 
| -          break;
 | 
| -        default:
 | 
| -          result = 0;  // Please the compiler.
 | 
| -          UNREACHABLE();
 | 
| -      }
 | 
| -      return H_CONSTANT_INT(result);
 | 
| -    }
 | 
| -  }
 | 
| -  return new (zone) HBitwise(context, op, left, right, strength);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -#define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result)                            \
 | 
| -  HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context,    \
 | 
| -                            HValue* left, HValue* right, Strength strength) { \
 | 
| -    if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {   \
 | 
| -      HConstant* c_left = HConstant::cast(left);                              \
 | 
| -      HConstant* c_right = HConstant::cast(right);                            \
 | 
| -      if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {          \
 | 
| -        return H_CONSTANT_INT(result);                                        \
 | 
| -      }                                                                       \
 | 
| -    }                                                                         \
 | 
| -    return new (zone) HInstr(context, left, right, strength);                 \
 | 
| -  }
 | 
| -
 | 
| -
 | 
| -DEFINE_NEW_H_BITWISE_INSTR(HSar,
 | 
| -c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
 | 
| -DEFINE_NEW_H_BITWISE_INSTR(HShl,
 | 
| -c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
 | 
| -
 | 
| -#undef DEFINE_NEW_H_BITWISE_INSTR
 | 
| -
 | 
| -
 | 
| -HInstruction* HShr::New(Isolate* isolate, Zone* zone, HValue* context,
 | 
| -                        HValue* left, HValue* right, Strength strength) {
 | 
| -  if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
 | 
| -    HConstant* c_left = HConstant::cast(left);
 | 
| -    HConstant* c_right = HConstant::cast(right);
 | 
| -    if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
 | 
| -      int32_t left_val = c_left->NumberValueAsInteger32();
 | 
| -      int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
 | 
| -      if ((right_val == 0) && (left_val < 0)) {
 | 
| -        return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val));
 | 
| -      }
 | 
| -      return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val);
 | 
| -    }
 | 
| -  }
 | 
| -  return new (zone) HShr(context, left, right, strength);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HInstruction* HSeqStringGetChar::New(Isolate* isolate, Zone* zone,
 | 
| -                                     HValue* context, String::Encoding encoding,
 | 
| -                                     HValue* string, HValue* index) {
 | 
| -  if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) {
 | 
| -    HConstant* c_string = HConstant::cast(string);
 | 
| -    HConstant* c_index = HConstant::cast(index);
 | 
| -    if (c_string->HasStringValue() && c_index->HasInteger32Value()) {
 | 
| -      Handle<String> s = c_string->StringValue();
 | 
| -      int32_t i = c_index->Integer32Value();
 | 
| -      DCHECK_LE(0, i);
 | 
| -      DCHECK_LT(i, s->length());
 | 
| -      return H_CONSTANT_INT(s->Get(i));
 | 
| -    }
 | 
| -  }
 | 
| -  return new(zone) HSeqStringGetChar(encoding, string, index);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -#undef H_CONSTANT_INT
 | 
| -#undef H_CONSTANT_DOUBLE
 | 
| -
 | 
| -
 | 
| -std::ostream& HBitwise::PrintDataTo(std::ostream& os) const {  // NOLINT
 | 
| -  os << Token::Name(op_) << " ";
 | 
| -  return HBitwiseBinaryOperation::PrintDataTo(os);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HPhi::SimplifyConstantInputs() {
 | 
| -  // Convert constant inputs to integers when all uses are truncating.
 | 
| -  // This must happen before representation inference takes place.
 | 
| -  if (!CheckUsesForFlag(kTruncatingToInt32)) return;
 | 
| -  for (int i = 0; i < OperandCount(); ++i) {
 | 
| -    if (!OperandAt(i)->IsConstant()) return;
 | 
| -  }
 | 
| -  HGraph* graph = block()->graph();
 | 
| -  for (int i = 0; i < OperandCount(); ++i) {
 | 
| -    HConstant* operand = HConstant::cast(OperandAt(i));
 | 
| -    if (operand->HasInteger32Value()) {
 | 
| -      continue;
 | 
| -    } else if (operand->HasDoubleValue()) {
 | 
| -      HConstant* integer_input = HConstant::New(
 | 
| -          graph->isolate(), graph->zone(), graph->GetInvalidContext(),
 | 
| -          DoubleToInt32(operand->DoubleValue()));
 | 
| -      integer_input->InsertAfter(operand);
 | 
| -      SetOperandAt(i, integer_input);
 | 
| -    } else if (operand->HasBooleanValue()) {
 | 
| -      SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1()
 | 
| -                                              : graph->GetConstant0());
 | 
| -    } else if (operand->ImmortalImmovable()) {
 | 
| -      SetOperandAt(i, graph->GetConstant0());
 | 
| -    }
 | 
| -  }
 | 
| -  // Overwrite observed input representations because they are likely Tagged.
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
 | 
| -    HValue* use = it.value();
 | 
| -    if (use->IsBinaryOperation()) {
 | 
| -      HBinaryOperation::cast(use)->set_observed_input_representation(
 | 
| -          it.index(), Representation::Smi());
 | 
| -    }
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) {
 | 
| -  DCHECK(CheckFlag(kFlexibleRepresentation));
 | 
| -  Representation new_rep = RepresentationFromUses();
 | 
| -  UpdateRepresentation(new_rep, h_infer, "uses");
 | 
| -  new_rep = RepresentationFromInputs();
 | 
| -  UpdateRepresentation(new_rep, h_infer, "inputs");
 | 
| -  new_rep = RepresentationFromUseRequirements();
 | 
| -  UpdateRepresentation(new_rep, h_infer, "use requirements");
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Representation HPhi::RepresentationFromInputs() {
 | 
| -  Representation r = representation();
 | 
| -  for (int i = 0; i < OperandCount(); ++i) {
 | 
| -    // Ignore conservative Tagged assumption of parameters if we have
 | 
| -    // reason to believe that it's too conservative.
 | 
| -    if (has_type_feedback_from_uses() && OperandAt(i)->IsParameter()) {
 | 
| -      continue;
 | 
| -    }
 | 
| -
 | 
| -    r = r.generalize(OperandAt(i)->KnownOptimalRepresentation());
 | 
| -  }
 | 
| -  return r;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -// Returns a representation if all uses agree on the same representation.
 | 
| -// Integer32 is also returned when some uses are Smi but others are Integer32.
 | 
| -Representation HValue::RepresentationFromUseRequirements() {
 | 
| -  Representation rep = Representation::None();
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
 | 
| -    // Ignore the use requirement from never run code
 | 
| -    if (it.value()->block()->IsUnreachable()) continue;
 | 
| -
 | 
| -    // We check for observed_input_representation elsewhere.
 | 
| -    Representation use_rep =
 | 
| -        it.value()->RequiredInputRepresentation(it.index());
 | 
| -    if (rep.IsNone()) {
 | 
| -      rep = use_rep;
 | 
| -      continue;
 | 
| -    }
 | 
| -    if (use_rep.IsNone() || rep.Equals(use_rep)) continue;
 | 
| -    if (rep.generalize(use_rep).IsInteger32()) {
 | 
| -      rep = Representation::Integer32();
 | 
| -      continue;
 | 
| -    }
 | 
| -    return Representation::None();
 | 
| -  }
 | 
| -  return rep;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -bool HValue::HasNonSmiUse() {
 | 
| -  for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
 | 
| -    // We check for observed_input_representation elsewhere.
 | 
| -    Representation use_rep =
 | 
| -        it.value()->RequiredInputRepresentation(it.index());
 | 
| -    if (!use_rep.IsNone() &&
 | 
| -        !use_rep.IsSmi() &&
 | 
| -        !use_rep.IsTagged()) {
 | 
| -      return true;
 | 
| -    }
 | 
| -  }
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -// Node-specific verification code is only included in debug mode.
 | 
| -#ifdef DEBUG
 | 
| -
 | 
| -void HPhi::Verify() {
 | 
| -  DCHECK(OperandCount() == block()->predecessors()->length());
 | 
| -  for (int i = 0; i < OperandCount(); ++i) {
 | 
| -    HValue* value = OperandAt(i);
 | 
| -    HBasicBlock* defining_block = value->block();
 | 
| -    HBasicBlock* predecessor_block = block()->predecessors()->at(i);
 | 
| -    DCHECK(defining_block == predecessor_block ||
 | 
| -           defining_block->Dominates(predecessor_block));
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HSimulate::Verify() {
 | 
| -  HInstruction::Verify();
 | 
| -  DCHECK(HasAstId() || next()->IsEnterInlined());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HCheckHeapObject::Verify() {
 | 
| -  HInstruction::Verify();
 | 
| -  DCHECK(HasNoUses());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HCheckValue::Verify() {
 | 
| -  HInstruction::Verify();
 | 
| -  DCHECK(HasNoUses());
 | 
| -}
 | 
| -
 | 
| -#endif
 | 
| -
 | 
| -
 | 
| -HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) {
 | 
| -  DCHECK(offset >= 0);
 | 
| -  DCHECK(offset < FixedArray::kHeaderSize);
 | 
| -  if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength();
 | 
| -  return HObjectAccess(kInobject, offset);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HObjectAccess HObjectAccess::ForMapAndOffset(Handle<Map> map, int offset,
 | 
| -    Representation representation) {
 | 
| -  DCHECK(offset >= 0);
 | 
| -  Portion portion = kInobject;
 | 
| -
 | 
| -  if (offset == JSObject::kElementsOffset) {
 | 
| -    portion = kElementsPointer;
 | 
| -  } else if (offset == JSObject::kMapOffset) {
 | 
| -    portion = kMaps;
 | 
| -  }
 | 
| -  bool existing_inobject_property = true;
 | 
| -  if (!map.is_null()) {
 | 
| -    existing_inobject_property = (offset <
 | 
| -        map->instance_size() - map->unused_property_fields() * kPointerSize);
 | 
| -  }
 | 
| -  return HObjectAccess(portion, offset, representation, Handle<String>::null(),
 | 
| -                       false, existing_inobject_property);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) {
 | 
| -  switch (offset) {
 | 
| -    case AllocationSite::kTransitionInfoOffset:
 | 
| -      return HObjectAccess(kInobject, offset, Representation::Tagged());
 | 
| -    case AllocationSite::kNestedSiteOffset:
 | 
| -      return HObjectAccess(kInobject, offset, Representation::Tagged());
 | 
| -    case AllocationSite::kPretenureDataOffset:
 | 
| -      return HObjectAccess(kInobject, offset, Representation::Smi());
 | 
| -    case AllocationSite::kPretenureCreateCountOffset:
 | 
| -      return HObjectAccess(kInobject, offset, Representation::Smi());
 | 
| -    case AllocationSite::kDependentCodeOffset:
 | 
| -      return HObjectAccess(kInobject, offset, Representation::Tagged());
 | 
| -    case AllocationSite::kWeakNextOffset:
 | 
| -      return HObjectAccess(kInobject, offset, Representation::Tagged());
 | 
| -    default:
 | 
| -      UNREACHABLE();
 | 
| -  }
 | 
| -  return HObjectAccess(kInobject, offset);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HObjectAccess HObjectAccess::ForContextSlot(int index) {
 | 
| -  DCHECK(index >= 0);
 | 
| -  Portion portion = kInobject;
 | 
| -  int offset = Context::kHeaderSize + index * kPointerSize;
 | 
| -  DCHECK_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag);
 | 
| -  return HObjectAccess(portion, offset, Representation::Tagged());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HObjectAccess HObjectAccess::ForScriptContext(int index) {
 | 
| -  DCHECK(index >= 0);
 | 
| -  Portion portion = kInobject;
 | 
| -  int offset = ScriptContextTable::GetContextOffset(index);
 | 
| -  return HObjectAccess(portion, offset, Representation::Tagged());
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) {
 | 
| -  DCHECK(offset >= 0);
 | 
| -  Portion portion = kInobject;
 | 
| -
 | 
| -  if (offset == JSObject::kElementsOffset) {
 | 
| -    portion = kElementsPointer;
 | 
| -  } else if (offset == JSArray::kLengthOffset) {
 | 
| -    portion = kArrayLengths;
 | 
| -  } else if (offset == JSObject::kMapOffset) {
 | 
| -    portion = kMaps;
 | 
| -  }
 | 
| -  return HObjectAccess(portion, offset);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset,
 | 
| -    Representation representation) {
 | 
| -  DCHECK(offset >= 0);
 | 
| -  return HObjectAccess(kBackingStore, offset, representation,
 | 
| -                       Handle<String>::null(), false, false);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -HObjectAccess HObjectAccess::ForField(Handle<Map> map, int index,
 | 
| -                                      Representation representation,
 | 
| -                                      Handle<Name> name) {
 | 
| -  if (index < 0) {
 | 
| -    // Negative property indices are in-object properties, indexed
 | 
| -    // from the end of the fixed part of the object.
 | 
| -    int offset = (index * kPointerSize) + map->instance_size();
 | 
| -    return HObjectAccess(kInobject, offset, representation, name, false, true);
 | 
| -  } else {
 | 
| -    // Non-negative property indices are in the properties array.
 | 
| -    int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
 | 
| -    return HObjectAccess(kBackingStore, offset, representation, name,
 | 
| -                         false, false);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -void HObjectAccess::SetGVNFlags(HValue *instr, PropertyAccessType access_type) {
 | 
| -  // set the appropriate GVN flags for a given load or store instruction
 | 
| -  if (access_type == STORE) {
 | 
| -    // track dominating allocations in order to eliminate write barriers
 | 
| -    instr->SetDependsOnFlag(::v8::internal::kNewSpacePromotion);
 | 
| -    instr->SetFlag(HValue::kTrackSideEffectDominators);
 | 
| -  } else {
 | 
| -    // try to GVN loads, but don't hoist above map changes
 | 
| -    instr->SetFlag(HValue::kUseGVN);
 | 
| -    instr->SetDependsOnFlag(::v8::internal::kMaps);
 | 
| -  }
 | 
| -
 | 
| -  switch (portion()) {
 | 
| -    case kArrayLengths:
 | 
| -      if (access_type == STORE) {
 | 
| -        instr->SetChangesFlag(::v8::internal::kArrayLengths);
 | 
| -      } else {
 | 
| -        instr->SetDependsOnFlag(::v8::internal::kArrayLengths);
 | 
| -      }
 | 
| -      break;
 | 
| -    case kStringLengths:
 | 
| -      if (access_type == STORE) {
 | 
| -        instr->SetChangesFlag(::v8::internal::kStringLengths);
 | 
| -      } else {
 | 
| -        instr->SetDependsOnFlag(::v8::internal::kStringLengths);
 | 
| -      }
 | 
| -      break;
 | 
| -    case kInobject:
 | 
| -      if (access_type == STORE) {
 | 
| -        instr->SetChangesFlag(::v8::internal::kInobjectFields);
 | 
| -      } else {
 | 
| -        instr->SetDependsOnFlag(::v8::internal::kInobjectFields);
 | 
| -      }
 | 
| -      break;
 | 
| -    case kDouble:
 | 
| -      if (access_type == STORE) {
 | 
| -        instr->SetChangesFlag(::v8::internal::kDoubleFields);
 | 
| -      } else {
 | 
| -        instr->SetDependsOnFlag(::v8::internal::kDoubleFields);
 | 
| -      }
 | 
| -      break;
 | 
| -    case kBackingStore:
 | 
| -      if (access_type == STORE) {
 | 
| -        instr->SetChangesFlag(::v8::internal::kBackingStoreFields);
 | 
| -      } else {
 | 
| -        instr->SetDependsOnFlag(::v8::internal::kBackingStoreFields);
 | 
| -      }
 | 
| -      break;
 | 
| -    case kElementsPointer:
 | 
| -      if (access_type == STORE) {
 | 
| -        instr->SetChangesFlag(::v8::internal::kElementsPointer);
 | 
| -      } else {
 | 
| -        instr->SetDependsOnFlag(::v8::internal::kElementsPointer);
 | 
| -      }
 | 
| -      break;
 | 
| -    case kMaps:
 | 
| -      if (access_type == STORE) {
 | 
| -        instr->SetChangesFlag(::v8::internal::kMaps);
 | 
| -      } else {
 | 
| -        instr->SetDependsOnFlag(::v8::internal::kMaps);
 | 
| -      }
 | 
| -      break;
 | 
| -    case kExternalMemory:
 | 
| -      if (access_type == STORE) {
 | 
| -        instr->SetChangesFlag(::v8::internal::kExternalMemory);
 | 
| -      } else {
 | 
| -        instr->SetDependsOnFlag(::v8::internal::kExternalMemory);
 | 
| -      }
 | 
| -      break;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -std::ostream& operator<<(std::ostream& os, const HObjectAccess& access) {
 | 
| -  os << ".";
 | 
| -
 | 
| -  switch (access.portion()) {
 | 
| -    case HObjectAccess::kArrayLengths:
 | 
| -    case HObjectAccess::kStringLengths:
 | 
| -      os << "%length";
 | 
| -      break;
 | 
| -    case HObjectAccess::kElementsPointer:
 | 
| -      os << "%elements";
 | 
| -      break;
 | 
| -    case HObjectAccess::kMaps:
 | 
| -      os << "%map";
 | 
| -      break;
 | 
| -    case HObjectAccess::kDouble:  // fall through
 | 
| -    case HObjectAccess::kInobject:
 | 
| -      if (!access.name().is_null()) {
 | 
| -        os << Handle<String>::cast(access.name())->ToCString().get();
 | 
| -      }
 | 
| -      os << "[in-object]";
 | 
| -      break;
 | 
| -    case HObjectAccess::kBackingStore:
 | 
| -      if (!access.name().is_null()) {
 | 
| -        os << Handle<String>::cast(access.name())->ToCString().get();
 | 
| -      }
 | 
| -      os << "[backing-store]";
 | 
| -      break;
 | 
| -    case HObjectAccess::kExternalMemory:
 | 
| -      os << "[external-memory]";
 | 
| -      break;
 | 
| -  }
 | 
| -
 | 
| -  return os << "@" << access.offset();
 | 
| -}
 | 
| -
 | 
| -}  // namespace internal
 | 
| -}  // namespace v8
 | 
| 
 |