Index: src/lithium-allocator.cc |
diff --git a/src/lithium-allocator.cc b/src/lithium-allocator.cc |
deleted file mode 100644 |
index 7e34daab411dba2f93ff19e838c511fca1b83236..0000000000000000000000000000000000000000 |
--- a/src/lithium-allocator.cc |
+++ /dev/null |
@@ -1,2194 +0,0 @@ |
-// Copyright 2012 the V8 project authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "src/lithium-allocator.h" |
- |
-#include "src/hydrogen.h" |
-#include "src/lithium-inl.h" |
-#include "src/lithium-allocator-inl.h" |
-#include "src/register-configuration.h" |
-#include "src/string-stream.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
-static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) { |
- return a.Value() < b.Value() ? a : b; |
-} |
- |
- |
-static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) { |
- return a.Value() > b.Value() ? a : b; |
-} |
- |
- |
-UsePosition::UsePosition(LifetimePosition pos, |
- LOperand* operand, |
- LOperand* hint) |
- : operand_(operand), |
- hint_(hint), |
- pos_(pos), |
- next_(NULL), |
- requires_reg_(false), |
- register_beneficial_(true) { |
- if (operand_ != NULL && operand_->IsUnallocated()) { |
- LUnallocated* unalloc = LUnallocated::cast(operand_); |
- requires_reg_ = unalloc->HasRegisterPolicy() || |
- unalloc->HasDoubleRegisterPolicy(); |
- register_beneficial_ = !unalloc->HasAnyPolicy(); |
- } |
- DCHECK(pos_.IsValid()); |
-} |
- |
- |
-bool UsePosition::HasHint() const { |
- return hint_ != NULL && !hint_->IsUnallocated(); |
-} |
- |
- |
-bool UsePosition::RequiresRegister() const { |
- return requires_reg_; |
-} |
- |
- |
-bool UsePosition::RegisterIsBeneficial() const { |
- return register_beneficial_; |
-} |
- |
- |
-void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) { |
- DCHECK(Contains(pos) && pos.Value() != start().Value()); |
- UseInterval* after = new(zone) UseInterval(pos, end_); |
- after->next_ = next_; |
- next_ = after; |
- end_ = pos; |
-} |
- |
- |
-#ifdef DEBUG |
- |
- |
-void LiveRange::Verify() const { |
- UsePosition* cur = first_pos_; |
- while (cur != NULL) { |
- DCHECK(Start().Value() <= cur->pos().Value() && |
- cur->pos().Value() <= End().Value()); |
- cur = cur->next(); |
- } |
-} |
- |
- |
-bool LiveRange::HasOverlap(UseInterval* target) const { |
- UseInterval* current_interval = first_interval_; |
- while (current_interval != NULL) { |
- // Intervals overlap if the start of one is contained in the other. |
- if (current_interval->Contains(target->start()) || |
- target->Contains(current_interval->start())) { |
- return true; |
- } |
- current_interval = current_interval->next(); |
- } |
- return false; |
-} |
- |
- |
-#endif |
- |
- |
-LiveRange::LiveRange(int id, Zone* zone) |
- : id_(id), |
- spilled_(false), |
- kind_(UNALLOCATED_REGISTERS), |
- assigned_register_(kInvalidAssignment), |
- last_interval_(NULL), |
- first_interval_(NULL), |
- first_pos_(NULL), |
- parent_(NULL), |
- next_(NULL), |
- current_interval_(NULL), |
- last_processed_use_(NULL), |
- current_hint_operand_(NULL), |
- spill_operand_(new (zone) LOperand()), |
- spill_start_index_(kMaxInt) {} |
- |
- |
-void LiveRange::set_assigned_register(int reg, Zone* zone) { |
- DCHECK(!HasRegisterAssigned() && !IsSpilled()); |
- assigned_register_ = reg; |
- ConvertOperands(zone); |
-} |
- |
- |
-void LiveRange::MakeSpilled(Zone* zone) { |
- DCHECK(!IsSpilled()); |
- DCHECK(TopLevel()->HasAllocatedSpillOperand()); |
- spilled_ = true; |
- assigned_register_ = kInvalidAssignment; |
- ConvertOperands(zone); |
-} |
- |
- |
-bool LiveRange::HasAllocatedSpillOperand() const { |
- DCHECK(spill_operand_ != NULL); |
- return !spill_operand_->IsIgnored(); |
-} |
- |
- |
-void LiveRange::SetSpillOperand(LOperand* operand) { |
- DCHECK(!operand->IsUnallocated()); |
- DCHECK(spill_operand_ != NULL); |
- DCHECK(spill_operand_->IsIgnored()); |
- spill_operand_->ConvertTo(operand->kind(), operand->index()); |
-} |
- |
- |
-UsePosition* LiveRange::NextUsePosition(LifetimePosition start) { |
- UsePosition* use_pos = last_processed_use_; |
- if (use_pos == NULL) use_pos = first_pos(); |
- while (use_pos != NULL && use_pos->pos().Value() < start.Value()) { |
- use_pos = use_pos->next(); |
- } |
- last_processed_use_ = use_pos; |
- return use_pos; |
-} |
- |
- |
-UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial( |
- LifetimePosition start) { |
- UsePosition* pos = NextUsePosition(start); |
- while (pos != NULL && !pos->RegisterIsBeneficial()) { |
- pos = pos->next(); |
- } |
- return pos; |
-} |
- |
- |
-UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial( |
- LifetimePosition start) { |
- UsePosition* pos = first_pos(); |
- UsePosition* prev = NULL; |
- while (pos != NULL && pos->pos().Value() < start.Value()) { |
- if (pos->RegisterIsBeneficial()) prev = pos; |
- pos = pos->next(); |
- } |
- return prev; |
-} |
- |
- |
-UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) { |
- UsePosition* pos = NextUsePosition(start); |
- while (pos != NULL && !pos->RequiresRegister()) { |
- pos = pos->next(); |
- } |
- return pos; |
-} |
- |
- |
-bool LiveRange::CanBeSpilled(LifetimePosition pos) { |
- // We cannot spill a live range that has a use requiring a register |
- // at the current or the immediate next position. |
- UsePosition* use_pos = NextRegisterPosition(pos); |
- if (use_pos == NULL) return true; |
- return |
- use_pos->pos().Value() > pos.NextInstruction().InstructionEnd().Value(); |
-} |
- |
- |
-LOperand* LiveRange::CreateAssignedOperand(Zone* zone) { |
- LOperand* op = NULL; |
- if (HasRegisterAssigned()) { |
- DCHECK(!IsSpilled()); |
- switch (Kind()) { |
- case GENERAL_REGISTERS: |
- op = LRegister::Create(assigned_register(), zone); |
- break; |
- case DOUBLE_REGISTERS: |
- op = LDoubleRegister::Create(assigned_register(), zone); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
- } else if (IsSpilled()) { |
- DCHECK(!HasRegisterAssigned()); |
- op = TopLevel()->GetSpillOperand(); |
- DCHECK(!op->IsUnallocated()); |
- } else { |
- LUnallocated* unalloc = new(zone) LUnallocated(LUnallocated::NONE); |
- unalloc->set_virtual_register(id_); |
- op = unalloc; |
- } |
- return op; |
-} |
- |
- |
-UseInterval* LiveRange::FirstSearchIntervalForPosition( |
- LifetimePosition position) const { |
- if (current_interval_ == NULL) return first_interval_; |
- if (current_interval_->start().Value() > position.Value()) { |
- current_interval_ = NULL; |
- return first_interval_; |
- } |
- return current_interval_; |
-} |
- |
- |
-void LiveRange::AdvanceLastProcessedMarker( |
- UseInterval* to_start_of, LifetimePosition but_not_past) const { |
- if (to_start_of == NULL) return; |
- if (to_start_of->start().Value() > but_not_past.Value()) return; |
- LifetimePosition start = |
- current_interval_ == NULL ? LifetimePosition::Invalid() |
- : current_interval_->start(); |
- if (to_start_of->start().Value() > start.Value()) { |
- current_interval_ = to_start_of; |
- } |
-} |
- |
- |
-void LiveRange::SplitAt(LifetimePosition position, |
- LiveRange* result, |
- Zone* zone) { |
- DCHECK(Start().Value() < position.Value()); |
- DCHECK(result->IsEmpty()); |
- // Find the last interval that ends before the position. If the |
- // position is contained in one of the intervals in the chain, we |
- // split that interval and use the first part. |
- UseInterval* current = FirstSearchIntervalForPosition(position); |
- |
- // If the split position coincides with the beginning of a use interval |
- // we need to split use positons in a special way. |
- bool split_at_start = false; |
- |
- if (current->start().Value() == position.Value()) { |
- // When splitting at start we need to locate the previous use interval. |
- current = first_interval_; |
- } |
- |
- while (current != NULL) { |
- if (current->Contains(position)) { |
- current->SplitAt(position, zone); |
- break; |
- } |
- UseInterval* next = current->next(); |
- if (next->start().Value() >= position.Value()) { |
- split_at_start = (next->start().Value() == position.Value()); |
- break; |
- } |
- current = next; |
- } |
- |
- // Partition original use intervals to the two live ranges. |
- UseInterval* before = current; |
- UseInterval* after = before->next(); |
- result->last_interval_ = (last_interval_ == before) |
- ? after // Only interval in the range after split. |
- : last_interval_; // Last interval of the original range. |
- result->first_interval_ = after; |
- last_interval_ = before; |
- |
- // Find the last use position before the split and the first use |
- // position after it. |
- UsePosition* use_after = first_pos_; |
- UsePosition* use_before = NULL; |
- if (split_at_start) { |
- // The split position coincides with the beginning of a use interval (the |
- // end of a lifetime hole). Use at this position should be attributed to |
- // the split child because split child owns use interval covering it. |
- while (use_after != NULL && use_after->pos().Value() < position.Value()) { |
- use_before = use_after; |
- use_after = use_after->next(); |
- } |
- } else { |
- while (use_after != NULL && use_after->pos().Value() <= position.Value()) { |
- use_before = use_after; |
- use_after = use_after->next(); |
- } |
- } |
- |
- // Partition original use positions to the two live ranges. |
- if (use_before != NULL) { |
- use_before->next_ = NULL; |
- } else { |
- first_pos_ = NULL; |
- } |
- result->first_pos_ = use_after; |
- |
- // Discard cached iteration state. It might be pointing |
- // to the use that no longer belongs to this live range. |
- last_processed_use_ = NULL; |
- current_interval_ = NULL; |
- |
- // Link the new live range in the chain before any of the other |
- // ranges linked from the range before the split. |
- result->parent_ = (parent_ == NULL) ? this : parent_; |
- result->kind_ = result->parent_->kind_; |
- result->next_ = next_; |
- next_ = result; |
- |
-#ifdef DEBUG |
- Verify(); |
- result->Verify(); |
-#endif |
-} |
- |
- |
-// This implements an ordering on live ranges so that they are ordered by their |
-// start positions. This is needed for the correctness of the register |
-// allocation algorithm. If two live ranges start at the same offset then there |
-// is a tie breaker based on where the value is first used. This part of the |
-// ordering is merely a heuristic. |
-bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const { |
- LifetimePosition start = Start(); |
- LifetimePosition other_start = other->Start(); |
- if (start.Value() == other_start.Value()) { |
- UsePosition* pos = first_pos(); |
- if (pos == NULL) return false; |
- UsePosition* other_pos = other->first_pos(); |
- if (other_pos == NULL) return true; |
- return pos->pos().Value() < other_pos->pos().Value(); |
- } |
- return start.Value() < other_start.Value(); |
-} |
- |
- |
-void LiveRange::ShortenTo(LifetimePosition start) { |
- LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value()); |
- DCHECK(first_interval_ != NULL); |
- DCHECK(first_interval_->start().Value() <= start.Value()); |
- DCHECK(start.Value() < first_interval_->end().Value()); |
- first_interval_->set_start(start); |
-} |
- |
- |
-void LiveRange::EnsureInterval(LifetimePosition start, |
- LifetimePosition end, |
- Zone* zone) { |
- LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n", |
- id_, |
- start.Value(), |
- end.Value()); |
- LifetimePosition new_end = end; |
- while (first_interval_ != NULL && |
- first_interval_->start().Value() <= end.Value()) { |
- if (first_interval_->end().Value() > end.Value()) { |
- new_end = first_interval_->end(); |
- } |
- first_interval_ = first_interval_->next(); |
- } |
- |
- UseInterval* new_interval = new(zone) UseInterval(start, new_end); |
- new_interval->next_ = first_interval_; |
- first_interval_ = new_interval; |
- if (new_interval->next() == NULL) { |
- last_interval_ = new_interval; |
- } |
-} |
- |
- |
-void LiveRange::AddUseInterval(LifetimePosition start, |
- LifetimePosition end, |
- Zone* zone) { |
- LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n", |
- id_, |
- start.Value(), |
- end.Value()); |
- if (first_interval_ == NULL) { |
- UseInterval* interval = new(zone) UseInterval(start, end); |
- first_interval_ = interval; |
- last_interval_ = interval; |
- } else { |
- if (end.Value() == first_interval_->start().Value()) { |
- first_interval_->set_start(start); |
- } else if (end.Value() < first_interval_->start().Value()) { |
- UseInterval* interval = new(zone) UseInterval(start, end); |
- interval->set_next(first_interval_); |
- first_interval_ = interval; |
- } else { |
- // Order of instruction's processing (see ProcessInstructions) guarantees |
- // that each new use interval either precedes or intersects with |
- // last added interval. |
- DCHECK(start.Value() < first_interval_->end().Value()); |
- first_interval_->start_ = Min(start, first_interval_->start_); |
- first_interval_->end_ = Max(end, first_interval_->end_); |
- } |
- } |
-} |
- |
- |
-void LiveRange::AddUsePosition(LifetimePosition pos, |
- LOperand* operand, |
- LOperand* hint, |
- Zone* zone) { |
- LAllocator::TraceAlloc("Add to live range %d use position %d\n", |
- id_, |
- pos.Value()); |
- UsePosition* use_pos = new(zone) UsePosition(pos, operand, hint); |
- UsePosition* prev_hint = NULL; |
- UsePosition* prev = NULL; |
- UsePosition* current = first_pos_; |
- while (current != NULL && current->pos().Value() < pos.Value()) { |
- prev_hint = current->HasHint() ? current : prev_hint; |
- prev = current; |
- current = current->next(); |
- } |
- |
- if (prev == NULL) { |
- use_pos->set_next(first_pos_); |
- first_pos_ = use_pos; |
- } else { |
- use_pos->next_ = prev->next_; |
- prev->next_ = use_pos; |
- } |
- |
- if (prev_hint == NULL && use_pos->HasHint()) { |
- current_hint_operand_ = hint; |
- } |
-} |
- |
- |
-void LiveRange::ConvertOperands(Zone* zone) { |
- LOperand* op = CreateAssignedOperand(zone); |
- UsePosition* use_pos = first_pos(); |
- while (use_pos != NULL) { |
- DCHECK(Start().Value() <= use_pos->pos().Value() && |
- use_pos->pos().Value() <= End().Value()); |
- |
- if (use_pos->HasOperand()) { |
- DCHECK(op->IsRegister() || op->IsDoubleRegister() || |
- !use_pos->RequiresRegister()); |
- use_pos->operand()->ConvertTo(op->kind(), op->index()); |
- } |
- use_pos = use_pos->next(); |
- } |
-} |
- |
- |
-bool LiveRange::CanCover(LifetimePosition position) const { |
- if (IsEmpty()) return false; |
- return Start().Value() <= position.Value() && |
- position.Value() < End().Value(); |
-} |
- |
- |
-bool LiveRange::Covers(LifetimePosition position) { |
- if (!CanCover(position)) return false; |
- UseInterval* start_search = FirstSearchIntervalForPosition(position); |
- for (UseInterval* interval = start_search; |
- interval != NULL; |
- interval = interval->next()) { |
- DCHECK(interval->next() == NULL || |
- interval->next()->start().Value() >= interval->start().Value()); |
- AdvanceLastProcessedMarker(interval, position); |
- if (interval->Contains(position)) return true; |
- if (interval->start().Value() > position.Value()) return false; |
- } |
- return false; |
-} |
- |
- |
-LifetimePosition LiveRange::FirstIntersection(LiveRange* other) { |
- UseInterval* b = other->first_interval(); |
- if (b == NULL) return LifetimePosition::Invalid(); |
- LifetimePosition advance_last_processed_up_to = b->start(); |
- UseInterval* a = FirstSearchIntervalForPosition(b->start()); |
- while (a != NULL && b != NULL) { |
- if (a->start().Value() > other->End().Value()) break; |
- if (b->start().Value() > End().Value()) break; |
- LifetimePosition cur_intersection = a->Intersect(b); |
- if (cur_intersection.IsValid()) { |
- return cur_intersection; |
- } |
- if (a->start().Value() < b->start().Value()) { |
- a = a->next(); |
- if (a == NULL || a->start().Value() > other->End().Value()) break; |
- AdvanceLastProcessedMarker(a, advance_last_processed_up_to); |
- } else { |
- b = b->next(); |
- } |
- } |
- return LifetimePosition::Invalid(); |
-} |
- |
- |
-LAllocator::LAllocator(int num_values, HGraph* graph) |
- : chunk_(NULL), |
- live_in_sets_(graph->blocks()->length(), zone()), |
- live_ranges_(num_values * 2, zone()), |
- fixed_live_ranges_(NULL), |
- fixed_double_live_ranges_(NULL), |
- unhandled_live_ranges_(num_values * 2, zone()), |
- active_live_ranges_(8, zone()), |
- inactive_live_ranges_(8, zone()), |
- reusable_slots_(8, zone()), |
- next_virtual_register_(num_values), |
- first_artificial_register_(num_values), |
- mode_(UNALLOCATED_REGISTERS), |
- num_registers_(-1), |
- graph_(graph), |
- has_osr_entry_(false), |
- allocation_ok_(true) {} |
- |
- |
-void LAllocator::InitializeLivenessAnalysis() { |
- // Initialize the live_in sets for each block to NULL. |
- int block_count = graph_->blocks()->length(); |
- live_in_sets_.Initialize(block_count, zone()); |
- live_in_sets_.AddBlock(NULL, block_count, zone()); |
-} |
- |
- |
-BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) { |
- // Compute live out for the given block, except not including backward |
- // successor edges. |
- BitVector* live_out = new(zone()) BitVector(next_virtual_register_, zone()); |
- |
- // Process all successor blocks. |
- for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) { |
- // Add values live on entry to the successor. Note the successor's |
- // live_in will not be computed yet for backwards edges. |
- HBasicBlock* successor = it.Current(); |
- BitVector* live_in = live_in_sets_[successor->block_id()]; |
- if (live_in != NULL) live_out->Union(*live_in); |
- |
- // All phi input operands corresponding to this successor edge are live |
- // out from this block. |
- int index = successor->PredecessorIndexOf(block); |
- const ZoneList<HPhi*>* phis = successor->phis(); |
- for (int i = 0; i < phis->length(); ++i) { |
- HPhi* phi = phis->at(i); |
- if (!phi->OperandAt(index)->IsConstant()) { |
- live_out->Add(phi->OperandAt(index)->id()); |
- } |
- } |
- } |
- |
- return live_out; |
-} |
- |
- |
-void LAllocator::AddInitialIntervals(HBasicBlock* block, |
- BitVector* live_out) { |
- // Add an interval that includes the entire block to the live range for |
- // each live_out value. |
- LifetimePosition start = LifetimePosition::FromInstructionIndex( |
- block->first_instruction_index()); |
- LifetimePosition end = LifetimePosition::FromInstructionIndex( |
- block->last_instruction_index()).NextInstruction(); |
- BitVector::Iterator iterator(live_out); |
- while (!iterator.Done()) { |
- int operand_index = iterator.Current(); |
- LiveRange* range = LiveRangeFor(operand_index); |
- range->AddUseInterval(start, end, zone()); |
- iterator.Advance(); |
- } |
-} |
- |
- |
-int LAllocator::FixedDoubleLiveRangeID(int index) { |
- return -index - 1 - Register::kNumRegisters; |
-} |
- |
- |
-LOperand* LAllocator::AllocateFixed(LUnallocated* operand, |
- int pos, |
- bool is_tagged) { |
- TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register()); |
- DCHECK(operand->HasFixedPolicy()); |
- if (operand->HasFixedSlotPolicy()) { |
- operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_slot_index()); |
- } else if (operand->HasFixedRegisterPolicy()) { |
- int reg_index = operand->fixed_register_index(); |
- operand->ConvertTo(LOperand::REGISTER, reg_index); |
- } else if (operand->HasFixedDoubleRegisterPolicy()) { |
- int reg_index = operand->fixed_register_index(); |
- operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index); |
- } else { |
- UNREACHABLE(); |
- } |
- if (is_tagged) { |
- TraceAlloc("Fixed reg is tagged at %d\n", pos); |
- LInstruction* instr = InstructionAt(pos); |
- if (instr->HasPointerMap()) { |
- instr->pointer_map()->RecordPointer(operand, chunk()->zone()); |
- } |
- } |
- return operand; |
-} |
- |
- |
-LiveRange* LAllocator::FixedLiveRangeFor(int index) { |
- DCHECK(index < Register::kNumRegisters); |
- LiveRange* result = fixed_live_ranges_[index]; |
- if (result == NULL) { |
- result = new(zone()) LiveRange(FixedLiveRangeID(index), chunk()->zone()); |
- DCHECK(result->IsFixed()); |
- result->kind_ = GENERAL_REGISTERS; |
- SetLiveRangeAssignedRegister(result, index); |
- fixed_live_ranges_[index] = result; |
- } |
- return result; |
-} |
- |
- |
-LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) { |
- DCHECK(index < DoubleRegister::kMaxNumRegisters); |
- LiveRange* result = fixed_double_live_ranges_[index]; |
- if (result == NULL) { |
- result = new(zone()) LiveRange(FixedDoubleLiveRangeID(index), |
- chunk()->zone()); |
- DCHECK(result->IsFixed()); |
- result->kind_ = DOUBLE_REGISTERS; |
- SetLiveRangeAssignedRegister(result, index); |
- fixed_double_live_ranges_[index] = result; |
- } |
- return result; |
-} |
- |
- |
-LiveRange* LAllocator::LiveRangeFor(int index) { |
- if (index >= live_ranges_.length()) { |
- live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1, zone()); |
- } |
- LiveRange* result = live_ranges_[index]; |
- if (result == NULL) { |
- result = new(zone()) LiveRange(index, chunk()->zone()); |
- live_ranges_[index] = result; |
- } |
- return result; |
-} |
- |
- |
-LGap* LAllocator::GetLastGap(HBasicBlock* block) { |
- int last_instruction = block->last_instruction_index(); |
- int index = chunk_->NearestGapPos(last_instruction); |
- return GapAt(index); |
-} |
- |
- |
-HPhi* LAllocator::LookupPhi(LOperand* operand) const { |
- if (!operand->IsUnallocated()) return NULL; |
- int index = LUnallocated::cast(operand)->virtual_register(); |
- HValue* instr = graph_->LookupValue(index); |
- if (instr != NULL && instr->IsPhi()) { |
- return HPhi::cast(instr); |
- } |
- return NULL; |
-} |
- |
- |
-LiveRange* LAllocator::LiveRangeFor(LOperand* operand) { |
- if (operand->IsUnallocated()) { |
- return LiveRangeFor(LUnallocated::cast(operand)->virtual_register()); |
- } else if (operand->IsRegister()) { |
- return FixedLiveRangeFor(operand->index()); |
- } else if (operand->IsDoubleRegister()) { |
- return FixedDoubleLiveRangeFor(operand->index()); |
- } else { |
- return NULL; |
- } |
-} |
- |
- |
-void LAllocator::Define(LifetimePosition position, |
- LOperand* operand, |
- LOperand* hint) { |
- LiveRange* range = LiveRangeFor(operand); |
- if (range == NULL) return; |
- |
- if (range->IsEmpty() || range->Start().Value() > position.Value()) { |
- // Can happen if there is a definition without use. |
- range->AddUseInterval(position, position.NextInstruction(), zone()); |
- range->AddUsePosition(position.NextInstruction(), NULL, NULL, zone()); |
- } else { |
- range->ShortenTo(position); |
- } |
- |
- if (operand->IsUnallocated()) { |
- LUnallocated* unalloc_operand = LUnallocated::cast(operand); |
- range->AddUsePosition(position, unalloc_operand, hint, zone()); |
- } |
-} |
- |
- |
-void LAllocator::Use(LifetimePosition block_start, |
- LifetimePosition position, |
- LOperand* operand, |
- LOperand* hint) { |
- LiveRange* range = LiveRangeFor(operand); |
- if (range == NULL) return; |
- if (operand->IsUnallocated()) { |
- LUnallocated* unalloc_operand = LUnallocated::cast(operand); |
- range->AddUsePosition(position, unalloc_operand, hint, zone()); |
- } |
- range->AddUseInterval(block_start, position, zone()); |
-} |
- |
- |
-void LAllocator::AddConstraintsGapMove(int index, |
- LOperand* from, |
- LOperand* to) { |
- LGap* gap = GapAt(index); |
- LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START, |
- chunk()->zone()); |
- if (from->IsUnallocated()) { |
- const ZoneList<LMoveOperands>* move_operands = move->move_operands(); |
- for (int i = 0; i < move_operands->length(); ++i) { |
- LMoveOperands cur = move_operands->at(i); |
- LOperand* cur_to = cur.destination(); |
- if (cur_to->IsUnallocated()) { |
- if (LUnallocated::cast(cur_to)->virtual_register() == |
- LUnallocated::cast(from)->virtual_register()) { |
- move->AddMove(cur.source(), to, chunk()->zone()); |
- return; |
- } |
- } |
- } |
- } |
- move->AddMove(from, to, chunk()->zone()); |
-} |
- |
- |
-void LAllocator::MeetRegisterConstraints(HBasicBlock* block) { |
- int start = block->first_instruction_index(); |
- int end = block->last_instruction_index(); |
- if (start == -1) return; |
- for (int i = start; i <= end; ++i) { |
- if (IsGapAt(i)) { |
- LInstruction* instr = NULL; |
- LInstruction* prev_instr = NULL; |
- if (i < end) instr = InstructionAt(i + 1); |
- if (i > start) prev_instr = InstructionAt(i - 1); |
- MeetConstraintsBetween(prev_instr, instr, i); |
- if (!AllocationOk()) return; |
- } |
- } |
-} |
- |
- |
-void LAllocator::MeetConstraintsBetween(LInstruction* first, |
- LInstruction* second, |
- int gap_index) { |
- // Handle fixed temporaries. |
- if (first != NULL) { |
- for (TempIterator it(first); !it.Done(); it.Advance()) { |
- LUnallocated* temp = LUnallocated::cast(it.Current()); |
- if (temp->HasFixedPolicy()) { |
- AllocateFixed(temp, gap_index - 1, false); |
- } |
- } |
- } |
- |
- // Handle fixed output operand. |
- if (first != NULL && first->Output() != NULL) { |
- LUnallocated* first_output = LUnallocated::cast(first->Output()); |
- LiveRange* range = LiveRangeFor(first_output->virtual_register()); |
- bool assigned = false; |
- if (first_output->HasFixedPolicy()) { |
- LUnallocated* output_copy = first_output->CopyUnconstrained( |
- chunk()->zone()); |
- bool is_tagged = HasTaggedValue(first_output->virtual_register()); |
- AllocateFixed(first_output, gap_index, is_tagged); |
- |
- // This value is produced on the stack, we never need to spill it. |
- if (first_output->IsStackSlot()) { |
- range->SetSpillOperand(first_output); |
- range->SetSpillStartIndex(gap_index - 1); |
- assigned = true; |
- } |
- chunk_->AddGapMove(gap_index, first_output, output_copy); |
- } |
- |
- if (!assigned) { |
- range->SetSpillStartIndex(gap_index); |
- |
- // This move to spill operand is not a real use. Liveness analysis |
- // and splitting of live ranges do not account for it. |
- // Thus it should be inserted to a lifetime position corresponding to |
- // the instruction end. |
- LGap* gap = GapAt(gap_index); |
- LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE, |
- chunk()->zone()); |
- move->AddMove(first_output, range->GetSpillOperand(), |
- chunk()->zone()); |
- } |
- } |
- |
- // Handle fixed input operands of second instruction. |
- if (second != NULL) { |
- for (UseIterator it(second); !it.Done(); it.Advance()) { |
- LUnallocated* cur_input = LUnallocated::cast(it.Current()); |
- if (cur_input->HasFixedPolicy()) { |
- LUnallocated* input_copy = cur_input->CopyUnconstrained( |
- chunk()->zone()); |
- bool is_tagged = HasTaggedValue(cur_input->virtual_register()); |
- AllocateFixed(cur_input, gap_index + 1, is_tagged); |
- AddConstraintsGapMove(gap_index, input_copy, cur_input); |
- } else if (cur_input->HasWritableRegisterPolicy()) { |
- // The live range of writable input registers always goes until the end |
- // of the instruction. |
- DCHECK(!cur_input->IsUsedAtStart()); |
- |
- LUnallocated* input_copy = cur_input->CopyUnconstrained( |
- chunk()->zone()); |
- int vreg = GetVirtualRegister(); |
- if (!AllocationOk()) return; |
- cur_input->set_virtual_register(vreg); |
- |
- if (RequiredRegisterKind(input_copy->virtual_register()) == |
- DOUBLE_REGISTERS) { |
- double_artificial_registers_.Add( |
- cur_input->virtual_register() - first_artificial_register_, |
- zone()); |
- } |
- |
- AddConstraintsGapMove(gap_index, input_copy, cur_input); |
- } |
- } |
- } |
- |
- // Handle "output same as input" for second instruction. |
- if (second != NULL && second->Output() != NULL) { |
- LUnallocated* second_output = LUnallocated::cast(second->Output()); |
- if (second_output->HasSameAsInputPolicy()) { |
- LUnallocated* cur_input = LUnallocated::cast(second->FirstInput()); |
- int output_vreg = second_output->virtual_register(); |
- int input_vreg = cur_input->virtual_register(); |
- |
- LUnallocated* input_copy = cur_input->CopyUnconstrained( |
- chunk()->zone()); |
- cur_input->set_virtual_register(second_output->virtual_register()); |
- AddConstraintsGapMove(gap_index, input_copy, cur_input); |
- |
- if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) { |
- int index = gap_index + 1; |
- LInstruction* instr = InstructionAt(index); |
- if (instr->HasPointerMap()) { |
- instr->pointer_map()->RecordPointer(input_copy, chunk()->zone()); |
- } |
- } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) { |
- // The input is assumed to immediately have a tagged representation, |
- // before the pointer map can be used. I.e. the pointer map at the |
- // instruction will include the output operand (whose value at the |
- // beginning of the instruction is equal to the input operand). If |
- // this is not desired, then the pointer map at this instruction needs |
- // to be adjusted manually. |
- } |
- } |
- } |
-} |
- |
- |
-void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) { |
- int block_start = block->first_instruction_index(); |
- int index = block->last_instruction_index(); |
- |
- LifetimePosition block_start_position = |
- LifetimePosition::FromInstructionIndex(block_start); |
- |
- while (index >= block_start) { |
- LifetimePosition curr_position = |
- LifetimePosition::FromInstructionIndex(index); |
- |
- if (IsGapAt(index)) { |
- // We have a gap at this position. |
- LGap* gap = GapAt(index); |
- LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START, |
- chunk()->zone()); |
- const ZoneList<LMoveOperands>* move_operands = move->move_operands(); |
- for (int i = 0; i < move_operands->length(); ++i) { |
- LMoveOperands* cur = &move_operands->at(i); |
- if (cur->IsIgnored()) continue; |
- LOperand* from = cur->source(); |
- LOperand* to = cur->destination(); |
- HPhi* phi = LookupPhi(to); |
- LOperand* hint = to; |
- if (phi != NULL) { |
- // This is a phi resolving move. |
- if (!phi->block()->IsLoopHeader()) { |
- hint = LiveRangeFor(phi->id())->current_hint_operand(); |
- } |
- } else { |
- if (to->IsUnallocated()) { |
- if (live->Contains(LUnallocated::cast(to)->virtual_register())) { |
- Define(curr_position, to, from); |
- live->Remove(LUnallocated::cast(to)->virtual_register()); |
- } else { |
- cur->Eliminate(); |
- continue; |
- } |
- } else { |
- Define(curr_position, to, from); |
- } |
- } |
- Use(block_start_position, curr_position, from, hint); |
- if (from->IsUnallocated()) { |
- live->Add(LUnallocated::cast(from)->virtual_register()); |
- } |
- } |
- } else { |
- DCHECK(!IsGapAt(index)); |
- LInstruction* instr = InstructionAt(index); |
- |
- if (instr != NULL) { |
- LOperand* output = instr->Output(); |
- if (output != NULL) { |
- if (output->IsUnallocated()) { |
- live->Remove(LUnallocated::cast(output)->virtual_register()); |
- } |
- Define(curr_position, output, NULL); |
- } |
- |
- if (instr->ClobbersRegisters()) { |
- for (int i = 0; i < Register::kNumRegisters; ++i) { |
- if (Register::from_code(i).IsAllocatable()) { |
- if (output == NULL || !output->IsRegister() || |
- output->index() != i) { |
- LiveRange* range = FixedLiveRangeFor(i); |
- range->AddUseInterval(curr_position, |
- curr_position.InstructionEnd(), zone()); |
- } |
- } |
- } |
- } |
- |
- if (instr->ClobbersDoubleRegisters(isolate())) { |
- for (int i = 0; i < DoubleRegister::kMaxNumRegisters; ++i) { |
- if (DoubleRegister::from_code(i).IsAllocatable()) { |
- if (output == NULL || !output->IsDoubleRegister() || |
- output->index() != i) { |
- LiveRange* range = FixedDoubleLiveRangeFor(i); |
- range->AddUseInterval(curr_position, |
- curr_position.InstructionEnd(), zone()); |
- } |
- } |
- } |
- } |
- |
- for (UseIterator it(instr); !it.Done(); it.Advance()) { |
- LOperand* input = it.Current(); |
- |
- LifetimePosition use_pos; |
- if (input->IsUnallocated() && |
- LUnallocated::cast(input)->IsUsedAtStart()) { |
- use_pos = curr_position; |
- } else { |
- use_pos = curr_position.InstructionEnd(); |
- } |
- |
- Use(block_start_position, use_pos, input, NULL); |
- if (input->IsUnallocated()) { |
- live->Add(LUnallocated::cast(input)->virtual_register()); |
- } |
- } |
- |
- for (TempIterator it(instr); !it.Done(); it.Advance()) { |
- LOperand* temp = it.Current(); |
- if (instr->ClobbersTemps()) { |
- if (temp->IsRegister()) continue; |
- if (temp->IsUnallocated()) { |
- LUnallocated* temp_unalloc = LUnallocated::cast(temp); |
- if (temp_unalloc->HasFixedPolicy()) { |
- continue; |
- } |
- } |
- } |
- Use(block_start_position, curr_position.InstructionEnd(), temp, NULL); |
- Define(curr_position, temp, NULL); |
- |
- if (temp->IsUnallocated()) { |
- LUnallocated* temp_unalloc = LUnallocated::cast(temp); |
- if (temp_unalloc->HasDoubleRegisterPolicy()) { |
- double_artificial_registers_.Add( |
- temp_unalloc->virtual_register() - first_artificial_register_, |
- zone()); |
- } |
- } |
- } |
- } |
- } |
- |
- index = index - 1; |
- } |
-} |
- |
- |
-void LAllocator::ResolvePhis(HBasicBlock* block) { |
- const ZoneList<HPhi*>* phis = block->phis(); |
- for (int i = 0; i < phis->length(); ++i) { |
- HPhi* phi = phis->at(i); |
- LUnallocated* phi_operand = |
- new (chunk()->zone()) LUnallocated(LUnallocated::NONE); |
- phi_operand->set_virtual_register(phi->id()); |
- for (int j = 0; j < phi->OperandCount(); ++j) { |
- HValue* op = phi->OperandAt(j); |
- LOperand* operand = NULL; |
- if (op->IsConstant() && op->EmitAtUses()) { |
- HConstant* constant = HConstant::cast(op); |
- operand = chunk_->DefineConstantOperand(constant); |
- } else { |
- DCHECK(!op->EmitAtUses()); |
- LUnallocated* unalloc = |
- new(chunk()->zone()) LUnallocated(LUnallocated::ANY); |
- unalloc->set_virtual_register(op->id()); |
- operand = unalloc; |
- } |
- HBasicBlock* cur_block = block->predecessors()->at(j); |
- // The gap move must be added without any special processing as in |
- // the AddConstraintsGapMove. |
- chunk_->AddGapMove(cur_block->last_instruction_index() - 1, |
- operand, |
- phi_operand); |
- |
- // We are going to insert a move before the branch instruction. |
- // Some branch instructions (e.g. loops' back edges) |
- // can potentially cause a GC so they have a pointer map. |
- // By inserting a move we essentially create a copy of a |
- // value which is invisible to PopulatePointerMaps(), because we store |
- // it into a location different from the operand of a live range |
- // covering a branch instruction. |
- // Thus we need to manually record a pointer. |
- LInstruction* branch = |
- InstructionAt(cur_block->last_instruction_index()); |
- if (branch->HasPointerMap()) { |
- if (phi->representation().IsTagged() && !phi->type().IsSmi()) { |
- branch->pointer_map()->RecordPointer(phi_operand, chunk()->zone()); |
- } else if (!phi->representation().IsDouble()) { |
- branch->pointer_map()->RecordUntagged(phi_operand, chunk()->zone()); |
- } |
- } |
- } |
- |
- LiveRange* live_range = LiveRangeFor(phi->id()); |
- LLabel* label = chunk_->GetLabel(phi->block()->block_id()); |
- label->GetOrCreateParallelMove(LGap::START, chunk()->zone())-> |
- AddMove(phi_operand, live_range->GetSpillOperand(), chunk()->zone()); |
- live_range->SetSpillStartIndex(phi->block()->first_instruction_index()); |
- } |
-} |
- |
- |
-bool LAllocator::Allocate(LChunk* chunk) { |
- DCHECK(chunk_ == NULL); |
- chunk_ = static_cast<LPlatformChunk*>(chunk); |
- assigned_registers_ = |
- new (chunk->zone()) BitVector(Register::kNumRegisters, chunk->zone()); |
- assigned_double_registers_ = new (chunk->zone()) |
- BitVector(DoubleRegister::kMaxNumRegisters, chunk->zone()); |
- MeetRegisterConstraints(); |
- if (!AllocationOk()) return false; |
- ResolvePhis(); |
- BuildLiveRanges(); |
- AllocateGeneralRegisters(); |
- if (!AllocationOk()) return false; |
- AllocateDoubleRegisters(); |
- if (!AllocationOk()) return false; |
- PopulatePointerMaps(); |
- ConnectRanges(); |
- ResolveControlFlow(); |
- return true; |
-} |
- |
- |
-void LAllocator::MeetRegisterConstraints() { |
- LAllocatorPhase phase("L_Register constraints", this); |
- const ZoneList<HBasicBlock*>* blocks = graph_->blocks(); |
- for (int i = 0; i < blocks->length(); ++i) { |
- HBasicBlock* block = blocks->at(i); |
- MeetRegisterConstraints(block); |
- if (!AllocationOk()) return; |
- } |
-} |
- |
- |
-void LAllocator::ResolvePhis() { |
- LAllocatorPhase phase("L_Resolve phis", this); |
- |
- // Process the blocks in reverse order. |
- const ZoneList<HBasicBlock*>* blocks = graph_->blocks(); |
- for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) { |
- HBasicBlock* block = blocks->at(block_id); |
- ResolvePhis(block); |
- } |
-} |
- |
- |
-void LAllocator::ResolveControlFlow(LiveRange* range, |
- HBasicBlock* block, |
- HBasicBlock* pred) { |
- LifetimePosition pred_end = |
- LifetimePosition::FromInstructionIndex(pred->last_instruction_index()); |
- LifetimePosition cur_start = |
- LifetimePosition::FromInstructionIndex(block->first_instruction_index()); |
- LiveRange* pred_cover = NULL; |
- LiveRange* cur_cover = NULL; |
- LiveRange* cur_range = range; |
- while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) { |
- if (cur_range->CanCover(cur_start)) { |
- DCHECK(cur_cover == NULL); |
- cur_cover = cur_range; |
- } |
- if (cur_range->CanCover(pred_end)) { |
- DCHECK(pred_cover == NULL); |
- pred_cover = cur_range; |
- } |
- cur_range = cur_range->next(); |
- } |
- |
- if (cur_cover->IsSpilled()) return; |
- DCHECK(pred_cover != NULL && cur_cover != NULL); |
- if (pred_cover != cur_cover) { |
- LOperand* pred_op = pred_cover->CreateAssignedOperand(chunk()->zone()); |
- LOperand* cur_op = cur_cover->CreateAssignedOperand(chunk()->zone()); |
- if (!pred_op->Equals(cur_op)) { |
- LGap* gap = NULL; |
- if (block->predecessors()->length() == 1) { |
- gap = GapAt(block->first_instruction_index()); |
- } else { |
- DCHECK(pred->end()->SecondSuccessor() == NULL); |
- gap = GetLastGap(pred); |
- |
- // We are going to insert a move before the branch instruction. |
- // Some branch instructions (e.g. loops' back edges) |
- // can potentially cause a GC so they have a pointer map. |
- // By inserting a move we essentially create a copy of a |
- // value which is invisible to PopulatePointerMaps(), because we store |
- // it into a location different from the operand of a live range |
- // covering a branch instruction. |
- // Thus we need to manually record a pointer. |
- LInstruction* branch = InstructionAt(pred->last_instruction_index()); |
- if (branch->HasPointerMap()) { |
- if (HasTaggedValue(range->id())) { |
- branch->pointer_map()->RecordPointer(cur_op, chunk()->zone()); |
- } else if (!cur_op->IsDoubleStackSlot() && |
- !cur_op->IsDoubleRegister()) { |
- branch->pointer_map()->RemovePointer(cur_op); |
- } |
- } |
- } |
- gap->GetOrCreateParallelMove( |
- LGap::START, chunk()->zone())->AddMove(pred_op, cur_op, |
- chunk()->zone()); |
- } |
- } |
-} |
- |
- |
-LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) { |
- int index = pos.InstructionIndex(); |
- if (IsGapAt(index)) { |
- LGap* gap = GapAt(index); |
- return gap->GetOrCreateParallelMove( |
- pos.IsInstructionStart() ? LGap::START : LGap::END, chunk()->zone()); |
- } |
- int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1); |
- return GapAt(gap_pos)->GetOrCreateParallelMove( |
- (gap_pos < index) ? LGap::AFTER : LGap::BEFORE, chunk()->zone()); |
-} |
- |
- |
-HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) { |
- LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex())); |
- return gap->block(); |
-} |
- |
- |
-void LAllocator::ConnectRanges() { |
- LAllocatorPhase phase("L_Connect ranges", this); |
- for (int i = 0; i < live_ranges()->length(); ++i) { |
- LiveRange* first_range = live_ranges()->at(i); |
- if (first_range == NULL || first_range->parent() != NULL) continue; |
- |
- LiveRange* second_range = first_range->next(); |
- while (second_range != NULL) { |
- LifetimePosition pos = second_range->Start(); |
- |
- if (!second_range->IsSpilled()) { |
- // Add gap move if the two live ranges touch and there is no block |
- // boundary. |
- if (first_range->End().Value() == pos.Value()) { |
- bool should_insert = true; |
- if (IsBlockBoundary(pos)) { |
- should_insert = CanEagerlyResolveControlFlow(GetBlock(pos)); |
- } |
- if (should_insert) { |
- LParallelMove* move = GetConnectingParallelMove(pos); |
- LOperand* prev_operand = first_range->CreateAssignedOperand( |
- chunk()->zone()); |
- LOperand* cur_operand = second_range->CreateAssignedOperand( |
- chunk()->zone()); |
- move->AddMove(prev_operand, cur_operand, |
- chunk()->zone()); |
- } |
- } |
- } |
- |
- first_range = second_range; |
- second_range = second_range->next(); |
- } |
- } |
-} |
- |
- |
-bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const { |
- if (block->predecessors()->length() != 1) return false; |
- return block->predecessors()->first()->block_id() == block->block_id() - 1; |
-} |
- |
- |
-void LAllocator::ResolveControlFlow() { |
- LAllocatorPhase phase("L_Resolve control flow", this); |
- const ZoneList<HBasicBlock*>* blocks = graph_->blocks(); |
- for (int block_id = 1; block_id < blocks->length(); ++block_id) { |
- HBasicBlock* block = blocks->at(block_id); |
- if (CanEagerlyResolveControlFlow(block)) continue; |
- BitVector* live = live_in_sets_[block->block_id()]; |
- BitVector::Iterator iterator(live); |
- while (!iterator.Done()) { |
- int operand_index = iterator.Current(); |
- for (int i = 0; i < block->predecessors()->length(); ++i) { |
- HBasicBlock* cur = block->predecessors()->at(i); |
- LiveRange* cur_range = LiveRangeFor(operand_index); |
- ResolveControlFlow(cur_range, block, cur); |
- } |
- iterator.Advance(); |
- } |
- } |
-} |
- |
- |
-void LAllocator::BuildLiveRanges() { |
- LAllocatorPhase phase("L_Build live ranges", this); |
- InitializeLivenessAnalysis(); |
- // Process the blocks in reverse order. |
- const ZoneList<HBasicBlock*>* blocks = graph_->blocks(); |
- for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) { |
- HBasicBlock* block = blocks->at(block_id); |
- BitVector* live = ComputeLiveOut(block); |
- // Initially consider all live_out values live for the entire block. We |
- // will shorten these intervals if necessary. |
- AddInitialIntervals(block, live); |
- |
- // Process the instructions in reverse order, generating and killing |
- // live values. |
- ProcessInstructions(block, live); |
- // All phi output operands are killed by this block. |
- const ZoneList<HPhi*>* phis = block->phis(); |
- for (int i = 0; i < phis->length(); ++i) { |
- // The live range interval already ends at the first instruction of the |
- // block. |
- HPhi* phi = phis->at(i); |
- live->Remove(phi->id()); |
- |
- LOperand* hint = NULL; |
- LOperand* phi_operand = NULL; |
- LGap* gap = GetLastGap(phi->block()->predecessors()->at(0)); |
- LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START, |
- chunk()->zone()); |
- for (int j = 0; j < move->move_operands()->length(); ++j) { |
- LOperand* to = move->move_operands()->at(j).destination(); |
- if (to->IsUnallocated() && |
- LUnallocated::cast(to)->virtual_register() == phi->id()) { |
- hint = move->move_operands()->at(j).source(); |
- phi_operand = to; |
- break; |
- } |
- } |
- DCHECK(hint != NULL); |
- |
- LifetimePosition block_start = LifetimePosition::FromInstructionIndex( |
- block->first_instruction_index()); |
- Define(block_start, phi_operand, hint); |
- } |
- |
- // Now live is live_in for this block except not including values live |
- // out on backward successor edges. |
- live_in_sets_[block_id] = live; |
- |
- // If this block is a loop header go back and patch up the necessary |
- // predecessor blocks. |
- if (block->IsLoopHeader()) { |
- // TODO(kmillikin): Need to be able to get the last block of the loop |
- // in the loop information. Add a live range stretching from the first |
- // loop instruction to the last for each value live on entry to the |
- // header. |
- HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge(); |
- BitVector::Iterator iterator(live); |
- LifetimePosition start = LifetimePosition::FromInstructionIndex( |
- block->first_instruction_index()); |
- LifetimePosition end = LifetimePosition::FromInstructionIndex( |
- back_edge->last_instruction_index()).NextInstruction(); |
- while (!iterator.Done()) { |
- int operand_index = iterator.Current(); |
- LiveRange* range = LiveRangeFor(operand_index); |
- range->EnsureInterval(start, end, zone()); |
- iterator.Advance(); |
- } |
- |
- for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) { |
- live_in_sets_[i]->Union(*live); |
- } |
- } |
- |
-#ifdef DEBUG |
- if (block_id == 0) { |
- BitVector::Iterator iterator(live); |
- bool found = false; |
- while (!iterator.Done()) { |
- found = true; |
- int operand_index = iterator.Current(); |
- { |
- AllowHandleDereference allow_deref; |
- PrintF("Function: %s\n", chunk_->info()->GetDebugName().get()); |
- } |
- PrintF("Value %d used before first definition!\n", operand_index); |
- LiveRange* range = LiveRangeFor(operand_index); |
- PrintF("First use is at %d\n", range->first_pos()->pos().Value()); |
- iterator.Advance(); |
- } |
- DCHECK(!found); |
- } |
-#endif |
- } |
- |
- for (int i = 0; i < live_ranges_.length(); ++i) { |
- if (live_ranges_[i] != NULL) { |
- live_ranges_[i]->kind_ = RequiredRegisterKind(live_ranges_[i]->id()); |
- } |
- } |
-} |
- |
- |
-bool LAllocator::SafePointsAreInOrder() const { |
- const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps(); |
- int safe_point = 0; |
- for (int i = 0; i < pointer_maps->length(); ++i) { |
- LPointerMap* map = pointer_maps->at(i); |
- if (safe_point > map->lithium_position()) return false; |
- safe_point = map->lithium_position(); |
- } |
- return true; |
-} |
- |
- |
-void LAllocator::PopulatePointerMaps() { |
- LAllocatorPhase phase("L_Populate pointer maps", this); |
- const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps(); |
- |
- DCHECK(SafePointsAreInOrder()); |
- |
- // Iterate over all safe point positions and record a pointer |
- // for all spilled live ranges at this point. |
- int first_safe_point_index = 0; |
- int last_range_start = 0; |
- for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) { |
- LiveRange* range = live_ranges()->at(range_idx); |
- if (range == NULL) continue; |
- // Iterate over the first parts of multi-part live ranges. |
- if (range->parent() != NULL) continue; |
- // Skip non-pointer values. |
- if (!HasTaggedValue(range->id())) continue; |
- // Skip empty live ranges. |
- if (range->IsEmpty()) continue; |
- |
- // Find the extent of the range and its children. |
- int start = range->Start().InstructionIndex(); |
- int end = 0; |
- for (LiveRange* cur = range; cur != NULL; cur = cur->next()) { |
- LifetimePosition this_end = cur->End(); |
- if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex(); |
- DCHECK(cur->Start().InstructionIndex() >= start); |
- } |
- |
- // Most of the ranges are in order, but not all. Keep an eye on when |
- // they step backwards and reset the first_safe_point_index so we don't |
- // miss any safe points. |
- if (start < last_range_start) { |
- first_safe_point_index = 0; |
- } |
- last_range_start = start; |
- |
- // Step across all the safe points that are before the start of this range, |
- // recording how far we step in order to save doing this for the next range. |
- while (first_safe_point_index < pointer_maps->length()) { |
- LPointerMap* map = pointer_maps->at(first_safe_point_index); |
- int safe_point = map->lithium_position(); |
- if (safe_point >= start) break; |
- first_safe_point_index++; |
- } |
- |
- // Step through the safe points to see whether they are in the range. |
- for (int safe_point_index = first_safe_point_index; |
- safe_point_index < pointer_maps->length(); |
- ++safe_point_index) { |
- LPointerMap* map = pointer_maps->at(safe_point_index); |
- int safe_point = map->lithium_position(); |
- |
- // The safe points are sorted so we can stop searching here. |
- if (safe_point - 1 > end) break; |
- |
- // Advance to the next active range that covers the current |
- // safe point position. |
- LifetimePosition safe_point_pos = |
- LifetimePosition::FromInstructionIndex(safe_point); |
- LiveRange* cur = range; |
- while (cur != NULL && !cur->Covers(safe_point_pos)) { |
- cur = cur->next(); |
- } |
- if (cur == NULL) continue; |
- |
- // Check if the live range is spilled and the safe point is after |
- // the spill position. |
- if (range->HasAllocatedSpillOperand() && |
- safe_point >= range->spill_start_index()) { |
- TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n", |
- range->id(), range->spill_start_index(), safe_point); |
- map->RecordPointer(range->GetSpillOperand(), chunk()->zone()); |
- } |
- |
- if (!cur->IsSpilled()) { |
- TraceAlloc("Pointer in register for range %d (start at %d) " |
- "at safe point %d\n", |
- cur->id(), cur->Start().Value(), safe_point); |
- LOperand* operand = cur->CreateAssignedOperand(chunk()->zone()); |
- DCHECK(!operand->IsStackSlot()); |
- map->RecordPointer(operand, chunk()->zone()); |
- } |
- } |
- } |
-} |
- |
- |
-void LAllocator::AllocateGeneralRegisters() { |
- LAllocatorPhase phase("L_Allocate general registers", this); |
- num_registers_ = |
- RegisterConfiguration::ArchDefault()->num_allocatable_general_registers(); |
- allocatable_register_codes_ = |
- RegisterConfiguration::ArchDefault()->allocatable_general_codes(); |
- mode_ = GENERAL_REGISTERS; |
- AllocateRegisters(); |
-} |
- |
- |
-void LAllocator::AllocateDoubleRegisters() { |
- LAllocatorPhase phase("L_Allocate double registers", this); |
- num_registers_ = |
- RegisterConfiguration::ArchDefault()->num_allocatable_double_registers(); |
- allocatable_register_codes_ = |
- RegisterConfiguration::ArchDefault()->allocatable_double_codes(); |
- mode_ = DOUBLE_REGISTERS; |
- AllocateRegisters(); |
-} |
- |
- |
-void LAllocator::AllocateRegisters() { |
- DCHECK(unhandled_live_ranges_.is_empty()); |
- |
- for (int i = 0; i < live_ranges_.length(); ++i) { |
- if (live_ranges_[i] != NULL) { |
- if (live_ranges_[i]->Kind() == mode_) { |
- AddToUnhandledUnsorted(live_ranges_[i]); |
- } |
- } |
- } |
- SortUnhandled(); |
- DCHECK(UnhandledIsSorted()); |
- |
- DCHECK(reusable_slots_.is_empty()); |
- DCHECK(active_live_ranges_.is_empty()); |
- DCHECK(inactive_live_ranges_.is_empty()); |
- |
- if (mode_ == DOUBLE_REGISTERS) { |
- for (int i = 0; i < fixed_double_live_ranges_.length(); ++i) { |
- LiveRange* current = fixed_double_live_ranges_.at(i); |
- if (current != NULL) { |
- AddToInactive(current); |
- } |
- } |
- } else { |
- DCHECK(mode_ == GENERAL_REGISTERS); |
- for (int i = 0; i < fixed_live_ranges_.length(); ++i) { |
- LiveRange* current = fixed_live_ranges_.at(i); |
- if (current != NULL) { |
- AddToInactive(current); |
- } |
- } |
- } |
- |
- while (!unhandled_live_ranges_.is_empty()) { |
- DCHECK(UnhandledIsSorted()); |
- LiveRange* current = unhandled_live_ranges_.RemoveLast(); |
- DCHECK(UnhandledIsSorted()); |
- LifetimePosition position = current->Start(); |
-#ifdef DEBUG |
- allocation_finger_ = position; |
-#endif |
- TraceAlloc("Processing interval %d start=%d\n", |
- current->id(), |
- position.Value()); |
- |
- if (current->HasAllocatedSpillOperand()) { |
- TraceAlloc("Live range %d already has a spill operand\n", current->id()); |
- LifetimePosition next_pos = position; |
- if (IsGapAt(next_pos.InstructionIndex())) { |
- next_pos = next_pos.NextInstruction(); |
- } |
- UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos); |
- // If the range already has a spill operand and it doesn't need a |
- // register immediately, split it and spill the first part of the range. |
- if (pos == NULL) { |
- Spill(current); |
- continue; |
- } else if (pos->pos().Value() > |
- current->Start().NextInstruction().Value()) { |
- // Do not spill live range eagerly if use position that can benefit from |
- // the register is too close to the start of live range. |
- SpillBetween(current, current->Start(), pos->pos()); |
- if (!AllocationOk()) return; |
- DCHECK(UnhandledIsSorted()); |
- continue; |
- } |
- } |
- |
- for (int i = 0; i < active_live_ranges_.length(); ++i) { |
- LiveRange* cur_active = active_live_ranges_.at(i); |
- if (cur_active->End().Value() <= position.Value()) { |
- ActiveToHandled(cur_active); |
- --i; // The live range was removed from the list of active live ranges. |
- } else if (!cur_active->Covers(position)) { |
- ActiveToInactive(cur_active); |
- --i; // The live range was removed from the list of active live ranges. |
- } |
- } |
- |
- for (int i = 0; i < inactive_live_ranges_.length(); ++i) { |
- LiveRange* cur_inactive = inactive_live_ranges_.at(i); |
- if (cur_inactive->End().Value() <= position.Value()) { |
- InactiveToHandled(cur_inactive); |
- --i; // Live range was removed from the list of inactive live ranges. |
- } else if (cur_inactive->Covers(position)) { |
- InactiveToActive(cur_inactive); |
- --i; // Live range was removed from the list of inactive live ranges. |
- } |
- } |
- |
- DCHECK(!current->HasRegisterAssigned() && !current->IsSpilled()); |
- |
- bool result = TryAllocateFreeReg(current); |
- if (!AllocationOk()) return; |
- |
- if (!result) AllocateBlockedReg(current); |
- if (!AllocationOk()) return; |
- |
- if (current->HasRegisterAssigned()) { |
- AddToActive(current); |
- } |
- } |
- |
- reusable_slots_.Rewind(0); |
- active_live_ranges_.Rewind(0); |
- inactive_live_ranges_.Rewind(0); |
-} |
- |
- |
-const char* LAllocator::RegisterName(int allocation_index) { |
- if (mode_ == GENERAL_REGISTERS) { |
- return Register::from_code(allocation_index).ToString(); |
- } else { |
- return DoubleRegister::from_code(allocation_index).ToString(); |
- } |
-} |
- |
- |
-void LAllocator::TraceAlloc(const char* msg, ...) { |
- if (FLAG_trace_alloc) { |
- va_list arguments; |
- va_start(arguments, msg); |
- base::OS::VPrint(msg, arguments); |
- va_end(arguments); |
- } |
-} |
- |
- |
-bool LAllocator::HasTaggedValue(int virtual_register) const { |
- HValue* value = graph_->LookupValue(virtual_register); |
- if (value == NULL) return false; |
- return value->representation().IsTagged() && !value->type().IsSmi(); |
-} |
- |
- |
-RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const { |
- if (virtual_register < first_artificial_register_) { |
- HValue* value = graph_->LookupValue(virtual_register); |
- if (value != NULL && value->representation().IsDouble()) { |
- return DOUBLE_REGISTERS; |
- } |
- } else if (double_artificial_registers_.Contains( |
- virtual_register - first_artificial_register_)) { |
- return DOUBLE_REGISTERS; |
- } |
- |
- return GENERAL_REGISTERS; |
-} |
- |
- |
-void LAllocator::AddToActive(LiveRange* range) { |
- TraceAlloc("Add live range %d to active\n", range->id()); |
- active_live_ranges_.Add(range, zone()); |
-} |
- |
- |
-void LAllocator::AddToInactive(LiveRange* range) { |
- TraceAlloc("Add live range %d to inactive\n", range->id()); |
- inactive_live_ranges_.Add(range, zone()); |
-} |
- |
- |
-void LAllocator::AddToUnhandledSorted(LiveRange* range) { |
- if (range == NULL || range->IsEmpty()) return; |
- DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled()); |
- DCHECK(allocation_finger_.Value() <= range->Start().Value()); |
- for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) { |
- LiveRange* cur_range = unhandled_live_ranges_.at(i); |
- if (range->ShouldBeAllocatedBefore(cur_range)) { |
- TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1); |
- unhandled_live_ranges_.InsertAt(i + 1, range, zone()); |
- DCHECK(UnhandledIsSorted()); |
- return; |
- } |
- } |
- TraceAlloc("Add live range %d to unhandled at start\n", range->id()); |
- unhandled_live_ranges_.InsertAt(0, range, zone()); |
- DCHECK(UnhandledIsSorted()); |
-} |
- |
- |
-void LAllocator::AddToUnhandledUnsorted(LiveRange* range) { |
- if (range == NULL || range->IsEmpty()) return; |
- DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled()); |
- TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id()); |
- unhandled_live_ranges_.Add(range, zone()); |
-} |
- |
- |
-static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) { |
- DCHECK(!(*a)->ShouldBeAllocatedBefore(*b) || |
- !(*b)->ShouldBeAllocatedBefore(*a)); |
- if ((*a)->ShouldBeAllocatedBefore(*b)) return 1; |
- if ((*b)->ShouldBeAllocatedBefore(*a)) return -1; |
- return (*a)->id() - (*b)->id(); |
-} |
- |
- |
-// Sort the unhandled live ranges so that the ranges to be processed first are |
-// at the end of the array list. This is convenient for the register allocation |
-// algorithm because it is efficient to remove elements from the end. |
-void LAllocator::SortUnhandled() { |
- TraceAlloc("Sort unhandled\n"); |
- unhandled_live_ranges_.Sort(&UnhandledSortHelper); |
-} |
- |
- |
-bool LAllocator::UnhandledIsSorted() { |
- int len = unhandled_live_ranges_.length(); |
- for (int i = 1; i < len; i++) { |
- LiveRange* a = unhandled_live_ranges_.at(i - 1); |
- LiveRange* b = unhandled_live_ranges_.at(i); |
- if (a->Start().Value() < b->Start().Value()) return false; |
- } |
- return true; |
-} |
- |
- |
-void LAllocator::FreeSpillSlot(LiveRange* range) { |
- // Check that we are the last range. |
- if (range->next() != NULL) return; |
- |
- if (!range->TopLevel()->HasAllocatedSpillOperand()) return; |
- |
- int index = range->TopLevel()->GetSpillOperand()->index(); |
- if (index >= 0) { |
- reusable_slots_.Add(range, zone()); |
- } |
-} |
- |
- |
-LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) { |
- if (reusable_slots_.is_empty()) return NULL; |
- if (reusable_slots_.first()->End().Value() > |
- range->TopLevel()->Start().Value()) { |
- return NULL; |
- } |
- LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand(); |
- reusable_slots_.Remove(0); |
- return result; |
-} |
- |
- |
-void LAllocator::ActiveToHandled(LiveRange* range) { |
- DCHECK(active_live_ranges_.Contains(range)); |
- active_live_ranges_.RemoveElement(range); |
- TraceAlloc("Moving live range %d from active to handled\n", range->id()); |
- FreeSpillSlot(range); |
-} |
- |
- |
-void LAllocator::ActiveToInactive(LiveRange* range) { |
- DCHECK(active_live_ranges_.Contains(range)); |
- active_live_ranges_.RemoveElement(range); |
- inactive_live_ranges_.Add(range, zone()); |
- TraceAlloc("Moving live range %d from active to inactive\n", range->id()); |
-} |
- |
- |
-void LAllocator::InactiveToHandled(LiveRange* range) { |
- DCHECK(inactive_live_ranges_.Contains(range)); |
- inactive_live_ranges_.RemoveElement(range); |
- TraceAlloc("Moving live range %d from inactive to handled\n", range->id()); |
- FreeSpillSlot(range); |
-} |
- |
- |
-void LAllocator::InactiveToActive(LiveRange* range) { |
- DCHECK(inactive_live_ranges_.Contains(range)); |
- inactive_live_ranges_.RemoveElement(range); |
- active_live_ranges_.Add(range, zone()); |
- TraceAlloc("Moving live range %d from inactive to active\n", range->id()); |
-} |
- |
- |
-bool LAllocator::TryAllocateFreeReg(LiveRange* current) { |
- DCHECK(DoubleRegister::kMaxNumRegisters >= Register::kNumRegisters); |
- |
- LifetimePosition free_until_pos[DoubleRegister::kMaxNumRegisters]; |
- |
- for (int i = 0; i < DoubleRegister::kMaxNumRegisters; i++) { |
- free_until_pos[i] = LifetimePosition::MaxPosition(); |
- } |
- |
- for (int i = 0; i < active_live_ranges_.length(); ++i) { |
- LiveRange* cur_active = active_live_ranges_.at(i); |
- free_until_pos[cur_active->assigned_register()] = |
- LifetimePosition::FromInstructionIndex(0); |
- } |
- |
- for (int i = 0; i < inactive_live_ranges_.length(); ++i) { |
- LiveRange* cur_inactive = inactive_live_ranges_.at(i); |
- DCHECK(cur_inactive->End().Value() > current->Start().Value()); |
- LifetimePosition next_intersection = |
- cur_inactive->FirstIntersection(current); |
- if (!next_intersection.IsValid()) continue; |
- int cur_reg = cur_inactive->assigned_register(); |
- free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection); |
- } |
- |
- LOperand* hint = current->FirstHint(); |
- if (hint != NULL && (hint->IsRegister() || hint->IsDoubleRegister())) { |
- int register_index = hint->index(); |
- TraceAlloc( |
- "Found reg hint %s (free until [%d) for live range %d (end %d[).\n", |
- RegisterName(register_index), |
- free_until_pos[register_index].Value(), |
- current->id(), |
- current->End().Value()); |
- |
- // The desired register is free until the end of the current live range. |
- if (free_until_pos[register_index].Value() >= current->End().Value()) { |
- TraceAlloc("Assigning preferred reg %s to live range %d\n", |
- RegisterName(register_index), |
- current->id()); |
- SetLiveRangeAssignedRegister(current, register_index); |
- return true; |
- } |
- } |
- |
- // Find the register which stays free for the longest time. |
- int reg = allocatable_register_codes_[0]; |
- for (int i = 1; i < RegisterCount(); ++i) { |
- int code = allocatable_register_codes_[i]; |
- if (free_until_pos[code].Value() > free_until_pos[reg].Value()) { |
- reg = code; |
- } |
- } |
- |
- LifetimePosition pos = free_until_pos[reg]; |
- |
- if (pos.Value() <= current->Start().Value()) { |
- // All registers are blocked. |
- return false; |
- } |
- |
- if (pos.Value() < current->End().Value()) { |
- // Register reg is available at the range start but becomes blocked before |
- // the range end. Split current at position where it becomes blocked. |
- LiveRange* tail = SplitRangeAt(current, pos); |
- if (!AllocationOk()) return false; |
- AddToUnhandledSorted(tail); |
- } |
- |
- |
- // Register reg is available at the range start and is free until |
- // the range end. |
- DCHECK(pos.Value() >= current->End().Value()); |
- TraceAlloc("Assigning free reg %s to live range %d\n", |
- RegisterName(reg), |
- current->id()); |
- SetLiveRangeAssignedRegister(current, reg); |
- |
- return true; |
-} |
- |
- |
-void LAllocator::AllocateBlockedReg(LiveRange* current) { |
- UsePosition* register_use = current->NextRegisterPosition(current->Start()); |
- if (register_use == NULL) { |
- // There is no use in the current live range that requires a register. |
- // We can just spill it. |
- Spill(current); |
- return; |
- } |
- |
- |
- LifetimePosition use_pos[DoubleRegister::kMaxNumRegisters]; |
- LifetimePosition block_pos[DoubleRegister::kMaxNumRegisters]; |
- |
- for (int i = 0; i < DoubleRegister::kMaxNumRegisters; i++) { |
- use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition(); |
- } |
- |
- for (int i = 0; i < active_live_ranges_.length(); ++i) { |
- LiveRange* range = active_live_ranges_[i]; |
- int cur_reg = range->assigned_register(); |
- if (range->IsFixed() || !range->CanBeSpilled(current->Start())) { |
- block_pos[cur_reg] = use_pos[cur_reg] = |
- LifetimePosition::FromInstructionIndex(0); |
- } else { |
- UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial( |
- current->Start()); |
- if (next_use == NULL) { |
- use_pos[cur_reg] = range->End(); |
- } else { |
- use_pos[cur_reg] = next_use->pos(); |
- } |
- } |
- } |
- |
- for (int i = 0; i < inactive_live_ranges_.length(); ++i) { |
- LiveRange* range = inactive_live_ranges_.at(i); |
- DCHECK(range->End().Value() > current->Start().Value()); |
- LifetimePosition next_intersection = range->FirstIntersection(current); |
- if (!next_intersection.IsValid()) continue; |
- int cur_reg = range->assigned_register(); |
- if (range->IsFixed()) { |
- block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection); |
- use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]); |
- } else { |
- use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection); |
- } |
- } |
- |
- int reg = allocatable_register_codes_[0]; |
- for (int i = 1; i < RegisterCount(); ++i) { |
- int code = allocatable_register_codes_[i]; |
- if (use_pos[code].Value() > use_pos[reg].Value()) { |
- reg = code; |
- } |
- } |
- |
- LifetimePosition pos = use_pos[reg]; |
- |
- if (pos.Value() < register_use->pos().Value()) { |
- // All registers are blocked before the first use that requires a register. |
- // Spill starting part of live range up to that use. |
- SpillBetween(current, current->Start(), register_use->pos()); |
- return; |
- } |
- |
- if (block_pos[reg].Value() < current->End().Value()) { |
- // Register becomes blocked before the current range end. Split before that |
- // position. |
- LiveRange* tail = SplitBetween(current, |
- current->Start(), |
- block_pos[reg].InstructionStart()); |
- if (!AllocationOk()) return; |
- AddToUnhandledSorted(tail); |
- } |
- |
- // Register reg is not blocked for the whole range. |
- DCHECK(block_pos[reg].Value() >= current->End().Value()); |
- TraceAlloc("Assigning blocked reg %s to live range %d\n", |
- RegisterName(reg), |
- current->id()); |
- SetLiveRangeAssignedRegister(current, reg); |
- |
- // This register was not free. Thus we need to find and spill |
- // parts of active and inactive live regions that use the same register |
- // at the same lifetime positions as current. |
- SplitAndSpillIntersecting(current); |
-} |
- |
- |
-LifetimePosition LAllocator::FindOptimalSpillingPos(LiveRange* range, |
- LifetimePosition pos) { |
- HBasicBlock* block = GetBlock(pos.InstructionStart()); |
- HBasicBlock* loop_header = |
- block->IsLoopHeader() ? block : block->parent_loop_header(); |
- |
- if (loop_header == NULL) return pos; |
- |
- UsePosition* prev_use = |
- range->PreviousUsePositionRegisterIsBeneficial(pos); |
- |
- while (loop_header != NULL) { |
- // We are going to spill live range inside the loop. |
- // If possible try to move spilling position backwards to loop header. |
- // This will reduce number of memory moves on the back edge. |
- LifetimePosition loop_start = LifetimePosition::FromInstructionIndex( |
- loop_header->first_instruction_index()); |
- |
- if (range->Covers(loop_start)) { |
- if (prev_use == NULL || prev_use->pos().Value() < loop_start.Value()) { |
- // No register beneficial use inside the loop before the pos. |
- pos = loop_start; |
- } |
- } |
- |
- // Try hoisting out to an outer loop. |
- loop_header = loop_header->parent_loop_header(); |
- } |
- |
- return pos; |
-} |
- |
- |
-void LAllocator::SplitAndSpillIntersecting(LiveRange* current) { |
- DCHECK(current->HasRegisterAssigned()); |
- int reg = current->assigned_register(); |
- LifetimePosition split_pos = current->Start(); |
- for (int i = 0; i < active_live_ranges_.length(); ++i) { |
- LiveRange* range = active_live_ranges_[i]; |
- if (range->assigned_register() == reg) { |
- UsePosition* next_pos = range->NextRegisterPosition(current->Start()); |
- LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos); |
- if (next_pos == NULL) { |
- SpillAfter(range, spill_pos); |
- } else { |
- // When spilling between spill_pos and next_pos ensure that the range |
- // remains spilled at least until the start of the current live range. |
- // This guarantees that we will not introduce new unhandled ranges that |
- // start before the current range as this violates allocation invariant |
- // and will lead to an inconsistent state of active and inactive |
- // live-ranges: ranges are allocated in order of their start positions, |
- // ranges are retired from active/inactive when the start of the |
- // current live-range is larger than their end. |
- SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos()); |
- } |
- if (!AllocationOk()) return; |
- ActiveToHandled(range); |
- --i; |
- } |
- } |
- |
- for (int i = 0; i < inactive_live_ranges_.length(); ++i) { |
- LiveRange* range = inactive_live_ranges_[i]; |
- DCHECK(range->End().Value() > current->Start().Value()); |
- if (range->assigned_register() == reg && !range->IsFixed()) { |
- LifetimePosition next_intersection = range->FirstIntersection(current); |
- if (next_intersection.IsValid()) { |
- UsePosition* next_pos = range->NextRegisterPosition(current->Start()); |
- if (next_pos == NULL) { |
- SpillAfter(range, split_pos); |
- } else { |
- next_intersection = Min(next_intersection, next_pos->pos()); |
- SpillBetween(range, split_pos, next_intersection); |
- } |
- if (!AllocationOk()) return; |
- InactiveToHandled(range); |
- --i; |
- } |
- } |
- } |
-} |
- |
- |
-bool LAllocator::IsBlockBoundary(LifetimePosition pos) { |
- return pos.IsInstructionStart() && |
- InstructionAt(pos.InstructionIndex())->IsLabel(); |
-} |
- |
- |
-LiveRange* LAllocator::SplitRangeAt(LiveRange* range, LifetimePosition pos) { |
- DCHECK(!range->IsFixed()); |
- TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value()); |
- |
- if (pos.Value() <= range->Start().Value()) return range; |
- |
- // We can't properly connect liveranges if split occured at the end |
- // of control instruction. |
- DCHECK(pos.IsInstructionStart() || |
- !chunk_->instructions()->at(pos.InstructionIndex())->IsControl()); |
- |
- int vreg = GetVirtualRegister(); |
- if (!AllocationOk()) return NULL; |
- LiveRange* result = LiveRangeFor(vreg); |
- range->SplitAt(pos, result, zone()); |
- return result; |
-} |
- |
- |
-LiveRange* LAllocator::SplitBetween(LiveRange* range, |
- LifetimePosition start, |
- LifetimePosition end) { |
- DCHECK(!range->IsFixed()); |
- TraceAlloc("Splitting live range %d in position between [%d, %d]\n", |
- range->id(), |
- start.Value(), |
- end.Value()); |
- |
- LifetimePosition split_pos = FindOptimalSplitPos(start, end); |
- DCHECK(split_pos.Value() >= start.Value()); |
- return SplitRangeAt(range, split_pos); |
-} |
- |
- |
-LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start, |
- LifetimePosition end) { |
- int start_instr = start.InstructionIndex(); |
- int end_instr = end.InstructionIndex(); |
- DCHECK(start_instr <= end_instr); |
- |
- // We have no choice |
- if (start_instr == end_instr) return end; |
- |
- HBasicBlock* start_block = GetBlock(start); |
- HBasicBlock* end_block = GetBlock(end); |
- |
- if (end_block == start_block) { |
- // The interval is split in the same basic block. Split at the latest |
- // possible position. |
- return end; |
- } |
- |
- HBasicBlock* block = end_block; |
- // Find header of outermost loop. |
- while (block->parent_loop_header() != NULL && |
- block->parent_loop_header()->block_id() > start_block->block_id()) { |
- block = block->parent_loop_header(); |
- } |
- |
- // We did not find any suitable outer loop. Split at the latest possible |
- // position unless end_block is a loop header itself. |
- if (block == end_block && !end_block->IsLoopHeader()) return end; |
- |
- return LifetimePosition::FromInstructionIndex( |
- block->first_instruction_index()); |
-} |
- |
- |
-void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) { |
- LiveRange* second_part = SplitRangeAt(range, pos); |
- if (!AllocationOk()) return; |
- Spill(second_part); |
-} |
- |
- |
-void LAllocator::SpillBetween(LiveRange* range, |
- LifetimePosition start, |
- LifetimePosition end) { |
- SpillBetweenUntil(range, start, start, end); |
-} |
- |
- |
-void LAllocator::SpillBetweenUntil(LiveRange* range, |
- LifetimePosition start, |
- LifetimePosition until, |
- LifetimePosition end) { |
- CHECK(start.Value() < end.Value()); |
- LiveRange* second_part = SplitRangeAt(range, start); |
- if (!AllocationOk()) return; |
- |
- if (second_part->Start().Value() < end.Value()) { |
- // The split result intersects with [start, end[. |
- // Split it at position between ]start+1, end[, spill the middle part |
- // and put the rest to unhandled. |
- LiveRange* third_part = SplitBetween( |
- second_part, |
- Max(second_part->Start().InstructionEnd(), until), |
- end.PrevInstruction().InstructionEnd()); |
- if (!AllocationOk()) return; |
- |
- DCHECK(third_part != second_part); |
- |
- Spill(second_part); |
- AddToUnhandledSorted(third_part); |
- } else { |
- // The split result does not intersect with [start, end[. |
- // Nothing to spill. Just put it to unhandled as whole. |
- AddToUnhandledSorted(second_part); |
- } |
-} |
- |
- |
-void LAllocator::Spill(LiveRange* range) { |
- DCHECK(!range->IsSpilled()); |
- TraceAlloc("Spilling live range %d\n", range->id()); |
- LiveRange* first = range->TopLevel(); |
- |
- if (!first->HasAllocatedSpillOperand()) { |
- LOperand* op = TryReuseSpillSlot(range); |
- if (op == NULL) op = chunk_->GetNextSpillSlot(range->Kind()); |
- first->SetSpillOperand(op); |
- } |
- range->MakeSpilled(chunk()->zone()); |
-} |
- |
- |
-int LAllocator::RegisterCount() const { |
- return num_registers_; |
-} |
- |
- |
-#ifdef DEBUG |
- |
- |
-void LAllocator::Verify() const { |
- for (int i = 0; i < live_ranges()->length(); ++i) { |
- LiveRange* current = live_ranges()->at(i); |
- if (current != NULL) current->Verify(); |
- } |
-} |
- |
- |
-#endif |
- |
- |
-LAllocatorPhase::LAllocatorPhase(const char* name, LAllocator* allocator) |
- : CompilationPhase(name, allocator->graph()->info()), |
- allocator_(allocator) { |
- if (FLAG_hydrogen_stats) { |
- allocator_zone_start_allocation_size_ = |
- allocator->zone()->allocation_size(); |
- } |
-} |
- |
- |
-LAllocatorPhase::~LAllocatorPhase() { |
- if (FLAG_hydrogen_stats) { |
- size_t size = allocator_->zone()->allocation_size() - |
- allocator_zone_start_allocation_size_; |
- isolate()->GetHStatistics()->SaveTiming(name(), base::TimeDelta(), size); |
- } |
- |
- if (ShouldProduceTraceOutput()) { |
- isolate()->GetHTracer()->TraceLithium(name(), allocator_->chunk()); |
- isolate()->GetHTracer()->TraceLiveRanges(name(), allocator_); |
- } |
- |
-#ifdef DEBUG |
- if (allocator_ != NULL) allocator_->Verify(); |
-#endif |
-} |
- |
- |
-} // namespace internal |
-} // namespace v8 |