OLD | NEW |
| (Empty) |
1 // Copyright 2012 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #if V8_TARGET_ARCH_X87 | |
6 | |
7 #include "src/base/bits.h" | |
8 #include "src/code-factory.h" | |
9 #include "src/code-stubs.h" | |
10 #include "src/codegen.h" | |
11 #include "src/deoptimizer.h" | |
12 #include "src/hydrogen-osr.h" | |
13 #include "src/ic/ic.h" | |
14 #include "src/ic/stub-cache.h" | |
15 #include "src/profiler/cpu-profiler.h" | |
16 #include "src/x87/frames-x87.h" | |
17 #include "src/x87/lithium-codegen-x87.h" | |
18 | |
19 namespace v8 { | |
20 namespace internal { | |
21 | |
22 | |
23 // When invoking builtins, we need to record the safepoint in the middle of | |
24 // the invoke instruction sequence generated by the macro assembler. | |
25 class SafepointGenerator final : public CallWrapper { | |
26 public: | |
27 SafepointGenerator(LCodeGen* codegen, | |
28 LPointerMap* pointers, | |
29 Safepoint::DeoptMode mode) | |
30 : codegen_(codegen), | |
31 pointers_(pointers), | |
32 deopt_mode_(mode) {} | |
33 virtual ~SafepointGenerator() {} | |
34 | |
35 void BeforeCall(int call_size) const override {} | |
36 | |
37 void AfterCall() const override { | |
38 codegen_->RecordSafepoint(pointers_, deopt_mode_); | |
39 } | |
40 | |
41 private: | |
42 LCodeGen* codegen_; | |
43 LPointerMap* pointers_; | |
44 Safepoint::DeoptMode deopt_mode_; | |
45 }; | |
46 | |
47 | |
48 #define __ masm()-> | |
49 | |
50 bool LCodeGen::GenerateCode() { | |
51 LPhase phase("Z_Code generation", chunk()); | |
52 DCHECK(is_unused()); | |
53 status_ = GENERATING; | |
54 | |
55 // Open a frame scope to indicate that there is a frame on the stack. The | |
56 // MANUAL indicates that the scope shouldn't actually generate code to set up | |
57 // the frame (that is done in GeneratePrologue). | |
58 FrameScope frame_scope(masm_, StackFrame::MANUAL); | |
59 | |
60 support_aligned_spilled_doubles_ = info()->IsOptimizing(); | |
61 | |
62 dynamic_frame_alignment_ = info()->IsOptimizing() && | |
63 ((chunk()->num_double_slots() > 2 && | |
64 !chunk()->graph()->is_recursive()) || | |
65 !info()->osr_ast_id().IsNone()); | |
66 | |
67 return GeneratePrologue() && | |
68 GenerateBody() && | |
69 GenerateDeferredCode() && | |
70 GenerateJumpTable() && | |
71 GenerateSafepointTable(); | |
72 } | |
73 | |
74 | |
75 void LCodeGen::FinishCode(Handle<Code> code) { | |
76 DCHECK(is_done()); | |
77 code->set_stack_slots(GetStackSlotCount()); | |
78 code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); | |
79 PopulateDeoptimizationData(code); | |
80 if (info()->ShouldEnsureSpaceForLazyDeopt()) { | |
81 Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code); | |
82 } | |
83 } | |
84 | |
85 | |
86 #ifdef _MSC_VER | |
87 void LCodeGen::MakeSureStackPagesMapped(int offset) { | |
88 const int kPageSize = 4 * KB; | |
89 for (offset -= kPageSize; offset > 0; offset -= kPageSize) { | |
90 __ mov(Operand(esp, offset), eax); | |
91 } | |
92 } | |
93 #endif | |
94 | |
95 | |
96 bool LCodeGen::GeneratePrologue() { | |
97 DCHECK(is_generating()); | |
98 | |
99 if (info()->IsOptimizing()) { | |
100 ProfileEntryHookStub::MaybeCallEntryHook(masm_); | |
101 | |
102 #ifdef DEBUG | |
103 if (strlen(FLAG_stop_at) > 0 && | |
104 info_->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { | |
105 __ int3(); | |
106 } | |
107 #endif | |
108 | |
109 // Sloppy mode functions and builtins need to replace the receiver with the | |
110 // global proxy when called as functions (without an explicit receiver | |
111 // object). | |
112 if (info()->MustReplaceUndefinedReceiverWithGlobalProxy()) { | |
113 Label ok; | |
114 // +1 for return address. | |
115 int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize; | |
116 __ mov(ecx, Operand(esp, receiver_offset)); | |
117 | |
118 __ cmp(ecx, isolate()->factory()->undefined_value()); | |
119 __ j(not_equal, &ok, Label::kNear); | |
120 | |
121 __ mov(ecx, GlobalObjectOperand()); | |
122 __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalProxyOffset)); | |
123 | |
124 __ mov(Operand(esp, receiver_offset), ecx); | |
125 | |
126 __ bind(&ok); | |
127 } | |
128 | |
129 if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) { | |
130 // Move state of dynamic frame alignment into edx. | |
131 __ Move(edx, Immediate(kNoAlignmentPadding)); | |
132 | |
133 Label do_not_pad, align_loop; | |
134 STATIC_ASSERT(kDoubleSize == 2 * kPointerSize); | |
135 // Align esp + 4 to a multiple of 2 * kPointerSize. | |
136 __ test(esp, Immediate(kPointerSize)); | |
137 __ j(not_zero, &do_not_pad, Label::kNear); | |
138 __ push(Immediate(0)); | |
139 __ mov(ebx, esp); | |
140 __ mov(edx, Immediate(kAlignmentPaddingPushed)); | |
141 // Copy arguments, receiver, and return address. | |
142 __ mov(ecx, Immediate(scope()->num_parameters() + 2)); | |
143 | |
144 __ bind(&align_loop); | |
145 __ mov(eax, Operand(ebx, 1 * kPointerSize)); | |
146 __ mov(Operand(ebx, 0), eax); | |
147 __ add(Operand(ebx), Immediate(kPointerSize)); | |
148 __ dec(ecx); | |
149 __ j(not_zero, &align_loop, Label::kNear); | |
150 __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue)); | |
151 __ bind(&do_not_pad); | |
152 } | |
153 } | |
154 | |
155 info()->set_prologue_offset(masm_->pc_offset()); | |
156 if (NeedsEagerFrame()) { | |
157 DCHECK(!frame_is_built_); | |
158 frame_is_built_ = true; | |
159 if (info()->IsStub()) { | |
160 __ StubPrologue(); | |
161 } else { | |
162 __ Prologue(info()->IsCodePreAgingActive()); | |
163 } | |
164 } | |
165 | |
166 if (info()->IsOptimizing() && | |
167 dynamic_frame_alignment_ && | |
168 FLAG_debug_code) { | |
169 __ test(esp, Immediate(kPointerSize)); | |
170 __ Assert(zero, kFrameIsExpectedToBeAligned); | |
171 } | |
172 | |
173 // Reserve space for the stack slots needed by the code. | |
174 int slots = GetStackSlotCount(); | |
175 DCHECK(slots != 0 || !info()->IsOptimizing()); | |
176 if (slots > 0) { | |
177 if (slots == 1) { | |
178 if (dynamic_frame_alignment_) { | |
179 __ push(edx); | |
180 } else { | |
181 __ push(Immediate(kNoAlignmentPadding)); | |
182 } | |
183 } else { | |
184 if (FLAG_debug_code) { | |
185 __ sub(Operand(esp), Immediate(slots * kPointerSize)); | |
186 #ifdef _MSC_VER | |
187 MakeSureStackPagesMapped(slots * kPointerSize); | |
188 #endif | |
189 __ push(eax); | |
190 __ mov(Operand(eax), Immediate(slots)); | |
191 Label loop; | |
192 __ bind(&loop); | |
193 __ mov(MemOperand(esp, eax, times_4, 0), | |
194 Immediate(kSlotsZapValue)); | |
195 __ dec(eax); | |
196 __ j(not_zero, &loop); | |
197 __ pop(eax); | |
198 } else { | |
199 __ sub(Operand(esp), Immediate(slots * kPointerSize)); | |
200 #ifdef _MSC_VER | |
201 MakeSureStackPagesMapped(slots * kPointerSize); | |
202 #endif | |
203 } | |
204 | |
205 if (support_aligned_spilled_doubles_) { | |
206 Comment(";;; Store dynamic frame alignment tag for spilled doubles"); | |
207 // Store dynamic frame alignment state in the first local. | |
208 int offset = JavaScriptFrameConstants::kDynamicAlignmentStateOffset; | |
209 if (dynamic_frame_alignment_) { | |
210 __ mov(Operand(ebp, offset), edx); | |
211 } else { | |
212 __ mov(Operand(ebp, offset), Immediate(kNoAlignmentPadding)); | |
213 } | |
214 } | |
215 } | |
216 } | |
217 | |
218 // Initailize FPU state. | |
219 __ fninit(); | |
220 | |
221 return !is_aborted(); | |
222 } | |
223 | |
224 | |
225 void LCodeGen::DoPrologue(LPrologue* instr) { | |
226 Comment(";;; Prologue begin"); | |
227 | |
228 // Possibly allocate a local context. | |
229 if (info_->num_heap_slots() > 0) { | |
230 Comment(";;; Allocate local context"); | |
231 bool need_write_barrier = true; | |
232 // Argument to NewContext is the function, which is still in edi. | |
233 int slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; | |
234 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; | |
235 if (info()->scope()->is_script_scope()) { | |
236 __ push(edi); | |
237 __ Push(info()->scope()->GetScopeInfo(info()->isolate())); | |
238 __ CallRuntime(Runtime::kNewScriptContext, 2); | |
239 deopt_mode = Safepoint::kLazyDeopt; | |
240 } else if (slots <= FastNewContextStub::kMaximumSlots) { | |
241 FastNewContextStub stub(isolate(), slots); | |
242 __ CallStub(&stub); | |
243 // Result of FastNewContextStub is always in new space. | |
244 need_write_barrier = false; | |
245 } else { | |
246 __ push(edi); | |
247 __ CallRuntime(Runtime::kNewFunctionContext, 1); | |
248 } | |
249 RecordSafepoint(deopt_mode); | |
250 | |
251 // Context is returned in eax. It replaces the context passed to us. | |
252 // It's saved in the stack and kept live in esi. | |
253 __ mov(esi, eax); | |
254 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax); | |
255 | |
256 // Copy parameters into context if necessary. | |
257 int num_parameters = scope()->num_parameters(); | |
258 int first_parameter = scope()->has_this_declaration() ? -1 : 0; | |
259 for (int i = first_parameter; i < num_parameters; i++) { | |
260 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i); | |
261 if (var->IsContextSlot()) { | |
262 int parameter_offset = StandardFrameConstants::kCallerSPOffset + | |
263 (num_parameters - 1 - i) * kPointerSize; | |
264 // Load parameter from stack. | |
265 __ mov(eax, Operand(ebp, parameter_offset)); | |
266 // Store it in the context. | |
267 int context_offset = Context::SlotOffset(var->index()); | |
268 __ mov(Operand(esi, context_offset), eax); | |
269 // Update the write barrier. This clobbers eax and ebx. | |
270 if (need_write_barrier) { | |
271 __ RecordWriteContextSlot(esi, context_offset, eax, ebx, | |
272 kDontSaveFPRegs); | |
273 } else if (FLAG_debug_code) { | |
274 Label done; | |
275 __ JumpIfInNewSpace(esi, eax, &done, Label::kNear); | |
276 __ Abort(kExpectedNewSpaceObject); | |
277 __ bind(&done); | |
278 } | |
279 } | |
280 } | |
281 Comment(";;; End allocate local context"); | |
282 } | |
283 | |
284 Comment(";;; Prologue end"); | |
285 } | |
286 | |
287 | |
288 void LCodeGen::GenerateOsrPrologue() { | |
289 // Generate the OSR entry prologue at the first unknown OSR value, or if there | |
290 // are none, at the OSR entrypoint instruction. | |
291 if (osr_pc_offset_ >= 0) return; | |
292 | |
293 osr_pc_offset_ = masm()->pc_offset(); | |
294 | |
295 // Move state of dynamic frame alignment into edx. | |
296 __ Move(edx, Immediate(kNoAlignmentPadding)); | |
297 | |
298 if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) { | |
299 Label do_not_pad, align_loop; | |
300 // Align ebp + 4 to a multiple of 2 * kPointerSize. | |
301 __ test(ebp, Immediate(kPointerSize)); | |
302 __ j(zero, &do_not_pad, Label::kNear); | |
303 __ push(Immediate(0)); | |
304 __ mov(ebx, esp); | |
305 __ mov(edx, Immediate(kAlignmentPaddingPushed)); | |
306 | |
307 // Move all parts of the frame over one word. The frame consists of: | |
308 // unoptimized frame slots, alignment state, context, frame pointer, return | |
309 // address, receiver, and the arguments. | |
310 __ mov(ecx, Immediate(scope()->num_parameters() + | |
311 5 + graph()->osr()->UnoptimizedFrameSlots())); | |
312 | |
313 __ bind(&align_loop); | |
314 __ mov(eax, Operand(ebx, 1 * kPointerSize)); | |
315 __ mov(Operand(ebx, 0), eax); | |
316 __ add(Operand(ebx), Immediate(kPointerSize)); | |
317 __ dec(ecx); | |
318 __ j(not_zero, &align_loop, Label::kNear); | |
319 __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue)); | |
320 __ sub(Operand(ebp), Immediate(kPointerSize)); | |
321 __ bind(&do_not_pad); | |
322 } | |
323 | |
324 // Save the first local, which is overwritten by the alignment state. | |
325 Operand alignment_loc = MemOperand(ebp, -3 * kPointerSize); | |
326 __ push(alignment_loc); | |
327 | |
328 // Set the dynamic frame alignment state. | |
329 __ mov(alignment_loc, edx); | |
330 | |
331 // Adjust the frame size, subsuming the unoptimized frame into the | |
332 // optimized frame. | |
333 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); | |
334 DCHECK(slots >= 1); | |
335 __ sub(esp, Immediate((slots - 1) * kPointerSize)); | |
336 | |
337 // Initailize FPU state. | |
338 __ fninit(); | |
339 } | |
340 | |
341 | |
342 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { | |
343 if (instr->IsCall()) { | |
344 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); | |
345 } | |
346 if (!instr->IsLazyBailout() && !instr->IsGap()) { | |
347 safepoints_.BumpLastLazySafepointIndex(); | |
348 } | |
349 FlushX87StackIfNecessary(instr); | |
350 } | |
351 | |
352 | |
353 void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) { | |
354 // When return from function call, FPU should be initialized again. | |
355 if (instr->IsCall() && instr->ClobbersDoubleRegisters(isolate())) { | |
356 bool double_result = instr->HasDoubleRegisterResult(); | |
357 if (double_result) { | |
358 __ lea(esp, Operand(esp, -kDoubleSize)); | |
359 __ fstp_d(Operand(esp, 0)); | |
360 } | |
361 __ fninit(); | |
362 if (double_result) { | |
363 __ fld_d(Operand(esp, 0)); | |
364 __ lea(esp, Operand(esp, kDoubleSize)); | |
365 } | |
366 } | |
367 if (instr->IsGoto()) { | |
368 x87_stack_.LeavingBlock(current_block_, LGoto::cast(instr), this); | |
369 } else if (FLAG_debug_code && FLAG_enable_slow_asserts && | |
370 !instr->IsGap() && !instr->IsReturn()) { | |
371 if (instr->ClobbersDoubleRegisters(isolate())) { | |
372 if (instr->HasDoubleRegisterResult()) { | |
373 DCHECK_EQ(1, x87_stack_.depth()); | |
374 } else { | |
375 DCHECK_EQ(0, x87_stack_.depth()); | |
376 } | |
377 } | |
378 __ VerifyX87StackDepth(x87_stack_.depth()); | |
379 } | |
380 } | |
381 | |
382 | |
383 bool LCodeGen::GenerateJumpTable() { | |
384 if (!jump_table_.length()) return !is_aborted(); | |
385 | |
386 Label needs_frame; | |
387 Comment(";;; -------------------- Jump table --------------------"); | |
388 | |
389 for (int i = 0; i < jump_table_.length(); i++) { | |
390 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i]; | |
391 __ bind(&table_entry->label); | |
392 Address entry = table_entry->address; | |
393 DeoptComment(table_entry->deopt_info); | |
394 if (table_entry->needs_frame) { | |
395 DCHECK(!info()->saves_caller_doubles()); | |
396 __ push(Immediate(ExternalReference::ForDeoptEntry(entry))); | |
397 __ call(&needs_frame); | |
398 } else { | |
399 __ call(entry, RelocInfo::RUNTIME_ENTRY); | |
400 } | |
401 info()->LogDeoptCallPosition(masm()->pc_offset(), | |
402 table_entry->deopt_info.inlining_id); | |
403 } | |
404 if (needs_frame.is_linked()) { | |
405 __ bind(&needs_frame); | |
406 | |
407 /* stack layout | |
408 4: entry address | |
409 3: return address <-- esp | |
410 2: garbage | |
411 1: garbage | |
412 0: garbage | |
413 */ | |
414 __ sub(esp, Immediate(kPointerSize)); // Reserve space for stub marker. | |
415 __ push(MemOperand(esp, kPointerSize)); // Copy return address. | |
416 __ push(MemOperand(esp, 3 * kPointerSize)); // Copy entry address. | |
417 | |
418 /* stack layout | |
419 4: entry address | |
420 3: return address | |
421 2: garbage | |
422 1: return address | |
423 0: entry address <-- esp | |
424 */ | |
425 __ mov(MemOperand(esp, 4 * kPointerSize), ebp); // Save ebp. | |
426 | |
427 // Copy context. | |
428 __ mov(ebp, MemOperand(ebp, StandardFrameConstants::kContextOffset)); | |
429 __ mov(MemOperand(esp, 3 * kPointerSize), ebp); | |
430 // Fill ebp with the right stack frame address. | |
431 __ lea(ebp, MemOperand(esp, 4 * kPointerSize)); | |
432 | |
433 // This variant of deopt can only be used with stubs. Since we don't | |
434 // have a function pointer to install in the stack frame that we're | |
435 // building, install a special marker there instead. | |
436 DCHECK(info()->IsStub()); | |
437 __ mov(MemOperand(esp, 2 * kPointerSize), | |
438 Immediate(Smi::FromInt(StackFrame::STUB))); | |
439 | |
440 /* stack layout | |
441 4: old ebp | |
442 3: context pointer | |
443 2: stub marker | |
444 1: return address | |
445 0: entry address <-- esp | |
446 */ | |
447 __ ret(0); // Call the continuation without clobbering registers. | |
448 } | |
449 return !is_aborted(); | |
450 } | |
451 | |
452 | |
453 bool LCodeGen::GenerateDeferredCode() { | |
454 DCHECK(is_generating()); | |
455 if (deferred_.length() > 0) { | |
456 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { | |
457 LDeferredCode* code = deferred_[i]; | |
458 X87Stack copy(code->x87_stack()); | |
459 x87_stack_ = copy; | |
460 | |
461 HValue* value = | |
462 instructions_->at(code->instruction_index())->hydrogen_value(); | |
463 RecordAndWritePosition( | |
464 chunk()->graph()->SourcePositionToScriptPosition(value->position())); | |
465 | |
466 Comment(";;; <@%d,#%d> " | |
467 "-------------------- Deferred %s --------------------", | |
468 code->instruction_index(), | |
469 code->instr()->hydrogen_value()->id(), | |
470 code->instr()->Mnemonic()); | |
471 __ bind(code->entry()); | |
472 if (NeedsDeferredFrame()) { | |
473 Comment(";;; Build frame"); | |
474 DCHECK(!frame_is_built_); | |
475 DCHECK(info()->IsStub()); | |
476 frame_is_built_ = true; | |
477 // Build the frame in such a way that esi isn't trashed. | |
478 __ push(ebp); // Caller's frame pointer. | |
479 __ push(Operand(ebp, StandardFrameConstants::kContextOffset)); | |
480 __ push(Immediate(Smi::FromInt(StackFrame::STUB))); | |
481 __ lea(ebp, Operand(esp, 2 * kPointerSize)); | |
482 Comment(";;; Deferred code"); | |
483 } | |
484 code->Generate(); | |
485 if (NeedsDeferredFrame()) { | |
486 __ bind(code->done()); | |
487 Comment(";;; Destroy frame"); | |
488 DCHECK(frame_is_built_); | |
489 frame_is_built_ = false; | |
490 __ mov(esp, ebp); | |
491 __ pop(ebp); | |
492 } | |
493 __ jmp(code->exit()); | |
494 } | |
495 } | |
496 | |
497 // Deferred code is the last part of the instruction sequence. Mark | |
498 // the generated code as done unless we bailed out. | |
499 if (!is_aborted()) status_ = DONE; | |
500 return !is_aborted(); | |
501 } | |
502 | |
503 | |
504 bool LCodeGen::GenerateSafepointTable() { | |
505 DCHECK(is_done()); | |
506 if (info()->ShouldEnsureSpaceForLazyDeopt()) { | |
507 // For lazy deoptimization we need space to patch a call after every call. | |
508 // Ensure there is always space for such patching, even if the code ends | |
509 // in a call. | |
510 int target_offset = masm()->pc_offset() + Deoptimizer::patch_size(); | |
511 while (masm()->pc_offset() < target_offset) { | |
512 masm()->nop(); | |
513 } | |
514 } | |
515 safepoints_.Emit(masm(), GetStackSlotCount()); | |
516 return !is_aborted(); | |
517 } | |
518 | |
519 | |
520 Register LCodeGen::ToRegister(int index) const { | |
521 return Register::FromAllocationIndex(index); | |
522 } | |
523 | |
524 | |
525 X87Register LCodeGen::ToX87Register(int index) const { | |
526 return X87Register::FromAllocationIndex(index); | |
527 } | |
528 | |
529 | |
530 void LCodeGen::X87LoadForUsage(X87Register reg) { | |
531 DCHECK(x87_stack_.Contains(reg)); | |
532 x87_stack_.Fxch(reg); | |
533 x87_stack_.pop(); | |
534 } | |
535 | |
536 | |
537 void LCodeGen::X87LoadForUsage(X87Register reg1, X87Register reg2) { | |
538 DCHECK(x87_stack_.Contains(reg1)); | |
539 DCHECK(x87_stack_.Contains(reg2)); | |
540 if (reg1.is(reg2) && x87_stack_.depth() == 1) { | |
541 __ fld(x87_stack_.st(reg1)); | |
542 x87_stack_.push(reg1); | |
543 x87_stack_.pop(); | |
544 x87_stack_.pop(); | |
545 } else { | |
546 x87_stack_.Fxch(reg1, 1); | |
547 x87_stack_.Fxch(reg2); | |
548 x87_stack_.pop(); | |
549 x87_stack_.pop(); | |
550 } | |
551 } | |
552 | |
553 | |
554 int LCodeGen::X87Stack::GetLayout() { | |
555 int layout = stack_depth_; | |
556 for (int i = 0; i < stack_depth_; i++) { | |
557 layout |= (stack_[stack_depth_ - 1 - i].code() << ((i + 1) * 3)); | |
558 } | |
559 | |
560 return layout; | |
561 } | |
562 | |
563 | |
564 void LCodeGen::X87Stack::Fxch(X87Register reg, int other_slot) { | |
565 DCHECK(is_mutable_); | |
566 DCHECK(Contains(reg) && stack_depth_ > other_slot); | |
567 int i = ArrayIndex(reg); | |
568 int st = st2idx(i); | |
569 if (st != other_slot) { | |
570 int other_i = st2idx(other_slot); | |
571 X87Register other = stack_[other_i]; | |
572 stack_[other_i] = reg; | |
573 stack_[i] = other; | |
574 if (st == 0) { | |
575 __ fxch(other_slot); | |
576 } else if (other_slot == 0) { | |
577 __ fxch(st); | |
578 } else { | |
579 __ fxch(st); | |
580 __ fxch(other_slot); | |
581 __ fxch(st); | |
582 } | |
583 } | |
584 } | |
585 | |
586 | |
587 int LCodeGen::X87Stack::st2idx(int pos) { | |
588 return stack_depth_ - pos - 1; | |
589 } | |
590 | |
591 | |
592 int LCodeGen::X87Stack::ArrayIndex(X87Register reg) { | |
593 for (int i = 0; i < stack_depth_; i++) { | |
594 if (stack_[i].is(reg)) return i; | |
595 } | |
596 UNREACHABLE(); | |
597 return -1; | |
598 } | |
599 | |
600 | |
601 bool LCodeGen::X87Stack::Contains(X87Register reg) { | |
602 for (int i = 0; i < stack_depth_; i++) { | |
603 if (stack_[i].is(reg)) return true; | |
604 } | |
605 return false; | |
606 } | |
607 | |
608 | |
609 void LCodeGen::X87Stack::Free(X87Register reg) { | |
610 DCHECK(is_mutable_); | |
611 DCHECK(Contains(reg)); | |
612 int i = ArrayIndex(reg); | |
613 int st = st2idx(i); | |
614 if (st > 0) { | |
615 // keep track of how fstp(i) changes the order of elements | |
616 int tos_i = st2idx(0); | |
617 stack_[i] = stack_[tos_i]; | |
618 } | |
619 pop(); | |
620 __ fstp(st); | |
621 } | |
622 | |
623 | |
624 void LCodeGen::X87Mov(X87Register dst, Operand src, X87OperandType opts) { | |
625 if (x87_stack_.Contains(dst)) { | |
626 x87_stack_.Fxch(dst); | |
627 __ fstp(0); | |
628 } else { | |
629 x87_stack_.push(dst); | |
630 } | |
631 X87Fld(src, opts); | |
632 } | |
633 | |
634 | |
635 void LCodeGen::X87Mov(X87Register dst, X87Register src, X87OperandType opts) { | |
636 if (x87_stack_.Contains(dst)) { | |
637 x87_stack_.Fxch(dst); | |
638 __ fstp(0); | |
639 x87_stack_.pop(); | |
640 // Push ST(i) onto the FPU register stack | |
641 __ fld(x87_stack_.st(src)); | |
642 x87_stack_.push(dst); | |
643 } else { | |
644 // Push ST(i) onto the FPU register stack | |
645 __ fld(x87_stack_.st(src)); | |
646 x87_stack_.push(dst); | |
647 } | |
648 } | |
649 | |
650 | |
651 void LCodeGen::X87Fld(Operand src, X87OperandType opts) { | |
652 DCHECK(!src.is_reg_only()); | |
653 switch (opts) { | |
654 case kX87DoubleOperand: | |
655 __ fld_d(src); | |
656 break; | |
657 case kX87FloatOperand: | |
658 __ fld_s(src); | |
659 break; | |
660 case kX87IntOperand: | |
661 __ fild_s(src); | |
662 break; | |
663 default: | |
664 UNREACHABLE(); | |
665 } | |
666 } | |
667 | |
668 | |
669 void LCodeGen::X87Mov(Operand dst, X87Register src, X87OperandType opts) { | |
670 DCHECK(!dst.is_reg_only()); | |
671 x87_stack_.Fxch(src); | |
672 switch (opts) { | |
673 case kX87DoubleOperand: | |
674 __ fst_d(dst); | |
675 break; | |
676 case kX87FloatOperand: | |
677 __ fst_s(dst); | |
678 break; | |
679 case kX87IntOperand: | |
680 __ fist_s(dst); | |
681 break; | |
682 default: | |
683 UNREACHABLE(); | |
684 } | |
685 } | |
686 | |
687 | |
688 void LCodeGen::X87Stack::PrepareToWrite(X87Register reg) { | |
689 DCHECK(is_mutable_); | |
690 if (Contains(reg)) { | |
691 Free(reg); | |
692 } | |
693 // Mark this register as the next register to write to | |
694 stack_[stack_depth_] = reg; | |
695 } | |
696 | |
697 | |
698 void LCodeGen::X87Stack::CommitWrite(X87Register reg) { | |
699 DCHECK(is_mutable_); | |
700 // Assert the reg is prepared to write, but not on the virtual stack yet | |
701 DCHECK(!Contains(reg) && stack_[stack_depth_].is(reg) && | |
702 stack_depth_ < X87Register::kMaxNumAllocatableRegisters); | |
703 stack_depth_++; | |
704 } | |
705 | |
706 | |
707 void LCodeGen::X87PrepareBinaryOp( | |
708 X87Register left, X87Register right, X87Register result) { | |
709 // You need to use DefineSameAsFirst for x87 instructions | |
710 DCHECK(result.is(left)); | |
711 x87_stack_.Fxch(right, 1); | |
712 x87_stack_.Fxch(left); | |
713 } | |
714 | |
715 | |
716 void LCodeGen::X87Stack::FlushIfNecessary(LInstruction* instr, LCodeGen* cgen) { | |
717 if (stack_depth_ > 0 && instr->ClobbersDoubleRegisters(isolate())) { | |
718 bool double_inputs = instr->HasDoubleRegisterInput(); | |
719 | |
720 // Flush stack from tos down, since FreeX87() will mess with tos | |
721 for (int i = stack_depth_-1; i >= 0; i--) { | |
722 X87Register reg = stack_[i]; | |
723 // Skip registers which contain the inputs for the next instruction | |
724 // when flushing the stack | |
725 if (double_inputs && instr->IsDoubleInput(reg, cgen)) { | |
726 continue; | |
727 } | |
728 Free(reg); | |
729 if (i < stack_depth_-1) i++; | |
730 } | |
731 } | |
732 if (instr->IsReturn()) { | |
733 while (stack_depth_ > 0) { | |
734 __ fstp(0); | |
735 stack_depth_--; | |
736 } | |
737 if (FLAG_debug_code && FLAG_enable_slow_asserts) __ VerifyX87StackDepth(0); | |
738 } | |
739 } | |
740 | |
741 | |
742 void LCodeGen::X87Stack::LeavingBlock(int current_block_id, LGoto* goto_instr, | |
743 LCodeGen* cgen) { | |
744 // For going to a joined block, an explicit LClobberDoubles is inserted before | |
745 // LGoto. Because all used x87 registers are spilled to stack slots. The | |
746 // ResolvePhis phase of register allocator could guarantee the two input's x87 | |
747 // stacks have the same layout. So don't check stack_depth_ <= 1 here. | |
748 int goto_block_id = goto_instr->block_id(); | |
749 if (current_block_id + 1 != goto_block_id) { | |
750 // If we have a value on the x87 stack on leaving a block, it must be a | |
751 // phi input. If the next block we compile is not the join block, we have | |
752 // to discard the stack state. | |
753 // Before discarding the stack state, we need to save it if the "goto block" | |
754 // has unreachable last predecessor when FLAG_unreachable_code_elimination. | |
755 if (FLAG_unreachable_code_elimination) { | |
756 int length = goto_instr->block()->predecessors()->length(); | |
757 bool has_unreachable_last_predecessor = false; | |
758 for (int i = 0; i < length; i++) { | |
759 HBasicBlock* block = goto_instr->block()->predecessors()->at(i); | |
760 if (block->IsUnreachable() && | |
761 (block->block_id() + 1) == goto_block_id) { | |
762 has_unreachable_last_predecessor = true; | |
763 } | |
764 } | |
765 if (has_unreachable_last_predecessor) { | |
766 if (cgen->x87_stack_map_.find(goto_block_id) == | |
767 cgen->x87_stack_map_.end()) { | |
768 X87Stack* stack = new (cgen->zone()) X87Stack(*this); | |
769 cgen->x87_stack_map_.insert(std::make_pair(goto_block_id, stack)); | |
770 } | |
771 } | |
772 } | |
773 | |
774 // Discard the stack state. | |
775 stack_depth_ = 0; | |
776 } | |
777 } | |
778 | |
779 | |
780 void LCodeGen::EmitFlushX87ForDeopt() { | |
781 // The deoptimizer does not support X87 Registers. But as long as we | |
782 // deopt from a stub its not a problem, since we will re-materialize the | |
783 // original stub inputs, which can't be double registers. | |
784 // DCHECK(info()->IsStub()); | |
785 if (FLAG_debug_code && FLAG_enable_slow_asserts) { | |
786 __ pushfd(); | |
787 __ VerifyX87StackDepth(x87_stack_.depth()); | |
788 __ popfd(); | |
789 } | |
790 | |
791 // Flush X87 stack in the deoptimizer entry. | |
792 } | |
793 | |
794 | |
795 Register LCodeGen::ToRegister(LOperand* op) const { | |
796 DCHECK(op->IsRegister()); | |
797 return ToRegister(op->index()); | |
798 } | |
799 | |
800 | |
801 X87Register LCodeGen::ToX87Register(LOperand* op) const { | |
802 DCHECK(op->IsDoubleRegister()); | |
803 return ToX87Register(op->index()); | |
804 } | |
805 | |
806 | |
807 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { | |
808 return ToRepresentation(op, Representation::Integer32()); | |
809 } | |
810 | |
811 | |
812 int32_t LCodeGen::ToRepresentation(LConstantOperand* op, | |
813 const Representation& r) const { | |
814 HConstant* constant = chunk_->LookupConstant(op); | |
815 if (r.IsExternal()) { | |
816 return reinterpret_cast<int32_t>( | |
817 constant->ExternalReferenceValue().address()); | |
818 } | |
819 int32_t value = constant->Integer32Value(); | |
820 if (r.IsInteger32()) return value; | |
821 DCHECK(r.IsSmiOrTagged()); | |
822 return reinterpret_cast<int32_t>(Smi::FromInt(value)); | |
823 } | |
824 | |
825 | |
826 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { | |
827 HConstant* constant = chunk_->LookupConstant(op); | |
828 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); | |
829 return constant->handle(isolate()); | |
830 } | |
831 | |
832 | |
833 double LCodeGen::ToDouble(LConstantOperand* op) const { | |
834 HConstant* constant = chunk_->LookupConstant(op); | |
835 DCHECK(constant->HasDoubleValue()); | |
836 return constant->DoubleValue(); | |
837 } | |
838 | |
839 | |
840 ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const { | |
841 HConstant* constant = chunk_->LookupConstant(op); | |
842 DCHECK(constant->HasExternalReferenceValue()); | |
843 return constant->ExternalReferenceValue(); | |
844 } | |
845 | |
846 | |
847 bool LCodeGen::IsInteger32(LConstantOperand* op) const { | |
848 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); | |
849 } | |
850 | |
851 | |
852 bool LCodeGen::IsSmi(LConstantOperand* op) const { | |
853 return chunk_->LookupLiteralRepresentation(op).IsSmi(); | |
854 } | |
855 | |
856 | |
857 static int ArgumentsOffsetWithoutFrame(int index) { | |
858 DCHECK(index < 0); | |
859 return -(index + 1) * kPointerSize + kPCOnStackSize; | |
860 } | |
861 | |
862 | |
863 Operand LCodeGen::ToOperand(LOperand* op) const { | |
864 if (op->IsRegister()) return Operand(ToRegister(op)); | |
865 DCHECK(!op->IsDoubleRegister()); | |
866 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); | |
867 if (NeedsEagerFrame()) { | |
868 return Operand(ebp, StackSlotOffset(op->index())); | |
869 } else { | |
870 // Retrieve parameter without eager stack-frame relative to the | |
871 // stack-pointer. | |
872 return Operand(esp, ArgumentsOffsetWithoutFrame(op->index())); | |
873 } | |
874 } | |
875 | |
876 | |
877 Operand LCodeGen::HighOperand(LOperand* op) { | |
878 DCHECK(op->IsDoubleStackSlot()); | |
879 if (NeedsEagerFrame()) { | |
880 return Operand(ebp, StackSlotOffset(op->index()) + kPointerSize); | |
881 } else { | |
882 // Retrieve parameter without eager stack-frame relative to the | |
883 // stack-pointer. | |
884 return Operand( | |
885 esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize); | |
886 } | |
887 } | |
888 | |
889 | |
890 void LCodeGen::WriteTranslation(LEnvironment* environment, | |
891 Translation* translation) { | |
892 if (environment == NULL) return; | |
893 | |
894 // The translation includes one command per value in the environment. | |
895 int translation_size = environment->translation_size(); | |
896 | |
897 WriteTranslation(environment->outer(), translation); | |
898 WriteTranslationFrame(environment, translation); | |
899 | |
900 int object_index = 0; | |
901 int dematerialized_index = 0; | |
902 for (int i = 0; i < translation_size; ++i) { | |
903 LOperand* value = environment->values()->at(i); | |
904 AddToTranslation(environment, | |
905 translation, | |
906 value, | |
907 environment->HasTaggedValueAt(i), | |
908 environment->HasUint32ValueAt(i), | |
909 &object_index, | |
910 &dematerialized_index); | |
911 } | |
912 } | |
913 | |
914 | |
915 void LCodeGen::AddToTranslation(LEnvironment* environment, | |
916 Translation* translation, | |
917 LOperand* op, | |
918 bool is_tagged, | |
919 bool is_uint32, | |
920 int* object_index_pointer, | |
921 int* dematerialized_index_pointer) { | |
922 if (op == LEnvironment::materialization_marker()) { | |
923 int object_index = (*object_index_pointer)++; | |
924 if (environment->ObjectIsDuplicateAt(object_index)) { | |
925 int dupe_of = environment->ObjectDuplicateOfAt(object_index); | |
926 translation->DuplicateObject(dupe_of); | |
927 return; | |
928 } | |
929 int object_length = environment->ObjectLengthAt(object_index); | |
930 if (environment->ObjectIsArgumentsAt(object_index)) { | |
931 translation->BeginArgumentsObject(object_length); | |
932 } else { | |
933 translation->BeginCapturedObject(object_length); | |
934 } | |
935 int dematerialized_index = *dematerialized_index_pointer; | |
936 int env_offset = environment->translation_size() + dematerialized_index; | |
937 *dematerialized_index_pointer += object_length; | |
938 for (int i = 0; i < object_length; ++i) { | |
939 LOperand* value = environment->values()->at(env_offset + i); | |
940 AddToTranslation(environment, | |
941 translation, | |
942 value, | |
943 environment->HasTaggedValueAt(env_offset + i), | |
944 environment->HasUint32ValueAt(env_offset + i), | |
945 object_index_pointer, | |
946 dematerialized_index_pointer); | |
947 } | |
948 return; | |
949 } | |
950 | |
951 if (op->IsStackSlot()) { | |
952 int index = op->index(); | |
953 if (index >= 0) { | |
954 index += StandardFrameConstants::kFixedFrameSize / kPointerSize; | |
955 } | |
956 if (is_tagged) { | |
957 translation->StoreStackSlot(index); | |
958 } else if (is_uint32) { | |
959 translation->StoreUint32StackSlot(index); | |
960 } else { | |
961 translation->StoreInt32StackSlot(index); | |
962 } | |
963 } else if (op->IsDoubleStackSlot()) { | |
964 int index = op->index(); | |
965 if (index >= 0) { | |
966 index += StandardFrameConstants::kFixedFrameSize / kPointerSize; | |
967 } | |
968 translation->StoreDoubleStackSlot(index); | |
969 } else if (op->IsRegister()) { | |
970 Register reg = ToRegister(op); | |
971 if (is_tagged) { | |
972 translation->StoreRegister(reg); | |
973 } else if (is_uint32) { | |
974 translation->StoreUint32Register(reg); | |
975 } else { | |
976 translation->StoreInt32Register(reg); | |
977 } | |
978 } else if (op->IsDoubleRegister()) { | |
979 X87Register reg = ToX87Register(op); | |
980 translation->StoreDoubleRegister(reg); | |
981 } else if (op->IsConstantOperand()) { | |
982 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); | |
983 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); | |
984 translation->StoreLiteral(src_index); | |
985 } else { | |
986 UNREACHABLE(); | |
987 } | |
988 } | |
989 | |
990 | |
991 void LCodeGen::CallCodeGeneric(Handle<Code> code, | |
992 RelocInfo::Mode mode, | |
993 LInstruction* instr, | |
994 SafepointMode safepoint_mode) { | |
995 DCHECK(instr != NULL); | |
996 __ call(code, mode); | |
997 RecordSafepointWithLazyDeopt(instr, safepoint_mode); | |
998 | |
999 // Signal that we don't inline smi code before these stubs in the | |
1000 // optimizing code generator. | |
1001 if (code->kind() == Code::BINARY_OP_IC || | |
1002 code->kind() == Code::COMPARE_IC) { | |
1003 __ nop(); | |
1004 } | |
1005 } | |
1006 | |
1007 | |
1008 void LCodeGen::CallCode(Handle<Code> code, | |
1009 RelocInfo::Mode mode, | |
1010 LInstruction* instr) { | |
1011 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); | |
1012 } | |
1013 | |
1014 | |
1015 void LCodeGen::CallRuntime(const Runtime::Function* fun, int argc, | |
1016 LInstruction* instr, SaveFPRegsMode save_doubles) { | |
1017 DCHECK(instr != NULL); | |
1018 DCHECK(instr->HasPointerMap()); | |
1019 | |
1020 __ CallRuntime(fun, argc, save_doubles); | |
1021 | |
1022 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); | |
1023 | |
1024 DCHECK(info()->is_calling()); | |
1025 } | |
1026 | |
1027 | |
1028 void LCodeGen::LoadContextFromDeferred(LOperand* context) { | |
1029 if (context->IsRegister()) { | |
1030 if (!ToRegister(context).is(esi)) { | |
1031 __ mov(esi, ToRegister(context)); | |
1032 } | |
1033 } else if (context->IsStackSlot()) { | |
1034 __ mov(esi, ToOperand(context)); | |
1035 } else if (context->IsConstantOperand()) { | |
1036 HConstant* constant = | |
1037 chunk_->LookupConstant(LConstantOperand::cast(context)); | |
1038 __ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate()))); | |
1039 } else { | |
1040 UNREACHABLE(); | |
1041 } | |
1042 } | |
1043 | |
1044 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, | |
1045 int argc, | |
1046 LInstruction* instr, | |
1047 LOperand* context) { | |
1048 LoadContextFromDeferred(context); | |
1049 | |
1050 __ CallRuntimeSaveDoubles(id); | |
1051 RecordSafepointWithRegisters( | |
1052 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); | |
1053 | |
1054 DCHECK(info()->is_calling()); | |
1055 } | |
1056 | |
1057 | |
1058 void LCodeGen::RegisterEnvironmentForDeoptimization( | |
1059 LEnvironment* environment, Safepoint::DeoptMode mode) { | |
1060 environment->set_has_been_used(); | |
1061 if (!environment->HasBeenRegistered()) { | |
1062 // Physical stack frame layout: | |
1063 // -x ............. -4 0 ..................................... y | |
1064 // [incoming arguments] [spill slots] [pushed outgoing arguments] | |
1065 | |
1066 // Layout of the environment: | |
1067 // 0 ..................................................... size-1 | |
1068 // [parameters] [locals] [expression stack including arguments] | |
1069 | |
1070 // Layout of the translation: | |
1071 // 0 ........................................................ size - 1 + 4 | |
1072 // [expression stack including arguments] [locals] [4 words] [parameters] | |
1073 // |>------------ translation_size ------------<| | |
1074 | |
1075 int frame_count = 0; | |
1076 int jsframe_count = 0; | |
1077 for (LEnvironment* e = environment; e != NULL; e = e->outer()) { | |
1078 ++frame_count; | |
1079 if (e->frame_type() == JS_FUNCTION) { | |
1080 ++jsframe_count; | |
1081 } | |
1082 } | |
1083 Translation translation(&translations_, frame_count, jsframe_count, zone()); | |
1084 WriteTranslation(environment, &translation); | |
1085 int deoptimization_index = deoptimizations_.length(); | |
1086 int pc_offset = masm()->pc_offset(); | |
1087 environment->Register(deoptimization_index, | |
1088 translation.index(), | |
1089 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); | |
1090 deoptimizations_.Add(environment, zone()); | |
1091 } | |
1092 } | |
1093 | |
1094 | |
1095 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr, | |
1096 Deoptimizer::DeoptReason deopt_reason, | |
1097 Deoptimizer::BailoutType bailout_type) { | |
1098 LEnvironment* environment = instr->environment(); | |
1099 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); | |
1100 DCHECK(environment->HasBeenRegistered()); | |
1101 int id = environment->deoptimization_index(); | |
1102 Address entry = | |
1103 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); | |
1104 if (entry == NULL) { | |
1105 Abort(kBailoutWasNotPrepared); | |
1106 return; | |
1107 } | |
1108 | |
1109 if (DeoptEveryNTimes()) { | |
1110 ExternalReference count = ExternalReference::stress_deopt_count(isolate()); | |
1111 Label no_deopt; | |
1112 __ pushfd(); | |
1113 __ push(eax); | |
1114 __ mov(eax, Operand::StaticVariable(count)); | |
1115 __ sub(eax, Immediate(1)); | |
1116 __ j(not_zero, &no_deopt, Label::kNear); | |
1117 if (FLAG_trap_on_deopt) __ int3(); | |
1118 __ mov(eax, Immediate(FLAG_deopt_every_n_times)); | |
1119 __ mov(Operand::StaticVariable(count), eax); | |
1120 __ pop(eax); | |
1121 __ popfd(); | |
1122 DCHECK(frame_is_built_); | |
1123 // Put the x87 stack layout in TOS. | |
1124 if (x87_stack_.depth() > 0) EmitFlushX87ForDeopt(); | |
1125 __ push(Immediate(x87_stack_.GetLayout())); | |
1126 __ fild_s(MemOperand(esp, 0)); | |
1127 // Don't touch eflags. | |
1128 __ lea(esp, Operand(esp, kPointerSize)); | |
1129 __ call(entry, RelocInfo::RUNTIME_ENTRY); | |
1130 __ bind(&no_deopt); | |
1131 __ mov(Operand::StaticVariable(count), eax); | |
1132 __ pop(eax); | |
1133 __ popfd(); | |
1134 } | |
1135 | |
1136 // Put the x87 stack layout in TOS, so that we can save x87 fp registers in | |
1137 // the correct location. | |
1138 { | |
1139 Label done; | |
1140 if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear); | |
1141 if (x87_stack_.depth() > 0) EmitFlushX87ForDeopt(); | |
1142 | |
1143 int x87_stack_layout = x87_stack_.GetLayout(); | |
1144 __ push(Immediate(x87_stack_layout)); | |
1145 __ fild_s(MemOperand(esp, 0)); | |
1146 // Don't touch eflags. | |
1147 __ lea(esp, Operand(esp, kPointerSize)); | |
1148 __ bind(&done); | |
1149 } | |
1150 | |
1151 if (info()->ShouldTrapOnDeopt()) { | |
1152 Label done; | |
1153 if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear); | |
1154 __ int3(); | |
1155 __ bind(&done); | |
1156 } | |
1157 | |
1158 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason); | |
1159 | |
1160 DCHECK(info()->IsStub() || frame_is_built_); | |
1161 if (cc == no_condition && frame_is_built_) { | |
1162 DeoptComment(deopt_info); | |
1163 __ call(entry, RelocInfo::RUNTIME_ENTRY); | |
1164 info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id); | |
1165 } else { | |
1166 Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type, | |
1167 !frame_is_built_); | |
1168 // We often have several deopts to the same entry, reuse the last | |
1169 // jump entry if this is the case. | |
1170 if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() || | |
1171 jump_table_.is_empty() || | |
1172 !table_entry.IsEquivalentTo(jump_table_.last())) { | |
1173 jump_table_.Add(table_entry, zone()); | |
1174 } | |
1175 if (cc == no_condition) { | |
1176 __ jmp(&jump_table_.last().label); | |
1177 } else { | |
1178 __ j(cc, &jump_table_.last().label); | |
1179 } | |
1180 } | |
1181 } | |
1182 | |
1183 | |
1184 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr, | |
1185 Deoptimizer::DeoptReason deopt_reason) { | |
1186 Deoptimizer::BailoutType bailout_type = info()->IsStub() | |
1187 ? Deoptimizer::LAZY | |
1188 : Deoptimizer::EAGER; | |
1189 DeoptimizeIf(cc, instr, deopt_reason, bailout_type); | |
1190 } | |
1191 | |
1192 | |
1193 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { | |
1194 int length = deoptimizations_.length(); | |
1195 if (length == 0) return; | |
1196 Handle<DeoptimizationInputData> data = | |
1197 DeoptimizationInputData::New(isolate(), length, TENURED); | |
1198 | |
1199 Handle<ByteArray> translations = | |
1200 translations_.CreateByteArray(isolate()->factory()); | |
1201 data->SetTranslationByteArray(*translations); | |
1202 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); | |
1203 data->SetOptimizationId(Smi::FromInt(info_->optimization_id())); | |
1204 if (info_->IsOptimizing()) { | |
1205 // Reference to shared function info does not change between phases. | |
1206 AllowDeferredHandleDereference allow_handle_dereference; | |
1207 data->SetSharedFunctionInfo(*info_->shared_info()); | |
1208 } else { | |
1209 data->SetSharedFunctionInfo(Smi::FromInt(0)); | |
1210 } | |
1211 data->SetWeakCellCache(Smi::FromInt(0)); | |
1212 | |
1213 Handle<FixedArray> literals = | |
1214 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); | |
1215 { AllowDeferredHandleDereference copy_handles; | |
1216 for (int i = 0; i < deoptimization_literals_.length(); i++) { | |
1217 literals->set(i, *deoptimization_literals_[i]); | |
1218 } | |
1219 data->SetLiteralArray(*literals); | |
1220 } | |
1221 | |
1222 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt())); | |
1223 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); | |
1224 | |
1225 // Populate the deoptimization entries. | |
1226 for (int i = 0; i < length; i++) { | |
1227 LEnvironment* env = deoptimizations_[i]; | |
1228 data->SetAstId(i, env->ast_id()); | |
1229 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); | |
1230 data->SetArgumentsStackHeight(i, | |
1231 Smi::FromInt(env->arguments_stack_height())); | |
1232 data->SetPc(i, Smi::FromInt(env->pc_offset())); | |
1233 } | |
1234 code->set_deoptimization_data(*data); | |
1235 } | |
1236 | |
1237 | |
1238 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { | |
1239 DCHECK_EQ(0, deoptimization_literals_.length()); | |
1240 for (auto function : chunk()->inlined_functions()) { | |
1241 DefineDeoptimizationLiteral(function); | |
1242 } | |
1243 inlined_function_count_ = deoptimization_literals_.length(); | |
1244 } | |
1245 | |
1246 | |
1247 void LCodeGen::RecordSafepointWithLazyDeopt( | |
1248 LInstruction* instr, SafepointMode safepoint_mode) { | |
1249 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { | |
1250 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); | |
1251 } else { | |
1252 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | |
1253 RecordSafepointWithRegisters( | |
1254 instr->pointer_map(), 0, Safepoint::kLazyDeopt); | |
1255 } | |
1256 } | |
1257 | |
1258 | |
1259 void LCodeGen::RecordSafepoint( | |
1260 LPointerMap* pointers, | |
1261 Safepoint::Kind kind, | |
1262 int arguments, | |
1263 Safepoint::DeoptMode deopt_mode) { | |
1264 DCHECK(kind == expected_safepoint_kind_); | |
1265 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); | |
1266 Safepoint safepoint = | |
1267 safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode); | |
1268 for (int i = 0; i < operands->length(); i++) { | |
1269 LOperand* pointer = operands->at(i); | |
1270 if (pointer->IsStackSlot()) { | |
1271 safepoint.DefinePointerSlot(pointer->index(), zone()); | |
1272 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { | |
1273 safepoint.DefinePointerRegister(ToRegister(pointer), zone()); | |
1274 } | |
1275 } | |
1276 } | |
1277 | |
1278 | |
1279 void LCodeGen::RecordSafepoint(LPointerMap* pointers, | |
1280 Safepoint::DeoptMode mode) { | |
1281 RecordSafepoint(pointers, Safepoint::kSimple, 0, mode); | |
1282 } | |
1283 | |
1284 | |
1285 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) { | |
1286 LPointerMap empty_pointers(zone()); | |
1287 RecordSafepoint(&empty_pointers, mode); | |
1288 } | |
1289 | |
1290 | |
1291 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, | |
1292 int arguments, | |
1293 Safepoint::DeoptMode mode) { | |
1294 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode); | |
1295 } | |
1296 | |
1297 | |
1298 void LCodeGen::RecordAndWritePosition(int position) { | |
1299 if (position == RelocInfo::kNoPosition) return; | |
1300 masm()->positions_recorder()->RecordPosition(position); | |
1301 masm()->positions_recorder()->WriteRecordedPositions(); | |
1302 } | |
1303 | |
1304 | |
1305 static const char* LabelType(LLabel* label) { | |
1306 if (label->is_loop_header()) return " (loop header)"; | |
1307 if (label->is_osr_entry()) return " (OSR entry)"; | |
1308 return ""; | |
1309 } | |
1310 | |
1311 | |
1312 void LCodeGen::DoLabel(LLabel* label) { | |
1313 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", | |
1314 current_instruction_, | |
1315 label->hydrogen_value()->id(), | |
1316 label->block_id(), | |
1317 LabelType(label)); | |
1318 __ bind(label->label()); | |
1319 current_block_ = label->block_id(); | |
1320 if (label->block()->predecessors()->length() > 1) { | |
1321 // A join block's x87 stack is that of its last visited predecessor. | |
1322 // If the last visited predecessor block is unreachable, the stack state | |
1323 // will be wrong. In such case, use the x87 stack of reachable predecessor. | |
1324 X87StackMap::const_iterator it = x87_stack_map_.find(current_block_); | |
1325 // Restore x87 stack. | |
1326 if (it != x87_stack_map_.end()) { | |
1327 x87_stack_ = *(it->second); | |
1328 } | |
1329 } | |
1330 DoGap(label); | |
1331 } | |
1332 | |
1333 | |
1334 void LCodeGen::DoParallelMove(LParallelMove* move) { | |
1335 resolver_.Resolve(move); | |
1336 } | |
1337 | |
1338 | |
1339 void LCodeGen::DoGap(LGap* gap) { | |
1340 for (int i = LGap::FIRST_INNER_POSITION; | |
1341 i <= LGap::LAST_INNER_POSITION; | |
1342 i++) { | |
1343 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); | |
1344 LParallelMove* move = gap->GetParallelMove(inner_pos); | |
1345 if (move != NULL) DoParallelMove(move); | |
1346 } | |
1347 } | |
1348 | |
1349 | |
1350 void LCodeGen::DoInstructionGap(LInstructionGap* instr) { | |
1351 DoGap(instr); | |
1352 } | |
1353 | |
1354 | |
1355 void LCodeGen::DoParameter(LParameter* instr) { | |
1356 // Nothing to do. | |
1357 } | |
1358 | |
1359 | |
1360 void LCodeGen::DoCallStub(LCallStub* instr) { | |
1361 DCHECK(ToRegister(instr->context()).is(esi)); | |
1362 DCHECK(ToRegister(instr->result()).is(eax)); | |
1363 switch (instr->hydrogen()->major_key()) { | |
1364 case CodeStub::RegExpExec: { | |
1365 RegExpExecStub stub(isolate()); | |
1366 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
1367 break; | |
1368 } | |
1369 case CodeStub::SubString: { | |
1370 SubStringStub stub(isolate()); | |
1371 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
1372 break; | |
1373 } | |
1374 default: | |
1375 UNREACHABLE(); | |
1376 } | |
1377 } | |
1378 | |
1379 | |
1380 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { | |
1381 GenerateOsrPrologue(); | |
1382 } | |
1383 | |
1384 | |
1385 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { | |
1386 Register dividend = ToRegister(instr->dividend()); | |
1387 int32_t divisor = instr->divisor(); | |
1388 DCHECK(dividend.is(ToRegister(instr->result()))); | |
1389 | |
1390 // Theoretically, a variation of the branch-free code for integer division by | |
1391 // a power of 2 (calculating the remainder via an additional multiplication | |
1392 // (which gets simplified to an 'and') and subtraction) should be faster, and | |
1393 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to | |
1394 // indicate that positive dividends are heavily favored, so the branching | |
1395 // version performs better. | |
1396 HMod* hmod = instr->hydrogen(); | |
1397 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); | |
1398 Label dividend_is_not_negative, done; | |
1399 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { | |
1400 __ test(dividend, dividend); | |
1401 __ j(not_sign, ÷nd_is_not_negative, Label::kNear); | |
1402 // Note that this is correct even for kMinInt operands. | |
1403 __ neg(dividend); | |
1404 __ and_(dividend, mask); | |
1405 __ neg(dividend); | |
1406 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1407 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero); | |
1408 } | |
1409 __ jmp(&done, Label::kNear); | |
1410 } | |
1411 | |
1412 __ bind(÷nd_is_not_negative); | |
1413 __ and_(dividend, mask); | |
1414 __ bind(&done); | |
1415 } | |
1416 | |
1417 | |
1418 void LCodeGen::DoModByConstI(LModByConstI* instr) { | |
1419 Register dividend = ToRegister(instr->dividend()); | |
1420 int32_t divisor = instr->divisor(); | |
1421 DCHECK(ToRegister(instr->result()).is(eax)); | |
1422 | |
1423 if (divisor == 0) { | |
1424 DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero); | |
1425 return; | |
1426 } | |
1427 | |
1428 __ TruncatingDiv(dividend, Abs(divisor)); | |
1429 __ imul(edx, edx, Abs(divisor)); | |
1430 __ mov(eax, dividend); | |
1431 __ sub(eax, edx); | |
1432 | |
1433 // Check for negative zero. | |
1434 HMod* hmod = instr->hydrogen(); | |
1435 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1436 Label remainder_not_zero; | |
1437 __ j(not_zero, &remainder_not_zero, Label::kNear); | |
1438 __ cmp(dividend, Immediate(0)); | |
1439 DeoptimizeIf(less, instr, Deoptimizer::kMinusZero); | |
1440 __ bind(&remainder_not_zero); | |
1441 } | |
1442 } | |
1443 | |
1444 | |
1445 void LCodeGen::DoModI(LModI* instr) { | |
1446 HMod* hmod = instr->hydrogen(); | |
1447 | |
1448 Register left_reg = ToRegister(instr->left()); | |
1449 DCHECK(left_reg.is(eax)); | |
1450 Register right_reg = ToRegister(instr->right()); | |
1451 DCHECK(!right_reg.is(eax)); | |
1452 DCHECK(!right_reg.is(edx)); | |
1453 Register result_reg = ToRegister(instr->result()); | |
1454 DCHECK(result_reg.is(edx)); | |
1455 | |
1456 Label done; | |
1457 // Check for x % 0, idiv would signal a divide error. We have to | |
1458 // deopt in this case because we can't return a NaN. | |
1459 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) { | |
1460 __ test(right_reg, Operand(right_reg)); | |
1461 DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero); | |
1462 } | |
1463 | |
1464 // Check for kMinInt % -1, idiv would signal a divide error. We | |
1465 // have to deopt if we care about -0, because we can't return that. | |
1466 if (hmod->CheckFlag(HValue::kCanOverflow)) { | |
1467 Label no_overflow_possible; | |
1468 __ cmp(left_reg, kMinInt); | |
1469 __ j(not_equal, &no_overflow_possible, Label::kNear); | |
1470 __ cmp(right_reg, -1); | |
1471 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1472 DeoptimizeIf(equal, instr, Deoptimizer::kMinusZero); | |
1473 } else { | |
1474 __ j(not_equal, &no_overflow_possible, Label::kNear); | |
1475 __ Move(result_reg, Immediate(0)); | |
1476 __ jmp(&done, Label::kNear); | |
1477 } | |
1478 __ bind(&no_overflow_possible); | |
1479 } | |
1480 | |
1481 // Sign extend dividend in eax into edx:eax. | |
1482 __ cdq(); | |
1483 | |
1484 // If we care about -0, test if the dividend is <0 and the result is 0. | |
1485 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1486 Label positive_left; | |
1487 __ test(left_reg, Operand(left_reg)); | |
1488 __ j(not_sign, &positive_left, Label::kNear); | |
1489 __ idiv(right_reg); | |
1490 __ test(result_reg, Operand(result_reg)); | |
1491 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero); | |
1492 __ jmp(&done, Label::kNear); | |
1493 __ bind(&positive_left); | |
1494 } | |
1495 __ idiv(right_reg); | |
1496 __ bind(&done); | |
1497 } | |
1498 | |
1499 | |
1500 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { | |
1501 Register dividend = ToRegister(instr->dividend()); | |
1502 int32_t divisor = instr->divisor(); | |
1503 Register result = ToRegister(instr->result()); | |
1504 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); | |
1505 DCHECK(!result.is(dividend)); | |
1506 | |
1507 // Check for (0 / -x) that will produce negative zero. | |
1508 HDiv* hdiv = instr->hydrogen(); | |
1509 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { | |
1510 __ test(dividend, dividend); | |
1511 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero); | |
1512 } | |
1513 // Check for (kMinInt / -1). | |
1514 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { | |
1515 __ cmp(dividend, kMinInt); | |
1516 DeoptimizeIf(zero, instr, Deoptimizer::kOverflow); | |
1517 } | |
1518 // Deoptimize if remainder will not be 0. | |
1519 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && | |
1520 divisor != 1 && divisor != -1) { | |
1521 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); | |
1522 __ test(dividend, Immediate(mask)); | |
1523 DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision); | |
1524 } | |
1525 __ Move(result, dividend); | |
1526 int32_t shift = WhichPowerOf2Abs(divisor); | |
1527 if (shift > 0) { | |
1528 // The arithmetic shift is always OK, the 'if' is an optimization only. | |
1529 if (shift > 1) __ sar(result, 31); | |
1530 __ shr(result, 32 - shift); | |
1531 __ add(result, dividend); | |
1532 __ sar(result, shift); | |
1533 } | |
1534 if (divisor < 0) __ neg(result); | |
1535 } | |
1536 | |
1537 | |
1538 void LCodeGen::DoDivByConstI(LDivByConstI* instr) { | |
1539 Register dividend = ToRegister(instr->dividend()); | |
1540 int32_t divisor = instr->divisor(); | |
1541 DCHECK(ToRegister(instr->result()).is(edx)); | |
1542 | |
1543 if (divisor == 0) { | |
1544 DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero); | |
1545 return; | |
1546 } | |
1547 | |
1548 // Check for (0 / -x) that will produce negative zero. | |
1549 HDiv* hdiv = instr->hydrogen(); | |
1550 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { | |
1551 __ test(dividend, dividend); | |
1552 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero); | |
1553 } | |
1554 | |
1555 __ TruncatingDiv(dividend, Abs(divisor)); | |
1556 if (divisor < 0) __ neg(edx); | |
1557 | |
1558 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { | |
1559 __ mov(eax, edx); | |
1560 __ imul(eax, eax, divisor); | |
1561 __ sub(eax, dividend); | |
1562 DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision); | |
1563 } | |
1564 } | |
1565 | |
1566 | |
1567 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. | |
1568 void LCodeGen::DoDivI(LDivI* instr) { | |
1569 HBinaryOperation* hdiv = instr->hydrogen(); | |
1570 Register dividend = ToRegister(instr->dividend()); | |
1571 Register divisor = ToRegister(instr->divisor()); | |
1572 Register remainder = ToRegister(instr->temp()); | |
1573 DCHECK(dividend.is(eax)); | |
1574 DCHECK(remainder.is(edx)); | |
1575 DCHECK(ToRegister(instr->result()).is(eax)); | |
1576 DCHECK(!divisor.is(eax)); | |
1577 DCHECK(!divisor.is(edx)); | |
1578 | |
1579 // Check for x / 0. | |
1580 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { | |
1581 __ test(divisor, divisor); | |
1582 DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero); | |
1583 } | |
1584 | |
1585 // Check for (0 / -x) that will produce negative zero. | |
1586 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1587 Label dividend_not_zero; | |
1588 __ test(dividend, dividend); | |
1589 __ j(not_zero, ÷nd_not_zero, Label::kNear); | |
1590 __ test(divisor, divisor); | |
1591 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero); | |
1592 __ bind(÷nd_not_zero); | |
1593 } | |
1594 | |
1595 // Check for (kMinInt / -1). | |
1596 if (hdiv->CheckFlag(HValue::kCanOverflow)) { | |
1597 Label dividend_not_min_int; | |
1598 __ cmp(dividend, kMinInt); | |
1599 __ j(not_zero, ÷nd_not_min_int, Label::kNear); | |
1600 __ cmp(divisor, -1); | |
1601 DeoptimizeIf(zero, instr, Deoptimizer::kOverflow); | |
1602 __ bind(÷nd_not_min_int); | |
1603 } | |
1604 | |
1605 // Sign extend to edx (= remainder). | |
1606 __ cdq(); | |
1607 __ idiv(divisor); | |
1608 | |
1609 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { | |
1610 // Deoptimize if remainder is not 0. | |
1611 __ test(remainder, remainder); | |
1612 DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision); | |
1613 } | |
1614 } | |
1615 | |
1616 | |
1617 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { | |
1618 Register dividend = ToRegister(instr->dividend()); | |
1619 int32_t divisor = instr->divisor(); | |
1620 DCHECK(dividend.is(ToRegister(instr->result()))); | |
1621 | |
1622 // If the divisor is positive, things are easy: There can be no deopts and we | |
1623 // can simply do an arithmetic right shift. | |
1624 if (divisor == 1) return; | |
1625 int32_t shift = WhichPowerOf2Abs(divisor); | |
1626 if (divisor > 1) { | |
1627 __ sar(dividend, shift); | |
1628 return; | |
1629 } | |
1630 | |
1631 // If the divisor is negative, we have to negate and handle edge cases. | |
1632 __ neg(dividend); | |
1633 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1634 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero); | |
1635 } | |
1636 | |
1637 // Dividing by -1 is basically negation, unless we overflow. | |
1638 if (divisor == -1) { | |
1639 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { | |
1640 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
1641 } | |
1642 return; | |
1643 } | |
1644 | |
1645 // If the negation could not overflow, simply shifting is OK. | |
1646 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { | |
1647 __ sar(dividend, shift); | |
1648 return; | |
1649 } | |
1650 | |
1651 Label not_kmin_int, done; | |
1652 __ j(no_overflow, ¬_kmin_int, Label::kNear); | |
1653 __ mov(dividend, Immediate(kMinInt / divisor)); | |
1654 __ jmp(&done, Label::kNear); | |
1655 __ bind(¬_kmin_int); | |
1656 __ sar(dividend, shift); | |
1657 __ bind(&done); | |
1658 } | |
1659 | |
1660 | |
1661 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { | |
1662 Register dividend = ToRegister(instr->dividend()); | |
1663 int32_t divisor = instr->divisor(); | |
1664 DCHECK(ToRegister(instr->result()).is(edx)); | |
1665 | |
1666 if (divisor == 0) { | |
1667 DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero); | |
1668 return; | |
1669 } | |
1670 | |
1671 // Check for (0 / -x) that will produce negative zero. | |
1672 HMathFloorOfDiv* hdiv = instr->hydrogen(); | |
1673 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { | |
1674 __ test(dividend, dividend); | |
1675 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero); | |
1676 } | |
1677 | |
1678 // Easy case: We need no dynamic check for the dividend and the flooring | |
1679 // division is the same as the truncating division. | |
1680 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || | |
1681 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { | |
1682 __ TruncatingDiv(dividend, Abs(divisor)); | |
1683 if (divisor < 0) __ neg(edx); | |
1684 return; | |
1685 } | |
1686 | |
1687 // In the general case we may need to adjust before and after the truncating | |
1688 // division to get a flooring division. | |
1689 Register temp = ToRegister(instr->temp3()); | |
1690 DCHECK(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx)); | |
1691 Label needs_adjustment, done; | |
1692 __ cmp(dividend, Immediate(0)); | |
1693 __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear); | |
1694 __ TruncatingDiv(dividend, Abs(divisor)); | |
1695 if (divisor < 0) __ neg(edx); | |
1696 __ jmp(&done, Label::kNear); | |
1697 __ bind(&needs_adjustment); | |
1698 __ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1)); | |
1699 __ TruncatingDiv(temp, Abs(divisor)); | |
1700 if (divisor < 0) __ neg(edx); | |
1701 __ dec(edx); | |
1702 __ bind(&done); | |
1703 } | |
1704 | |
1705 | |
1706 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. | |
1707 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { | |
1708 HBinaryOperation* hdiv = instr->hydrogen(); | |
1709 Register dividend = ToRegister(instr->dividend()); | |
1710 Register divisor = ToRegister(instr->divisor()); | |
1711 Register remainder = ToRegister(instr->temp()); | |
1712 Register result = ToRegister(instr->result()); | |
1713 DCHECK(dividend.is(eax)); | |
1714 DCHECK(remainder.is(edx)); | |
1715 DCHECK(result.is(eax)); | |
1716 DCHECK(!divisor.is(eax)); | |
1717 DCHECK(!divisor.is(edx)); | |
1718 | |
1719 // Check for x / 0. | |
1720 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { | |
1721 __ test(divisor, divisor); | |
1722 DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero); | |
1723 } | |
1724 | |
1725 // Check for (0 / -x) that will produce negative zero. | |
1726 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1727 Label dividend_not_zero; | |
1728 __ test(dividend, dividend); | |
1729 __ j(not_zero, ÷nd_not_zero, Label::kNear); | |
1730 __ test(divisor, divisor); | |
1731 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero); | |
1732 __ bind(÷nd_not_zero); | |
1733 } | |
1734 | |
1735 // Check for (kMinInt / -1). | |
1736 if (hdiv->CheckFlag(HValue::kCanOverflow)) { | |
1737 Label dividend_not_min_int; | |
1738 __ cmp(dividend, kMinInt); | |
1739 __ j(not_zero, ÷nd_not_min_int, Label::kNear); | |
1740 __ cmp(divisor, -1); | |
1741 DeoptimizeIf(zero, instr, Deoptimizer::kOverflow); | |
1742 __ bind(÷nd_not_min_int); | |
1743 } | |
1744 | |
1745 // Sign extend to edx (= remainder). | |
1746 __ cdq(); | |
1747 __ idiv(divisor); | |
1748 | |
1749 Label done; | |
1750 __ test(remainder, remainder); | |
1751 __ j(zero, &done, Label::kNear); | |
1752 __ xor_(remainder, divisor); | |
1753 __ sar(remainder, 31); | |
1754 __ add(result, remainder); | |
1755 __ bind(&done); | |
1756 } | |
1757 | |
1758 | |
1759 void LCodeGen::DoMulI(LMulI* instr) { | |
1760 Register left = ToRegister(instr->left()); | |
1761 LOperand* right = instr->right(); | |
1762 | |
1763 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1764 __ mov(ToRegister(instr->temp()), left); | |
1765 } | |
1766 | |
1767 if (right->IsConstantOperand()) { | |
1768 // Try strength reductions on the multiplication. | |
1769 // All replacement instructions are at most as long as the imul | |
1770 // and have better latency. | |
1771 int constant = ToInteger32(LConstantOperand::cast(right)); | |
1772 if (constant == -1) { | |
1773 __ neg(left); | |
1774 } else if (constant == 0) { | |
1775 __ xor_(left, Operand(left)); | |
1776 } else if (constant == 2) { | |
1777 __ add(left, Operand(left)); | |
1778 } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { | |
1779 // If we know that the multiplication can't overflow, it's safe to | |
1780 // use instructions that don't set the overflow flag for the | |
1781 // multiplication. | |
1782 switch (constant) { | |
1783 case 1: | |
1784 // Do nothing. | |
1785 break; | |
1786 case 3: | |
1787 __ lea(left, Operand(left, left, times_2, 0)); | |
1788 break; | |
1789 case 4: | |
1790 __ shl(left, 2); | |
1791 break; | |
1792 case 5: | |
1793 __ lea(left, Operand(left, left, times_4, 0)); | |
1794 break; | |
1795 case 8: | |
1796 __ shl(left, 3); | |
1797 break; | |
1798 case 9: | |
1799 __ lea(left, Operand(left, left, times_8, 0)); | |
1800 break; | |
1801 case 16: | |
1802 __ shl(left, 4); | |
1803 break; | |
1804 default: | |
1805 __ imul(left, left, constant); | |
1806 break; | |
1807 } | |
1808 } else { | |
1809 __ imul(left, left, constant); | |
1810 } | |
1811 } else { | |
1812 if (instr->hydrogen()->representation().IsSmi()) { | |
1813 __ SmiUntag(left); | |
1814 } | |
1815 __ imul(left, ToOperand(right)); | |
1816 } | |
1817 | |
1818 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { | |
1819 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
1820 } | |
1821 | |
1822 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1823 // Bail out if the result is supposed to be negative zero. | |
1824 Label done; | |
1825 __ test(left, Operand(left)); | |
1826 __ j(not_zero, &done); | |
1827 if (right->IsConstantOperand()) { | |
1828 if (ToInteger32(LConstantOperand::cast(right)) < 0) { | |
1829 DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero); | |
1830 } else if (ToInteger32(LConstantOperand::cast(right)) == 0) { | |
1831 __ cmp(ToRegister(instr->temp()), Immediate(0)); | |
1832 DeoptimizeIf(less, instr, Deoptimizer::kMinusZero); | |
1833 } | |
1834 } else { | |
1835 // Test the non-zero operand for negative sign. | |
1836 __ or_(ToRegister(instr->temp()), ToOperand(right)); | |
1837 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero); | |
1838 } | |
1839 __ bind(&done); | |
1840 } | |
1841 } | |
1842 | |
1843 | |
1844 void LCodeGen::DoBitI(LBitI* instr) { | |
1845 LOperand* left = instr->left(); | |
1846 LOperand* right = instr->right(); | |
1847 DCHECK(left->Equals(instr->result())); | |
1848 DCHECK(left->IsRegister()); | |
1849 | |
1850 if (right->IsConstantOperand()) { | |
1851 int32_t right_operand = | |
1852 ToRepresentation(LConstantOperand::cast(right), | |
1853 instr->hydrogen()->representation()); | |
1854 switch (instr->op()) { | |
1855 case Token::BIT_AND: | |
1856 __ and_(ToRegister(left), right_operand); | |
1857 break; | |
1858 case Token::BIT_OR: | |
1859 __ or_(ToRegister(left), right_operand); | |
1860 break; | |
1861 case Token::BIT_XOR: | |
1862 if (right_operand == int32_t(~0)) { | |
1863 __ not_(ToRegister(left)); | |
1864 } else { | |
1865 __ xor_(ToRegister(left), right_operand); | |
1866 } | |
1867 break; | |
1868 default: | |
1869 UNREACHABLE(); | |
1870 break; | |
1871 } | |
1872 } else { | |
1873 switch (instr->op()) { | |
1874 case Token::BIT_AND: | |
1875 __ and_(ToRegister(left), ToOperand(right)); | |
1876 break; | |
1877 case Token::BIT_OR: | |
1878 __ or_(ToRegister(left), ToOperand(right)); | |
1879 break; | |
1880 case Token::BIT_XOR: | |
1881 __ xor_(ToRegister(left), ToOperand(right)); | |
1882 break; | |
1883 default: | |
1884 UNREACHABLE(); | |
1885 break; | |
1886 } | |
1887 } | |
1888 } | |
1889 | |
1890 | |
1891 void LCodeGen::DoShiftI(LShiftI* instr) { | |
1892 LOperand* left = instr->left(); | |
1893 LOperand* right = instr->right(); | |
1894 DCHECK(left->Equals(instr->result())); | |
1895 DCHECK(left->IsRegister()); | |
1896 if (right->IsRegister()) { | |
1897 DCHECK(ToRegister(right).is(ecx)); | |
1898 | |
1899 switch (instr->op()) { | |
1900 case Token::ROR: | |
1901 __ ror_cl(ToRegister(left)); | |
1902 break; | |
1903 case Token::SAR: | |
1904 __ sar_cl(ToRegister(left)); | |
1905 break; | |
1906 case Token::SHR: | |
1907 __ shr_cl(ToRegister(left)); | |
1908 if (instr->can_deopt()) { | |
1909 __ test(ToRegister(left), ToRegister(left)); | |
1910 DeoptimizeIf(sign, instr, Deoptimizer::kNegativeValue); | |
1911 } | |
1912 break; | |
1913 case Token::SHL: | |
1914 __ shl_cl(ToRegister(left)); | |
1915 break; | |
1916 default: | |
1917 UNREACHABLE(); | |
1918 break; | |
1919 } | |
1920 } else { | |
1921 int value = ToInteger32(LConstantOperand::cast(right)); | |
1922 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); | |
1923 switch (instr->op()) { | |
1924 case Token::ROR: | |
1925 if (shift_count == 0 && instr->can_deopt()) { | |
1926 __ test(ToRegister(left), ToRegister(left)); | |
1927 DeoptimizeIf(sign, instr, Deoptimizer::kNegativeValue); | |
1928 } else { | |
1929 __ ror(ToRegister(left), shift_count); | |
1930 } | |
1931 break; | |
1932 case Token::SAR: | |
1933 if (shift_count != 0) { | |
1934 __ sar(ToRegister(left), shift_count); | |
1935 } | |
1936 break; | |
1937 case Token::SHR: | |
1938 if (shift_count != 0) { | |
1939 __ shr(ToRegister(left), shift_count); | |
1940 } else if (instr->can_deopt()) { | |
1941 __ test(ToRegister(left), ToRegister(left)); | |
1942 DeoptimizeIf(sign, instr, Deoptimizer::kNegativeValue); | |
1943 } | |
1944 break; | |
1945 case Token::SHL: | |
1946 if (shift_count != 0) { | |
1947 if (instr->hydrogen_value()->representation().IsSmi() && | |
1948 instr->can_deopt()) { | |
1949 if (shift_count != 1) { | |
1950 __ shl(ToRegister(left), shift_count - 1); | |
1951 } | |
1952 __ SmiTag(ToRegister(left)); | |
1953 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
1954 } else { | |
1955 __ shl(ToRegister(left), shift_count); | |
1956 } | |
1957 } | |
1958 break; | |
1959 default: | |
1960 UNREACHABLE(); | |
1961 break; | |
1962 } | |
1963 } | |
1964 } | |
1965 | |
1966 | |
1967 void LCodeGen::DoSubI(LSubI* instr) { | |
1968 LOperand* left = instr->left(); | |
1969 LOperand* right = instr->right(); | |
1970 DCHECK(left->Equals(instr->result())); | |
1971 | |
1972 if (right->IsConstantOperand()) { | |
1973 __ sub(ToOperand(left), | |
1974 ToImmediate(right, instr->hydrogen()->representation())); | |
1975 } else { | |
1976 __ sub(ToRegister(left), ToOperand(right)); | |
1977 } | |
1978 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { | |
1979 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
1980 } | |
1981 } | |
1982 | |
1983 | |
1984 void LCodeGen::DoConstantI(LConstantI* instr) { | |
1985 __ Move(ToRegister(instr->result()), Immediate(instr->value())); | |
1986 } | |
1987 | |
1988 | |
1989 void LCodeGen::DoConstantS(LConstantS* instr) { | |
1990 __ Move(ToRegister(instr->result()), Immediate(instr->value())); | |
1991 } | |
1992 | |
1993 | |
1994 void LCodeGen::DoConstantD(LConstantD* instr) { | |
1995 uint64_t const bits = instr->bits(); | |
1996 uint32_t const lower = static_cast<uint32_t>(bits); | |
1997 uint32_t const upper = static_cast<uint32_t>(bits >> 32); | |
1998 DCHECK(instr->result()->IsDoubleRegister()); | |
1999 | |
2000 __ push(Immediate(upper)); | |
2001 __ push(Immediate(lower)); | |
2002 X87Register reg = ToX87Register(instr->result()); | |
2003 X87Mov(reg, Operand(esp, 0)); | |
2004 __ add(Operand(esp), Immediate(kDoubleSize)); | |
2005 } | |
2006 | |
2007 | |
2008 void LCodeGen::DoConstantE(LConstantE* instr) { | |
2009 __ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value())); | |
2010 } | |
2011 | |
2012 | |
2013 void LCodeGen::DoConstantT(LConstantT* instr) { | |
2014 Register reg = ToRegister(instr->result()); | |
2015 Handle<Object> object = instr->value(isolate()); | |
2016 AllowDeferredHandleDereference smi_check; | |
2017 __ LoadObject(reg, object); | |
2018 } | |
2019 | |
2020 | |
2021 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { | |
2022 Register result = ToRegister(instr->result()); | |
2023 Register map = ToRegister(instr->value()); | |
2024 __ EnumLength(result, map); | |
2025 } | |
2026 | |
2027 | |
2028 void LCodeGen::DoDateField(LDateField* instr) { | |
2029 Register object = ToRegister(instr->date()); | |
2030 Register result = ToRegister(instr->result()); | |
2031 Register scratch = ToRegister(instr->temp()); | |
2032 Smi* index = instr->index(); | |
2033 DCHECK(object.is(result)); | |
2034 DCHECK(object.is(eax)); | |
2035 | |
2036 if (index->value() == 0) { | |
2037 __ mov(result, FieldOperand(object, JSDate::kValueOffset)); | |
2038 } else { | |
2039 Label runtime, done; | |
2040 if (index->value() < JSDate::kFirstUncachedField) { | |
2041 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); | |
2042 __ mov(scratch, Operand::StaticVariable(stamp)); | |
2043 __ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset)); | |
2044 __ j(not_equal, &runtime, Label::kNear); | |
2045 __ mov(result, FieldOperand(object, JSDate::kValueOffset + | |
2046 kPointerSize * index->value())); | |
2047 __ jmp(&done, Label::kNear); | |
2048 } | |
2049 __ bind(&runtime); | |
2050 __ PrepareCallCFunction(2, scratch); | |
2051 __ mov(Operand(esp, 0), object); | |
2052 __ mov(Operand(esp, 1 * kPointerSize), Immediate(index)); | |
2053 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); | |
2054 __ bind(&done); | |
2055 } | |
2056 } | |
2057 | |
2058 | |
2059 Operand LCodeGen::BuildSeqStringOperand(Register string, | |
2060 LOperand* index, | |
2061 String::Encoding encoding) { | |
2062 if (index->IsConstantOperand()) { | |
2063 int offset = ToRepresentation(LConstantOperand::cast(index), | |
2064 Representation::Integer32()); | |
2065 if (encoding == String::TWO_BYTE_ENCODING) { | |
2066 offset *= kUC16Size; | |
2067 } | |
2068 STATIC_ASSERT(kCharSize == 1); | |
2069 return FieldOperand(string, SeqString::kHeaderSize + offset); | |
2070 } | |
2071 return FieldOperand( | |
2072 string, ToRegister(index), | |
2073 encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2, | |
2074 SeqString::kHeaderSize); | |
2075 } | |
2076 | |
2077 | |
2078 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { | |
2079 String::Encoding encoding = instr->hydrogen()->encoding(); | |
2080 Register result = ToRegister(instr->result()); | |
2081 Register string = ToRegister(instr->string()); | |
2082 | |
2083 if (FLAG_debug_code) { | |
2084 __ push(string); | |
2085 __ mov(string, FieldOperand(string, HeapObject::kMapOffset)); | |
2086 __ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset)); | |
2087 | |
2088 __ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask)); | |
2089 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; | |
2090 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; | |
2091 __ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING | |
2092 ? one_byte_seq_type : two_byte_seq_type)); | |
2093 __ Check(equal, kUnexpectedStringType); | |
2094 __ pop(string); | |
2095 } | |
2096 | |
2097 Operand operand = BuildSeqStringOperand(string, instr->index(), encoding); | |
2098 if (encoding == String::ONE_BYTE_ENCODING) { | |
2099 __ movzx_b(result, operand); | |
2100 } else { | |
2101 __ movzx_w(result, operand); | |
2102 } | |
2103 } | |
2104 | |
2105 | |
2106 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { | |
2107 String::Encoding encoding = instr->hydrogen()->encoding(); | |
2108 Register string = ToRegister(instr->string()); | |
2109 | |
2110 if (FLAG_debug_code) { | |
2111 Register value = ToRegister(instr->value()); | |
2112 Register index = ToRegister(instr->index()); | |
2113 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; | |
2114 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; | |
2115 int encoding_mask = | |
2116 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING | |
2117 ? one_byte_seq_type : two_byte_seq_type; | |
2118 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask); | |
2119 } | |
2120 | |
2121 Operand operand = BuildSeqStringOperand(string, instr->index(), encoding); | |
2122 if (instr->value()->IsConstantOperand()) { | |
2123 int value = ToRepresentation(LConstantOperand::cast(instr->value()), | |
2124 Representation::Integer32()); | |
2125 DCHECK_LE(0, value); | |
2126 if (encoding == String::ONE_BYTE_ENCODING) { | |
2127 DCHECK_LE(value, String::kMaxOneByteCharCode); | |
2128 __ mov_b(operand, static_cast<int8_t>(value)); | |
2129 } else { | |
2130 DCHECK_LE(value, String::kMaxUtf16CodeUnit); | |
2131 __ mov_w(operand, static_cast<int16_t>(value)); | |
2132 } | |
2133 } else { | |
2134 Register value = ToRegister(instr->value()); | |
2135 if (encoding == String::ONE_BYTE_ENCODING) { | |
2136 __ mov_b(operand, value); | |
2137 } else { | |
2138 __ mov_w(operand, value); | |
2139 } | |
2140 } | |
2141 } | |
2142 | |
2143 | |
2144 void LCodeGen::DoAddI(LAddI* instr) { | |
2145 LOperand* left = instr->left(); | |
2146 LOperand* right = instr->right(); | |
2147 | |
2148 if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) { | |
2149 if (right->IsConstantOperand()) { | |
2150 int32_t offset = ToRepresentation(LConstantOperand::cast(right), | |
2151 instr->hydrogen()->representation()); | |
2152 __ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset)); | |
2153 } else { | |
2154 Operand address(ToRegister(left), ToRegister(right), times_1, 0); | |
2155 __ lea(ToRegister(instr->result()), address); | |
2156 } | |
2157 } else { | |
2158 if (right->IsConstantOperand()) { | |
2159 __ add(ToOperand(left), | |
2160 ToImmediate(right, instr->hydrogen()->representation())); | |
2161 } else { | |
2162 __ add(ToRegister(left), ToOperand(right)); | |
2163 } | |
2164 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { | |
2165 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
2166 } | |
2167 } | |
2168 } | |
2169 | |
2170 | |
2171 void LCodeGen::DoMathMinMax(LMathMinMax* instr) { | |
2172 LOperand* left = instr->left(); | |
2173 LOperand* right = instr->right(); | |
2174 DCHECK(left->Equals(instr->result())); | |
2175 HMathMinMax::Operation operation = instr->hydrogen()->operation(); | |
2176 if (instr->hydrogen()->representation().IsSmiOrInteger32()) { | |
2177 Label return_left; | |
2178 Condition condition = (operation == HMathMinMax::kMathMin) | |
2179 ? less_equal | |
2180 : greater_equal; | |
2181 if (right->IsConstantOperand()) { | |
2182 Operand left_op = ToOperand(left); | |
2183 Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()), | |
2184 instr->hydrogen()->representation()); | |
2185 __ cmp(left_op, immediate); | |
2186 __ j(condition, &return_left, Label::kNear); | |
2187 __ mov(left_op, immediate); | |
2188 } else { | |
2189 Register left_reg = ToRegister(left); | |
2190 Operand right_op = ToOperand(right); | |
2191 __ cmp(left_reg, right_op); | |
2192 __ j(condition, &return_left, Label::kNear); | |
2193 __ mov(left_reg, right_op); | |
2194 } | |
2195 __ bind(&return_left); | |
2196 } else { | |
2197 DCHECK(instr->hydrogen()->representation().IsDouble()); | |
2198 Label check_nan_left, check_zero, return_left, return_right; | |
2199 Condition condition = (operation == HMathMinMax::kMathMin) ? below : above; | |
2200 X87Register left_reg = ToX87Register(left); | |
2201 X87Register right_reg = ToX87Register(right); | |
2202 | |
2203 X87PrepareBinaryOp(left_reg, right_reg, ToX87Register(instr->result())); | |
2204 __ fld(1); | |
2205 __ fld(1); | |
2206 __ FCmp(); | |
2207 __ j(parity_even, &check_nan_left, Label::kNear); // At least one NaN. | |
2208 __ j(equal, &check_zero, Label::kNear); // left == right. | |
2209 __ j(condition, &return_left, Label::kNear); | |
2210 __ jmp(&return_right, Label::kNear); | |
2211 | |
2212 __ bind(&check_zero); | |
2213 __ fld(0); | |
2214 __ fldz(); | |
2215 __ FCmp(); | |
2216 __ j(not_equal, &return_left, Label::kNear); // left == right != 0. | |
2217 // At this point, both left and right are either 0 or -0. | |
2218 if (operation == HMathMinMax::kMathMin) { | |
2219 // Push st0 and st1 to stack, then pop them to temp registers and OR them, | |
2220 // load it to left. | |
2221 Register scratch_reg = ToRegister(instr->temp()); | |
2222 __ fld(1); | |
2223 __ fld(1); | |
2224 __ sub(esp, Immediate(2 * kPointerSize)); | |
2225 __ fstp_s(MemOperand(esp, 0)); | |
2226 __ fstp_s(MemOperand(esp, kPointerSize)); | |
2227 __ pop(scratch_reg); | |
2228 __ xor_(MemOperand(esp, 0), scratch_reg); | |
2229 X87Mov(left_reg, MemOperand(esp, 0), kX87FloatOperand); | |
2230 __ pop(scratch_reg); // restore esp | |
2231 } else { | |
2232 // Since we operate on +0 and/or -0, addsd and andsd have the same effect. | |
2233 X87Fxch(left_reg); | |
2234 __ fadd(1); | |
2235 } | |
2236 __ jmp(&return_left, Label::kNear); | |
2237 | |
2238 __ bind(&check_nan_left); | |
2239 __ fld(0); | |
2240 __ fld(0); | |
2241 __ FCmp(); // NaN check. | |
2242 __ j(parity_even, &return_left, Label::kNear); // left == NaN. | |
2243 | |
2244 __ bind(&return_right); | |
2245 X87Fxch(left_reg); | |
2246 X87Mov(left_reg, right_reg); | |
2247 | |
2248 __ bind(&return_left); | |
2249 } | |
2250 } | |
2251 | |
2252 | |
2253 void LCodeGen::DoArithmeticD(LArithmeticD* instr) { | |
2254 X87Register left = ToX87Register(instr->left()); | |
2255 X87Register right = ToX87Register(instr->right()); | |
2256 X87Register result = ToX87Register(instr->result()); | |
2257 if (instr->op() != Token::MOD) { | |
2258 X87PrepareBinaryOp(left, right, result); | |
2259 } | |
2260 // Set the precision control to double-precision. | |
2261 __ X87SetFPUCW(0x027F); | |
2262 switch (instr->op()) { | |
2263 case Token::ADD: | |
2264 __ fadd_i(1); | |
2265 break; | |
2266 case Token::SUB: | |
2267 __ fsub_i(1); | |
2268 break; | |
2269 case Token::MUL: | |
2270 __ fmul_i(1); | |
2271 break; | |
2272 case Token::DIV: | |
2273 __ fdiv_i(1); | |
2274 break; | |
2275 case Token::MOD: { | |
2276 // Pass two doubles as arguments on the stack. | |
2277 __ PrepareCallCFunction(4, eax); | |
2278 X87Mov(Operand(esp, 1 * kDoubleSize), right); | |
2279 X87Mov(Operand(esp, 0), left); | |
2280 X87Free(right); | |
2281 DCHECK(left.is(result)); | |
2282 X87PrepareToWrite(result); | |
2283 __ CallCFunction( | |
2284 ExternalReference::mod_two_doubles_operation(isolate()), | |
2285 4); | |
2286 | |
2287 // Return value is in st(0) on ia32. | |
2288 X87CommitWrite(result); | |
2289 break; | |
2290 } | |
2291 default: | |
2292 UNREACHABLE(); | |
2293 break; | |
2294 } | |
2295 | |
2296 // Restore the default value of control word. | |
2297 __ X87SetFPUCW(0x037F); | |
2298 } | |
2299 | |
2300 | |
2301 void LCodeGen::DoArithmeticT(LArithmeticT* instr) { | |
2302 DCHECK(ToRegister(instr->context()).is(esi)); | |
2303 DCHECK(ToRegister(instr->left()).is(edx)); | |
2304 DCHECK(ToRegister(instr->right()).is(eax)); | |
2305 DCHECK(ToRegister(instr->result()).is(eax)); | |
2306 | |
2307 Handle<Code> code = | |
2308 CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code(); | |
2309 CallCode(code, RelocInfo::CODE_TARGET, instr); | |
2310 } | |
2311 | |
2312 | |
2313 template<class InstrType> | |
2314 void LCodeGen::EmitBranch(InstrType instr, Condition cc) { | |
2315 int left_block = instr->TrueDestination(chunk_); | |
2316 int right_block = instr->FalseDestination(chunk_); | |
2317 | |
2318 int next_block = GetNextEmittedBlock(); | |
2319 | |
2320 if (right_block == left_block || cc == no_condition) { | |
2321 EmitGoto(left_block); | |
2322 } else if (left_block == next_block) { | |
2323 __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block)); | |
2324 } else if (right_block == next_block) { | |
2325 __ j(cc, chunk_->GetAssemblyLabel(left_block)); | |
2326 } else { | |
2327 __ j(cc, chunk_->GetAssemblyLabel(left_block)); | |
2328 __ jmp(chunk_->GetAssemblyLabel(right_block)); | |
2329 } | |
2330 } | |
2331 | |
2332 | |
2333 template <class InstrType> | |
2334 void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) { | |
2335 int true_block = instr->TrueDestination(chunk_); | |
2336 if (cc == no_condition) { | |
2337 __ jmp(chunk_->GetAssemblyLabel(true_block)); | |
2338 } else { | |
2339 __ j(cc, chunk_->GetAssemblyLabel(true_block)); | |
2340 } | |
2341 } | |
2342 | |
2343 | |
2344 template<class InstrType> | |
2345 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) { | |
2346 int false_block = instr->FalseDestination(chunk_); | |
2347 if (cc == no_condition) { | |
2348 __ jmp(chunk_->GetAssemblyLabel(false_block)); | |
2349 } else { | |
2350 __ j(cc, chunk_->GetAssemblyLabel(false_block)); | |
2351 } | |
2352 } | |
2353 | |
2354 | |
2355 void LCodeGen::DoBranch(LBranch* instr) { | |
2356 Representation r = instr->hydrogen()->value()->representation(); | |
2357 if (r.IsSmiOrInteger32()) { | |
2358 Register reg = ToRegister(instr->value()); | |
2359 __ test(reg, Operand(reg)); | |
2360 EmitBranch(instr, not_zero); | |
2361 } else if (r.IsDouble()) { | |
2362 X87Register reg = ToX87Register(instr->value()); | |
2363 X87LoadForUsage(reg); | |
2364 __ fldz(); | |
2365 __ FCmp(); | |
2366 EmitBranch(instr, not_zero); | |
2367 } else { | |
2368 DCHECK(r.IsTagged()); | |
2369 Register reg = ToRegister(instr->value()); | |
2370 HType type = instr->hydrogen()->value()->type(); | |
2371 if (type.IsBoolean()) { | |
2372 DCHECK(!info()->IsStub()); | |
2373 __ cmp(reg, factory()->true_value()); | |
2374 EmitBranch(instr, equal); | |
2375 } else if (type.IsSmi()) { | |
2376 DCHECK(!info()->IsStub()); | |
2377 __ test(reg, Operand(reg)); | |
2378 EmitBranch(instr, not_equal); | |
2379 } else if (type.IsJSArray()) { | |
2380 DCHECK(!info()->IsStub()); | |
2381 EmitBranch(instr, no_condition); | |
2382 } else if (type.IsHeapNumber()) { | |
2383 UNREACHABLE(); | |
2384 } else if (type.IsString()) { | |
2385 DCHECK(!info()->IsStub()); | |
2386 __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0)); | |
2387 EmitBranch(instr, not_equal); | |
2388 } else { | |
2389 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); | |
2390 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic(); | |
2391 | |
2392 if (expected.Contains(ToBooleanStub::UNDEFINED)) { | |
2393 // undefined -> false. | |
2394 __ cmp(reg, factory()->undefined_value()); | |
2395 __ j(equal, instr->FalseLabel(chunk_)); | |
2396 } | |
2397 if (expected.Contains(ToBooleanStub::BOOLEAN)) { | |
2398 // true -> true. | |
2399 __ cmp(reg, factory()->true_value()); | |
2400 __ j(equal, instr->TrueLabel(chunk_)); | |
2401 // false -> false. | |
2402 __ cmp(reg, factory()->false_value()); | |
2403 __ j(equal, instr->FalseLabel(chunk_)); | |
2404 } | |
2405 if (expected.Contains(ToBooleanStub::NULL_TYPE)) { | |
2406 // 'null' -> false. | |
2407 __ cmp(reg, factory()->null_value()); | |
2408 __ j(equal, instr->FalseLabel(chunk_)); | |
2409 } | |
2410 | |
2411 if (expected.Contains(ToBooleanStub::SMI)) { | |
2412 // Smis: 0 -> false, all other -> true. | |
2413 __ test(reg, Operand(reg)); | |
2414 __ j(equal, instr->FalseLabel(chunk_)); | |
2415 __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); | |
2416 } else if (expected.NeedsMap()) { | |
2417 // If we need a map later and have a Smi -> deopt. | |
2418 __ test(reg, Immediate(kSmiTagMask)); | |
2419 DeoptimizeIf(zero, instr, Deoptimizer::kSmi); | |
2420 } | |
2421 | |
2422 Register map = no_reg; // Keep the compiler happy. | |
2423 if (expected.NeedsMap()) { | |
2424 map = ToRegister(instr->temp()); | |
2425 DCHECK(!map.is(reg)); | |
2426 __ mov(map, FieldOperand(reg, HeapObject::kMapOffset)); | |
2427 | |
2428 if (expected.CanBeUndetectable()) { | |
2429 // Undetectable -> false. | |
2430 __ test_b(FieldOperand(map, Map::kBitFieldOffset), | |
2431 1 << Map::kIsUndetectable); | |
2432 __ j(not_zero, instr->FalseLabel(chunk_)); | |
2433 } | |
2434 } | |
2435 | |
2436 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { | |
2437 // spec object -> true. | |
2438 __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE); | |
2439 __ j(above_equal, instr->TrueLabel(chunk_)); | |
2440 } | |
2441 | |
2442 if (expected.Contains(ToBooleanStub::STRING)) { | |
2443 // String value -> false iff empty. | |
2444 Label not_string; | |
2445 __ CmpInstanceType(map, FIRST_NONSTRING_TYPE); | |
2446 __ j(above_equal, ¬_string, Label::kNear); | |
2447 __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0)); | |
2448 __ j(not_zero, instr->TrueLabel(chunk_)); | |
2449 __ jmp(instr->FalseLabel(chunk_)); | |
2450 __ bind(¬_string); | |
2451 } | |
2452 | |
2453 if (expected.Contains(ToBooleanStub::SYMBOL)) { | |
2454 // Symbol value -> true. | |
2455 __ CmpInstanceType(map, SYMBOL_TYPE); | |
2456 __ j(equal, instr->TrueLabel(chunk_)); | |
2457 } | |
2458 | |
2459 if (expected.Contains(ToBooleanStub::SIMD_VALUE)) { | |
2460 // SIMD value -> true. | |
2461 __ CmpInstanceType(map, SIMD128_VALUE_TYPE); | |
2462 __ j(equal, instr->TrueLabel(chunk_)); | |
2463 } | |
2464 | |
2465 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { | |
2466 // heap number -> false iff +0, -0, or NaN. | |
2467 Label not_heap_number; | |
2468 __ cmp(FieldOperand(reg, HeapObject::kMapOffset), | |
2469 factory()->heap_number_map()); | |
2470 __ j(not_equal, ¬_heap_number, Label::kNear); | |
2471 __ fldz(); | |
2472 __ fld_d(FieldOperand(reg, HeapNumber::kValueOffset)); | |
2473 __ FCmp(); | |
2474 __ j(zero, instr->FalseLabel(chunk_)); | |
2475 __ jmp(instr->TrueLabel(chunk_)); | |
2476 __ bind(¬_heap_number); | |
2477 } | |
2478 | |
2479 if (!expected.IsGeneric()) { | |
2480 // We've seen something for the first time -> deopt. | |
2481 // This can only happen if we are not generic already. | |
2482 DeoptimizeIf(no_condition, instr, Deoptimizer::kUnexpectedObject); | |
2483 } | |
2484 } | |
2485 } | |
2486 } | |
2487 | |
2488 | |
2489 void LCodeGen::EmitGoto(int block) { | |
2490 if (!IsNextEmittedBlock(block)) { | |
2491 __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block))); | |
2492 } | |
2493 } | |
2494 | |
2495 | |
2496 void LCodeGen::DoClobberDoubles(LClobberDoubles* instr) { | |
2497 } | |
2498 | |
2499 | |
2500 void LCodeGen::DoGoto(LGoto* instr) { | |
2501 EmitGoto(instr->block_id()); | |
2502 } | |
2503 | |
2504 | |
2505 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { | |
2506 Condition cond = no_condition; | |
2507 switch (op) { | |
2508 case Token::EQ: | |
2509 case Token::EQ_STRICT: | |
2510 cond = equal; | |
2511 break; | |
2512 case Token::NE: | |
2513 case Token::NE_STRICT: | |
2514 cond = not_equal; | |
2515 break; | |
2516 case Token::LT: | |
2517 cond = is_unsigned ? below : less; | |
2518 break; | |
2519 case Token::GT: | |
2520 cond = is_unsigned ? above : greater; | |
2521 break; | |
2522 case Token::LTE: | |
2523 cond = is_unsigned ? below_equal : less_equal; | |
2524 break; | |
2525 case Token::GTE: | |
2526 cond = is_unsigned ? above_equal : greater_equal; | |
2527 break; | |
2528 case Token::IN: | |
2529 case Token::INSTANCEOF: | |
2530 default: | |
2531 UNREACHABLE(); | |
2532 } | |
2533 return cond; | |
2534 } | |
2535 | |
2536 | |
2537 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { | |
2538 LOperand* left = instr->left(); | |
2539 LOperand* right = instr->right(); | |
2540 bool is_unsigned = | |
2541 instr->is_double() || | |
2542 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || | |
2543 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); | |
2544 Condition cc = TokenToCondition(instr->op(), is_unsigned); | |
2545 | |
2546 if (left->IsConstantOperand() && right->IsConstantOperand()) { | |
2547 // We can statically evaluate the comparison. | |
2548 double left_val = ToDouble(LConstantOperand::cast(left)); | |
2549 double right_val = ToDouble(LConstantOperand::cast(right)); | |
2550 int next_block = EvalComparison(instr->op(), left_val, right_val) ? | |
2551 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); | |
2552 EmitGoto(next_block); | |
2553 } else { | |
2554 if (instr->is_double()) { | |
2555 X87LoadForUsage(ToX87Register(right), ToX87Register(left)); | |
2556 __ FCmp(); | |
2557 // Don't base result on EFLAGS when a NaN is involved. Instead | |
2558 // jump to the false block. | |
2559 __ j(parity_even, instr->FalseLabel(chunk_)); | |
2560 } else { | |
2561 if (right->IsConstantOperand()) { | |
2562 __ cmp(ToOperand(left), | |
2563 ToImmediate(right, instr->hydrogen()->representation())); | |
2564 } else if (left->IsConstantOperand()) { | |
2565 __ cmp(ToOperand(right), | |
2566 ToImmediate(left, instr->hydrogen()->representation())); | |
2567 // We commuted the operands, so commute the condition. | |
2568 cc = CommuteCondition(cc); | |
2569 } else { | |
2570 __ cmp(ToRegister(left), ToOperand(right)); | |
2571 } | |
2572 } | |
2573 EmitBranch(instr, cc); | |
2574 } | |
2575 } | |
2576 | |
2577 | |
2578 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { | |
2579 Register left = ToRegister(instr->left()); | |
2580 | |
2581 if (instr->right()->IsConstantOperand()) { | |
2582 Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right())); | |
2583 __ CmpObject(left, right); | |
2584 } else { | |
2585 Operand right = ToOperand(instr->right()); | |
2586 __ cmp(left, right); | |
2587 } | |
2588 EmitBranch(instr, equal); | |
2589 } | |
2590 | |
2591 | |
2592 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) { | |
2593 if (instr->hydrogen()->representation().IsTagged()) { | |
2594 Register input_reg = ToRegister(instr->object()); | |
2595 __ cmp(input_reg, factory()->the_hole_value()); | |
2596 EmitBranch(instr, equal); | |
2597 return; | |
2598 } | |
2599 | |
2600 // Put the value to the top of stack | |
2601 X87Register src = ToX87Register(instr->object()); | |
2602 X87LoadForUsage(src); | |
2603 __ fld(0); | |
2604 __ fld(0); | |
2605 __ FCmp(); | |
2606 Label ok; | |
2607 __ j(parity_even, &ok, Label::kNear); | |
2608 __ fstp(0); | |
2609 EmitFalseBranch(instr, no_condition); | |
2610 __ bind(&ok); | |
2611 | |
2612 | |
2613 __ sub(esp, Immediate(kDoubleSize)); | |
2614 __ fstp_d(MemOperand(esp, 0)); | |
2615 | |
2616 __ add(esp, Immediate(kDoubleSize)); | |
2617 int offset = sizeof(kHoleNanUpper32); | |
2618 // x87 converts sNaN(0xfff7fffffff7ffff) to QNaN(0xfffffffffff7ffff), | |
2619 // so we check the upper with 0xffffffff for hole as a temporary fix. | |
2620 __ cmp(MemOperand(esp, -offset), Immediate(0xffffffff)); | |
2621 EmitBranch(instr, equal); | |
2622 } | |
2623 | |
2624 | |
2625 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) { | |
2626 Representation rep = instr->hydrogen()->value()->representation(); | |
2627 DCHECK(!rep.IsInteger32()); | |
2628 | |
2629 if (rep.IsDouble()) { | |
2630 X87Register input = ToX87Register(instr->value()); | |
2631 X87LoadForUsage(input); | |
2632 __ FXamMinusZero(); | |
2633 EmitBranch(instr, equal); | |
2634 } else { | |
2635 Register value = ToRegister(instr->value()); | |
2636 Handle<Map> map = masm()->isolate()->factory()->heap_number_map(); | |
2637 __ CheckMap(value, map, instr->FalseLabel(chunk()), DO_SMI_CHECK); | |
2638 __ cmp(FieldOperand(value, HeapNumber::kExponentOffset), | |
2639 Immediate(0x1)); | |
2640 EmitFalseBranch(instr, no_overflow); | |
2641 __ cmp(FieldOperand(value, HeapNumber::kMantissaOffset), | |
2642 Immediate(0x00000000)); | |
2643 EmitBranch(instr, equal); | |
2644 } | |
2645 } | |
2646 | |
2647 | |
2648 Condition LCodeGen::EmitIsString(Register input, | |
2649 Register temp1, | |
2650 Label* is_not_string, | |
2651 SmiCheck check_needed = INLINE_SMI_CHECK) { | |
2652 if (check_needed == INLINE_SMI_CHECK) { | |
2653 __ JumpIfSmi(input, is_not_string); | |
2654 } | |
2655 | |
2656 Condition cond = masm_->IsObjectStringType(input, temp1, temp1); | |
2657 | |
2658 return cond; | |
2659 } | |
2660 | |
2661 | |
2662 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { | |
2663 Register reg = ToRegister(instr->value()); | |
2664 Register temp = ToRegister(instr->temp()); | |
2665 | |
2666 SmiCheck check_needed = | |
2667 instr->hydrogen()->value()->type().IsHeapObject() | |
2668 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | |
2669 | |
2670 Condition true_cond = EmitIsString( | |
2671 reg, temp, instr->FalseLabel(chunk_), check_needed); | |
2672 | |
2673 EmitBranch(instr, true_cond); | |
2674 } | |
2675 | |
2676 | |
2677 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { | |
2678 Operand input = ToOperand(instr->value()); | |
2679 | |
2680 __ test(input, Immediate(kSmiTagMask)); | |
2681 EmitBranch(instr, zero); | |
2682 } | |
2683 | |
2684 | |
2685 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { | |
2686 Register input = ToRegister(instr->value()); | |
2687 Register temp = ToRegister(instr->temp()); | |
2688 | |
2689 if (!instr->hydrogen()->value()->type().IsHeapObject()) { | |
2690 STATIC_ASSERT(kSmiTag == 0); | |
2691 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); | |
2692 } | |
2693 __ mov(temp, FieldOperand(input, HeapObject::kMapOffset)); | |
2694 __ test_b(FieldOperand(temp, Map::kBitFieldOffset), | |
2695 1 << Map::kIsUndetectable); | |
2696 EmitBranch(instr, not_zero); | |
2697 } | |
2698 | |
2699 | |
2700 static Condition ComputeCompareCondition(Token::Value op) { | |
2701 switch (op) { | |
2702 case Token::EQ_STRICT: | |
2703 case Token::EQ: | |
2704 return equal; | |
2705 case Token::LT: | |
2706 return less; | |
2707 case Token::GT: | |
2708 return greater; | |
2709 case Token::LTE: | |
2710 return less_equal; | |
2711 case Token::GTE: | |
2712 return greater_equal; | |
2713 default: | |
2714 UNREACHABLE(); | |
2715 return no_condition; | |
2716 } | |
2717 } | |
2718 | |
2719 | |
2720 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { | |
2721 DCHECK(ToRegister(instr->context()).is(esi)); | |
2722 DCHECK(ToRegister(instr->left()).is(edx)); | |
2723 DCHECK(ToRegister(instr->right()).is(eax)); | |
2724 | |
2725 Handle<Code> code = CodeFactory::StringCompare(isolate()).code(); | |
2726 CallCode(code, RelocInfo::CODE_TARGET, instr); | |
2727 __ test(eax, eax); | |
2728 | |
2729 EmitBranch(instr, ComputeCompareCondition(instr->op())); | |
2730 } | |
2731 | |
2732 | |
2733 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { | |
2734 InstanceType from = instr->from(); | |
2735 InstanceType to = instr->to(); | |
2736 if (from == FIRST_TYPE) return to; | |
2737 DCHECK(from == to || to == LAST_TYPE); | |
2738 return from; | |
2739 } | |
2740 | |
2741 | |
2742 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { | |
2743 InstanceType from = instr->from(); | |
2744 InstanceType to = instr->to(); | |
2745 if (from == to) return equal; | |
2746 if (to == LAST_TYPE) return above_equal; | |
2747 if (from == FIRST_TYPE) return below_equal; | |
2748 UNREACHABLE(); | |
2749 return equal; | |
2750 } | |
2751 | |
2752 | |
2753 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { | |
2754 Register input = ToRegister(instr->value()); | |
2755 Register temp = ToRegister(instr->temp()); | |
2756 | |
2757 if (!instr->hydrogen()->value()->type().IsHeapObject()) { | |
2758 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); | |
2759 } | |
2760 | |
2761 __ CmpObjectType(input, TestType(instr->hydrogen()), temp); | |
2762 EmitBranch(instr, BranchCondition(instr->hydrogen())); | |
2763 } | |
2764 | |
2765 | |
2766 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { | |
2767 Register input = ToRegister(instr->value()); | |
2768 Register result = ToRegister(instr->result()); | |
2769 | |
2770 __ AssertString(input); | |
2771 | |
2772 __ mov(result, FieldOperand(input, String::kHashFieldOffset)); | |
2773 __ IndexFromHash(result, result); | |
2774 } | |
2775 | |
2776 | |
2777 void LCodeGen::DoHasCachedArrayIndexAndBranch( | |
2778 LHasCachedArrayIndexAndBranch* instr) { | |
2779 Register input = ToRegister(instr->value()); | |
2780 | |
2781 __ test(FieldOperand(input, String::kHashFieldOffset), | |
2782 Immediate(String::kContainsCachedArrayIndexMask)); | |
2783 EmitBranch(instr, equal); | |
2784 } | |
2785 | |
2786 | |
2787 // Branches to a label or falls through with the answer in the z flag. Trashes | |
2788 // the temp registers, but not the input. | |
2789 void LCodeGen::EmitClassOfTest(Label* is_true, | |
2790 Label* is_false, | |
2791 Handle<String>class_name, | |
2792 Register input, | |
2793 Register temp, | |
2794 Register temp2) { | |
2795 DCHECK(!input.is(temp)); | |
2796 DCHECK(!input.is(temp2)); | |
2797 DCHECK(!temp.is(temp2)); | |
2798 __ JumpIfSmi(input, is_false); | |
2799 | |
2800 if (String::Equals(isolate()->factory()->Function_string(), class_name)) { | |
2801 // Assuming the following assertions, we can use the same compares to test | |
2802 // for both being a function type and being in the object type range. | |
2803 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); | |
2804 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == | |
2805 FIRST_SPEC_OBJECT_TYPE + 1); | |
2806 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == | |
2807 LAST_SPEC_OBJECT_TYPE - 1); | |
2808 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); | |
2809 __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp); | |
2810 __ j(below, is_false); | |
2811 __ j(equal, is_true); | |
2812 __ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE); | |
2813 __ j(equal, is_true); | |
2814 } else { | |
2815 // Faster code path to avoid two compares: subtract lower bound from the | |
2816 // actual type and do a signed compare with the width of the type range. | |
2817 __ mov(temp, FieldOperand(input, HeapObject::kMapOffset)); | |
2818 __ movzx_b(temp2, FieldOperand(temp, Map::kInstanceTypeOffset)); | |
2819 __ sub(Operand(temp2), Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); | |
2820 __ cmp(Operand(temp2), Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - | |
2821 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); | |
2822 __ j(above, is_false); | |
2823 } | |
2824 | |
2825 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. | |
2826 // Check if the constructor in the map is a function. | |
2827 __ GetMapConstructor(temp, temp, temp2); | |
2828 // Objects with a non-function constructor have class 'Object'. | |
2829 __ CmpInstanceType(temp2, JS_FUNCTION_TYPE); | |
2830 if (String::Equals(class_name, isolate()->factory()->Object_string())) { | |
2831 __ j(not_equal, is_true); | |
2832 } else { | |
2833 __ j(not_equal, is_false); | |
2834 } | |
2835 | |
2836 // temp now contains the constructor function. Grab the | |
2837 // instance class name from there. | |
2838 __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset)); | |
2839 __ mov(temp, FieldOperand(temp, | |
2840 SharedFunctionInfo::kInstanceClassNameOffset)); | |
2841 // The class name we are testing against is internalized since it's a literal. | |
2842 // The name in the constructor is internalized because of the way the context | |
2843 // is booted. This routine isn't expected to work for random API-created | |
2844 // classes and it doesn't have to because you can't access it with natives | |
2845 // syntax. Since both sides are internalized it is sufficient to use an | |
2846 // identity comparison. | |
2847 __ cmp(temp, class_name); | |
2848 // End with the answer in the z flag. | |
2849 } | |
2850 | |
2851 | |
2852 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { | |
2853 Register input = ToRegister(instr->value()); | |
2854 Register temp = ToRegister(instr->temp()); | |
2855 Register temp2 = ToRegister(instr->temp2()); | |
2856 | |
2857 Handle<String> class_name = instr->hydrogen()->class_name(); | |
2858 | |
2859 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), | |
2860 class_name, input, temp, temp2); | |
2861 | |
2862 EmitBranch(instr, equal); | |
2863 } | |
2864 | |
2865 | |
2866 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { | |
2867 Register reg = ToRegister(instr->value()); | |
2868 __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map()); | |
2869 EmitBranch(instr, equal); | |
2870 } | |
2871 | |
2872 | |
2873 void LCodeGen::DoInstanceOf(LInstanceOf* instr) { | |
2874 DCHECK(ToRegister(instr->context()).is(esi)); | |
2875 DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister())); | |
2876 DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister())); | |
2877 DCHECK(ToRegister(instr->result()).is(eax)); | |
2878 InstanceOfStub stub(isolate()); | |
2879 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
2880 } | |
2881 | |
2882 | |
2883 void LCodeGen::DoHasInPrototypeChainAndBranch( | |
2884 LHasInPrototypeChainAndBranch* instr) { | |
2885 Register const object = ToRegister(instr->object()); | |
2886 Register const object_map = ToRegister(instr->scratch()); | |
2887 Register const object_prototype = object_map; | |
2888 Register const prototype = ToRegister(instr->prototype()); | |
2889 | |
2890 // The {object} must be a spec object. It's sufficient to know that {object} | |
2891 // is not a smi, since all other non-spec objects have {null} prototypes and | |
2892 // will be ruled out below. | |
2893 if (instr->hydrogen()->ObjectNeedsSmiCheck()) { | |
2894 __ test(object, Immediate(kSmiTagMask)); | |
2895 EmitFalseBranch(instr, zero); | |
2896 } | |
2897 | |
2898 // Loop through the {object}s prototype chain looking for the {prototype}. | |
2899 __ mov(object_map, FieldOperand(object, HeapObject::kMapOffset)); | |
2900 Label loop; | |
2901 __ bind(&loop); | |
2902 __ mov(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset)); | |
2903 __ cmp(object_prototype, prototype); | |
2904 EmitTrueBranch(instr, equal); | |
2905 __ cmp(object_prototype, factory()->null_value()); | |
2906 EmitFalseBranch(instr, equal); | |
2907 __ mov(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset)); | |
2908 __ jmp(&loop); | |
2909 } | |
2910 | |
2911 | |
2912 void LCodeGen::DoCmpT(LCmpT* instr) { | |
2913 Token::Value op = instr->op(); | |
2914 | |
2915 Handle<Code> ic = | |
2916 CodeFactory::CompareIC(isolate(), op, instr->strength()).code(); | |
2917 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
2918 | |
2919 Condition condition = ComputeCompareCondition(op); | |
2920 Label true_value, done; | |
2921 __ test(eax, Operand(eax)); | |
2922 __ j(condition, &true_value, Label::kNear); | |
2923 __ mov(ToRegister(instr->result()), factory()->false_value()); | |
2924 __ jmp(&done, Label::kNear); | |
2925 __ bind(&true_value); | |
2926 __ mov(ToRegister(instr->result()), factory()->true_value()); | |
2927 __ bind(&done); | |
2928 } | |
2929 | |
2930 | |
2931 void LCodeGen::EmitReturn(LReturn* instr, bool dynamic_frame_alignment) { | |
2932 int extra_value_count = dynamic_frame_alignment ? 2 : 1; | |
2933 | |
2934 if (instr->has_constant_parameter_count()) { | |
2935 int parameter_count = ToInteger32(instr->constant_parameter_count()); | |
2936 if (dynamic_frame_alignment && FLAG_debug_code) { | |
2937 __ cmp(Operand(esp, | |
2938 (parameter_count + extra_value_count) * kPointerSize), | |
2939 Immediate(kAlignmentZapValue)); | |
2940 __ Assert(equal, kExpectedAlignmentMarker); | |
2941 } | |
2942 __ Ret((parameter_count + extra_value_count) * kPointerSize, ecx); | |
2943 } else { | |
2944 DCHECK(info()->IsStub()); // Functions would need to drop one more value. | |
2945 Register reg = ToRegister(instr->parameter_count()); | |
2946 // The argument count parameter is a smi | |
2947 __ SmiUntag(reg); | |
2948 Register return_addr_reg = reg.is(ecx) ? ebx : ecx; | |
2949 if (dynamic_frame_alignment && FLAG_debug_code) { | |
2950 DCHECK(extra_value_count == 2); | |
2951 __ cmp(Operand(esp, reg, times_pointer_size, | |
2952 extra_value_count * kPointerSize), | |
2953 Immediate(kAlignmentZapValue)); | |
2954 __ Assert(equal, kExpectedAlignmentMarker); | |
2955 } | |
2956 | |
2957 // emit code to restore stack based on instr->parameter_count() | |
2958 __ pop(return_addr_reg); // save return address | |
2959 if (dynamic_frame_alignment) { | |
2960 __ inc(reg); // 1 more for alignment | |
2961 } | |
2962 __ shl(reg, kPointerSizeLog2); | |
2963 __ add(esp, reg); | |
2964 __ jmp(return_addr_reg); | |
2965 } | |
2966 } | |
2967 | |
2968 | |
2969 void LCodeGen::DoReturn(LReturn* instr) { | |
2970 if (FLAG_trace && info()->IsOptimizing()) { | |
2971 // Preserve the return value on the stack and rely on the runtime call | |
2972 // to return the value in the same register. We're leaving the code | |
2973 // managed by the register allocator and tearing down the frame, it's | |
2974 // safe to write to the context register. | |
2975 __ push(eax); | |
2976 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); | |
2977 __ CallRuntime(Runtime::kTraceExit, 1); | |
2978 } | |
2979 if (dynamic_frame_alignment_) { | |
2980 // Fetch the state of the dynamic frame alignment. | |
2981 __ mov(edx, Operand(ebp, | |
2982 JavaScriptFrameConstants::kDynamicAlignmentStateOffset)); | |
2983 } | |
2984 if (NeedsEagerFrame()) { | |
2985 __ mov(esp, ebp); | |
2986 __ pop(ebp); | |
2987 } | |
2988 if (dynamic_frame_alignment_) { | |
2989 Label no_padding; | |
2990 __ cmp(edx, Immediate(kNoAlignmentPadding)); | |
2991 __ j(equal, &no_padding, Label::kNear); | |
2992 | |
2993 EmitReturn(instr, true); | |
2994 __ bind(&no_padding); | |
2995 } | |
2996 | |
2997 EmitReturn(instr, false); | |
2998 } | |
2999 | |
3000 | |
3001 template <class T> | |
3002 void LCodeGen::EmitVectorLoadICRegisters(T* instr) { | |
3003 Register vector_register = ToRegister(instr->temp_vector()); | |
3004 Register slot_register = LoadWithVectorDescriptor::SlotRegister(); | |
3005 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister())); | |
3006 DCHECK(slot_register.is(eax)); | |
3007 | |
3008 AllowDeferredHandleDereference vector_structure_check; | |
3009 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); | |
3010 __ mov(vector_register, vector); | |
3011 // No need to allocate this register. | |
3012 FeedbackVectorSlot slot = instr->hydrogen()->slot(); | |
3013 int index = vector->GetIndex(slot); | |
3014 __ mov(slot_register, Immediate(Smi::FromInt(index))); | |
3015 } | |
3016 | |
3017 | |
3018 template <class T> | |
3019 void LCodeGen::EmitVectorStoreICRegisters(T* instr) { | |
3020 Register vector_register = ToRegister(instr->temp_vector()); | |
3021 Register slot_register = ToRegister(instr->temp_slot()); | |
3022 | |
3023 AllowDeferredHandleDereference vector_structure_check; | |
3024 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); | |
3025 __ mov(vector_register, vector); | |
3026 FeedbackVectorSlot slot = instr->hydrogen()->slot(); | |
3027 int index = vector->GetIndex(slot); | |
3028 __ mov(slot_register, Immediate(Smi::FromInt(index))); | |
3029 } | |
3030 | |
3031 | |
3032 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { | |
3033 DCHECK(ToRegister(instr->context()).is(esi)); | |
3034 DCHECK(ToRegister(instr->global_object()) | |
3035 .is(LoadDescriptor::ReceiverRegister())); | |
3036 DCHECK(ToRegister(instr->result()).is(eax)); | |
3037 | |
3038 __ mov(LoadDescriptor::NameRegister(), instr->name()); | |
3039 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr); | |
3040 Handle<Code> ic = | |
3041 CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(), | |
3042 SLOPPY, PREMONOMORPHIC).code(); | |
3043 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
3044 } | |
3045 | |
3046 | |
3047 void LCodeGen::DoLoadGlobalViaContext(LLoadGlobalViaContext* instr) { | |
3048 DCHECK(ToRegister(instr->context()).is(esi)); | |
3049 DCHECK(ToRegister(instr->result()).is(eax)); | |
3050 | |
3051 int const slot = instr->slot_index(); | |
3052 int const depth = instr->depth(); | |
3053 if (depth <= LoadGlobalViaContextStub::kMaximumDepth) { | |
3054 __ mov(LoadGlobalViaContextDescriptor::SlotRegister(), Immediate(slot)); | |
3055 Handle<Code> stub = | |
3056 CodeFactory::LoadGlobalViaContext(isolate(), depth).code(); | |
3057 CallCode(stub, RelocInfo::CODE_TARGET, instr); | |
3058 } else { | |
3059 __ Push(Smi::FromInt(slot)); | |
3060 __ CallRuntime(Runtime::kLoadGlobalViaContext, 1); | |
3061 } | |
3062 } | |
3063 | |
3064 | |
3065 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { | |
3066 Register context = ToRegister(instr->context()); | |
3067 Register result = ToRegister(instr->result()); | |
3068 __ mov(result, ContextOperand(context, instr->slot_index())); | |
3069 | |
3070 if (instr->hydrogen()->RequiresHoleCheck()) { | |
3071 __ cmp(result, factory()->the_hole_value()); | |
3072 if (instr->hydrogen()->DeoptimizesOnHole()) { | |
3073 DeoptimizeIf(equal, instr, Deoptimizer::kHole); | |
3074 } else { | |
3075 Label is_not_hole; | |
3076 __ j(not_equal, &is_not_hole, Label::kNear); | |
3077 __ mov(result, factory()->undefined_value()); | |
3078 __ bind(&is_not_hole); | |
3079 } | |
3080 } | |
3081 } | |
3082 | |
3083 | |
3084 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { | |
3085 Register context = ToRegister(instr->context()); | |
3086 Register value = ToRegister(instr->value()); | |
3087 | |
3088 Label skip_assignment; | |
3089 | |
3090 Operand target = ContextOperand(context, instr->slot_index()); | |
3091 if (instr->hydrogen()->RequiresHoleCheck()) { | |
3092 __ cmp(target, factory()->the_hole_value()); | |
3093 if (instr->hydrogen()->DeoptimizesOnHole()) { | |
3094 DeoptimizeIf(equal, instr, Deoptimizer::kHole); | |
3095 } else { | |
3096 __ j(not_equal, &skip_assignment, Label::kNear); | |
3097 } | |
3098 } | |
3099 | |
3100 __ mov(target, value); | |
3101 if (instr->hydrogen()->NeedsWriteBarrier()) { | |
3102 SmiCheck check_needed = | |
3103 instr->hydrogen()->value()->type().IsHeapObject() | |
3104 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | |
3105 Register temp = ToRegister(instr->temp()); | |
3106 int offset = Context::SlotOffset(instr->slot_index()); | |
3107 __ RecordWriteContextSlot(context, offset, value, temp, kSaveFPRegs, | |
3108 EMIT_REMEMBERED_SET, check_needed); | |
3109 } | |
3110 | |
3111 __ bind(&skip_assignment); | |
3112 } | |
3113 | |
3114 | |
3115 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { | |
3116 HObjectAccess access = instr->hydrogen()->access(); | |
3117 int offset = access.offset(); | |
3118 | |
3119 if (access.IsExternalMemory()) { | |
3120 Register result = ToRegister(instr->result()); | |
3121 MemOperand operand = instr->object()->IsConstantOperand() | |
3122 ? MemOperand::StaticVariable(ToExternalReference( | |
3123 LConstantOperand::cast(instr->object()))) | |
3124 : MemOperand(ToRegister(instr->object()), offset); | |
3125 __ Load(result, operand, access.representation()); | |
3126 return; | |
3127 } | |
3128 | |
3129 Register object = ToRegister(instr->object()); | |
3130 if (instr->hydrogen()->representation().IsDouble()) { | |
3131 X87Mov(ToX87Register(instr->result()), FieldOperand(object, offset)); | |
3132 return; | |
3133 } | |
3134 | |
3135 Register result = ToRegister(instr->result()); | |
3136 if (!access.IsInobject()) { | |
3137 __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset)); | |
3138 object = result; | |
3139 } | |
3140 __ Load(result, FieldOperand(object, offset), access.representation()); | |
3141 } | |
3142 | |
3143 | |
3144 void LCodeGen::EmitPushTaggedOperand(LOperand* operand) { | |
3145 DCHECK(!operand->IsDoubleRegister()); | |
3146 if (operand->IsConstantOperand()) { | |
3147 Handle<Object> object = ToHandle(LConstantOperand::cast(operand)); | |
3148 AllowDeferredHandleDereference smi_check; | |
3149 if (object->IsSmi()) { | |
3150 __ Push(Handle<Smi>::cast(object)); | |
3151 } else { | |
3152 __ PushHeapObject(Handle<HeapObject>::cast(object)); | |
3153 } | |
3154 } else if (operand->IsRegister()) { | |
3155 __ push(ToRegister(operand)); | |
3156 } else { | |
3157 __ push(ToOperand(operand)); | |
3158 } | |
3159 } | |
3160 | |
3161 | |
3162 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { | |
3163 DCHECK(ToRegister(instr->context()).is(esi)); | |
3164 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); | |
3165 DCHECK(ToRegister(instr->result()).is(eax)); | |
3166 | |
3167 __ mov(LoadDescriptor::NameRegister(), instr->name()); | |
3168 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr); | |
3169 Handle<Code> ic = | |
3170 CodeFactory::LoadICInOptimizedCode( | |
3171 isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(), | |
3172 instr->hydrogen()->initialization_state()).code(); | |
3173 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
3174 } | |
3175 | |
3176 | |
3177 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { | |
3178 Register function = ToRegister(instr->function()); | |
3179 Register temp = ToRegister(instr->temp()); | |
3180 Register result = ToRegister(instr->result()); | |
3181 | |
3182 // Get the prototype or initial map from the function. | |
3183 __ mov(result, | |
3184 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); | |
3185 | |
3186 // Check that the function has a prototype or an initial map. | |
3187 __ cmp(Operand(result), Immediate(factory()->the_hole_value())); | |
3188 DeoptimizeIf(equal, instr, Deoptimizer::kHole); | |
3189 | |
3190 // If the function does not have an initial map, we're done. | |
3191 Label done; | |
3192 __ CmpObjectType(result, MAP_TYPE, temp); | |
3193 __ j(not_equal, &done, Label::kNear); | |
3194 | |
3195 // Get the prototype from the initial map. | |
3196 __ mov(result, FieldOperand(result, Map::kPrototypeOffset)); | |
3197 | |
3198 // All done. | |
3199 __ bind(&done); | |
3200 } | |
3201 | |
3202 | |
3203 void LCodeGen::DoLoadRoot(LLoadRoot* instr) { | |
3204 Register result = ToRegister(instr->result()); | |
3205 __ LoadRoot(result, instr->index()); | |
3206 } | |
3207 | |
3208 | |
3209 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { | |
3210 Register arguments = ToRegister(instr->arguments()); | |
3211 Register result = ToRegister(instr->result()); | |
3212 if (instr->length()->IsConstantOperand() && | |
3213 instr->index()->IsConstantOperand()) { | |
3214 int const_index = ToInteger32(LConstantOperand::cast(instr->index())); | |
3215 int const_length = ToInteger32(LConstantOperand::cast(instr->length())); | |
3216 int index = (const_length - const_index) + 1; | |
3217 __ mov(result, Operand(arguments, index * kPointerSize)); | |
3218 } else { | |
3219 Register length = ToRegister(instr->length()); | |
3220 Operand index = ToOperand(instr->index()); | |
3221 // There are two words between the frame pointer and the last argument. | |
3222 // Subtracting from length accounts for one of them add one more. | |
3223 __ sub(length, index); | |
3224 __ mov(result, Operand(arguments, length, times_4, kPointerSize)); | |
3225 } | |
3226 } | |
3227 | |
3228 | |
3229 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) { | |
3230 ElementsKind elements_kind = instr->elements_kind(); | |
3231 LOperand* key = instr->key(); | |
3232 if (!key->IsConstantOperand() && | |
3233 ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(), | |
3234 elements_kind)) { | |
3235 __ SmiUntag(ToRegister(key)); | |
3236 } | |
3237 Operand operand(BuildFastArrayOperand( | |
3238 instr->elements(), | |
3239 key, | |
3240 instr->hydrogen()->key()->representation(), | |
3241 elements_kind, | |
3242 instr->base_offset())); | |
3243 if (elements_kind == FLOAT32_ELEMENTS) { | |
3244 X87Mov(ToX87Register(instr->result()), operand, kX87FloatOperand); | |
3245 } else if (elements_kind == FLOAT64_ELEMENTS) { | |
3246 X87Mov(ToX87Register(instr->result()), operand); | |
3247 } else { | |
3248 Register result(ToRegister(instr->result())); | |
3249 switch (elements_kind) { | |
3250 case INT8_ELEMENTS: | |
3251 __ movsx_b(result, operand); | |
3252 break; | |
3253 case UINT8_ELEMENTS: | |
3254 case UINT8_CLAMPED_ELEMENTS: | |
3255 __ movzx_b(result, operand); | |
3256 break; | |
3257 case INT16_ELEMENTS: | |
3258 __ movsx_w(result, operand); | |
3259 break; | |
3260 case UINT16_ELEMENTS: | |
3261 __ movzx_w(result, operand); | |
3262 break; | |
3263 case INT32_ELEMENTS: | |
3264 __ mov(result, operand); | |
3265 break; | |
3266 case UINT32_ELEMENTS: | |
3267 __ mov(result, operand); | |
3268 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { | |
3269 __ test(result, Operand(result)); | |
3270 DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue); | |
3271 } | |
3272 break; | |
3273 case FLOAT32_ELEMENTS: | |
3274 case FLOAT64_ELEMENTS: | |
3275 case FAST_SMI_ELEMENTS: | |
3276 case FAST_ELEMENTS: | |
3277 case FAST_DOUBLE_ELEMENTS: | |
3278 case FAST_HOLEY_SMI_ELEMENTS: | |
3279 case FAST_HOLEY_ELEMENTS: | |
3280 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
3281 case DICTIONARY_ELEMENTS: | |
3282 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
3283 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: | |
3284 UNREACHABLE(); | |
3285 break; | |
3286 } | |
3287 } | |
3288 } | |
3289 | |
3290 | |
3291 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { | |
3292 if (instr->hydrogen()->RequiresHoleCheck()) { | |
3293 Operand hole_check_operand = BuildFastArrayOperand( | |
3294 instr->elements(), instr->key(), | |
3295 instr->hydrogen()->key()->representation(), | |
3296 FAST_DOUBLE_ELEMENTS, | |
3297 instr->base_offset() + sizeof(kHoleNanLower32)); | |
3298 __ cmp(hole_check_operand, Immediate(kHoleNanUpper32)); | |
3299 DeoptimizeIf(equal, instr, Deoptimizer::kHole); | |
3300 } | |
3301 | |
3302 Operand double_load_operand = BuildFastArrayOperand( | |
3303 instr->elements(), | |
3304 instr->key(), | |
3305 instr->hydrogen()->key()->representation(), | |
3306 FAST_DOUBLE_ELEMENTS, | |
3307 instr->base_offset()); | |
3308 X87Mov(ToX87Register(instr->result()), double_load_operand); | |
3309 } | |
3310 | |
3311 | |
3312 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { | |
3313 Register result = ToRegister(instr->result()); | |
3314 | |
3315 // Load the result. | |
3316 __ mov(result, | |
3317 BuildFastArrayOperand(instr->elements(), instr->key(), | |
3318 instr->hydrogen()->key()->representation(), | |
3319 FAST_ELEMENTS, instr->base_offset())); | |
3320 | |
3321 // Check for the hole value. | |
3322 if (instr->hydrogen()->RequiresHoleCheck()) { | |
3323 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { | |
3324 __ test(result, Immediate(kSmiTagMask)); | |
3325 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotASmi); | |
3326 } else { | |
3327 __ cmp(result, factory()->the_hole_value()); | |
3328 DeoptimizeIf(equal, instr, Deoptimizer::kHole); | |
3329 } | |
3330 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { | |
3331 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS); | |
3332 Label done; | |
3333 __ cmp(result, factory()->the_hole_value()); | |
3334 __ j(not_equal, &done); | |
3335 if (info()->IsStub()) { | |
3336 // A stub can safely convert the hole to undefined only if the array | |
3337 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise | |
3338 // it needs to bail out. | |
3339 __ mov(result, isolate()->factory()->array_protector()); | |
3340 __ cmp(FieldOperand(result, PropertyCell::kValueOffset), | |
3341 Immediate(Smi::FromInt(Isolate::kArrayProtectorValid))); | |
3342 DeoptimizeIf(not_equal, instr, Deoptimizer::kHole); | |
3343 } | |
3344 __ mov(result, isolate()->factory()->undefined_value()); | |
3345 __ bind(&done); | |
3346 } | |
3347 } | |
3348 | |
3349 | |
3350 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) { | |
3351 if (instr->is_fixed_typed_array()) { | |
3352 DoLoadKeyedExternalArray(instr); | |
3353 } else if (instr->hydrogen()->representation().IsDouble()) { | |
3354 DoLoadKeyedFixedDoubleArray(instr); | |
3355 } else { | |
3356 DoLoadKeyedFixedArray(instr); | |
3357 } | |
3358 } | |
3359 | |
3360 | |
3361 Operand LCodeGen::BuildFastArrayOperand( | |
3362 LOperand* elements_pointer, | |
3363 LOperand* key, | |
3364 Representation key_representation, | |
3365 ElementsKind elements_kind, | |
3366 uint32_t base_offset) { | |
3367 Register elements_pointer_reg = ToRegister(elements_pointer); | |
3368 int element_shift_size = ElementsKindToShiftSize(elements_kind); | |
3369 int shift_size = element_shift_size; | |
3370 if (key->IsConstantOperand()) { | |
3371 int constant_value = ToInteger32(LConstantOperand::cast(key)); | |
3372 if (constant_value & 0xF0000000) { | |
3373 Abort(kArrayIndexConstantValueTooBig); | |
3374 } | |
3375 return Operand(elements_pointer_reg, | |
3376 ((constant_value) << shift_size) | |
3377 + base_offset); | |
3378 } else { | |
3379 // Take the tag bit into account while computing the shift size. | |
3380 if (key_representation.IsSmi() && (shift_size >= 1)) { | |
3381 shift_size -= kSmiTagSize; | |
3382 } | |
3383 ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size); | |
3384 return Operand(elements_pointer_reg, | |
3385 ToRegister(key), | |
3386 scale_factor, | |
3387 base_offset); | |
3388 } | |
3389 } | |
3390 | |
3391 | |
3392 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { | |
3393 DCHECK(ToRegister(instr->context()).is(esi)); | |
3394 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); | |
3395 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister())); | |
3396 | |
3397 if (instr->hydrogen()->HasVectorAndSlot()) { | |
3398 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr); | |
3399 } | |
3400 | |
3401 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode( | |
3402 isolate(), instr->hydrogen()->language_mode(), | |
3403 instr->hydrogen()->initialization_state()).code(); | |
3404 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
3405 } | |
3406 | |
3407 | |
3408 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { | |
3409 Register result = ToRegister(instr->result()); | |
3410 | |
3411 if (instr->hydrogen()->from_inlined()) { | |
3412 __ lea(result, Operand(esp, -2 * kPointerSize)); | |
3413 } else { | |
3414 // Check for arguments adapter frame. | |
3415 Label done, adapted; | |
3416 __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); | |
3417 __ mov(result, Operand(result, StandardFrameConstants::kContextOffset)); | |
3418 __ cmp(Operand(result), | |
3419 Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | |
3420 __ j(equal, &adapted, Label::kNear); | |
3421 | |
3422 // No arguments adaptor frame. | |
3423 __ mov(result, Operand(ebp)); | |
3424 __ jmp(&done, Label::kNear); | |
3425 | |
3426 // Arguments adaptor frame present. | |
3427 __ bind(&adapted); | |
3428 __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); | |
3429 | |
3430 // Result is the frame pointer for the frame if not adapted and for the real | |
3431 // frame below the adaptor frame if adapted. | |
3432 __ bind(&done); | |
3433 } | |
3434 } | |
3435 | |
3436 | |
3437 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { | |
3438 Operand elem = ToOperand(instr->elements()); | |
3439 Register result = ToRegister(instr->result()); | |
3440 | |
3441 Label done; | |
3442 | |
3443 // If no arguments adaptor frame the number of arguments is fixed. | |
3444 __ cmp(ebp, elem); | |
3445 __ mov(result, Immediate(scope()->num_parameters())); | |
3446 __ j(equal, &done, Label::kNear); | |
3447 | |
3448 // Arguments adaptor frame present. Get argument length from there. | |
3449 __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); | |
3450 __ mov(result, Operand(result, | |
3451 ArgumentsAdaptorFrameConstants::kLengthOffset)); | |
3452 __ SmiUntag(result); | |
3453 | |
3454 // Argument length is in result register. | |
3455 __ bind(&done); | |
3456 } | |
3457 | |
3458 | |
3459 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { | |
3460 Register receiver = ToRegister(instr->receiver()); | |
3461 Register function = ToRegister(instr->function()); | |
3462 | |
3463 // If the receiver is null or undefined, we have to pass the global | |
3464 // object as a receiver to normal functions. Values have to be | |
3465 // passed unchanged to builtins and strict-mode functions. | |
3466 Label receiver_ok, global_object; | |
3467 Register scratch = ToRegister(instr->temp()); | |
3468 | |
3469 if (!instr->hydrogen()->known_function()) { | |
3470 // Do not transform the receiver to object for strict mode | |
3471 // functions. | |
3472 __ mov(scratch, | |
3473 FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); | |
3474 __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset), | |
3475 1 << SharedFunctionInfo::kStrictModeBitWithinByte); | |
3476 __ j(not_equal, &receiver_ok); | |
3477 | |
3478 // Do not transform the receiver to object for builtins. | |
3479 __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset), | |
3480 1 << SharedFunctionInfo::kNativeBitWithinByte); | |
3481 __ j(not_equal, &receiver_ok); | |
3482 } | |
3483 | |
3484 // Normal function. Replace undefined or null with global receiver. | |
3485 __ cmp(receiver, factory()->null_value()); | |
3486 __ j(equal, &global_object); | |
3487 __ cmp(receiver, factory()->undefined_value()); | |
3488 __ j(equal, &global_object); | |
3489 | |
3490 // The receiver should be a JS object. | |
3491 __ test(receiver, Immediate(kSmiTagMask)); | |
3492 DeoptimizeIf(equal, instr, Deoptimizer::kSmi); | |
3493 __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, scratch); | |
3494 DeoptimizeIf(below, instr, Deoptimizer::kNotAJavaScriptObject); | |
3495 | |
3496 __ jmp(&receiver_ok, Label::kNear); | |
3497 __ bind(&global_object); | |
3498 __ mov(receiver, FieldOperand(function, JSFunction::kContextOffset)); | |
3499 const int global_offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX); | |
3500 __ mov(receiver, Operand(receiver, global_offset)); | |
3501 const int proxy_offset = GlobalObject::kGlobalProxyOffset; | |
3502 __ mov(receiver, FieldOperand(receiver, proxy_offset)); | |
3503 __ bind(&receiver_ok); | |
3504 } | |
3505 | |
3506 | |
3507 void LCodeGen::DoApplyArguments(LApplyArguments* instr) { | |
3508 Register receiver = ToRegister(instr->receiver()); | |
3509 Register function = ToRegister(instr->function()); | |
3510 Register length = ToRegister(instr->length()); | |
3511 Register elements = ToRegister(instr->elements()); | |
3512 DCHECK(receiver.is(eax)); // Used for parameter count. | |
3513 DCHECK(function.is(edi)); // Required by InvokeFunction. | |
3514 DCHECK(ToRegister(instr->result()).is(eax)); | |
3515 | |
3516 // Copy the arguments to this function possibly from the | |
3517 // adaptor frame below it. | |
3518 const uint32_t kArgumentsLimit = 1 * KB; | |
3519 __ cmp(length, kArgumentsLimit); | |
3520 DeoptimizeIf(above, instr, Deoptimizer::kTooManyArguments); | |
3521 | |
3522 __ push(receiver); | |
3523 __ mov(receiver, length); | |
3524 | |
3525 // Loop through the arguments pushing them onto the execution | |
3526 // stack. | |
3527 Label invoke, loop; | |
3528 // length is a small non-negative integer, due to the test above. | |
3529 __ test(length, Operand(length)); | |
3530 __ j(zero, &invoke, Label::kNear); | |
3531 __ bind(&loop); | |
3532 __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize)); | |
3533 __ dec(length); | |
3534 __ j(not_zero, &loop); | |
3535 | |
3536 // Invoke the function. | |
3537 __ bind(&invoke); | |
3538 DCHECK(instr->HasPointerMap()); | |
3539 LPointerMap* pointers = instr->pointer_map(); | |
3540 SafepointGenerator safepoint_generator( | |
3541 this, pointers, Safepoint::kLazyDeopt); | |
3542 ParameterCount actual(eax); | |
3543 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator); | |
3544 } | |
3545 | |
3546 | |
3547 void LCodeGen::DoDebugBreak(LDebugBreak* instr) { | |
3548 __ int3(); | |
3549 } | |
3550 | |
3551 | |
3552 void LCodeGen::DoPushArgument(LPushArgument* instr) { | |
3553 LOperand* argument = instr->value(); | |
3554 EmitPushTaggedOperand(argument); | |
3555 } | |
3556 | |
3557 | |
3558 void LCodeGen::DoDrop(LDrop* instr) { | |
3559 __ Drop(instr->count()); | |
3560 } | |
3561 | |
3562 | |
3563 void LCodeGen::DoThisFunction(LThisFunction* instr) { | |
3564 Register result = ToRegister(instr->result()); | |
3565 __ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); | |
3566 } | |
3567 | |
3568 | |
3569 void LCodeGen::DoContext(LContext* instr) { | |
3570 Register result = ToRegister(instr->result()); | |
3571 if (info()->IsOptimizing()) { | |
3572 __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset)); | |
3573 } else { | |
3574 // If there is no frame, the context must be in esi. | |
3575 DCHECK(result.is(esi)); | |
3576 } | |
3577 } | |
3578 | |
3579 | |
3580 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { | |
3581 DCHECK(ToRegister(instr->context()).is(esi)); | |
3582 __ push(Immediate(instr->hydrogen()->pairs())); | |
3583 __ push(Immediate(Smi::FromInt(instr->hydrogen()->flags()))); | |
3584 CallRuntime(Runtime::kDeclareGlobals, 2, instr); | |
3585 } | |
3586 | |
3587 | |
3588 void LCodeGen::CallKnownFunction(Handle<JSFunction> function, | |
3589 int formal_parameter_count, int arity, | |
3590 LInstruction* instr) { | |
3591 bool dont_adapt_arguments = | |
3592 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; | |
3593 bool can_invoke_directly = | |
3594 dont_adapt_arguments || formal_parameter_count == arity; | |
3595 | |
3596 Register function_reg = edi; | |
3597 | |
3598 if (can_invoke_directly) { | |
3599 // Change context. | |
3600 __ mov(esi, FieldOperand(function_reg, JSFunction::kContextOffset)); | |
3601 | |
3602 // Always initialize eax to the number of actual arguments. | |
3603 __ mov(eax, arity); | |
3604 | |
3605 // Invoke function directly. | |
3606 if (function.is_identical_to(info()->closure())) { | |
3607 __ CallSelf(); | |
3608 } else { | |
3609 __ call(FieldOperand(function_reg, JSFunction::kCodeEntryOffset)); | |
3610 } | |
3611 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); | |
3612 } else { | |
3613 // We need to adapt arguments. | |
3614 LPointerMap* pointers = instr->pointer_map(); | |
3615 SafepointGenerator generator( | |
3616 this, pointers, Safepoint::kLazyDeopt); | |
3617 ParameterCount count(arity); | |
3618 ParameterCount expected(formal_parameter_count); | |
3619 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator); | |
3620 } | |
3621 } | |
3622 | |
3623 | |
3624 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { | |
3625 DCHECK(ToRegister(instr->result()).is(eax)); | |
3626 | |
3627 if (instr->hydrogen()->IsTailCall()) { | |
3628 if (NeedsEagerFrame()) __ leave(); | |
3629 | |
3630 if (instr->target()->IsConstantOperand()) { | |
3631 LConstantOperand* target = LConstantOperand::cast(instr->target()); | |
3632 Handle<Code> code = Handle<Code>::cast(ToHandle(target)); | |
3633 __ jmp(code, RelocInfo::CODE_TARGET); | |
3634 } else { | |
3635 DCHECK(instr->target()->IsRegister()); | |
3636 Register target = ToRegister(instr->target()); | |
3637 __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag)); | |
3638 __ jmp(target); | |
3639 } | |
3640 } else { | |
3641 LPointerMap* pointers = instr->pointer_map(); | |
3642 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); | |
3643 | |
3644 if (instr->target()->IsConstantOperand()) { | |
3645 LConstantOperand* target = LConstantOperand::cast(instr->target()); | |
3646 Handle<Code> code = Handle<Code>::cast(ToHandle(target)); | |
3647 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); | |
3648 __ call(code, RelocInfo::CODE_TARGET); | |
3649 } else { | |
3650 DCHECK(instr->target()->IsRegister()); | |
3651 Register target = ToRegister(instr->target()); | |
3652 generator.BeforeCall(__ CallSize(Operand(target))); | |
3653 __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag)); | |
3654 __ call(target); | |
3655 } | |
3656 generator.AfterCall(); | |
3657 } | |
3658 } | |
3659 | |
3660 | |
3661 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) { | |
3662 DCHECK(ToRegister(instr->function()).is(edi)); | |
3663 DCHECK(ToRegister(instr->result()).is(eax)); | |
3664 | |
3665 __ mov(eax, instr->arity()); | |
3666 | |
3667 // Change context. | |
3668 __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); | |
3669 | |
3670 bool is_self_call = false; | |
3671 if (instr->hydrogen()->function()->IsConstant()) { | |
3672 HConstant* fun_const = HConstant::cast(instr->hydrogen()->function()); | |
3673 Handle<JSFunction> jsfun = | |
3674 Handle<JSFunction>::cast(fun_const->handle(isolate())); | |
3675 is_self_call = jsfun.is_identical_to(info()->closure()); | |
3676 } | |
3677 | |
3678 if (is_self_call) { | |
3679 __ CallSelf(); | |
3680 } else { | |
3681 __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset)); | |
3682 } | |
3683 | |
3684 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); | |
3685 } | |
3686 | |
3687 | |
3688 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) { | |
3689 Register input_reg = ToRegister(instr->value()); | |
3690 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), | |
3691 factory()->heap_number_map()); | |
3692 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber); | |
3693 | |
3694 Label slow, allocated, done; | |
3695 Register tmp = input_reg.is(eax) ? ecx : eax; | |
3696 Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx; | |
3697 | |
3698 // Preserve the value of all registers. | |
3699 PushSafepointRegistersScope scope(this); | |
3700 | |
3701 __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset)); | |
3702 // Check the sign of the argument. If the argument is positive, just | |
3703 // return it. We do not need to patch the stack since |input| and | |
3704 // |result| are the same register and |input| will be restored | |
3705 // unchanged by popping safepoint registers. | |
3706 __ test(tmp, Immediate(HeapNumber::kSignMask)); | |
3707 __ j(zero, &done, Label::kNear); | |
3708 | |
3709 __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow); | |
3710 __ jmp(&allocated, Label::kNear); | |
3711 | |
3712 // Slow case: Call the runtime system to do the number allocation. | |
3713 __ bind(&slow); | |
3714 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, | |
3715 instr, instr->context()); | |
3716 // Set the pointer to the new heap number in tmp. | |
3717 if (!tmp.is(eax)) __ mov(tmp, eax); | |
3718 // Restore input_reg after call to runtime. | |
3719 __ LoadFromSafepointRegisterSlot(input_reg, input_reg); | |
3720 | |
3721 __ bind(&allocated); | |
3722 __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset)); | |
3723 __ and_(tmp2, ~HeapNumber::kSignMask); | |
3724 __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2); | |
3725 __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset)); | |
3726 __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2); | |
3727 __ StoreToSafepointRegisterSlot(input_reg, tmp); | |
3728 | |
3729 __ bind(&done); | |
3730 } | |
3731 | |
3732 | |
3733 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) { | |
3734 Register input_reg = ToRegister(instr->value()); | |
3735 __ test(input_reg, Operand(input_reg)); | |
3736 Label is_positive; | |
3737 __ j(not_sign, &is_positive, Label::kNear); | |
3738 __ neg(input_reg); // Sets flags. | |
3739 DeoptimizeIf(negative, instr, Deoptimizer::kOverflow); | |
3740 __ bind(&is_positive); | |
3741 } | |
3742 | |
3743 | |
3744 void LCodeGen::DoMathAbs(LMathAbs* instr) { | |
3745 // Class for deferred case. | |
3746 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode { | |
3747 public: | |
3748 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, | |
3749 LMathAbs* instr, | |
3750 const X87Stack& x87_stack) | |
3751 : LDeferredCode(codegen, x87_stack), instr_(instr) { } | |
3752 void Generate() override { | |
3753 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); | |
3754 } | |
3755 LInstruction* instr() override { return instr_; } | |
3756 | |
3757 private: | |
3758 LMathAbs* instr_; | |
3759 }; | |
3760 | |
3761 DCHECK(instr->value()->Equals(instr->result())); | |
3762 Representation r = instr->hydrogen()->value()->representation(); | |
3763 | |
3764 if (r.IsDouble()) { | |
3765 X87Register value = ToX87Register(instr->value()); | |
3766 X87Fxch(value); | |
3767 __ fabs(); | |
3768 } else if (r.IsSmiOrInteger32()) { | |
3769 EmitIntegerMathAbs(instr); | |
3770 } else { // Tagged case. | |
3771 DeferredMathAbsTaggedHeapNumber* deferred = | |
3772 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr, x87_stack_); | |
3773 Register input_reg = ToRegister(instr->value()); | |
3774 // Smi check. | |
3775 __ JumpIfNotSmi(input_reg, deferred->entry()); | |
3776 EmitIntegerMathAbs(instr); | |
3777 __ bind(deferred->exit()); | |
3778 } | |
3779 } | |
3780 | |
3781 | |
3782 void LCodeGen::DoMathFloor(LMathFloor* instr) { | |
3783 Register output_reg = ToRegister(instr->result()); | |
3784 X87Register input_reg = ToX87Register(instr->value()); | |
3785 X87Fxch(input_reg); | |
3786 | |
3787 Label not_minus_zero, done; | |
3788 // Deoptimize on unordered. | |
3789 __ fldz(); | |
3790 __ fld(1); | |
3791 __ FCmp(); | |
3792 DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN); | |
3793 __ j(below, ¬_minus_zero, Label::kNear); | |
3794 | |
3795 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
3796 // Check for negative zero. | |
3797 __ j(not_equal, ¬_minus_zero, Label::kNear); | |
3798 // +- 0.0. | |
3799 __ fld(0); | |
3800 __ FXamSign(); | |
3801 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero); | |
3802 __ Move(output_reg, Immediate(0)); | |
3803 __ jmp(&done, Label::kFar); | |
3804 } | |
3805 | |
3806 // Positive input. | |
3807 // rc=01B, round down. | |
3808 __ bind(¬_minus_zero); | |
3809 __ fnclex(); | |
3810 __ X87SetRC(0x0400); | |
3811 __ sub(esp, Immediate(kPointerSize)); | |
3812 __ fist_s(Operand(esp, 0)); | |
3813 __ pop(output_reg); | |
3814 __ X87CheckIA(); | |
3815 DeoptimizeIf(equal, instr, Deoptimizer::kOverflow); | |
3816 __ fnclex(); | |
3817 __ X87SetRC(0x0000); | |
3818 __ bind(&done); | |
3819 } | |
3820 | |
3821 | |
3822 void LCodeGen::DoMathRound(LMathRound* instr) { | |
3823 X87Register input_reg = ToX87Register(instr->value()); | |
3824 Register result = ToRegister(instr->result()); | |
3825 X87Fxch(input_reg); | |
3826 Label below_one_half, below_minus_one_half, done; | |
3827 | |
3828 ExternalReference one_half = ExternalReference::address_of_one_half(); | |
3829 ExternalReference minus_one_half = | |
3830 ExternalReference::address_of_minus_one_half(); | |
3831 | |
3832 __ fld_d(Operand::StaticVariable(one_half)); | |
3833 __ fld(1); | |
3834 __ FCmp(); | |
3835 __ j(carry, &below_one_half); | |
3836 | |
3837 // Use rounds towards zero, since 0.5 <= x, we use floor(0.5 + x) | |
3838 __ fld(0); | |
3839 __ fadd_d(Operand::StaticVariable(one_half)); | |
3840 // rc=11B, round toward zero. | |
3841 __ X87SetRC(0x0c00); | |
3842 __ sub(esp, Immediate(kPointerSize)); | |
3843 // Clear exception bits. | |
3844 __ fnclex(); | |
3845 __ fistp_s(MemOperand(esp, 0)); | |
3846 // Check overflow. | |
3847 __ X87CheckIA(); | |
3848 __ pop(result); | |
3849 DeoptimizeIf(equal, instr, Deoptimizer::kConversionOverflow); | |
3850 __ fnclex(); | |
3851 // Restore round mode. | |
3852 __ X87SetRC(0x0000); | |
3853 __ jmp(&done); | |
3854 | |
3855 __ bind(&below_one_half); | |
3856 __ fld_d(Operand::StaticVariable(minus_one_half)); | |
3857 __ fld(1); | |
3858 __ FCmp(); | |
3859 __ j(carry, &below_minus_one_half); | |
3860 // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if | |
3861 // we can ignore the difference between a result of -0 and +0. | |
3862 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
3863 // If the sign is positive, we return +0. | |
3864 __ fld(0); | |
3865 __ FXamSign(); | |
3866 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero); | |
3867 } | |
3868 __ Move(result, Immediate(0)); | |
3869 __ jmp(&done); | |
3870 | |
3871 __ bind(&below_minus_one_half); | |
3872 __ fld(0); | |
3873 __ fadd_d(Operand::StaticVariable(one_half)); | |
3874 // rc=01B, round down. | |
3875 __ X87SetRC(0x0400); | |
3876 __ sub(esp, Immediate(kPointerSize)); | |
3877 // Clear exception bits. | |
3878 __ fnclex(); | |
3879 __ fistp_s(MemOperand(esp, 0)); | |
3880 // Check overflow. | |
3881 __ X87CheckIA(); | |
3882 __ pop(result); | |
3883 DeoptimizeIf(equal, instr, Deoptimizer::kConversionOverflow); | |
3884 __ fnclex(); | |
3885 // Restore round mode. | |
3886 __ X87SetRC(0x0000); | |
3887 | |
3888 __ bind(&done); | |
3889 } | |
3890 | |
3891 | |
3892 void LCodeGen::DoMathFround(LMathFround* instr) { | |
3893 X87Register input_reg = ToX87Register(instr->value()); | |
3894 X87Fxch(input_reg); | |
3895 __ sub(esp, Immediate(kPointerSize)); | |
3896 __ fstp_s(MemOperand(esp, 0)); | |
3897 X87Fld(MemOperand(esp, 0), kX87FloatOperand); | |
3898 __ add(esp, Immediate(kPointerSize)); | |
3899 } | |
3900 | |
3901 | |
3902 void LCodeGen::DoMathSqrt(LMathSqrt* instr) { | |
3903 X87Register input = ToX87Register(instr->value()); | |
3904 X87Register result_reg = ToX87Register(instr->result()); | |
3905 Register temp_result = ToRegister(instr->temp1()); | |
3906 Register temp = ToRegister(instr->temp2()); | |
3907 Label slow, done, smi, finish; | |
3908 DCHECK(result_reg.is(input)); | |
3909 | |
3910 // Store input into Heap number and call runtime function kMathExpRT. | |
3911 if (FLAG_inline_new) { | |
3912 __ AllocateHeapNumber(temp_result, temp, no_reg, &slow); | |
3913 __ jmp(&done, Label::kNear); | |
3914 } | |
3915 | |
3916 // Slow case: Call the runtime system to do the number allocation. | |
3917 __ bind(&slow); | |
3918 { | |
3919 // TODO(3095996): Put a valid pointer value in the stack slot where the | |
3920 // result register is stored, as this register is in the pointer map, but | |
3921 // contains an integer value. | |
3922 __ Move(temp_result, Immediate(0)); | |
3923 | |
3924 // Preserve the value of all registers. | |
3925 PushSafepointRegistersScope scope(this); | |
3926 | |
3927 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); | |
3928 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); | |
3929 RecordSafepointWithRegisters( | |
3930 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); | |
3931 __ StoreToSafepointRegisterSlot(temp_result, eax); | |
3932 } | |
3933 __ bind(&done); | |
3934 X87LoadForUsage(input); | |
3935 __ fstp_d(FieldOperand(temp_result, HeapNumber::kValueOffset)); | |
3936 | |
3937 { | |
3938 // Preserve the value of all registers. | |
3939 PushSafepointRegistersScope scope(this); | |
3940 | |
3941 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); | |
3942 __ push(temp_result); | |
3943 __ CallRuntimeSaveDoubles(Runtime::kMathSqrt); | |
3944 RecordSafepointWithRegisters(instr->pointer_map(), 1, | |
3945 Safepoint::kNoLazyDeopt); | |
3946 __ StoreToSafepointRegisterSlot(temp_result, eax); | |
3947 } | |
3948 X87PrepareToWrite(result_reg); | |
3949 // return value of MathExpRT is Smi or Heap Number. | |
3950 __ JumpIfSmi(temp_result, &smi); | |
3951 // Heap number(double) | |
3952 __ fld_d(FieldOperand(temp_result, HeapNumber::kValueOffset)); | |
3953 __ jmp(&finish); | |
3954 // SMI | |
3955 __ bind(&smi); | |
3956 __ SmiUntag(temp_result); | |
3957 __ push(temp_result); | |
3958 __ fild_s(MemOperand(esp, 0)); | |
3959 __ pop(temp_result); | |
3960 __ bind(&finish); | |
3961 X87CommitWrite(result_reg); | |
3962 } | |
3963 | |
3964 | |
3965 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { | |
3966 X87Register input_reg = ToX87Register(instr->value()); | |
3967 DCHECK(ToX87Register(instr->result()).is(input_reg)); | |
3968 X87Fxch(input_reg); | |
3969 // Note that according to ECMA-262 15.8.2.13: | |
3970 // Math.pow(-Infinity, 0.5) == Infinity | |
3971 // Math.sqrt(-Infinity) == NaN | |
3972 Label done, sqrt; | |
3973 // Check base for -Infinity. C3 == 0, C2 == 1, C1 == 1 and C0 == 1 | |
3974 __ fxam(); | |
3975 __ push(eax); | |
3976 __ fnstsw_ax(); | |
3977 __ and_(eax, Immediate(0x4700)); | |
3978 __ cmp(eax, Immediate(0x0700)); | |
3979 __ j(not_equal, &sqrt, Label::kNear); | |
3980 // If input is -Infinity, return Infinity. | |
3981 __ fchs(); | |
3982 __ jmp(&done, Label::kNear); | |
3983 | |
3984 // Square root. | |
3985 __ bind(&sqrt); | |
3986 __ fldz(); | |
3987 __ faddp(); // Convert -0 to +0. | |
3988 __ fsqrt(); | |
3989 __ bind(&done); | |
3990 __ pop(eax); | |
3991 } | |
3992 | |
3993 | |
3994 void LCodeGen::DoPower(LPower* instr) { | |
3995 Representation exponent_type = instr->hydrogen()->right()->representation(); | |
3996 X87Register result = ToX87Register(instr->result()); | |
3997 // Having marked this as a call, we can use any registers. | |
3998 X87Register base = ToX87Register(instr->left()); | |
3999 ExternalReference one_half = ExternalReference::address_of_one_half(); | |
4000 | |
4001 if (exponent_type.IsSmi()) { | |
4002 Register exponent = ToRegister(instr->right()); | |
4003 X87LoadForUsage(base); | |
4004 __ SmiUntag(exponent); | |
4005 __ push(exponent); | |
4006 __ fild_s(MemOperand(esp, 0)); | |
4007 __ pop(exponent); | |
4008 } else if (exponent_type.IsTagged()) { | |
4009 Register exponent = ToRegister(instr->right()); | |
4010 Register temp = exponent.is(ecx) ? eax : ecx; | |
4011 Label no_deopt, done; | |
4012 X87LoadForUsage(base); | |
4013 __ JumpIfSmi(exponent, &no_deopt); | |
4014 __ CmpObjectType(exponent, HEAP_NUMBER_TYPE, temp); | |
4015 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber); | |
4016 // Heap number(double) | |
4017 __ fld_d(FieldOperand(exponent, HeapNumber::kValueOffset)); | |
4018 __ jmp(&done); | |
4019 // SMI | |
4020 __ bind(&no_deopt); | |
4021 __ SmiUntag(exponent); | |
4022 __ push(exponent); | |
4023 __ fild_s(MemOperand(esp, 0)); | |
4024 __ pop(exponent); | |
4025 __ bind(&done); | |
4026 } else if (exponent_type.IsInteger32()) { | |
4027 Register exponent = ToRegister(instr->right()); | |
4028 X87LoadForUsage(base); | |
4029 __ push(exponent); | |
4030 __ fild_s(MemOperand(esp, 0)); | |
4031 __ pop(exponent); | |
4032 } else { | |
4033 DCHECK(exponent_type.IsDouble()); | |
4034 X87Register exponent_double = ToX87Register(instr->right()); | |
4035 X87LoadForUsage(base, exponent_double); | |
4036 } | |
4037 | |
4038 // FP data stack {base, exponent(TOS)}. | |
4039 // Handle (exponent==+-0.5 && base == -0). | |
4040 Label not_plus_0; | |
4041 __ fld(0); | |
4042 __ fabs(); | |
4043 X87Fld(Operand::StaticVariable(one_half), kX87DoubleOperand); | |
4044 __ FCmp(); | |
4045 __ j(parity_even, ¬_plus_0, Label::kNear); // NaN. | |
4046 __ j(not_equal, ¬_plus_0, Label::kNear); | |
4047 __ fldz(); | |
4048 // FP data stack {base, exponent(TOS), zero}. | |
4049 __ faddp(2); | |
4050 __ bind(¬_plus_0); | |
4051 | |
4052 { | |
4053 __ PrepareCallCFunction(4, eax); | |
4054 __ fstp_d(MemOperand(esp, kDoubleSize)); // Exponent value. | |
4055 __ fstp_d(MemOperand(esp, 0)); // Base value. | |
4056 X87PrepareToWrite(result); | |
4057 __ CallCFunction(ExternalReference::power_double_double_function(isolate()), | |
4058 4); | |
4059 // Return value is in st(0) on ia32. | |
4060 X87CommitWrite(result); | |
4061 } | |
4062 } | |
4063 | |
4064 | |
4065 void LCodeGen::DoMathLog(LMathLog* instr) { | |
4066 DCHECK(instr->value()->Equals(instr->result())); | |
4067 X87Register input_reg = ToX87Register(instr->value()); | |
4068 X87Fxch(input_reg); | |
4069 | |
4070 Label positive, done, zero, nan_result; | |
4071 __ fldz(); | |
4072 __ fld(1); | |
4073 __ FCmp(); | |
4074 __ j(below, &nan_result, Label::kNear); | |
4075 __ j(equal, &zero, Label::kNear); | |
4076 // Positive input. | |
4077 // {input, ln2}. | |
4078 __ fldln2(); | |
4079 // {ln2, input}. | |
4080 __ fxch(); | |
4081 // {result}. | |
4082 __ fyl2x(); | |
4083 __ jmp(&done, Label::kNear); | |
4084 | |
4085 __ bind(&nan_result); | |
4086 X87PrepareToWrite(input_reg); | |
4087 __ push(Immediate(0xffffffff)); | |
4088 __ push(Immediate(0x7fffffff)); | |
4089 __ fld_d(MemOperand(esp, 0)); | |
4090 __ lea(esp, Operand(esp, kDoubleSize)); | |
4091 X87CommitWrite(input_reg); | |
4092 __ jmp(&done, Label::kNear); | |
4093 | |
4094 __ bind(&zero); | |
4095 ExternalReference ninf = ExternalReference::address_of_negative_infinity(); | |
4096 X87PrepareToWrite(input_reg); | |
4097 __ fld_d(Operand::StaticVariable(ninf)); | |
4098 X87CommitWrite(input_reg); | |
4099 | |
4100 __ bind(&done); | |
4101 } | |
4102 | |
4103 | |
4104 void LCodeGen::DoMathClz32(LMathClz32* instr) { | |
4105 Register input = ToRegister(instr->value()); | |
4106 Register result = ToRegister(instr->result()); | |
4107 | |
4108 __ Lzcnt(result, input); | |
4109 } | |
4110 | |
4111 | |
4112 void LCodeGen::DoMathExp(LMathExp* instr) { | |
4113 X87Register input = ToX87Register(instr->value()); | |
4114 X87Register result_reg = ToX87Register(instr->result()); | |
4115 Register temp_result = ToRegister(instr->temp1()); | |
4116 Register temp = ToRegister(instr->temp2()); | |
4117 Label slow, done, smi, finish; | |
4118 DCHECK(result_reg.is(input)); | |
4119 | |
4120 // Store input into Heap number and call runtime function kMathExpRT. | |
4121 if (FLAG_inline_new) { | |
4122 __ AllocateHeapNumber(temp_result, temp, no_reg, &slow); | |
4123 __ jmp(&done, Label::kNear); | |
4124 } | |
4125 | |
4126 // Slow case: Call the runtime system to do the number allocation. | |
4127 __ bind(&slow); | |
4128 { | |
4129 // TODO(3095996): Put a valid pointer value in the stack slot where the | |
4130 // result register is stored, as this register is in the pointer map, but | |
4131 // contains an integer value. | |
4132 __ Move(temp_result, Immediate(0)); | |
4133 | |
4134 // Preserve the value of all registers. | |
4135 PushSafepointRegistersScope scope(this); | |
4136 | |
4137 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); | |
4138 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); | |
4139 RecordSafepointWithRegisters(instr->pointer_map(), 0, | |
4140 Safepoint::kNoLazyDeopt); | |
4141 __ StoreToSafepointRegisterSlot(temp_result, eax); | |
4142 } | |
4143 __ bind(&done); | |
4144 X87LoadForUsage(input); | |
4145 __ fstp_d(FieldOperand(temp_result, HeapNumber::kValueOffset)); | |
4146 | |
4147 { | |
4148 // Preserve the value of all registers. | |
4149 PushSafepointRegistersScope scope(this); | |
4150 | |
4151 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); | |
4152 __ push(temp_result); | |
4153 __ CallRuntimeSaveDoubles(Runtime::kMathExpRT); | |
4154 RecordSafepointWithRegisters(instr->pointer_map(), 1, | |
4155 Safepoint::kNoLazyDeopt); | |
4156 __ StoreToSafepointRegisterSlot(temp_result, eax); | |
4157 } | |
4158 X87PrepareToWrite(result_reg); | |
4159 // return value of MathExpRT is Smi or Heap Number. | |
4160 __ JumpIfSmi(temp_result, &smi); | |
4161 // Heap number(double) | |
4162 __ fld_d(FieldOperand(temp_result, HeapNumber::kValueOffset)); | |
4163 __ jmp(&finish); | |
4164 // SMI | |
4165 __ bind(&smi); | |
4166 __ SmiUntag(temp_result); | |
4167 __ push(temp_result); | |
4168 __ fild_s(MemOperand(esp, 0)); | |
4169 __ pop(temp_result); | |
4170 __ bind(&finish); | |
4171 X87CommitWrite(result_reg); | |
4172 } | |
4173 | |
4174 | |
4175 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { | |
4176 DCHECK(ToRegister(instr->context()).is(esi)); | |
4177 DCHECK(ToRegister(instr->function()).is(edi)); | |
4178 DCHECK(instr->HasPointerMap()); | |
4179 | |
4180 Handle<JSFunction> known_function = instr->hydrogen()->known_function(); | |
4181 if (known_function.is_null()) { | |
4182 LPointerMap* pointers = instr->pointer_map(); | |
4183 SafepointGenerator generator( | |
4184 this, pointers, Safepoint::kLazyDeopt); | |
4185 ParameterCount count(instr->arity()); | |
4186 __ InvokeFunction(edi, count, CALL_FUNCTION, generator); | |
4187 } else { | |
4188 CallKnownFunction(known_function, | |
4189 instr->hydrogen()->formal_parameter_count(), | |
4190 instr->arity(), instr); | |
4191 } | |
4192 } | |
4193 | |
4194 | |
4195 void LCodeGen::DoCallFunction(LCallFunction* instr) { | |
4196 DCHECK(ToRegister(instr->context()).is(esi)); | |
4197 DCHECK(ToRegister(instr->function()).is(edi)); | |
4198 DCHECK(ToRegister(instr->result()).is(eax)); | |
4199 | |
4200 int arity = instr->arity(); | |
4201 CallFunctionFlags flags = instr->hydrogen()->function_flags(); | |
4202 if (instr->hydrogen()->HasVectorAndSlot()) { | |
4203 Register slot_register = ToRegister(instr->temp_slot()); | |
4204 Register vector_register = ToRegister(instr->temp_vector()); | |
4205 DCHECK(slot_register.is(edx)); | |
4206 DCHECK(vector_register.is(ebx)); | |
4207 | |
4208 AllowDeferredHandleDereference vector_structure_check; | |
4209 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); | |
4210 int index = vector->GetIndex(instr->hydrogen()->slot()); | |
4211 | |
4212 __ mov(vector_register, vector); | |
4213 __ mov(slot_register, Immediate(Smi::FromInt(index))); | |
4214 | |
4215 CallICState::CallType call_type = | |
4216 (flags & CALL_AS_METHOD) ? CallICState::METHOD : CallICState::FUNCTION; | |
4217 | |
4218 Handle<Code> ic = | |
4219 CodeFactory::CallICInOptimizedCode(isolate(), arity, call_type).code(); | |
4220 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
4221 } else { | |
4222 CallFunctionStub stub(isolate(), arity, flags); | |
4223 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
4224 } | |
4225 } | |
4226 | |
4227 | |
4228 void LCodeGen::DoCallNew(LCallNew* instr) { | |
4229 DCHECK(ToRegister(instr->context()).is(esi)); | |
4230 DCHECK(ToRegister(instr->constructor()).is(edi)); | |
4231 DCHECK(ToRegister(instr->result()).is(eax)); | |
4232 | |
4233 // No cell in ebx for construct type feedback in optimized code | |
4234 __ mov(ebx, isolate()->factory()->undefined_value()); | |
4235 CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS); | |
4236 __ Move(eax, Immediate(instr->arity())); | |
4237 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
4238 } | |
4239 | |
4240 | |
4241 void LCodeGen::DoCallNewArray(LCallNewArray* instr) { | |
4242 DCHECK(ToRegister(instr->context()).is(esi)); | |
4243 DCHECK(ToRegister(instr->constructor()).is(edi)); | |
4244 DCHECK(ToRegister(instr->result()).is(eax)); | |
4245 | |
4246 __ Move(eax, Immediate(instr->arity())); | |
4247 if (instr->arity() == 1) { | |
4248 // We only need the allocation site for the case we have a length argument. | |
4249 // The case may bail out to the runtime, which will determine the correct | |
4250 // elements kind with the site. | |
4251 __ mov(ebx, instr->hydrogen()->site()); | |
4252 } else { | |
4253 __ mov(ebx, isolate()->factory()->undefined_value()); | |
4254 } | |
4255 | |
4256 ElementsKind kind = instr->hydrogen()->elements_kind(); | |
4257 AllocationSiteOverrideMode override_mode = | |
4258 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) | |
4259 ? DISABLE_ALLOCATION_SITES | |
4260 : DONT_OVERRIDE; | |
4261 | |
4262 if (instr->arity() == 0) { | |
4263 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); | |
4264 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
4265 } else if (instr->arity() == 1) { | |
4266 Label done; | |
4267 if (IsFastPackedElementsKind(kind)) { | |
4268 Label packed_case; | |
4269 // We might need a change here | |
4270 // look at the first argument | |
4271 __ mov(ecx, Operand(esp, 0)); | |
4272 __ test(ecx, ecx); | |
4273 __ j(zero, &packed_case, Label::kNear); | |
4274 | |
4275 ElementsKind holey_kind = GetHoleyElementsKind(kind); | |
4276 ArraySingleArgumentConstructorStub stub(isolate(), | |
4277 holey_kind, | |
4278 override_mode); | |
4279 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
4280 __ jmp(&done, Label::kNear); | |
4281 __ bind(&packed_case); | |
4282 } | |
4283 | |
4284 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); | |
4285 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
4286 __ bind(&done); | |
4287 } else { | |
4288 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode); | |
4289 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
4290 } | |
4291 } | |
4292 | |
4293 | |
4294 void LCodeGen::DoCallRuntime(LCallRuntime* instr) { | |
4295 DCHECK(ToRegister(instr->context()).is(esi)); | |
4296 CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles()); | |
4297 } | |
4298 | |
4299 | |
4300 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { | |
4301 Register function = ToRegister(instr->function()); | |
4302 Register code_object = ToRegister(instr->code_object()); | |
4303 __ lea(code_object, FieldOperand(code_object, Code::kHeaderSize)); | |
4304 __ mov(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object); | |
4305 } | |
4306 | |
4307 | |
4308 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { | |
4309 Register result = ToRegister(instr->result()); | |
4310 Register base = ToRegister(instr->base_object()); | |
4311 if (instr->offset()->IsConstantOperand()) { | |
4312 LConstantOperand* offset = LConstantOperand::cast(instr->offset()); | |
4313 __ lea(result, Operand(base, ToInteger32(offset))); | |
4314 } else { | |
4315 Register offset = ToRegister(instr->offset()); | |
4316 __ lea(result, Operand(base, offset, times_1, 0)); | |
4317 } | |
4318 } | |
4319 | |
4320 | |
4321 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { | |
4322 Representation representation = instr->hydrogen()->field_representation(); | |
4323 | |
4324 HObjectAccess access = instr->hydrogen()->access(); | |
4325 int offset = access.offset(); | |
4326 | |
4327 if (access.IsExternalMemory()) { | |
4328 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); | |
4329 MemOperand operand = instr->object()->IsConstantOperand() | |
4330 ? MemOperand::StaticVariable( | |
4331 ToExternalReference(LConstantOperand::cast(instr->object()))) | |
4332 : MemOperand(ToRegister(instr->object()), offset); | |
4333 if (instr->value()->IsConstantOperand()) { | |
4334 LConstantOperand* operand_value = LConstantOperand::cast(instr->value()); | |
4335 __ mov(operand, Immediate(ToInteger32(operand_value))); | |
4336 } else { | |
4337 Register value = ToRegister(instr->value()); | |
4338 __ Store(value, operand, representation); | |
4339 } | |
4340 return; | |
4341 } | |
4342 | |
4343 Register object = ToRegister(instr->object()); | |
4344 __ AssertNotSmi(object); | |
4345 DCHECK(!representation.IsSmi() || | |
4346 !instr->value()->IsConstantOperand() || | |
4347 IsSmi(LConstantOperand::cast(instr->value()))); | |
4348 if (representation.IsDouble()) { | |
4349 DCHECK(access.IsInobject()); | |
4350 DCHECK(!instr->hydrogen()->has_transition()); | |
4351 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); | |
4352 X87Register value = ToX87Register(instr->value()); | |
4353 X87Mov(FieldOperand(object, offset), value); | |
4354 return; | |
4355 } | |
4356 | |
4357 if (instr->hydrogen()->has_transition()) { | |
4358 Handle<Map> transition = instr->hydrogen()->transition_map(); | |
4359 AddDeprecationDependency(transition); | |
4360 __ mov(FieldOperand(object, HeapObject::kMapOffset), transition); | |
4361 if (instr->hydrogen()->NeedsWriteBarrierForMap()) { | |
4362 Register temp = ToRegister(instr->temp()); | |
4363 Register temp_map = ToRegister(instr->temp_map()); | |
4364 __ mov(temp_map, transition); | |
4365 __ mov(FieldOperand(object, HeapObject::kMapOffset), temp_map); | |
4366 // Update the write barrier for the map field. | |
4367 __ RecordWriteForMap(object, transition, temp_map, temp, kSaveFPRegs); | |
4368 } | |
4369 } | |
4370 | |
4371 // Do the store. | |
4372 Register write_register = object; | |
4373 if (!access.IsInobject()) { | |
4374 write_register = ToRegister(instr->temp()); | |
4375 __ mov(write_register, FieldOperand(object, JSObject::kPropertiesOffset)); | |
4376 } | |
4377 | |
4378 MemOperand operand = FieldOperand(write_register, offset); | |
4379 if (instr->value()->IsConstantOperand()) { | |
4380 LConstantOperand* operand_value = LConstantOperand::cast(instr->value()); | |
4381 if (operand_value->IsRegister()) { | |
4382 Register value = ToRegister(operand_value); | |
4383 __ Store(value, operand, representation); | |
4384 } else if (representation.IsInteger32() || representation.IsExternal()) { | |
4385 Immediate immediate = ToImmediate(operand_value, representation); | |
4386 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); | |
4387 __ mov(operand, immediate); | |
4388 } else { | |
4389 Handle<Object> handle_value = ToHandle(operand_value); | |
4390 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); | |
4391 __ mov(operand, handle_value); | |
4392 } | |
4393 } else { | |
4394 Register value = ToRegister(instr->value()); | |
4395 __ Store(value, operand, representation); | |
4396 } | |
4397 | |
4398 if (instr->hydrogen()->NeedsWriteBarrier()) { | |
4399 Register value = ToRegister(instr->value()); | |
4400 Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object; | |
4401 // Update the write barrier for the object for in-object properties. | |
4402 __ RecordWriteField(write_register, offset, value, temp, kSaveFPRegs, | |
4403 EMIT_REMEMBERED_SET, | |
4404 instr->hydrogen()->SmiCheckForWriteBarrier(), | |
4405 instr->hydrogen()->PointersToHereCheckForValue()); | |
4406 } | |
4407 } | |
4408 | |
4409 | |
4410 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { | |
4411 DCHECK(ToRegister(instr->context()).is(esi)); | |
4412 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); | |
4413 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); | |
4414 | |
4415 if (instr->hydrogen()->HasVectorAndSlot()) { | |
4416 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr); | |
4417 } | |
4418 | |
4419 __ mov(StoreDescriptor::NameRegister(), instr->name()); | |
4420 Handle<Code> ic = CodeFactory::StoreICInOptimizedCode( | |
4421 isolate(), instr->language_mode(), | |
4422 instr->hydrogen()->initialization_state()).code(); | |
4423 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
4424 } | |
4425 | |
4426 | |
4427 void LCodeGen::DoStoreGlobalViaContext(LStoreGlobalViaContext* instr) { | |
4428 DCHECK(ToRegister(instr->context()).is(esi)); | |
4429 DCHECK(ToRegister(instr->value()) | |
4430 .is(StoreGlobalViaContextDescriptor::ValueRegister())); | |
4431 | |
4432 int const slot = instr->slot_index(); | |
4433 int const depth = instr->depth(); | |
4434 if (depth <= StoreGlobalViaContextStub::kMaximumDepth) { | |
4435 __ mov(StoreGlobalViaContextDescriptor::SlotRegister(), Immediate(slot)); | |
4436 Handle<Code> stub = CodeFactory::StoreGlobalViaContext( | |
4437 isolate(), depth, instr->language_mode()) | |
4438 .code(); | |
4439 CallCode(stub, RelocInfo::CODE_TARGET, instr); | |
4440 } else { | |
4441 __ Push(Smi::FromInt(slot)); | |
4442 __ Push(StoreGlobalViaContextDescriptor::ValueRegister()); | |
4443 __ CallRuntime(is_strict(instr->language_mode()) | |
4444 ? Runtime::kStoreGlobalViaContext_Strict | |
4445 : Runtime::kStoreGlobalViaContext_Sloppy, | |
4446 2); | |
4447 } | |
4448 } | |
4449 | |
4450 | |
4451 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { | |
4452 Condition cc = instr->hydrogen()->allow_equality() ? above : above_equal; | |
4453 if (instr->index()->IsConstantOperand()) { | |
4454 __ cmp(ToOperand(instr->length()), | |
4455 ToImmediate(LConstantOperand::cast(instr->index()), | |
4456 instr->hydrogen()->length()->representation())); | |
4457 cc = CommuteCondition(cc); | |
4458 } else if (instr->length()->IsConstantOperand()) { | |
4459 __ cmp(ToOperand(instr->index()), | |
4460 ToImmediate(LConstantOperand::cast(instr->length()), | |
4461 instr->hydrogen()->index()->representation())); | |
4462 } else { | |
4463 __ cmp(ToRegister(instr->index()), ToOperand(instr->length())); | |
4464 } | |
4465 if (FLAG_debug_code && instr->hydrogen()->skip_check()) { | |
4466 Label done; | |
4467 __ j(NegateCondition(cc), &done, Label::kNear); | |
4468 __ int3(); | |
4469 __ bind(&done); | |
4470 } else { | |
4471 DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds); | |
4472 } | |
4473 } | |
4474 | |
4475 | |
4476 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) { | |
4477 ElementsKind elements_kind = instr->elements_kind(); | |
4478 LOperand* key = instr->key(); | |
4479 if (!key->IsConstantOperand() && | |
4480 ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(), | |
4481 elements_kind)) { | |
4482 __ SmiUntag(ToRegister(key)); | |
4483 } | |
4484 Operand operand(BuildFastArrayOperand( | |
4485 instr->elements(), | |
4486 key, | |
4487 instr->hydrogen()->key()->representation(), | |
4488 elements_kind, | |
4489 instr->base_offset())); | |
4490 if (elements_kind == FLOAT32_ELEMENTS) { | |
4491 X87Mov(operand, ToX87Register(instr->value()), kX87FloatOperand); | |
4492 } else if (elements_kind == FLOAT64_ELEMENTS) { | |
4493 uint64_t int_val = kHoleNanInt64; | |
4494 int32_t lower = static_cast<int32_t>(int_val); | |
4495 int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt)); | |
4496 Operand operand2 = BuildFastArrayOperand( | |
4497 instr->elements(), instr->key(), | |
4498 instr->hydrogen()->key()->representation(), elements_kind, | |
4499 instr->base_offset() + kPointerSize); | |
4500 | |
4501 Label no_special_nan_handling, done; | |
4502 X87Register value = ToX87Register(instr->value()); | |
4503 X87Fxch(value); | |
4504 __ lea(esp, Operand(esp, -kDoubleSize)); | |
4505 __ fst_d(MemOperand(esp, 0)); | |
4506 __ lea(esp, Operand(esp, kDoubleSize)); | |
4507 int offset = sizeof(kHoleNanUpper32); | |
4508 // x87 converts sNaN(0xfff7fffffff7ffff) to QNaN(0xfffffffffff7ffff), | |
4509 // so we check the upper with 0xffffffff for hole as a temporary fix. | |
4510 __ cmp(MemOperand(esp, -offset), Immediate(0xffffffff)); | |
4511 __ j(not_equal, &no_special_nan_handling, Label::kNear); | |
4512 __ mov(operand, Immediate(lower)); | |
4513 __ mov(operand2, Immediate(upper)); | |
4514 __ jmp(&done, Label::kNear); | |
4515 | |
4516 __ bind(&no_special_nan_handling); | |
4517 __ fst_d(operand); | |
4518 __ bind(&done); | |
4519 } else { | |
4520 Register value = ToRegister(instr->value()); | |
4521 switch (elements_kind) { | |
4522 case UINT8_ELEMENTS: | |
4523 case INT8_ELEMENTS: | |
4524 case UINT8_CLAMPED_ELEMENTS: | |
4525 __ mov_b(operand, value); | |
4526 break; | |
4527 case UINT16_ELEMENTS: | |
4528 case INT16_ELEMENTS: | |
4529 __ mov_w(operand, value); | |
4530 break; | |
4531 case UINT32_ELEMENTS: | |
4532 case INT32_ELEMENTS: | |
4533 __ mov(operand, value); | |
4534 break; | |
4535 case FLOAT32_ELEMENTS: | |
4536 case FLOAT64_ELEMENTS: | |
4537 case FAST_SMI_ELEMENTS: | |
4538 case FAST_ELEMENTS: | |
4539 case FAST_DOUBLE_ELEMENTS: | |
4540 case FAST_HOLEY_SMI_ELEMENTS: | |
4541 case FAST_HOLEY_ELEMENTS: | |
4542 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
4543 case DICTIONARY_ELEMENTS: | |
4544 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
4545 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: | |
4546 UNREACHABLE(); | |
4547 break; | |
4548 } | |
4549 } | |
4550 } | |
4551 | |
4552 | |
4553 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) { | |
4554 Operand double_store_operand = BuildFastArrayOperand( | |
4555 instr->elements(), | |
4556 instr->key(), | |
4557 instr->hydrogen()->key()->representation(), | |
4558 FAST_DOUBLE_ELEMENTS, | |
4559 instr->base_offset()); | |
4560 | |
4561 uint64_t int_val = kHoleNanInt64; | |
4562 int32_t lower = static_cast<int32_t>(int_val); | |
4563 int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt)); | |
4564 Operand double_store_operand2 = BuildFastArrayOperand( | |
4565 instr->elements(), instr->key(), | |
4566 instr->hydrogen()->key()->representation(), FAST_DOUBLE_ELEMENTS, | |
4567 instr->base_offset() + kPointerSize); | |
4568 | |
4569 if (instr->hydrogen()->IsConstantHoleStore()) { | |
4570 // This means we should store the (double) hole. No floating point | |
4571 // registers required. | |
4572 __ mov(double_store_operand, Immediate(lower)); | |
4573 __ mov(double_store_operand2, Immediate(upper)); | |
4574 } else { | |
4575 Label no_special_nan_handling, done; | |
4576 X87Register value = ToX87Register(instr->value()); | |
4577 X87Fxch(value); | |
4578 | |
4579 if (instr->NeedsCanonicalization()) { | |
4580 __ fld(0); | |
4581 __ fld(0); | |
4582 __ FCmp(); | |
4583 __ j(parity_odd, &no_special_nan_handling, Label::kNear); | |
4584 // All NaNs are Canonicalized to 0x7fffffffffffffff | |
4585 __ mov(double_store_operand, Immediate(0xffffffff)); | |
4586 __ mov(double_store_operand2, Immediate(0x7fffffff)); | |
4587 __ jmp(&done, Label::kNear); | |
4588 } else { | |
4589 __ lea(esp, Operand(esp, -kDoubleSize)); | |
4590 __ fst_d(MemOperand(esp, 0)); | |
4591 __ lea(esp, Operand(esp, kDoubleSize)); | |
4592 int offset = sizeof(kHoleNanUpper32); | |
4593 // x87 converts sNaN(0xfff7fffffff7ffff) to QNaN(0xfffffffffff7ffff), | |
4594 // so we check the upper with 0xffffffff for hole as a temporary fix. | |
4595 __ cmp(MemOperand(esp, -offset), Immediate(0xffffffff)); | |
4596 __ j(not_equal, &no_special_nan_handling, Label::kNear); | |
4597 __ mov(double_store_operand, Immediate(lower)); | |
4598 __ mov(double_store_operand2, Immediate(upper)); | |
4599 __ jmp(&done, Label::kNear); | |
4600 } | |
4601 __ bind(&no_special_nan_handling); | |
4602 __ fst_d(double_store_operand); | |
4603 __ bind(&done); | |
4604 } | |
4605 } | |
4606 | |
4607 | |
4608 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) { | |
4609 Register elements = ToRegister(instr->elements()); | |
4610 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; | |
4611 | |
4612 Operand operand = BuildFastArrayOperand( | |
4613 instr->elements(), | |
4614 instr->key(), | |
4615 instr->hydrogen()->key()->representation(), | |
4616 FAST_ELEMENTS, | |
4617 instr->base_offset()); | |
4618 if (instr->value()->IsRegister()) { | |
4619 __ mov(operand, ToRegister(instr->value())); | |
4620 } else { | |
4621 LConstantOperand* operand_value = LConstantOperand::cast(instr->value()); | |
4622 if (IsSmi(operand_value)) { | |
4623 Immediate immediate = ToImmediate(operand_value, Representation::Smi()); | |
4624 __ mov(operand, immediate); | |
4625 } else { | |
4626 DCHECK(!IsInteger32(operand_value)); | |
4627 Handle<Object> handle_value = ToHandle(operand_value); | |
4628 __ mov(operand, handle_value); | |
4629 } | |
4630 } | |
4631 | |
4632 if (instr->hydrogen()->NeedsWriteBarrier()) { | |
4633 DCHECK(instr->value()->IsRegister()); | |
4634 Register value = ToRegister(instr->value()); | |
4635 DCHECK(!instr->key()->IsConstantOperand()); | |
4636 SmiCheck check_needed = | |
4637 instr->hydrogen()->value()->type().IsHeapObject() | |
4638 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | |
4639 // Compute address of modified element and store it into key register. | |
4640 __ lea(key, operand); | |
4641 __ RecordWrite(elements, key, value, kSaveFPRegs, EMIT_REMEMBERED_SET, | |
4642 check_needed, | |
4643 instr->hydrogen()->PointersToHereCheckForValue()); | |
4644 } | |
4645 } | |
4646 | |
4647 | |
4648 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) { | |
4649 // By cases...external, fast-double, fast | |
4650 if (instr->is_fixed_typed_array()) { | |
4651 DoStoreKeyedExternalArray(instr); | |
4652 } else if (instr->hydrogen()->value()->representation().IsDouble()) { | |
4653 DoStoreKeyedFixedDoubleArray(instr); | |
4654 } else { | |
4655 DoStoreKeyedFixedArray(instr); | |
4656 } | |
4657 } | |
4658 | |
4659 | |
4660 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { | |
4661 DCHECK(ToRegister(instr->context()).is(esi)); | |
4662 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); | |
4663 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister())); | |
4664 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); | |
4665 | |
4666 if (instr->hydrogen()->HasVectorAndSlot()) { | |
4667 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr); | |
4668 } | |
4669 | |
4670 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode( | |
4671 isolate(), instr->language_mode(), | |
4672 instr->hydrogen()->initialization_state()).code(); | |
4673 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
4674 } | |
4675 | |
4676 | |
4677 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { | |
4678 Register object = ToRegister(instr->object()); | |
4679 Register temp = ToRegister(instr->temp()); | |
4680 Label no_memento_found; | |
4681 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found); | |
4682 DeoptimizeIf(equal, instr, Deoptimizer::kMementoFound); | |
4683 __ bind(&no_memento_found); | |
4684 } | |
4685 | |
4686 | |
4687 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) { | |
4688 class DeferredMaybeGrowElements final : public LDeferredCode { | |
4689 public: | |
4690 DeferredMaybeGrowElements(LCodeGen* codegen, | |
4691 LMaybeGrowElements* instr, | |
4692 const X87Stack& x87_stack) | |
4693 : LDeferredCode(codegen, x87_stack), instr_(instr) {} | |
4694 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); } | |
4695 LInstruction* instr() override { return instr_; } | |
4696 | |
4697 private: | |
4698 LMaybeGrowElements* instr_; | |
4699 }; | |
4700 | |
4701 Register result = eax; | |
4702 DeferredMaybeGrowElements* deferred = | |
4703 new (zone()) DeferredMaybeGrowElements(this, instr, x87_stack_); | |
4704 LOperand* key = instr->key(); | |
4705 LOperand* current_capacity = instr->current_capacity(); | |
4706 | |
4707 DCHECK(instr->hydrogen()->key()->representation().IsInteger32()); | |
4708 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32()); | |
4709 DCHECK(key->IsConstantOperand() || key->IsRegister()); | |
4710 DCHECK(current_capacity->IsConstantOperand() || | |
4711 current_capacity->IsRegister()); | |
4712 | |
4713 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) { | |
4714 int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); | |
4715 int32_t constant_capacity = | |
4716 ToInteger32(LConstantOperand::cast(current_capacity)); | |
4717 if (constant_key >= constant_capacity) { | |
4718 // Deferred case. | |
4719 __ jmp(deferred->entry()); | |
4720 } | |
4721 } else if (key->IsConstantOperand()) { | |
4722 int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); | |
4723 __ cmp(ToOperand(current_capacity), Immediate(constant_key)); | |
4724 __ j(less_equal, deferred->entry()); | |
4725 } else if (current_capacity->IsConstantOperand()) { | |
4726 int32_t constant_capacity = | |
4727 ToInteger32(LConstantOperand::cast(current_capacity)); | |
4728 __ cmp(ToRegister(key), Immediate(constant_capacity)); | |
4729 __ j(greater_equal, deferred->entry()); | |
4730 } else { | |
4731 __ cmp(ToRegister(key), ToRegister(current_capacity)); | |
4732 __ j(greater_equal, deferred->entry()); | |
4733 } | |
4734 | |
4735 __ mov(result, ToOperand(instr->elements())); | |
4736 __ bind(deferred->exit()); | |
4737 } | |
4738 | |
4739 | |
4740 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) { | |
4741 // TODO(3095996): Get rid of this. For now, we need to make the | |
4742 // result register contain a valid pointer because it is already | |
4743 // contained in the register pointer map. | |
4744 Register result = eax; | |
4745 __ Move(result, Immediate(0)); | |
4746 | |
4747 // We have to call a stub. | |
4748 { | |
4749 PushSafepointRegistersScope scope(this); | |
4750 if (instr->object()->IsRegister()) { | |
4751 __ Move(result, ToRegister(instr->object())); | |
4752 } else { | |
4753 __ mov(result, ToOperand(instr->object())); | |
4754 } | |
4755 | |
4756 LOperand* key = instr->key(); | |
4757 if (key->IsConstantOperand()) { | |
4758 __ mov(ebx, ToImmediate(key, Representation::Smi())); | |
4759 } else { | |
4760 __ Move(ebx, ToRegister(key)); | |
4761 __ SmiTag(ebx); | |
4762 } | |
4763 | |
4764 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(), | |
4765 instr->hydrogen()->kind()); | |
4766 __ CallStub(&stub); | |
4767 RecordSafepointWithLazyDeopt( | |
4768 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | |
4769 __ StoreToSafepointRegisterSlot(result, result); | |
4770 } | |
4771 | |
4772 // Deopt on smi, which means the elements array changed to dictionary mode. | |
4773 __ test(result, Immediate(kSmiTagMask)); | |
4774 DeoptimizeIf(equal, instr, Deoptimizer::kSmi); | |
4775 } | |
4776 | |
4777 | |
4778 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { | |
4779 Register object_reg = ToRegister(instr->object()); | |
4780 | |
4781 Handle<Map> from_map = instr->original_map(); | |
4782 Handle<Map> to_map = instr->transitioned_map(); | |
4783 ElementsKind from_kind = instr->from_kind(); | |
4784 ElementsKind to_kind = instr->to_kind(); | |
4785 | |
4786 Label not_applicable; | |
4787 bool is_simple_map_transition = | |
4788 IsSimpleMapChangeTransition(from_kind, to_kind); | |
4789 Label::Distance branch_distance = | |
4790 is_simple_map_transition ? Label::kNear : Label::kFar; | |
4791 __ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map); | |
4792 __ j(not_equal, ¬_applicable, branch_distance); | |
4793 if (is_simple_map_transition) { | |
4794 Register new_map_reg = ToRegister(instr->new_map_temp()); | |
4795 __ mov(FieldOperand(object_reg, HeapObject::kMapOffset), | |
4796 Immediate(to_map)); | |
4797 // Write barrier. | |
4798 DCHECK_NOT_NULL(instr->temp()); | |
4799 __ RecordWriteForMap(object_reg, to_map, new_map_reg, | |
4800 ToRegister(instr->temp()), kDontSaveFPRegs); | |
4801 } else { | |
4802 DCHECK(ToRegister(instr->context()).is(esi)); | |
4803 DCHECK(object_reg.is(eax)); | |
4804 PushSafepointRegistersScope scope(this); | |
4805 __ mov(ebx, to_map); | |
4806 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE; | |
4807 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array); | |
4808 __ CallStub(&stub); | |
4809 RecordSafepointWithLazyDeopt(instr, | |
4810 RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | |
4811 } | |
4812 __ bind(¬_applicable); | |
4813 } | |
4814 | |
4815 | |
4816 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { | |
4817 class DeferredStringCharCodeAt final : public LDeferredCode { | |
4818 public: | |
4819 DeferredStringCharCodeAt(LCodeGen* codegen, | |
4820 LStringCharCodeAt* instr, | |
4821 const X87Stack& x87_stack) | |
4822 : LDeferredCode(codegen, x87_stack), instr_(instr) { } | |
4823 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); } | |
4824 LInstruction* instr() override { return instr_; } | |
4825 | |
4826 private: | |
4827 LStringCharCodeAt* instr_; | |
4828 }; | |
4829 | |
4830 DeferredStringCharCodeAt* deferred = | |
4831 new(zone()) DeferredStringCharCodeAt(this, instr, x87_stack_); | |
4832 | |
4833 StringCharLoadGenerator::Generate(masm(), | |
4834 factory(), | |
4835 ToRegister(instr->string()), | |
4836 ToRegister(instr->index()), | |
4837 ToRegister(instr->result()), | |
4838 deferred->entry()); | |
4839 __ bind(deferred->exit()); | |
4840 } | |
4841 | |
4842 | |
4843 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { | |
4844 Register string = ToRegister(instr->string()); | |
4845 Register result = ToRegister(instr->result()); | |
4846 | |
4847 // TODO(3095996): Get rid of this. For now, we need to make the | |
4848 // result register contain a valid pointer because it is already | |
4849 // contained in the register pointer map. | |
4850 __ Move(result, Immediate(0)); | |
4851 | |
4852 PushSafepointRegistersScope scope(this); | |
4853 __ push(string); | |
4854 // Push the index as a smi. This is safe because of the checks in | |
4855 // DoStringCharCodeAt above. | |
4856 STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue); | |
4857 if (instr->index()->IsConstantOperand()) { | |
4858 Immediate immediate = ToImmediate(LConstantOperand::cast(instr->index()), | |
4859 Representation::Smi()); | |
4860 __ push(immediate); | |
4861 } else { | |
4862 Register index = ToRegister(instr->index()); | |
4863 __ SmiTag(index); | |
4864 __ push(index); | |
4865 } | |
4866 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, | |
4867 instr, instr->context()); | |
4868 __ AssertSmi(eax); | |
4869 __ SmiUntag(eax); | |
4870 __ StoreToSafepointRegisterSlot(result, eax); | |
4871 } | |
4872 | |
4873 | |
4874 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { | |
4875 class DeferredStringCharFromCode final : public LDeferredCode { | |
4876 public: | |
4877 DeferredStringCharFromCode(LCodeGen* codegen, | |
4878 LStringCharFromCode* instr, | |
4879 const X87Stack& x87_stack) | |
4880 : LDeferredCode(codegen, x87_stack), instr_(instr) { } | |
4881 void Generate() override { | |
4882 codegen()->DoDeferredStringCharFromCode(instr_); | |
4883 } | |
4884 LInstruction* instr() override { return instr_; } | |
4885 | |
4886 private: | |
4887 LStringCharFromCode* instr_; | |
4888 }; | |
4889 | |
4890 DeferredStringCharFromCode* deferred = | |
4891 new(zone()) DeferredStringCharFromCode(this, instr, x87_stack_); | |
4892 | |
4893 DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); | |
4894 Register char_code = ToRegister(instr->char_code()); | |
4895 Register result = ToRegister(instr->result()); | |
4896 DCHECK(!char_code.is(result)); | |
4897 | |
4898 __ cmp(char_code, String::kMaxOneByteCharCode); | |
4899 __ j(above, deferred->entry()); | |
4900 __ Move(result, Immediate(factory()->single_character_string_cache())); | |
4901 __ mov(result, FieldOperand(result, | |
4902 char_code, times_pointer_size, | |
4903 FixedArray::kHeaderSize)); | |
4904 __ cmp(result, factory()->undefined_value()); | |
4905 __ j(equal, deferred->entry()); | |
4906 __ bind(deferred->exit()); | |
4907 } | |
4908 | |
4909 | |
4910 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { | |
4911 Register char_code = ToRegister(instr->char_code()); | |
4912 Register result = ToRegister(instr->result()); | |
4913 | |
4914 // TODO(3095996): Get rid of this. For now, we need to make the | |
4915 // result register contain a valid pointer because it is already | |
4916 // contained in the register pointer map. | |
4917 __ Move(result, Immediate(0)); | |
4918 | |
4919 PushSafepointRegistersScope scope(this); | |
4920 __ SmiTag(char_code); | |
4921 __ push(char_code); | |
4922 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context()); | |
4923 __ StoreToSafepointRegisterSlot(result, eax); | |
4924 } | |
4925 | |
4926 | |
4927 void LCodeGen::DoStringAdd(LStringAdd* instr) { | |
4928 DCHECK(ToRegister(instr->context()).is(esi)); | |
4929 DCHECK(ToRegister(instr->left()).is(edx)); | |
4930 DCHECK(ToRegister(instr->right()).is(eax)); | |
4931 StringAddStub stub(isolate(), | |
4932 instr->hydrogen()->flags(), | |
4933 instr->hydrogen()->pretenure_flag()); | |
4934 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
4935 } | |
4936 | |
4937 | |
4938 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { | |
4939 LOperand* input = instr->value(); | |
4940 LOperand* output = instr->result(); | |
4941 DCHECK(input->IsRegister() || input->IsStackSlot()); | |
4942 DCHECK(output->IsDoubleRegister()); | |
4943 if (input->IsRegister()) { | |
4944 Register input_reg = ToRegister(input); | |
4945 __ push(input_reg); | |
4946 X87Mov(ToX87Register(output), Operand(esp, 0), kX87IntOperand); | |
4947 __ pop(input_reg); | |
4948 } else { | |
4949 X87Mov(ToX87Register(output), ToOperand(input), kX87IntOperand); | |
4950 } | |
4951 } | |
4952 | |
4953 | |
4954 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { | |
4955 LOperand* input = instr->value(); | |
4956 LOperand* output = instr->result(); | |
4957 X87Register res = ToX87Register(output); | |
4958 X87PrepareToWrite(res); | |
4959 __ LoadUint32NoSSE2(ToRegister(input)); | |
4960 X87CommitWrite(res); | |
4961 } | |
4962 | |
4963 | |
4964 void LCodeGen::DoNumberTagI(LNumberTagI* instr) { | |
4965 class DeferredNumberTagI final : public LDeferredCode { | |
4966 public: | |
4967 DeferredNumberTagI(LCodeGen* codegen, | |
4968 LNumberTagI* instr, | |
4969 const X87Stack& x87_stack) | |
4970 : LDeferredCode(codegen, x87_stack), instr_(instr) { } | |
4971 void Generate() override { | |
4972 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(), | |
4973 SIGNED_INT32); | |
4974 } | |
4975 LInstruction* instr() override { return instr_; } | |
4976 | |
4977 private: | |
4978 LNumberTagI* instr_; | |
4979 }; | |
4980 | |
4981 LOperand* input = instr->value(); | |
4982 DCHECK(input->IsRegister() && input->Equals(instr->result())); | |
4983 Register reg = ToRegister(input); | |
4984 | |
4985 DeferredNumberTagI* deferred = | |
4986 new(zone()) DeferredNumberTagI(this, instr, x87_stack_); | |
4987 __ SmiTag(reg); | |
4988 __ j(overflow, deferred->entry()); | |
4989 __ bind(deferred->exit()); | |
4990 } | |
4991 | |
4992 | |
4993 void LCodeGen::DoNumberTagU(LNumberTagU* instr) { | |
4994 class DeferredNumberTagU final : public LDeferredCode { | |
4995 public: | |
4996 DeferredNumberTagU(LCodeGen* codegen, | |
4997 LNumberTagU* instr, | |
4998 const X87Stack& x87_stack) | |
4999 : LDeferredCode(codegen, x87_stack), instr_(instr) { } | |
5000 void Generate() override { | |
5001 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(), | |
5002 UNSIGNED_INT32); | |
5003 } | |
5004 LInstruction* instr() override { return instr_; } | |
5005 | |
5006 private: | |
5007 LNumberTagU* instr_; | |
5008 }; | |
5009 | |
5010 LOperand* input = instr->value(); | |
5011 DCHECK(input->IsRegister() && input->Equals(instr->result())); | |
5012 Register reg = ToRegister(input); | |
5013 | |
5014 DeferredNumberTagU* deferred = | |
5015 new(zone()) DeferredNumberTagU(this, instr, x87_stack_); | |
5016 __ cmp(reg, Immediate(Smi::kMaxValue)); | |
5017 __ j(above, deferred->entry()); | |
5018 __ SmiTag(reg); | |
5019 __ bind(deferred->exit()); | |
5020 } | |
5021 | |
5022 | |
5023 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, | |
5024 LOperand* value, | |
5025 LOperand* temp, | |
5026 IntegerSignedness signedness) { | |
5027 Label done, slow; | |
5028 Register reg = ToRegister(value); | |
5029 Register tmp = ToRegister(temp); | |
5030 | |
5031 if (signedness == SIGNED_INT32) { | |
5032 // There was overflow, so bits 30 and 31 of the original integer | |
5033 // disagree. Try to allocate a heap number in new space and store | |
5034 // the value in there. If that fails, call the runtime system. | |
5035 __ SmiUntag(reg); | |
5036 __ xor_(reg, 0x80000000); | |
5037 __ push(reg); | |
5038 __ fild_s(Operand(esp, 0)); | |
5039 __ pop(reg); | |
5040 } else { | |
5041 // There's no fild variant for unsigned values, so zero-extend to a 64-bit | |
5042 // int manually. | |
5043 __ push(Immediate(0)); | |
5044 __ push(reg); | |
5045 __ fild_d(Operand(esp, 0)); | |
5046 __ pop(reg); | |
5047 __ pop(reg); | |
5048 } | |
5049 | |
5050 if (FLAG_inline_new) { | |
5051 __ AllocateHeapNumber(reg, tmp, no_reg, &slow); | |
5052 __ jmp(&done, Label::kNear); | |
5053 } | |
5054 | |
5055 // Slow case: Call the runtime system to do the number allocation. | |
5056 __ bind(&slow); | |
5057 { | |
5058 // TODO(3095996): Put a valid pointer value in the stack slot where the | |
5059 // result register is stored, as this register is in the pointer map, but | |
5060 // contains an integer value. | |
5061 __ Move(reg, Immediate(0)); | |
5062 | |
5063 // Preserve the value of all registers. | |
5064 PushSafepointRegistersScope scope(this); | |
5065 | |
5066 // NumberTagI and NumberTagD use the context from the frame, rather than | |
5067 // the environment's HContext or HInlinedContext value. | |
5068 // They only call Runtime::kAllocateHeapNumber. | |
5069 // The corresponding HChange instructions are added in a phase that does | |
5070 // not have easy access to the local context. | |
5071 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); | |
5072 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); | |
5073 RecordSafepointWithRegisters( | |
5074 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); | |
5075 __ StoreToSafepointRegisterSlot(reg, eax); | |
5076 } | |
5077 | |
5078 __ bind(&done); | |
5079 __ fstp_d(FieldOperand(reg, HeapNumber::kValueOffset)); | |
5080 } | |
5081 | |
5082 | |
5083 void LCodeGen::DoNumberTagD(LNumberTagD* instr) { | |
5084 class DeferredNumberTagD final : public LDeferredCode { | |
5085 public: | |
5086 DeferredNumberTagD(LCodeGen* codegen, | |
5087 LNumberTagD* instr, | |
5088 const X87Stack& x87_stack) | |
5089 : LDeferredCode(codegen, x87_stack), instr_(instr) { } | |
5090 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); } | |
5091 LInstruction* instr() override { return instr_; } | |
5092 | |
5093 private: | |
5094 LNumberTagD* instr_; | |
5095 }; | |
5096 | |
5097 Register reg = ToRegister(instr->result()); | |
5098 | |
5099 // Put the value to the top of stack | |
5100 X87Register src = ToX87Register(instr->value()); | |
5101 // Don't use X87LoadForUsage here, which is only used by Instruction which | |
5102 // clobbers fp registers. | |
5103 x87_stack_.Fxch(src); | |
5104 | |
5105 DeferredNumberTagD* deferred = | |
5106 new(zone()) DeferredNumberTagD(this, instr, x87_stack_); | |
5107 if (FLAG_inline_new) { | |
5108 Register tmp = ToRegister(instr->temp()); | |
5109 __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry()); | |
5110 } else { | |
5111 __ jmp(deferred->entry()); | |
5112 } | |
5113 __ bind(deferred->exit()); | |
5114 __ fst_d(FieldOperand(reg, HeapNumber::kValueOffset)); | |
5115 } | |
5116 | |
5117 | |
5118 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { | |
5119 // TODO(3095996): Get rid of this. For now, we need to make the | |
5120 // result register contain a valid pointer because it is already | |
5121 // contained in the register pointer map. | |
5122 Register reg = ToRegister(instr->result()); | |
5123 __ Move(reg, Immediate(0)); | |
5124 | |
5125 PushSafepointRegistersScope scope(this); | |
5126 // NumberTagI and NumberTagD use the context from the frame, rather than | |
5127 // the environment's HContext or HInlinedContext value. | |
5128 // They only call Runtime::kAllocateHeapNumber. | |
5129 // The corresponding HChange instructions are added in a phase that does | |
5130 // not have easy access to the local context. | |
5131 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); | |
5132 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); | |
5133 RecordSafepointWithRegisters( | |
5134 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); | |
5135 __ StoreToSafepointRegisterSlot(reg, eax); | |
5136 } | |
5137 | |
5138 | |
5139 void LCodeGen::DoSmiTag(LSmiTag* instr) { | |
5140 HChange* hchange = instr->hydrogen(); | |
5141 Register input = ToRegister(instr->value()); | |
5142 if (hchange->CheckFlag(HValue::kCanOverflow) && | |
5143 hchange->value()->CheckFlag(HValue::kUint32)) { | |
5144 __ test(input, Immediate(0xc0000000)); | |
5145 DeoptimizeIf(not_zero, instr, Deoptimizer::kOverflow); | |
5146 } | |
5147 __ SmiTag(input); | |
5148 if (hchange->CheckFlag(HValue::kCanOverflow) && | |
5149 !hchange->value()->CheckFlag(HValue::kUint32)) { | |
5150 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
5151 } | |
5152 } | |
5153 | |
5154 | |
5155 void LCodeGen::DoSmiUntag(LSmiUntag* instr) { | |
5156 LOperand* input = instr->value(); | |
5157 Register result = ToRegister(input); | |
5158 DCHECK(input->IsRegister() && input->Equals(instr->result())); | |
5159 if (instr->needs_check()) { | |
5160 __ test(result, Immediate(kSmiTagMask)); | |
5161 DeoptimizeIf(not_zero, instr, Deoptimizer::kNotASmi); | |
5162 } else { | |
5163 __ AssertSmi(result); | |
5164 } | |
5165 __ SmiUntag(result); | |
5166 } | |
5167 | |
5168 | |
5169 void LCodeGen::EmitNumberUntagDNoSSE2(LNumberUntagD* instr, Register input_reg, | |
5170 Register temp_reg, X87Register res_reg, | |
5171 NumberUntagDMode mode) { | |
5172 bool can_convert_undefined_to_nan = | |
5173 instr->hydrogen()->can_convert_undefined_to_nan(); | |
5174 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero(); | |
5175 | |
5176 Label load_smi, done; | |
5177 | |
5178 X87PrepareToWrite(res_reg); | |
5179 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { | |
5180 // Smi check. | |
5181 __ JumpIfSmi(input_reg, &load_smi); | |
5182 | |
5183 // Heap number map check. | |
5184 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), | |
5185 factory()->heap_number_map()); | |
5186 if (!can_convert_undefined_to_nan) { | |
5187 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber); | |
5188 } else { | |
5189 Label heap_number, convert; | |
5190 __ j(equal, &heap_number); | |
5191 | |
5192 // Convert undefined (or hole) to NaN. | |
5193 __ cmp(input_reg, factory()->undefined_value()); | |
5194 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined); | |
5195 | |
5196 __ bind(&convert); | |
5197 __ push(Immediate(0xffffffff)); | |
5198 __ push(Immediate(0x7fffffff)); | |
5199 __ fld_d(MemOperand(esp, 0)); | |
5200 __ lea(esp, Operand(esp, kDoubleSize)); | |
5201 __ jmp(&done, Label::kNear); | |
5202 | |
5203 __ bind(&heap_number); | |
5204 } | |
5205 // Heap number to x87 conversion. | |
5206 __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset)); | |
5207 if (deoptimize_on_minus_zero) { | |
5208 __ fldz(); | |
5209 __ FCmp(); | |
5210 __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset)); | |
5211 __ j(not_zero, &done, Label::kNear); | |
5212 | |
5213 // Use general purpose registers to check if we have -0.0 | |
5214 __ mov(temp_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset)); | |
5215 __ test(temp_reg, Immediate(HeapNumber::kSignMask)); | |
5216 __ j(zero, &done, Label::kNear); | |
5217 | |
5218 // Pop FPU stack before deoptimizing. | |
5219 __ fstp(0); | |
5220 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero); | |
5221 } | |
5222 __ jmp(&done, Label::kNear); | |
5223 } else { | |
5224 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); | |
5225 } | |
5226 | |
5227 __ bind(&load_smi); | |
5228 // Clobbering a temp is faster than re-tagging the | |
5229 // input register since we avoid dependencies. | |
5230 __ mov(temp_reg, input_reg); | |
5231 __ SmiUntag(temp_reg); // Untag smi before converting to float. | |
5232 __ push(temp_reg); | |
5233 __ fild_s(Operand(esp, 0)); | |
5234 __ add(esp, Immediate(kPointerSize)); | |
5235 __ bind(&done); | |
5236 X87CommitWrite(res_reg); | |
5237 } | |
5238 | |
5239 | |
5240 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) { | |
5241 Register input_reg = ToRegister(instr->value()); | |
5242 | |
5243 // The input was optimistically untagged; revert it. | |
5244 STATIC_ASSERT(kSmiTagSize == 1); | |
5245 __ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag)); | |
5246 | |
5247 if (instr->truncating()) { | |
5248 Label no_heap_number, check_bools, check_false; | |
5249 | |
5250 // Heap number map check. | |
5251 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), | |
5252 factory()->heap_number_map()); | |
5253 __ j(not_equal, &no_heap_number, Label::kNear); | |
5254 __ TruncateHeapNumberToI(input_reg, input_reg); | |
5255 __ jmp(done); | |
5256 | |
5257 __ bind(&no_heap_number); | |
5258 // Check for Oddballs. Undefined/False is converted to zero and True to one | |
5259 // for truncating conversions. | |
5260 __ cmp(input_reg, factory()->undefined_value()); | |
5261 __ j(not_equal, &check_bools, Label::kNear); | |
5262 __ Move(input_reg, Immediate(0)); | |
5263 __ jmp(done); | |
5264 | |
5265 __ bind(&check_bools); | |
5266 __ cmp(input_reg, factory()->true_value()); | |
5267 __ j(not_equal, &check_false, Label::kNear); | |
5268 __ Move(input_reg, Immediate(1)); | |
5269 __ jmp(done); | |
5270 | |
5271 __ bind(&check_false); | |
5272 __ cmp(input_reg, factory()->false_value()); | |
5273 DeoptimizeIf(not_equal, instr, | |
5274 Deoptimizer::kNotAHeapNumberUndefinedBoolean); | |
5275 __ Move(input_reg, Immediate(0)); | |
5276 } else { | |
5277 // TODO(olivf) Converting a number on the fpu is actually quite slow. We | |
5278 // should first try a fast conversion and then bailout to this slow case. | |
5279 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), | |
5280 isolate()->factory()->heap_number_map()); | |
5281 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber); | |
5282 | |
5283 __ sub(esp, Immediate(kPointerSize)); | |
5284 __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset)); | |
5285 | |
5286 if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) { | |
5287 Label no_precision_lost, not_nan, zero_check; | |
5288 __ fld(0); | |
5289 | |
5290 __ fist_s(MemOperand(esp, 0)); | |
5291 __ fild_s(MemOperand(esp, 0)); | |
5292 __ FCmp(); | |
5293 __ pop(input_reg); | |
5294 | |
5295 __ j(equal, &no_precision_lost, Label::kNear); | |
5296 __ fstp(0); | |
5297 DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision); | |
5298 __ bind(&no_precision_lost); | |
5299 | |
5300 __ j(parity_odd, ¬_nan); | |
5301 __ fstp(0); | |
5302 DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN); | |
5303 __ bind(¬_nan); | |
5304 | |
5305 __ test(input_reg, Operand(input_reg)); | |
5306 __ j(zero, &zero_check, Label::kNear); | |
5307 __ fstp(0); | |
5308 __ jmp(done); | |
5309 | |
5310 __ bind(&zero_check); | |
5311 // To check for minus zero, we load the value again as float, and check | |
5312 // if that is still 0. | |
5313 __ sub(esp, Immediate(kPointerSize)); | |
5314 __ fstp_s(Operand(esp, 0)); | |
5315 __ pop(input_reg); | |
5316 __ test(input_reg, Operand(input_reg)); | |
5317 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero); | |
5318 } else { | |
5319 __ fist_s(MemOperand(esp, 0)); | |
5320 __ fild_s(MemOperand(esp, 0)); | |
5321 __ FCmp(); | |
5322 __ pop(input_reg); | |
5323 DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision); | |
5324 DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN); | |
5325 } | |
5326 } | |
5327 } | |
5328 | |
5329 | |
5330 void LCodeGen::DoTaggedToI(LTaggedToI* instr) { | |
5331 class DeferredTaggedToI final : public LDeferredCode { | |
5332 public: | |
5333 DeferredTaggedToI(LCodeGen* codegen, | |
5334 LTaggedToI* instr, | |
5335 const X87Stack& x87_stack) | |
5336 : LDeferredCode(codegen, x87_stack), instr_(instr) { } | |
5337 void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); } | |
5338 LInstruction* instr() override { return instr_; } | |
5339 | |
5340 private: | |
5341 LTaggedToI* instr_; | |
5342 }; | |
5343 | |
5344 LOperand* input = instr->value(); | |
5345 DCHECK(input->IsRegister()); | |
5346 Register input_reg = ToRegister(input); | |
5347 DCHECK(input_reg.is(ToRegister(instr->result()))); | |
5348 | |
5349 if (instr->hydrogen()->value()->representation().IsSmi()) { | |
5350 __ SmiUntag(input_reg); | |
5351 } else { | |
5352 DeferredTaggedToI* deferred = | |
5353 new(zone()) DeferredTaggedToI(this, instr, x87_stack_); | |
5354 // Optimistically untag the input. | |
5355 // If the input is a HeapObject, SmiUntag will set the carry flag. | |
5356 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); | |
5357 __ SmiUntag(input_reg); | |
5358 // Branch to deferred code if the input was tagged. | |
5359 // The deferred code will take care of restoring the tag. | |
5360 __ j(carry, deferred->entry()); | |
5361 __ bind(deferred->exit()); | |
5362 } | |
5363 } | |
5364 | |
5365 | |
5366 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { | |
5367 LOperand* input = instr->value(); | |
5368 DCHECK(input->IsRegister()); | |
5369 LOperand* temp = instr->temp(); | |
5370 DCHECK(temp->IsRegister()); | |
5371 LOperand* result = instr->result(); | |
5372 DCHECK(result->IsDoubleRegister()); | |
5373 | |
5374 Register input_reg = ToRegister(input); | |
5375 Register temp_reg = ToRegister(temp); | |
5376 | |
5377 HValue* value = instr->hydrogen()->value(); | |
5378 NumberUntagDMode mode = value->representation().IsSmi() | |
5379 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; | |
5380 | |
5381 EmitNumberUntagDNoSSE2(instr, input_reg, temp_reg, ToX87Register(result), | |
5382 mode); | |
5383 } | |
5384 | |
5385 | |
5386 void LCodeGen::DoDoubleToI(LDoubleToI* instr) { | |
5387 LOperand* input = instr->value(); | |
5388 DCHECK(input->IsDoubleRegister()); | |
5389 LOperand* result = instr->result(); | |
5390 DCHECK(result->IsRegister()); | |
5391 Register result_reg = ToRegister(result); | |
5392 | |
5393 if (instr->truncating()) { | |
5394 X87Register input_reg = ToX87Register(input); | |
5395 X87Fxch(input_reg); | |
5396 __ TruncateX87TOSToI(result_reg); | |
5397 } else { | |
5398 Label lost_precision, is_nan, minus_zero, done; | |
5399 X87Register input_reg = ToX87Register(input); | |
5400 X87Fxch(input_reg); | |
5401 __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(), | |
5402 &lost_precision, &is_nan, &minus_zero); | |
5403 __ jmp(&done); | |
5404 __ bind(&lost_precision); | |
5405 DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision); | |
5406 __ bind(&is_nan); | |
5407 DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN); | |
5408 __ bind(&minus_zero); | |
5409 DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero); | |
5410 __ bind(&done); | |
5411 } | |
5412 } | |
5413 | |
5414 | |
5415 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) { | |
5416 LOperand* input = instr->value(); | |
5417 DCHECK(input->IsDoubleRegister()); | |
5418 LOperand* result = instr->result(); | |
5419 DCHECK(result->IsRegister()); | |
5420 Register result_reg = ToRegister(result); | |
5421 | |
5422 Label lost_precision, is_nan, minus_zero, done; | |
5423 X87Register input_reg = ToX87Register(input); | |
5424 X87Fxch(input_reg); | |
5425 __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(), | |
5426 &lost_precision, &is_nan, &minus_zero); | |
5427 __ jmp(&done); | |
5428 __ bind(&lost_precision); | |
5429 DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision); | |
5430 __ bind(&is_nan); | |
5431 DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN); | |
5432 __ bind(&minus_zero); | |
5433 DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero); | |
5434 __ bind(&done); | |
5435 __ SmiTag(result_reg); | |
5436 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
5437 } | |
5438 | |
5439 | |
5440 void LCodeGen::DoCheckSmi(LCheckSmi* instr) { | |
5441 LOperand* input = instr->value(); | |
5442 __ test(ToOperand(input), Immediate(kSmiTagMask)); | |
5443 DeoptimizeIf(not_zero, instr, Deoptimizer::kNotASmi); | |
5444 } | |
5445 | |
5446 | |
5447 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { | |
5448 if (!instr->hydrogen()->value()->type().IsHeapObject()) { | |
5449 LOperand* input = instr->value(); | |
5450 __ test(ToOperand(input), Immediate(kSmiTagMask)); | |
5451 DeoptimizeIf(zero, instr, Deoptimizer::kSmi); | |
5452 } | |
5453 } | |
5454 | |
5455 | |
5456 void LCodeGen::DoCheckArrayBufferNotNeutered( | |
5457 LCheckArrayBufferNotNeutered* instr) { | |
5458 Register view = ToRegister(instr->view()); | |
5459 Register scratch = ToRegister(instr->scratch()); | |
5460 | |
5461 __ mov(scratch, FieldOperand(view, JSArrayBufferView::kBufferOffset)); | |
5462 __ test_b(FieldOperand(scratch, JSArrayBuffer::kBitFieldOffset), | |
5463 1 << JSArrayBuffer::WasNeutered::kShift); | |
5464 DeoptimizeIf(not_zero, instr, Deoptimizer::kOutOfBounds); | |
5465 } | |
5466 | |
5467 | |
5468 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { | |
5469 Register input = ToRegister(instr->value()); | |
5470 Register temp = ToRegister(instr->temp()); | |
5471 | |
5472 __ mov(temp, FieldOperand(input, HeapObject::kMapOffset)); | |
5473 | |
5474 if (instr->hydrogen()->is_interval_check()) { | |
5475 InstanceType first; | |
5476 InstanceType last; | |
5477 instr->hydrogen()->GetCheckInterval(&first, &last); | |
5478 | |
5479 __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), | |
5480 static_cast<int8_t>(first)); | |
5481 | |
5482 // If there is only one type in the interval check for equality. | |
5483 if (first == last) { | |
5484 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType); | |
5485 } else { | |
5486 DeoptimizeIf(below, instr, Deoptimizer::kWrongInstanceType); | |
5487 // Omit check for the last type. | |
5488 if (last != LAST_TYPE) { | |
5489 __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), | |
5490 static_cast<int8_t>(last)); | |
5491 DeoptimizeIf(above, instr, Deoptimizer::kWrongInstanceType); | |
5492 } | |
5493 } | |
5494 } else { | |
5495 uint8_t mask; | |
5496 uint8_t tag; | |
5497 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); | |
5498 | |
5499 if (base::bits::IsPowerOfTwo32(mask)) { | |
5500 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag)); | |
5501 __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), mask); | |
5502 DeoptimizeIf(tag == 0 ? not_zero : zero, instr, | |
5503 Deoptimizer::kWrongInstanceType); | |
5504 } else { | |
5505 __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); | |
5506 __ and_(temp, mask); | |
5507 __ cmp(temp, tag); | |
5508 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType); | |
5509 } | |
5510 } | |
5511 } | |
5512 | |
5513 | |
5514 void LCodeGen::DoCheckValue(LCheckValue* instr) { | |
5515 Handle<HeapObject> object = instr->hydrogen()->object().handle(); | |
5516 if (instr->hydrogen()->object_in_new_space()) { | |
5517 Register reg = ToRegister(instr->value()); | |
5518 Handle<Cell> cell = isolate()->factory()->NewCell(object); | |
5519 __ cmp(reg, Operand::ForCell(cell)); | |
5520 } else { | |
5521 Operand operand = ToOperand(instr->value()); | |
5522 __ cmp(operand, object); | |
5523 } | |
5524 DeoptimizeIf(not_equal, instr, Deoptimizer::kValueMismatch); | |
5525 } | |
5526 | |
5527 | |
5528 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { | |
5529 { | |
5530 PushSafepointRegistersScope scope(this); | |
5531 __ push(object); | |
5532 __ xor_(esi, esi); | |
5533 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); | |
5534 RecordSafepointWithRegisters( | |
5535 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); | |
5536 | |
5537 __ test(eax, Immediate(kSmiTagMask)); | |
5538 } | |
5539 DeoptimizeIf(zero, instr, Deoptimizer::kInstanceMigrationFailed); | |
5540 } | |
5541 | |
5542 | |
5543 void LCodeGen::DoCheckMaps(LCheckMaps* instr) { | |
5544 class DeferredCheckMaps final : public LDeferredCode { | |
5545 public: | |
5546 DeferredCheckMaps(LCodeGen* codegen, | |
5547 LCheckMaps* instr, | |
5548 Register object, | |
5549 const X87Stack& x87_stack) | |
5550 : LDeferredCode(codegen, x87_stack), instr_(instr), object_(object) { | |
5551 SetExit(check_maps()); | |
5552 } | |
5553 void Generate() override { | |
5554 codegen()->DoDeferredInstanceMigration(instr_, object_); | |
5555 } | |
5556 Label* check_maps() { return &check_maps_; } | |
5557 LInstruction* instr() override { return instr_; } | |
5558 | |
5559 private: | |
5560 LCheckMaps* instr_; | |
5561 Label check_maps_; | |
5562 Register object_; | |
5563 }; | |
5564 | |
5565 if (instr->hydrogen()->IsStabilityCheck()) { | |
5566 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); | |
5567 for (int i = 0; i < maps->size(); ++i) { | |
5568 AddStabilityDependency(maps->at(i).handle()); | |
5569 } | |
5570 return; | |
5571 } | |
5572 | |
5573 LOperand* input = instr->value(); | |
5574 DCHECK(input->IsRegister()); | |
5575 Register reg = ToRegister(input); | |
5576 | |
5577 DeferredCheckMaps* deferred = NULL; | |
5578 if (instr->hydrogen()->HasMigrationTarget()) { | |
5579 deferred = new(zone()) DeferredCheckMaps(this, instr, reg, x87_stack_); | |
5580 __ bind(deferred->check_maps()); | |
5581 } | |
5582 | |
5583 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); | |
5584 Label success; | |
5585 for (int i = 0; i < maps->size() - 1; i++) { | |
5586 Handle<Map> map = maps->at(i).handle(); | |
5587 __ CompareMap(reg, map); | |
5588 __ j(equal, &success, Label::kNear); | |
5589 } | |
5590 | |
5591 Handle<Map> map = maps->at(maps->size() - 1).handle(); | |
5592 __ CompareMap(reg, map); | |
5593 if (instr->hydrogen()->HasMigrationTarget()) { | |
5594 __ j(not_equal, deferred->entry()); | |
5595 } else { | |
5596 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap); | |
5597 } | |
5598 | |
5599 __ bind(&success); | |
5600 } | |
5601 | |
5602 | |
5603 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { | |
5604 X87Register value_reg = ToX87Register(instr->unclamped()); | |
5605 Register result_reg = ToRegister(instr->result()); | |
5606 X87Fxch(value_reg); | |
5607 __ ClampTOSToUint8(result_reg); | |
5608 } | |
5609 | |
5610 | |
5611 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { | |
5612 DCHECK(instr->unclamped()->Equals(instr->result())); | |
5613 Register value_reg = ToRegister(instr->result()); | |
5614 __ ClampUint8(value_reg); | |
5615 } | |
5616 | |
5617 | |
5618 void LCodeGen::DoClampTToUint8NoSSE2(LClampTToUint8NoSSE2* instr) { | |
5619 Register input_reg = ToRegister(instr->unclamped()); | |
5620 Register result_reg = ToRegister(instr->result()); | |
5621 Register scratch = ToRegister(instr->scratch()); | |
5622 Register scratch2 = ToRegister(instr->scratch2()); | |
5623 Register scratch3 = ToRegister(instr->scratch3()); | |
5624 Label is_smi, done, heap_number, valid_exponent, | |
5625 largest_value, zero_result, maybe_nan_or_infinity; | |
5626 | |
5627 __ JumpIfSmi(input_reg, &is_smi); | |
5628 | |
5629 // Check for heap number | |
5630 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), | |
5631 factory()->heap_number_map()); | |
5632 __ j(equal, &heap_number, Label::kNear); | |
5633 | |
5634 // Check for undefined. Undefined is converted to zero for clamping | |
5635 // conversions. | |
5636 __ cmp(input_reg, factory()->undefined_value()); | |
5637 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined); | |
5638 __ jmp(&zero_result, Label::kNear); | |
5639 | |
5640 // Heap number | |
5641 __ bind(&heap_number); | |
5642 | |
5643 // Surprisingly, all of the hand-crafted bit-manipulations below are much | |
5644 // faster than the x86 FPU built-in instruction, especially since "banker's | |
5645 // rounding" would be additionally very expensive | |
5646 | |
5647 // Get exponent word. | |
5648 __ mov(scratch, FieldOperand(input_reg, HeapNumber::kExponentOffset)); | |
5649 __ mov(scratch3, FieldOperand(input_reg, HeapNumber::kMantissaOffset)); | |
5650 | |
5651 // Test for negative values --> clamp to zero | |
5652 __ test(scratch, scratch); | |
5653 __ j(negative, &zero_result, Label::kNear); | |
5654 | |
5655 // Get exponent alone in scratch2. | |
5656 __ mov(scratch2, scratch); | |
5657 __ and_(scratch2, HeapNumber::kExponentMask); | |
5658 __ shr(scratch2, HeapNumber::kExponentShift); | |
5659 __ j(zero, &zero_result, Label::kNear); | |
5660 __ sub(scratch2, Immediate(HeapNumber::kExponentBias - 1)); | |
5661 __ j(negative, &zero_result, Label::kNear); | |
5662 | |
5663 const uint32_t non_int8_exponent = 7; | |
5664 __ cmp(scratch2, Immediate(non_int8_exponent + 1)); | |
5665 // If the exponent is too big, check for special values. | |
5666 __ j(greater, &maybe_nan_or_infinity, Label::kNear); | |
5667 | |
5668 __ bind(&valid_exponent); | |
5669 // Exponent word in scratch, exponent in scratch2. We know that 0 <= exponent | |
5670 // < 7. The shift bias is the number of bits to shift the mantissa such that | |
5671 // with an exponent of 7 such the that top-most one is in bit 30, allowing | |
5672 // detection the rounding overflow of a 255.5 to 256 (bit 31 goes from 0 to | |
5673 // 1). | |
5674 int shift_bias = (30 - HeapNumber::kExponentShift) - 7 - 1; | |
5675 __ lea(result_reg, MemOperand(scratch2, shift_bias)); | |
5676 // Here result_reg (ecx) is the shift, scratch is the exponent word. Get the | |
5677 // top bits of the mantissa. | |
5678 __ and_(scratch, HeapNumber::kMantissaMask); | |
5679 // Put back the implicit 1 of the mantissa | |
5680 __ or_(scratch, 1 << HeapNumber::kExponentShift); | |
5681 // Shift up to round | |
5682 __ shl_cl(scratch); | |
5683 // Use "banker's rounding" to spec: If fractional part of number is 0.5, then | |
5684 // use the bit in the "ones" place and add it to the "halves" place, which has | |
5685 // the effect of rounding to even. | |
5686 __ mov(scratch2, scratch); | |
5687 const uint32_t one_half_bit_shift = 30 - sizeof(uint8_t) * 8; | |
5688 const uint32_t one_bit_shift = one_half_bit_shift + 1; | |
5689 __ and_(scratch2, Immediate((1 << one_bit_shift) - 1)); | |
5690 __ cmp(scratch2, Immediate(1 << one_half_bit_shift)); | |
5691 Label no_round; | |
5692 __ j(less, &no_round, Label::kNear); | |
5693 Label round_up; | |
5694 __ mov(scratch2, Immediate(1 << one_half_bit_shift)); | |
5695 __ j(greater, &round_up, Label::kNear); | |
5696 __ test(scratch3, scratch3); | |
5697 __ j(not_zero, &round_up, Label::kNear); | |
5698 __ mov(scratch2, scratch); | |
5699 __ and_(scratch2, Immediate(1 << one_bit_shift)); | |
5700 __ shr(scratch2, 1); | |
5701 __ bind(&round_up); | |
5702 __ add(scratch, scratch2); | |
5703 __ j(overflow, &largest_value, Label::kNear); | |
5704 __ bind(&no_round); | |
5705 __ shr(scratch, 23); | |
5706 __ mov(result_reg, scratch); | |
5707 __ jmp(&done, Label::kNear); | |
5708 | |
5709 __ bind(&maybe_nan_or_infinity); | |
5710 // Check for NaN/Infinity, all other values map to 255 | |
5711 __ cmp(scratch2, Immediate(HeapNumber::kInfinityOrNanExponent + 1)); | |
5712 __ j(not_equal, &largest_value, Label::kNear); | |
5713 | |
5714 // Check for NaN, which differs from Infinity in that at least one mantissa | |
5715 // bit is set. | |
5716 __ and_(scratch, HeapNumber::kMantissaMask); | |
5717 __ or_(scratch, FieldOperand(input_reg, HeapNumber::kMantissaOffset)); | |
5718 __ j(not_zero, &zero_result, Label::kNear); // M!=0 --> NaN | |
5719 // Infinity -> Fall through to map to 255. | |
5720 | |
5721 __ bind(&largest_value); | |
5722 __ mov(result_reg, Immediate(255)); | |
5723 __ jmp(&done, Label::kNear); | |
5724 | |
5725 __ bind(&zero_result); | |
5726 __ xor_(result_reg, result_reg); | |
5727 __ jmp(&done, Label::kNear); | |
5728 | |
5729 // smi | |
5730 __ bind(&is_smi); | |
5731 if (!input_reg.is(result_reg)) { | |
5732 __ mov(result_reg, input_reg); | |
5733 } | |
5734 __ SmiUntag(result_reg); | |
5735 __ ClampUint8(result_reg); | |
5736 __ bind(&done); | |
5737 } | |
5738 | |
5739 | |
5740 void LCodeGen::DoDoubleBits(LDoubleBits* instr) { | |
5741 X87Register value_reg = ToX87Register(instr->value()); | |
5742 Register result_reg = ToRegister(instr->result()); | |
5743 X87Fxch(value_reg); | |
5744 __ sub(esp, Immediate(kDoubleSize)); | |
5745 __ fst_d(Operand(esp, 0)); | |
5746 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) { | |
5747 __ mov(result_reg, Operand(esp, kPointerSize)); | |
5748 } else { | |
5749 __ mov(result_reg, Operand(esp, 0)); | |
5750 } | |
5751 __ add(esp, Immediate(kDoubleSize)); | |
5752 } | |
5753 | |
5754 | |
5755 void LCodeGen::DoConstructDouble(LConstructDouble* instr) { | |
5756 Register hi_reg = ToRegister(instr->hi()); | |
5757 Register lo_reg = ToRegister(instr->lo()); | |
5758 X87Register result_reg = ToX87Register(instr->result()); | |
5759 // Follow below pattern to write a x87 fp register. | |
5760 X87PrepareToWrite(result_reg); | |
5761 __ sub(esp, Immediate(kDoubleSize)); | |
5762 __ mov(Operand(esp, 0), lo_reg); | |
5763 __ mov(Operand(esp, kPointerSize), hi_reg); | |
5764 __ fld_d(Operand(esp, 0)); | |
5765 __ add(esp, Immediate(kDoubleSize)); | |
5766 X87CommitWrite(result_reg); | |
5767 } | |
5768 | |
5769 | |
5770 void LCodeGen::DoAllocate(LAllocate* instr) { | |
5771 class DeferredAllocate final : public LDeferredCode { | |
5772 public: | |
5773 DeferredAllocate(LCodeGen* codegen, | |
5774 LAllocate* instr, | |
5775 const X87Stack& x87_stack) | |
5776 : LDeferredCode(codegen, x87_stack), instr_(instr) { } | |
5777 void Generate() override { codegen()->DoDeferredAllocate(instr_); } | |
5778 LInstruction* instr() override { return instr_; } | |
5779 | |
5780 private: | |
5781 LAllocate* instr_; | |
5782 }; | |
5783 | |
5784 DeferredAllocate* deferred = | |
5785 new(zone()) DeferredAllocate(this, instr, x87_stack_); | |
5786 | |
5787 Register result = ToRegister(instr->result()); | |
5788 Register temp = ToRegister(instr->temp()); | |
5789 | |
5790 // Allocate memory for the object. | |
5791 AllocationFlags flags = TAG_OBJECT; | |
5792 if (instr->hydrogen()->MustAllocateDoubleAligned()) { | |
5793 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); | |
5794 } | |
5795 if (instr->hydrogen()->IsOldSpaceAllocation()) { | |
5796 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); | |
5797 flags = static_cast<AllocationFlags>(flags | PRETENURE); | |
5798 } | |
5799 | |
5800 if (instr->size()->IsConstantOperand()) { | |
5801 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | |
5802 CHECK(size <= Page::kMaxRegularHeapObjectSize); | |
5803 __ Allocate(size, result, temp, no_reg, deferred->entry(), flags); | |
5804 } else { | |
5805 Register size = ToRegister(instr->size()); | |
5806 __ Allocate(size, result, temp, no_reg, deferred->entry(), flags); | |
5807 } | |
5808 | |
5809 __ bind(deferred->exit()); | |
5810 | |
5811 if (instr->hydrogen()->MustPrefillWithFiller()) { | |
5812 if (instr->size()->IsConstantOperand()) { | |
5813 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | |
5814 __ mov(temp, (size / kPointerSize) - 1); | |
5815 } else { | |
5816 temp = ToRegister(instr->size()); | |
5817 __ shr(temp, kPointerSizeLog2); | |
5818 __ dec(temp); | |
5819 } | |
5820 Label loop; | |
5821 __ bind(&loop); | |
5822 __ mov(FieldOperand(result, temp, times_pointer_size, 0), | |
5823 isolate()->factory()->one_pointer_filler_map()); | |
5824 __ dec(temp); | |
5825 __ j(not_zero, &loop); | |
5826 } | |
5827 } | |
5828 | |
5829 | |
5830 void LCodeGen::DoDeferredAllocate(LAllocate* instr) { | |
5831 Register result = ToRegister(instr->result()); | |
5832 | |
5833 // TODO(3095996): Get rid of this. For now, we need to make the | |
5834 // result register contain a valid pointer because it is already | |
5835 // contained in the register pointer map. | |
5836 __ Move(result, Immediate(Smi::FromInt(0))); | |
5837 | |
5838 PushSafepointRegistersScope scope(this); | |
5839 if (instr->size()->IsRegister()) { | |
5840 Register size = ToRegister(instr->size()); | |
5841 DCHECK(!size.is(result)); | |
5842 __ SmiTag(ToRegister(instr->size())); | |
5843 __ push(size); | |
5844 } else { | |
5845 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | |
5846 if (size >= 0 && size <= Smi::kMaxValue) { | |
5847 __ push(Immediate(Smi::FromInt(size))); | |
5848 } else { | |
5849 // We should never get here at runtime => abort | |
5850 __ int3(); | |
5851 return; | |
5852 } | |
5853 } | |
5854 | |
5855 int flags = AllocateDoubleAlignFlag::encode( | |
5856 instr->hydrogen()->MustAllocateDoubleAligned()); | |
5857 if (instr->hydrogen()->IsOldSpaceAllocation()) { | |
5858 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); | |
5859 flags = AllocateTargetSpace::update(flags, OLD_SPACE); | |
5860 } else { | |
5861 flags = AllocateTargetSpace::update(flags, NEW_SPACE); | |
5862 } | |
5863 __ push(Immediate(Smi::FromInt(flags))); | |
5864 | |
5865 CallRuntimeFromDeferred( | |
5866 Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); | |
5867 __ StoreToSafepointRegisterSlot(result, eax); | |
5868 } | |
5869 | |
5870 | |
5871 void LCodeGen::DoToFastProperties(LToFastProperties* instr) { | |
5872 DCHECK(ToRegister(instr->value()).is(eax)); | |
5873 __ push(eax); | |
5874 CallRuntime(Runtime::kToFastProperties, 1, instr); | |
5875 } | |
5876 | |
5877 | |
5878 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { | |
5879 DCHECK(ToRegister(instr->context()).is(esi)); | |
5880 Label materialized; | |
5881 // Registers will be used as follows: | |
5882 // ecx = literals array. | |
5883 // ebx = regexp literal. | |
5884 // eax = regexp literal clone. | |
5885 // esi = context. | |
5886 int literal_offset = | |
5887 LiteralsArray::OffsetOfLiteralAt(instr->hydrogen()->literal_index()); | |
5888 __ LoadHeapObject(ecx, instr->hydrogen()->literals()); | |
5889 __ mov(ebx, FieldOperand(ecx, literal_offset)); | |
5890 __ cmp(ebx, factory()->undefined_value()); | |
5891 __ j(not_equal, &materialized, Label::kNear); | |
5892 | |
5893 // Create regexp literal using runtime function | |
5894 // Result will be in eax. | |
5895 __ push(ecx); | |
5896 __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index()))); | |
5897 __ push(Immediate(instr->hydrogen()->pattern())); | |
5898 __ push(Immediate(instr->hydrogen()->flags())); | |
5899 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); | |
5900 __ mov(ebx, eax); | |
5901 | |
5902 __ bind(&materialized); | |
5903 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; | |
5904 Label allocated, runtime_allocate; | |
5905 __ Allocate(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT); | |
5906 __ jmp(&allocated, Label::kNear); | |
5907 | |
5908 __ bind(&runtime_allocate); | |
5909 __ push(ebx); | |
5910 __ push(Immediate(Smi::FromInt(size))); | |
5911 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); | |
5912 __ pop(ebx); | |
5913 | |
5914 __ bind(&allocated); | |
5915 // Copy the content into the newly allocated memory. | |
5916 // (Unroll copy loop once for better throughput). | |
5917 for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { | |
5918 __ mov(edx, FieldOperand(ebx, i)); | |
5919 __ mov(ecx, FieldOperand(ebx, i + kPointerSize)); | |
5920 __ mov(FieldOperand(eax, i), edx); | |
5921 __ mov(FieldOperand(eax, i + kPointerSize), ecx); | |
5922 } | |
5923 if ((size % (2 * kPointerSize)) != 0) { | |
5924 __ mov(edx, FieldOperand(ebx, size - kPointerSize)); | |
5925 __ mov(FieldOperand(eax, size - kPointerSize), edx); | |
5926 } | |
5927 } | |
5928 | |
5929 | |
5930 void LCodeGen::DoTypeof(LTypeof* instr) { | |
5931 DCHECK(ToRegister(instr->context()).is(esi)); | |
5932 DCHECK(ToRegister(instr->value()).is(ebx)); | |
5933 Label end, do_call; | |
5934 Register value_register = ToRegister(instr->value()); | |
5935 __ JumpIfNotSmi(value_register, &do_call); | |
5936 __ mov(eax, Immediate(isolate()->factory()->number_string())); | |
5937 __ jmp(&end); | |
5938 __ bind(&do_call); | |
5939 TypeofStub stub(isolate()); | |
5940 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
5941 __ bind(&end); | |
5942 } | |
5943 | |
5944 | |
5945 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { | |
5946 Register input = ToRegister(instr->value()); | |
5947 Condition final_branch_condition = EmitTypeofIs(instr, input); | |
5948 if (final_branch_condition != no_condition) { | |
5949 EmitBranch(instr, final_branch_condition); | |
5950 } | |
5951 } | |
5952 | |
5953 | |
5954 Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) { | |
5955 Label* true_label = instr->TrueLabel(chunk_); | |
5956 Label* false_label = instr->FalseLabel(chunk_); | |
5957 Handle<String> type_name = instr->type_literal(); | |
5958 int left_block = instr->TrueDestination(chunk_); | |
5959 int right_block = instr->FalseDestination(chunk_); | |
5960 int next_block = GetNextEmittedBlock(); | |
5961 | |
5962 Label::Distance true_distance = left_block == next_block ? Label::kNear | |
5963 : Label::kFar; | |
5964 Label::Distance false_distance = right_block == next_block ? Label::kNear | |
5965 : Label::kFar; | |
5966 Condition final_branch_condition = no_condition; | |
5967 if (String::Equals(type_name, factory()->number_string())) { | |
5968 __ JumpIfSmi(input, true_label, true_distance); | |
5969 __ cmp(FieldOperand(input, HeapObject::kMapOffset), | |
5970 factory()->heap_number_map()); | |
5971 final_branch_condition = equal; | |
5972 | |
5973 } else if (String::Equals(type_name, factory()->string_string())) { | |
5974 __ JumpIfSmi(input, false_label, false_distance); | |
5975 __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input); | |
5976 final_branch_condition = below; | |
5977 | |
5978 } else if (String::Equals(type_name, factory()->symbol_string())) { | |
5979 __ JumpIfSmi(input, false_label, false_distance); | |
5980 __ CmpObjectType(input, SYMBOL_TYPE, input); | |
5981 final_branch_condition = equal; | |
5982 | |
5983 } else if (String::Equals(type_name, factory()->boolean_string())) { | |
5984 __ cmp(input, factory()->true_value()); | |
5985 __ j(equal, true_label, true_distance); | |
5986 __ cmp(input, factory()->false_value()); | |
5987 final_branch_condition = equal; | |
5988 | |
5989 } else if (String::Equals(type_name, factory()->undefined_string())) { | |
5990 __ cmp(input, factory()->undefined_value()); | |
5991 __ j(equal, true_label, true_distance); | |
5992 __ JumpIfSmi(input, false_label, false_distance); | |
5993 // Check for undetectable objects => true. | |
5994 __ mov(input, FieldOperand(input, HeapObject::kMapOffset)); | |
5995 __ test_b(FieldOperand(input, Map::kBitFieldOffset), | |
5996 1 << Map::kIsUndetectable); | |
5997 final_branch_condition = not_zero; | |
5998 | |
5999 } else if (String::Equals(type_name, factory()->function_string())) { | |
6000 __ JumpIfSmi(input, false_label, false_distance); | |
6001 // Check for callable and not undetectable objects => true. | |
6002 __ mov(input, FieldOperand(input, HeapObject::kMapOffset)); | |
6003 __ movzx_b(input, FieldOperand(input, Map::kBitFieldOffset)); | |
6004 __ and_(input, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); | |
6005 __ cmp(input, 1 << Map::kIsCallable); | |
6006 final_branch_condition = equal; | |
6007 | |
6008 } else if (String::Equals(type_name, factory()->object_string())) { | |
6009 __ JumpIfSmi(input, false_label, false_distance); | |
6010 __ cmp(input, factory()->null_value()); | |
6011 __ j(equal, true_label, true_distance); | |
6012 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); | |
6013 __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, input); | |
6014 __ j(below, false_label, false_distance); | |
6015 // Check for callable or undetectable objects => false. | |
6016 __ test_b(FieldOperand(input, Map::kBitFieldOffset), | |
6017 (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); | |
6018 final_branch_condition = zero; | |
6019 | |
6020 // clang-format off | |
6021 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ | |
6022 } else if (String::Equals(type_name, factory()->type##_string())) { \ | |
6023 __ JumpIfSmi(input, false_label, false_distance); \ | |
6024 __ cmp(FieldOperand(input, HeapObject::kMapOffset), \ | |
6025 factory()->type##_map()); \ | |
6026 final_branch_condition = equal; | |
6027 SIMD128_TYPES(SIMD128_TYPE) | |
6028 #undef SIMD128_TYPE | |
6029 // clang-format on | |
6030 | |
6031 } else { | |
6032 __ jmp(false_label, false_distance); | |
6033 } | |
6034 return final_branch_condition; | |
6035 } | |
6036 | |
6037 | |
6038 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { | |
6039 Register temp = ToRegister(instr->temp()); | |
6040 | |
6041 EmitIsConstructCall(temp); | |
6042 EmitBranch(instr, equal); | |
6043 } | |
6044 | |
6045 | |
6046 void LCodeGen::EmitIsConstructCall(Register temp) { | |
6047 // Get the frame pointer for the calling frame. | |
6048 __ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); | |
6049 | |
6050 // Skip the arguments adaptor frame if it exists. | |
6051 Label check_frame_marker; | |
6052 __ cmp(Operand(temp, StandardFrameConstants::kContextOffset), | |
6053 Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | |
6054 __ j(not_equal, &check_frame_marker, Label::kNear); | |
6055 __ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset)); | |
6056 | |
6057 // Check the marker in the calling frame. | |
6058 __ bind(&check_frame_marker); | |
6059 __ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset), | |
6060 Immediate(Smi::FromInt(StackFrame::CONSTRUCT))); | |
6061 } | |
6062 | |
6063 | |
6064 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { | |
6065 if (info()->ShouldEnsureSpaceForLazyDeopt()) { | |
6066 // Ensure that we have enough space after the previous lazy-bailout | |
6067 // instruction for patching the code here. | |
6068 int current_pc = masm()->pc_offset(); | |
6069 if (current_pc < last_lazy_deopt_pc_ + space_needed) { | |
6070 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; | |
6071 __ Nop(padding_size); | |
6072 } | |
6073 } | |
6074 last_lazy_deopt_pc_ = masm()->pc_offset(); | |
6075 } | |
6076 | |
6077 | |
6078 void LCodeGen::DoLazyBailout(LLazyBailout* instr) { | |
6079 last_lazy_deopt_pc_ = masm()->pc_offset(); | |
6080 DCHECK(instr->HasEnvironment()); | |
6081 LEnvironment* env = instr->environment(); | |
6082 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); | |
6083 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); | |
6084 } | |
6085 | |
6086 | |
6087 void LCodeGen::DoDeoptimize(LDeoptimize* instr) { | |
6088 Deoptimizer::BailoutType type = instr->hydrogen()->type(); | |
6089 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the | |
6090 // needed return address), even though the implementation of LAZY and EAGER is | |
6091 // now identical. When LAZY is eventually completely folded into EAGER, remove | |
6092 // the special case below. | |
6093 if (info()->IsStub() && type == Deoptimizer::EAGER) { | |
6094 type = Deoptimizer::LAZY; | |
6095 } | |
6096 DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type); | |
6097 } | |
6098 | |
6099 | |
6100 void LCodeGen::DoDummy(LDummy* instr) { | |
6101 // Nothing to see here, move on! | |
6102 } | |
6103 | |
6104 | |
6105 void LCodeGen::DoDummyUse(LDummyUse* instr) { | |
6106 // Nothing to see here, move on! | |
6107 } | |
6108 | |
6109 | |
6110 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { | |
6111 PushSafepointRegistersScope scope(this); | |
6112 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); | |
6113 __ CallRuntimeSaveDoubles(Runtime::kStackGuard); | |
6114 RecordSafepointWithLazyDeopt( | |
6115 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | |
6116 DCHECK(instr->HasEnvironment()); | |
6117 LEnvironment* env = instr->environment(); | |
6118 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); | |
6119 } | |
6120 | |
6121 | |
6122 void LCodeGen::DoStackCheck(LStackCheck* instr) { | |
6123 class DeferredStackCheck final : public LDeferredCode { | |
6124 public: | |
6125 DeferredStackCheck(LCodeGen* codegen, | |
6126 LStackCheck* instr, | |
6127 const X87Stack& x87_stack) | |
6128 : LDeferredCode(codegen, x87_stack), instr_(instr) { } | |
6129 void Generate() override { codegen()->DoDeferredStackCheck(instr_); } | |
6130 LInstruction* instr() override { return instr_; } | |
6131 | |
6132 private: | |
6133 LStackCheck* instr_; | |
6134 }; | |
6135 | |
6136 DCHECK(instr->HasEnvironment()); | |
6137 LEnvironment* env = instr->environment(); | |
6138 // There is no LLazyBailout instruction for stack-checks. We have to | |
6139 // prepare for lazy deoptimization explicitly here. | |
6140 if (instr->hydrogen()->is_function_entry()) { | |
6141 // Perform stack overflow check. | |
6142 Label done; | |
6143 ExternalReference stack_limit = | |
6144 ExternalReference::address_of_stack_limit(isolate()); | |
6145 __ cmp(esp, Operand::StaticVariable(stack_limit)); | |
6146 __ j(above_equal, &done, Label::kNear); | |
6147 | |
6148 DCHECK(instr->context()->IsRegister()); | |
6149 DCHECK(ToRegister(instr->context()).is(esi)); | |
6150 CallCode(isolate()->builtins()->StackCheck(), | |
6151 RelocInfo::CODE_TARGET, | |
6152 instr); | |
6153 __ bind(&done); | |
6154 } else { | |
6155 DCHECK(instr->hydrogen()->is_backwards_branch()); | |
6156 // Perform stack overflow check if this goto needs it before jumping. | |
6157 DeferredStackCheck* deferred_stack_check = | |
6158 new(zone()) DeferredStackCheck(this, instr, x87_stack_); | |
6159 ExternalReference stack_limit = | |
6160 ExternalReference::address_of_stack_limit(isolate()); | |
6161 __ cmp(esp, Operand::StaticVariable(stack_limit)); | |
6162 __ j(below, deferred_stack_check->entry()); | |
6163 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); | |
6164 __ bind(instr->done_label()); | |
6165 deferred_stack_check->SetExit(instr->done_label()); | |
6166 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); | |
6167 // Don't record a deoptimization index for the safepoint here. | |
6168 // This will be done explicitly when emitting call and the safepoint in | |
6169 // the deferred code. | |
6170 } | |
6171 } | |
6172 | |
6173 | |
6174 void LCodeGen::DoOsrEntry(LOsrEntry* instr) { | |
6175 // This is a pseudo-instruction that ensures that the environment here is | |
6176 // properly registered for deoptimization and records the assembler's PC | |
6177 // offset. | |
6178 LEnvironment* environment = instr->environment(); | |
6179 | |
6180 // If the environment were already registered, we would have no way of | |
6181 // backpatching it with the spill slot operands. | |
6182 DCHECK(!environment->HasBeenRegistered()); | |
6183 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); | |
6184 | |
6185 GenerateOsrPrologue(); | |
6186 } | |
6187 | |
6188 | |
6189 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { | |
6190 DCHECK(ToRegister(instr->context()).is(esi)); | |
6191 __ test(eax, Immediate(kSmiTagMask)); | |
6192 DeoptimizeIf(zero, instr, Deoptimizer::kSmi); | |
6193 | |
6194 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); | |
6195 __ CmpObjectType(eax, LAST_JS_PROXY_TYPE, ecx); | |
6196 DeoptimizeIf(below_equal, instr, Deoptimizer::kWrongInstanceType); | |
6197 | |
6198 Label use_cache, call_runtime; | |
6199 __ CheckEnumCache(&call_runtime); | |
6200 | |
6201 __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); | |
6202 __ jmp(&use_cache, Label::kNear); | |
6203 | |
6204 // Get the set of properties to enumerate. | |
6205 __ bind(&call_runtime); | |
6206 __ push(eax); | |
6207 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); | |
6208 | |
6209 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), | |
6210 isolate()->factory()->meta_map()); | |
6211 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap); | |
6212 __ bind(&use_cache); | |
6213 } | |
6214 | |
6215 | |
6216 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { | |
6217 Register map = ToRegister(instr->map()); | |
6218 Register result = ToRegister(instr->result()); | |
6219 Label load_cache, done; | |
6220 __ EnumLength(result, map); | |
6221 __ cmp(result, Immediate(Smi::FromInt(0))); | |
6222 __ j(not_equal, &load_cache, Label::kNear); | |
6223 __ mov(result, isolate()->factory()->empty_fixed_array()); | |
6224 __ jmp(&done, Label::kNear); | |
6225 | |
6226 __ bind(&load_cache); | |
6227 __ LoadInstanceDescriptors(map, result); | |
6228 __ mov(result, | |
6229 FieldOperand(result, DescriptorArray::kEnumCacheOffset)); | |
6230 __ mov(result, | |
6231 FieldOperand(result, FixedArray::SizeFor(instr->idx()))); | |
6232 __ bind(&done); | |
6233 __ test(result, result); | |
6234 DeoptimizeIf(equal, instr, Deoptimizer::kNoCache); | |
6235 } | |
6236 | |
6237 | |
6238 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { | |
6239 Register object = ToRegister(instr->value()); | |
6240 __ cmp(ToRegister(instr->map()), | |
6241 FieldOperand(object, HeapObject::kMapOffset)); | |
6242 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap); | |
6243 } | |
6244 | |
6245 | |
6246 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, | |
6247 Register object, | |
6248 Register index) { | |
6249 PushSafepointRegistersScope scope(this); | |
6250 __ push(object); | |
6251 __ push(index); | |
6252 __ xor_(esi, esi); | |
6253 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); | |
6254 RecordSafepointWithRegisters( | |
6255 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); | |
6256 __ StoreToSafepointRegisterSlot(object, eax); | |
6257 } | |
6258 | |
6259 | |
6260 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { | |
6261 class DeferredLoadMutableDouble final : public LDeferredCode { | |
6262 public: | |
6263 DeferredLoadMutableDouble(LCodeGen* codegen, | |
6264 LLoadFieldByIndex* instr, | |
6265 Register object, | |
6266 Register index, | |
6267 const X87Stack& x87_stack) | |
6268 : LDeferredCode(codegen, x87_stack), | |
6269 instr_(instr), | |
6270 object_(object), | |
6271 index_(index) { | |
6272 } | |
6273 void Generate() override { | |
6274 codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_); | |
6275 } | |
6276 LInstruction* instr() override { return instr_; } | |
6277 | |
6278 private: | |
6279 LLoadFieldByIndex* instr_; | |
6280 Register object_; | |
6281 Register index_; | |
6282 }; | |
6283 | |
6284 Register object = ToRegister(instr->object()); | |
6285 Register index = ToRegister(instr->index()); | |
6286 | |
6287 DeferredLoadMutableDouble* deferred; | |
6288 deferred = new(zone()) DeferredLoadMutableDouble( | |
6289 this, instr, object, index, x87_stack_); | |
6290 | |
6291 Label out_of_object, done; | |
6292 __ test(index, Immediate(Smi::FromInt(1))); | |
6293 __ j(not_zero, deferred->entry()); | |
6294 | |
6295 __ sar(index, 1); | |
6296 | |
6297 __ cmp(index, Immediate(0)); | |
6298 __ j(less, &out_of_object, Label::kNear); | |
6299 __ mov(object, FieldOperand(object, | |
6300 index, | |
6301 times_half_pointer_size, | |
6302 JSObject::kHeaderSize)); | |
6303 __ jmp(&done, Label::kNear); | |
6304 | |
6305 __ bind(&out_of_object); | |
6306 __ mov(object, FieldOperand(object, JSObject::kPropertiesOffset)); | |
6307 __ neg(index); | |
6308 // Index is now equal to out of object property index plus 1. | |
6309 __ mov(object, FieldOperand(object, | |
6310 index, | |
6311 times_half_pointer_size, | |
6312 FixedArray::kHeaderSize - kPointerSize)); | |
6313 __ bind(deferred->exit()); | |
6314 __ bind(&done); | |
6315 } | |
6316 | |
6317 | |
6318 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) { | |
6319 Register context = ToRegister(instr->context()); | |
6320 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), context); | |
6321 } | |
6322 | |
6323 | |
6324 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) { | |
6325 Handle<ScopeInfo> scope_info = instr->scope_info(); | |
6326 __ Push(scope_info); | |
6327 __ push(ToRegister(instr->function())); | |
6328 CallRuntime(Runtime::kPushBlockContext, 2, instr); | |
6329 RecordSafepoint(Safepoint::kNoLazyDeopt); | |
6330 } | |
6331 | |
6332 | |
6333 #undef __ | |
6334 | |
6335 } // namespace internal | |
6336 } // namespace v8 | |
6337 | |
6338 #endif // V8_TARGET_ARCH_X87 | |
OLD | NEW |