Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(384)

Side by Side Diff: src/mips64/lithium-codegen-mips64.cc

Issue 1405363003: Move Hydrogen and Lithium to src/crankshaft/ (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: rebased Created 5 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/mips64/lithium-codegen-mips64.h ('k') | src/mips64/lithium-gap-resolver-mips64.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/code-factory.h"
6 #include "src/code-stubs.h"
7 #include "src/hydrogen-osr.h"
8 #include "src/ic/ic.h"
9 #include "src/ic/stub-cache.h"
10 #include "src/mips64/lithium-codegen-mips64.h"
11 #include "src/mips64/lithium-gap-resolver-mips64.h"
12 #include "src/profiler/cpu-profiler.h"
13
14 namespace v8 {
15 namespace internal {
16
17
18 class SafepointGenerator final : public CallWrapper {
19 public:
20 SafepointGenerator(LCodeGen* codegen,
21 LPointerMap* pointers,
22 Safepoint::DeoptMode mode)
23 : codegen_(codegen),
24 pointers_(pointers),
25 deopt_mode_(mode) { }
26 virtual ~SafepointGenerator() {}
27
28 void BeforeCall(int call_size) const override {}
29
30 void AfterCall() const override {
31 codegen_->RecordSafepoint(pointers_, deopt_mode_);
32 }
33
34 private:
35 LCodeGen* codegen_;
36 LPointerMap* pointers_;
37 Safepoint::DeoptMode deopt_mode_;
38 };
39
40
41 #define __ masm()->
42
43 bool LCodeGen::GenerateCode() {
44 LPhase phase("Z_Code generation", chunk());
45 DCHECK(is_unused());
46 status_ = GENERATING;
47
48 // Open a frame scope to indicate that there is a frame on the stack. The
49 // NONE indicates that the scope shouldn't actually generate code to set up
50 // the frame (that is done in GeneratePrologue).
51 FrameScope frame_scope(masm_, StackFrame::NONE);
52
53 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
54 GenerateJumpTable() && GenerateSafepointTable();
55 }
56
57
58 void LCodeGen::FinishCode(Handle<Code> code) {
59 DCHECK(is_done());
60 code->set_stack_slots(GetStackSlotCount());
61 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
62 PopulateDeoptimizationData(code);
63 }
64
65
66 void LCodeGen::SaveCallerDoubles() {
67 DCHECK(info()->saves_caller_doubles());
68 DCHECK(NeedsEagerFrame());
69 Comment(";;; Save clobbered callee double registers");
70 int count = 0;
71 BitVector* doubles = chunk()->allocated_double_registers();
72 BitVector::Iterator save_iterator(doubles);
73 while (!save_iterator.Done()) {
74 __ sdc1(DoubleRegister::from_code(save_iterator.Current()),
75 MemOperand(sp, count * kDoubleSize));
76 save_iterator.Advance();
77 count++;
78 }
79 }
80
81
82 void LCodeGen::RestoreCallerDoubles() {
83 DCHECK(info()->saves_caller_doubles());
84 DCHECK(NeedsEagerFrame());
85 Comment(";;; Restore clobbered callee double registers");
86 BitVector* doubles = chunk()->allocated_double_registers();
87 BitVector::Iterator save_iterator(doubles);
88 int count = 0;
89 while (!save_iterator.Done()) {
90 __ ldc1(DoubleRegister::from_code(save_iterator.Current()),
91 MemOperand(sp, count * kDoubleSize));
92 save_iterator.Advance();
93 count++;
94 }
95 }
96
97
98 bool LCodeGen::GeneratePrologue() {
99 DCHECK(is_generating());
100
101 if (info()->IsOptimizing()) {
102 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
103
104 #ifdef DEBUG
105 if (strlen(FLAG_stop_at) > 0 &&
106 info_->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
107 __ stop("stop_at");
108 }
109 #endif
110
111 // a1: Callee's JS function.
112 // cp: Callee's context.
113 // fp: Caller's frame pointer.
114 // lr: Caller's pc.
115
116 // Sloppy mode functions and builtins need to replace the receiver with the
117 // global proxy when called as functions (without an explicit receiver
118 // object).
119 if (info()->MustReplaceUndefinedReceiverWithGlobalProxy()) {
120 Label ok;
121 int receiver_offset = info_->scope()->num_parameters() * kPointerSize;
122 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
123 __ ld(a2, MemOperand(sp, receiver_offset));
124 __ Branch(&ok, ne, a2, Operand(at));
125
126 __ ld(a2, GlobalObjectOperand());
127 __ ld(a2, FieldMemOperand(a2, GlobalObject::kGlobalProxyOffset));
128
129 __ sd(a2, MemOperand(sp, receiver_offset));
130
131 __ bind(&ok);
132 }
133 }
134
135 info()->set_prologue_offset(masm_->pc_offset());
136 if (NeedsEagerFrame()) {
137 if (info()->IsStub()) {
138 __ StubPrologue();
139 } else {
140 __ Prologue(info()->IsCodePreAgingActive());
141 }
142 frame_is_built_ = true;
143 }
144
145 // Reserve space for the stack slots needed by the code.
146 int slots = GetStackSlotCount();
147 if (slots > 0) {
148 if (FLAG_debug_code) {
149 __ Dsubu(sp, sp, Operand(slots * kPointerSize));
150 __ Push(a0, a1);
151 __ Daddu(a0, sp, Operand(slots * kPointerSize));
152 __ li(a1, Operand(kSlotsZapValue));
153 Label loop;
154 __ bind(&loop);
155 __ Dsubu(a0, a0, Operand(kPointerSize));
156 __ sd(a1, MemOperand(a0, 2 * kPointerSize));
157 __ Branch(&loop, ne, a0, Operand(sp));
158 __ Pop(a0, a1);
159 } else {
160 __ Dsubu(sp, sp, Operand(slots * kPointerSize));
161 }
162 }
163
164 if (info()->saves_caller_doubles()) {
165 SaveCallerDoubles();
166 }
167 return !is_aborted();
168 }
169
170
171 void LCodeGen::DoPrologue(LPrologue* instr) {
172 Comment(";;; Prologue begin");
173
174 // Possibly allocate a local context.
175 if (info()->scope()->num_heap_slots() > 0) {
176 Comment(";;; Allocate local context");
177 bool need_write_barrier = true;
178 // Argument to NewContext is the function, which is in a1.
179 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
180 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
181 if (info()->scope()->is_script_scope()) {
182 __ push(a1);
183 __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
184 __ CallRuntime(Runtime::kNewScriptContext, 2);
185 deopt_mode = Safepoint::kLazyDeopt;
186 } else if (slots <= FastNewContextStub::kMaximumSlots) {
187 FastNewContextStub stub(isolate(), slots);
188 __ CallStub(&stub);
189 // Result of FastNewContextStub is always in new space.
190 need_write_barrier = false;
191 } else {
192 __ push(a1);
193 __ CallRuntime(Runtime::kNewFunctionContext, 1);
194 }
195 RecordSafepoint(deopt_mode);
196
197 // Context is returned in both v0. It replaces the context passed to us.
198 // It's saved in the stack and kept live in cp.
199 __ mov(cp, v0);
200 __ sd(v0, MemOperand(fp, StandardFrameConstants::kContextOffset));
201 // Copy any necessary parameters into the context.
202 int num_parameters = scope()->num_parameters();
203 int first_parameter = scope()->has_this_declaration() ? -1 : 0;
204 for (int i = first_parameter; i < num_parameters; i++) {
205 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
206 if (var->IsContextSlot()) {
207 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
208 (num_parameters - 1 - i) * kPointerSize;
209 // Load parameter from stack.
210 __ ld(a0, MemOperand(fp, parameter_offset));
211 // Store it in the context.
212 MemOperand target = ContextOperand(cp, var->index());
213 __ sd(a0, target);
214 // Update the write barrier. This clobbers a3 and a0.
215 if (need_write_barrier) {
216 __ RecordWriteContextSlot(
217 cp, target.offset(), a0, a3, GetRAState(), kSaveFPRegs);
218 } else if (FLAG_debug_code) {
219 Label done;
220 __ JumpIfInNewSpace(cp, a0, &done);
221 __ Abort(kExpectedNewSpaceObject);
222 __ bind(&done);
223 }
224 }
225 }
226 Comment(";;; End allocate local context");
227 }
228
229 Comment(";;; Prologue end");
230 }
231
232
233 void LCodeGen::GenerateOsrPrologue() {
234 // Generate the OSR entry prologue at the first unknown OSR value, or if there
235 // are none, at the OSR entrypoint instruction.
236 if (osr_pc_offset_ >= 0) return;
237
238 osr_pc_offset_ = masm()->pc_offset();
239
240 // Adjust the frame size, subsuming the unoptimized frame into the
241 // optimized frame.
242 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
243 DCHECK(slots >= 0);
244 __ Dsubu(sp, sp, Operand(slots * kPointerSize));
245 }
246
247
248 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
249 if (instr->IsCall()) {
250 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
251 }
252 if (!instr->IsLazyBailout() && !instr->IsGap()) {
253 safepoints_.BumpLastLazySafepointIndex();
254 }
255 }
256
257
258 bool LCodeGen::GenerateDeferredCode() {
259 DCHECK(is_generating());
260 if (deferred_.length() > 0) {
261 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
262 LDeferredCode* code = deferred_[i];
263
264 HValue* value =
265 instructions_->at(code->instruction_index())->hydrogen_value();
266 RecordAndWritePosition(
267 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
268
269 Comment(";;; <@%d,#%d> "
270 "-------------------- Deferred %s --------------------",
271 code->instruction_index(),
272 code->instr()->hydrogen_value()->id(),
273 code->instr()->Mnemonic());
274 __ bind(code->entry());
275 if (NeedsDeferredFrame()) {
276 Comment(";;; Build frame");
277 DCHECK(!frame_is_built_);
278 DCHECK(info()->IsStub());
279 frame_is_built_ = true;
280 __ MultiPush(cp.bit() | fp.bit() | ra.bit());
281 __ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
282 __ push(scratch0());
283 __ Daddu(fp, sp,
284 Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
285 Comment(";;; Deferred code");
286 }
287 code->Generate();
288 if (NeedsDeferredFrame()) {
289 Comment(";;; Destroy frame");
290 DCHECK(frame_is_built_);
291 __ pop(at);
292 __ MultiPop(cp.bit() | fp.bit() | ra.bit());
293 frame_is_built_ = false;
294 }
295 __ jmp(code->exit());
296 }
297 }
298 // Deferred code is the last part of the instruction sequence. Mark
299 // the generated code as done unless we bailed out.
300 if (!is_aborted()) status_ = DONE;
301 return !is_aborted();
302 }
303
304
305 bool LCodeGen::GenerateJumpTable() {
306 if (jump_table_.length() > 0) {
307 Comment(";;; -------------------- Jump table --------------------");
308 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
309 Label table_start, call_deopt_entry;
310
311 __ bind(&table_start);
312 Label needs_frame;
313 Address base = jump_table_[0]->address;
314 for (int i = 0; i < jump_table_.length(); i++) {
315 Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
316 __ bind(&table_entry->label);
317 Address entry = table_entry->address;
318 DeoptComment(table_entry->deopt_info);
319
320 // Second-level deopt table entries are contiguous and small, so instead
321 // of loading the full, absolute address of each one, load the base
322 // address and add an immediate offset.
323 if (is_int16(entry - base)) {
324 if (table_entry->needs_frame) {
325 DCHECK(!info()->saves_caller_doubles());
326 Comment(";;; call deopt with frame");
327 __ MultiPush(cp.bit() | fp.bit() | ra.bit());
328 __ BranchAndLink(&needs_frame, USE_DELAY_SLOT);
329 __ li(t9, Operand(entry - base));
330 } else {
331 __ BranchAndLink(&call_deopt_entry, USE_DELAY_SLOT);
332 __ li(t9, Operand(entry - base));
333 }
334
335 } else {
336 __ li(t9, Operand(entry - base));
337 if (table_entry->needs_frame) {
338 DCHECK(!info()->saves_caller_doubles());
339 Comment(";;; call deopt with frame");
340 __ MultiPush(cp.bit() | fp.bit() | ra.bit());
341 __ BranchAndLink(&needs_frame);
342 } else {
343 __ BranchAndLink(&call_deopt_entry);
344 }
345 }
346 info()->LogDeoptCallPosition(masm()->pc_offset(),
347 table_entry->deopt_info.inlining_id);
348 }
349 if (needs_frame.is_linked()) {
350 __ bind(&needs_frame);
351 // This variant of deopt can only be used with stubs. Since we don't
352 // have a function pointer to install in the stack frame that we're
353 // building, install a special marker there instead.
354 DCHECK(info()->IsStub());
355 __ li(at, Operand(Smi::FromInt(StackFrame::STUB)));
356 __ push(at);
357 __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
358 }
359
360 Comment(";;; call deopt");
361 __ bind(&call_deopt_entry);
362
363 if (info()->saves_caller_doubles()) {
364 DCHECK(info()->IsStub());
365 RestoreCallerDoubles();
366 }
367
368 __ li(at,
369 Operand(reinterpret_cast<int64_t>(base), RelocInfo::RUNTIME_ENTRY));
370 __ Daddu(t9, t9, Operand(at));
371 __ Jump(t9);
372 }
373 // The deoptimization jump table is the last part of the instruction
374 // sequence. Mark the generated code as done unless we bailed out.
375 if (!is_aborted()) status_ = DONE;
376 return !is_aborted();
377 }
378
379
380 bool LCodeGen::GenerateSafepointTable() {
381 DCHECK(is_done());
382 safepoints_.Emit(masm(), GetStackSlotCount());
383 return !is_aborted();
384 }
385
386
387 Register LCodeGen::ToRegister(int index) const {
388 return Register::from_code(index);
389 }
390
391
392 DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
393 return DoubleRegister::from_code(index);
394 }
395
396
397 Register LCodeGen::ToRegister(LOperand* op) const {
398 DCHECK(op->IsRegister());
399 return ToRegister(op->index());
400 }
401
402
403 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
404 if (op->IsRegister()) {
405 return ToRegister(op->index());
406 } else if (op->IsConstantOperand()) {
407 LConstantOperand* const_op = LConstantOperand::cast(op);
408 HConstant* constant = chunk_->LookupConstant(const_op);
409 Handle<Object> literal = constant->handle(isolate());
410 Representation r = chunk_->LookupLiteralRepresentation(const_op);
411 if (r.IsInteger32()) {
412 AllowDeferredHandleDereference get_number;
413 DCHECK(literal->IsNumber());
414 __ li(scratch, Operand(static_cast<int32_t>(literal->Number())));
415 } else if (r.IsSmi()) {
416 DCHECK(constant->HasSmiValue());
417 __ li(scratch, Operand(Smi::FromInt(constant->Integer32Value())));
418 } else if (r.IsDouble()) {
419 Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
420 } else {
421 DCHECK(r.IsSmiOrTagged());
422 __ li(scratch, literal);
423 }
424 return scratch;
425 } else if (op->IsStackSlot()) {
426 __ ld(scratch, ToMemOperand(op));
427 return scratch;
428 }
429 UNREACHABLE();
430 return scratch;
431 }
432
433
434 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
435 DCHECK(op->IsDoubleRegister());
436 return ToDoubleRegister(op->index());
437 }
438
439
440 DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
441 FloatRegister flt_scratch,
442 DoubleRegister dbl_scratch) {
443 if (op->IsDoubleRegister()) {
444 return ToDoubleRegister(op->index());
445 } else if (op->IsConstantOperand()) {
446 LConstantOperand* const_op = LConstantOperand::cast(op);
447 HConstant* constant = chunk_->LookupConstant(const_op);
448 Handle<Object> literal = constant->handle(isolate());
449 Representation r = chunk_->LookupLiteralRepresentation(const_op);
450 if (r.IsInteger32()) {
451 DCHECK(literal->IsNumber());
452 __ li(at, Operand(static_cast<int32_t>(literal->Number())));
453 __ mtc1(at, flt_scratch);
454 __ cvt_d_w(dbl_scratch, flt_scratch);
455 return dbl_scratch;
456 } else if (r.IsDouble()) {
457 Abort(kUnsupportedDoubleImmediate);
458 } else if (r.IsTagged()) {
459 Abort(kUnsupportedTaggedImmediate);
460 }
461 } else if (op->IsStackSlot()) {
462 MemOperand mem_op = ToMemOperand(op);
463 __ ldc1(dbl_scratch, mem_op);
464 return dbl_scratch;
465 }
466 UNREACHABLE();
467 return dbl_scratch;
468 }
469
470
471 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
472 HConstant* constant = chunk_->LookupConstant(op);
473 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
474 return constant->handle(isolate());
475 }
476
477
478 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
479 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
480 }
481
482
483 bool LCodeGen::IsSmi(LConstantOperand* op) const {
484 return chunk_->LookupLiteralRepresentation(op).IsSmi();
485 }
486
487
488 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
489 // return ToRepresentation(op, Representation::Integer32());
490 HConstant* constant = chunk_->LookupConstant(op);
491 return constant->Integer32Value();
492 }
493
494
495 int64_t LCodeGen::ToRepresentation_donotuse(LConstantOperand* op,
496 const Representation& r) const {
497 HConstant* constant = chunk_->LookupConstant(op);
498 int32_t value = constant->Integer32Value();
499 if (r.IsInteger32()) return value;
500 DCHECK(r.IsSmiOrTagged());
501 return reinterpret_cast<int64_t>(Smi::FromInt(value));
502 }
503
504
505 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
506 HConstant* constant = chunk_->LookupConstant(op);
507 return Smi::FromInt(constant->Integer32Value());
508 }
509
510
511 double LCodeGen::ToDouble(LConstantOperand* op) const {
512 HConstant* constant = chunk_->LookupConstant(op);
513 DCHECK(constant->HasDoubleValue());
514 return constant->DoubleValue();
515 }
516
517
518 Operand LCodeGen::ToOperand(LOperand* op) {
519 if (op->IsConstantOperand()) {
520 LConstantOperand* const_op = LConstantOperand::cast(op);
521 HConstant* constant = chunk()->LookupConstant(const_op);
522 Representation r = chunk_->LookupLiteralRepresentation(const_op);
523 if (r.IsSmi()) {
524 DCHECK(constant->HasSmiValue());
525 return Operand(Smi::FromInt(constant->Integer32Value()));
526 } else if (r.IsInteger32()) {
527 DCHECK(constant->HasInteger32Value());
528 return Operand(constant->Integer32Value());
529 } else if (r.IsDouble()) {
530 Abort(kToOperandUnsupportedDoubleImmediate);
531 }
532 DCHECK(r.IsTagged());
533 return Operand(constant->handle(isolate()));
534 } else if (op->IsRegister()) {
535 return Operand(ToRegister(op));
536 } else if (op->IsDoubleRegister()) {
537 Abort(kToOperandIsDoubleRegisterUnimplemented);
538 return Operand((int64_t)0);
539 }
540 // Stack slots not implemented, use ToMemOperand instead.
541 UNREACHABLE();
542 return Operand((int64_t)0);
543 }
544
545
546 static int ArgumentsOffsetWithoutFrame(int index) {
547 DCHECK(index < 0);
548 return -(index + 1) * kPointerSize;
549 }
550
551
552 MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
553 DCHECK(!op->IsRegister());
554 DCHECK(!op->IsDoubleRegister());
555 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
556 if (NeedsEagerFrame()) {
557 return MemOperand(fp, StackSlotOffset(op->index()));
558 } else {
559 // Retrieve parameter without eager stack-frame relative to the
560 // stack-pointer.
561 return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
562 }
563 }
564
565
566 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
567 DCHECK(op->IsDoubleStackSlot());
568 if (NeedsEagerFrame()) {
569 // return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
570 return MemOperand(fp, StackSlotOffset(op->index()) + kIntSize);
571 } else {
572 // Retrieve parameter without eager stack-frame relative to the
573 // stack-pointer.
574 // return MemOperand(
575 // sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
576 return MemOperand(
577 sp, ArgumentsOffsetWithoutFrame(op->index()) + kIntSize);
578 }
579 }
580
581
582 void LCodeGen::WriteTranslation(LEnvironment* environment,
583 Translation* translation) {
584 if (environment == NULL) return;
585
586 // The translation includes one command per value in the environment.
587 int translation_size = environment->translation_size();
588
589 WriteTranslation(environment->outer(), translation);
590 WriteTranslationFrame(environment, translation);
591
592 int object_index = 0;
593 int dematerialized_index = 0;
594 for (int i = 0; i < translation_size; ++i) {
595 LOperand* value = environment->values()->at(i);
596 AddToTranslation(
597 environment, translation, value, environment->HasTaggedValueAt(i),
598 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
599 }
600 }
601
602
603 void LCodeGen::AddToTranslation(LEnvironment* environment,
604 Translation* translation,
605 LOperand* op,
606 bool is_tagged,
607 bool is_uint32,
608 int* object_index_pointer,
609 int* dematerialized_index_pointer) {
610 if (op == LEnvironment::materialization_marker()) {
611 int object_index = (*object_index_pointer)++;
612 if (environment->ObjectIsDuplicateAt(object_index)) {
613 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
614 translation->DuplicateObject(dupe_of);
615 return;
616 }
617 int object_length = environment->ObjectLengthAt(object_index);
618 if (environment->ObjectIsArgumentsAt(object_index)) {
619 translation->BeginArgumentsObject(object_length);
620 } else {
621 translation->BeginCapturedObject(object_length);
622 }
623 int dematerialized_index = *dematerialized_index_pointer;
624 int env_offset = environment->translation_size() + dematerialized_index;
625 *dematerialized_index_pointer += object_length;
626 for (int i = 0; i < object_length; ++i) {
627 LOperand* value = environment->values()->at(env_offset + i);
628 AddToTranslation(environment,
629 translation,
630 value,
631 environment->HasTaggedValueAt(env_offset + i),
632 environment->HasUint32ValueAt(env_offset + i),
633 object_index_pointer,
634 dematerialized_index_pointer);
635 }
636 return;
637 }
638
639 if (op->IsStackSlot()) {
640 int index = op->index();
641 if (index >= 0) {
642 index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
643 }
644 if (is_tagged) {
645 translation->StoreStackSlot(index);
646 } else if (is_uint32) {
647 translation->StoreUint32StackSlot(index);
648 } else {
649 translation->StoreInt32StackSlot(index);
650 }
651 } else if (op->IsDoubleStackSlot()) {
652 int index = op->index();
653 if (index >= 0) {
654 index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
655 }
656 translation->StoreDoubleStackSlot(index);
657 } else if (op->IsRegister()) {
658 Register reg = ToRegister(op);
659 if (is_tagged) {
660 translation->StoreRegister(reg);
661 } else if (is_uint32) {
662 translation->StoreUint32Register(reg);
663 } else {
664 translation->StoreInt32Register(reg);
665 }
666 } else if (op->IsDoubleRegister()) {
667 DoubleRegister reg = ToDoubleRegister(op);
668 translation->StoreDoubleRegister(reg);
669 } else if (op->IsConstantOperand()) {
670 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
671 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
672 translation->StoreLiteral(src_index);
673 } else {
674 UNREACHABLE();
675 }
676 }
677
678
679 void LCodeGen::CallCode(Handle<Code> code,
680 RelocInfo::Mode mode,
681 LInstruction* instr) {
682 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
683 }
684
685
686 void LCodeGen::CallCodeGeneric(Handle<Code> code,
687 RelocInfo::Mode mode,
688 LInstruction* instr,
689 SafepointMode safepoint_mode) {
690 DCHECK(instr != NULL);
691 __ Call(code, mode);
692 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
693 }
694
695
696 void LCodeGen::CallRuntime(const Runtime::Function* function,
697 int num_arguments,
698 LInstruction* instr,
699 SaveFPRegsMode save_doubles) {
700 DCHECK(instr != NULL);
701
702 __ CallRuntime(function, num_arguments, save_doubles);
703
704 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
705 }
706
707
708 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
709 if (context->IsRegister()) {
710 __ Move(cp, ToRegister(context));
711 } else if (context->IsStackSlot()) {
712 __ ld(cp, ToMemOperand(context));
713 } else if (context->IsConstantOperand()) {
714 HConstant* constant =
715 chunk_->LookupConstant(LConstantOperand::cast(context));
716 __ li(cp, Handle<Object>::cast(constant->handle(isolate())));
717 } else {
718 UNREACHABLE();
719 }
720 }
721
722
723 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
724 int argc,
725 LInstruction* instr,
726 LOperand* context) {
727 LoadContextFromDeferred(context);
728 __ CallRuntimeSaveDoubles(id);
729 RecordSafepointWithRegisters(
730 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
731 }
732
733
734 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
735 Safepoint::DeoptMode mode) {
736 environment->set_has_been_used();
737 if (!environment->HasBeenRegistered()) {
738 // Physical stack frame layout:
739 // -x ............. -4 0 ..................................... y
740 // [incoming arguments] [spill slots] [pushed outgoing arguments]
741
742 // Layout of the environment:
743 // 0 ..................................................... size-1
744 // [parameters] [locals] [expression stack including arguments]
745
746 // Layout of the translation:
747 // 0 ........................................................ size - 1 + 4
748 // [expression stack including arguments] [locals] [4 words] [parameters]
749 // |>------------ translation_size ------------<|
750
751 int frame_count = 0;
752 int jsframe_count = 0;
753 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
754 ++frame_count;
755 if (e->frame_type() == JS_FUNCTION) {
756 ++jsframe_count;
757 }
758 }
759 Translation translation(&translations_, frame_count, jsframe_count, zone());
760 WriteTranslation(environment, &translation);
761 int deoptimization_index = deoptimizations_.length();
762 int pc_offset = masm()->pc_offset();
763 environment->Register(deoptimization_index,
764 translation.index(),
765 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
766 deoptimizations_.Add(environment, zone());
767 }
768 }
769
770
771 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
772 Deoptimizer::DeoptReason deopt_reason,
773 Deoptimizer::BailoutType bailout_type,
774 Register src1, const Operand& src2) {
775 LEnvironment* environment = instr->environment();
776 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
777 DCHECK(environment->HasBeenRegistered());
778 int id = environment->deoptimization_index();
779 Address entry =
780 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
781 if (entry == NULL) {
782 Abort(kBailoutWasNotPrepared);
783 return;
784 }
785
786 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
787 Register scratch = scratch0();
788 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
789 Label no_deopt;
790 __ Push(a1, scratch);
791 __ li(scratch, Operand(count));
792 __ lw(a1, MemOperand(scratch));
793 __ Subu(a1, a1, Operand(1));
794 __ Branch(&no_deopt, ne, a1, Operand(zero_reg));
795 __ li(a1, Operand(FLAG_deopt_every_n_times));
796 __ sw(a1, MemOperand(scratch));
797 __ Pop(a1, scratch);
798
799 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
800 __ bind(&no_deopt);
801 __ sw(a1, MemOperand(scratch));
802 __ Pop(a1, scratch);
803 }
804
805 if (info()->ShouldTrapOnDeopt()) {
806 Label skip;
807 if (condition != al) {
808 __ Branch(&skip, NegateCondition(condition), src1, src2);
809 }
810 __ stop("trap_on_deopt");
811 __ bind(&skip);
812 }
813
814 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
815
816 DCHECK(info()->IsStub() || frame_is_built_);
817 // Go through jump table if we need to handle condition, build frame, or
818 // restore caller doubles.
819 if (condition == al && frame_is_built_ &&
820 !info()->saves_caller_doubles()) {
821 DeoptComment(deopt_info);
822 __ Call(entry, RelocInfo::RUNTIME_ENTRY, condition, src1, src2);
823 info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
824 } else {
825 Deoptimizer::JumpTableEntry* table_entry =
826 new (zone()) Deoptimizer::JumpTableEntry(
827 entry, deopt_info, bailout_type, !frame_is_built_);
828 // We often have several deopts to the same entry, reuse the last
829 // jump entry if this is the case.
830 if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
831 jump_table_.is_empty() ||
832 !table_entry->IsEquivalentTo(*jump_table_.last())) {
833 jump_table_.Add(table_entry, zone());
834 }
835 __ Branch(&jump_table_.last()->label, condition, src1, src2);
836 }
837 }
838
839
840 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
841 Deoptimizer::DeoptReason deopt_reason,
842 Register src1, const Operand& src2) {
843 Deoptimizer::BailoutType bailout_type = info()->IsStub()
844 ? Deoptimizer::LAZY
845 : Deoptimizer::EAGER;
846 DeoptimizeIf(condition, instr, deopt_reason, bailout_type, src1, src2);
847 }
848
849
850 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
851 int length = deoptimizations_.length();
852 if (length == 0) return;
853 Handle<DeoptimizationInputData> data =
854 DeoptimizationInputData::New(isolate(), length, TENURED);
855
856 Handle<ByteArray> translations =
857 translations_.CreateByteArray(isolate()->factory());
858 data->SetTranslationByteArray(*translations);
859 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
860 data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
861 if (info_->IsOptimizing()) {
862 // Reference to shared function info does not change between phases.
863 AllowDeferredHandleDereference allow_handle_dereference;
864 data->SetSharedFunctionInfo(*info_->shared_info());
865 } else {
866 data->SetSharedFunctionInfo(Smi::FromInt(0));
867 }
868 data->SetWeakCellCache(Smi::FromInt(0));
869
870 Handle<FixedArray> literals =
871 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
872 { AllowDeferredHandleDereference copy_handles;
873 for (int i = 0; i < deoptimization_literals_.length(); i++) {
874 literals->set(i, *deoptimization_literals_[i]);
875 }
876 data->SetLiteralArray(*literals);
877 }
878
879 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
880 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
881
882 // Populate the deoptimization entries.
883 for (int i = 0; i < length; i++) {
884 LEnvironment* env = deoptimizations_[i];
885 data->SetAstId(i, env->ast_id());
886 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
887 data->SetArgumentsStackHeight(i,
888 Smi::FromInt(env->arguments_stack_height()));
889 data->SetPc(i, Smi::FromInt(env->pc_offset()));
890 }
891 code->set_deoptimization_data(*data);
892 }
893
894
895 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
896 DCHECK_EQ(0, deoptimization_literals_.length());
897 for (auto function : chunk()->inlined_functions()) {
898 DefineDeoptimizationLiteral(function);
899 }
900 inlined_function_count_ = deoptimization_literals_.length();
901 }
902
903
904 void LCodeGen::RecordSafepointWithLazyDeopt(
905 LInstruction* instr, SafepointMode safepoint_mode) {
906 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
907 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
908 } else {
909 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
910 RecordSafepointWithRegisters(
911 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
912 }
913 }
914
915
916 void LCodeGen::RecordSafepoint(
917 LPointerMap* pointers,
918 Safepoint::Kind kind,
919 int arguments,
920 Safepoint::DeoptMode deopt_mode) {
921 DCHECK(expected_safepoint_kind_ == kind);
922
923 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
924 Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
925 kind, arguments, deopt_mode);
926 for (int i = 0; i < operands->length(); i++) {
927 LOperand* pointer = operands->at(i);
928 if (pointer->IsStackSlot()) {
929 safepoint.DefinePointerSlot(pointer->index(), zone());
930 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
931 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
932 }
933 }
934 }
935
936
937 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
938 Safepoint::DeoptMode deopt_mode) {
939 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
940 }
941
942
943 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
944 LPointerMap empty_pointers(zone());
945 RecordSafepoint(&empty_pointers, deopt_mode);
946 }
947
948
949 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
950 int arguments,
951 Safepoint::DeoptMode deopt_mode) {
952 RecordSafepoint(
953 pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
954 }
955
956
957 void LCodeGen::RecordAndWritePosition(int position) {
958 if (position == RelocInfo::kNoPosition) return;
959 masm()->positions_recorder()->RecordPosition(position);
960 masm()->positions_recorder()->WriteRecordedPositions();
961 }
962
963
964 static const char* LabelType(LLabel* label) {
965 if (label->is_loop_header()) return " (loop header)";
966 if (label->is_osr_entry()) return " (OSR entry)";
967 return "";
968 }
969
970
971 void LCodeGen::DoLabel(LLabel* label) {
972 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
973 current_instruction_,
974 label->hydrogen_value()->id(),
975 label->block_id(),
976 LabelType(label));
977 __ bind(label->label());
978 current_block_ = label->block_id();
979 DoGap(label);
980 }
981
982
983 void LCodeGen::DoParallelMove(LParallelMove* move) {
984 resolver_.Resolve(move);
985 }
986
987
988 void LCodeGen::DoGap(LGap* gap) {
989 for (int i = LGap::FIRST_INNER_POSITION;
990 i <= LGap::LAST_INNER_POSITION;
991 i++) {
992 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
993 LParallelMove* move = gap->GetParallelMove(inner_pos);
994 if (move != NULL) DoParallelMove(move);
995 }
996 }
997
998
999 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
1000 DoGap(instr);
1001 }
1002
1003
1004 void LCodeGen::DoParameter(LParameter* instr) {
1005 // Nothing to do.
1006 }
1007
1008
1009 void LCodeGen::DoCallStub(LCallStub* instr) {
1010 DCHECK(ToRegister(instr->context()).is(cp));
1011 DCHECK(ToRegister(instr->result()).is(v0));
1012 switch (instr->hydrogen()->major_key()) {
1013 case CodeStub::RegExpExec: {
1014 RegExpExecStub stub(isolate());
1015 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1016 break;
1017 }
1018 case CodeStub::SubString: {
1019 SubStringStub stub(isolate());
1020 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1021 break;
1022 }
1023 default:
1024 UNREACHABLE();
1025 }
1026 }
1027
1028
1029 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
1030 GenerateOsrPrologue();
1031 }
1032
1033
1034 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
1035 Register dividend = ToRegister(instr->dividend());
1036 int32_t divisor = instr->divisor();
1037 DCHECK(dividend.is(ToRegister(instr->result())));
1038
1039 // Theoretically, a variation of the branch-free code for integer division by
1040 // a power of 2 (calculating the remainder via an additional multiplication
1041 // (which gets simplified to an 'and') and subtraction) should be faster, and
1042 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
1043 // indicate that positive dividends are heavily favored, so the branching
1044 // version performs better.
1045 HMod* hmod = instr->hydrogen();
1046 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1047 Label dividend_is_not_negative, done;
1048
1049 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
1050 __ Branch(&dividend_is_not_negative, ge, dividend, Operand(zero_reg));
1051 // Note: The code below even works when right contains kMinInt.
1052 __ dsubu(dividend, zero_reg, dividend);
1053 __ And(dividend, dividend, Operand(mask));
1054 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1055 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
1056 Operand(zero_reg));
1057 }
1058 __ Branch(USE_DELAY_SLOT, &done);
1059 __ dsubu(dividend, zero_reg, dividend);
1060 }
1061
1062 __ bind(&dividend_is_not_negative);
1063 __ And(dividend, dividend, Operand(mask));
1064 __ bind(&done);
1065 }
1066
1067
1068 void LCodeGen::DoModByConstI(LModByConstI* instr) {
1069 Register dividend = ToRegister(instr->dividend());
1070 int32_t divisor = instr->divisor();
1071 Register result = ToRegister(instr->result());
1072 DCHECK(!dividend.is(result));
1073
1074 if (divisor == 0) {
1075 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1076 return;
1077 }
1078
1079 __ TruncatingDiv(result, dividend, Abs(divisor));
1080 __ Dmul(result, result, Operand(Abs(divisor)));
1081 __ Dsubu(result, dividend, Operand(result));
1082
1083 // Check for negative zero.
1084 HMod* hmod = instr->hydrogen();
1085 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1086 Label remainder_not_zero;
1087 __ Branch(&remainder_not_zero, ne, result, Operand(zero_reg));
1088 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, dividend,
1089 Operand(zero_reg));
1090 __ bind(&remainder_not_zero);
1091 }
1092 }
1093
1094
1095 void LCodeGen::DoModI(LModI* instr) {
1096 HMod* hmod = instr->hydrogen();
1097 const Register left_reg = ToRegister(instr->left());
1098 const Register right_reg = ToRegister(instr->right());
1099 const Register result_reg = ToRegister(instr->result());
1100
1101 // div runs in the background while we check for special cases.
1102 __ Dmod(result_reg, left_reg, right_reg);
1103
1104 Label done;
1105 // Check for x % 0, we have to deopt in this case because we can't return a
1106 // NaN.
1107 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1108 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero, right_reg,
1109 Operand(zero_reg));
1110 }
1111
1112 // Check for kMinInt % -1, div will return kMinInt, which is not what we
1113 // want. We have to deopt if we care about -0, because we can't return that.
1114 if (hmod->CheckFlag(HValue::kCanOverflow)) {
1115 Label no_overflow_possible;
1116 __ Branch(&no_overflow_possible, ne, left_reg, Operand(kMinInt));
1117 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1118 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, right_reg, Operand(-1));
1119 } else {
1120 __ Branch(&no_overflow_possible, ne, right_reg, Operand(-1));
1121 __ Branch(USE_DELAY_SLOT, &done);
1122 __ mov(result_reg, zero_reg);
1123 }
1124 __ bind(&no_overflow_possible);
1125 }
1126
1127 // If we care about -0, test if the dividend is <0 and the result is 0.
1128 __ Branch(&done, ge, left_reg, Operand(zero_reg));
1129
1130 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1131 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result_reg,
1132 Operand(zero_reg));
1133 }
1134 __ bind(&done);
1135 }
1136
1137
1138 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1139 Register dividend = ToRegister(instr->dividend());
1140 int32_t divisor = instr->divisor();
1141 Register result = ToRegister(instr->result());
1142 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1143 DCHECK(!result.is(dividend));
1144
1145 // Check for (0 / -x) that will produce negative zero.
1146 HDiv* hdiv = instr->hydrogen();
1147 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1148 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
1149 Operand(zero_reg));
1150 }
1151 // Check for (kMinInt / -1).
1152 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1153 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow, dividend, Operand(kMinInt));
1154 }
1155 // Deoptimize if remainder will not be 0.
1156 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1157 divisor != 1 && divisor != -1) {
1158 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1159 __ And(at, dividend, Operand(mask));
1160 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, at, Operand(zero_reg));
1161 }
1162
1163 if (divisor == -1) { // Nice shortcut, not needed for correctness.
1164 __ Dsubu(result, zero_reg, dividend);
1165 return;
1166 }
1167 uint16_t shift = WhichPowerOf2Abs(divisor);
1168 if (shift == 0) {
1169 __ Move(result, dividend);
1170 } else if (shift == 1) {
1171 __ dsrl32(result, dividend, 31);
1172 __ Daddu(result, dividend, Operand(result));
1173 } else {
1174 __ dsra32(result, dividend, 31);
1175 __ dsrl32(result, result, 32 - shift);
1176 __ Daddu(result, dividend, Operand(result));
1177 }
1178 if (shift > 0) __ dsra(result, result, shift);
1179 if (divisor < 0) __ Dsubu(result, zero_reg, result);
1180 }
1181
1182
1183 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1184 Register dividend = ToRegister(instr->dividend());
1185 int32_t divisor = instr->divisor();
1186 Register result = ToRegister(instr->result());
1187 DCHECK(!dividend.is(result));
1188
1189 if (divisor == 0) {
1190 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1191 return;
1192 }
1193
1194 // Check for (0 / -x) that will produce negative zero.
1195 HDiv* hdiv = instr->hydrogen();
1196 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1197 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
1198 Operand(zero_reg));
1199 }
1200
1201 __ TruncatingDiv(result, dividend, Abs(divisor));
1202 if (divisor < 0) __ Subu(result, zero_reg, result);
1203
1204 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1205 __ Dmul(scratch0(), result, Operand(divisor));
1206 __ Dsubu(scratch0(), scratch0(), dividend);
1207 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, scratch0(),
1208 Operand(zero_reg));
1209 }
1210 }
1211
1212
1213 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
1214 void LCodeGen::DoDivI(LDivI* instr) {
1215 HBinaryOperation* hdiv = instr->hydrogen();
1216 Register dividend = ToRegister(instr->dividend());
1217 Register divisor = ToRegister(instr->divisor());
1218 const Register result = ToRegister(instr->result());
1219
1220 // On MIPS div is asynchronous - it will run in the background while we
1221 // check for special cases.
1222 __ Div(result, dividend, divisor);
1223
1224 // Check for x / 0.
1225 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1226 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero, divisor,
1227 Operand(zero_reg));
1228 }
1229
1230 // Check for (0 / -x) that will produce negative zero.
1231 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1232 Label left_not_zero;
1233 __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
1234 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, divisor,
1235 Operand(zero_reg));
1236 __ bind(&left_not_zero);
1237 }
1238
1239 // Check for (kMinInt / -1).
1240 if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1241 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1242 Label left_not_min_int;
1243 __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
1244 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow, divisor, Operand(-1));
1245 __ bind(&left_not_min_int);
1246 }
1247
1248 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1249 // Calculate remainder.
1250 Register remainder = ToRegister(instr->temp());
1251 if (kArchVariant != kMips64r6) {
1252 __ mfhi(remainder);
1253 } else {
1254 __ dmod(remainder, dividend, divisor);
1255 }
1256 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, remainder,
1257 Operand(zero_reg));
1258 }
1259 }
1260
1261
1262 void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1263 DoubleRegister addend = ToDoubleRegister(instr->addend());
1264 DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1265 DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1266
1267 // This is computed in-place.
1268 DCHECK(addend.is(ToDoubleRegister(instr->result())));
1269
1270 __ Madd_d(addend, addend, multiplier, multiplicand, double_scratch0());
1271 }
1272
1273
1274 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1275 Register dividend = ToRegister(instr->dividend());
1276 Register result = ToRegister(instr->result());
1277 int32_t divisor = instr->divisor();
1278 Register scratch = result.is(dividend) ? scratch0() : dividend;
1279 DCHECK(!result.is(dividend) || !scratch.is(dividend));
1280
1281 // If the divisor is 1, return the dividend.
1282 if (divisor == 1) {
1283 __ Move(result, dividend);
1284 return;
1285 }
1286
1287 // If the divisor is positive, things are easy: There can be no deopts and we
1288 // can simply do an arithmetic right shift.
1289 uint16_t shift = WhichPowerOf2Abs(divisor);
1290 if (divisor > 1) {
1291 __ dsra(result, dividend, shift);
1292 return;
1293 }
1294
1295 // If the divisor is negative, we have to negate and handle edge cases.
1296 // Dividend can be the same register as result so save the value of it
1297 // for checking overflow.
1298 __ Move(scratch, dividend);
1299
1300 __ Dsubu(result, zero_reg, dividend);
1301 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1302 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result, Operand(zero_reg));
1303 }
1304
1305 __ Xor(scratch, scratch, result);
1306 // Dividing by -1 is basically negation, unless we overflow.
1307 if (divisor == -1) {
1308 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1309 DeoptimizeIf(gt, instr, Deoptimizer::kOverflow, result, Operand(kMaxInt));
1310 }
1311 return;
1312 }
1313
1314 // If the negation could not overflow, simply shifting is OK.
1315 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1316 __ dsra(result, result, shift);
1317 return;
1318 }
1319
1320 Label no_overflow, done;
1321 __ Branch(&no_overflow, lt, scratch, Operand(zero_reg));
1322 __ li(result, Operand(kMinInt / divisor), CONSTANT_SIZE);
1323 __ Branch(&done);
1324 __ bind(&no_overflow);
1325 __ dsra(result, result, shift);
1326 __ bind(&done);
1327 }
1328
1329
1330 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1331 Register dividend = ToRegister(instr->dividend());
1332 int32_t divisor = instr->divisor();
1333 Register result = ToRegister(instr->result());
1334 DCHECK(!dividend.is(result));
1335
1336 if (divisor == 0) {
1337 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1338 return;
1339 }
1340
1341 // Check for (0 / -x) that will produce negative zero.
1342 HMathFloorOfDiv* hdiv = instr->hydrogen();
1343 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1344 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
1345 Operand(zero_reg));
1346 }
1347
1348 // Easy case: We need no dynamic check for the dividend and the flooring
1349 // division is the same as the truncating division.
1350 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1351 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1352 __ TruncatingDiv(result, dividend, Abs(divisor));
1353 if (divisor < 0) __ Dsubu(result, zero_reg, result);
1354 return;
1355 }
1356
1357 // In the general case we may need to adjust before and after the truncating
1358 // division to get a flooring division.
1359 Register temp = ToRegister(instr->temp());
1360 DCHECK(!temp.is(dividend) && !temp.is(result));
1361 Label needs_adjustment, done;
1362 __ Branch(&needs_adjustment, divisor > 0 ? lt : gt,
1363 dividend, Operand(zero_reg));
1364 __ TruncatingDiv(result, dividend, Abs(divisor));
1365 if (divisor < 0) __ Dsubu(result, zero_reg, result);
1366 __ jmp(&done);
1367 __ bind(&needs_adjustment);
1368 __ Daddu(temp, dividend, Operand(divisor > 0 ? 1 : -1));
1369 __ TruncatingDiv(result, temp, Abs(divisor));
1370 if (divisor < 0) __ Dsubu(result, zero_reg, result);
1371 __ Dsubu(result, result, Operand(1));
1372 __ bind(&done);
1373 }
1374
1375
1376 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
1377 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1378 HBinaryOperation* hdiv = instr->hydrogen();
1379 Register dividend = ToRegister(instr->dividend());
1380 Register divisor = ToRegister(instr->divisor());
1381 const Register result = ToRegister(instr->result());
1382
1383 // On MIPS div is asynchronous - it will run in the background while we
1384 // check for special cases.
1385 __ Ddiv(result, dividend, divisor);
1386
1387 // Check for x / 0.
1388 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1389 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero, divisor,
1390 Operand(zero_reg));
1391 }
1392
1393 // Check for (0 / -x) that will produce negative zero.
1394 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1395 Label left_not_zero;
1396 __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
1397 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, divisor,
1398 Operand(zero_reg));
1399 __ bind(&left_not_zero);
1400 }
1401
1402 // Check for (kMinInt / -1).
1403 if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1404 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1405 Label left_not_min_int;
1406 __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
1407 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow, divisor, Operand(-1));
1408 __ bind(&left_not_min_int);
1409 }
1410
1411 // We performed a truncating division. Correct the result if necessary.
1412 Label done;
1413 Register remainder = scratch0();
1414 if (kArchVariant != kMips64r6) {
1415 __ mfhi(remainder);
1416 } else {
1417 __ dmod(remainder, dividend, divisor);
1418 }
1419 __ Branch(&done, eq, remainder, Operand(zero_reg), USE_DELAY_SLOT);
1420 __ Xor(remainder, remainder, Operand(divisor));
1421 __ Branch(&done, ge, remainder, Operand(zero_reg));
1422 __ Dsubu(result, result, Operand(1));
1423 __ bind(&done);
1424 }
1425
1426
1427 void LCodeGen::DoMulS(LMulS* instr) {
1428 Register scratch = scratch0();
1429 Register result = ToRegister(instr->result());
1430 // Note that result may alias left.
1431 Register left = ToRegister(instr->left());
1432 LOperand* right_op = instr->right();
1433
1434 bool bailout_on_minus_zero =
1435 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1436 bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1437
1438 if (right_op->IsConstantOperand()) {
1439 int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1440
1441 if (bailout_on_minus_zero && (constant < 0)) {
1442 // The case of a null constant will be handled separately.
1443 // If constant is negative and left is null, the result should be -0.
1444 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, left, Operand(zero_reg));
1445 }
1446
1447 switch (constant) {
1448 case -1:
1449 if (overflow) {
1450 __ DsubuAndCheckForOverflow(result, zero_reg, left, scratch);
1451 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, scratch,
1452 Operand(zero_reg));
1453 } else {
1454 __ Dsubu(result, zero_reg, left);
1455 }
1456 break;
1457 case 0:
1458 if (bailout_on_minus_zero) {
1459 // If left is strictly negative and the constant is null, the
1460 // result is -0. Deoptimize if required, otherwise return 0.
1461 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, left,
1462 Operand(zero_reg));
1463 }
1464 __ mov(result, zero_reg);
1465 break;
1466 case 1:
1467 // Nothing to do.
1468 __ Move(result, left);
1469 break;
1470 default:
1471 // Multiplying by powers of two and powers of two plus or minus
1472 // one can be done faster with shifted operands.
1473 // For other constants we emit standard code.
1474 int32_t mask = constant >> 31;
1475 uint32_t constant_abs = (constant + mask) ^ mask;
1476
1477 if (base::bits::IsPowerOfTwo32(constant_abs)) {
1478 int32_t shift = WhichPowerOf2(constant_abs);
1479 __ dsll(result, left, shift);
1480 // Correct the sign of the result if the constant is negative.
1481 if (constant < 0) __ Dsubu(result, zero_reg, result);
1482 } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1483 int32_t shift = WhichPowerOf2(constant_abs - 1);
1484 __ dsll(scratch, left, shift);
1485 __ Daddu(result, scratch, left);
1486 // Correct the sign of the result if the constant is negative.
1487 if (constant < 0) __ Dsubu(result, zero_reg, result);
1488 } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1489 int32_t shift = WhichPowerOf2(constant_abs + 1);
1490 __ dsll(scratch, left, shift);
1491 __ Dsubu(result, scratch, left);
1492 // Correct the sign of the result if the constant is negative.
1493 if (constant < 0) __ Dsubu(result, zero_reg, result);
1494 } else {
1495 // Generate standard code.
1496 __ li(at, constant);
1497 __ Dmul(result, left, at);
1498 }
1499 }
1500 } else {
1501 DCHECK(right_op->IsRegister());
1502 Register right = ToRegister(right_op);
1503
1504 if (overflow) {
1505 // hi:lo = left * right.
1506 __ Dmulh(result, left, right);
1507 __ dsra32(scratch, result, 0);
1508 __ sra(at, result, 31);
1509 __ SmiTag(result);
1510 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, scratch, Operand(at));
1511 } else {
1512 __ SmiUntag(result, left);
1513 __ dmul(result, result, right);
1514 }
1515
1516 if (bailout_on_minus_zero) {
1517 Label done;
1518 __ Xor(at, left, right);
1519 __ Branch(&done, ge, at, Operand(zero_reg));
1520 // Bail out if the result is minus zero.
1521 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result,
1522 Operand(zero_reg));
1523 __ bind(&done);
1524 }
1525 }
1526 }
1527
1528
1529 void LCodeGen::DoMulI(LMulI* instr) {
1530 Register scratch = scratch0();
1531 Register result = ToRegister(instr->result());
1532 // Note that result may alias left.
1533 Register left = ToRegister(instr->left());
1534 LOperand* right_op = instr->right();
1535
1536 bool bailout_on_minus_zero =
1537 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1538 bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1539
1540 if (right_op->IsConstantOperand()) {
1541 int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1542
1543 if (bailout_on_minus_zero && (constant < 0)) {
1544 // The case of a null constant will be handled separately.
1545 // If constant is negative and left is null, the result should be -0.
1546 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, left, Operand(zero_reg));
1547 }
1548
1549 switch (constant) {
1550 case -1:
1551 if (overflow) {
1552 __ SubuAndCheckForOverflow(result, zero_reg, left, scratch);
1553 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, scratch,
1554 Operand(zero_reg));
1555 } else {
1556 __ Subu(result, zero_reg, left);
1557 }
1558 break;
1559 case 0:
1560 if (bailout_on_minus_zero) {
1561 // If left is strictly negative and the constant is null, the
1562 // result is -0. Deoptimize if required, otherwise return 0.
1563 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, left,
1564 Operand(zero_reg));
1565 }
1566 __ mov(result, zero_reg);
1567 break;
1568 case 1:
1569 // Nothing to do.
1570 __ Move(result, left);
1571 break;
1572 default:
1573 // Multiplying by powers of two and powers of two plus or minus
1574 // one can be done faster with shifted operands.
1575 // For other constants we emit standard code.
1576 int32_t mask = constant >> 31;
1577 uint32_t constant_abs = (constant + mask) ^ mask;
1578
1579 if (base::bits::IsPowerOfTwo32(constant_abs)) {
1580 int32_t shift = WhichPowerOf2(constant_abs);
1581 __ sll(result, left, shift);
1582 // Correct the sign of the result if the constant is negative.
1583 if (constant < 0) __ Subu(result, zero_reg, result);
1584 } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1585 int32_t shift = WhichPowerOf2(constant_abs - 1);
1586 __ sll(scratch, left, shift);
1587 __ addu(result, scratch, left);
1588 // Correct the sign of the result if the constant is negative.
1589 if (constant < 0) __ Subu(result, zero_reg, result);
1590 } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1591 int32_t shift = WhichPowerOf2(constant_abs + 1);
1592 __ sll(scratch, left, shift);
1593 __ Subu(result, scratch, left);
1594 // Correct the sign of the result if the constant is negative.
1595 if (constant < 0) __ Subu(result, zero_reg, result);
1596 } else {
1597 // Generate standard code.
1598 __ li(at, constant);
1599 __ Mul(result, left, at);
1600 }
1601 }
1602
1603 } else {
1604 DCHECK(right_op->IsRegister());
1605 Register right = ToRegister(right_op);
1606
1607 if (overflow) {
1608 // hi:lo = left * right.
1609 __ Dmul(result, left, right);
1610 __ dsra32(scratch, result, 0);
1611 __ sra(at, result, 31);
1612
1613 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, scratch, Operand(at));
1614 } else {
1615 __ mul(result, left, right);
1616 }
1617
1618 if (bailout_on_minus_zero) {
1619 Label done;
1620 __ Xor(at, left, right);
1621 __ Branch(&done, ge, at, Operand(zero_reg));
1622 // Bail out if the result is minus zero.
1623 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result,
1624 Operand(zero_reg));
1625 __ bind(&done);
1626 }
1627 }
1628 }
1629
1630
1631 void LCodeGen::DoBitI(LBitI* instr) {
1632 LOperand* left_op = instr->left();
1633 LOperand* right_op = instr->right();
1634 DCHECK(left_op->IsRegister());
1635 Register left = ToRegister(left_op);
1636 Register result = ToRegister(instr->result());
1637 Operand right(no_reg);
1638
1639 if (right_op->IsStackSlot()) {
1640 right = Operand(EmitLoadRegister(right_op, at));
1641 } else {
1642 DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
1643 right = ToOperand(right_op);
1644 }
1645
1646 switch (instr->op()) {
1647 case Token::BIT_AND:
1648 __ And(result, left, right);
1649 break;
1650 case Token::BIT_OR:
1651 __ Or(result, left, right);
1652 break;
1653 case Token::BIT_XOR:
1654 if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
1655 __ Nor(result, zero_reg, left);
1656 } else {
1657 __ Xor(result, left, right);
1658 }
1659 break;
1660 default:
1661 UNREACHABLE();
1662 break;
1663 }
1664 }
1665
1666
1667 void LCodeGen::DoShiftI(LShiftI* instr) {
1668 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1669 // result may alias either of them.
1670 LOperand* right_op = instr->right();
1671 Register left = ToRegister(instr->left());
1672 Register result = ToRegister(instr->result());
1673
1674 if (right_op->IsRegister()) {
1675 // No need to mask the right operand on MIPS, it is built into the variable
1676 // shift instructions.
1677 switch (instr->op()) {
1678 case Token::ROR:
1679 __ Ror(result, left, Operand(ToRegister(right_op)));
1680 break;
1681 case Token::SAR:
1682 __ srav(result, left, ToRegister(right_op));
1683 break;
1684 case Token::SHR:
1685 __ srlv(result, left, ToRegister(right_op));
1686 if (instr->can_deopt()) {
1687 // TODO(yy): (-1) >>> 0. anything else?
1688 DeoptimizeIf(lt, instr, Deoptimizer::kNegativeValue, result,
1689 Operand(zero_reg));
1690 DeoptimizeIf(gt, instr, Deoptimizer::kNegativeValue, result,
1691 Operand(kMaxInt));
1692 }
1693 break;
1694 case Token::SHL:
1695 __ sllv(result, left, ToRegister(right_op));
1696 break;
1697 default:
1698 UNREACHABLE();
1699 break;
1700 }
1701 } else {
1702 // Mask the right_op operand.
1703 int value = ToInteger32(LConstantOperand::cast(right_op));
1704 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1705 switch (instr->op()) {
1706 case Token::ROR:
1707 if (shift_count != 0) {
1708 __ Ror(result, left, Operand(shift_count));
1709 } else {
1710 __ Move(result, left);
1711 }
1712 break;
1713 case Token::SAR:
1714 if (shift_count != 0) {
1715 __ sra(result, left, shift_count);
1716 } else {
1717 __ Move(result, left);
1718 }
1719 break;
1720 case Token::SHR:
1721 if (shift_count != 0) {
1722 __ srl(result, left, shift_count);
1723 } else {
1724 if (instr->can_deopt()) {
1725 __ And(at, left, Operand(0x80000000));
1726 DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue, at,
1727 Operand(zero_reg));
1728 }
1729 __ Move(result, left);
1730 }
1731 break;
1732 case Token::SHL:
1733 if (shift_count != 0) {
1734 if (instr->hydrogen_value()->representation().IsSmi()) {
1735 __ dsll(result, left, shift_count);
1736 } else {
1737 __ sll(result, left, shift_count);
1738 }
1739 } else {
1740 __ Move(result, left);
1741 }
1742 break;
1743 default:
1744 UNREACHABLE();
1745 break;
1746 }
1747 }
1748 }
1749
1750
1751 void LCodeGen::DoSubS(LSubS* instr) {
1752 LOperand* left = instr->left();
1753 LOperand* right = instr->right();
1754 LOperand* result = instr->result();
1755 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1756
1757 if (!can_overflow) {
1758 DCHECK(right->IsRegister() || right->IsConstantOperand());
1759 __ Dsubu(ToRegister(result), ToRegister(left), ToOperand(right));
1760 } else { // can_overflow.
1761 Register overflow = scratch0();
1762 Register scratch = scratch1();
1763 DCHECK(right->IsRegister() || right->IsConstantOperand());
1764 __ DsubuAndCheckForOverflow(ToRegister(result), ToRegister(left),
1765 ToOperand(right), overflow, scratch);
1766 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, overflow,
1767 Operand(zero_reg));
1768 }
1769 }
1770
1771
1772 void LCodeGen::DoSubI(LSubI* instr) {
1773 LOperand* left = instr->left();
1774 LOperand* right = instr->right();
1775 LOperand* result = instr->result();
1776 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1777
1778 if (!can_overflow) {
1779 DCHECK(right->IsRegister() || right->IsConstantOperand());
1780 __ Subu(ToRegister(result), ToRegister(left), ToOperand(right));
1781 } else { // can_overflow.
1782 Register overflow = scratch0();
1783 Register scratch = scratch1();
1784 DCHECK(right->IsRegister() || right->IsConstantOperand());
1785 __ SubuAndCheckForOverflow(ToRegister(result), ToRegister(left),
1786 ToOperand(right), overflow, scratch);
1787 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, overflow,
1788 Operand(zero_reg));
1789 }
1790 }
1791
1792
1793 void LCodeGen::DoConstantI(LConstantI* instr) {
1794 __ li(ToRegister(instr->result()), Operand(instr->value()));
1795 }
1796
1797
1798 void LCodeGen::DoConstantS(LConstantS* instr) {
1799 __ li(ToRegister(instr->result()), Operand(instr->value()));
1800 }
1801
1802
1803 void LCodeGen::DoConstantD(LConstantD* instr) {
1804 DCHECK(instr->result()->IsDoubleRegister());
1805 DoubleRegister result = ToDoubleRegister(instr->result());
1806 double v = instr->value();
1807 __ Move(result, v);
1808 }
1809
1810
1811 void LCodeGen::DoConstantE(LConstantE* instr) {
1812 __ li(ToRegister(instr->result()), Operand(instr->value()));
1813 }
1814
1815
1816 void LCodeGen::DoConstantT(LConstantT* instr) {
1817 Handle<Object> object = instr->value(isolate());
1818 AllowDeferredHandleDereference smi_check;
1819 __ li(ToRegister(instr->result()), object);
1820 }
1821
1822
1823 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
1824 Register result = ToRegister(instr->result());
1825 Register map = ToRegister(instr->value());
1826 __ EnumLength(result, map);
1827 }
1828
1829
1830 void LCodeGen::DoDateField(LDateField* instr) {
1831 Register object = ToRegister(instr->date());
1832 Register result = ToRegister(instr->result());
1833 Register scratch = ToRegister(instr->temp());
1834 Smi* index = instr->index();
1835 DCHECK(object.is(a0));
1836 DCHECK(result.is(v0));
1837 DCHECK(!scratch.is(scratch0()));
1838 DCHECK(!scratch.is(object));
1839
1840 if (index->value() == 0) {
1841 __ ld(result, FieldMemOperand(object, JSDate::kValueOffset));
1842 } else {
1843 Label runtime, done;
1844 if (index->value() < JSDate::kFirstUncachedField) {
1845 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
1846 __ li(scratch, Operand(stamp));
1847 __ ld(scratch, MemOperand(scratch));
1848 __ ld(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
1849 __ Branch(&runtime, ne, scratch, Operand(scratch0()));
1850 __ ld(result, FieldMemOperand(object, JSDate::kValueOffset +
1851 kPointerSize * index->value()));
1852 __ jmp(&done);
1853 }
1854 __ bind(&runtime);
1855 __ PrepareCallCFunction(2, scratch);
1856 __ li(a1, Operand(index));
1857 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
1858 __ bind(&done);
1859 }
1860 }
1861
1862
1863 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
1864 LOperand* index,
1865 String::Encoding encoding) {
1866 if (index->IsConstantOperand()) {
1867 int offset = ToInteger32(LConstantOperand::cast(index));
1868 if (encoding == String::TWO_BYTE_ENCODING) {
1869 offset *= kUC16Size;
1870 }
1871 STATIC_ASSERT(kCharSize == 1);
1872 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
1873 }
1874 Register scratch = scratch0();
1875 DCHECK(!scratch.is(string));
1876 DCHECK(!scratch.is(ToRegister(index)));
1877 if (encoding == String::ONE_BYTE_ENCODING) {
1878 __ Daddu(scratch, string, ToRegister(index));
1879 } else {
1880 STATIC_ASSERT(kUC16Size == 2);
1881 __ dsll(scratch, ToRegister(index), 1);
1882 __ Daddu(scratch, string, scratch);
1883 }
1884 return FieldMemOperand(scratch, SeqString::kHeaderSize);
1885 }
1886
1887
1888 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1889 String::Encoding encoding = instr->hydrogen()->encoding();
1890 Register string = ToRegister(instr->string());
1891 Register result = ToRegister(instr->result());
1892
1893 if (FLAG_debug_code) {
1894 Register scratch = scratch0();
1895 __ ld(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
1896 __ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1897
1898 __ And(scratch, scratch,
1899 Operand(kStringRepresentationMask | kStringEncodingMask));
1900 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1901 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1902 __ Dsubu(at, scratch, Operand(encoding == String::ONE_BYTE_ENCODING
1903 ? one_byte_seq_type : two_byte_seq_type));
1904 __ Check(eq, kUnexpectedStringType, at, Operand(zero_reg));
1905 }
1906
1907 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1908 if (encoding == String::ONE_BYTE_ENCODING) {
1909 __ lbu(result, operand);
1910 } else {
1911 __ lhu(result, operand);
1912 }
1913 }
1914
1915
1916 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1917 String::Encoding encoding = instr->hydrogen()->encoding();
1918 Register string = ToRegister(instr->string());
1919 Register value = ToRegister(instr->value());
1920
1921 if (FLAG_debug_code) {
1922 Register scratch = scratch0();
1923 Register index = ToRegister(instr->index());
1924 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1925 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1926 int encoding_mask =
1927 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1928 ? one_byte_seq_type : two_byte_seq_type;
1929 __ EmitSeqStringSetCharCheck(string, index, value, scratch, encoding_mask);
1930 }
1931
1932 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1933 if (encoding == String::ONE_BYTE_ENCODING) {
1934 __ sb(value, operand);
1935 } else {
1936 __ sh(value, operand);
1937 }
1938 }
1939
1940
1941 void LCodeGen::DoAddE(LAddE* instr) {
1942 LOperand* result = instr->result();
1943 LOperand* left = instr->left();
1944 LOperand* right = instr->right();
1945
1946 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
1947 DCHECK(right->IsRegister() || right->IsConstantOperand());
1948 __ Daddu(ToRegister(result), ToRegister(left), ToOperand(right));
1949 }
1950
1951
1952 void LCodeGen::DoAddS(LAddS* instr) {
1953 LOperand* left = instr->left();
1954 LOperand* right = instr->right();
1955 LOperand* result = instr->result();
1956 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1957
1958 if (!can_overflow) {
1959 DCHECK(right->IsRegister() || right->IsConstantOperand());
1960 __ Daddu(ToRegister(result), ToRegister(left), ToOperand(right));
1961 } else { // can_overflow.
1962 Register overflow = scratch0();
1963 Register scratch = scratch1();
1964 DCHECK(right->IsRegister() || right->IsConstantOperand());
1965 __ DadduAndCheckForOverflow(ToRegister(result), ToRegister(left),
1966 ToOperand(right), overflow, scratch);
1967 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, overflow,
1968 Operand(zero_reg));
1969 }
1970 }
1971
1972
1973 void LCodeGen::DoAddI(LAddI* instr) {
1974 LOperand* left = instr->left();
1975 LOperand* right = instr->right();
1976 LOperand* result = instr->result();
1977 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1978
1979 if (!can_overflow) {
1980 DCHECK(right->IsRegister() || right->IsConstantOperand());
1981 __ Addu(ToRegister(result), ToRegister(left), ToOperand(right));
1982 } else { // can_overflow.
1983 Register overflow = scratch0();
1984 Register scratch = scratch1();
1985 DCHECK(right->IsRegister() || right->IsConstantOperand());
1986 __ AdduAndCheckForOverflow(ToRegister(result), ToRegister(left),
1987 ToOperand(right), overflow, scratch);
1988 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, overflow,
1989 Operand(zero_reg));
1990 }
1991 }
1992
1993
1994 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1995 LOperand* left = instr->left();
1996 LOperand* right = instr->right();
1997 HMathMinMax::Operation operation = instr->hydrogen()->operation();
1998 Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
1999 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
2000 Register left_reg = ToRegister(left);
2001 Register right_reg = EmitLoadRegister(right, scratch0());
2002 Register result_reg = ToRegister(instr->result());
2003 Label return_right, done;
2004 Register scratch = scratch1();
2005 __ Slt(scratch, left_reg, Operand(right_reg));
2006 if (condition == ge) {
2007 __ Movz(result_reg, left_reg, scratch);
2008 __ Movn(result_reg, right_reg, scratch);
2009 } else {
2010 DCHECK(condition == le);
2011 __ Movn(result_reg, left_reg, scratch);
2012 __ Movz(result_reg, right_reg, scratch);
2013 }
2014 } else {
2015 DCHECK(instr->hydrogen()->representation().IsDouble());
2016 FPURegister left_reg = ToDoubleRegister(left);
2017 FPURegister right_reg = ToDoubleRegister(right);
2018 FPURegister result_reg = ToDoubleRegister(instr->result());
2019 Label check_nan_left, check_zero, return_left, return_right, done;
2020 __ BranchF(&check_zero, &check_nan_left, eq, left_reg, right_reg);
2021 __ BranchF(&return_left, NULL, condition, left_reg, right_reg);
2022 __ Branch(&return_right);
2023
2024 __ bind(&check_zero);
2025 // left == right != 0.
2026 __ BranchF(&return_left, NULL, ne, left_reg, kDoubleRegZero);
2027 // At this point, both left and right are either 0 or -0.
2028 if (operation == HMathMinMax::kMathMin) {
2029 __ neg_d(left_reg, left_reg);
2030 __ sub_d(result_reg, left_reg, right_reg);
2031 __ neg_d(result_reg, result_reg);
2032 } else {
2033 __ add_d(result_reg, left_reg, right_reg);
2034 }
2035 __ Branch(&done);
2036
2037 __ bind(&check_nan_left);
2038 // left == NaN.
2039 __ BranchF(NULL, &return_left, eq, left_reg, left_reg);
2040 __ bind(&return_right);
2041 if (!right_reg.is(result_reg)) {
2042 __ mov_d(result_reg, right_reg);
2043 }
2044 __ Branch(&done);
2045
2046 __ bind(&return_left);
2047 if (!left_reg.is(result_reg)) {
2048 __ mov_d(result_reg, left_reg);
2049 }
2050 __ bind(&done);
2051 }
2052 }
2053
2054
2055 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
2056 DoubleRegister left = ToDoubleRegister(instr->left());
2057 DoubleRegister right = ToDoubleRegister(instr->right());
2058 DoubleRegister result = ToDoubleRegister(instr->result());
2059 switch (instr->op()) {
2060 case Token::ADD:
2061 __ add_d(result, left, right);
2062 break;
2063 case Token::SUB:
2064 __ sub_d(result, left, right);
2065 break;
2066 case Token::MUL:
2067 __ mul_d(result, left, right);
2068 break;
2069 case Token::DIV:
2070 __ div_d(result, left, right);
2071 break;
2072 case Token::MOD: {
2073 // Save a0-a3 on the stack.
2074 RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
2075 __ MultiPush(saved_regs);
2076
2077 __ PrepareCallCFunction(0, 2, scratch0());
2078 __ MovToFloatParameters(left, right);
2079 __ CallCFunction(
2080 ExternalReference::mod_two_doubles_operation(isolate()),
2081 0, 2);
2082 // Move the result in the double result register.
2083 __ MovFromFloatResult(result);
2084
2085 // Restore saved register.
2086 __ MultiPop(saved_regs);
2087 break;
2088 }
2089 default:
2090 UNREACHABLE();
2091 break;
2092 }
2093 }
2094
2095
2096 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
2097 DCHECK(ToRegister(instr->context()).is(cp));
2098 DCHECK(ToRegister(instr->left()).is(a1));
2099 DCHECK(ToRegister(instr->right()).is(a0));
2100 DCHECK(ToRegister(instr->result()).is(v0));
2101
2102 Handle<Code> code =
2103 CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code();
2104 CallCode(code, RelocInfo::CODE_TARGET, instr);
2105 // Other arch use a nop here, to signal that there is no inlined
2106 // patchable code. Mips does not need the nop, since our marker
2107 // instruction (andi zero_reg) will never be used in normal code.
2108 }
2109
2110
2111 template<class InstrType>
2112 void LCodeGen::EmitBranch(InstrType instr,
2113 Condition condition,
2114 Register src1,
2115 const Operand& src2) {
2116 int left_block = instr->TrueDestination(chunk_);
2117 int right_block = instr->FalseDestination(chunk_);
2118
2119 int next_block = GetNextEmittedBlock();
2120 if (right_block == left_block || condition == al) {
2121 EmitGoto(left_block);
2122 } else if (left_block == next_block) {
2123 __ Branch(chunk_->GetAssemblyLabel(right_block),
2124 NegateCondition(condition), src1, src2);
2125 } else if (right_block == next_block) {
2126 __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
2127 } else {
2128 __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
2129 __ Branch(chunk_->GetAssemblyLabel(right_block));
2130 }
2131 }
2132
2133
2134 template<class InstrType>
2135 void LCodeGen::EmitBranchF(InstrType instr,
2136 Condition condition,
2137 FPURegister src1,
2138 FPURegister src2) {
2139 int right_block = instr->FalseDestination(chunk_);
2140 int left_block = instr->TrueDestination(chunk_);
2141
2142 int next_block = GetNextEmittedBlock();
2143 if (right_block == left_block) {
2144 EmitGoto(left_block);
2145 } else if (left_block == next_block) {
2146 __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
2147 NegateFpuCondition(condition), src1, src2);
2148 } else if (right_block == next_block) {
2149 __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
2150 condition, src1, src2);
2151 } else {
2152 __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
2153 condition, src1, src2);
2154 __ Branch(chunk_->GetAssemblyLabel(right_block));
2155 }
2156 }
2157
2158
2159 template <class InstrType>
2160 void LCodeGen::EmitTrueBranch(InstrType instr, Condition condition,
2161 Register src1, const Operand& src2) {
2162 int true_block = instr->TrueDestination(chunk_);
2163 __ Branch(chunk_->GetAssemblyLabel(true_block), condition, src1, src2);
2164 }
2165
2166
2167 template <class InstrType>
2168 void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition,
2169 Register src1, const Operand& src2) {
2170 int false_block = instr->FalseDestination(chunk_);
2171 __ Branch(chunk_->GetAssemblyLabel(false_block), condition, src1, src2);
2172 }
2173
2174
2175 template<class InstrType>
2176 void LCodeGen::EmitFalseBranchF(InstrType instr,
2177 Condition condition,
2178 FPURegister src1,
2179 FPURegister src2) {
2180 int false_block = instr->FalseDestination(chunk_);
2181 __ BranchF(chunk_->GetAssemblyLabel(false_block), NULL,
2182 condition, src1, src2);
2183 }
2184
2185
2186 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
2187 __ stop("LDebugBreak");
2188 }
2189
2190
2191 void LCodeGen::DoBranch(LBranch* instr) {
2192 Representation r = instr->hydrogen()->value()->representation();
2193 if (r.IsInteger32() || r.IsSmi()) {
2194 DCHECK(!info()->IsStub());
2195 Register reg = ToRegister(instr->value());
2196 EmitBranch(instr, ne, reg, Operand(zero_reg));
2197 } else if (r.IsDouble()) {
2198 DCHECK(!info()->IsStub());
2199 DoubleRegister reg = ToDoubleRegister(instr->value());
2200 // Test the double value. Zero and NaN are false.
2201 EmitBranchF(instr, ogl, reg, kDoubleRegZero);
2202 } else {
2203 DCHECK(r.IsTagged());
2204 Register reg = ToRegister(instr->value());
2205 HType type = instr->hydrogen()->value()->type();
2206 if (type.IsBoolean()) {
2207 DCHECK(!info()->IsStub());
2208 __ LoadRoot(at, Heap::kTrueValueRootIndex);
2209 EmitBranch(instr, eq, reg, Operand(at));
2210 } else if (type.IsSmi()) {
2211 DCHECK(!info()->IsStub());
2212 EmitBranch(instr, ne, reg, Operand(zero_reg));
2213 } else if (type.IsJSArray()) {
2214 DCHECK(!info()->IsStub());
2215 EmitBranch(instr, al, zero_reg, Operand(zero_reg));
2216 } else if (type.IsHeapNumber()) {
2217 DCHECK(!info()->IsStub());
2218 DoubleRegister dbl_scratch = double_scratch0();
2219 __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2220 // Test the double value. Zero and NaN are false.
2221 EmitBranchF(instr, ogl, dbl_scratch, kDoubleRegZero);
2222 } else if (type.IsString()) {
2223 DCHECK(!info()->IsStub());
2224 __ ld(at, FieldMemOperand(reg, String::kLengthOffset));
2225 EmitBranch(instr, ne, at, Operand(zero_reg));
2226 } else {
2227 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
2228 // Avoid deopts in the case where we've never executed this path before.
2229 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
2230
2231 if (expected.Contains(ToBooleanStub::UNDEFINED)) {
2232 // undefined -> false.
2233 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2234 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
2235 }
2236 if (expected.Contains(ToBooleanStub::BOOLEAN)) {
2237 // Boolean -> its value.
2238 __ LoadRoot(at, Heap::kTrueValueRootIndex);
2239 __ Branch(instr->TrueLabel(chunk_), eq, reg, Operand(at));
2240 __ LoadRoot(at, Heap::kFalseValueRootIndex);
2241 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
2242 }
2243 if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
2244 // 'null' -> false.
2245 __ LoadRoot(at, Heap::kNullValueRootIndex);
2246 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
2247 }
2248
2249 if (expected.Contains(ToBooleanStub::SMI)) {
2250 // Smis: 0 -> false, all other -> true.
2251 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(zero_reg));
2252 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2253 } else if (expected.NeedsMap()) {
2254 // If we need a map later and have a Smi -> deopt.
2255 __ SmiTst(reg, at);
2256 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
2257 }
2258
2259 const Register map = scratch0();
2260 if (expected.NeedsMap()) {
2261 __ ld(map, FieldMemOperand(reg, HeapObject::kMapOffset));
2262 if (expected.CanBeUndetectable()) {
2263 // Undetectable -> false.
2264 __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
2265 __ And(at, at, Operand(1 << Map::kIsUndetectable));
2266 __ Branch(instr->FalseLabel(chunk_), ne, at, Operand(zero_reg));
2267 }
2268 }
2269
2270 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
2271 // spec object -> true.
2272 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
2273 __ Branch(instr->TrueLabel(chunk_),
2274 ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
2275 }
2276
2277 if (expected.Contains(ToBooleanStub::STRING)) {
2278 // String value -> false iff empty.
2279 Label not_string;
2280 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
2281 __ Branch(&not_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
2282 __ ld(at, FieldMemOperand(reg, String::kLengthOffset));
2283 __ Branch(instr->TrueLabel(chunk_), ne, at, Operand(zero_reg));
2284 __ Branch(instr->FalseLabel(chunk_));
2285 __ bind(&not_string);
2286 }
2287
2288 if (expected.Contains(ToBooleanStub::SYMBOL)) {
2289 // Symbol value -> true.
2290 const Register scratch = scratch1();
2291 __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
2292 __ Branch(instr->TrueLabel(chunk_), eq, scratch, Operand(SYMBOL_TYPE));
2293 }
2294
2295 if (expected.Contains(ToBooleanStub::SIMD_VALUE)) {
2296 // SIMD value -> true.
2297 const Register scratch = scratch1();
2298 __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
2299 __ Branch(instr->TrueLabel(chunk_), eq, scratch,
2300 Operand(SIMD128_VALUE_TYPE));
2301 }
2302
2303 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
2304 // heap number -> false iff +0, -0, or NaN.
2305 DoubleRegister dbl_scratch = double_scratch0();
2306 Label not_heap_number;
2307 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
2308 __ Branch(&not_heap_number, ne, map, Operand(at));
2309 __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2310 __ BranchF(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2311 ne, dbl_scratch, kDoubleRegZero);
2312 // Falls through if dbl_scratch == 0.
2313 __ Branch(instr->FalseLabel(chunk_));
2314 __ bind(&not_heap_number);
2315 }
2316
2317 if (!expected.IsGeneric()) {
2318 // We've seen something for the first time -> deopt.
2319 // This can only happen if we are not generic already.
2320 DeoptimizeIf(al, instr, Deoptimizer::kUnexpectedObject, zero_reg,
2321 Operand(zero_reg));
2322 }
2323 }
2324 }
2325 }
2326
2327
2328 void LCodeGen::EmitGoto(int block) {
2329 if (!IsNextEmittedBlock(block)) {
2330 __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
2331 }
2332 }
2333
2334
2335 void LCodeGen::DoGoto(LGoto* instr) {
2336 EmitGoto(instr->block_id());
2337 }
2338
2339
2340 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2341 Condition cond = kNoCondition;
2342 switch (op) {
2343 case Token::EQ:
2344 case Token::EQ_STRICT:
2345 cond = eq;
2346 break;
2347 case Token::NE:
2348 case Token::NE_STRICT:
2349 cond = ne;
2350 break;
2351 case Token::LT:
2352 cond = is_unsigned ? lo : lt;
2353 break;
2354 case Token::GT:
2355 cond = is_unsigned ? hi : gt;
2356 break;
2357 case Token::LTE:
2358 cond = is_unsigned ? ls : le;
2359 break;
2360 case Token::GTE:
2361 cond = is_unsigned ? hs : ge;
2362 break;
2363 case Token::IN:
2364 case Token::INSTANCEOF:
2365 default:
2366 UNREACHABLE();
2367 }
2368 return cond;
2369 }
2370
2371
2372 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2373 LOperand* left = instr->left();
2374 LOperand* right = instr->right();
2375 bool is_unsigned =
2376 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2377 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2378 Condition cond = TokenToCondition(instr->op(), is_unsigned);
2379
2380 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2381 // We can statically evaluate the comparison.
2382 double left_val = ToDouble(LConstantOperand::cast(left));
2383 double right_val = ToDouble(LConstantOperand::cast(right));
2384 int next_block = EvalComparison(instr->op(), left_val, right_val) ?
2385 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
2386 EmitGoto(next_block);
2387 } else {
2388 if (instr->is_double()) {
2389 // Compare left and right as doubles and load the
2390 // resulting flags into the normal status register.
2391 FPURegister left_reg = ToDoubleRegister(left);
2392 FPURegister right_reg = ToDoubleRegister(right);
2393
2394 // If a NaN is involved, i.e. the result is unordered,
2395 // jump to false block label.
2396 __ BranchF(NULL, instr->FalseLabel(chunk_), eq,
2397 left_reg, right_reg);
2398
2399 EmitBranchF(instr, cond, left_reg, right_reg);
2400 } else {
2401 Register cmp_left;
2402 Operand cmp_right = Operand((int64_t)0);
2403 if (right->IsConstantOperand()) {
2404 int32_t value = ToInteger32(LConstantOperand::cast(right));
2405 if (instr->hydrogen_value()->representation().IsSmi()) {
2406 cmp_left = ToRegister(left);
2407 cmp_right = Operand(Smi::FromInt(value));
2408 } else {
2409 cmp_left = ToRegister(left);
2410 cmp_right = Operand(value);
2411 }
2412 } else if (left->IsConstantOperand()) {
2413 int32_t value = ToInteger32(LConstantOperand::cast(left));
2414 if (instr->hydrogen_value()->representation().IsSmi()) {
2415 cmp_left = ToRegister(right);
2416 cmp_right = Operand(Smi::FromInt(value));
2417 } else {
2418 cmp_left = ToRegister(right);
2419 cmp_right = Operand(value);
2420 }
2421 // We commuted the operands, so commute the condition.
2422 cond = CommuteCondition(cond);
2423 } else {
2424 cmp_left = ToRegister(left);
2425 cmp_right = Operand(ToRegister(right));
2426 }
2427
2428 EmitBranch(instr, cond, cmp_left, cmp_right);
2429 }
2430 }
2431 }
2432
2433
2434 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2435 Register left = ToRegister(instr->left());
2436 Register right = ToRegister(instr->right());
2437
2438 EmitBranch(instr, eq, left, Operand(right));
2439 }
2440
2441
2442 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2443 if (instr->hydrogen()->representation().IsTagged()) {
2444 Register input_reg = ToRegister(instr->object());
2445 __ li(at, Operand(factory()->the_hole_value()));
2446 EmitBranch(instr, eq, input_reg, Operand(at));
2447 return;
2448 }
2449
2450 DoubleRegister input_reg = ToDoubleRegister(instr->object());
2451 EmitFalseBranchF(instr, eq, input_reg, input_reg);
2452
2453 Register scratch = scratch0();
2454 __ FmoveHigh(scratch, input_reg);
2455 EmitBranch(instr, eq, scratch,
2456 Operand(static_cast<int32_t>(kHoleNanUpper32)));
2457 }
2458
2459
2460 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2461 Representation rep = instr->hydrogen()->value()->representation();
2462 DCHECK(!rep.IsInteger32());
2463 Register scratch = ToRegister(instr->temp());
2464
2465 if (rep.IsDouble()) {
2466 DoubleRegister value = ToDoubleRegister(instr->value());
2467 EmitFalseBranchF(instr, ne, value, kDoubleRegZero);
2468 __ FmoveHigh(scratch, value);
2469 // Only use low 32-bits of value.
2470 __ dsll32(scratch, scratch, 0);
2471 __ dsrl32(scratch, scratch, 0);
2472 __ li(at, 0x80000000);
2473 } else {
2474 Register value = ToRegister(instr->value());
2475 __ CheckMap(value,
2476 scratch,
2477 Heap::kHeapNumberMapRootIndex,
2478 instr->FalseLabel(chunk()),
2479 DO_SMI_CHECK);
2480 __ lwu(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset));
2481 EmitFalseBranch(instr, ne, scratch, Operand(0x80000000));
2482 __ lwu(scratch, FieldMemOperand(value, HeapNumber::kMantissaOffset));
2483 __ mov(at, zero_reg);
2484 }
2485 EmitBranch(instr, eq, scratch, Operand(at));
2486 }
2487
2488
2489 Condition LCodeGen::EmitIsString(Register input,
2490 Register temp1,
2491 Label* is_not_string,
2492 SmiCheck check_needed = INLINE_SMI_CHECK) {
2493 if (check_needed == INLINE_SMI_CHECK) {
2494 __ JumpIfSmi(input, is_not_string);
2495 }
2496 __ GetObjectType(input, temp1, temp1);
2497
2498 return lt;
2499 }
2500
2501
2502 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2503 Register reg = ToRegister(instr->value());
2504 Register temp1 = ToRegister(instr->temp());
2505
2506 SmiCheck check_needed =
2507 instr->hydrogen()->value()->type().IsHeapObject()
2508 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2509 Condition true_cond =
2510 EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
2511
2512 EmitBranch(instr, true_cond, temp1,
2513 Operand(FIRST_NONSTRING_TYPE));
2514 }
2515
2516
2517 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2518 Register input_reg = EmitLoadRegister(instr->value(), at);
2519 __ And(at, input_reg, kSmiTagMask);
2520 EmitBranch(instr, eq, at, Operand(zero_reg));
2521 }
2522
2523
2524 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2525 Register input = ToRegister(instr->value());
2526 Register temp = ToRegister(instr->temp());
2527
2528 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2529 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2530 }
2531 __ ld(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2532 __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2533 __ And(at, temp, Operand(1 << Map::kIsUndetectable));
2534 EmitBranch(instr, ne, at, Operand(zero_reg));
2535 }
2536
2537
2538 static Condition ComputeCompareCondition(Token::Value op) {
2539 switch (op) {
2540 case Token::EQ_STRICT:
2541 case Token::EQ:
2542 return eq;
2543 case Token::LT:
2544 return lt;
2545 case Token::GT:
2546 return gt;
2547 case Token::LTE:
2548 return le;
2549 case Token::GTE:
2550 return ge;
2551 default:
2552 UNREACHABLE();
2553 return kNoCondition;
2554 }
2555 }
2556
2557
2558 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2559 DCHECK(ToRegister(instr->context()).is(cp));
2560 DCHECK(ToRegister(instr->left()).is(a1));
2561 DCHECK(ToRegister(instr->right()).is(a0));
2562
2563 Handle<Code> code = CodeFactory::StringCompare(isolate()).code();
2564 CallCode(code, RelocInfo::CODE_TARGET, instr);
2565
2566 EmitBranch(instr, ComputeCompareCondition(instr->op()), v0,
2567 Operand(zero_reg));
2568 }
2569
2570
2571 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2572 InstanceType from = instr->from();
2573 InstanceType to = instr->to();
2574 if (from == FIRST_TYPE) return to;
2575 DCHECK(from == to || to == LAST_TYPE);
2576 return from;
2577 }
2578
2579
2580 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2581 InstanceType from = instr->from();
2582 InstanceType to = instr->to();
2583 if (from == to) return eq;
2584 if (to == LAST_TYPE) return hs;
2585 if (from == FIRST_TYPE) return ls;
2586 UNREACHABLE();
2587 return eq;
2588 }
2589
2590
2591 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2592 Register scratch = scratch0();
2593 Register input = ToRegister(instr->value());
2594
2595 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2596 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2597 }
2598
2599 __ GetObjectType(input, scratch, scratch);
2600 EmitBranch(instr,
2601 BranchCondition(instr->hydrogen()),
2602 scratch,
2603 Operand(TestType(instr->hydrogen())));
2604 }
2605
2606
2607 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2608 Register input = ToRegister(instr->value());
2609 Register result = ToRegister(instr->result());
2610
2611 __ AssertString(input);
2612
2613 __ lwu(result, FieldMemOperand(input, String::kHashFieldOffset));
2614 __ IndexFromHash(result, result);
2615 }
2616
2617
2618 void LCodeGen::DoHasCachedArrayIndexAndBranch(
2619 LHasCachedArrayIndexAndBranch* instr) {
2620 Register input = ToRegister(instr->value());
2621 Register scratch = scratch0();
2622
2623 __ lwu(scratch,
2624 FieldMemOperand(input, String::kHashFieldOffset));
2625 __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask));
2626 EmitBranch(instr, eq, at, Operand(zero_reg));
2627 }
2628
2629
2630 // Branches to a label or falls through with the answer in flags. Trashes
2631 // the temp registers, but not the input.
2632 void LCodeGen::EmitClassOfTest(Label* is_true,
2633 Label* is_false,
2634 Handle<String>class_name,
2635 Register input,
2636 Register temp,
2637 Register temp2) {
2638 DCHECK(!input.is(temp));
2639 DCHECK(!input.is(temp2));
2640 DCHECK(!temp.is(temp2));
2641
2642 __ JumpIfSmi(input, is_false);
2643
2644 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2645 // Assuming the following assertions, we can use the same compares to test
2646 // for both being a function type and being in the object type range.
2647 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
2648 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2649 FIRST_SPEC_OBJECT_TYPE + 1);
2650 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2651 LAST_SPEC_OBJECT_TYPE - 1);
2652 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
2653
2654 __ GetObjectType(input, temp, temp2);
2655 __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
2656 __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
2657 __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE));
2658 } else {
2659 // Faster code path to avoid two compares: subtract lower bound from the
2660 // actual type and do a signed compare with the width of the type range.
2661 __ GetObjectType(input, temp, temp2);
2662 __ Dsubu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2663 __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
2664 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2665 }
2666
2667 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2668 // Check if the constructor in the map is a function.
2669 Register instance_type = scratch1();
2670 DCHECK(!instance_type.is(temp));
2671 __ GetMapConstructor(temp, temp, temp2, instance_type);
2672
2673 // Objects with a non-function constructor have class 'Object'.
2674 if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2675 __ Branch(is_true, ne, instance_type, Operand(JS_FUNCTION_TYPE));
2676 } else {
2677 __ Branch(is_false, ne, instance_type, Operand(JS_FUNCTION_TYPE));
2678 }
2679
2680 // temp now contains the constructor function. Grab the
2681 // instance class name from there.
2682 __ ld(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2683 __ ld(temp, FieldMemOperand(temp,
2684 SharedFunctionInfo::kInstanceClassNameOffset));
2685 // The class name we are testing against is internalized since it's a literal.
2686 // The name in the constructor is internalized because of the way the context
2687 // is booted. This routine isn't expected to work for random API-created
2688 // classes and it doesn't have to because you can't access it with natives
2689 // syntax. Since both sides are internalized it is sufficient to use an
2690 // identity comparison.
2691
2692 // End with the address of this class_name instance in temp register.
2693 // On MIPS, the caller must do the comparison with Handle<String>class_name.
2694 }
2695
2696
2697 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2698 Register input = ToRegister(instr->value());
2699 Register temp = scratch0();
2700 Register temp2 = ToRegister(instr->temp());
2701 Handle<String> class_name = instr->hydrogen()->class_name();
2702
2703 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2704 class_name, input, temp, temp2);
2705
2706 EmitBranch(instr, eq, temp, Operand(class_name));
2707 }
2708
2709
2710 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2711 Register reg = ToRegister(instr->value());
2712 Register temp = ToRegister(instr->temp());
2713
2714 __ ld(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2715 EmitBranch(instr, eq, temp, Operand(instr->map()));
2716 }
2717
2718
2719 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2720 DCHECK(ToRegister(instr->context()).is(cp));
2721 Label true_label, done;
2722 DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
2723 DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
2724 DCHECK(ToRegister(instr->result()).is(v0));
2725
2726 InstanceOfStub stub(isolate());
2727 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2728 }
2729
2730
2731 void LCodeGen::DoHasInPrototypeChainAndBranch(
2732 LHasInPrototypeChainAndBranch* instr) {
2733 Register const object = ToRegister(instr->object());
2734 Register const object_map = scratch0();
2735 Register const object_prototype = object_map;
2736 Register const prototype = ToRegister(instr->prototype());
2737
2738 // The {object} must be a spec object. It's sufficient to know that {object}
2739 // is not a smi, since all other non-spec objects have {null} prototypes and
2740 // will be ruled out below.
2741 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2742 __ SmiTst(object, at);
2743 EmitFalseBranch(instr, eq, at, Operand(zero_reg));
2744 }
2745
2746 // Loop through the {object}s prototype chain looking for the {prototype}.
2747 __ ld(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2748 Label loop;
2749 __ bind(&loop);
2750 __ ld(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
2751 EmitTrueBranch(instr, eq, object_prototype, Operand(prototype));
2752 __ LoadRoot(at, Heap::kNullValueRootIndex);
2753 EmitFalseBranch(instr, eq, object_prototype, Operand(at));
2754 __ Branch(&loop, USE_DELAY_SLOT);
2755 __ ld(object_map, FieldMemOperand(object_prototype,
2756 HeapObject::kMapOffset)); // In delay slot.
2757 }
2758
2759
2760 void LCodeGen::DoCmpT(LCmpT* instr) {
2761 DCHECK(ToRegister(instr->context()).is(cp));
2762 Token::Value op = instr->op();
2763
2764 Handle<Code> ic =
2765 CodeFactory::CompareIC(isolate(), op, instr->strength()).code();
2766 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2767 // On MIPS there is no need for a "no inlined smi code" marker (nop).
2768
2769 Condition condition = ComputeCompareCondition(op);
2770 // A minor optimization that relies on LoadRoot always emitting one
2771 // instruction.
2772 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
2773 Label done, check;
2774 __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
2775 __ bind(&check);
2776 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2777 DCHECK_EQ(1, masm()->InstructionsGeneratedSince(&check));
2778 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2779 __ bind(&done);
2780 }
2781
2782
2783 void LCodeGen::DoReturn(LReturn* instr) {
2784 if (FLAG_trace && info()->IsOptimizing()) {
2785 // Push the return value on the stack as the parameter.
2786 // Runtime::TraceExit returns its parameter in v0. We're leaving the code
2787 // managed by the register allocator and tearing down the frame, it's
2788 // safe to write to the context register.
2789 __ push(v0);
2790 __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2791 __ CallRuntime(Runtime::kTraceExit, 1);
2792 }
2793 if (info()->saves_caller_doubles()) {
2794 RestoreCallerDoubles();
2795 }
2796 if (NeedsEagerFrame()) {
2797 __ mov(sp, fp);
2798 __ Pop(ra, fp);
2799 }
2800 if (instr->has_constant_parameter_count()) {
2801 int parameter_count = ToInteger32(instr->constant_parameter_count());
2802 int32_t sp_delta = (parameter_count + 1) * kPointerSize;
2803 if (sp_delta != 0) {
2804 __ Daddu(sp, sp, Operand(sp_delta));
2805 }
2806 } else {
2807 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
2808 Register reg = ToRegister(instr->parameter_count());
2809 // The argument count parameter is a smi
2810 __ SmiUntag(reg);
2811 __ dsll(at, reg, kPointerSizeLog2);
2812 __ Daddu(sp, sp, at);
2813 }
2814
2815 __ Jump(ra);
2816 }
2817
2818
2819 template <class T>
2820 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
2821 Register vector_register = ToRegister(instr->temp_vector());
2822 Register slot_register = LoadWithVectorDescriptor::SlotRegister();
2823 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
2824 DCHECK(slot_register.is(a0));
2825
2826 AllowDeferredHandleDereference vector_structure_check;
2827 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2828 __ li(vector_register, vector);
2829 // No need to allocate this register.
2830 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2831 int index = vector->GetIndex(slot);
2832 __ li(slot_register, Operand(Smi::FromInt(index)));
2833 }
2834
2835
2836 template <class T>
2837 void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
2838 Register vector_register = ToRegister(instr->temp_vector());
2839 Register slot_register = ToRegister(instr->temp_slot());
2840
2841 AllowDeferredHandleDereference vector_structure_check;
2842 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2843 __ li(vector_register, vector);
2844 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2845 int index = vector->GetIndex(slot);
2846 __ li(slot_register, Operand(Smi::FromInt(index)));
2847 }
2848
2849
2850 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2851 DCHECK(ToRegister(instr->context()).is(cp));
2852 DCHECK(ToRegister(instr->global_object())
2853 .is(LoadDescriptor::ReceiverRegister()));
2854 DCHECK(ToRegister(instr->result()).is(v0));
2855
2856 __ li(LoadDescriptor::NameRegister(), Operand(instr->name()));
2857 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
2858 Handle<Code> ic =
2859 CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(),
2860 SLOPPY, PREMONOMORPHIC).code();
2861 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2862 }
2863
2864
2865 void LCodeGen::DoLoadGlobalViaContext(LLoadGlobalViaContext* instr) {
2866 DCHECK(ToRegister(instr->context()).is(cp));
2867 DCHECK(ToRegister(instr->result()).is(v0));
2868
2869 int const slot = instr->slot_index();
2870 int const depth = instr->depth();
2871 if (depth <= LoadGlobalViaContextStub::kMaximumDepth) {
2872 __ li(LoadGlobalViaContextDescriptor::SlotRegister(), Operand(slot));
2873 Handle<Code> stub =
2874 CodeFactory::LoadGlobalViaContext(isolate(), depth).code();
2875 CallCode(stub, RelocInfo::CODE_TARGET, instr);
2876 } else {
2877 __ Push(Smi::FromInt(slot));
2878 __ CallRuntime(Runtime::kLoadGlobalViaContext, 1);
2879 }
2880 }
2881
2882
2883 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2884 Register context = ToRegister(instr->context());
2885 Register result = ToRegister(instr->result());
2886
2887 __ ld(result, ContextOperand(context, instr->slot_index()));
2888 if (instr->hydrogen()->RequiresHoleCheck()) {
2889 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2890
2891 if (instr->hydrogen()->DeoptimizesOnHole()) {
2892 DeoptimizeIf(eq, instr, Deoptimizer::kHole, result, Operand(at));
2893 } else {
2894 Label is_not_hole;
2895 __ Branch(&is_not_hole, ne, result, Operand(at));
2896 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2897 __ bind(&is_not_hole);
2898 }
2899 }
2900 }
2901
2902
2903 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2904 Register context = ToRegister(instr->context());
2905 Register value = ToRegister(instr->value());
2906 Register scratch = scratch0();
2907 MemOperand target = ContextOperand(context, instr->slot_index());
2908
2909 Label skip_assignment;
2910
2911 if (instr->hydrogen()->RequiresHoleCheck()) {
2912 __ ld(scratch, target);
2913 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2914
2915 if (instr->hydrogen()->DeoptimizesOnHole()) {
2916 DeoptimizeIf(eq, instr, Deoptimizer::kHole, scratch, Operand(at));
2917 } else {
2918 __ Branch(&skip_assignment, ne, scratch, Operand(at));
2919 }
2920 }
2921
2922 __ sd(value, target);
2923 if (instr->hydrogen()->NeedsWriteBarrier()) {
2924 SmiCheck check_needed =
2925 instr->hydrogen()->value()->type().IsHeapObject()
2926 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2927 __ RecordWriteContextSlot(context,
2928 target.offset(),
2929 value,
2930 scratch0(),
2931 GetRAState(),
2932 kSaveFPRegs,
2933 EMIT_REMEMBERED_SET,
2934 check_needed);
2935 }
2936
2937 __ bind(&skip_assignment);
2938 }
2939
2940
2941 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2942 HObjectAccess access = instr->hydrogen()->access();
2943 int offset = access.offset();
2944 Register object = ToRegister(instr->object());
2945 if (access.IsExternalMemory()) {
2946 Register result = ToRegister(instr->result());
2947 MemOperand operand = MemOperand(object, offset);
2948 __ Load(result, operand, access.representation());
2949 return;
2950 }
2951
2952 if (instr->hydrogen()->representation().IsDouble()) {
2953 DoubleRegister result = ToDoubleRegister(instr->result());
2954 __ ldc1(result, FieldMemOperand(object, offset));
2955 return;
2956 }
2957
2958 Register result = ToRegister(instr->result());
2959 if (!access.IsInobject()) {
2960 __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2961 object = result;
2962 }
2963
2964 Representation representation = access.representation();
2965 if (representation.IsSmi() && SmiValuesAre32Bits() &&
2966 instr->hydrogen()->representation().IsInteger32()) {
2967 if (FLAG_debug_code) {
2968 // Verify this is really an Smi.
2969 Register scratch = scratch0();
2970 __ Load(scratch, FieldMemOperand(object, offset), representation);
2971 __ AssertSmi(scratch);
2972 }
2973
2974 // Read int value directly from upper half of the smi.
2975 STATIC_ASSERT(kSmiTag == 0);
2976 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
2977 offset = SmiWordOffset(offset);
2978 representation = Representation::Integer32();
2979 }
2980 __ Load(result, FieldMemOperand(object, offset), representation);
2981 }
2982
2983
2984 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2985 DCHECK(ToRegister(instr->context()).is(cp));
2986 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
2987 DCHECK(ToRegister(instr->result()).is(v0));
2988
2989 // Name is always in a2.
2990 __ li(LoadDescriptor::NameRegister(), Operand(instr->name()));
2991 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
2992 Handle<Code> ic =
2993 CodeFactory::LoadICInOptimizedCode(
2994 isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(),
2995 instr->hydrogen()->initialization_state()).code();
2996 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2997 }
2998
2999
3000 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
3001 Register scratch = scratch0();
3002 Register function = ToRegister(instr->function());
3003 Register result = ToRegister(instr->result());
3004
3005 // Get the prototype or initial map from the function.
3006 __ ld(result,
3007 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3008
3009 // Check that the function has a prototype or an initial map.
3010 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
3011 DeoptimizeIf(eq, instr, Deoptimizer::kHole, result, Operand(at));
3012
3013 // If the function does not have an initial map, we're done.
3014 Label done;
3015 __ GetObjectType(result, scratch, scratch);
3016 __ Branch(&done, ne, scratch, Operand(MAP_TYPE));
3017
3018 // Get the prototype from the initial map.
3019 __ ld(result, FieldMemOperand(result, Map::kPrototypeOffset));
3020
3021 // All done.
3022 __ bind(&done);
3023 }
3024
3025
3026 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3027 Register result = ToRegister(instr->result());
3028 __ LoadRoot(result, instr->index());
3029 }
3030
3031
3032 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
3033 Register arguments = ToRegister(instr->arguments());
3034 Register result = ToRegister(instr->result());
3035 // There are two words between the frame pointer and the last argument.
3036 // Subtracting from length accounts for one of them add one more.
3037 if (instr->length()->IsConstantOperand()) {
3038 int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
3039 if (instr->index()->IsConstantOperand()) {
3040 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3041 int index = (const_length - const_index) + 1;
3042 __ ld(result, MemOperand(arguments, index * kPointerSize));
3043 } else {
3044 Register index = ToRegister(instr->index());
3045 __ li(at, Operand(const_length + 1));
3046 __ Dsubu(result, at, index);
3047 __ dsll(at, result, kPointerSizeLog2);
3048 __ Daddu(at, arguments, at);
3049 __ ld(result, MemOperand(at));
3050 }
3051 } else if (instr->index()->IsConstantOperand()) {
3052 Register length = ToRegister(instr->length());
3053 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3054 int loc = const_index - 1;
3055 if (loc != 0) {
3056 __ Dsubu(result, length, Operand(loc));
3057 __ dsll(at, result, kPointerSizeLog2);
3058 __ Daddu(at, arguments, at);
3059 __ ld(result, MemOperand(at));
3060 } else {
3061 __ dsll(at, length, kPointerSizeLog2);
3062 __ Daddu(at, arguments, at);
3063 __ ld(result, MemOperand(at));
3064 }
3065 } else {
3066 Register length = ToRegister(instr->length());
3067 Register index = ToRegister(instr->index());
3068 __ Dsubu(result, length, index);
3069 __ Daddu(result, result, 1);
3070 __ dsll(at, result, kPointerSizeLog2);
3071 __ Daddu(at, arguments, at);
3072 __ ld(result, MemOperand(at));
3073 }
3074 }
3075
3076
3077 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
3078 Register external_pointer = ToRegister(instr->elements());
3079 Register key = no_reg;
3080 ElementsKind elements_kind = instr->elements_kind();
3081 bool key_is_constant = instr->key()->IsConstantOperand();
3082 int constant_key = 0;
3083 if (key_is_constant) {
3084 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3085 if (constant_key & 0xF0000000) {
3086 Abort(kArrayIndexConstantValueTooBig);
3087 }
3088 } else {
3089 key = ToRegister(instr->key());
3090 }
3091 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3092 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3093 ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
3094 : element_size_shift;
3095 int base_offset = instr->base_offset();
3096
3097 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
3098 FPURegister result = ToDoubleRegister(instr->result());
3099 if (key_is_constant) {
3100 __ Daddu(scratch0(), external_pointer,
3101 constant_key << element_size_shift);
3102 } else {
3103 if (shift_size < 0) {
3104 if (shift_size == -32) {
3105 __ dsra32(scratch0(), key, 0);
3106 } else {
3107 __ dsra(scratch0(), key, -shift_size);
3108 }
3109 } else {
3110 __ dsll(scratch0(), key, shift_size);
3111 }
3112 __ Daddu(scratch0(), scratch0(), external_pointer);
3113 }
3114 if (elements_kind == FLOAT32_ELEMENTS) {
3115 __ lwc1(result, MemOperand(scratch0(), base_offset));
3116 __ cvt_d_s(result, result);
3117 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
3118 __ ldc1(result, MemOperand(scratch0(), base_offset));
3119 }
3120 } else {
3121 Register result = ToRegister(instr->result());
3122 MemOperand mem_operand = PrepareKeyedOperand(
3123 key, external_pointer, key_is_constant, constant_key,
3124 element_size_shift, shift_size, base_offset);
3125 switch (elements_kind) {
3126 case INT8_ELEMENTS:
3127 __ lb(result, mem_operand);
3128 break;
3129 case UINT8_ELEMENTS:
3130 case UINT8_CLAMPED_ELEMENTS:
3131 __ lbu(result, mem_operand);
3132 break;
3133 case INT16_ELEMENTS:
3134 __ lh(result, mem_operand);
3135 break;
3136 case UINT16_ELEMENTS:
3137 __ lhu(result, mem_operand);
3138 break;
3139 case INT32_ELEMENTS:
3140 __ lw(result, mem_operand);
3141 break;
3142 case UINT32_ELEMENTS:
3143 __ lw(result, mem_operand);
3144 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3145 DeoptimizeIf(Ugreater_equal, instr, Deoptimizer::kNegativeValue,
3146 result, Operand(0x80000000));
3147 }
3148 break;
3149 case FLOAT32_ELEMENTS:
3150 case FLOAT64_ELEMENTS:
3151 case FAST_DOUBLE_ELEMENTS:
3152 case FAST_ELEMENTS:
3153 case FAST_SMI_ELEMENTS:
3154 case FAST_HOLEY_DOUBLE_ELEMENTS:
3155 case FAST_HOLEY_ELEMENTS:
3156 case FAST_HOLEY_SMI_ELEMENTS:
3157 case DICTIONARY_ELEMENTS:
3158 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3159 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3160 UNREACHABLE();
3161 break;
3162 }
3163 }
3164 }
3165
3166
3167 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
3168 Register elements = ToRegister(instr->elements());
3169 bool key_is_constant = instr->key()->IsConstantOperand();
3170 Register key = no_reg;
3171 DoubleRegister result = ToDoubleRegister(instr->result());
3172 Register scratch = scratch0();
3173
3174 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
3175
3176 int base_offset = instr->base_offset();
3177 if (key_is_constant) {
3178 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3179 if (constant_key & 0xF0000000) {
3180 Abort(kArrayIndexConstantValueTooBig);
3181 }
3182 base_offset += constant_key * kDoubleSize;
3183 }
3184 __ Daddu(scratch, elements, Operand(base_offset));
3185
3186 if (!key_is_constant) {
3187 key = ToRegister(instr->key());
3188 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3189 ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
3190 : element_size_shift;
3191 if (shift_size > 0) {
3192 __ dsll(at, key, shift_size);
3193 } else if (shift_size == -32) {
3194 __ dsra32(at, key, 0);
3195 } else {
3196 __ dsra(at, key, -shift_size);
3197 }
3198 __ Daddu(scratch, scratch, at);
3199 }
3200
3201 __ ldc1(result, MemOperand(scratch));
3202
3203 if (instr->hydrogen()->RequiresHoleCheck()) {
3204 __ FmoveHigh(scratch, result);
3205 DeoptimizeIf(eq, instr, Deoptimizer::kHole, scratch,
3206 Operand(static_cast<int32_t>(kHoleNanUpper32)));
3207 }
3208 }
3209
3210
3211 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
3212 HLoadKeyed* hinstr = instr->hydrogen();
3213 Register elements = ToRegister(instr->elements());
3214 Register result = ToRegister(instr->result());
3215 Register scratch = scratch0();
3216 Register store_base = scratch;
3217 int offset = instr->base_offset();
3218
3219 if (instr->key()->IsConstantOperand()) {
3220 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3221 offset += ToInteger32(const_operand) * kPointerSize;
3222 store_base = elements;
3223 } else {
3224 Register key = ToRegister(instr->key());
3225 // Even though the HLoadKeyed instruction forces the input
3226 // representation for the key to be an integer, the input gets replaced
3227 // during bound check elimination with the index argument to the bounds
3228 // check, which can be tagged, so that case must be handled here, too.
3229 if (instr->hydrogen()->key()->representation().IsSmi()) {
3230 __ SmiScale(scratch, key, kPointerSizeLog2);
3231 __ daddu(scratch, elements, scratch);
3232 } else {
3233 __ dsll(scratch, key, kPointerSizeLog2);
3234 __ daddu(scratch, elements, scratch);
3235 }
3236 }
3237
3238 Representation representation = hinstr->representation();
3239 if (representation.IsInteger32() && SmiValuesAre32Bits() &&
3240 hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
3241 DCHECK(!hinstr->RequiresHoleCheck());
3242 if (FLAG_debug_code) {
3243 Register temp = scratch1();
3244 __ Load(temp, MemOperand(store_base, offset), Representation::Smi());
3245 __ AssertSmi(temp);
3246 }
3247
3248 // Read int value directly from upper half of the smi.
3249 STATIC_ASSERT(kSmiTag == 0);
3250 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
3251 offset = SmiWordOffset(offset);
3252 }
3253
3254 __ Load(result, MemOperand(store_base, offset), representation);
3255
3256 // Check for the hole value.
3257 if (hinstr->RequiresHoleCheck()) {
3258 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
3259 __ SmiTst(result, scratch);
3260 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, scratch,
3261 Operand(zero_reg));
3262 } else {
3263 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
3264 DeoptimizeIf(eq, instr, Deoptimizer::kHole, result, Operand(scratch));
3265 }
3266 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
3267 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
3268 Label done;
3269 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
3270 __ Branch(&done, ne, result, Operand(scratch));
3271 if (info()->IsStub()) {
3272 // A stub can safely convert the hole to undefined only if the array
3273 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
3274 // it needs to bail out.
3275 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
3276 // The comparison only needs LS bits of value, which is a smi.
3277 __ ld(result, FieldMemOperand(result, Cell::kValueOffset));
3278 DeoptimizeIf(ne, instr, Deoptimizer::kHole, result,
3279 Operand(Smi::FromInt(Isolate::kArrayProtectorValid)));
3280 }
3281 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3282 __ bind(&done);
3283 }
3284 }
3285
3286
3287 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
3288 if (instr->is_fixed_typed_array()) {
3289 DoLoadKeyedExternalArray(instr);
3290 } else if (instr->hydrogen()->representation().IsDouble()) {
3291 DoLoadKeyedFixedDoubleArray(instr);
3292 } else {
3293 DoLoadKeyedFixedArray(instr);
3294 }
3295 }
3296
3297
3298 MemOperand LCodeGen::PrepareKeyedOperand(Register key,
3299 Register base,
3300 bool key_is_constant,
3301 int constant_key,
3302 int element_size,
3303 int shift_size,
3304 int base_offset) {
3305 if (key_is_constant) {
3306 return MemOperand(base, (constant_key << element_size) + base_offset);
3307 }
3308
3309 if (base_offset == 0) {
3310 if (shift_size >= 0) {
3311 __ dsll(scratch0(), key, shift_size);
3312 __ Daddu(scratch0(), base, scratch0());
3313 return MemOperand(scratch0());
3314 } else {
3315 if (shift_size == -32) {
3316 __ dsra32(scratch0(), key, 0);
3317 } else {
3318 __ dsra(scratch0(), key, -shift_size);
3319 }
3320 __ Daddu(scratch0(), base, scratch0());
3321 return MemOperand(scratch0());
3322 }
3323 }
3324
3325 if (shift_size >= 0) {
3326 __ dsll(scratch0(), key, shift_size);
3327 __ Daddu(scratch0(), base, scratch0());
3328 return MemOperand(scratch0(), base_offset);
3329 } else {
3330 if (shift_size == -32) {
3331 __ dsra32(scratch0(), key, 0);
3332 } else {
3333 __ dsra(scratch0(), key, -shift_size);
3334 }
3335 __ Daddu(scratch0(), base, scratch0());
3336 return MemOperand(scratch0(), base_offset);
3337 }
3338 }
3339
3340
3341 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3342 DCHECK(ToRegister(instr->context()).is(cp));
3343 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3344 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3345
3346 if (instr->hydrogen()->HasVectorAndSlot()) {
3347 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3348 }
3349
3350 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
3351 isolate(), instr->hydrogen()->language_mode(),
3352 instr->hydrogen()->initialization_state()).code();
3353 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3354 }
3355
3356
3357 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3358 Register scratch = scratch0();
3359 Register temp = scratch1();
3360 Register result = ToRegister(instr->result());
3361
3362 if (instr->hydrogen()->from_inlined()) {
3363 __ Dsubu(result, sp, 2 * kPointerSize);
3364 } else {
3365 // Check if the calling frame is an arguments adaptor frame.
3366 Label done, adapted;
3367 __ ld(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3368 __ ld(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
3369 __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3370
3371 // Result is the frame pointer for the frame if not adapted and for the real
3372 // frame below the adaptor frame if adapted.
3373 __ Movn(result, fp, temp); // Move only if temp is not equal to zero (ne).
3374 __ Movz(result, scratch, temp); // Move only if temp is equal to zero (eq).
3375 }
3376 }
3377
3378
3379 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3380 Register elem = ToRegister(instr->elements());
3381 Register result = ToRegister(instr->result());
3382
3383 Label done;
3384
3385 // If no arguments adaptor frame the number of arguments is fixed.
3386 __ Daddu(result, zero_reg, Operand(scope()->num_parameters()));
3387 __ Branch(&done, eq, fp, Operand(elem));
3388
3389 // Arguments adaptor frame present. Get argument length from there.
3390 __ ld(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3391 __ ld(result,
3392 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
3393 __ SmiUntag(result);
3394
3395 // Argument length is in result register.
3396 __ bind(&done);
3397 }
3398
3399
3400 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3401 Register receiver = ToRegister(instr->receiver());
3402 Register function = ToRegister(instr->function());
3403 Register result = ToRegister(instr->result());
3404 Register scratch = scratch0();
3405
3406 // If the receiver is null or undefined, we have to pass the global
3407 // object as a receiver to normal functions. Values have to be
3408 // passed unchanged to builtins and strict-mode functions.
3409 Label global_object, result_in_receiver;
3410
3411 if (!instr->hydrogen()->known_function()) {
3412 // Do not transform the receiver to object for strict mode functions.
3413 __ ld(scratch,
3414 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3415
3416 // Do not transform the receiver to object for builtins.
3417 int32_t strict_mode_function_mask =
3418 1 << SharedFunctionInfo::kStrictModeBitWithinByte;
3419 int32_t native_mask = 1 << SharedFunctionInfo::kNativeBitWithinByte;
3420
3421 __ lbu(at,
3422 FieldMemOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset));
3423 __ And(at, at, Operand(strict_mode_function_mask));
3424 __ Branch(&result_in_receiver, ne, at, Operand(zero_reg));
3425 __ lbu(at,
3426 FieldMemOperand(scratch, SharedFunctionInfo::kNativeByteOffset));
3427 __ And(at, at, Operand(native_mask));
3428 __ Branch(&result_in_receiver, ne, at, Operand(zero_reg));
3429 }
3430
3431 // Normal function. Replace undefined or null with global receiver.
3432 __ LoadRoot(scratch, Heap::kNullValueRootIndex);
3433 __ Branch(&global_object, eq, receiver, Operand(scratch));
3434 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3435 __ Branch(&global_object, eq, receiver, Operand(scratch));
3436
3437 // Deoptimize if the receiver is not a JS object.
3438 __ SmiTst(receiver, scratch);
3439 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, scratch, Operand(zero_reg));
3440
3441 __ GetObjectType(receiver, scratch, scratch);
3442 DeoptimizeIf(lt, instr, Deoptimizer::kNotAJavaScriptObject, scratch,
3443 Operand(FIRST_SPEC_OBJECT_TYPE));
3444 __ Branch(&result_in_receiver);
3445
3446 __ bind(&global_object);
3447 __ ld(result, FieldMemOperand(function, JSFunction::kContextOffset));
3448 __ ld(result,
3449 ContextOperand(result, Context::GLOBAL_OBJECT_INDEX));
3450 __ ld(result,
3451 FieldMemOperand(result, GlobalObject::kGlobalProxyOffset));
3452
3453 if (result.is(receiver)) {
3454 __ bind(&result_in_receiver);
3455 } else {
3456 Label result_ok;
3457 __ Branch(&result_ok);
3458 __ bind(&result_in_receiver);
3459 __ mov(result, receiver);
3460 __ bind(&result_ok);
3461 }
3462 }
3463
3464
3465 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3466 Register receiver = ToRegister(instr->receiver());
3467 Register function = ToRegister(instr->function());
3468 Register length = ToRegister(instr->length());
3469 Register elements = ToRegister(instr->elements());
3470 Register scratch = scratch0();
3471 DCHECK(receiver.is(a0)); // Used for parameter count.
3472 DCHECK(function.is(a1)); // Required by InvokeFunction.
3473 DCHECK(ToRegister(instr->result()).is(v0));
3474
3475 // Copy the arguments to this function possibly from the
3476 // adaptor frame below it.
3477 const uint32_t kArgumentsLimit = 1 * KB;
3478 DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments, length,
3479 Operand(kArgumentsLimit));
3480
3481 // Push the receiver and use the register to keep the original
3482 // number of arguments.
3483 __ push(receiver);
3484 __ Move(receiver, length);
3485 // The arguments are at a one pointer size offset from elements.
3486 __ Daddu(elements, elements, Operand(1 * kPointerSize));
3487
3488 // Loop through the arguments pushing them onto the execution
3489 // stack.
3490 Label invoke, loop;
3491 // length is a small non-negative integer, due to the test above.
3492 __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
3493 __ dsll(scratch, length, kPointerSizeLog2);
3494 __ bind(&loop);
3495 __ Daddu(scratch, elements, scratch);
3496 __ ld(scratch, MemOperand(scratch));
3497 __ push(scratch);
3498 __ Dsubu(length, length, Operand(1));
3499 __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
3500 __ dsll(scratch, length, kPointerSizeLog2);
3501
3502 __ bind(&invoke);
3503 DCHECK(instr->HasPointerMap());
3504 LPointerMap* pointers = instr->pointer_map();
3505 SafepointGenerator safepoint_generator(
3506 this, pointers, Safepoint::kLazyDeopt);
3507 // The number of arguments is stored in receiver which is a0, as expected
3508 // by InvokeFunction.
3509 ParameterCount actual(receiver);
3510 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
3511 }
3512
3513
3514 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3515 LOperand* argument = instr->value();
3516 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
3517 Abort(kDoPushArgumentNotImplementedForDoubleType);
3518 } else {
3519 Register argument_reg = EmitLoadRegister(argument, at);
3520 __ push(argument_reg);
3521 }
3522 }
3523
3524
3525 void LCodeGen::DoDrop(LDrop* instr) {
3526 __ Drop(instr->count());
3527 }
3528
3529
3530 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3531 Register result = ToRegister(instr->result());
3532 __ ld(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3533 }
3534
3535
3536 void LCodeGen::DoContext(LContext* instr) {
3537 // If there is a non-return use, the context must be moved to a register.
3538 Register result = ToRegister(instr->result());
3539 if (info()->IsOptimizing()) {
3540 __ ld(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
3541 } else {
3542 // If there is no frame, the context must be in cp.
3543 DCHECK(result.is(cp));
3544 }
3545 }
3546
3547
3548 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3549 DCHECK(ToRegister(instr->context()).is(cp));
3550 __ li(scratch0(), instr->hydrogen()->pairs());
3551 __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
3552 __ Push(scratch0(), scratch1());
3553 CallRuntime(Runtime::kDeclareGlobals, 2, instr);
3554 }
3555
3556
3557 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3558 int formal_parameter_count, int arity,
3559 LInstruction* instr) {
3560 bool dont_adapt_arguments =
3561 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3562 bool can_invoke_directly =
3563 dont_adapt_arguments || formal_parameter_count == arity;
3564
3565 Register function_reg = a1;
3566 LPointerMap* pointers = instr->pointer_map();
3567
3568 if (can_invoke_directly) {
3569 // Change context.
3570 __ ld(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
3571
3572 // Always initialize a0 to the number of actual arguments.
3573 __ li(a0, Operand(arity));
3574
3575 // Invoke function.
3576 __ ld(at, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
3577 __ Call(at);
3578
3579 // Set up deoptimization.
3580 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3581 } else {
3582 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3583 ParameterCount count(arity);
3584 ParameterCount expected(formal_parameter_count);
3585 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
3586 }
3587 }
3588
3589
3590 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3591 DCHECK(instr->context() != NULL);
3592 DCHECK(ToRegister(instr->context()).is(cp));
3593 Register input = ToRegister(instr->value());
3594 Register result = ToRegister(instr->result());
3595 Register scratch = scratch0();
3596
3597 // Deoptimize if not a heap number.
3598 __ ld(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3599 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3600 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, scratch, Operand(at));
3601
3602 Label done;
3603 Register exponent = scratch0();
3604 scratch = no_reg;
3605 __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3606 // Check the sign of the argument. If the argument is positive, just
3607 // return it.
3608 __ Move(result, input);
3609 __ And(at, exponent, Operand(HeapNumber::kSignMask));
3610 __ Branch(&done, eq, at, Operand(zero_reg));
3611
3612 // Input is negative. Reverse its sign.
3613 // Preserve the value of all registers.
3614 {
3615 PushSafepointRegistersScope scope(this);
3616
3617 // Registers were saved at the safepoint, so we can use
3618 // many scratch registers.
3619 Register tmp1 = input.is(a1) ? a0 : a1;
3620 Register tmp2 = input.is(a2) ? a0 : a2;
3621 Register tmp3 = input.is(a3) ? a0 : a3;
3622 Register tmp4 = input.is(a4) ? a0 : a4;
3623
3624 // exponent: floating point exponent value.
3625
3626 Label allocated, slow;
3627 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3628 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3629 __ Branch(&allocated);
3630
3631 // Slow case: Call the runtime system to do the number allocation.
3632 __ bind(&slow);
3633
3634 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3635 instr->context());
3636 // Set the pointer to the new heap number in tmp.
3637 if (!tmp1.is(v0))
3638 __ mov(tmp1, v0);
3639 // Restore input_reg after call to runtime.
3640 __ LoadFromSafepointRegisterSlot(input, input);
3641 __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3642
3643 __ bind(&allocated);
3644 // exponent: floating point exponent value.
3645 // tmp1: allocated heap number.
3646 __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
3647 __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3648 __ lwu(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3649 __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3650
3651 __ StoreToSafepointRegisterSlot(tmp1, result);
3652 }
3653
3654 __ bind(&done);
3655 }
3656
3657
3658 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3659 Register input = ToRegister(instr->value());
3660 Register result = ToRegister(instr->result());
3661 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
3662 Label done;
3663 __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
3664 __ mov(result, input);
3665 __ subu(result, zero_reg, input);
3666 // Overflow if result is still negative, i.e. 0x80000000.
3667 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, result, Operand(zero_reg));
3668 __ bind(&done);
3669 }
3670
3671
3672 void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) {
3673 Register input = ToRegister(instr->value());
3674 Register result = ToRegister(instr->result());
3675 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
3676 Label done;
3677 __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
3678 __ mov(result, input);
3679 __ dsubu(result, zero_reg, input);
3680 // Overflow if result is still negative, i.e. 0x80000000 00000000.
3681 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, result, Operand(zero_reg));
3682 __ bind(&done);
3683 }
3684
3685
3686 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3687 // Class for deferred case.
3688 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3689 public:
3690 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3691 : LDeferredCode(codegen), instr_(instr) { }
3692 void Generate() override {
3693 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3694 }
3695 LInstruction* instr() override { return instr_; }
3696
3697 private:
3698 LMathAbs* instr_;
3699 };
3700
3701 Representation r = instr->hydrogen()->value()->representation();
3702 if (r.IsDouble()) {
3703 FPURegister input = ToDoubleRegister(instr->value());
3704 FPURegister result = ToDoubleRegister(instr->result());
3705 __ abs_d(result, input);
3706 } else if (r.IsInteger32()) {
3707 EmitIntegerMathAbs(instr);
3708 } else if (r.IsSmi()) {
3709 EmitSmiMathAbs(instr);
3710 } else {
3711 // Representation is tagged.
3712 DeferredMathAbsTaggedHeapNumber* deferred =
3713 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3714 Register input = ToRegister(instr->value());
3715 // Smi check.
3716 __ JumpIfNotSmi(input, deferred->entry());
3717 // If smi, handle it directly.
3718 EmitSmiMathAbs(instr);
3719 __ bind(deferred->exit());
3720 }
3721 }
3722
3723
3724 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3725 DoubleRegister input = ToDoubleRegister(instr->value());
3726 Register result = ToRegister(instr->result());
3727 Register scratch1 = scratch0();
3728 Register except_flag = ToRegister(instr->temp());
3729
3730 __ EmitFPUTruncate(kRoundToMinusInf,
3731 result,
3732 input,
3733 scratch1,
3734 double_scratch0(),
3735 except_flag);
3736
3737 // Deopt if the operation did not succeed.
3738 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
3739 Operand(zero_reg));
3740
3741 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3742 // Test for -0.
3743 Label done;
3744 __ Branch(&done, ne, result, Operand(zero_reg));
3745 __ mfhc1(scratch1, input); // Get exponent/sign bits.
3746 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
3747 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
3748 Operand(zero_reg));
3749 __ bind(&done);
3750 }
3751 }
3752
3753
3754 void LCodeGen::DoMathRound(LMathRound* instr) {
3755 DoubleRegister input = ToDoubleRegister(instr->value());
3756 Register result = ToRegister(instr->result());
3757 DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
3758 Register scratch = scratch0();
3759 Label done, check_sign_on_zero;
3760
3761 // Extract exponent bits.
3762 __ mfhc1(result, input);
3763 __ Ext(scratch,
3764 result,
3765 HeapNumber::kExponentShift,
3766 HeapNumber::kExponentBits);
3767
3768 // If the number is in ]-0.5, +0.5[, the result is +/- 0.
3769 Label skip1;
3770 __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
3771 __ mov(result, zero_reg);
3772 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3773 __ Branch(&check_sign_on_zero);
3774 } else {
3775 __ Branch(&done);
3776 }
3777 __ bind(&skip1);
3778
3779 // The following conversion will not work with numbers
3780 // outside of ]-2^32, 2^32[.
3781 DeoptimizeIf(ge, instr, Deoptimizer::kOverflow, scratch,
3782 Operand(HeapNumber::kExponentBias + 32));
3783
3784 // Save the original sign for later comparison.
3785 __ And(scratch, result, Operand(HeapNumber::kSignMask));
3786
3787 __ Move(double_scratch0(), 0.5);
3788 __ add_d(double_scratch0(), input, double_scratch0());
3789
3790 // Check sign of the result: if the sign changed, the input
3791 // value was in ]0.5, 0[ and the result should be -0.
3792 __ mfhc1(result, double_scratch0());
3793 // mfhc1 sign-extends, clear the upper bits.
3794 __ dsll32(result, result, 0);
3795 __ dsrl32(result, result, 0);
3796 __ Xor(result, result, Operand(scratch));
3797 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3798 // ARM uses 'mi' here, which is 'lt'
3799 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, result, Operand(zero_reg));
3800 } else {
3801 Label skip2;
3802 // ARM uses 'mi' here, which is 'lt'
3803 // Negating it results in 'ge'
3804 __ Branch(&skip2, ge, result, Operand(zero_reg));
3805 __ mov(result, zero_reg);
3806 __ Branch(&done);
3807 __ bind(&skip2);
3808 }
3809
3810 Register except_flag = scratch;
3811 __ EmitFPUTruncate(kRoundToMinusInf,
3812 result,
3813 double_scratch0(),
3814 at,
3815 double_scratch1,
3816 except_flag);
3817
3818 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
3819 Operand(zero_reg));
3820
3821 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3822 // Test for -0.
3823 __ Branch(&done, ne, result, Operand(zero_reg));
3824 __ bind(&check_sign_on_zero);
3825 __ mfhc1(scratch, input); // Get exponent/sign bits.
3826 __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
3827 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch,
3828 Operand(zero_reg));
3829 }
3830 __ bind(&done);
3831 }
3832
3833
3834 void LCodeGen::DoMathFround(LMathFround* instr) {
3835 DoubleRegister input = ToDoubleRegister(instr->value());
3836 DoubleRegister result = ToDoubleRegister(instr->result());
3837 __ cvt_s_d(result, input);
3838 __ cvt_d_s(result, result);
3839 }
3840
3841
3842 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3843 DoubleRegister input = ToDoubleRegister(instr->value());
3844 DoubleRegister result = ToDoubleRegister(instr->result());
3845 __ sqrt_d(result, input);
3846 }
3847
3848
3849 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3850 DoubleRegister input = ToDoubleRegister(instr->value());
3851 DoubleRegister result = ToDoubleRegister(instr->result());
3852 DoubleRegister temp = ToDoubleRegister(instr->temp());
3853
3854 DCHECK(!input.is(result));
3855
3856 // Note that according to ECMA-262 15.8.2.13:
3857 // Math.pow(-Infinity, 0.5) == Infinity
3858 // Math.sqrt(-Infinity) == NaN
3859 Label done;
3860 __ Move(temp, static_cast<double>(-V8_INFINITY));
3861 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input);
3862 // Set up Infinity in the delay slot.
3863 // result is overwritten if the branch is not taken.
3864 __ neg_d(result, temp);
3865
3866 // Add +0 to convert -0 to +0.
3867 __ add_d(result, input, kDoubleRegZero);
3868 __ sqrt_d(result, result);
3869 __ bind(&done);
3870 }
3871
3872
3873 void LCodeGen::DoPower(LPower* instr) {
3874 Representation exponent_type = instr->hydrogen()->right()->representation();
3875 // Having marked this as a call, we can use any registers.
3876 // Just make sure that the input/output registers are the expected ones.
3877 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3878 DCHECK(!instr->right()->IsDoubleRegister() ||
3879 ToDoubleRegister(instr->right()).is(f4));
3880 DCHECK(!instr->right()->IsRegister() ||
3881 ToRegister(instr->right()).is(tagged_exponent));
3882 DCHECK(ToDoubleRegister(instr->left()).is(f2));
3883 DCHECK(ToDoubleRegister(instr->result()).is(f0));
3884
3885 if (exponent_type.IsSmi()) {
3886 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3887 __ CallStub(&stub);
3888 } else if (exponent_type.IsTagged()) {
3889 Label no_deopt;
3890 __ JumpIfSmi(tagged_exponent, &no_deopt);
3891 DCHECK(!a7.is(tagged_exponent));
3892 __ lw(a7, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
3893 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3894 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, a7, Operand(at));
3895 __ bind(&no_deopt);
3896 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3897 __ CallStub(&stub);
3898 } else if (exponent_type.IsInteger32()) {
3899 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3900 __ CallStub(&stub);
3901 } else {
3902 DCHECK(exponent_type.IsDouble());
3903 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3904 __ CallStub(&stub);
3905 }
3906 }
3907
3908
3909 void LCodeGen::DoMathExp(LMathExp* instr) {
3910 DoubleRegister input = ToDoubleRegister(instr->value());
3911 DoubleRegister result = ToDoubleRegister(instr->result());
3912 DoubleRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
3913 DoubleRegister double_scratch2 = double_scratch0();
3914 Register temp1 = ToRegister(instr->temp1());
3915 Register temp2 = ToRegister(instr->temp2());
3916
3917 MathExpGenerator::EmitMathExp(
3918 masm(), input, result, double_scratch1, double_scratch2,
3919 temp1, temp2, scratch0());
3920 }
3921
3922
3923 void LCodeGen::DoMathLog(LMathLog* instr) {
3924 __ PrepareCallCFunction(0, 1, scratch0());
3925 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3926 __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
3927 0, 1);
3928 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3929 }
3930
3931
3932 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3933 Register input = ToRegister(instr->value());
3934 Register result = ToRegister(instr->result());
3935 __ Clz(result, input);
3936 }
3937
3938
3939 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3940 DCHECK(ToRegister(instr->context()).is(cp));
3941 DCHECK(ToRegister(instr->function()).is(a1));
3942 DCHECK(instr->HasPointerMap());
3943
3944 Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3945 if (known_function.is_null()) {
3946 LPointerMap* pointers = instr->pointer_map();
3947 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3948 ParameterCount count(instr->arity());
3949 __ InvokeFunction(a1, count, CALL_FUNCTION, generator);
3950 } else {
3951 CallKnownFunction(known_function,
3952 instr->hydrogen()->formal_parameter_count(),
3953 instr->arity(), instr);
3954 }
3955 }
3956
3957
3958 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3959 DCHECK(ToRegister(instr->result()).is(v0));
3960
3961 if (instr->hydrogen()->IsTailCall()) {
3962 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
3963
3964 if (instr->target()->IsConstantOperand()) {
3965 LConstantOperand* target = LConstantOperand::cast(instr->target());
3966 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3967 __ Jump(code, RelocInfo::CODE_TARGET);
3968 } else {
3969 DCHECK(instr->target()->IsRegister());
3970 Register target = ToRegister(instr->target());
3971 __ Daddu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3972 __ Jump(target);
3973 }
3974 } else {
3975 LPointerMap* pointers = instr->pointer_map();
3976 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3977
3978 if (instr->target()->IsConstantOperand()) {
3979 LConstantOperand* target = LConstantOperand::cast(instr->target());
3980 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3981 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3982 __ Call(code, RelocInfo::CODE_TARGET);
3983 } else {
3984 DCHECK(instr->target()->IsRegister());
3985 Register target = ToRegister(instr->target());
3986 generator.BeforeCall(__ CallSize(target));
3987 __ Daddu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3988 __ Call(target);
3989 }
3990 generator.AfterCall();
3991 }
3992 }
3993
3994
3995 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
3996 DCHECK(ToRegister(instr->function()).is(a1));
3997 DCHECK(ToRegister(instr->result()).is(v0));
3998
3999 __ li(a0, Operand(instr->arity()));
4000
4001 // Change context.
4002 __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
4003
4004 // Load the code entry address
4005 __ ld(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
4006 __ Call(at);
4007
4008 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
4009 }
4010
4011
4012 void LCodeGen::DoCallFunction(LCallFunction* instr) {
4013 DCHECK(ToRegister(instr->context()).is(cp));
4014 DCHECK(ToRegister(instr->function()).is(a1));
4015 DCHECK(ToRegister(instr->result()).is(v0));
4016
4017 int arity = instr->arity();
4018 CallFunctionFlags flags = instr->hydrogen()->function_flags();
4019 if (instr->hydrogen()->HasVectorAndSlot()) {
4020 Register slot_register = ToRegister(instr->temp_slot());
4021 Register vector_register = ToRegister(instr->temp_vector());
4022 DCHECK(slot_register.is(a3));
4023 DCHECK(vector_register.is(a2));
4024
4025 AllowDeferredHandleDereference vector_structure_check;
4026 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
4027 int index = vector->GetIndex(instr->hydrogen()->slot());
4028
4029 __ li(vector_register, vector);
4030 __ li(slot_register, Operand(Smi::FromInt(index)));
4031
4032 CallICState::CallType call_type =
4033 (flags & CALL_AS_METHOD) ? CallICState::METHOD : CallICState::FUNCTION;
4034
4035 Handle<Code> ic =
4036 CodeFactory::CallICInOptimizedCode(isolate(), arity, call_type).code();
4037 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4038 } else {
4039 CallFunctionStub stub(isolate(), arity, flags);
4040 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4041 }
4042 }
4043
4044
4045 void LCodeGen::DoCallNew(LCallNew* instr) {
4046 DCHECK(ToRegister(instr->context()).is(cp));
4047 DCHECK(ToRegister(instr->constructor()).is(a1));
4048 DCHECK(ToRegister(instr->result()).is(v0));
4049
4050 __ li(a0, Operand(instr->arity()));
4051 // No cell in a2 for construct type feedback in optimized code
4052 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
4053 CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
4054 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4055 }
4056
4057
4058 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
4059 DCHECK(ToRegister(instr->context()).is(cp));
4060 DCHECK(ToRegister(instr->constructor()).is(a1));
4061 DCHECK(ToRegister(instr->result()).is(v0));
4062
4063 __ li(a0, Operand(instr->arity()));
4064 if (instr->arity() == 1) {
4065 // We only need the allocation site for the case we have a length argument.
4066 // The case may bail out to the runtime, which will determine the correct
4067 // elements kind with the site.
4068 __ li(a2, instr->hydrogen()->site());
4069 } else {
4070 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
4071 }
4072 ElementsKind kind = instr->hydrogen()->elements_kind();
4073 AllocationSiteOverrideMode override_mode =
4074 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
4075 ? DISABLE_ALLOCATION_SITES
4076 : DONT_OVERRIDE;
4077
4078 if (instr->arity() == 0) {
4079 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
4080 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4081 } else if (instr->arity() == 1) {
4082 Label done;
4083 if (IsFastPackedElementsKind(kind)) {
4084 Label packed_case;
4085 // We might need a change here,
4086 // look at the first argument.
4087 __ ld(a5, MemOperand(sp, 0));
4088 __ Branch(&packed_case, eq, a5, Operand(zero_reg));
4089
4090 ElementsKind holey_kind = GetHoleyElementsKind(kind);
4091 ArraySingleArgumentConstructorStub stub(isolate(),
4092 holey_kind,
4093 override_mode);
4094 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4095 __ jmp(&done);
4096 __ bind(&packed_case);
4097 }
4098
4099 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
4100 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4101 __ bind(&done);
4102 } else {
4103 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
4104 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4105 }
4106 }
4107
4108
4109 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
4110 CallRuntime(instr->function(), instr->arity(), instr);
4111 }
4112
4113
4114 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
4115 Register function = ToRegister(instr->function());
4116 Register code_object = ToRegister(instr->code_object());
4117 __ Daddu(code_object, code_object,
4118 Operand(Code::kHeaderSize - kHeapObjectTag));
4119 __ sd(code_object,
4120 FieldMemOperand(function, JSFunction::kCodeEntryOffset));
4121 }
4122
4123
4124 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
4125 Register result = ToRegister(instr->result());
4126 Register base = ToRegister(instr->base_object());
4127 if (instr->offset()->IsConstantOperand()) {
4128 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
4129 __ Daddu(result, base, Operand(ToInteger32(offset)));
4130 } else {
4131 Register offset = ToRegister(instr->offset());
4132 __ Daddu(result, base, offset);
4133 }
4134 }
4135
4136
4137 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
4138 Representation representation = instr->representation();
4139
4140 Register object = ToRegister(instr->object());
4141 Register scratch2 = scratch1();
4142 Register scratch1 = scratch0();
4143
4144 HObjectAccess access = instr->hydrogen()->access();
4145 int offset = access.offset();
4146 if (access.IsExternalMemory()) {
4147 Register value = ToRegister(instr->value());
4148 MemOperand operand = MemOperand(object, offset);
4149 __ Store(value, operand, representation);
4150 return;
4151 }
4152
4153 __ AssertNotSmi(object);
4154
4155 DCHECK(!representation.IsSmi() ||
4156 !instr->value()->IsConstantOperand() ||
4157 IsSmi(LConstantOperand::cast(instr->value())));
4158 if (!FLAG_unbox_double_fields && representation.IsDouble()) {
4159 DCHECK(access.IsInobject());
4160 DCHECK(!instr->hydrogen()->has_transition());
4161 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4162 DoubleRegister value = ToDoubleRegister(instr->value());
4163 __ sdc1(value, FieldMemOperand(object, offset));
4164 return;
4165 }
4166
4167 if (instr->hydrogen()->has_transition()) {
4168 Handle<Map> transition = instr->hydrogen()->transition_map();
4169 AddDeprecationDependency(transition);
4170 __ li(scratch1, Operand(transition));
4171 __ sd(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
4172 if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
4173 Register temp = ToRegister(instr->temp());
4174 // Update the write barrier for the map field.
4175 __ RecordWriteForMap(object,
4176 scratch1,
4177 temp,
4178 GetRAState(),
4179 kSaveFPRegs);
4180 }
4181 }
4182
4183 // Do the store.
4184 Register destination = object;
4185 if (!access.IsInobject()) {
4186 destination = scratch1;
4187 __ ld(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
4188 }
4189
4190 if (representation.IsSmi() && SmiValuesAre32Bits() &&
4191 instr->hydrogen()->value()->representation().IsInteger32()) {
4192 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4193 if (FLAG_debug_code) {
4194 __ Load(scratch2, FieldMemOperand(destination, offset), representation);
4195 __ AssertSmi(scratch2);
4196 }
4197 // Store int value directly to upper half of the smi.
4198 offset = SmiWordOffset(offset);
4199 representation = Representation::Integer32();
4200 }
4201 MemOperand operand = FieldMemOperand(destination, offset);
4202
4203 if (FLAG_unbox_double_fields && representation.IsDouble()) {
4204 DCHECK(access.IsInobject());
4205 DoubleRegister value = ToDoubleRegister(instr->value());
4206 __ sdc1(value, operand);
4207 } else {
4208 DCHECK(instr->value()->IsRegister());
4209 Register value = ToRegister(instr->value());
4210 __ Store(value, operand, representation);
4211 }
4212
4213 if (instr->hydrogen()->NeedsWriteBarrier()) {
4214 // Update the write barrier for the object for in-object properties.
4215 Register value = ToRegister(instr->value());
4216 __ RecordWriteField(destination,
4217 offset,
4218 value,
4219 scratch2,
4220 GetRAState(),
4221 kSaveFPRegs,
4222 EMIT_REMEMBERED_SET,
4223 instr->hydrogen()->SmiCheckForWriteBarrier(),
4224 instr->hydrogen()->PointersToHereCheckForValue());
4225 }
4226 }
4227
4228
4229 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
4230 DCHECK(ToRegister(instr->context()).is(cp));
4231 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4232 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4233
4234 if (instr->hydrogen()->HasVectorAndSlot()) {
4235 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
4236 }
4237
4238 __ li(StoreDescriptor::NameRegister(), Operand(instr->name()));
4239 Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
4240 isolate(), instr->language_mode(),
4241 instr->hydrogen()->initialization_state()).code();
4242 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4243 }
4244
4245
4246 void LCodeGen::DoStoreGlobalViaContext(LStoreGlobalViaContext* instr) {
4247 DCHECK(ToRegister(instr->context()).is(cp));
4248 DCHECK(ToRegister(instr->value())
4249 .is(StoreGlobalViaContextDescriptor::ValueRegister()));
4250
4251 int const slot = instr->slot_index();
4252 int const depth = instr->depth();
4253 if (depth <= StoreGlobalViaContextStub::kMaximumDepth) {
4254 __ li(StoreGlobalViaContextDescriptor::SlotRegister(), Operand(slot));
4255 Handle<Code> stub = CodeFactory::StoreGlobalViaContext(
4256 isolate(), depth, instr->language_mode())
4257 .code();
4258 CallCode(stub, RelocInfo::CODE_TARGET, instr);
4259 } else {
4260 __ Push(Smi::FromInt(slot));
4261 __ Push(StoreGlobalViaContextDescriptor::ValueRegister());
4262 __ CallRuntime(is_strict(language_mode())
4263 ? Runtime::kStoreGlobalViaContext_Strict
4264 : Runtime::kStoreGlobalViaContext_Sloppy,
4265 2);
4266 }
4267 }
4268
4269
4270 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
4271 Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
4272 Operand operand((int64_t)0);
4273 Register reg;
4274 if (instr->index()->IsConstantOperand()) {
4275 operand = ToOperand(instr->index());
4276 reg = ToRegister(instr->length());
4277 cc = CommuteCondition(cc);
4278 } else {
4279 reg = ToRegister(instr->index());
4280 operand = ToOperand(instr->length());
4281 }
4282 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
4283 Label done;
4284 __ Branch(&done, NegateCondition(cc), reg, operand);
4285 __ stop("eliminated bounds check failed");
4286 __ bind(&done);
4287 } else {
4288 DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds, reg, operand);
4289 }
4290 }
4291
4292
4293 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
4294 Register external_pointer = ToRegister(instr->elements());
4295 Register key = no_reg;
4296 ElementsKind elements_kind = instr->elements_kind();
4297 bool key_is_constant = instr->key()->IsConstantOperand();
4298 int constant_key = 0;
4299 if (key_is_constant) {
4300 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4301 if (constant_key & 0xF0000000) {
4302 Abort(kArrayIndexConstantValueTooBig);
4303 }
4304 } else {
4305 key = ToRegister(instr->key());
4306 }
4307 int element_size_shift = ElementsKindToShiftSize(elements_kind);
4308 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
4309 ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
4310 : element_size_shift;
4311 int base_offset = instr->base_offset();
4312
4313 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
4314 Register address = scratch0();
4315 FPURegister value(ToDoubleRegister(instr->value()));
4316 if (key_is_constant) {
4317 if (constant_key != 0) {
4318 __ Daddu(address, external_pointer,
4319 Operand(constant_key << element_size_shift));
4320 } else {
4321 address = external_pointer;
4322 }
4323 } else {
4324 if (shift_size < 0) {
4325 if (shift_size == -32) {
4326 __ dsra32(address, key, 0);
4327 } else {
4328 __ dsra(address, key, -shift_size);
4329 }
4330 } else {
4331 __ dsll(address, key, shift_size);
4332 }
4333 __ Daddu(address, external_pointer, address);
4334 }
4335
4336 if (elements_kind == FLOAT32_ELEMENTS) {
4337 __ cvt_s_d(double_scratch0(), value);
4338 __ swc1(double_scratch0(), MemOperand(address, base_offset));
4339 } else { // Storing doubles, not floats.
4340 __ sdc1(value, MemOperand(address, base_offset));
4341 }
4342 } else {
4343 Register value(ToRegister(instr->value()));
4344 MemOperand mem_operand = PrepareKeyedOperand(
4345 key, external_pointer, key_is_constant, constant_key,
4346 element_size_shift, shift_size,
4347 base_offset);
4348 switch (elements_kind) {
4349 case UINT8_ELEMENTS:
4350 case UINT8_CLAMPED_ELEMENTS:
4351 case INT8_ELEMENTS:
4352 __ sb(value, mem_operand);
4353 break;
4354 case INT16_ELEMENTS:
4355 case UINT16_ELEMENTS:
4356 __ sh(value, mem_operand);
4357 break;
4358 case INT32_ELEMENTS:
4359 case UINT32_ELEMENTS:
4360 __ sw(value, mem_operand);
4361 break;
4362 case FLOAT32_ELEMENTS:
4363 case FLOAT64_ELEMENTS:
4364 case FAST_DOUBLE_ELEMENTS:
4365 case FAST_ELEMENTS:
4366 case FAST_SMI_ELEMENTS:
4367 case FAST_HOLEY_DOUBLE_ELEMENTS:
4368 case FAST_HOLEY_ELEMENTS:
4369 case FAST_HOLEY_SMI_ELEMENTS:
4370 case DICTIONARY_ELEMENTS:
4371 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
4372 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
4373 UNREACHABLE();
4374 break;
4375 }
4376 }
4377 }
4378
4379
4380 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4381 DoubleRegister value = ToDoubleRegister(instr->value());
4382 Register elements = ToRegister(instr->elements());
4383 Register scratch = scratch0();
4384 DoubleRegister double_scratch = double_scratch0();
4385 bool key_is_constant = instr->key()->IsConstantOperand();
4386 int base_offset = instr->base_offset();
4387 Label not_nan, done;
4388
4389 // Calculate the effective address of the slot in the array to store the
4390 // double value.
4391 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
4392 if (key_is_constant) {
4393 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4394 if (constant_key & 0xF0000000) {
4395 Abort(kArrayIndexConstantValueTooBig);
4396 }
4397 __ Daddu(scratch, elements,
4398 Operand((constant_key << element_size_shift) + base_offset));
4399 } else {
4400 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
4401 ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
4402 : element_size_shift;
4403 __ Daddu(scratch, elements, Operand(base_offset));
4404 DCHECK((shift_size == 3) || (shift_size == -29));
4405 if (shift_size == 3) {
4406 __ dsll(at, ToRegister(instr->key()), 3);
4407 } else if (shift_size == -29) {
4408 __ dsra(at, ToRegister(instr->key()), 29);
4409 }
4410 __ Daddu(scratch, scratch, at);
4411 }
4412
4413 if (instr->NeedsCanonicalization()) {
4414 __ FPUCanonicalizeNaN(double_scratch, value);
4415 __ sdc1(double_scratch, MemOperand(scratch, 0));
4416 } else {
4417 __ sdc1(value, MemOperand(scratch, 0));
4418 }
4419 }
4420
4421
4422 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4423 Register value = ToRegister(instr->value());
4424 Register elements = ToRegister(instr->elements());
4425 Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
4426 : no_reg;
4427 Register scratch = scratch0();
4428 Register store_base = scratch;
4429 int offset = instr->base_offset();
4430
4431 // Do the store.
4432 if (instr->key()->IsConstantOperand()) {
4433 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4434 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4435 offset += ToInteger32(const_operand) * kPointerSize;
4436 store_base = elements;
4437 } else {
4438 // Even though the HLoadKeyed instruction forces the input
4439 // representation for the key to be an integer, the input gets replaced
4440 // during bound check elimination with the index argument to the bounds
4441 // check, which can be tagged, so that case must be handled here, too.
4442 if (instr->hydrogen()->key()->representation().IsSmi()) {
4443 __ SmiScale(scratch, key, kPointerSizeLog2);
4444 __ daddu(store_base, elements, scratch);
4445 } else {
4446 __ dsll(scratch, key, kPointerSizeLog2);
4447 __ daddu(store_base, elements, scratch);
4448 }
4449 }
4450
4451 Representation representation = instr->hydrogen()->value()->representation();
4452 if (representation.IsInteger32() && SmiValuesAre32Bits()) {
4453 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4454 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
4455 if (FLAG_debug_code) {
4456 Register temp = scratch1();
4457 __ Load(temp, MemOperand(store_base, offset), Representation::Smi());
4458 __ AssertSmi(temp);
4459 }
4460
4461 // Store int value directly to upper half of the smi.
4462 STATIC_ASSERT(kSmiTag == 0);
4463 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
4464 offset = SmiWordOffset(offset);
4465 representation = Representation::Integer32();
4466 }
4467
4468 __ Store(value, MemOperand(store_base, offset), representation);
4469
4470 if (instr->hydrogen()->NeedsWriteBarrier()) {
4471 SmiCheck check_needed =
4472 instr->hydrogen()->value()->type().IsHeapObject()
4473 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4474 // Compute address of modified element and store it into key register.
4475 __ Daddu(key, store_base, Operand(offset));
4476 __ RecordWrite(elements,
4477 key,
4478 value,
4479 GetRAState(),
4480 kSaveFPRegs,
4481 EMIT_REMEMBERED_SET,
4482 check_needed,
4483 instr->hydrogen()->PointersToHereCheckForValue());
4484 }
4485 }
4486
4487
4488 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4489 // By cases: external, fast double
4490 if (instr->is_fixed_typed_array()) {
4491 DoStoreKeyedExternalArray(instr);
4492 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4493 DoStoreKeyedFixedDoubleArray(instr);
4494 } else {
4495 DoStoreKeyedFixedArray(instr);
4496 }
4497 }
4498
4499
4500 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4501 DCHECK(ToRegister(instr->context()).is(cp));
4502 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4503 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4504 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4505
4506 if (instr->hydrogen()->HasVectorAndSlot()) {
4507 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
4508 }
4509
4510 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
4511 isolate(), instr->language_mode(),
4512 instr->hydrogen()->initialization_state()).code();
4513 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4514 }
4515
4516
4517 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4518 class DeferredMaybeGrowElements final : public LDeferredCode {
4519 public:
4520 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4521 : LDeferredCode(codegen), instr_(instr) {}
4522 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4523 LInstruction* instr() override { return instr_; }
4524
4525 private:
4526 LMaybeGrowElements* instr_;
4527 };
4528
4529 Register result = v0;
4530 DeferredMaybeGrowElements* deferred =
4531 new (zone()) DeferredMaybeGrowElements(this, instr);
4532 LOperand* key = instr->key();
4533 LOperand* current_capacity = instr->current_capacity();
4534
4535 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4536 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4537 DCHECK(key->IsConstantOperand() || key->IsRegister());
4538 DCHECK(current_capacity->IsConstantOperand() ||
4539 current_capacity->IsRegister());
4540
4541 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4542 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4543 int32_t constant_capacity =
4544 ToInteger32(LConstantOperand::cast(current_capacity));
4545 if (constant_key >= constant_capacity) {
4546 // Deferred case.
4547 __ jmp(deferred->entry());
4548 }
4549 } else if (key->IsConstantOperand()) {
4550 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4551 __ Branch(deferred->entry(), le, ToRegister(current_capacity),
4552 Operand(constant_key));
4553 } else if (current_capacity->IsConstantOperand()) {
4554 int32_t constant_capacity =
4555 ToInteger32(LConstantOperand::cast(current_capacity));
4556 __ Branch(deferred->entry(), ge, ToRegister(key),
4557 Operand(constant_capacity));
4558 } else {
4559 __ Branch(deferred->entry(), ge, ToRegister(key),
4560 Operand(ToRegister(current_capacity)));
4561 }
4562
4563 if (instr->elements()->IsRegister()) {
4564 __ mov(result, ToRegister(instr->elements()));
4565 } else {
4566 __ ld(result, ToMemOperand(instr->elements()));
4567 }
4568
4569 __ bind(deferred->exit());
4570 }
4571
4572
4573 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4574 // TODO(3095996): Get rid of this. For now, we need to make the
4575 // result register contain a valid pointer because it is already
4576 // contained in the register pointer map.
4577 Register result = v0;
4578 __ mov(result, zero_reg);
4579
4580 // We have to call a stub.
4581 {
4582 PushSafepointRegistersScope scope(this);
4583 if (instr->object()->IsRegister()) {
4584 __ mov(result, ToRegister(instr->object()));
4585 } else {
4586 __ ld(result, ToMemOperand(instr->object()));
4587 }
4588
4589 LOperand* key = instr->key();
4590 if (key->IsConstantOperand()) {
4591 __ li(a3, Operand(ToSmi(LConstantOperand::cast(key))));
4592 } else {
4593 __ mov(a3, ToRegister(key));
4594 __ SmiTag(a3);
4595 }
4596
4597 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
4598 instr->hydrogen()->kind());
4599 __ mov(a0, result);
4600 __ CallStub(&stub);
4601 RecordSafepointWithLazyDeopt(
4602 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4603 __ StoreToSafepointRegisterSlot(result, result);
4604 }
4605
4606 // Deopt on smi, which means the elements array changed to dictionary mode.
4607 __ SmiTst(result, at);
4608 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
4609 }
4610
4611
4612 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4613 Register object_reg = ToRegister(instr->object());
4614 Register scratch = scratch0();
4615
4616 Handle<Map> from_map = instr->original_map();
4617 Handle<Map> to_map = instr->transitioned_map();
4618 ElementsKind from_kind = instr->from_kind();
4619 ElementsKind to_kind = instr->to_kind();
4620
4621 Label not_applicable;
4622 __ ld(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4623 __ Branch(&not_applicable, ne, scratch, Operand(from_map));
4624
4625 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4626 Register new_map_reg = ToRegister(instr->new_map_temp());
4627 __ li(new_map_reg, Operand(to_map));
4628 __ sd(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4629 // Write barrier.
4630 __ RecordWriteForMap(object_reg,
4631 new_map_reg,
4632 scratch,
4633 GetRAState(),
4634 kDontSaveFPRegs);
4635 } else {
4636 DCHECK(object_reg.is(a0));
4637 DCHECK(ToRegister(instr->context()).is(cp));
4638 PushSafepointRegistersScope scope(this);
4639 __ li(a1, Operand(to_map));
4640 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
4641 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
4642 __ CallStub(&stub);
4643 RecordSafepointWithRegisters(
4644 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
4645 }
4646 __ bind(&not_applicable);
4647 }
4648
4649
4650 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4651 Register object = ToRegister(instr->object());
4652 Register temp = ToRegister(instr->temp());
4653 Label no_memento_found;
4654 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found,
4655 ne, &no_memento_found);
4656 DeoptimizeIf(al, instr, Deoptimizer::kMementoFound);
4657 __ bind(&no_memento_found);
4658 }
4659
4660
4661 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4662 DCHECK(ToRegister(instr->context()).is(cp));
4663 DCHECK(ToRegister(instr->left()).is(a1));
4664 DCHECK(ToRegister(instr->right()).is(a0));
4665 StringAddStub stub(isolate(),
4666 instr->hydrogen()->flags(),
4667 instr->hydrogen()->pretenure_flag());
4668 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4669 }
4670
4671
4672 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4673 class DeferredStringCharCodeAt final : public LDeferredCode {
4674 public:
4675 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4676 : LDeferredCode(codegen), instr_(instr) { }
4677 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4678 LInstruction* instr() override { return instr_; }
4679
4680 private:
4681 LStringCharCodeAt* instr_;
4682 };
4683
4684 DeferredStringCharCodeAt* deferred =
4685 new(zone()) DeferredStringCharCodeAt(this, instr);
4686 StringCharLoadGenerator::Generate(masm(),
4687 ToRegister(instr->string()),
4688 ToRegister(instr->index()),
4689 ToRegister(instr->result()),
4690 deferred->entry());
4691 __ bind(deferred->exit());
4692 }
4693
4694
4695 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4696 Register string = ToRegister(instr->string());
4697 Register result = ToRegister(instr->result());
4698 Register scratch = scratch0();
4699
4700 // TODO(3095996): Get rid of this. For now, we need to make the
4701 // result register contain a valid pointer because it is already
4702 // contained in the register pointer map.
4703 __ mov(result, zero_reg);
4704
4705 PushSafepointRegistersScope scope(this);
4706 __ push(string);
4707 // Push the index as a smi. This is safe because of the checks in
4708 // DoStringCharCodeAt above.
4709 if (instr->index()->IsConstantOperand()) {
4710 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4711 __ Daddu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
4712 __ push(scratch);
4713 } else {
4714 Register index = ToRegister(instr->index());
4715 __ SmiTag(index);
4716 __ push(index);
4717 }
4718 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
4719 instr->context());
4720 __ AssertSmi(v0);
4721 __ SmiUntag(v0);
4722 __ StoreToSafepointRegisterSlot(v0, result);
4723 }
4724
4725
4726 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4727 class DeferredStringCharFromCode final : public LDeferredCode {
4728 public:
4729 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4730 : LDeferredCode(codegen), instr_(instr) { }
4731 void Generate() override {
4732 codegen()->DoDeferredStringCharFromCode(instr_);
4733 }
4734 LInstruction* instr() override { return instr_; }
4735
4736 private:
4737 LStringCharFromCode* instr_;
4738 };
4739
4740 DeferredStringCharFromCode* deferred =
4741 new(zone()) DeferredStringCharFromCode(this, instr);
4742
4743 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4744 Register char_code = ToRegister(instr->char_code());
4745 Register result = ToRegister(instr->result());
4746 Register scratch = scratch0();
4747 DCHECK(!char_code.is(result));
4748
4749 __ Branch(deferred->entry(), hi,
4750 char_code, Operand(String::kMaxOneByteCharCode));
4751 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4752 __ dsll(scratch, char_code, kPointerSizeLog2);
4753 __ Daddu(result, result, scratch);
4754 __ ld(result, FieldMemOperand(result, FixedArray::kHeaderSize));
4755 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4756 __ Branch(deferred->entry(), eq, result, Operand(scratch));
4757 __ bind(deferred->exit());
4758 }
4759
4760
4761 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4762 Register char_code = ToRegister(instr->char_code());
4763 Register result = ToRegister(instr->result());
4764
4765 // TODO(3095996): Get rid of this. For now, we need to make the
4766 // result register contain a valid pointer because it is already
4767 // contained in the register pointer map.
4768 __ mov(result, zero_reg);
4769
4770 PushSafepointRegistersScope scope(this);
4771 __ SmiTag(char_code);
4772 __ push(char_code);
4773 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
4774 __ StoreToSafepointRegisterSlot(v0, result);
4775 }
4776
4777
4778 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4779 LOperand* input = instr->value();
4780 DCHECK(input->IsRegister() || input->IsStackSlot());
4781 LOperand* output = instr->result();
4782 DCHECK(output->IsDoubleRegister());
4783 FPURegister single_scratch = double_scratch0().low();
4784 if (input->IsStackSlot()) {
4785 Register scratch = scratch0();
4786 __ ld(scratch, ToMemOperand(input));
4787 __ mtc1(scratch, single_scratch);
4788 } else {
4789 __ mtc1(ToRegister(input), single_scratch);
4790 }
4791 __ cvt_d_w(ToDoubleRegister(output), single_scratch);
4792 }
4793
4794
4795 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4796 LOperand* input = instr->value();
4797 LOperand* output = instr->result();
4798
4799 FPURegister dbl_scratch = double_scratch0();
4800 __ mtc1(ToRegister(input), dbl_scratch);
4801 __ Cvt_d_uw(ToDoubleRegister(output), dbl_scratch, f22); // TODO(plind): f22?
4802 }
4803
4804
4805 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4806 class DeferredNumberTagU final : public LDeferredCode {
4807 public:
4808 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4809 : LDeferredCode(codegen), instr_(instr) { }
4810 void Generate() override {
4811 codegen()->DoDeferredNumberTagIU(instr_,
4812 instr_->value(),
4813 instr_->temp1(),
4814 instr_->temp2(),
4815 UNSIGNED_INT32);
4816 }
4817 LInstruction* instr() override { return instr_; }
4818
4819 private:
4820 LNumberTagU* instr_;
4821 };
4822
4823 Register input = ToRegister(instr->value());
4824 Register result = ToRegister(instr->result());
4825
4826 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4827 __ Branch(deferred->entry(), hi, input, Operand(Smi::kMaxValue));
4828 __ SmiTag(result, input);
4829 __ bind(deferred->exit());
4830 }
4831
4832
4833 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4834 LOperand* value,
4835 LOperand* temp1,
4836 LOperand* temp2,
4837 IntegerSignedness signedness) {
4838 Label done, slow;
4839 Register src = ToRegister(value);
4840 Register dst = ToRegister(instr->result());
4841 Register tmp1 = scratch0();
4842 Register tmp2 = ToRegister(temp1);
4843 Register tmp3 = ToRegister(temp2);
4844 DoubleRegister dbl_scratch = double_scratch0();
4845
4846 if (signedness == SIGNED_INT32) {
4847 // There was overflow, so bits 30 and 31 of the original integer
4848 // disagree. Try to allocate a heap number in new space and store
4849 // the value in there. If that fails, call the runtime system.
4850 if (dst.is(src)) {
4851 __ SmiUntag(src, dst);
4852 __ Xor(src, src, Operand(0x80000000));
4853 }
4854 __ mtc1(src, dbl_scratch);
4855 __ cvt_d_w(dbl_scratch, dbl_scratch);
4856 } else {
4857 __ mtc1(src, dbl_scratch);
4858 __ Cvt_d_uw(dbl_scratch, dbl_scratch, f22);
4859 }
4860
4861 if (FLAG_inline_new) {
4862 __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
4863 __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow, TAG_RESULT);
4864 __ Branch(&done);
4865 }
4866
4867 // Slow case: Call the runtime system to do the number allocation.
4868 __ bind(&slow);
4869 {
4870 // TODO(3095996): Put a valid pointer value in the stack slot where the
4871 // result register is stored, as this register is in the pointer map, but
4872 // contains an integer value.
4873 __ mov(dst, zero_reg);
4874 // Preserve the value of all registers.
4875 PushSafepointRegistersScope scope(this);
4876
4877 // NumberTagI and NumberTagD use the context from the frame, rather than
4878 // the environment's HContext or HInlinedContext value.
4879 // They only call Runtime::kAllocateHeapNumber.
4880 // The corresponding HChange instructions are added in a phase that does
4881 // not have easy access to the local context.
4882 __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4883 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4884 RecordSafepointWithRegisters(
4885 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4886 __ StoreToSafepointRegisterSlot(v0, dst);
4887 }
4888
4889 // Done. Put the value in dbl_scratch into the value of the allocated heap
4890 // number.
4891 __ bind(&done);
4892 __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4893 }
4894
4895
4896 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4897 class DeferredNumberTagD final : public LDeferredCode {
4898 public:
4899 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4900 : LDeferredCode(codegen), instr_(instr) { }
4901 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4902 LInstruction* instr() override { return instr_; }
4903
4904 private:
4905 LNumberTagD* instr_;
4906 };
4907
4908 DoubleRegister input_reg = ToDoubleRegister(instr->value());
4909 Register scratch = scratch0();
4910 Register reg = ToRegister(instr->result());
4911 Register temp1 = ToRegister(instr->temp());
4912 Register temp2 = ToRegister(instr->temp2());
4913
4914 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4915 if (FLAG_inline_new) {
4916 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
4917 // We want the untagged address first for performance
4918 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(),
4919 DONT_TAG_RESULT);
4920 } else {
4921 __ Branch(deferred->entry());
4922 }
4923 __ bind(deferred->exit());
4924 __ sdc1(input_reg, MemOperand(reg, HeapNumber::kValueOffset));
4925 // Now that we have finished with the object's real address tag it
4926 __ Daddu(reg, reg, kHeapObjectTag);
4927 }
4928
4929
4930 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4931 // TODO(3095996): Get rid of this. For now, we need to make the
4932 // result register contain a valid pointer because it is already
4933 // contained in the register pointer map.
4934 Register reg = ToRegister(instr->result());
4935 __ mov(reg, zero_reg);
4936
4937 PushSafepointRegistersScope scope(this);
4938 // NumberTagI and NumberTagD use the context from the frame, rather than
4939 // the environment's HContext or HInlinedContext value.
4940 // They only call Runtime::kAllocateHeapNumber.
4941 // The corresponding HChange instructions are added in a phase that does
4942 // not have easy access to the local context.
4943 __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4944 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4945 RecordSafepointWithRegisters(
4946 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4947 __ Dsubu(v0, v0, kHeapObjectTag);
4948 __ StoreToSafepointRegisterSlot(v0, reg);
4949 }
4950
4951
4952 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4953 HChange* hchange = instr->hydrogen();
4954 Register input = ToRegister(instr->value());
4955 Register output = ToRegister(instr->result());
4956 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4957 hchange->value()->CheckFlag(HValue::kUint32)) {
4958 __ And(at, input, Operand(0x80000000));
4959 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, at, Operand(zero_reg));
4960 }
4961 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4962 !hchange->value()->CheckFlag(HValue::kUint32)) {
4963 __ SmiTagCheckOverflow(output, input, at);
4964 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, at, Operand(zero_reg));
4965 } else {
4966 __ SmiTag(output, input);
4967 }
4968 }
4969
4970
4971 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4972 Register scratch = scratch0();
4973 Register input = ToRegister(instr->value());
4974 Register result = ToRegister(instr->result());
4975 if (instr->needs_check()) {
4976 STATIC_ASSERT(kHeapObjectTag == 1);
4977 // If the input is a HeapObject, value of scratch won't be zero.
4978 __ And(scratch, input, Operand(kHeapObjectTag));
4979 __ SmiUntag(result, input);
4980 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, scratch, Operand(zero_reg));
4981 } else {
4982 __ SmiUntag(result, input);
4983 }
4984 }
4985
4986
4987 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4988 DoubleRegister result_reg,
4989 NumberUntagDMode mode) {
4990 bool can_convert_undefined_to_nan =
4991 instr->hydrogen()->can_convert_undefined_to_nan();
4992 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4993
4994 Register scratch = scratch0();
4995 Label convert, load_smi, done;
4996 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4997 // Smi check.
4998 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
4999 // Heap number map check.
5000 __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
5001 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
5002 if (can_convert_undefined_to_nan) {
5003 __ Branch(&convert, ne, scratch, Operand(at));
5004 } else {
5005 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, scratch,
5006 Operand(at));
5007 }
5008 // Load heap number.
5009 __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
5010 if (deoptimize_on_minus_zero) {
5011 __ mfc1(at, result_reg);
5012 __ Branch(&done, ne, at, Operand(zero_reg));
5013 __ mfhc1(scratch, result_reg); // Get exponent/sign bits.
5014 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, scratch,
5015 Operand(HeapNumber::kSignMask));
5016 }
5017 __ Branch(&done);
5018 if (can_convert_undefined_to_nan) {
5019 __ bind(&convert);
5020 // Convert undefined (and hole) to NaN.
5021 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5022 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined, input_reg,
5023 Operand(at));
5024 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
5025 __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
5026 __ Branch(&done);
5027 }
5028 } else {
5029 __ SmiUntag(scratch, input_reg);
5030 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
5031 }
5032 // Smi to double register conversion
5033 __ bind(&load_smi);
5034 // scratch: untagged value of input_reg
5035 __ mtc1(scratch, result_reg);
5036 __ cvt_d_w(result_reg, result_reg);
5037 __ bind(&done);
5038 }
5039
5040
5041 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
5042 Register input_reg = ToRegister(instr->value());
5043 Register scratch1 = scratch0();
5044 Register scratch2 = ToRegister(instr->temp());
5045 DoubleRegister double_scratch = double_scratch0();
5046 DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
5047
5048 DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
5049 DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
5050
5051 Label done;
5052
5053 // The input is a tagged HeapObject.
5054 // Heap number map check.
5055 __ ld(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
5056 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
5057 // This 'at' value and scratch1 map value are used for tests in both clauses
5058 // of the if.
5059
5060 if (instr->truncating()) {
5061 // Performs a truncating conversion of a floating point number as used by
5062 // the JS bitwise operations.
5063 Label no_heap_number, check_bools, check_false;
5064 // Check HeapNumber map.
5065 __ Branch(USE_DELAY_SLOT, &no_heap_number, ne, scratch1, Operand(at));
5066 __ mov(scratch2, input_reg); // In delay slot.
5067 __ TruncateHeapNumberToI(input_reg, scratch2);
5068 __ Branch(&done);
5069
5070 // Check for Oddballs. Undefined/False is converted to zero and True to one
5071 // for truncating conversions.
5072 __ bind(&no_heap_number);
5073 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5074 __ Branch(&check_bools, ne, input_reg, Operand(at));
5075 DCHECK(ToRegister(instr->result()).is(input_reg));
5076 __ Branch(USE_DELAY_SLOT, &done);
5077 __ mov(input_reg, zero_reg); // In delay slot.
5078
5079 __ bind(&check_bools);
5080 __ LoadRoot(at, Heap::kTrueValueRootIndex);
5081 __ Branch(&check_false, ne, scratch2, Operand(at));
5082 __ Branch(USE_DELAY_SLOT, &done);
5083 __ li(input_reg, Operand(1)); // In delay slot.
5084
5085 __ bind(&check_false);
5086 __ LoadRoot(at, Heap::kFalseValueRootIndex);
5087 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefinedBoolean,
5088 scratch2, Operand(at));
5089 __ Branch(USE_DELAY_SLOT, &done);
5090 __ mov(input_reg, zero_reg); // In delay slot.
5091 } else {
5092 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, scratch1,
5093 Operand(at));
5094
5095 // Load the double value.
5096 __ ldc1(double_scratch,
5097 FieldMemOperand(input_reg, HeapNumber::kValueOffset));
5098
5099 Register except_flag = scratch2;
5100 __ EmitFPUTruncate(kRoundToZero,
5101 input_reg,
5102 double_scratch,
5103 scratch1,
5104 double_scratch2,
5105 except_flag,
5106 kCheckForInexactConversion);
5107
5108 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
5109 Operand(zero_reg));
5110
5111 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5112 __ Branch(&done, ne, input_reg, Operand(zero_reg));
5113
5114 __ mfhc1(scratch1, double_scratch); // Get exponent/sign bits.
5115 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
5116 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
5117 Operand(zero_reg));
5118 }
5119 }
5120 __ bind(&done);
5121 }
5122
5123
5124 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
5125 class DeferredTaggedToI final : public LDeferredCode {
5126 public:
5127 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
5128 : LDeferredCode(codegen), instr_(instr) { }
5129 void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
5130 LInstruction* instr() override { return instr_; }
5131
5132 private:
5133 LTaggedToI* instr_;
5134 };
5135
5136 LOperand* input = instr->value();
5137 DCHECK(input->IsRegister());
5138 DCHECK(input->Equals(instr->result()));
5139
5140 Register input_reg = ToRegister(input);
5141
5142 if (instr->hydrogen()->value()->representation().IsSmi()) {
5143 __ SmiUntag(input_reg);
5144 } else {
5145 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
5146
5147 // Let the deferred code handle the HeapObject case.
5148 __ JumpIfNotSmi(input_reg, deferred->entry());
5149
5150 // Smi to int32 conversion.
5151 __ SmiUntag(input_reg);
5152 __ bind(deferred->exit());
5153 }
5154 }
5155
5156
5157 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
5158 LOperand* input = instr->value();
5159 DCHECK(input->IsRegister());
5160 LOperand* result = instr->result();
5161 DCHECK(result->IsDoubleRegister());
5162
5163 Register input_reg = ToRegister(input);
5164 DoubleRegister result_reg = ToDoubleRegister(result);
5165
5166 HValue* value = instr->hydrogen()->value();
5167 NumberUntagDMode mode = value->representation().IsSmi()
5168 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
5169
5170 EmitNumberUntagD(instr, input_reg, result_reg, mode);
5171 }
5172
5173
5174 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
5175 Register result_reg = ToRegister(instr->result());
5176 Register scratch1 = scratch0();
5177 DoubleRegister double_input = ToDoubleRegister(instr->value());
5178
5179 if (instr->truncating()) {
5180 __ TruncateDoubleToI(result_reg, double_input);
5181 } else {
5182 Register except_flag = LCodeGen::scratch1();
5183
5184 __ EmitFPUTruncate(kRoundToMinusInf,
5185 result_reg,
5186 double_input,
5187 scratch1,
5188 double_scratch0(),
5189 except_flag,
5190 kCheckForInexactConversion);
5191
5192 // Deopt if the operation did not succeed (except_flag != 0).
5193 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
5194 Operand(zero_reg));
5195
5196 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5197 Label done;
5198 __ Branch(&done, ne, result_reg, Operand(zero_reg));
5199 __ mfhc1(scratch1, double_input); // Get exponent/sign bits.
5200 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
5201 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
5202 Operand(zero_reg));
5203 __ bind(&done);
5204 }
5205 }
5206 }
5207
5208
5209 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
5210 Register result_reg = ToRegister(instr->result());
5211 Register scratch1 = LCodeGen::scratch0();
5212 DoubleRegister double_input = ToDoubleRegister(instr->value());
5213
5214 if (instr->truncating()) {
5215 __ TruncateDoubleToI(result_reg, double_input);
5216 } else {
5217 Register except_flag = LCodeGen::scratch1();
5218
5219 __ EmitFPUTruncate(kRoundToMinusInf,
5220 result_reg,
5221 double_input,
5222 scratch1,
5223 double_scratch0(),
5224 except_flag,
5225 kCheckForInexactConversion);
5226
5227 // Deopt if the operation did not succeed (except_flag != 0).
5228 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
5229 Operand(zero_reg));
5230
5231 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5232 Label done;
5233 __ Branch(&done, ne, result_reg, Operand(zero_reg));
5234 __ mfhc1(scratch1, double_input); // Get exponent/sign bits.
5235 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
5236 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
5237 Operand(zero_reg));
5238 __ bind(&done);
5239 }
5240 }
5241 __ SmiTag(result_reg, result_reg);
5242 }
5243
5244
5245 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
5246 LOperand* input = instr->value();
5247 __ SmiTst(ToRegister(input), at);
5248 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, at, Operand(zero_reg));
5249 }
5250
5251
5252 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
5253 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
5254 LOperand* input = instr->value();
5255 __ SmiTst(ToRegister(input), at);
5256 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
5257 }
5258 }
5259
5260
5261 void LCodeGen::DoCheckArrayBufferNotNeutered(
5262 LCheckArrayBufferNotNeutered* instr) {
5263 Register view = ToRegister(instr->view());
5264 Register scratch = scratch0();
5265
5266 __ ld(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
5267 __ lw(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
5268 __ And(at, scratch, 1 << JSArrayBuffer::WasNeutered::kShift);
5269 DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds, at, Operand(zero_reg));
5270 }
5271
5272
5273 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
5274 Register input = ToRegister(instr->value());
5275 Register scratch = scratch0();
5276
5277 __ GetObjectType(input, scratch, scratch);
5278
5279 if (instr->hydrogen()->is_interval_check()) {
5280 InstanceType first;
5281 InstanceType last;
5282 instr->hydrogen()->GetCheckInterval(&first, &last);
5283
5284 // If there is only one type in the interval check for equality.
5285 if (first == last) {
5286 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType, scratch,
5287 Operand(first));
5288 } else {
5289 DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType, scratch,
5290 Operand(first));
5291 // Omit check for the last type.
5292 if (last != LAST_TYPE) {
5293 DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType, scratch,
5294 Operand(last));
5295 }
5296 }
5297 } else {
5298 uint8_t mask;
5299 uint8_t tag;
5300 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
5301
5302 if (base::bits::IsPowerOfTwo32(mask)) {
5303 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
5304 __ And(at, scratch, mask);
5305 DeoptimizeIf(tag == 0 ? ne : eq, instr, Deoptimizer::kWrongInstanceType,
5306 at, Operand(zero_reg));
5307 } else {
5308 __ And(scratch, scratch, Operand(mask));
5309 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType, scratch,
5310 Operand(tag));
5311 }
5312 }
5313 }
5314
5315
5316 void LCodeGen::DoCheckValue(LCheckValue* instr) {
5317 Register reg = ToRegister(instr->value());
5318 Handle<HeapObject> object = instr->hydrogen()->object().handle();
5319 AllowDeferredHandleDereference smi_check;
5320 if (isolate()->heap()->InNewSpace(*object)) {
5321 Register reg = ToRegister(instr->value());
5322 Handle<Cell> cell = isolate()->factory()->NewCell(object);
5323 __ li(at, Operand(cell));
5324 __ ld(at, FieldMemOperand(at, Cell::kValueOffset));
5325 DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch, reg, Operand(at));
5326 } else {
5327 DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch, reg, Operand(object));
5328 }
5329 }
5330
5331
5332 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
5333 {
5334 PushSafepointRegistersScope scope(this);
5335 __ push(object);
5336 __ mov(cp, zero_reg);
5337 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
5338 RecordSafepointWithRegisters(
5339 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
5340 __ StoreToSafepointRegisterSlot(v0, scratch0());
5341 }
5342 __ SmiTst(scratch0(), at);
5343 DeoptimizeIf(eq, instr, Deoptimizer::kInstanceMigrationFailed, at,
5344 Operand(zero_reg));
5345 }
5346
5347
5348 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
5349 class DeferredCheckMaps final : public LDeferredCode {
5350 public:
5351 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
5352 : LDeferredCode(codegen), instr_(instr), object_(object) {
5353 SetExit(check_maps());
5354 }
5355 void Generate() override {
5356 codegen()->DoDeferredInstanceMigration(instr_, object_);
5357 }
5358 Label* check_maps() { return &check_maps_; }
5359 LInstruction* instr() override { return instr_; }
5360
5361 private:
5362 LCheckMaps* instr_;
5363 Label check_maps_;
5364 Register object_;
5365 };
5366
5367 if (instr->hydrogen()->IsStabilityCheck()) {
5368 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5369 for (int i = 0; i < maps->size(); ++i) {
5370 AddStabilityDependency(maps->at(i).handle());
5371 }
5372 return;
5373 }
5374
5375 Register map_reg = scratch0();
5376 LOperand* input = instr->value();
5377 DCHECK(input->IsRegister());
5378 Register reg = ToRegister(input);
5379 __ ld(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
5380
5381 DeferredCheckMaps* deferred = NULL;
5382 if (instr->hydrogen()->HasMigrationTarget()) {
5383 deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
5384 __ bind(deferred->check_maps());
5385 }
5386
5387 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5388 Label success;
5389 for (int i = 0; i < maps->size() - 1; i++) {
5390 Handle<Map> map = maps->at(i).handle();
5391 __ CompareMapAndBranch(map_reg, map, &success, eq, &success);
5392 }
5393 Handle<Map> map = maps->at(maps->size() - 1).handle();
5394 // Do the CompareMap() directly within the Branch() and DeoptimizeIf().
5395 if (instr->hydrogen()->HasMigrationTarget()) {
5396 __ Branch(deferred->entry(), ne, map_reg, Operand(map));
5397 } else {
5398 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap, map_reg, Operand(map));
5399 }
5400
5401 __ bind(&success);
5402 }
5403
5404
5405 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5406 DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
5407 Register result_reg = ToRegister(instr->result());
5408 DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
5409 __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
5410 }
5411
5412
5413 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5414 Register unclamped_reg = ToRegister(instr->unclamped());
5415 Register result_reg = ToRegister(instr->result());
5416 __ ClampUint8(result_reg, unclamped_reg);
5417 }
5418
5419
5420 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5421 Register scratch = scratch0();
5422 Register input_reg = ToRegister(instr->unclamped());
5423 Register result_reg = ToRegister(instr->result());
5424 DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
5425 Label is_smi, done, heap_number;
5426
5427 // Both smi and heap number cases are handled.
5428 __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi);
5429
5430 // Check for heap number
5431 __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
5432 __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));
5433
5434 // Check for undefined. Undefined is converted to zero for clamping
5435 // conversions.
5436 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined, input_reg,
5437 Operand(factory()->undefined_value()));
5438 __ mov(result_reg, zero_reg);
5439 __ jmp(&done);
5440
5441 // Heap number
5442 __ bind(&heap_number);
5443 __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
5444 HeapNumber::kValueOffset));
5445 __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
5446 __ jmp(&done);
5447
5448 __ bind(&is_smi);
5449 __ ClampUint8(result_reg, scratch);
5450
5451 __ bind(&done);
5452 }
5453
5454
5455 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5456 DoubleRegister value_reg = ToDoubleRegister(instr->value());
5457 Register result_reg = ToRegister(instr->result());
5458 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
5459 __ FmoveHigh(result_reg, value_reg);
5460 } else {
5461 __ FmoveLow(result_reg, value_reg);
5462 }
5463 }
5464
5465
5466 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
5467 Register hi_reg = ToRegister(instr->hi());
5468 Register lo_reg = ToRegister(instr->lo());
5469 DoubleRegister result_reg = ToDoubleRegister(instr->result());
5470 __ Move(result_reg, lo_reg, hi_reg);
5471 }
5472
5473
5474 void LCodeGen::DoAllocate(LAllocate* instr) {
5475 class DeferredAllocate final : public LDeferredCode {
5476 public:
5477 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
5478 : LDeferredCode(codegen), instr_(instr) { }
5479 void Generate() override { codegen()->DoDeferredAllocate(instr_); }
5480 LInstruction* instr() override { return instr_; }
5481
5482 private:
5483 LAllocate* instr_;
5484 };
5485
5486 DeferredAllocate* deferred =
5487 new(zone()) DeferredAllocate(this, instr);
5488
5489 Register result = ToRegister(instr->result());
5490 Register scratch = ToRegister(instr->temp1());
5491 Register scratch2 = ToRegister(instr->temp2());
5492
5493 // Allocate memory for the object.
5494 AllocationFlags flags = TAG_OBJECT;
5495 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5496 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5497 }
5498 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5499 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5500 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5501 }
5502 if (instr->size()->IsConstantOperand()) {
5503 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5504 CHECK(size <= Page::kMaxRegularHeapObjectSize);
5505 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5506 } else {
5507 Register size = ToRegister(instr->size());
5508 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5509 }
5510
5511 __ bind(deferred->exit());
5512
5513 if (instr->hydrogen()->MustPrefillWithFiller()) {
5514 STATIC_ASSERT(kHeapObjectTag == 1);
5515 if (instr->size()->IsConstantOperand()) {
5516 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5517 __ li(scratch, Operand(size - kHeapObjectTag));
5518 } else {
5519 __ Dsubu(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
5520 }
5521 __ li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
5522 Label loop;
5523 __ bind(&loop);
5524 __ Dsubu(scratch, scratch, Operand(kPointerSize));
5525 __ Daddu(at, result, Operand(scratch));
5526 __ sd(scratch2, MemOperand(at));
5527 __ Branch(&loop, ge, scratch, Operand(zero_reg));
5528 }
5529 }
5530
5531
5532 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5533 Register result = ToRegister(instr->result());
5534
5535 // TODO(3095996): Get rid of this. For now, we need to make the
5536 // result register contain a valid pointer because it is already
5537 // contained in the register pointer map.
5538 __ mov(result, zero_reg);
5539
5540 PushSafepointRegistersScope scope(this);
5541 if (instr->size()->IsRegister()) {
5542 Register size = ToRegister(instr->size());
5543 DCHECK(!size.is(result));
5544 __ SmiTag(size);
5545 __ push(size);
5546 } else {
5547 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5548 if (size >= 0 && size <= Smi::kMaxValue) {
5549 __ li(v0, Operand(Smi::FromInt(size)));
5550 __ Push(v0);
5551 } else {
5552 // We should never get here at runtime => abort
5553 __ stop("invalid allocation size");
5554 return;
5555 }
5556 }
5557
5558 int flags = AllocateDoubleAlignFlag::encode(
5559 instr->hydrogen()->MustAllocateDoubleAligned());
5560 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5561 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5562 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5563 } else {
5564 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5565 }
5566 __ li(v0, Operand(Smi::FromInt(flags)));
5567 __ Push(v0);
5568
5569 CallRuntimeFromDeferred(
5570 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
5571 __ StoreToSafepointRegisterSlot(v0, result);
5572 }
5573
5574
5575 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5576 DCHECK(ToRegister(instr->value()).is(a0));
5577 DCHECK(ToRegister(instr->result()).is(v0));
5578 __ push(a0);
5579 CallRuntime(Runtime::kToFastProperties, 1, instr);
5580 }
5581
5582
5583 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
5584 DCHECK(ToRegister(instr->context()).is(cp));
5585 Label materialized;
5586 // Registers will be used as follows:
5587 // a7 = literals array.
5588 // a1 = regexp literal.
5589 // a0 = regexp literal clone.
5590 // a2 and a4-a6 are used as temporaries.
5591 int literal_offset =
5592 LiteralsArray::OffsetOfLiteralAt(instr->hydrogen()->literal_index());
5593 __ li(a7, instr->hydrogen()->literals());
5594 __ ld(a1, FieldMemOperand(a7, literal_offset));
5595 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5596 __ Branch(&materialized, ne, a1, Operand(at));
5597
5598 // Create regexp literal using runtime function
5599 // Result will be in v0.
5600 __ li(a6, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
5601 __ li(a5, Operand(instr->hydrogen()->pattern()));
5602 __ li(a4, Operand(instr->hydrogen()->flags()));
5603 __ Push(a7, a6, a5, a4);
5604 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
5605 __ mov(a1, v0);
5606
5607 __ bind(&materialized);
5608 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
5609 Label allocated, runtime_allocate;
5610
5611 __ Allocate(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
5612 __ jmp(&allocated);
5613
5614 __ bind(&runtime_allocate);
5615 __ li(a0, Operand(Smi::FromInt(size)));
5616 __ Push(a1, a0);
5617 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
5618 __ pop(a1);
5619
5620 __ bind(&allocated);
5621 // Copy the content into the newly allocated memory.
5622 // (Unroll copy loop once for better throughput).
5623 for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
5624 __ ld(a3, FieldMemOperand(a1, i));
5625 __ ld(a2, FieldMemOperand(a1, i + kPointerSize));
5626 __ sd(a3, FieldMemOperand(v0, i));
5627 __ sd(a2, FieldMemOperand(v0, i + kPointerSize));
5628 }
5629 if ((size % (2 * kPointerSize)) != 0) {
5630 __ ld(a3, FieldMemOperand(a1, size - kPointerSize));
5631 __ sd(a3, FieldMemOperand(v0, size - kPointerSize));
5632 }
5633 }
5634
5635
5636 void LCodeGen::DoTypeof(LTypeof* instr) {
5637 DCHECK(ToRegister(instr->value()).is(a3));
5638 DCHECK(ToRegister(instr->result()).is(v0));
5639 Label end, do_call;
5640 Register value_register = ToRegister(instr->value());
5641 __ JumpIfNotSmi(value_register, &do_call);
5642 __ li(v0, Operand(isolate()->factory()->number_string()));
5643 __ jmp(&end);
5644 __ bind(&do_call);
5645 TypeofStub stub(isolate());
5646 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5647 __ bind(&end);
5648 }
5649
5650
5651 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5652 Register input = ToRegister(instr->value());
5653
5654 Register cmp1 = no_reg;
5655 Operand cmp2 = Operand(no_reg);
5656
5657 Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
5658 instr->FalseLabel(chunk_),
5659 input,
5660 instr->type_literal(),
5661 &cmp1,
5662 &cmp2);
5663
5664 DCHECK(cmp1.is_valid());
5665 DCHECK(!cmp2.is_reg() || cmp2.rm().is_valid());
5666
5667 if (final_branch_condition != kNoCondition) {
5668 EmitBranch(instr, final_branch_condition, cmp1, cmp2);
5669 }
5670 }
5671
5672
5673 Condition LCodeGen::EmitTypeofIs(Label* true_label,
5674 Label* false_label,
5675 Register input,
5676 Handle<String> type_name,
5677 Register* cmp1,
5678 Operand* cmp2) {
5679 // This function utilizes the delay slot heavily. This is used to load
5680 // values that are always usable without depending on the type of the input
5681 // register.
5682 Condition final_branch_condition = kNoCondition;
5683 Register scratch = scratch0();
5684 Factory* factory = isolate()->factory();
5685 if (String::Equals(type_name, factory->number_string())) {
5686 __ JumpIfSmi(input, true_label);
5687 __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));
5688 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
5689 *cmp1 = input;
5690 *cmp2 = Operand(at);
5691 final_branch_condition = eq;
5692
5693 } else if (String::Equals(type_name, factory->string_string())) {
5694 __ JumpIfSmi(input, false_label);
5695 __ GetObjectType(input, input, scratch);
5696 *cmp1 = scratch;
5697 *cmp2 = Operand(FIRST_NONSTRING_TYPE);
5698 final_branch_condition = lt;
5699
5700 } else if (String::Equals(type_name, factory->symbol_string())) {
5701 __ JumpIfSmi(input, false_label);
5702 __ GetObjectType(input, input, scratch);
5703 *cmp1 = scratch;
5704 *cmp2 = Operand(SYMBOL_TYPE);
5705 final_branch_condition = eq;
5706
5707 } else if (String::Equals(type_name, factory->boolean_string())) {
5708 __ LoadRoot(at, Heap::kTrueValueRootIndex);
5709 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5710 __ LoadRoot(at, Heap::kFalseValueRootIndex);
5711 *cmp1 = at;
5712 *cmp2 = Operand(input);
5713 final_branch_condition = eq;
5714
5715 } else if (String::Equals(type_name, factory->undefined_string())) {
5716 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5717 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5718 // The first instruction of JumpIfSmi is an And - it is safe in the delay
5719 // slot.
5720 __ JumpIfSmi(input, false_label);
5721 // Check for undetectable objects => true.
5722 __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));
5723 __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
5724 __ And(at, at, 1 << Map::kIsUndetectable);
5725 *cmp1 = at;
5726 *cmp2 = Operand(zero_reg);
5727 final_branch_condition = ne;
5728
5729 } else if (String::Equals(type_name, factory->function_string())) {
5730 __ JumpIfSmi(input, false_label);
5731 __ ld(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5732 __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5733 __ And(scratch, scratch,
5734 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5735 *cmp1 = scratch;
5736 *cmp2 = Operand(1 << Map::kIsCallable);
5737 final_branch_condition = eq;
5738
5739 } else if (String::Equals(type_name, factory->object_string())) {
5740 __ JumpIfSmi(input, false_label);
5741 __ LoadRoot(at, Heap::kNullValueRootIndex);
5742 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5743 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
5744 __ GetObjectType(input, scratch, scratch1());
5745 __ Branch(false_label, lt, scratch1(), Operand(FIRST_SPEC_OBJECT_TYPE));
5746 // Check for callable or undetectable objects => false.
5747 __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5748 __ And(at, scratch,
5749 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5750 *cmp1 = at;
5751 *cmp2 = Operand(zero_reg);
5752 final_branch_condition = eq;
5753
5754 // clang-format off
5755 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5756 } else if (String::Equals(type_name, factory->type##_string())) { \
5757 __ JumpIfSmi(input, false_label); \
5758 __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset)); \
5759 __ LoadRoot(at, Heap::k##Type##MapRootIndex); \
5760 *cmp1 = input; \
5761 *cmp2 = Operand(at); \
5762 final_branch_condition = eq;
5763 SIMD128_TYPES(SIMD128_TYPE)
5764 #undef SIMD128_TYPE
5765 // clang-format on
5766
5767
5768 } else {
5769 *cmp1 = at;
5770 *cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion.
5771 __ Branch(false_label);
5772 }
5773
5774 return final_branch_condition;
5775 }
5776
5777
5778 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
5779 Register temp1 = ToRegister(instr->temp());
5780
5781 EmitIsConstructCall(temp1, scratch0());
5782
5783 EmitBranch(instr, eq, temp1,
5784 Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
5785 }
5786
5787
5788 void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
5789 DCHECK(!temp1.is(temp2));
5790 // Get the frame pointer for the calling frame.
5791 __ ld(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
5792
5793 // Skip the arguments adaptor frame if it exists.
5794 Label check_frame_marker;
5795 __ ld(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
5796 __ Branch(&check_frame_marker, ne, temp2,
5797 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
5798 __ ld(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
5799
5800 // Check the marker in the calling frame.
5801 __ bind(&check_frame_marker);
5802 __ ld(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
5803 }
5804
5805
5806 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5807 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5808 // Ensure that we have enough space after the previous lazy-bailout
5809 // instruction for patching the code here.
5810 int current_pc = masm()->pc_offset();
5811 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5812 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5813 DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
5814 while (padding_size > 0) {
5815 __ nop();
5816 padding_size -= Assembler::kInstrSize;
5817 }
5818 }
5819 }
5820 last_lazy_deopt_pc_ = masm()->pc_offset();
5821 }
5822
5823
5824 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5825 last_lazy_deopt_pc_ = masm()->pc_offset();
5826 DCHECK(instr->HasEnvironment());
5827 LEnvironment* env = instr->environment();
5828 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5829 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5830 }
5831
5832
5833 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5834 Deoptimizer::BailoutType type = instr->hydrogen()->type();
5835 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5836 // needed return address), even though the implementation of LAZY and EAGER is
5837 // now identical. When LAZY is eventually completely folded into EAGER, remove
5838 // the special case below.
5839 if (info()->IsStub() && type == Deoptimizer::EAGER) {
5840 type = Deoptimizer::LAZY;
5841 }
5842
5843 DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type, zero_reg,
5844 Operand(zero_reg));
5845 }
5846
5847
5848 void LCodeGen::DoDummy(LDummy* instr) {
5849 // Nothing to see here, move on!
5850 }
5851
5852
5853 void LCodeGen::DoDummyUse(LDummyUse* instr) {
5854 // Nothing to see here, move on!
5855 }
5856
5857
5858 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5859 PushSafepointRegistersScope scope(this);
5860 LoadContextFromDeferred(instr->context());
5861 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5862 RecordSafepointWithLazyDeopt(
5863 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5864 DCHECK(instr->HasEnvironment());
5865 LEnvironment* env = instr->environment();
5866 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5867 }
5868
5869
5870 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5871 class DeferredStackCheck final : public LDeferredCode {
5872 public:
5873 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5874 : LDeferredCode(codegen), instr_(instr) { }
5875 void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5876 LInstruction* instr() override { return instr_; }
5877
5878 private:
5879 LStackCheck* instr_;
5880 };
5881
5882 DCHECK(instr->HasEnvironment());
5883 LEnvironment* env = instr->environment();
5884 // There is no LLazyBailout instruction for stack-checks. We have to
5885 // prepare for lazy deoptimization explicitly here.
5886 if (instr->hydrogen()->is_function_entry()) {
5887 // Perform stack overflow check.
5888 Label done;
5889 __ LoadRoot(at, Heap::kStackLimitRootIndex);
5890 __ Branch(&done, hs, sp, Operand(at));
5891 DCHECK(instr->context()->IsRegister());
5892 DCHECK(ToRegister(instr->context()).is(cp));
5893 CallCode(isolate()->builtins()->StackCheck(),
5894 RelocInfo::CODE_TARGET,
5895 instr);
5896 __ bind(&done);
5897 } else {
5898 DCHECK(instr->hydrogen()->is_backwards_branch());
5899 // Perform stack overflow check if this goto needs it before jumping.
5900 DeferredStackCheck* deferred_stack_check =
5901 new(zone()) DeferredStackCheck(this, instr);
5902 __ LoadRoot(at, Heap::kStackLimitRootIndex);
5903 __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
5904 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5905 __ bind(instr->done_label());
5906 deferred_stack_check->SetExit(instr->done_label());
5907 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5908 // Don't record a deoptimization index for the safepoint here.
5909 // This will be done explicitly when emitting call and the safepoint in
5910 // the deferred code.
5911 }
5912 }
5913
5914
5915 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5916 // This is a pseudo-instruction that ensures that the environment here is
5917 // properly registered for deoptimization and records the assembler's PC
5918 // offset.
5919 LEnvironment* environment = instr->environment();
5920
5921 // If the environment were already registered, we would have no way of
5922 // backpatching it with the spill slot operands.
5923 DCHECK(!environment->HasBeenRegistered());
5924 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5925
5926 GenerateOsrPrologue();
5927 }
5928
5929
5930 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5931 Register result = ToRegister(instr->result());
5932 Register object = ToRegister(instr->object());
5933
5934 __ And(at, object, kSmiTagMask);
5935 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
5936
5937 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
5938 __ GetObjectType(object, a1, a1);
5939 DeoptimizeIf(le, instr, Deoptimizer::kNotAJavaScriptObject, a1,
5940 Operand(LAST_JS_PROXY_TYPE));
5941
5942 Label use_cache, call_runtime;
5943 DCHECK(object.is(a0));
5944 Register null_value = a5;
5945 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
5946 __ CheckEnumCache(null_value, &call_runtime);
5947
5948 __ ld(result, FieldMemOperand(object, HeapObject::kMapOffset));
5949 __ Branch(&use_cache);
5950
5951 // Get the set of properties to enumerate.
5952 __ bind(&call_runtime);
5953 __ push(object);
5954 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
5955
5956 __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
5957 DCHECK(result.is(v0));
5958 __ LoadRoot(at, Heap::kMetaMapRootIndex);
5959 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap, a1, Operand(at));
5960 __ bind(&use_cache);
5961 }
5962
5963
5964 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5965 Register map = ToRegister(instr->map());
5966 Register result = ToRegister(instr->result());
5967 Label load_cache, done;
5968 __ EnumLength(result, map);
5969 __ Branch(&load_cache, ne, result, Operand(Smi::FromInt(0)));
5970 __ li(result, Operand(isolate()->factory()->empty_fixed_array()));
5971 __ jmp(&done);
5972
5973 __ bind(&load_cache);
5974 __ LoadInstanceDescriptors(map, result);
5975 __ ld(result,
5976 FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
5977 __ ld(result,
5978 FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5979 DeoptimizeIf(eq, instr, Deoptimizer::kNoCache, result, Operand(zero_reg));
5980
5981 __ bind(&done);
5982 }
5983
5984
5985 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5986 Register object = ToRegister(instr->value());
5987 Register map = ToRegister(instr->map());
5988 __ ld(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5989 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap, map, Operand(scratch0()));
5990 }
5991
5992
5993 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5994 Register result,
5995 Register object,
5996 Register index) {
5997 PushSafepointRegistersScope scope(this);
5998 __ Push(object, index);
5999 __ mov(cp, zero_reg);
6000 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
6001 RecordSafepointWithRegisters(
6002 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
6003 __ StoreToSafepointRegisterSlot(v0, result);
6004 }
6005
6006
6007 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
6008 class DeferredLoadMutableDouble final : public LDeferredCode {
6009 public:
6010 DeferredLoadMutableDouble(LCodeGen* codegen,
6011 LLoadFieldByIndex* instr,
6012 Register result,
6013 Register object,
6014 Register index)
6015 : LDeferredCode(codegen),
6016 instr_(instr),
6017 result_(result),
6018 object_(object),
6019 index_(index) {
6020 }
6021 void Generate() override {
6022 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
6023 }
6024 LInstruction* instr() override { return instr_; }
6025
6026 private:
6027 LLoadFieldByIndex* instr_;
6028 Register result_;
6029 Register object_;
6030 Register index_;
6031 };
6032
6033 Register object = ToRegister(instr->object());
6034 Register index = ToRegister(instr->index());
6035 Register result = ToRegister(instr->result());
6036 Register scratch = scratch0();
6037
6038 DeferredLoadMutableDouble* deferred;
6039 deferred = new(zone()) DeferredLoadMutableDouble(
6040 this, instr, result, object, index);
6041
6042 Label out_of_object, done;
6043
6044 __ And(scratch, index, Operand(Smi::FromInt(1)));
6045 __ Branch(deferred->entry(), ne, scratch, Operand(zero_reg));
6046 __ dsra(index, index, 1);
6047
6048 __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg));
6049 __ SmiScale(scratch, index, kPointerSizeLog2); // In delay slot.
6050 __ Daddu(scratch, object, scratch);
6051 __ ld(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
6052
6053 __ Branch(&done);
6054
6055 __ bind(&out_of_object);
6056 __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
6057 // Index is equal to negated out of object property index plus 1.
6058 __ Dsubu(scratch, result, scratch);
6059 __ ld(result, FieldMemOperand(scratch,
6060 FixedArray::kHeaderSize - kPointerSize));
6061 __ bind(deferred->exit());
6062 __ bind(&done);
6063 }
6064
6065
6066 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
6067 Register context = ToRegister(instr->context());
6068 __ sd(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
6069 }
6070
6071
6072 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
6073 Handle<ScopeInfo> scope_info = instr->scope_info();
6074 __ li(at, scope_info);
6075 __ Push(at, ToRegister(instr->function()));
6076 CallRuntime(Runtime::kPushBlockContext, 2, instr);
6077 RecordSafepoint(Safepoint::kNoLazyDeopt);
6078 }
6079
6080
6081 #undef __
6082
6083 } // namespace internal
6084 } // namespace v8
OLDNEW
« no previous file with comments | « src/mips64/lithium-codegen-mips64.h ('k') | src/mips64/lithium-gap-resolver-mips64.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698