Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(4)

Side by Side Diff: src/lithium-allocator.cc

Issue 1405363003: Move Hydrogen and Lithium to src/crankshaft/ (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: rebased Created 5 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/lithium-allocator.h ('k') | src/lithium-allocator-inl.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/lithium-allocator.h"
6
7 #include "src/hydrogen.h"
8 #include "src/lithium-inl.h"
9 #include "src/lithium-allocator-inl.h"
10 #include "src/register-configuration.h"
11 #include "src/string-stream.h"
12
13 namespace v8 {
14 namespace internal {
15
16 static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
17 return a.Value() < b.Value() ? a : b;
18 }
19
20
21 static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
22 return a.Value() > b.Value() ? a : b;
23 }
24
25
26 UsePosition::UsePosition(LifetimePosition pos,
27 LOperand* operand,
28 LOperand* hint)
29 : operand_(operand),
30 hint_(hint),
31 pos_(pos),
32 next_(NULL),
33 requires_reg_(false),
34 register_beneficial_(true) {
35 if (operand_ != NULL && operand_->IsUnallocated()) {
36 LUnallocated* unalloc = LUnallocated::cast(operand_);
37 requires_reg_ = unalloc->HasRegisterPolicy() ||
38 unalloc->HasDoubleRegisterPolicy();
39 register_beneficial_ = !unalloc->HasAnyPolicy();
40 }
41 DCHECK(pos_.IsValid());
42 }
43
44
45 bool UsePosition::HasHint() const {
46 return hint_ != NULL && !hint_->IsUnallocated();
47 }
48
49
50 bool UsePosition::RequiresRegister() const {
51 return requires_reg_;
52 }
53
54
55 bool UsePosition::RegisterIsBeneficial() const {
56 return register_beneficial_;
57 }
58
59
60 void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
61 DCHECK(Contains(pos) && pos.Value() != start().Value());
62 UseInterval* after = new(zone) UseInterval(pos, end_);
63 after->next_ = next_;
64 next_ = after;
65 end_ = pos;
66 }
67
68
69 #ifdef DEBUG
70
71
72 void LiveRange::Verify() const {
73 UsePosition* cur = first_pos_;
74 while (cur != NULL) {
75 DCHECK(Start().Value() <= cur->pos().Value() &&
76 cur->pos().Value() <= End().Value());
77 cur = cur->next();
78 }
79 }
80
81
82 bool LiveRange::HasOverlap(UseInterval* target) const {
83 UseInterval* current_interval = first_interval_;
84 while (current_interval != NULL) {
85 // Intervals overlap if the start of one is contained in the other.
86 if (current_interval->Contains(target->start()) ||
87 target->Contains(current_interval->start())) {
88 return true;
89 }
90 current_interval = current_interval->next();
91 }
92 return false;
93 }
94
95
96 #endif
97
98
99 LiveRange::LiveRange(int id, Zone* zone)
100 : id_(id),
101 spilled_(false),
102 kind_(UNALLOCATED_REGISTERS),
103 assigned_register_(kInvalidAssignment),
104 last_interval_(NULL),
105 first_interval_(NULL),
106 first_pos_(NULL),
107 parent_(NULL),
108 next_(NULL),
109 current_interval_(NULL),
110 last_processed_use_(NULL),
111 current_hint_operand_(NULL),
112 spill_operand_(new (zone) LOperand()),
113 spill_start_index_(kMaxInt) {}
114
115
116 void LiveRange::set_assigned_register(int reg, Zone* zone) {
117 DCHECK(!HasRegisterAssigned() && !IsSpilled());
118 assigned_register_ = reg;
119 ConvertOperands(zone);
120 }
121
122
123 void LiveRange::MakeSpilled(Zone* zone) {
124 DCHECK(!IsSpilled());
125 DCHECK(TopLevel()->HasAllocatedSpillOperand());
126 spilled_ = true;
127 assigned_register_ = kInvalidAssignment;
128 ConvertOperands(zone);
129 }
130
131
132 bool LiveRange::HasAllocatedSpillOperand() const {
133 DCHECK(spill_operand_ != NULL);
134 return !spill_operand_->IsIgnored();
135 }
136
137
138 void LiveRange::SetSpillOperand(LOperand* operand) {
139 DCHECK(!operand->IsUnallocated());
140 DCHECK(spill_operand_ != NULL);
141 DCHECK(spill_operand_->IsIgnored());
142 spill_operand_->ConvertTo(operand->kind(), operand->index());
143 }
144
145
146 UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
147 UsePosition* use_pos = last_processed_use_;
148 if (use_pos == NULL) use_pos = first_pos();
149 while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
150 use_pos = use_pos->next();
151 }
152 last_processed_use_ = use_pos;
153 return use_pos;
154 }
155
156
157 UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
158 LifetimePosition start) {
159 UsePosition* pos = NextUsePosition(start);
160 while (pos != NULL && !pos->RegisterIsBeneficial()) {
161 pos = pos->next();
162 }
163 return pos;
164 }
165
166
167 UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
168 LifetimePosition start) {
169 UsePosition* pos = first_pos();
170 UsePosition* prev = NULL;
171 while (pos != NULL && pos->pos().Value() < start.Value()) {
172 if (pos->RegisterIsBeneficial()) prev = pos;
173 pos = pos->next();
174 }
175 return prev;
176 }
177
178
179 UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
180 UsePosition* pos = NextUsePosition(start);
181 while (pos != NULL && !pos->RequiresRegister()) {
182 pos = pos->next();
183 }
184 return pos;
185 }
186
187
188 bool LiveRange::CanBeSpilled(LifetimePosition pos) {
189 // We cannot spill a live range that has a use requiring a register
190 // at the current or the immediate next position.
191 UsePosition* use_pos = NextRegisterPosition(pos);
192 if (use_pos == NULL) return true;
193 return
194 use_pos->pos().Value() > pos.NextInstruction().InstructionEnd().Value();
195 }
196
197
198 LOperand* LiveRange::CreateAssignedOperand(Zone* zone) {
199 LOperand* op = NULL;
200 if (HasRegisterAssigned()) {
201 DCHECK(!IsSpilled());
202 switch (Kind()) {
203 case GENERAL_REGISTERS:
204 op = LRegister::Create(assigned_register(), zone);
205 break;
206 case DOUBLE_REGISTERS:
207 op = LDoubleRegister::Create(assigned_register(), zone);
208 break;
209 default:
210 UNREACHABLE();
211 }
212 } else if (IsSpilled()) {
213 DCHECK(!HasRegisterAssigned());
214 op = TopLevel()->GetSpillOperand();
215 DCHECK(!op->IsUnallocated());
216 } else {
217 LUnallocated* unalloc = new(zone) LUnallocated(LUnallocated::NONE);
218 unalloc->set_virtual_register(id_);
219 op = unalloc;
220 }
221 return op;
222 }
223
224
225 UseInterval* LiveRange::FirstSearchIntervalForPosition(
226 LifetimePosition position) const {
227 if (current_interval_ == NULL) return first_interval_;
228 if (current_interval_->start().Value() > position.Value()) {
229 current_interval_ = NULL;
230 return first_interval_;
231 }
232 return current_interval_;
233 }
234
235
236 void LiveRange::AdvanceLastProcessedMarker(
237 UseInterval* to_start_of, LifetimePosition but_not_past) const {
238 if (to_start_of == NULL) return;
239 if (to_start_of->start().Value() > but_not_past.Value()) return;
240 LifetimePosition start =
241 current_interval_ == NULL ? LifetimePosition::Invalid()
242 : current_interval_->start();
243 if (to_start_of->start().Value() > start.Value()) {
244 current_interval_ = to_start_of;
245 }
246 }
247
248
249 void LiveRange::SplitAt(LifetimePosition position,
250 LiveRange* result,
251 Zone* zone) {
252 DCHECK(Start().Value() < position.Value());
253 DCHECK(result->IsEmpty());
254 // Find the last interval that ends before the position. If the
255 // position is contained in one of the intervals in the chain, we
256 // split that interval and use the first part.
257 UseInterval* current = FirstSearchIntervalForPosition(position);
258
259 // If the split position coincides with the beginning of a use interval
260 // we need to split use positons in a special way.
261 bool split_at_start = false;
262
263 if (current->start().Value() == position.Value()) {
264 // When splitting at start we need to locate the previous use interval.
265 current = first_interval_;
266 }
267
268 while (current != NULL) {
269 if (current->Contains(position)) {
270 current->SplitAt(position, zone);
271 break;
272 }
273 UseInterval* next = current->next();
274 if (next->start().Value() >= position.Value()) {
275 split_at_start = (next->start().Value() == position.Value());
276 break;
277 }
278 current = next;
279 }
280
281 // Partition original use intervals to the two live ranges.
282 UseInterval* before = current;
283 UseInterval* after = before->next();
284 result->last_interval_ = (last_interval_ == before)
285 ? after // Only interval in the range after split.
286 : last_interval_; // Last interval of the original range.
287 result->first_interval_ = after;
288 last_interval_ = before;
289
290 // Find the last use position before the split and the first use
291 // position after it.
292 UsePosition* use_after = first_pos_;
293 UsePosition* use_before = NULL;
294 if (split_at_start) {
295 // The split position coincides with the beginning of a use interval (the
296 // end of a lifetime hole). Use at this position should be attributed to
297 // the split child because split child owns use interval covering it.
298 while (use_after != NULL && use_after->pos().Value() < position.Value()) {
299 use_before = use_after;
300 use_after = use_after->next();
301 }
302 } else {
303 while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
304 use_before = use_after;
305 use_after = use_after->next();
306 }
307 }
308
309 // Partition original use positions to the two live ranges.
310 if (use_before != NULL) {
311 use_before->next_ = NULL;
312 } else {
313 first_pos_ = NULL;
314 }
315 result->first_pos_ = use_after;
316
317 // Discard cached iteration state. It might be pointing
318 // to the use that no longer belongs to this live range.
319 last_processed_use_ = NULL;
320 current_interval_ = NULL;
321
322 // Link the new live range in the chain before any of the other
323 // ranges linked from the range before the split.
324 result->parent_ = (parent_ == NULL) ? this : parent_;
325 result->kind_ = result->parent_->kind_;
326 result->next_ = next_;
327 next_ = result;
328
329 #ifdef DEBUG
330 Verify();
331 result->Verify();
332 #endif
333 }
334
335
336 // This implements an ordering on live ranges so that they are ordered by their
337 // start positions. This is needed for the correctness of the register
338 // allocation algorithm. If two live ranges start at the same offset then there
339 // is a tie breaker based on where the value is first used. This part of the
340 // ordering is merely a heuristic.
341 bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
342 LifetimePosition start = Start();
343 LifetimePosition other_start = other->Start();
344 if (start.Value() == other_start.Value()) {
345 UsePosition* pos = first_pos();
346 if (pos == NULL) return false;
347 UsePosition* other_pos = other->first_pos();
348 if (other_pos == NULL) return true;
349 return pos->pos().Value() < other_pos->pos().Value();
350 }
351 return start.Value() < other_start.Value();
352 }
353
354
355 void LiveRange::ShortenTo(LifetimePosition start) {
356 LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value());
357 DCHECK(first_interval_ != NULL);
358 DCHECK(first_interval_->start().Value() <= start.Value());
359 DCHECK(start.Value() < first_interval_->end().Value());
360 first_interval_->set_start(start);
361 }
362
363
364 void LiveRange::EnsureInterval(LifetimePosition start,
365 LifetimePosition end,
366 Zone* zone) {
367 LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
368 id_,
369 start.Value(),
370 end.Value());
371 LifetimePosition new_end = end;
372 while (first_interval_ != NULL &&
373 first_interval_->start().Value() <= end.Value()) {
374 if (first_interval_->end().Value() > end.Value()) {
375 new_end = first_interval_->end();
376 }
377 first_interval_ = first_interval_->next();
378 }
379
380 UseInterval* new_interval = new(zone) UseInterval(start, new_end);
381 new_interval->next_ = first_interval_;
382 first_interval_ = new_interval;
383 if (new_interval->next() == NULL) {
384 last_interval_ = new_interval;
385 }
386 }
387
388
389 void LiveRange::AddUseInterval(LifetimePosition start,
390 LifetimePosition end,
391 Zone* zone) {
392 LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n",
393 id_,
394 start.Value(),
395 end.Value());
396 if (first_interval_ == NULL) {
397 UseInterval* interval = new(zone) UseInterval(start, end);
398 first_interval_ = interval;
399 last_interval_ = interval;
400 } else {
401 if (end.Value() == first_interval_->start().Value()) {
402 first_interval_->set_start(start);
403 } else if (end.Value() < first_interval_->start().Value()) {
404 UseInterval* interval = new(zone) UseInterval(start, end);
405 interval->set_next(first_interval_);
406 first_interval_ = interval;
407 } else {
408 // Order of instruction's processing (see ProcessInstructions) guarantees
409 // that each new use interval either precedes or intersects with
410 // last added interval.
411 DCHECK(start.Value() < first_interval_->end().Value());
412 first_interval_->start_ = Min(start, first_interval_->start_);
413 first_interval_->end_ = Max(end, first_interval_->end_);
414 }
415 }
416 }
417
418
419 void LiveRange::AddUsePosition(LifetimePosition pos,
420 LOperand* operand,
421 LOperand* hint,
422 Zone* zone) {
423 LAllocator::TraceAlloc("Add to live range %d use position %d\n",
424 id_,
425 pos.Value());
426 UsePosition* use_pos = new(zone) UsePosition(pos, operand, hint);
427 UsePosition* prev_hint = NULL;
428 UsePosition* prev = NULL;
429 UsePosition* current = first_pos_;
430 while (current != NULL && current->pos().Value() < pos.Value()) {
431 prev_hint = current->HasHint() ? current : prev_hint;
432 prev = current;
433 current = current->next();
434 }
435
436 if (prev == NULL) {
437 use_pos->set_next(first_pos_);
438 first_pos_ = use_pos;
439 } else {
440 use_pos->next_ = prev->next_;
441 prev->next_ = use_pos;
442 }
443
444 if (prev_hint == NULL && use_pos->HasHint()) {
445 current_hint_operand_ = hint;
446 }
447 }
448
449
450 void LiveRange::ConvertOperands(Zone* zone) {
451 LOperand* op = CreateAssignedOperand(zone);
452 UsePosition* use_pos = first_pos();
453 while (use_pos != NULL) {
454 DCHECK(Start().Value() <= use_pos->pos().Value() &&
455 use_pos->pos().Value() <= End().Value());
456
457 if (use_pos->HasOperand()) {
458 DCHECK(op->IsRegister() || op->IsDoubleRegister() ||
459 !use_pos->RequiresRegister());
460 use_pos->operand()->ConvertTo(op->kind(), op->index());
461 }
462 use_pos = use_pos->next();
463 }
464 }
465
466
467 bool LiveRange::CanCover(LifetimePosition position) const {
468 if (IsEmpty()) return false;
469 return Start().Value() <= position.Value() &&
470 position.Value() < End().Value();
471 }
472
473
474 bool LiveRange::Covers(LifetimePosition position) {
475 if (!CanCover(position)) return false;
476 UseInterval* start_search = FirstSearchIntervalForPosition(position);
477 for (UseInterval* interval = start_search;
478 interval != NULL;
479 interval = interval->next()) {
480 DCHECK(interval->next() == NULL ||
481 interval->next()->start().Value() >= interval->start().Value());
482 AdvanceLastProcessedMarker(interval, position);
483 if (interval->Contains(position)) return true;
484 if (interval->start().Value() > position.Value()) return false;
485 }
486 return false;
487 }
488
489
490 LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
491 UseInterval* b = other->first_interval();
492 if (b == NULL) return LifetimePosition::Invalid();
493 LifetimePosition advance_last_processed_up_to = b->start();
494 UseInterval* a = FirstSearchIntervalForPosition(b->start());
495 while (a != NULL && b != NULL) {
496 if (a->start().Value() > other->End().Value()) break;
497 if (b->start().Value() > End().Value()) break;
498 LifetimePosition cur_intersection = a->Intersect(b);
499 if (cur_intersection.IsValid()) {
500 return cur_intersection;
501 }
502 if (a->start().Value() < b->start().Value()) {
503 a = a->next();
504 if (a == NULL || a->start().Value() > other->End().Value()) break;
505 AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
506 } else {
507 b = b->next();
508 }
509 }
510 return LifetimePosition::Invalid();
511 }
512
513
514 LAllocator::LAllocator(int num_values, HGraph* graph)
515 : chunk_(NULL),
516 live_in_sets_(graph->blocks()->length(), zone()),
517 live_ranges_(num_values * 2, zone()),
518 fixed_live_ranges_(NULL),
519 fixed_double_live_ranges_(NULL),
520 unhandled_live_ranges_(num_values * 2, zone()),
521 active_live_ranges_(8, zone()),
522 inactive_live_ranges_(8, zone()),
523 reusable_slots_(8, zone()),
524 next_virtual_register_(num_values),
525 first_artificial_register_(num_values),
526 mode_(UNALLOCATED_REGISTERS),
527 num_registers_(-1),
528 graph_(graph),
529 has_osr_entry_(false),
530 allocation_ok_(true) {}
531
532
533 void LAllocator::InitializeLivenessAnalysis() {
534 // Initialize the live_in sets for each block to NULL.
535 int block_count = graph_->blocks()->length();
536 live_in_sets_.Initialize(block_count, zone());
537 live_in_sets_.AddBlock(NULL, block_count, zone());
538 }
539
540
541 BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) {
542 // Compute live out for the given block, except not including backward
543 // successor edges.
544 BitVector* live_out = new(zone()) BitVector(next_virtual_register_, zone());
545
546 // Process all successor blocks.
547 for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
548 // Add values live on entry to the successor. Note the successor's
549 // live_in will not be computed yet for backwards edges.
550 HBasicBlock* successor = it.Current();
551 BitVector* live_in = live_in_sets_[successor->block_id()];
552 if (live_in != NULL) live_out->Union(*live_in);
553
554 // All phi input operands corresponding to this successor edge are live
555 // out from this block.
556 int index = successor->PredecessorIndexOf(block);
557 const ZoneList<HPhi*>* phis = successor->phis();
558 for (int i = 0; i < phis->length(); ++i) {
559 HPhi* phi = phis->at(i);
560 if (!phi->OperandAt(index)->IsConstant()) {
561 live_out->Add(phi->OperandAt(index)->id());
562 }
563 }
564 }
565
566 return live_out;
567 }
568
569
570 void LAllocator::AddInitialIntervals(HBasicBlock* block,
571 BitVector* live_out) {
572 // Add an interval that includes the entire block to the live range for
573 // each live_out value.
574 LifetimePosition start = LifetimePosition::FromInstructionIndex(
575 block->first_instruction_index());
576 LifetimePosition end = LifetimePosition::FromInstructionIndex(
577 block->last_instruction_index()).NextInstruction();
578 BitVector::Iterator iterator(live_out);
579 while (!iterator.Done()) {
580 int operand_index = iterator.Current();
581 LiveRange* range = LiveRangeFor(operand_index);
582 range->AddUseInterval(start, end, zone());
583 iterator.Advance();
584 }
585 }
586
587
588 int LAllocator::FixedDoubleLiveRangeID(int index) {
589 return -index - 1 - Register::kNumRegisters;
590 }
591
592
593 LOperand* LAllocator::AllocateFixed(LUnallocated* operand,
594 int pos,
595 bool is_tagged) {
596 TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
597 DCHECK(operand->HasFixedPolicy());
598 if (operand->HasFixedSlotPolicy()) {
599 operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_slot_index());
600 } else if (operand->HasFixedRegisterPolicy()) {
601 int reg_index = operand->fixed_register_index();
602 operand->ConvertTo(LOperand::REGISTER, reg_index);
603 } else if (operand->HasFixedDoubleRegisterPolicy()) {
604 int reg_index = operand->fixed_register_index();
605 operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index);
606 } else {
607 UNREACHABLE();
608 }
609 if (is_tagged) {
610 TraceAlloc("Fixed reg is tagged at %d\n", pos);
611 LInstruction* instr = InstructionAt(pos);
612 if (instr->HasPointerMap()) {
613 instr->pointer_map()->RecordPointer(operand, chunk()->zone());
614 }
615 }
616 return operand;
617 }
618
619
620 LiveRange* LAllocator::FixedLiveRangeFor(int index) {
621 DCHECK(index < Register::kNumRegisters);
622 LiveRange* result = fixed_live_ranges_[index];
623 if (result == NULL) {
624 result = new(zone()) LiveRange(FixedLiveRangeID(index), chunk()->zone());
625 DCHECK(result->IsFixed());
626 result->kind_ = GENERAL_REGISTERS;
627 SetLiveRangeAssignedRegister(result, index);
628 fixed_live_ranges_[index] = result;
629 }
630 return result;
631 }
632
633
634 LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) {
635 DCHECK(index < DoubleRegister::kMaxNumRegisters);
636 LiveRange* result = fixed_double_live_ranges_[index];
637 if (result == NULL) {
638 result = new(zone()) LiveRange(FixedDoubleLiveRangeID(index),
639 chunk()->zone());
640 DCHECK(result->IsFixed());
641 result->kind_ = DOUBLE_REGISTERS;
642 SetLiveRangeAssignedRegister(result, index);
643 fixed_double_live_ranges_[index] = result;
644 }
645 return result;
646 }
647
648
649 LiveRange* LAllocator::LiveRangeFor(int index) {
650 if (index >= live_ranges_.length()) {
651 live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1, zone());
652 }
653 LiveRange* result = live_ranges_[index];
654 if (result == NULL) {
655 result = new(zone()) LiveRange(index, chunk()->zone());
656 live_ranges_[index] = result;
657 }
658 return result;
659 }
660
661
662 LGap* LAllocator::GetLastGap(HBasicBlock* block) {
663 int last_instruction = block->last_instruction_index();
664 int index = chunk_->NearestGapPos(last_instruction);
665 return GapAt(index);
666 }
667
668
669 HPhi* LAllocator::LookupPhi(LOperand* operand) const {
670 if (!operand->IsUnallocated()) return NULL;
671 int index = LUnallocated::cast(operand)->virtual_register();
672 HValue* instr = graph_->LookupValue(index);
673 if (instr != NULL && instr->IsPhi()) {
674 return HPhi::cast(instr);
675 }
676 return NULL;
677 }
678
679
680 LiveRange* LAllocator::LiveRangeFor(LOperand* operand) {
681 if (operand->IsUnallocated()) {
682 return LiveRangeFor(LUnallocated::cast(operand)->virtual_register());
683 } else if (operand->IsRegister()) {
684 return FixedLiveRangeFor(operand->index());
685 } else if (operand->IsDoubleRegister()) {
686 return FixedDoubleLiveRangeFor(operand->index());
687 } else {
688 return NULL;
689 }
690 }
691
692
693 void LAllocator::Define(LifetimePosition position,
694 LOperand* operand,
695 LOperand* hint) {
696 LiveRange* range = LiveRangeFor(operand);
697 if (range == NULL) return;
698
699 if (range->IsEmpty() || range->Start().Value() > position.Value()) {
700 // Can happen if there is a definition without use.
701 range->AddUseInterval(position, position.NextInstruction(), zone());
702 range->AddUsePosition(position.NextInstruction(), NULL, NULL, zone());
703 } else {
704 range->ShortenTo(position);
705 }
706
707 if (operand->IsUnallocated()) {
708 LUnallocated* unalloc_operand = LUnallocated::cast(operand);
709 range->AddUsePosition(position, unalloc_operand, hint, zone());
710 }
711 }
712
713
714 void LAllocator::Use(LifetimePosition block_start,
715 LifetimePosition position,
716 LOperand* operand,
717 LOperand* hint) {
718 LiveRange* range = LiveRangeFor(operand);
719 if (range == NULL) return;
720 if (operand->IsUnallocated()) {
721 LUnallocated* unalloc_operand = LUnallocated::cast(operand);
722 range->AddUsePosition(position, unalloc_operand, hint, zone());
723 }
724 range->AddUseInterval(block_start, position, zone());
725 }
726
727
728 void LAllocator::AddConstraintsGapMove(int index,
729 LOperand* from,
730 LOperand* to) {
731 LGap* gap = GapAt(index);
732 LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
733 chunk()->zone());
734 if (from->IsUnallocated()) {
735 const ZoneList<LMoveOperands>* move_operands = move->move_operands();
736 for (int i = 0; i < move_operands->length(); ++i) {
737 LMoveOperands cur = move_operands->at(i);
738 LOperand* cur_to = cur.destination();
739 if (cur_to->IsUnallocated()) {
740 if (LUnallocated::cast(cur_to)->virtual_register() ==
741 LUnallocated::cast(from)->virtual_register()) {
742 move->AddMove(cur.source(), to, chunk()->zone());
743 return;
744 }
745 }
746 }
747 }
748 move->AddMove(from, to, chunk()->zone());
749 }
750
751
752 void LAllocator::MeetRegisterConstraints(HBasicBlock* block) {
753 int start = block->first_instruction_index();
754 int end = block->last_instruction_index();
755 if (start == -1) return;
756 for (int i = start; i <= end; ++i) {
757 if (IsGapAt(i)) {
758 LInstruction* instr = NULL;
759 LInstruction* prev_instr = NULL;
760 if (i < end) instr = InstructionAt(i + 1);
761 if (i > start) prev_instr = InstructionAt(i - 1);
762 MeetConstraintsBetween(prev_instr, instr, i);
763 if (!AllocationOk()) return;
764 }
765 }
766 }
767
768
769 void LAllocator::MeetConstraintsBetween(LInstruction* first,
770 LInstruction* second,
771 int gap_index) {
772 // Handle fixed temporaries.
773 if (first != NULL) {
774 for (TempIterator it(first); !it.Done(); it.Advance()) {
775 LUnallocated* temp = LUnallocated::cast(it.Current());
776 if (temp->HasFixedPolicy()) {
777 AllocateFixed(temp, gap_index - 1, false);
778 }
779 }
780 }
781
782 // Handle fixed output operand.
783 if (first != NULL && first->Output() != NULL) {
784 LUnallocated* first_output = LUnallocated::cast(first->Output());
785 LiveRange* range = LiveRangeFor(first_output->virtual_register());
786 bool assigned = false;
787 if (first_output->HasFixedPolicy()) {
788 LUnallocated* output_copy = first_output->CopyUnconstrained(
789 chunk()->zone());
790 bool is_tagged = HasTaggedValue(first_output->virtual_register());
791 AllocateFixed(first_output, gap_index, is_tagged);
792
793 // This value is produced on the stack, we never need to spill it.
794 if (first_output->IsStackSlot()) {
795 range->SetSpillOperand(first_output);
796 range->SetSpillStartIndex(gap_index - 1);
797 assigned = true;
798 }
799 chunk_->AddGapMove(gap_index, first_output, output_copy);
800 }
801
802 if (!assigned) {
803 range->SetSpillStartIndex(gap_index);
804
805 // This move to spill operand is not a real use. Liveness analysis
806 // and splitting of live ranges do not account for it.
807 // Thus it should be inserted to a lifetime position corresponding to
808 // the instruction end.
809 LGap* gap = GapAt(gap_index);
810 LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE,
811 chunk()->zone());
812 move->AddMove(first_output, range->GetSpillOperand(),
813 chunk()->zone());
814 }
815 }
816
817 // Handle fixed input operands of second instruction.
818 if (second != NULL) {
819 for (UseIterator it(second); !it.Done(); it.Advance()) {
820 LUnallocated* cur_input = LUnallocated::cast(it.Current());
821 if (cur_input->HasFixedPolicy()) {
822 LUnallocated* input_copy = cur_input->CopyUnconstrained(
823 chunk()->zone());
824 bool is_tagged = HasTaggedValue(cur_input->virtual_register());
825 AllocateFixed(cur_input, gap_index + 1, is_tagged);
826 AddConstraintsGapMove(gap_index, input_copy, cur_input);
827 } else if (cur_input->HasWritableRegisterPolicy()) {
828 // The live range of writable input registers always goes until the end
829 // of the instruction.
830 DCHECK(!cur_input->IsUsedAtStart());
831
832 LUnallocated* input_copy = cur_input->CopyUnconstrained(
833 chunk()->zone());
834 int vreg = GetVirtualRegister();
835 if (!AllocationOk()) return;
836 cur_input->set_virtual_register(vreg);
837
838 if (RequiredRegisterKind(input_copy->virtual_register()) ==
839 DOUBLE_REGISTERS) {
840 double_artificial_registers_.Add(
841 cur_input->virtual_register() - first_artificial_register_,
842 zone());
843 }
844
845 AddConstraintsGapMove(gap_index, input_copy, cur_input);
846 }
847 }
848 }
849
850 // Handle "output same as input" for second instruction.
851 if (second != NULL && second->Output() != NULL) {
852 LUnallocated* second_output = LUnallocated::cast(second->Output());
853 if (second_output->HasSameAsInputPolicy()) {
854 LUnallocated* cur_input = LUnallocated::cast(second->FirstInput());
855 int output_vreg = second_output->virtual_register();
856 int input_vreg = cur_input->virtual_register();
857
858 LUnallocated* input_copy = cur_input->CopyUnconstrained(
859 chunk()->zone());
860 cur_input->set_virtual_register(second_output->virtual_register());
861 AddConstraintsGapMove(gap_index, input_copy, cur_input);
862
863 if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
864 int index = gap_index + 1;
865 LInstruction* instr = InstructionAt(index);
866 if (instr->HasPointerMap()) {
867 instr->pointer_map()->RecordPointer(input_copy, chunk()->zone());
868 }
869 } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
870 // The input is assumed to immediately have a tagged representation,
871 // before the pointer map can be used. I.e. the pointer map at the
872 // instruction will include the output operand (whose value at the
873 // beginning of the instruction is equal to the input operand). If
874 // this is not desired, then the pointer map at this instruction needs
875 // to be adjusted manually.
876 }
877 }
878 }
879 }
880
881
882 void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) {
883 int block_start = block->first_instruction_index();
884 int index = block->last_instruction_index();
885
886 LifetimePosition block_start_position =
887 LifetimePosition::FromInstructionIndex(block_start);
888
889 while (index >= block_start) {
890 LifetimePosition curr_position =
891 LifetimePosition::FromInstructionIndex(index);
892
893 if (IsGapAt(index)) {
894 // We have a gap at this position.
895 LGap* gap = GapAt(index);
896 LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
897 chunk()->zone());
898 const ZoneList<LMoveOperands>* move_operands = move->move_operands();
899 for (int i = 0; i < move_operands->length(); ++i) {
900 LMoveOperands* cur = &move_operands->at(i);
901 if (cur->IsIgnored()) continue;
902 LOperand* from = cur->source();
903 LOperand* to = cur->destination();
904 HPhi* phi = LookupPhi(to);
905 LOperand* hint = to;
906 if (phi != NULL) {
907 // This is a phi resolving move.
908 if (!phi->block()->IsLoopHeader()) {
909 hint = LiveRangeFor(phi->id())->current_hint_operand();
910 }
911 } else {
912 if (to->IsUnallocated()) {
913 if (live->Contains(LUnallocated::cast(to)->virtual_register())) {
914 Define(curr_position, to, from);
915 live->Remove(LUnallocated::cast(to)->virtual_register());
916 } else {
917 cur->Eliminate();
918 continue;
919 }
920 } else {
921 Define(curr_position, to, from);
922 }
923 }
924 Use(block_start_position, curr_position, from, hint);
925 if (from->IsUnallocated()) {
926 live->Add(LUnallocated::cast(from)->virtual_register());
927 }
928 }
929 } else {
930 DCHECK(!IsGapAt(index));
931 LInstruction* instr = InstructionAt(index);
932
933 if (instr != NULL) {
934 LOperand* output = instr->Output();
935 if (output != NULL) {
936 if (output->IsUnallocated()) {
937 live->Remove(LUnallocated::cast(output)->virtual_register());
938 }
939 Define(curr_position, output, NULL);
940 }
941
942 if (instr->ClobbersRegisters()) {
943 for (int i = 0; i < Register::kNumRegisters; ++i) {
944 if (Register::from_code(i).IsAllocatable()) {
945 if (output == NULL || !output->IsRegister() ||
946 output->index() != i) {
947 LiveRange* range = FixedLiveRangeFor(i);
948 range->AddUseInterval(curr_position,
949 curr_position.InstructionEnd(), zone());
950 }
951 }
952 }
953 }
954
955 if (instr->ClobbersDoubleRegisters(isolate())) {
956 for (int i = 0; i < DoubleRegister::kMaxNumRegisters; ++i) {
957 if (DoubleRegister::from_code(i).IsAllocatable()) {
958 if (output == NULL || !output->IsDoubleRegister() ||
959 output->index() != i) {
960 LiveRange* range = FixedDoubleLiveRangeFor(i);
961 range->AddUseInterval(curr_position,
962 curr_position.InstructionEnd(), zone());
963 }
964 }
965 }
966 }
967
968 for (UseIterator it(instr); !it.Done(); it.Advance()) {
969 LOperand* input = it.Current();
970
971 LifetimePosition use_pos;
972 if (input->IsUnallocated() &&
973 LUnallocated::cast(input)->IsUsedAtStart()) {
974 use_pos = curr_position;
975 } else {
976 use_pos = curr_position.InstructionEnd();
977 }
978
979 Use(block_start_position, use_pos, input, NULL);
980 if (input->IsUnallocated()) {
981 live->Add(LUnallocated::cast(input)->virtual_register());
982 }
983 }
984
985 for (TempIterator it(instr); !it.Done(); it.Advance()) {
986 LOperand* temp = it.Current();
987 if (instr->ClobbersTemps()) {
988 if (temp->IsRegister()) continue;
989 if (temp->IsUnallocated()) {
990 LUnallocated* temp_unalloc = LUnallocated::cast(temp);
991 if (temp_unalloc->HasFixedPolicy()) {
992 continue;
993 }
994 }
995 }
996 Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
997 Define(curr_position, temp, NULL);
998
999 if (temp->IsUnallocated()) {
1000 LUnallocated* temp_unalloc = LUnallocated::cast(temp);
1001 if (temp_unalloc->HasDoubleRegisterPolicy()) {
1002 double_artificial_registers_.Add(
1003 temp_unalloc->virtual_register() - first_artificial_register_,
1004 zone());
1005 }
1006 }
1007 }
1008 }
1009 }
1010
1011 index = index - 1;
1012 }
1013 }
1014
1015
1016 void LAllocator::ResolvePhis(HBasicBlock* block) {
1017 const ZoneList<HPhi*>* phis = block->phis();
1018 for (int i = 0; i < phis->length(); ++i) {
1019 HPhi* phi = phis->at(i);
1020 LUnallocated* phi_operand =
1021 new (chunk()->zone()) LUnallocated(LUnallocated::NONE);
1022 phi_operand->set_virtual_register(phi->id());
1023 for (int j = 0; j < phi->OperandCount(); ++j) {
1024 HValue* op = phi->OperandAt(j);
1025 LOperand* operand = NULL;
1026 if (op->IsConstant() && op->EmitAtUses()) {
1027 HConstant* constant = HConstant::cast(op);
1028 operand = chunk_->DefineConstantOperand(constant);
1029 } else {
1030 DCHECK(!op->EmitAtUses());
1031 LUnallocated* unalloc =
1032 new(chunk()->zone()) LUnallocated(LUnallocated::ANY);
1033 unalloc->set_virtual_register(op->id());
1034 operand = unalloc;
1035 }
1036 HBasicBlock* cur_block = block->predecessors()->at(j);
1037 // The gap move must be added without any special processing as in
1038 // the AddConstraintsGapMove.
1039 chunk_->AddGapMove(cur_block->last_instruction_index() - 1,
1040 operand,
1041 phi_operand);
1042
1043 // We are going to insert a move before the branch instruction.
1044 // Some branch instructions (e.g. loops' back edges)
1045 // can potentially cause a GC so they have a pointer map.
1046 // By inserting a move we essentially create a copy of a
1047 // value which is invisible to PopulatePointerMaps(), because we store
1048 // it into a location different from the operand of a live range
1049 // covering a branch instruction.
1050 // Thus we need to manually record a pointer.
1051 LInstruction* branch =
1052 InstructionAt(cur_block->last_instruction_index());
1053 if (branch->HasPointerMap()) {
1054 if (phi->representation().IsTagged() && !phi->type().IsSmi()) {
1055 branch->pointer_map()->RecordPointer(phi_operand, chunk()->zone());
1056 } else if (!phi->representation().IsDouble()) {
1057 branch->pointer_map()->RecordUntagged(phi_operand, chunk()->zone());
1058 }
1059 }
1060 }
1061
1062 LiveRange* live_range = LiveRangeFor(phi->id());
1063 LLabel* label = chunk_->GetLabel(phi->block()->block_id());
1064 label->GetOrCreateParallelMove(LGap::START, chunk()->zone())->
1065 AddMove(phi_operand, live_range->GetSpillOperand(), chunk()->zone());
1066 live_range->SetSpillStartIndex(phi->block()->first_instruction_index());
1067 }
1068 }
1069
1070
1071 bool LAllocator::Allocate(LChunk* chunk) {
1072 DCHECK(chunk_ == NULL);
1073 chunk_ = static_cast<LPlatformChunk*>(chunk);
1074 assigned_registers_ =
1075 new (chunk->zone()) BitVector(Register::kNumRegisters, chunk->zone());
1076 assigned_double_registers_ = new (chunk->zone())
1077 BitVector(DoubleRegister::kMaxNumRegisters, chunk->zone());
1078 MeetRegisterConstraints();
1079 if (!AllocationOk()) return false;
1080 ResolvePhis();
1081 BuildLiveRanges();
1082 AllocateGeneralRegisters();
1083 if (!AllocationOk()) return false;
1084 AllocateDoubleRegisters();
1085 if (!AllocationOk()) return false;
1086 PopulatePointerMaps();
1087 ConnectRanges();
1088 ResolveControlFlow();
1089 return true;
1090 }
1091
1092
1093 void LAllocator::MeetRegisterConstraints() {
1094 LAllocatorPhase phase("L_Register constraints", this);
1095 const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1096 for (int i = 0; i < blocks->length(); ++i) {
1097 HBasicBlock* block = blocks->at(i);
1098 MeetRegisterConstraints(block);
1099 if (!AllocationOk()) return;
1100 }
1101 }
1102
1103
1104 void LAllocator::ResolvePhis() {
1105 LAllocatorPhase phase("L_Resolve phis", this);
1106
1107 // Process the blocks in reverse order.
1108 const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1109 for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1110 HBasicBlock* block = blocks->at(block_id);
1111 ResolvePhis(block);
1112 }
1113 }
1114
1115
1116 void LAllocator::ResolveControlFlow(LiveRange* range,
1117 HBasicBlock* block,
1118 HBasicBlock* pred) {
1119 LifetimePosition pred_end =
1120 LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
1121 LifetimePosition cur_start =
1122 LifetimePosition::FromInstructionIndex(block->first_instruction_index());
1123 LiveRange* pred_cover = NULL;
1124 LiveRange* cur_cover = NULL;
1125 LiveRange* cur_range = range;
1126 while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
1127 if (cur_range->CanCover(cur_start)) {
1128 DCHECK(cur_cover == NULL);
1129 cur_cover = cur_range;
1130 }
1131 if (cur_range->CanCover(pred_end)) {
1132 DCHECK(pred_cover == NULL);
1133 pred_cover = cur_range;
1134 }
1135 cur_range = cur_range->next();
1136 }
1137
1138 if (cur_cover->IsSpilled()) return;
1139 DCHECK(pred_cover != NULL && cur_cover != NULL);
1140 if (pred_cover != cur_cover) {
1141 LOperand* pred_op = pred_cover->CreateAssignedOperand(chunk()->zone());
1142 LOperand* cur_op = cur_cover->CreateAssignedOperand(chunk()->zone());
1143 if (!pred_op->Equals(cur_op)) {
1144 LGap* gap = NULL;
1145 if (block->predecessors()->length() == 1) {
1146 gap = GapAt(block->first_instruction_index());
1147 } else {
1148 DCHECK(pred->end()->SecondSuccessor() == NULL);
1149 gap = GetLastGap(pred);
1150
1151 // We are going to insert a move before the branch instruction.
1152 // Some branch instructions (e.g. loops' back edges)
1153 // can potentially cause a GC so they have a pointer map.
1154 // By inserting a move we essentially create a copy of a
1155 // value which is invisible to PopulatePointerMaps(), because we store
1156 // it into a location different from the operand of a live range
1157 // covering a branch instruction.
1158 // Thus we need to manually record a pointer.
1159 LInstruction* branch = InstructionAt(pred->last_instruction_index());
1160 if (branch->HasPointerMap()) {
1161 if (HasTaggedValue(range->id())) {
1162 branch->pointer_map()->RecordPointer(cur_op, chunk()->zone());
1163 } else if (!cur_op->IsDoubleStackSlot() &&
1164 !cur_op->IsDoubleRegister()) {
1165 branch->pointer_map()->RemovePointer(cur_op);
1166 }
1167 }
1168 }
1169 gap->GetOrCreateParallelMove(
1170 LGap::START, chunk()->zone())->AddMove(pred_op, cur_op,
1171 chunk()->zone());
1172 }
1173 }
1174 }
1175
1176
1177 LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) {
1178 int index = pos.InstructionIndex();
1179 if (IsGapAt(index)) {
1180 LGap* gap = GapAt(index);
1181 return gap->GetOrCreateParallelMove(
1182 pos.IsInstructionStart() ? LGap::START : LGap::END, chunk()->zone());
1183 }
1184 int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
1185 return GapAt(gap_pos)->GetOrCreateParallelMove(
1186 (gap_pos < index) ? LGap::AFTER : LGap::BEFORE, chunk()->zone());
1187 }
1188
1189
1190 HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) {
1191 LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex()));
1192 return gap->block();
1193 }
1194
1195
1196 void LAllocator::ConnectRanges() {
1197 LAllocatorPhase phase("L_Connect ranges", this);
1198 for (int i = 0; i < live_ranges()->length(); ++i) {
1199 LiveRange* first_range = live_ranges()->at(i);
1200 if (first_range == NULL || first_range->parent() != NULL) continue;
1201
1202 LiveRange* second_range = first_range->next();
1203 while (second_range != NULL) {
1204 LifetimePosition pos = second_range->Start();
1205
1206 if (!second_range->IsSpilled()) {
1207 // Add gap move if the two live ranges touch and there is no block
1208 // boundary.
1209 if (first_range->End().Value() == pos.Value()) {
1210 bool should_insert = true;
1211 if (IsBlockBoundary(pos)) {
1212 should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
1213 }
1214 if (should_insert) {
1215 LParallelMove* move = GetConnectingParallelMove(pos);
1216 LOperand* prev_operand = first_range->CreateAssignedOperand(
1217 chunk()->zone());
1218 LOperand* cur_operand = second_range->CreateAssignedOperand(
1219 chunk()->zone());
1220 move->AddMove(prev_operand, cur_operand,
1221 chunk()->zone());
1222 }
1223 }
1224 }
1225
1226 first_range = second_range;
1227 second_range = second_range->next();
1228 }
1229 }
1230 }
1231
1232
1233 bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const {
1234 if (block->predecessors()->length() != 1) return false;
1235 return block->predecessors()->first()->block_id() == block->block_id() - 1;
1236 }
1237
1238
1239 void LAllocator::ResolveControlFlow() {
1240 LAllocatorPhase phase("L_Resolve control flow", this);
1241 const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1242 for (int block_id = 1; block_id < blocks->length(); ++block_id) {
1243 HBasicBlock* block = blocks->at(block_id);
1244 if (CanEagerlyResolveControlFlow(block)) continue;
1245 BitVector* live = live_in_sets_[block->block_id()];
1246 BitVector::Iterator iterator(live);
1247 while (!iterator.Done()) {
1248 int operand_index = iterator.Current();
1249 for (int i = 0; i < block->predecessors()->length(); ++i) {
1250 HBasicBlock* cur = block->predecessors()->at(i);
1251 LiveRange* cur_range = LiveRangeFor(operand_index);
1252 ResolveControlFlow(cur_range, block, cur);
1253 }
1254 iterator.Advance();
1255 }
1256 }
1257 }
1258
1259
1260 void LAllocator::BuildLiveRanges() {
1261 LAllocatorPhase phase("L_Build live ranges", this);
1262 InitializeLivenessAnalysis();
1263 // Process the blocks in reverse order.
1264 const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1265 for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1266 HBasicBlock* block = blocks->at(block_id);
1267 BitVector* live = ComputeLiveOut(block);
1268 // Initially consider all live_out values live for the entire block. We
1269 // will shorten these intervals if necessary.
1270 AddInitialIntervals(block, live);
1271
1272 // Process the instructions in reverse order, generating and killing
1273 // live values.
1274 ProcessInstructions(block, live);
1275 // All phi output operands are killed by this block.
1276 const ZoneList<HPhi*>* phis = block->phis();
1277 for (int i = 0; i < phis->length(); ++i) {
1278 // The live range interval already ends at the first instruction of the
1279 // block.
1280 HPhi* phi = phis->at(i);
1281 live->Remove(phi->id());
1282
1283 LOperand* hint = NULL;
1284 LOperand* phi_operand = NULL;
1285 LGap* gap = GetLastGap(phi->block()->predecessors()->at(0));
1286 LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
1287 chunk()->zone());
1288 for (int j = 0; j < move->move_operands()->length(); ++j) {
1289 LOperand* to = move->move_operands()->at(j).destination();
1290 if (to->IsUnallocated() &&
1291 LUnallocated::cast(to)->virtual_register() == phi->id()) {
1292 hint = move->move_operands()->at(j).source();
1293 phi_operand = to;
1294 break;
1295 }
1296 }
1297 DCHECK(hint != NULL);
1298
1299 LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
1300 block->first_instruction_index());
1301 Define(block_start, phi_operand, hint);
1302 }
1303
1304 // Now live is live_in for this block except not including values live
1305 // out on backward successor edges.
1306 live_in_sets_[block_id] = live;
1307
1308 // If this block is a loop header go back and patch up the necessary
1309 // predecessor blocks.
1310 if (block->IsLoopHeader()) {
1311 // TODO(kmillikin): Need to be able to get the last block of the loop
1312 // in the loop information. Add a live range stretching from the first
1313 // loop instruction to the last for each value live on entry to the
1314 // header.
1315 HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
1316 BitVector::Iterator iterator(live);
1317 LifetimePosition start = LifetimePosition::FromInstructionIndex(
1318 block->first_instruction_index());
1319 LifetimePosition end = LifetimePosition::FromInstructionIndex(
1320 back_edge->last_instruction_index()).NextInstruction();
1321 while (!iterator.Done()) {
1322 int operand_index = iterator.Current();
1323 LiveRange* range = LiveRangeFor(operand_index);
1324 range->EnsureInterval(start, end, zone());
1325 iterator.Advance();
1326 }
1327
1328 for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) {
1329 live_in_sets_[i]->Union(*live);
1330 }
1331 }
1332
1333 #ifdef DEBUG
1334 if (block_id == 0) {
1335 BitVector::Iterator iterator(live);
1336 bool found = false;
1337 while (!iterator.Done()) {
1338 found = true;
1339 int operand_index = iterator.Current();
1340 {
1341 AllowHandleDereference allow_deref;
1342 PrintF("Function: %s\n", chunk_->info()->GetDebugName().get());
1343 }
1344 PrintF("Value %d used before first definition!\n", operand_index);
1345 LiveRange* range = LiveRangeFor(operand_index);
1346 PrintF("First use is at %d\n", range->first_pos()->pos().Value());
1347 iterator.Advance();
1348 }
1349 DCHECK(!found);
1350 }
1351 #endif
1352 }
1353
1354 for (int i = 0; i < live_ranges_.length(); ++i) {
1355 if (live_ranges_[i] != NULL) {
1356 live_ranges_[i]->kind_ = RequiredRegisterKind(live_ranges_[i]->id());
1357 }
1358 }
1359 }
1360
1361
1362 bool LAllocator::SafePointsAreInOrder() const {
1363 const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1364 int safe_point = 0;
1365 for (int i = 0; i < pointer_maps->length(); ++i) {
1366 LPointerMap* map = pointer_maps->at(i);
1367 if (safe_point > map->lithium_position()) return false;
1368 safe_point = map->lithium_position();
1369 }
1370 return true;
1371 }
1372
1373
1374 void LAllocator::PopulatePointerMaps() {
1375 LAllocatorPhase phase("L_Populate pointer maps", this);
1376 const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1377
1378 DCHECK(SafePointsAreInOrder());
1379
1380 // Iterate over all safe point positions and record a pointer
1381 // for all spilled live ranges at this point.
1382 int first_safe_point_index = 0;
1383 int last_range_start = 0;
1384 for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
1385 LiveRange* range = live_ranges()->at(range_idx);
1386 if (range == NULL) continue;
1387 // Iterate over the first parts of multi-part live ranges.
1388 if (range->parent() != NULL) continue;
1389 // Skip non-pointer values.
1390 if (!HasTaggedValue(range->id())) continue;
1391 // Skip empty live ranges.
1392 if (range->IsEmpty()) continue;
1393
1394 // Find the extent of the range and its children.
1395 int start = range->Start().InstructionIndex();
1396 int end = 0;
1397 for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
1398 LifetimePosition this_end = cur->End();
1399 if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
1400 DCHECK(cur->Start().InstructionIndex() >= start);
1401 }
1402
1403 // Most of the ranges are in order, but not all. Keep an eye on when
1404 // they step backwards and reset the first_safe_point_index so we don't
1405 // miss any safe points.
1406 if (start < last_range_start) {
1407 first_safe_point_index = 0;
1408 }
1409 last_range_start = start;
1410
1411 // Step across all the safe points that are before the start of this range,
1412 // recording how far we step in order to save doing this for the next range.
1413 while (first_safe_point_index < pointer_maps->length()) {
1414 LPointerMap* map = pointer_maps->at(first_safe_point_index);
1415 int safe_point = map->lithium_position();
1416 if (safe_point >= start) break;
1417 first_safe_point_index++;
1418 }
1419
1420 // Step through the safe points to see whether they are in the range.
1421 for (int safe_point_index = first_safe_point_index;
1422 safe_point_index < pointer_maps->length();
1423 ++safe_point_index) {
1424 LPointerMap* map = pointer_maps->at(safe_point_index);
1425 int safe_point = map->lithium_position();
1426
1427 // The safe points are sorted so we can stop searching here.
1428 if (safe_point - 1 > end) break;
1429
1430 // Advance to the next active range that covers the current
1431 // safe point position.
1432 LifetimePosition safe_point_pos =
1433 LifetimePosition::FromInstructionIndex(safe_point);
1434 LiveRange* cur = range;
1435 while (cur != NULL && !cur->Covers(safe_point_pos)) {
1436 cur = cur->next();
1437 }
1438 if (cur == NULL) continue;
1439
1440 // Check if the live range is spilled and the safe point is after
1441 // the spill position.
1442 if (range->HasAllocatedSpillOperand() &&
1443 safe_point >= range->spill_start_index()) {
1444 TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
1445 range->id(), range->spill_start_index(), safe_point);
1446 map->RecordPointer(range->GetSpillOperand(), chunk()->zone());
1447 }
1448
1449 if (!cur->IsSpilled()) {
1450 TraceAlloc("Pointer in register for range %d (start at %d) "
1451 "at safe point %d\n",
1452 cur->id(), cur->Start().Value(), safe_point);
1453 LOperand* operand = cur->CreateAssignedOperand(chunk()->zone());
1454 DCHECK(!operand->IsStackSlot());
1455 map->RecordPointer(operand, chunk()->zone());
1456 }
1457 }
1458 }
1459 }
1460
1461
1462 void LAllocator::AllocateGeneralRegisters() {
1463 LAllocatorPhase phase("L_Allocate general registers", this);
1464 num_registers_ =
1465 RegisterConfiguration::ArchDefault()->num_allocatable_general_registers();
1466 allocatable_register_codes_ =
1467 RegisterConfiguration::ArchDefault()->allocatable_general_codes();
1468 mode_ = GENERAL_REGISTERS;
1469 AllocateRegisters();
1470 }
1471
1472
1473 void LAllocator::AllocateDoubleRegisters() {
1474 LAllocatorPhase phase("L_Allocate double registers", this);
1475 num_registers_ =
1476 RegisterConfiguration::ArchDefault()->num_allocatable_double_registers();
1477 allocatable_register_codes_ =
1478 RegisterConfiguration::ArchDefault()->allocatable_double_codes();
1479 mode_ = DOUBLE_REGISTERS;
1480 AllocateRegisters();
1481 }
1482
1483
1484 void LAllocator::AllocateRegisters() {
1485 DCHECK(unhandled_live_ranges_.is_empty());
1486
1487 for (int i = 0; i < live_ranges_.length(); ++i) {
1488 if (live_ranges_[i] != NULL) {
1489 if (live_ranges_[i]->Kind() == mode_) {
1490 AddToUnhandledUnsorted(live_ranges_[i]);
1491 }
1492 }
1493 }
1494 SortUnhandled();
1495 DCHECK(UnhandledIsSorted());
1496
1497 DCHECK(reusable_slots_.is_empty());
1498 DCHECK(active_live_ranges_.is_empty());
1499 DCHECK(inactive_live_ranges_.is_empty());
1500
1501 if (mode_ == DOUBLE_REGISTERS) {
1502 for (int i = 0; i < fixed_double_live_ranges_.length(); ++i) {
1503 LiveRange* current = fixed_double_live_ranges_.at(i);
1504 if (current != NULL) {
1505 AddToInactive(current);
1506 }
1507 }
1508 } else {
1509 DCHECK(mode_ == GENERAL_REGISTERS);
1510 for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
1511 LiveRange* current = fixed_live_ranges_.at(i);
1512 if (current != NULL) {
1513 AddToInactive(current);
1514 }
1515 }
1516 }
1517
1518 while (!unhandled_live_ranges_.is_empty()) {
1519 DCHECK(UnhandledIsSorted());
1520 LiveRange* current = unhandled_live_ranges_.RemoveLast();
1521 DCHECK(UnhandledIsSorted());
1522 LifetimePosition position = current->Start();
1523 #ifdef DEBUG
1524 allocation_finger_ = position;
1525 #endif
1526 TraceAlloc("Processing interval %d start=%d\n",
1527 current->id(),
1528 position.Value());
1529
1530 if (current->HasAllocatedSpillOperand()) {
1531 TraceAlloc("Live range %d already has a spill operand\n", current->id());
1532 LifetimePosition next_pos = position;
1533 if (IsGapAt(next_pos.InstructionIndex())) {
1534 next_pos = next_pos.NextInstruction();
1535 }
1536 UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
1537 // If the range already has a spill operand and it doesn't need a
1538 // register immediately, split it and spill the first part of the range.
1539 if (pos == NULL) {
1540 Spill(current);
1541 continue;
1542 } else if (pos->pos().Value() >
1543 current->Start().NextInstruction().Value()) {
1544 // Do not spill live range eagerly if use position that can benefit from
1545 // the register is too close to the start of live range.
1546 SpillBetween(current, current->Start(), pos->pos());
1547 if (!AllocationOk()) return;
1548 DCHECK(UnhandledIsSorted());
1549 continue;
1550 }
1551 }
1552
1553 for (int i = 0; i < active_live_ranges_.length(); ++i) {
1554 LiveRange* cur_active = active_live_ranges_.at(i);
1555 if (cur_active->End().Value() <= position.Value()) {
1556 ActiveToHandled(cur_active);
1557 --i; // The live range was removed from the list of active live ranges.
1558 } else if (!cur_active->Covers(position)) {
1559 ActiveToInactive(cur_active);
1560 --i; // The live range was removed from the list of active live ranges.
1561 }
1562 }
1563
1564 for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1565 LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1566 if (cur_inactive->End().Value() <= position.Value()) {
1567 InactiveToHandled(cur_inactive);
1568 --i; // Live range was removed from the list of inactive live ranges.
1569 } else if (cur_inactive->Covers(position)) {
1570 InactiveToActive(cur_inactive);
1571 --i; // Live range was removed from the list of inactive live ranges.
1572 }
1573 }
1574
1575 DCHECK(!current->HasRegisterAssigned() && !current->IsSpilled());
1576
1577 bool result = TryAllocateFreeReg(current);
1578 if (!AllocationOk()) return;
1579
1580 if (!result) AllocateBlockedReg(current);
1581 if (!AllocationOk()) return;
1582
1583 if (current->HasRegisterAssigned()) {
1584 AddToActive(current);
1585 }
1586 }
1587
1588 reusable_slots_.Rewind(0);
1589 active_live_ranges_.Rewind(0);
1590 inactive_live_ranges_.Rewind(0);
1591 }
1592
1593
1594 const char* LAllocator::RegisterName(int allocation_index) {
1595 if (mode_ == GENERAL_REGISTERS) {
1596 return Register::from_code(allocation_index).ToString();
1597 } else {
1598 return DoubleRegister::from_code(allocation_index).ToString();
1599 }
1600 }
1601
1602
1603 void LAllocator::TraceAlloc(const char* msg, ...) {
1604 if (FLAG_trace_alloc) {
1605 va_list arguments;
1606 va_start(arguments, msg);
1607 base::OS::VPrint(msg, arguments);
1608 va_end(arguments);
1609 }
1610 }
1611
1612
1613 bool LAllocator::HasTaggedValue(int virtual_register) const {
1614 HValue* value = graph_->LookupValue(virtual_register);
1615 if (value == NULL) return false;
1616 return value->representation().IsTagged() && !value->type().IsSmi();
1617 }
1618
1619
1620 RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const {
1621 if (virtual_register < first_artificial_register_) {
1622 HValue* value = graph_->LookupValue(virtual_register);
1623 if (value != NULL && value->representation().IsDouble()) {
1624 return DOUBLE_REGISTERS;
1625 }
1626 } else if (double_artificial_registers_.Contains(
1627 virtual_register - first_artificial_register_)) {
1628 return DOUBLE_REGISTERS;
1629 }
1630
1631 return GENERAL_REGISTERS;
1632 }
1633
1634
1635 void LAllocator::AddToActive(LiveRange* range) {
1636 TraceAlloc("Add live range %d to active\n", range->id());
1637 active_live_ranges_.Add(range, zone());
1638 }
1639
1640
1641 void LAllocator::AddToInactive(LiveRange* range) {
1642 TraceAlloc("Add live range %d to inactive\n", range->id());
1643 inactive_live_ranges_.Add(range, zone());
1644 }
1645
1646
1647 void LAllocator::AddToUnhandledSorted(LiveRange* range) {
1648 if (range == NULL || range->IsEmpty()) return;
1649 DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
1650 DCHECK(allocation_finger_.Value() <= range->Start().Value());
1651 for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
1652 LiveRange* cur_range = unhandled_live_ranges_.at(i);
1653 if (range->ShouldBeAllocatedBefore(cur_range)) {
1654 TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
1655 unhandled_live_ranges_.InsertAt(i + 1, range, zone());
1656 DCHECK(UnhandledIsSorted());
1657 return;
1658 }
1659 }
1660 TraceAlloc("Add live range %d to unhandled at start\n", range->id());
1661 unhandled_live_ranges_.InsertAt(0, range, zone());
1662 DCHECK(UnhandledIsSorted());
1663 }
1664
1665
1666 void LAllocator::AddToUnhandledUnsorted(LiveRange* range) {
1667 if (range == NULL || range->IsEmpty()) return;
1668 DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
1669 TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
1670 unhandled_live_ranges_.Add(range, zone());
1671 }
1672
1673
1674 static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
1675 DCHECK(!(*a)->ShouldBeAllocatedBefore(*b) ||
1676 !(*b)->ShouldBeAllocatedBefore(*a));
1677 if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
1678 if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
1679 return (*a)->id() - (*b)->id();
1680 }
1681
1682
1683 // Sort the unhandled live ranges so that the ranges to be processed first are
1684 // at the end of the array list. This is convenient for the register allocation
1685 // algorithm because it is efficient to remove elements from the end.
1686 void LAllocator::SortUnhandled() {
1687 TraceAlloc("Sort unhandled\n");
1688 unhandled_live_ranges_.Sort(&UnhandledSortHelper);
1689 }
1690
1691
1692 bool LAllocator::UnhandledIsSorted() {
1693 int len = unhandled_live_ranges_.length();
1694 for (int i = 1; i < len; i++) {
1695 LiveRange* a = unhandled_live_ranges_.at(i - 1);
1696 LiveRange* b = unhandled_live_ranges_.at(i);
1697 if (a->Start().Value() < b->Start().Value()) return false;
1698 }
1699 return true;
1700 }
1701
1702
1703 void LAllocator::FreeSpillSlot(LiveRange* range) {
1704 // Check that we are the last range.
1705 if (range->next() != NULL) return;
1706
1707 if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
1708
1709 int index = range->TopLevel()->GetSpillOperand()->index();
1710 if (index >= 0) {
1711 reusable_slots_.Add(range, zone());
1712 }
1713 }
1714
1715
1716 LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) {
1717 if (reusable_slots_.is_empty()) return NULL;
1718 if (reusable_slots_.first()->End().Value() >
1719 range->TopLevel()->Start().Value()) {
1720 return NULL;
1721 }
1722 LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand();
1723 reusable_slots_.Remove(0);
1724 return result;
1725 }
1726
1727
1728 void LAllocator::ActiveToHandled(LiveRange* range) {
1729 DCHECK(active_live_ranges_.Contains(range));
1730 active_live_ranges_.RemoveElement(range);
1731 TraceAlloc("Moving live range %d from active to handled\n", range->id());
1732 FreeSpillSlot(range);
1733 }
1734
1735
1736 void LAllocator::ActiveToInactive(LiveRange* range) {
1737 DCHECK(active_live_ranges_.Contains(range));
1738 active_live_ranges_.RemoveElement(range);
1739 inactive_live_ranges_.Add(range, zone());
1740 TraceAlloc("Moving live range %d from active to inactive\n", range->id());
1741 }
1742
1743
1744 void LAllocator::InactiveToHandled(LiveRange* range) {
1745 DCHECK(inactive_live_ranges_.Contains(range));
1746 inactive_live_ranges_.RemoveElement(range);
1747 TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
1748 FreeSpillSlot(range);
1749 }
1750
1751
1752 void LAllocator::InactiveToActive(LiveRange* range) {
1753 DCHECK(inactive_live_ranges_.Contains(range));
1754 inactive_live_ranges_.RemoveElement(range);
1755 active_live_ranges_.Add(range, zone());
1756 TraceAlloc("Moving live range %d from inactive to active\n", range->id());
1757 }
1758
1759
1760 bool LAllocator::TryAllocateFreeReg(LiveRange* current) {
1761 DCHECK(DoubleRegister::kMaxNumRegisters >= Register::kNumRegisters);
1762
1763 LifetimePosition free_until_pos[DoubleRegister::kMaxNumRegisters];
1764
1765 for (int i = 0; i < DoubleRegister::kMaxNumRegisters; i++) {
1766 free_until_pos[i] = LifetimePosition::MaxPosition();
1767 }
1768
1769 for (int i = 0; i < active_live_ranges_.length(); ++i) {
1770 LiveRange* cur_active = active_live_ranges_.at(i);
1771 free_until_pos[cur_active->assigned_register()] =
1772 LifetimePosition::FromInstructionIndex(0);
1773 }
1774
1775 for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1776 LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1777 DCHECK(cur_inactive->End().Value() > current->Start().Value());
1778 LifetimePosition next_intersection =
1779 cur_inactive->FirstIntersection(current);
1780 if (!next_intersection.IsValid()) continue;
1781 int cur_reg = cur_inactive->assigned_register();
1782 free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
1783 }
1784
1785 LOperand* hint = current->FirstHint();
1786 if (hint != NULL && (hint->IsRegister() || hint->IsDoubleRegister())) {
1787 int register_index = hint->index();
1788 TraceAlloc(
1789 "Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
1790 RegisterName(register_index),
1791 free_until_pos[register_index].Value(),
1792 current->id(),
1793 current->End().Value());
1794
1795 // The desired register is free until the end of the current live range.
1796 if (free_until_pos[register_index].Value() >= current->End().Value()) {
1797 TraceAlloc("Assigning preferred reg %s to live range %d\n",
1798 RegisterName(register_index),
1799 current->id());
1800 SetLiveRangeAssignedRegister(current, register_index);
1801 return true;
1802 }
1803 }
1804
1805 // Find the register which stays free for the longest time.
1806 int reg = allocatable_register_codes_[0];
1807 for (int i = 1; i < RegisterCount(); ++i) {
1808 int code = allocatable_register_codes_[i];
1809 if (free_until_pos[code].Value() > free_until_pos[reg].Value()) {
1810 reg = code;
1811 }
1812 }
1813
1814 LifetimePosition pos = free_until_pos[reg];
1815
1816 if (pos.Value() <= current->Start().Value()) {
1817 // All registers are blocked.
1818 return false;
1819 }
1820
1821 if (pos.Value() < current->End().Value()) {
1822 // Register reg is available at the range start but becomes blocked before
1823 // the range end. Split current at position where it becomes blocked.
1824 LiveRange* tail = SplitRangeAt(current, pos);
1825 if (!AllocationOk()) return false;
1826 AddToUnhandledSorted(tail);
1827 }
1828
1829
1830 // Register reg is available at the range start and is free until
1831 // the range end.
1832 DCHECK(pos.Value() >= current->End().Value());
1833 TraceAlloc("Assigning free reg %s to live range %d\n",
1834 RegisterName(reg),
1835 current->id());
1836 SetLiveRangeAssignedRegister(current, reg);
1837
1838 return true;
1839 }
1840
1841
1842 void LAllocator::AllocateBlockedReg(LiveRange* current) {
1843 UsePosition* register_use = current->NextRegisterPosition(current->Start());
1844 if (register_use == NULL) {
1845 // There is no use in the current live range that requires a register.
1846 // We can just spill it.
1847 Spill(current);
1848 return;
1849 }
1850
1851
1852 LifetimePosition use_pos[DoubleRegister::kMaxNumRegisters];
1853 LifetimePosition block_pos[DoubleRegister::kMaxNumRegisters];
1854
1855 for (int i = 0; i < DoubleRegister::kMaxNumRegisters; i++) {
1856 use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
1857 }
1858
1859 for (int i = 0; i < active_live_ranges_.length(); ++i) {
1860 LiveRange* range = active_live_ranges_[i];
1861 int cur_reg = range->assigned_register();
1862 if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
1863 block_pos[cur_reg] = use_pos[cur_reg] =
1864 LifetimePosition::FromInstructionIndex(0);
1865 } else {
1866 UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial(
1867 current->Start());
1868 if (next_use == NULL) {
1869 use_pos[cur_reg] = range->End();
1870 } else {
1871 use_pos[cur_reg] = next_use->pos();
1872 }
1873 }
1874 }
1875
1876 for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1877 LiveRange* range = inactive_live_ranges_.at(i);
1878 DCHECK(range->End().Value() > current->Start().Value());
1879 LifetimePosition next_intersection = range->FirstIntersection(current);
1880 if (!next_intersection.IsValid()) continue;
1881 int cur_reg = range->assigned_register();
1882 if (range->IsFixed()) {
1883 block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
1884 use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
1885 } else {
1886 use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
1887 }
1888 }
1889
1890 int reg = allocatable_register_codes_[0];
1891 for (int i = 1; i < RegisterCount(); ++i) {
1892 int code = allocatable_register_codes_[i];
1893 if (use_pos[code].Value() > use_pos[reg].Value()) {
1894 reg = code;
1895 }
1896 }
1897
1898 LifetimePosition pos = use_pos[reg];
1899
1900 if (pos.Value() < register_use->pos().Value()) {
1901 // All registers are blocked before the first use that requires a register.
1902 // Spill starting part of live range up to that use.
1903 SpillBetween(current, current->Start(), register_use->pos());
1904 return;
1905 }
1906
1907 if (block_pos[reg].Value() < current->End().Value()) {
1908 // Register becomes blocked before the current range end. Split before that
1909 // position.
1910 LiveRange* tail = SplitBetween(current,
1911 current->Start(),
1912 block_pos[reg].InstructionStart());
1913 if (!AllocationOk()) return;
1914 AddToUnhandledSorted(tail);
1915 }
1916
1917 // Register reg is not blocked for the whole range.
1918 DCHECK(block_pos[reg].Value() >= current->End().Value());
1919 TraceAlloc("Assigning blocked reg %s to live range %d\n",
1920 RegisterName(reg),
1921 current->id());
1922 SetLiveRangeAssignedRegister(current, reg);
1923
1924 // This register was not free. Thus we need to find and spill
1925 // parts of active and inactive live regions that use the same register
1926 // at the same lifetime positions as current.
1927 SplitAndSpillIntersecting(current);
1928 }
1929
1930
1931 LifetimePosition LAllocator::FindOptimalSpillingPos(LiveRange* range,
1932 LifetimePosition pos) {
1933 HBasicBlock* block = GetBlock(pos.InstructionStart());
1934 HBasicBlock* loop_header =
1935 block->IsLoopHeader() ? block : block->parent_loop_header();
1936
1937 if (loop_header == NULL) return pos;
1938
1939 UsePosition* prev_use =
1940 range->PreviousUsePositionRegisterIsBeneficial(pos);
1941
1942 while (loop_header != NULL) {
1943 // We are going to spill live range inside the loop.
1944 // If possible try to move spilling position backwards to loop header.
1945 // This will reduce number of memory moves on the back edge.
1946 LifetimePosition loop_start = LifetimePosition::FromInstructionIndex(
1947 loop_header->first_instruction_index());
1948
1949 if (range->Covers(loop_start)) {
1950 if (prev_use == NULL || prev_use->pos().Value() < loop_start.Value()) {
1951 // No register beneficial use inside the loop before the pos.
1952 pos = loop_start;
1953 }
1954 }
1955
1956 // Try hoisting out to an outer loop.
1957 loop_header = loop_header->parent_loop_header();
1958 }
1959
1960 return pos;
1961 }
1962
1963
1964 void LAllocator::SplitAndSpillIntersecting(LiveRange* current) {
1965 DCHECK(current->HasRegisterAssigned());
1966 int reg = current->assigned_register();
1967 LifetimePosition split_pos = current->Start();
1968 for (int i = 0; i < active_live_ranges_.length(); ++i) {
1969 LiveRange* range = active_live_ranges_[i];
1970 if (range->assigned_register() == reg) {
1971 UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1972 LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos);
1973 if (next_pos == NULL) {
1974 SpillAfter(range, spill_pos);
1975 } else {
1976 // When spilling between spill_pos and next_pos ensure that the range
1977 // remains spilled at least until the start of the current live range.
1978 // This guarantees that we will not introduce new unhandled ranges that
1979 // start before the current range as this violates allocation invariant
1980 // and will lead to an inconsistent state of active and inactive
1981 // live-ranges: ranges are allocated in order of their start positions,
1982 // ranges are retired from active/inactive when the start of the
1983 // current live-range is larger than their end.
1984 SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos());
1985 }
1986 if (!AllocationOk()) return;
1987 ActiveToHandled(range);
1988 --i;
1989 }
1990 }
1991
1992 for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1993 LiveRange* range = inactive_live_ranges_[i];
1994 DCHECK(range->End().Value() > current->Start().Value());
1995 if (range->assigned_register() == reg && !range->IsFixed()) {
1996 LifetimePosition next_intersection = range->FirstIntersection(current);
1997 if (next_intersection.IsValid()) {
1998 UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1999 if (next_pos == NULL) {
2000 SpillAfter(range, split_pos);
2001 } else {
2002 next_intersection = Min(next_intersection, next_pos->pos());
2003 SpillBetween(range, split_pos, next_intersection);
2004 }
2005 if (!AllocationOk()) return;
2006 InactiveToHandled(range);
2007 --i;
2008 }
2009 }
2010 }
2011 }
2012
2013
2014 bool LAllocator::IsBlockBoundary(LifetimePosition pos) {
2015 return pos.IsInstructionStart() &&
2016 InstructionAt(pos.InstructionIndex())->IsLabel();
2017 }
2018
2019
2020 LiveRange* LAllocator::SplitRangeAt(LiveRange* range, LifetimePosition pos) {
2021 DCHECK(!range->IsFixed());
2022 TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
2023
2024 if (pos.Value() <= range->Start().Value()) return range;
2025
2026 // We can't properly connect liveranges if split occured at the end
2027 // of control instruction.
2028 DCHECK(pos.IsInstructionStart() ||
2029 !chunk_->instructions()->at(pos.InstructionIndex())->IsControl());
2030
2031 int vreg = GetVirtualRegister();
2032 if (!AllocationOk()) return NULL;
2033 LiveRange* result = LiveRangeFor(vreg);
2034 range->SplitAt(pos, result, zone());
2035 return result;
2036 }
2037
2038
2039 LiveRange* LAllocator::SplitBetween(LiveRange* range,
2040 LifetimePosition start,
2041 LifetimePosition end) {
2042 DCHECK(!range->IsFixed());
2043 TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
2044 range->id(),
2045 start.Value(),
2046 end.Value());
2047
2048 LifetimePosition split_pos = FindOptimalSplitPos(start, end);
2049 DCHECK(split_pos.Value() >= start.Value());
2050 return SplitRangeAt(range, split_pos);
2051 }
2052
2053
2054 LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start,
2055 LifetimePosition end) {
2056 int start_instr = start.InstructionIndex();
2057 int end_instr = end.InstructionIndex();
2058 DCHECK(start_instr <= end_instr);
2059
2060 // We have no choice
2061 if (start_instr == end_instr) return end;
2062
2063 HBasicBlock* start_block = GetBlock(start);
2064 HBasicBlock* end_block = GetBlock(end);
2065
2066 if (end_block == start_block) {
2067 // The interval is split in the same basic block. Split at the latest
2068 // possible position.
2069 return end;
2070 }
2071
2072 HBasicBlock* block = end_block;
2073 // Find header of outermost loop.
2074 while (block->parent_loop_header() != NULL &&
2075 block->parent_loop_header()->block_id() > start_block->block_id()) {
2076 block = block->parent_loop_header();
2077 }
2078
2079 // We did not find any suitable outer loop. Split at the latest possible
2080 // position unless end_block is a loop header itself.
2081 if (block == end_block && !end_block->IsLoopHeader()) return end;
2082
2083 return LifetimePosition::FromInstructionIndex(
2084 block->first_instruction_index());
2085 }
2086
2087
2088 void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
2089 LiveRange* second_part = SplitRangeAt(range, pos);
2090 if (!AllocationOk()) return;
2091 Spill(second_part);
2092 }
2093
2094
2095 void LAllocator::SpillBetween(LiveRange* range,
2096 LifetimePosition start,
2097 LifetimePosition end) {
2098 SpillBetweenUntil(range, start, start, end);
2099 }
2100
2101
2102 void LAllocator::SpillBetweenUntil(LiveRange* range,
2103 LifetimePosition start,
2104 LifetimePosition until,
2105 LifetimePosition end) {
2106 CHECK(start.Value() < end.Value());
2107 LiveRange* second_part = SplitRangeAt(range, start);
2108 if (!AllocationOk()) return;
2109
2110 if (second_part->Start().Value() < end.Value()) {
2111 // The split result intersects with [start, end[.
2112 // Split it at position between ]start+1, end[, spill the middle part
2113 // and put the rest to unhandled.
2114 LiveRange* third_part = SplitBetween(
2115 second_part,
2116 Max(second_part->Start().InstructionEnd(), until),
2117 end.PrevInstruction().InstructionEnd());
2118 if (!AllocationOk()) return;
2119
2120 DCHECK(third_part != second_part);
2121
2122 Spill(second_part);
2123 AddToUnhandledSorted(third_part);
2124 } else {
2125 // The split result does not intersect with [start, end[.
2126 // Nothing to spill. Just put it to unhandled as whole.
2127 AddToUnhandledSorted(second_part);
2128 }
2129 }
2130
2131
2132 void LAllocator::Spill(LiveRange* range) {
2133 DCHECK(!range->IsSpilled());
2134 TraceAlloc("Spilling live range %d\n", range->id());
2135 LiveRange* first = range->TopLevel();
2136
2137 if (!first->HasAllocatedSpillOperand()) {
2138 LOperand* op = TryReuseSpillSlot(range);
2139 if (op == NULL) op = chunk_->GetNextSpillSlot(range->Kind());
2140 first->SetSpillOperand(op);
2141 }
2142 range->MakeSpilled(chunk()->zone());
2143 }
2144
2145
2146 int LAllocator::RegisterCount() const {
2147 return num_registers_;
2148 }
2149
2150
2151 #ifdef DEBUG
2152
2153
2154 void LAllocator::Verify() const {
2155 for (int i = 0; i < live_ranges()->length(); ++i) {
2156 LiveRange* current = live_ranges()->at(i);
2157 if (current != NULL) current->Verify();
2158 }
2159 }
2160
2161
2162 #endif
2163
2164
2165 LAllocatorPhase::LAllocatorPhase(const char* name, LAllocator* allocator)
2166 : CompilationPhase(name, allocator->graph()->info()),
2167 allocator_(allocator) {
2168 if (FLAG_hydrogen_stats) {
2169 allocator_zone_start_allocation_size_ =
2170 allocator->zone()->allocation_size();
2171 }
2172 }
2173
2174
2175 LAllocatorPhase::~LAllocatorPhase() {
2176 if (FLAG_hydrogen_stats) {
2177 size_t size = allocator_->zone()->allocation_size() -
2178 allocator_zone_start_allocation_size_;
2179 isolate()->GetHStatistics()->SaveTiming(name(), base::TimeDelta(), size);
2180 }
2181
2182 if (ShouldProduceTraceOutput()) {
2183 isolate()->GetHTracer()->TraceLithium(name(), allocator_->chunk());
2184 isolate()->GetHTracer()->TraceLiveRanges(name(), allocator_);
2185 }
2186
2187 #ifdef DEBUG
2188 if (allocator_ != NULL) allocator_->Verify();
2189 #endif
2190 }
2191
2192
2193 } // namespace internal
2194 } // namespace v8
OLDNEW
« no previous file with comments | « src/lithium-allocator.h ('k') | src/lithium-allocator-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698