| OLD | NEW |
| (Empty) |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "src/hydrogen-instructions.h" | |
| 6 | |
| 7 #include "src/base/bits.h" | |
| 8 #include "src/double.h" | |
| 9 #include "src/elements.h" | |
| 10 #include "src/factory.h" | |
| 11 #include "src/hydrogen-infer-representation.h" | |
| 12 | |
| 13 #if V8_TARGET_ARCH_IA32 | |
| 14 #include "src/ia32/lithium-ia32.h" // NOLINT | |
| 15 #elif V8_TARGET_ARCH_X64 | |
| 16 #include "src/x64/lithium-x64.h" // NOLINT | |
| 17 #elif V8_TARGET_ARCH_ARM64 | |
| 18 #include "src/arm64/lithium-arm64.h" // NOLINT | |
| 19 #elif V8_TARGET_ARCH_ARM | |
| 20 #include "src/arm/lithium-arm.h" // NOLINT | |
| 21 #elif V8_TARGET_ARCH_PPC | |
| 22 #include "src/ppc/lithium-ppc.h" // NOLINT | |
| 23 #elif V8_TARGET_ARCH_MIPS | |
| 24 #include "src/mips/lithium-mips.h" // NOLINT | |
| 25 #elif V8_TARGET_ARCH_MIPS64 | |
| 26 #include "src/mips64/lithium-mips64.h" // NOLINT | |
| 27 #elif V8_TARGET_ARCH_X87 | |
| 28 #include "src/x87/lithium-x87.h" // NOLINT | |
| 29 #else | |
| 30 #error Unsupported target architecture. | |
| 31 #endif | |
| 32 | |
| 33 #include "src/base/safe_math.h" | |
| 34 | |
| 35 namespace v8 { | |
| 36 namespace internal { | |
| 37 | |
| 38 #define DEFINE_COMPILE(type) \ | |
| 39 LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) { \ | |
| 40 return builder->Do##type(this); \ | |
| 41 } | |
| 42 HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE) | |
| 43 #undef DEFINE_COMPILE | |
| 44 | |
| 45 | |
| 46 Isolate* HValue::isolate() const { | |
| 47 DCHECK(block() != NULL); | |
| 48 return block()->isolate(); | |
| 49 } | |
| 50 | |
| 51 | |
| 52 void HValue::AssumeRepresentation(Representation r) { | |
| 53 if (CheckFlag(kFlexibleRepresentation)) { | |
| 54 ChangeRepresentation(r); | |
| 55 // The representation of the value is dictated by type feedback and | |
| 56 // will not be changed later. | |
| 57 ClearFlag(kFlexibleRepresentation); | |
| 58 } | |
| 59 } | |
| 60 | |
| 61 | |
| 62 void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) { | |
| 63 DCHECK(CheckFlag(kFlexibleRepresentation)); | |
| 64 Representation new_rep = RepresentationFromInputs(); | |
| 65 UpdateRepresentation(new_rep, h_infer, "inputs"); | |
| 66 new_rep = RepresentationFromUses(); | |
| 67 UpdateRepresentation(new_rep, h_infer, "uses"); | |
| 68 if (representation().IsSmi() && HasNonSmiUse()) { | |
| 69 UpdateRepresentation( | |
| 70 Representation::Integer32(), h_infer, "use requirements"); | |
| 71 } | |
| 72 } | |
| 73 | |
| 74 | |
| 75 Representation HValue::RepresentationFromUses() { | |
| 76 if (HasNoUses()) return Representation::None(); | |
| 77 Representation result = Representation::None(); | |
| 78 | |
| 79 for (HUseIterator it(uses()); !it.Done(); it.Advance()) { | |
| 80 HValue* use = it.value(); | |
| 81 Representation rep = use->observed_input_representation(it.index()); | |
| 82 result = result.generalize(rep); | |
| 83 | |
| 84 if (FLAG_trace_representation) { | |
| 85 PrintF("#%d %s is used by #%d %s as %s%s\n", | |
| 86 id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(), | |
| 87 (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : "")); | |
| 88 } | |
| 89 } | |
| 90 if (IsPhi()) { | |
| 91 result = result.generalize( | |
| 92 HPhi::cast(this)->representation_from_indirect_uses()); | |
| 93 } | |
| 94 | |
| 95 // External representations are dealt with separately. | |
| 96 return result.IsExternal() ? Representation::None() : result; | |
| 97 } | |
| 98 | |
| 99 | |
| 100 void HValue::UpdateRepresentation(Representation new_rep, | |
| 101 HInferRepresentationPhase* h_infer, | |
| 102 const char* reason) { | |
| 103 Representation r = representation(); | |
| 104 if (new_rep.is_more_general_than(r)) { | |
| 105 if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return; | |
| 106 if (FLAG_trace_representation) { | |
| 107 PrintF("Changing #%d %s representation %s -> %s based on %s\n", | |
| 108 id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason); | |
| 109 } | |
| 110 ChangeRepresentation(new_rep); | |
| 111 AddDependantsToWorklist(h_infer); | |
| 112 } | |
| 113 } | |
| 114 | |
| 115 | |
| 116 void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) { | |
| 117 for (HUseIterator it(uses()); !it.Done(); it.Advance()) { | |
| 118 h_infer->AddToWorklist(it.value()); | |
| 119 } | |
| 120 for (int i = 0; i < OperandCount(); ++i) { | |
| 121 h_infer->AddToWorklist(OperandAt(i)); | |
| 122 } | |
| 123 } | |
| 124 | |
| 125 | |
| 126 static int32_t ConvertAndSetOverflow(Representation r, | |
| 127 int64_t result, | |
| 128 bool* overflow) { | |
| 129 if (r.IsSmi()) { | |
| 130 if (result > Smi::kMaxValue) { | |
| 131 *overflow = true; | |
| 132 return Smi::kMaxValue; | |
| 133 } | |
| 134 if (result < Smi::kMinValue) { | |
| 135 *overflow = true; | |
| 136 return Smi::kMinValue; | |
| 137 } | |
| 138 } else { | |
| 139 if (result > kMaxInt) { | |
| 140 *overflow = true; | |
| 141 return kMaxInt; | |
| 142 } | |
| 143 if (result < kMinInt) { | |
| 144 *overflow = true; | |
| 145 return kMinInt; | |
| 146 } | |
| 147 } | |
| 148 return static_cast<int32_t>(result); | |
| 149 } | |
| 150 | |
| 151 | |
| 152 static int32_t AddWithoutOverflow(Representation r, | |
| 153 int32_t a, | |
| 154 int32_t b, | |
| 155 bool* overflow) { | |
| 156 int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b); | |
| 157 return ConvertAndSetOverflow(r, result, overflow); | |
| 158 } | |
| 159 | |
| 160 | |
| 161 static int32_t SubWithoutOverflow(Representation r, | |
| 162 int32_t a, | |
| 163 int32_t b, | |
| 164 bool* overflow) { | |
| 165 int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b); | |
| 166 return ConvertAndSetOverflow(r, result, overflow); | |
| 167 } | |
| 168 | |
| 169 | |
| 170 static int32_t MulWithoutOverflow(const Representation& r, | |
| 171 int32_t a, | |
| 172 int32_t b, | |
| 173 bool* overflow) { | |
| 174 int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b); | |
| 175 return ConvertAndSetOverflow(r, result, overflow); | |
| 176 } | |
| 177 | |
| 178 | |
| 179 int32_t Range::Mask() const { | |
| 180 if (lower_ == upper_) return lower_; | |
| 181 if (lower_ >= 0) { | |
| 182 int32_t res = 1; | |
| 183 while (res < upper_) { | |
| 184 res = (res << 1) | 1; | |
| 185 } | |
| 186 return res; | |
| 187 } | |
| 188 return 0xffffffff; | |
| 189 } | |
| 190 | |
| 191 | |
| 192 void Range::AddConstant(int32_t value) { | |
| 193 if (value == 0) return; | |
| 194 bool may_overflow = false; // Overflow is ignored here. | |
| 195 Representation r = Representation::Integer32(); | |
| 196 lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow); | |
| 197 upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow); | |
| 198 #ifdef DEBUG | |
| 199 Verify(); | |
| 200 #endif | |
| 201 } | |
| 202 | |
| 203 | |
| 204 void Range::Intersect(Range* other) { | |
| 205 upper_ = Min(upper_, other->upper_); | |
| 206 lower_ = Max(lower_, other->lower_); | |
| 207 bool b = CanBeMinusZero() && other->CanBeMinusZero(); | |
| 208 set_can_be_minus_zero(b); | |
| 209 } | |
| 210 | |
| 211 | |
| 212 void Range::Union(Range* other) { | |
| 213 upper_ = Max(upper_, other->upper_); | |
| 214 lower_ = Min(lower_, other->lower_); | |
| 215 bool b = CanBeMinusZero() || other->CanBeMinusZero(); | |
| 216 set_can_be_minus_zero(b); | |
| 217 } | |
| 218 | |
| 219 | |
| 220 void Range::CombinedMax(Range* other) { | |
| 221 upper_ = Max(upper_, other->upper_); | |
| 222 lower_ = Max(lower_, other->lower_); | |
| 223 set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero()); | |
| 224 } | |
| 225 | |
| 226 | |
| 227 void Range::CombinedMin(Range* other) { | |
| 228 upper_ = Min(upper_, other->upper_); | |
| 229 lower_ = Min(lower_, other->lower_); | |
| 230 set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero()); | |
| 231 } | |
| 232 | |
| 233 | |
| 234 void Range::Sar(int32_t value) { | |
| 235 int32_t bits = value & 0x1F; | |
| 236 lower_ = lower_ >> bits; | |
| 237 upper_ = upper_ >> bits; | |
| 238 set_can_be_minus_zero(false); | |
| 239 } | |
| 240 | |
| 241 | |
| 242 void Range::Shl(int32_t value) { | |
| 243 int32_t bits = value & 0x1F; | |
| 244 int old_lower = lower_; | |
| 245 int old_upper = upper_; | |
| 246 lower_ = lower_ << bits; | |
| 247 upper_ = upper_ << bits; | |
| 248 if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) { | |
| 249 upper_ = kMaxInt; | |
| 250 lower_ = kMinInt; | |
| 251 } | |
| 252 set_can_be_minus_zero(false); | |
| 253 } | |
| 254 | |
| 255 | |
| 256 bool Range::AddAndCheckOverflow(const Representation& r, Range* other) { | |
| 257 bool may_overflow = false; | |
| 258 lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow); | |
| 259 upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow); | |
| 260 KeepOrder(); | |
| 261 #ifdef DEBUG | |
| 262 Verify(); | |
| 263 #endif | |
| 264 return may_overflow; | |
| 265 } | |
| 266 | |
| 267 | |
| 268 bool Range::SubAndCheckOverflow(const Representation& r, Range* other) { | |
| 269 bool may_overflow = false; | |
| 270 lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow); | |
| 271 upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow); | |
| 272 KeepOrder(); | |
| 273 #ifdef DEBUG | |
| 274 Verify(); | |
| 275 #endif | |
| 276 return may_overflow; | |
| 277 } | |
| 278 | |
| 279 | |
| 280 void Range::KeepOrder() { | |
| 281 if (lower_ > upper_) { | |
| 282 int32_t tmp = lower_; | |
| 283 lower_ = upper_; | |
| 284 upper_ = tmp; | |
| 285 } | |
| 286 } | |
| 287 | |
| 288 | |
| 289 #ifdef DEBUG | |
| 290 void Range::Verify() const { | |
| 291 DCHECK(lower_ <= upper_); | |
| 292 } | |
| 293 #endif | |
| 294 | |
| 295 | |
| 296 bool Range::MulAndCheckOverflow(const Representation& r, Range* other) { | |
| 297 bool may_overflow = false; | |
| 298 int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow); | |
| 299 int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow); | |
| 300 int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow); | |
| 301 int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow); | |
| 302 lower_ = Min(Min(v1, v2), Min(v3, v4)); | |
| 303 upper_ = Max(Max(v1, v2), Max(v3, v4)); | |
| 304 #ifdef DEBUG | |
| 305 Verify(); | |
| 306 #endif | |
| 307 return may_overflow; | |
| 308 } | |
| 309 | |
| 310 | |
| 311 bool HValue::IsDefinedAfter(HBasicBlock* other) const { | |
| 312 return block()->block_id() > other->block_id(); | |
| 313 } | |
| 314 | |
| 315 | |
| 316 HUseListNode* HUseListNode::tail() { | |
| 317 // Skip and remove dead items in the use list. | |
| 318 while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) { | |
| 319 tail_ = tail_->tail_; | |
| 320 } | |
| 321 return tail_; | |
| 322 } | |
| 323 | |
| 324 | |
| 325 bool HValue::CheckUsesForFlag(Flag f) const { | |
| 326 for (HUseIterator it(uses()); !it.Done(); it.Advance()) { | |
| 327 if (it.value()->IsSimulate()) continue; | |
| 328 if (!it.value()->CheckFlag(f)) return false; | |
| 329 } | |
| 330 return true; | |
| 331 } | |
| 332 | |
| 333 | |
| 334 bool HValue::CheckUsesForFlag(Flag f, HValue** value) const { | |
| 335 for (HUseIterator it(uses()); !it.Done(); it.Advance()) { | |
| 336 if (it.value()->IsSimulate()) continue; | |
| 337 if (!it.value()->CheckFlag(f)) { | |
| 338 *value = it.value(); | |
| 339 return false; | |
| 340 } | |
| 341 } | |
| 342 return true; | |
| 343 } | |
| 344 | |
| 345 | |
| 346 bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const { | |
| 347 bool return_value = false; | |
| 348 for (HUseIterator it(uses()); !it.Done(); it.Advance()) { | |
| 349 if (it.value()->IsSimulate()) continue; | |
| 350 if (!it.value()->CheckFlag(f)) return false; | |
| 351 return_value = true; | |
| 352 } | |
| 353 return return_value; | |
| 354 } | |
| 355 | |
| 356 | |
| 357 HUseIterator::HUseIterator(HUseListNode* head) : next_(head) { | |
| 358 Advance(); | |
| 359 } | |
| 360 | |
| 361 | |
| 362 void HUseIterator::Advance() { | |
| 363 current_ = next_; | |
| 364 if (current_ != NULL) { | |
| 365 next_ = current_->tail(); | |
| 366 value_ = current_->value(); | |
| 367 index_ = current_->index(); | |
| 368 } | |
| 369 } | |
| 370 | |
| 371 | |
| 372 int HValue::UseCount() const { | |
| 373 int count = 0; | |
| 374 for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count; | |
| 375 return count; | |
| 376 } | |
| 377 | |
| 378 | |
| 379 HUseListNode* HValue::RemoveUse(HValue* value, int index) { | |
| 380 HUseListNode* previous = NULL; | |
| 381 HUseListNode* current = use_list_; | |
| 382 while (current != NULL) { | |
| 383 if (current->value() == value && current->index() == index) { | |
| 384 if (previous == NULL) { | |
| 385 use_list_ = current->tail(); | |
| 386 } else { | |
| 387 previous->set_tail(current->tail()); | |
| 388 } | |
| 389 break; | |
| 390 } | |
| 391 | |
| 392 previous = current; | |
| 393 current = current->tail(); | |
| 394 } | |
| 395 | |
| 396 #ifdef DEBUG | |
| 397 // Do not reuse use list nodes in debug mode, zap them. | |
| 398 if (current != NULL) { | |
| 399 HUseListNode* temp = | |
| 400 new(block()->zone()) | |
| 401 HUseListNode(current->value(), current->index(), NULL); | |
| 402 current->Zap(); | |
| 403 current = temp; | |
| 404 } | |
| 405 #endif | |
| 406 return current; | |
| 407 } | |
| 408 | |
| 409 | |
| 410 bool HValue::Equals(HValue* other) { | |
| 411 if (other->opcode() != opcode()) return false; | |
| 412 if (!other->representation().Equals(representation())) return false; | |
| 413 if (!other->type_.Equals(type_)) return false; | |
| 414 if (other->flags() != flags()) return false; | |
| 415 if (OperandCount() != other->OperandCount()) return false; | |
| 416 for (int i = 0; i < OperandCount(); ++i) { | |
| 417 if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false; | |
| 418 } | |
| 419 bool result = DataEquals(other); | |
| 420 DCHECK(!result || Hashcode() == other->Hashcode()); | |
| 421 return result; | |
| 422 } | |
| 423 | |
| 424 | |
| 425 intptr_t HValue::Hashcode() { | |
| 426 intptr_t result = opcode(); | |
| 427 int count = OperandCount(); | |
| 428 for (int i = 0; i < count; ++i) { | |
| 429 result = result * 19 + OperandAt(i)->id() + (result >> 7); | |
| 430 } | |
| 431 return result; | |
| 432 } | |
| 433 | |
| 434 | |
| 435 const char* HValue::Mnemonic() const { | |
| 436 switch (opcode()) { | |
| 437 #define MAKE_CASE(type) case k##type: return #type; | |
| 438 HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE) | |
| 439 #undef MAKE_CASE | |
| 440 case kPhi: return "Phi"; | |
| 441 default: return ""; | |
| 442 } | |
| 443 } | |
| 444 | |
| 445 | |
| 446 bool HValue::CanReplaceWithDummyUses() { | |
| 447 return FLAG_unreachable_code_elimination && | |
| 448 !(block()->IsReachable() || | |
| 449 IsBlockEntry() || | |
| 450 IsControlInstruction() || | |
| 451 IsArgumentsObject() || | |
| 452 IsCapturedObject() || | |
| 453 IsSimulate() || | |
| 454 IsEnterInlined() || | |
| 455 IsLeaveInlined()); | |
| 456 } | |
| 457 | |
| 458 | |
| 459 bool HValue::IsInteger32Constant() { | |
| 460 return IsConstant() && HConstant::cast(this)->HasInteger32Value(); | |
| 461 } | |
| 462 | |
| 463 | |
| 464 int32_t HValue::GetInteger32Constant() { | |
| 465 return HConstant::cast(this)->Integer32Value(); | |
| 466 } | |
| 467 | |
| 468 | |
| 469 bool HValue::EqualsInteger32Constant(int32_t value) { | |
| 470 return IsInteger32Constant() && GetInteger32Constant() == value; | |
| 471 } | |
| 472 | |
| 473 | |
| 474 void HValue::SetOperandAt(int index, HValue* value) { | |
| 475 RegisterUse(index, value); | |
| 476 InternalSetOperandAt(index, value); | |
| 477 } | |
| 478 | |
| 479 | |
| 480 void HValue::DeleteAndReplaceWith(HValue* other) { | |
| 481 // We replace all uses first, so Delete can assert that there are none. | |
| 482 if (other != NULL) ReplaceAllUsesWith(other); | |
| 483 Kill(); | |
| 484 DeleteFromGraph(); | |
| 485 } | |
| 486 | |
| 487 | |
| 488 void HValue::ReplaceAllUsesWith(HValue* other) { | |
| 489 while (use_list_ != NULL) { | |
| 490 HUseListNode* list_node = use_list_; | |
| 491 HValue* value = list_node->value(); | |
| 492 DCHECK(!value->block()->IsStartBlock()); | |
| 493 value->InternalSetOperandAt(list_node->index(), other); | |
| 494 use_list_ = list_node->tail(); | |
| 495 list_node->set_tail(other->use_list_); | |
| 496 other->use_list_ = list_node; | |
| 497 } | |
| 498 } | |
| 499 | |
| 500 | |
| 501 void HValue::Kill() { | |
| 502 // Instead of going through the entire use list of each operand, we only | |
| 503 // check the first item in each use list and rely on the tail() method to | |
| 504 // skip dead items, removing them lazily next time we traverse the list. | |
| 505 SetFlag(kIsDead); | |
| 506 for (int i = 0; i < OperandCount(); ++i) { | |
| 507 HValue* operand = OperandAt(i); | |
| 508 if (operand == NULL) continue; | |
| 509 HUseListNode* first = operand->use_list_; | |
| 510 if (first != NULL && first->value()->CheckFlag(kIsDead)) { | |
| 511 operand->use_list_ = first->tail(); | |
| 512 } | |
| 513 } | |
| 514 } | |
| 515 | |
| 516 | |
| 517 void HValue::SetBlock(HBasicBlock* block) { | |
| 518 DCHECK(block_ == NULL || block == NULL); | |
| 519 block_ = block; | |
| 520 if (id_ == kNoNumber && block != NULL) { | |
| 521 id_ = block->graph()->GetNextValueID(this); | |
| 522 } | |
| 523 } | |
| 524 | |
| 525 | |
| 526 std::ostream& operator<<(std::ostream& os, const HValue& v) { | |
| 527 return v.PrintTo(os); | |
| 528 } | |
| 529 | |
| 530 | |
| 531 std::ostream& operator<<(std::ostream& os, const TypeOf& t) { | |
| 532 if (t.value->representation().IsTagged() && | |
| 533 !t.value->type().Equals(HType::Tagged())) | |
| 534 return os; | |
| 535 return os << " type:" << t.value->type(); | |
| 536 } | |
| 537 | |
| 538 | |
| 539 std::ostream& operator<<(std::ostream& os, const ChangesOf& c) { | |
| 540 GVNFlagSet changes_flags = c.value->ChangesFlags(); | |
| 541 if (changes_flags.IsEmpty()) return os; | |
| 542 os << " changes["; | |
| 543 if (changes_flags == c.value->AllSideEffectsFlagSet()) { | |
| 544 os << "*"; | |
| 545 } else { | |
| 546 bool add_comma = false; | |
| 547 #define PRINT_DO(Type) \ | |
| 548 if (changes_flags.Contains(k##Type)) { \ | |
| 549 if (add_comma) os << ","; \ | |
| 550 add_comma = true; \ | |
| 551 os << #Type; \ | |
| 552 } | |
| 553 GVN_TRACKED_FLAG_LIST(PRINT_DO); | |
| 554 GVN_UNTRACKED_FLAG_LIST(PRINT_DO); | |
| 555 #undef PRINT_DO | |
| 556 } | |
| 557 return os << "]"; | |
| 558 } | |
| 559 | |
| 560 | |
| 561 bool HValue::HasMonomorphicJSObjectType() { | |
| 562 return !GetMonomorphicJSObjectMap().is_null(); | |
| 563 } | |
| 564 | |
| 565 | |
| 566 bool HValue::UpdateInferredType() { | |
| 567 HType type = CalculateInferredType(); | |
| 568 bool result = (!type.Equals(type_)); | |
| 569 type_ = type; | |
| 570 return result; | |
| 571 } | |
| 572 | |
| 573 | |
| 574 void HValue::RegisterUse(int index, HValue* new_value) { | |
| 575 HValue* old_value = OperandAt(index); | |
| 576 if (old_value == new_value) return; | |
| 577 | |
| 578 HUseListNode* removed = NULL; | |
| 579 if (old_value != NULL) { | |
| 580 removed = old_value->RemoveUse(this, index); | |
| 581 } | |
| 582 | |
| 583 if (new_value != NULL) { | |
| 584 if (removed == NULL) { | |
| 585 new_value->use_list_ = new(new_value->block()->zone()) HUseListNode( | |
| 586 this, index, new_value->use_list_); | |
| 587 } else { | |
| 588 removed->set_tail(new_value->use_list_); | |
| 589 new_value->use_list_ = removed; | |
| 590 } | |
| 591 } | |
| 592 } | |
| 593 | |
| 594 | |
| 595 void HValue::AddNewRange(Range* r, Zone* zone) { | |
| 596 if (!HasRange()) ComputeInitialRange(zone); | |
| 597 if (!HasRange()) range_ = new(zone) Range(); | |
| 598 DCHECK(HasRange()); | |
| 599 r->StackUpon(range_); | |
| 600 range_ = r; | |
| 601 } | |
| 602 | |
| 603 | |
| 604 void HValue::RemoveLastAddedRange() { | |
| 605 DCHECK(HasRange()); | |
| 606 DCHECK(range_->next() != NULL); | |
| 607 range_ = range_->next(); | |
| 608 } | |
| 609 | |
| 610 | |
| 611 void HValue::ComputeInitialRange(Zone* zone) { | |
| 612 DCHECK(!HasRange()); | |
| 613 range_ = InferRange(zone); | |
| 614 DCHECK(HasRange()); | |
| 615 } | |
| 616 | |
| 617 | |
| 618 std::ostream& HInstruction::PrintTo(std::ostream& os) const { // NOLINT | |
| 619 os << Mnemonic() << " "; | |
| 620 PrintDataTo(os) << ChangesOf(this) << TypeOf(this); | |
| 621 if (CheckFlag(HValue::kHasNoObservableSideEffects)) os << " [noOSE]"; | |
| 622 if (CheckFlag(HValue::kIsDead)) os << " [dead]"; | |
| 623 return os; | |
| 624 } | |
| 625 | |
| 626 | |
| 627 std::ostream& HInstruction::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 628 for (int i = 0; i < OperandCount(); ++i) { | |
| 629 if (i > 0) os << " "; | |
| 630 os << NameOf(OperandAt(i)); | |
| 631 } | |
| 632 return os; | |
| 633 } | |
| 634 | |
| 635 | |
| 636 void HInstruction::Unlink() { | |
| 637 DCHECK(IsLinked()); | |
| 638 DCHECK(!IsControlInstruction()); // Must never move control instructions. | |
| 639 DCHECK(!IsBlockEntry()); // Doesn't make sense to delete these. | |
| 640 DCHECK(previous_ != NULL); | |
| 641 previous_->next_ = next_; | |
| 642 if (next_ == NULL) { | |
| 643 DCHECK(block()->last() == this); | |
| 644 block()->set_last(previous_); | |
| 645 } else { | |
| 646 next_->previous_ = previous_; | |
| 647 } | |
| 648 clear_block(); | |
| 649 } | |
| 650 | |
| 651 | |
| 652 void HInstruction::InsertBefore(HInstruction* next) { | |
| 653 DCHECK(!IsLinked()); | |
| 654 DCHECK(!next->IsBlockEntry()); | |
| 655 DCHECK(!IsControlInstruction()); | |
| 656 DCHECK(!next->block()->IsStartBlock()); | |
| 657 DCHECK(next->previous_ != NULL); | |
| 658 HInstruction* prev = next->previous(); | |
| 659 prev->next_ = this; | |
| 660 next->previous_ = this; | |
| 661 next_ = next; | |
| 662 previous_ = prev; | |
| 663 SetBlock(next->block()); | |
| 664 if (!has_position() && next->has_position()) { | |
| 665 set_position(next->position()); | |
| 666 } | |
| 667 } | |
| 668 | |
| 669 | |
| 670 void HInstruction::InsertAfter(HInstruction* previous) { | |
| 671 DCHECK(!IsLinked()); | |
| 672 DCHECK(!previous->IsControlInstruction()); | |
| 673 DCHECK(!IsControlInstruction() || previous->next_ == NULL); | |
| 674 HBasicBlock* block = previous->block(); | |
| 675 // Never insert anything except constants into the start block after finishing | |
| 676 // it. | |
| 677 if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) { | |
| 678 DCHECK(block->end()->SecondSuccessor() == NULL); | |
| 679 InsertAfter(block->end()->FirstSuccessor()->first()); | |
| 680 return; | |
| 681 } | |
| 682 | |
| 683 // If we're inserting after an instruction with side-effects that is | |
| 684 // followed by a simulate instruction, we need to insert after the | |
| 685 // simulate instruction instead. | |
| 686 HInstruction* next = previous->next_; | |
| 687 if (previous->HasObservableSideEffects() && next != NULL) { | |
| 688 DCHECK(next->IsSimulate()); | |
| 689 previous = next; | |
| 690 next = previous->next_; | |
| 691 } | |
| 692 | |
| 693 previous_ = previous; | |
| 694 next_ = next; | |
| 695 SetBlock(block); | |
| 696 previous->next_ = this; | |
| 697 if (next != NULL) next->previous_ = this; | |
| 698 if (block->last() == previous) { | |
| 699 block->set_last(this); | |
| 700 } | |
| 701 if (!has_position() && previous->has_position()) { | |
| 702 set_position(previous->position()); | |
| 703 } | |
| 704 } | |
| 705 | |
| 706 | |
| 707 bool HInstruction::Dominates(HInstruction* other) { | |
| 708 if (block() != other->block()) { | |
| 709 return block()->Dominates(other->block()); | |
| 710 } | |
| 711 // Both instructions are in the same basic block. This instruction | |
| 712 // should precede the other one in order to dominate it. | |
| 713 for (HInstruction* instr = next(); instr != NULL; instr = instr->next()) { | |
| 714 if (instr == other) { | |
| 715 return true; | |
| 716 } | |
| 717 } | |
| 718 return false; | |
| 719 } | |
| 720 | |
| 721 | |
| 722 #ifdef DEBUG | |
| 723 void HInstruction::Verify() { | |
| 724 // Verify that input operands are defined before use. | |
| 725 HBasicBlock* cur_block = block(); | |
| 726 for (int i = 0; i < OperandCount(); ++i) { | |
| 727 HValue* other_operand = OperandAt(i); | |
| 728 if (other_operand == NULL) continue; | |
| 729 HBasicBlock* other_block = other_operand->block(); | |
| 730 if (cur_block == other_block) { | |
| 731 if (!other_operand->IsPhi()) { | |
| 732 HInstruction* cur = this->previous(); | |
| 733 while (cur != NULL) { | |
| 734 if (cur == other_operand) break; | |
| 735 cur = cur->previous(); | |
| 736 } | |
| 737 // Must reach other operand in the same block! | |
| 738 DCHECK(cur == other_operand); | |
| 739 } | |
| 740 } else { | |
| 741 // If the following assert fires, you may have forgotten an | |
| 742 // AddInstruction. | |
| 743 DCHECK(other_block->Dominates(cur_block)); | |
| 744 } | |
| 745 } | |
| 746 | |
| 747 // Verify that instructions that may have side-effects are followed | |
| 748 // by a simulate instruction. | |
| 749 if (HasObservableSideEffects() && !IsOsrEntry()) { | |
| 750 DCHECK(next()->IsSimulate()); | |
| 751 } | |
| 752 | |
| 753 // Verify that instructions that can be eliminated by GVN have overridden | |
| 754 // HValue::DataEquals. The default implementation is UNREACHABLE. We | |
| 755 // don't actually care whether DataEquals returns true or false here. | |
| 756 if (CheckFlag(kUseGVN)) DataEquals(this); | |
| 757 | |
| 758 // Verify that all uses are in the graph. | |
| 759 for (HUseIterator use = uses(); !use.Done(); use.Advance()) { | |
| 760 if (use.value()->IsInstruction()) { | |
| 761 DCHECK(HInstruction::cast(use.value())->IsLinked()); | |
| 762 } | |
| 763 } | |
| 764 } | |
| 765 #endif | |
| 766 | |
| 767 | |
| 768 bool HInstruction::CanDeoptimize() { | |
| 769 // TODO(titzer): make this a virtual method? | |
| 770 switch (opcode()) { | |
| 771 case HValue::kAbnormalExit: | |
| 772 case HValue::kAccessArgumentsAt: | |
| 773 case HValue::kAllocate: | |
| 774 case HValue::kArgumentsElements: | |
| 775 case HValue::kArgumentsLength: | |
| 776 case HValue::kArgumentsObject: | |
| 777 case HValue::kBlockEntry: | |
| 778 case HValue::kBoundsCheckBaseIndexInformation: | |
| 779 case HValue::kCallFunction: | |
| 780 case HValue::kCallNew: | |
| 781 case HValue::kCallNewArray: | |
| 782 case HValue::kCallStub: | |
| 783 case HValue::kCapturedObject: | |
| 784 case HValue::kClassOfTestAndBranch: | |
| 785 case HValue::kCompareGeneric: | |
| 786 case HValue::kCompareHoleAndBranch: | |
| 787 case HValue::kCompareMap: | |
| 788 case HValue::kCompareMinusZeroAndBranch: | |
| 789 case HValue::kCompareNumericAndBranch: | |
| 790 case HValue::kCompareObjectEqAndBranch: | |
| 791 case HValue::kConstant: | |
| 792 case HValue::kConstructDouble: | |
| 793 case HValue::kContext: | |
| 794 case HValue::kDebugBreak: | |
| 795 case HValue::kDeclareGlobals: | |
| 796 case HValue::kDoubleBits: | |
| 797 case HValue::kDummyUse: | |
| 798 case HValue::kEnterInlined: | |
| 799 case HValue::kEnvironmentMarker: | |
| 800 case HValue::kForceRepresentation: | |
| 801 case HValue::kGetCachedArrayIndex: | |
| 802 case HValue::kGoto: | |
| 803 case HValue::kHasCachedArrayIndexAndBranch: | |
| 804 case HValue::kHasInstanceTypeAndBranch: | |
| 805 case HValue::kInnerAllocatedObject: | |
| 806 case HValue::kInstanceOf: | |
| 807 case HValue::kIsConstructCallAndBranch: | |
| 808 case HValue::kHasInPrototypeChainAndBranch: | |
| 809 case HValue::kIsSmiAndBranch: | |
| 810 case HValue::kIsStringAndBranch: | |
| 811 case HValue::kIsUndetectableAndBranch: | |
| 812 case HValue::kLeaveInlined: | |
| 813 case HValue::kLoadFieldByIndex: | |
| 814 case HValue::kLoadGlobalGeneric: | |
| 815 case HValue::kLoadGlobalViaContext: | |
| 816 case HValue::kLoadNamedField: | |
| 817 case HValue::kLoadNamedGeneric: | |
| 818 case HValue::kLoadRoot: | |
| 819 case HValue::kMapEnumLength: | |
| 820 case HValue::kMathMinMax: | |
| 821 case HValue::kParameter: | |
| 822 case HValue::kPhi: | |
| 823 case HValue::kPushArguments: | |
| 824 case HValue::kRegExpLiteral: | |
| 825 case HValue::kReturn: | |
| 826 case HValue::kSeqStringGetChar: | |
| 827 case HValue::kStoreCodeEntry: | |
| 828 case HValue::kStoreFrameContext: | |
| 829 case HValue::kStoreGlobalViaContext: | |
| 830 case HValue::kStoreKeyed: | |
| 831 case HValue::kStoreNamedField: | |
| 832 case HValue::kStoreNamedGeneric: | |
| 833 case HValue::kStringCharCodeAt: | |
| 834 case HValue::kStringCharFromCode: | |
| 835 case HValue::kThisFunction: | |
| 836 case HValue::kTypeofIsAndBranch: | |
| 837 case HValue::kUnknownOSRValue: | |
| 838 case HValue::kUseConst: | |
| 839 return false; | |
| 840 | |
| 841 case HValue::kAdd: | |
| 842 case HValue::kAllocateBlockContext: | |
| 843 case HValue::kApplyArguments: | |
| 844 case HValue::kBitwise: | |
| 845 case HValue::kBoundsCheck: | |
| 846 case HValue::kBranch: | |
| 847 case HValue::kCallJSFunction: | |
| 848 case HValue::kCallRuntime: | |
| 849 case HValue::kCallWithDescriptor: | |
| 850 case HValue::kChange: | |
| 851 case HValue::kCheckArrayBufferNotNeutered: | |
| 852 case HValue::kCheckHeapObject: | |
| 853 case HValue::kCheckInstanceType: | |
| 854 case HValue::kCheckMapValue: | |
| 855 case HValue::kCheckMaps: | |
| 856 case HValue::kCheckSmi: | |
| 857 case HValue::kCheckValue: | |
| 858 case HValue::kClampToUint8: | |
| 859 case HValue::kDateField: | |
| 860 case HValue::kDeoptimize: | |
| 861 case HValue::kDiv: | |
| 862 case HValue::kForInCacheArray: | |
| 863 case HValue::kForInPrepareMap: | |
| 864 case HValue::kInvokeFunction: | |
| 865 case HValue::kLoadContextSlot: | |
| 866 case HValue::kLoadFunctionPrototype: | |
| 867 case HValue::kLoadKeyed: | |
| 868 case HValue::kLoadKeyedGeneric: | |
| 869 case HValue::kMathFloorOfDiv: | |
| 870 case HValue::kMaybeGrowElements: | |
| 871 case HValue::kMod: | |
| 872 case HValue::kMul: | |
| 873 case HValue::kOsrEntry: | |
| 874 case HValue::kPower: | |
| 875 case HValue::kPrologue: | |
| 876 case HValue::kRor: | |
| 877 case HValue::kSar: | |
| 878 case HValue::kSeqStringSetChar: | |
| 879 case HValue::kShl: | |
| 880 case HValue::kShr: | |
| 881 case HValue::kSimulate: | |
| 882 case HValue::kStackCheck: | |
| 883 case HValue::kStoreContextSlot: | |
| 884 case HValue::kStoreKeyedGeneric: | |
| 885 case HValue::kStringAdd: | |
| 886 case HValue::kStringCompareAndBranch: | |
| 887 case HValue::kSub: | |
| 888 case HValue::kToFastProperties: | |
| 889 case HValue::kTransitionElementsKind: | |
| 890 case HValue::kTrapAllocationMemento: | |
| 891 case HValue::kTypeof: | |
| 892 case HValue::kUnaryMathOperation: | |
| 893 case HValue::kWrapReceiver: | |
| 894 return true; | |
| 895 } | |
| 896 UNREACHABLE(); | |
| 897 return true; | |
| 898 } | |
| 899 | |
| 900 | |
| 901 std::ostream& operator<<(std::ostream& os, const NameOf& v) { | |
| 902 return os << v.value->representation().Mnemonic() << v.value->id(); | |
| 903 } | |
| 904 | |
| 905 std::ostream& HDummyUse::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 906 return os << NameOf(value()); | |
| 907 } | |
| 908 | |
| 909 | |
| 910 std::ostream& HEnvironmentMarker::PrintDataTo( | |
| 911 std::ostream& os) const { // NOLINT | |
| 912 return os << (kind() == BIND ? "bind" : "lookup") << " var[" << index() | |
| 913 << "]"; | |
| 914 } | |
| 915 | |
| 916 | |
| 917 std::ostream& HUnaryCall::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 918 return os << NameOf(value()) << " #" << argument_count(); | |
| 919 } | |
| 920 | |
| 921 | |
| 922 std::ostream& HCallJSFunction::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 923 return os << NameOf(function()) << " #" << argument_count(); | |
| 924 } | |
| 925 | |
| 926 | |
| 927 HCallJSFunction* HCallJSFunction::New(Isolate* isolate, Zone* zone, | |
| 928 HValue* context, HValue* function, | |
| 929 int argument_count) { | |
| 930 bool has_stack_check = false; | |
| 931 if (function->IsConstant()) { | |
| 932 HConstant* fun_const = HConstant::cast(function); | |
| 933 Handle<JSFunction> jsfun = | |
| 934 Handle<JSFunction>::cast(fun_const->handle(isolate)); | |
| 935 has_stack_check = !jsfun.is_null() && | |
| 936 (jsfun->code()->kind() == Code::FUNCTION || | |
| 937 jsfun->code()->kind() == Code::OPTIMIZED_FUNCTION); | |
| 938 } | |
| 939 | |
| 940 return new (zone) HCallJSFunction(function, argument_count, has_stack_check); | |
| 941 } | |
| 942 | |
| 943 | |
| 944 std::ostream& HBinaryCall::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 945 return os << NameOf(first()) << " " << NameOf(second()) << " #" | |
| 946 << argument_count(); | |
| 947 } | |
| 948 | |
| 949 | |
| 950 std::ostream& HCallFunction::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 951 os << NameOf(context()) << " " << NameOf(function()); | |
| 952 if (HasVectorAndSlot()) { | |
| 953 os << " (type-feedback-vector icslot " << slot().ToInt() << ")"; | |
| 954 } | |
| 955 return os; | |
| 956 } | |
| 957 | |
| 958 | |
| 959 void HBoundsCheck::ApplyIndexChange() { | |
| 960 if (skip_check()) return; | |
| 961 | |
| 962 DecompositionResult decomposition; | |
| 963 bool index_is_decomposable = index()->TryDecompose(&decomposition); | |
| 964 if (index_is_decomposable) { | |
| 965 DCHECK(decomposition.base() == base()); | |
| 966 if (decomposition.offset() == offset() && | |
| 967 decomposition.scale() == scale()) return; | |
| 968 } else { | |
| 969 return; | |
| 970 } | |
| 971 | |
| 972 ReplaceAllUsesWith(index()); | |
| 973 | |
| 974 HValue* current_index = decomposition.base(); | |
| 975 int actual_offset = decomposition.offset() + offset(); | |
| 976 int actual_scale = decomposition.scale() + scale(); | |
| 977 | |
| 978 HGraph* graph = block()->graph(); | |
| 979 Isolate* isolate = graph->isolate(); | |
| 980 Zone* zone = graph->zone(); | |
| 981 HValue* context = graph->GetInvalidContext(); | |
| 982 if (actual_offset != 0) { | |
| 983 HConstant* add_offset = | |
| 984 HConstant::New(isolate, zone, context, actual_offset); | |
| 985 add_offset->InsertBefore(this); | |
| 986 HInstruction* add = | |
| 987 HAdd::New(isolate, zone, context, current_index, add_offset); | |
| 988 add->InsertBefore(this); | |
| 989 add->AssumeRepresentation(index()->representation()); | |
| 990 add->ClearFlag(kCanOverflow); | |
| 991 current_index = add; | |
| 992 } | |
| 993 | |
| 994 if (actual_scale != 0) { | |
| 995 HConstant* sar_scale = HConstant::New(isolate, zone, context, actual_scale); | |
| 996 sar_scale->InsertBefore(this); | |
| 997 HInstruction* sar = | |
| 998 HSar::New(isolate, zone, context, current_index, sar_scale); | |
| 999 sar->InsertBefore(this); | |
| 1000 sar->AssumeRepresentation(index()->representation()); | |
| 1001 current_index = sar; | |
| 1002 } | |
| 1003 | |
| 1004 SetOperandAt(0, current_index); | |
| 1005 | |
| 1006 base_ = NULL; | |
| 1007 offset_ = 0; | |
| 1008 scale_ = 0; | |
| 1009 } | |
| 1010 | |
| 1011 | |
| 1012 std::ostream& HBoundsCheck::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1013 os << NameOf(index()) << " " << NameOf(length()); | |
| 1014 if (base() != NULL && (offset() != 0 || scale() != 0)) { | |
| 1015 os << " base: (("; | |
| 1016 if (base() != index()) { | |
| 1017 os << NameOf(index()); | |
| 1018 } else { | |
| 1019 os << "index"; | |
| 1020 } | |
| 1021 os << " + " << offset() << ") >> " << scale() << ")"; | |
| 1022 } | |
| 1023 if (skip_check()) os << " [DISABLED]"; | |
| 1024 return os; | |
| 1025 } | |
| 1026 | |
| 1027 | |
| 1028 void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) { | |
| 1029 DCHECK(CheckFlag(kFlexibleRepresentation)); | |
| 1030 HValue* actual_index = index()->ActualValue(); | |
| 1031 HValue* actual_length = length()->ActualValue(); | |
| 1032 Representation index_rep = actual_index->representation(); | |
| 1033 Representation length_rep = actual_length->representation(); | |
| 1034 if (index_rep.IsTagged() && actual_index->type().IsSmi()) { | |
| 1035 index_rep = Representation::Smi(); | |
| 1036 } | |
| 1037 if (length_rep.IsTagged() && actual_length->type().IsSmi()) { | |
| 1038 length_rep = Representation::Smi(); | |
| 1039 } | |
| 1040 Representation r = index_rep.generalize(length_rep); | |
| 1041 if (r.is_more_general_than(Representation::Integer32())) { | |
| 1042 r = Representation::Integer32(); | |
| 1043 } | |
| 1044 UpdateRepresentation(r, h_infer, "boundscheck"); | |
| 1045 } | |
| 1046 | |
| 1047 | |
| 1048 Range* HBoundsCheck::InferRange(Zone* zone) { | |
| 1049 Representation r = representation(); | |
| 1050 if (r.IsSmiOrInteger32() && length()->HasRange()) { | |
| 1051 int upper = length()->range()->upper() - (allow_equality() ? 0 : 1); | |
| 1052 int lower = 0; | |
| 1053 | |
| 1054 Range* result = new(zone) Range(lower, upper); | |
| 1055 if (index()->HasRange()) { | |
| 1056 result->Intersect(index()->range()); | |
| 1057 } | |
| 1058 | |
| 1059 // In case of Smi representation, clamp result to Smi::kMaxValue. | |
| 1060 if (r.IsSmi()) result->ClampToSmi(); | |
| 1061 return result; | |
| 1062 } | |
| 1063 return HValue::InferRange(zone); | |
| 1064 } | |
| 1065 | |
| 1066 | |
| 1067 std::ostream& HBoundsCheckBaseIndexInformation::PrintDataTo( | |
| 1068 std::ostream& os) const { // NOLINT | |
| 1069 // TODO(svenpanne) This 2nd base_index() looks wrong... | |
| 1070 return os << "base: " << NameOf(base_index()) | |
| 1071 << ", check: " << NameOf(base_index()); | |
| 1072 } | |
| 1073 | |
| 1074 | |
| 1075 std::ostream& HCallWithDescriptor::PrintDataTo( | |
| 1076 std::ostream& os) const { // NOLINT | |
| 1077 for (int i = 0; i < OperandCount(); i++) { | |
| 1078 os << NameOf(OperandAt(i)) << " "; | |
| 1079 } | |
| 1080 return os << "#" << argument_count(); | |
| 1081 } | |
| 1082 | |
| 1083 | |
| 1084 std::ostream& HCallNewArray::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1085 os << ElementsKindToString(elements_kind()) << " "; | |
| 1086 return HBinaryCall::PrintDataTo(os); | |
| 1087 } | |
| 1088 | |
| 1089 | |
| 1090 std::ostream& HCallRuntime::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1091 os << function()->name << " "; | |
| 1092 if (save_doubles() == kSaveFPRegs) os << "[save doubles] "; | |
| 1093 return os << "#" << argument_count(); | |
| 1094 } | |
| 1095 | |
| 1096 | |
| 1097 std::ostream& HClassOfTestAndBranch::PrintDataTo( | |
| 1098 std::ostream& os) const { // NOLINT | |
| 1099 return os << "class_of_test(" << NameOf(value()) << ", \"" | |
| 1100 << class_name()->ToCString().get() << "\")"; | |
| 1101 } | |
| 1102 | |
| 1103 | |
| 1104 std::ostream& HWrapReceiver::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1105 return os << NameOf(receiver()) << " " << NameOf(function()); | |
| 1106 } | |
| 1107 | |
| 1108 | |
| 1109 std::ostream& HAccessArgumentsAt::PrintDataTo( | |
| 1110 std::ostream& os) const { // NOLINT | |
| 1111 return os << NameOf(arguments()) << "[" << NameOf(index()) << "], length " | |
| 1112 << NameOf(length()); | |
| 1113 } | |
| 1114 | |
| 1115 | |
| 1116 std::ostream& HAllocateBlockContext::PrintDataTo( | |
| 1117 std::ostream& os) const { // NOLINT | |
| 1118 return os << NameOf(context()) << " " << NameOf(function()); | |
| 1119 } | |
| 1120 | |
| 1121 | |
| 1122 std::ostream& HControlInstruction::PrintDataTo( | |
| 1123 std::ostream& os) const { // NOLINT | |
| 1124 os << " goto ("; | |
| 1125 bool first_block = true; | |
| 1126 for (HSuccessorIterator it(this); !it.Done(); it.Advance()) { | |
| 1127 if (!first_block) os << ", "; | |
| 1128 os << *it.Current(); | |
| 1129 first_block = false; | |
| 1130 } | |
| 1131 return os << ")"; | |
| 1132 } | |
| 1133 | |
| 1134 | |
| 1135 std::ostream& HUnaryControlInstruction::PrintDataTo( | |
| 1136 std::ostream& os) const { // NOLINT | |
| 1137 os << NameOf(value()); | |
| 1138 return HControlInstruction::PrintDataTo(os); | |
| 1139 } | |
| 1140 | |
| 1141 | |
| 1142 std::ostream& HReturn::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1143 return os << NameOf(value()) << " (pop " << NameOf(parameter_count()) | |
| 1144 << " values)"; | |
| 1145 } | |
| 1146 | |
| 1147 | |
| 1148 Representation HBranch::observed_input_representation(int index) { | |
| 1149 if (expected_input_types_.Contains(ToBooleanStub::NULL_TYPE) || | |
| 1150 expected_input_types_.Contains(ToBooleanStub::SPEC_OBJECT) || | |
| 1151 expected_input_types_.Contains(ToBooleanStub::STRING) || | |
| 1152 expected_input_types_.Contains(ToBooleanStub::SYMBOL) || | |
| 1153 expected_input_types_.Contains(ToBooleanStub::SIMD_VALUE)) { | |
| 1154 return Representation::Tagged(); | |
| 1155 } | |
| 1156 if (expected_input_types_.Contains(ToBooleanStub::UNDEFINED)) { | |
| 1157 if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) { | |
| 1158 return Representation::Double(); | |
| 1159 } | |
| 1160 return Representation::Tagged(); | |
| 1161 } | |
| 1162 if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) { | |
| 1163 return Representation::Double(); | |
| 1164 } | |
| 1165 if (expected_input_types_.Contains(ToBooleanStub::SMI)) { | |
| 1166 return Representation::Smi(); | |
| 1167 } | |
| 1168 return Representation::None(); | |
| 1169 } | |
| 1170 | |
| 1171 | |
| 1172 bool HBranch::KnownSuccessorBlock(HBasicBlock** block) { | |
| 1173 HValue* value = this->value(); | |
| 1174 if (value->EmitAtUses()) { | |
| 1175 DCHECK(value->IsConstant()); | |
| 1176 DCHECK(!value->representation().IsDouble()); | |
| 1177 *block = HConstant::cast(value)->BooleanValue() | |
| 1178 ? FirstSuccessor() | |
| 1179 : SecondSuccessor(); | |
| 1180 return true; | |
| 1181 } | |
| 1182 *block = NULL; | |
| 1183 return false; | |
| 1184 } | |
| 1185 | |
| 1186 | |
| 1187 std::ostream& HBranch::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1188 return HUnaryControlInstruction::PrintDataTo(os) << " " | |
| 1189 << expected_input_types(); | |
| 1190 } | |
| 1191 | |
| 1192 | |
| 1193 std::ostream& HCompareMap::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1194 os << NameOf(value()) << " (" << *map().handle() << ")"; | |
| 1195 HControlInstruction::PrintDataTo(os); | |
| 1196 if (known_successor_index() == 0) { | |
| 1197 os << " [true]"; | |
| 1198 } else if (known_successor_index() == 1) { | |
| 1199 os << " [false]"; | |
| 1200 } | |
| 1201 return os; | |
| 1202 } | |
| 1203 | |
| 1204 | |
| 1205 const char* HUnaryMathOperation::OpName() const { | |
| 1206 switch (op()) { | |
| 1207 case kMathFloor: | |
| 1208 return "floor"; | |
| 1209 case kMathFround: | |
| 1210 return "fround"; | |
| 1211 case kMathRound: | |
| 1212 return "round"; | |
| 1213 case kMathAbs: | |
| 1214 return "abs"; | |
| 1215 case kMathLog: | |
| 1216 return "log"; | |
| 1217 case kMathExp: | |
| 1218 return "exp"; | |
| 1219 case kMathSqrt: | |
| 1220 return "sqrt"; | |
| 1221 case kMathPowHalf: | |
| 1222 return "pow-half"; | |
| 1223 case kMathClz32: | |
| 1224 return "clz32"; | |
| 1225 default: | |
| 1226 UNREACHABLE(); | |
| 1227 return NULL; | |
| 1228 } | |
| 1229 } | |
| 1230 | |
| 1231 | |
| 1232 Range* HUnaryMathOperation::InferRange(Zone* zone) { | |
| 1233 Representation r = representation(); | |
| 1234 if (op() == kMathClz32) return new(zone) Range(0, 32); | |
| 1235 if (r.IsSmiOrInteger32() && value()->HasRange()) { | |
| 1236 if (op() == kMathAbs) { | |
| 1237 int upper = value()->range()->upper(); | |
| 1238 int lower = value()->range()->lower(); | |
| 1239 bool spans_zero = value()->range()->CanBeZero(); | |
| 1240 // Math.abs(kMinInt) overflows its representation, on which the | |
| 1241 // instruction deopts. Hence clamp it to kMaxInt. | |
| 1242 int abs_upper = upper == kMinInt ? kMaxInt : abs(upper); | |
| 1243 int abs_lower = lower == kMinInt ? kMaxInt : abs(lower); | |
| 1244 Range* result = | |
| 1245 new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper), | |
| 1246 Max(abs_lower, abs_upper)); | |
| 1247 // In case of Smi representation, clamp Math.abs(Smi::kMinValue) to | |
| 1248 // Smi::kMaxValue. | |
| 1249 if (r.IsSmi()) result->ClampToSmi(); | |
| 1250 return result; | |
| 1251 } | |
| 1252 } | |
| 1253 return HValue::InferRange(zone); | |
| 1254 } | |
| 1255 | |
| 1256 | |
| 1257 std::ostream& HUnaryMathOperation::PrintDataTo( | |
| 1258 std::ostream& os) const { // NOLINT | |
| 1259 return os << OpName() << " " << NameOf(value()); | |
| 1260 } | |
| 1261 | |
| 1262 | |
| 1263 std::ostream& HUnaryOperation::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1264 return os << NameOf(value()); | |
| 1265 } | |
| 1266 | |
| 1267 | |
| 1268 std::ostream& HHasInstanceTypeAndBranch::PrintDataTo( | |
| 1269 std::ostream& os) const { // NOLINT | |
| 1270 os << NameOf(value()); | |
| 1271 switch (from_) { | |
| 1272 case FIRST_JS_RECEIVER_TYPE: | |
| 1273 if (to_ == LAST_TYPE) os << " spec_object"; | |
| 1274 break; | |
| 1275 case JS_REGEXP_TYPE: | |
| 1276 if (to_ == JS_REGEXP_TYPE) os << " reg_exp"; | |
| 1277 break; | |
| 1278 case JS_ARRAY_TYPE: | |
| 1279 if (to_ == JS_ARRAY_TYPE) os << " array"; | |
| 1280 break; | |
| 1281 case JS_FUNCTION_TYPE: | |
| 1282 if (to_ == JS_FUNCTION_TYPE) os << " function"; | |
| 1283 break; | |
| 1284 default: | |
| 1285 break; | |
| 1286 } | |
| 1287 return os; | |
| 1288 } | |
| 1289 | |
| 1290 | |
| 1291 std::ostream& HTypeofIsAndBranch::PrintDataTo( | |
| 1292 std::ostream& os) const { // NOLINT | |
| 1293 os << NameOf(value()) << " == " << type_literal()->ToCString().get(); | |
| 1294 return HControlInstruction::PrintDataTo(os); | |
| 1295 } | |
| 1296 | |
| 1297 | |
| 1298 namespace { | |
| 1299 | |
| 1300 String* TypeOfString(HConstant* constant, Isolate* isolate) { | |
| 1301 Heap* heap = isolate->heap(); | |
| 1302 if (constant->HasNumberValue()) return heap->number_string(); | |
| 1303 if (constant->IsUndetectable()) return heap->undefined_string(); | |
| 1304 if (constant->HasStringValue()) return heap->string_string(); | |
| 1305 switch (constant->GetInstanceType()) { | |
| 1306 case ODDBALL_TYPE: { | |
| 1307 Unique<Object> unique = constant->GetUnique(); | |
| 1308 if (unique.IsKnownGlobal(heap->true_value()) || | |
| 1309 unique.IsKnownGlobal(heap->false_value())) { | |
| 1310 return heap->boolean_string(); | |
| 1311 } | |
| 1312 if (unique.IsKnownGlobal(heap->null_value())) { | |
| 1313 return heap->object_string(); | |
| 1314 } | |
| 1315 DCHECK(unique.IsKnownGlobal(heap->undefined_value())); | |
| 1316 return heap->undefined_string(); | |
| 1317 } | |
| 1318 case SYMBOL_TYPE: | |
| 1319 return heap->symbol_string(); | |
| 1320 case SIMD128_VALUE_TYPE: { | |
| 1321 Unique<Map> map = constant->ObjectMap(); | |
| 1322 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ | |
| 1323 if (map.IsKnownGlobal(heap->type##_map())) { \ | |
| 1324 return heap->type##_string(); \ | |
| 1325 } | |
| 1326 SIMD128_TYPES(SIMD128_TYPE) | |
| 1327 #undef SIMD128_TYPE | |
| 1328 UNREACHABLE(); | |
| 1329 return nullptr; | |
| 1330 } | |
| 1331 default: | |
| 1332 if (constant->IsCallable()) return heap->function_string(); | |
| 1333 return heap->object_string(); | |
| 1334 } | |
| 1335 } | |
| 1336 | |
| 1337 } // namespace | |
| 1338 | |
| 1339 | |
| 1340 bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) { | |
| 1341 if (FLAG_fold_constants && value()->IsConstant()) { | |
| 1342 HConstant* constant = HConstant::cast(value()); | |
| 1343 String* type_string = TypeOfString(constant, isolate()); | |
| 1344 bool same_type = type_literal_.IsKnownGlobal(type_string); | |
| 1345 *block = same_type ? FirstSuccessor() : SecondSuccessor(); | |
| 1346 return true; | |
| 1347 } else if (value()->representation().IsSpecialization()) { | |
| 1348 bool number_type = | |
| 1349 type_literal_.IsKnownGlobal(isolate()->heap()->number_string()); | |
| 1350 *block = number_type ? FirstSuccessor() : SecondSuccessor(); | |
| 1351 return true; | |
| 1352 } | |
| 1353 *block = NULL; | |
| 1354 return false; | |
| 1355 } | |
| 1356 | |
| 1357 | |
| 1358 std::ostream& HCheckMapValue::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1359 return os << NameOf(value()) << " " << NameOf(map()); | |
| 1360 } | |
| 1361 | |
| 1362 | |
| 1363 HValue* HCheckMapValue::Canonicalize() { | |
| 1364 if (map()->IsConstant()) { | |
| 1365 HConstant* c_map = HConstant::cast(map()); | |
| 1366 return HCheckMaps::CreateAndInsertAfter( | |
| 1367 block()->graph()->zone(), value(), c_map->MapValue(), | |
| 1368 c_map->HasStableMapValue(), this); | |
| 1369 } | |
| 1370 return this; | |
| 1371 } | |
| 1372 | |
| 1373 | |
| 1374 std::ostream& HForInPrepareMap::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1375 return os << NameOf(enumerable()); | |
| 1376 } | |
| 1377 | |
| 1378 | |
| 1379 std::ostream& HForInCacheArray::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1380 return os << NameOf(enumerable()) << " " << NameOf(map()) << "[" << idx_ | |
| 1381 << "]"; | |
| 1382 } | |
| 1383 | |
| 1384 | |
| 1385 std::ostream& HLoadFieldByIndex::PrintDataTo( | |
| 1386 std::ostream& os) const { // NOLINT | |
| 1387 return os << NameOf(object()) << " " << NameOf(index()); | |
| 1388 } | |
| 1389 | |
| 1390 | |
| 1391 static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) { | |
| 1392 if (!l->EqualsInteger32Constant(~0)) return false; | |
| 1393 *negated = r; | |
| 1394 return true; | |
| 1395 } | |
| 1396 | |
| 1397 | |
| 1398 static bool MatchNegationViaXor(HValue* instr, HValue** negated) { | |
| 1399 if (!instr->IsBitwise()) return false; | |
| 1400 HBitwise* b = HBitwise::cast(instr); | |
| 1401 return (b->op() == Token::BIT_XOR) && | |
| 1402 (MatchLeftIsOnes(b->left(), b->right(), negated) || | |
| 1403 MatchLeftIsOnes(b->right(), b->left(), negated)); | |
| 1404 } | |
| 1405 | |
| 1406 | |
| 1407 static bool MatchDoubleNegation(HValue* instr, HValue** arg) { | |
| 1408 HValue* negated; | |
| 1409 return MatchNegationViaXor(instr, &negated) && | |
| 1410 MatchNegationViaXor(negated, arg); | |
| 1411 } | |
| 1412 | |
| 1413 | |
| 1414 HValue* HBitwise::Canonicalize() { | |
| 1415 if (!representation().IsSmiOrInteger32()) return this; | |
| 1416 // If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x. | |
| 1417 int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0; | |
| 1418 if (left()->EqualsInteger32Constant(nop_constant) && | |
| 1419 !right()->CheckFlag(kUint32)) { | |
| 1420 return right(); | |
| 1421 } | |
| 1422 if (right()->EqualsInteger32Constant(nop_constant) && | |
| 1423 !left()->CheckFlag(kUint32)) { | |
| 1424 return left(); | |
| 1425 } | |
| 1426 // Optimize double negation, a common pattern used for ToInt32(x). | |
| 1427 HValue* arg; | |
| 1428 if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) { | |
| 1429 return arg; | |
| 1430 } | |
| 1431 return this; | |
| 1432 } | |
| 1433 | |
| 1434 | |
| 1435 // static | |
| 1436 HInstruction* HAdd::New(Isolate* isolate, Zone* zone, HValue* context, | |
| 1437 HValue* left, HValue* right, Strength strength, | |
| 1438 ExternalAddType external_add_type) { | |
| 1439 // For everything else, you should use the other factory method without | |
| 1440 // ExternalAddType. | |
| 1441 DCHECK_EQ(external_add_type, AddOfExternalAndTagged); | |
| 1442 return new (zone) HAdd(context, left, right, strength, external_add_type); | |
| 1443 } | |
| 1444 | |
| 1445 | |
| 1446 Representation HAdd::RepresentationFromInputs() { | |
| 1447 Representation left_rep = left()->representation(); | |
| 1448 if (left_rep.IsExternal()) { | |
| 1449 return Representation::External(); | |
| 1450 } | |
| 1451 return HArithmeticBinaryOperation::RepresentationFromInputs(); | |
| 1452 } | |
| 1453 | |
| 1454 | |
| 1455 Representation HAdd::RequiredInputRepresentation(int index) { | |
| 1456 if (index == 2) { | |
| 1457 Representation left_rep = left()->representation(); | |
| 1458 if (left_rep.IsExternal()) { | |
| 1459 if (external_add_type_ == AddOfExternalAndTagged) { | |
| 1460 return Representation::Tagged(); | |
| 1461 } else { | |
| 1462 return Representation::Integer32(); | |
| 1463 } | |
| 1464 } | |
| 1465 } | |
| 1466 return HArithmeticBinaryOperation::RequiredInputRepresentation(index); | |
| 1467 } | |
| 1468 | |
| 1469 | |
| 1470 static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) { | |
| 1471 return arg1->representation().IsSpecialization() && | |
| 1472 arg2->EqualsInteger32Constant(identity); | |
| 1473 } | |
| 1474 | |
| 1475 | |
| 1476 HValue* HAdd::Canonicalize() { | |
| 1477 // Adding 0 is an identity operation except in case of -0: -0 + 0 = +0 | |
| 1478 if (IsIdentityOperation(left(), right(), 0) && | |
| 1479 !left()->representation().IsDouble()) { // Left could be -0. | |
| 1480 return left(); | |
| 1481 } | |
| 1482 if (IsIdentityOperation(right(), left(), 0) && | |
| 1483 !left()->representation().IsDouble()) { // Right could be -0. | |
| 1484 return right(); | |
| 1485 } | |
| 1486 return this; | |
| 1487 } | |
| 1488 | |
| 1489 | |
| 1490 HValue* HSub::Canonicalize() { | |
| 1491 if (IsIdentityOperation(left(), right(), 0)) return left(); | |
| 1492 return this; | |
| 1493 } | |
| 1494 | |
| 1495 | |
| 1496 HValue* HMul::Canonicalize() { | |
| 1497 if (IsIdentityOperation(left(), right(), 1)) return left(); | |
| 1498 if (IsIdentityOperation(right(), left(), 1)) return right(); | |
| 1499 return this; | |
| 1500 } | |
| 1501 | |
| 1502 | |
| 1503 bool HMul::MulMinusOne() { | |
| 1504 if (left()->EqualsInteger32Constant(-1) || | |
| 1505 right()->EqualsInteger32Constant(-1)) { | |
| 1506 return true; | |
| 1507 } | |
| 1508 | |
| 1509 return false; | |
| 1510 } | |
| 1511 | |
| 1512 | |
| 1513 HValue* HMod::Canonicalize() { | |
| 1514 return this; | |
| 1515 } | |
| 1516 | |
| 1517 | |
| 1518 HValue* HDiv::Canonicalize() { | |
| 1519 if (IsIdentityOperation(left(), right(), 1)) return left(); | |
| 1520 return this; | |
| 1521 } | |
| 1522 | |
| 1523 | |
| 1524 HValue* HChange::Canonicalize() { | |
| 1525 return (from().Equals(to())) ? value() : this; | |
| 1526 } | |
| 1527 | |
| 1528 | |
| 1529 HValue* HWrapReceiver::Canonicalize() { | |
| 1530 if (HasNoUses()) return NULL; | |
| 1531 if (receiver()->type().IsJSObject()) { | |
| 1532 return receiver(); | |
| 1533 } | |
| 1534 return this; | |
| 1535 } | |
| 1536 | |
| 1537 | |
| 1538 std::ostream& HTypeof::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1539 return os << NameOf(value()); | |
| 1540 } | |
| 1541 | |
| 1542 | |
| 1543 HInstruction* HForceRepresentation::New(Isolate* isolate, Zone* zone, | |
| 1544 HValue* context, HValue* value, | |
| 1545 Representation representation) { | |
| 1546 if (FLAG_fold_constants && value->IsConstant()) { | |
| 1547 HConstant* c = HConstant::cast(value); | |
| 1548 c = c->CopyToRepresentation(representation, zone); | |
| 1549 if (c != NULL) return c; | |
| 1550 } | |
| 1551 return new(zone) HForceRepresentation(value, representation); | |
| 1552 } | |
| 1553 | |
| 1554 | |
| 1555 std::ostream& HForceRepresentation::PrintDataTo( | |
| 1556 std::ostream& os) const { // NOLINT | |
| 1557 return os << representation().Mnemonic() << " " << NameOf(value()); | |
| 1558 } | |
| 1559 | |
| 1560 | |
| 1561 std::ostream& HChange::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1562 HUnaryOperation::PrintDataTo(os); | |
| 1563 os << " " << from().Mnemonic() << " to " << to().Mnemonic(); | |
| 1564 | |
| 1565 if (CanTruncateToSmi()) os << " truncating-smi"; | |
| 1566 if (CanTruncateToInt32()) os << " truncating-int32"; | |
| 1567 if (CheckFlag(kBailoutOnMinusZero)) os << " -0?"; | |
| 1568 if (CheckFlag(kAllowUndefinedAsNaN)) os << " allow-undefined-as-nan"; | |
| 1569 return os; | |
| 1570 } | |
| 1571 | |
| 1572 | |
| 1573 HValue* HUnaryMathOperation::Canonicalize() { | |
| 1574 if (op() == kMathRound || op() == kMathFloor) { | |
| 1575 HValue* val = value(); | |
| 1576 if (val->IsChange()) val = HChange::cast(val)->value(); | |
| 1577 if (val->representation().IsSmiOrInteger32()) { | |
| 1578 if (val->representation().Equals(representation())) return val; | |
| 1579 return Prepend(new(block()->zone()) HChange( | |
| 1580 val, representation(), false, false)); | |
| 1581 } | |
| 1582 } | |
| 1583 if (op() == kMathFloor && value()->IsDiv() && value()->HasOneUse()) { | |
| 1584 HDiv* hdiv = HDiv::cast(value()); | |
| 1585 | |
| 1586 HValue* left = hdiv->left(); | |
| 1587 if (left->representation().IsInteger32()) { | |
| 1588 // A value with an integer representation does not need to be transformed. | |
| 1589 } else if (left->IsChange() && HChange::cast(left)->from().IsInteger32()) { | |
| 1590 // A change from an integer32 can be replaced by the integer32 value. | |
| 1591 left = HChange::cast(left)->value(); | |
| 1592 } else if (hdiv->observed_input_representation(1).IsSmiOrInteger32()) { | |
| 1593 left = Prepend(new(block()->zone()) HChange( | |
| 1594 left, Representation::Integer32(), false, false)); | |
| 1595 } else { | |
| 1596 return this; | |
| 1597 } | |
| 1598 | |
| 1599 HValue* right = hdiv->right(); | |
| 1600 if (right->IsInteger32Constant()) { | |
| 1601 right = Prepend(HConstant::cast(right)->CopyToRepresentation( | |
| 1602 Representation::Integer32(), right->block()->zone())); | |
| 1603 } else if (right->representation().IsInteger32()) { | |
| 1604 // A value with an integer representation does not need to be transformed. | |
| 1605 } else if (right->IsChange() && | |
| 1606 HChange::cast(right)->from().IsInteger32()) { | |
| 1607 // A change from an integer32 can be replaced by the integer32 value. | |
| 1608 right = HChange::cast(right)->value(); | |
| 1609 } else if (hdiv->observed_input_representation(2).IsSmiOrInteger32()) { | |
| 1610 right = Prepend(new(block()->zone()) HChange( | |
| 1611 right, Representation::Integer32(), false, false)); | |
| 1612 } else { | |
| 1613 return this; | |
| 1614 } | |
| 1615 | |
| 1616 return Prepend(HMathFloorOfDiv::New( | |
| 1617 block()->graph()->isolate(), block()->zone(), context(), left, right)); | |
| 1618 } | |
| 1619 return this; | |
| 1620 } | |
| 1621 | |
| 1622 | |
| 1623 HValue* HCheckInstanceType::Canonicalize() { | |
| 1624 if ((check_ == IS_SPEC_OBJECT && value()->type().IsJSObject()) || | |
| 1625 (check_ == IS_JS_ARRAY && value()->type().IsJSArray()) || | |
| 1626 (check_ == IS_STRING && value()->type().IsString())) { | |
| 1627 return value(); | |
| 1628 } | |
| 1629 | |
| 1630 if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) { | |
| 1631 if (HConstant::cast(value())->HasInternalizedStringValue()) { | |
| 1632 return value(); | |
| 1633 } | |
| 1634 } | |
| 1635 return this; | |
| 1636 } | |
| 1637 | |
| 1638 | |
| 1639 void HCheckInstanceType::GetCheckInterval(InstanceType* first, | |
| 1640 InstanceType* last) { | |
| 1641 DCHECK(is_interval_check()); | |
| 1642 switch (check_) { | |
| 1643 case IS_SPEC_OBJECT: | |
| 1644 *first = FIRST_SPEC_OBJECT_TYPE; | |
| 1645 *last = LAST_SPEC_OBJECT_TYPE; | |
| 1646 return; | |
| 1647 case IS_JS_ARRAY: | |
| 1648 *first = *last = JS_ARRAY_TYPE; | |
| 1649 return; | |
| 1650 case IS_JS_DATE: | |
| 1651 *first = *last = JS_DATE_TYPE; | |
| 1652 return; | |
| 1653 default: | |
| 1654 UNREACHABLE(); | |
| 1655 } | |
| 1656 } | |
| 1657 | |
| 1658 | |
| 1659 void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) { | |
| 1660 DCHECK(!is_interval_check()); | |
| 1661 switch (check_) { | |
| 1662 case IS_STRING: | |
| 1663 *mask = kIsNotStringMask; | |
| 1664 *tag = kStringTag; | |
| 1665 return; | |
| 1666 case IS_INTERNALIZED_STRING: | |
| 1667 *mask = kIsNotStringMask | kIsNotInternalizedMask; | |
| 1668 *tag = kInternalizedTag; | |
| 1669 return; | |
| 1670 default: | |
| 1671 UNREACHABLE(); | |
| 1672 } | |
| 1673 } | |
| 1674 | |
| 1675 | |
| 1676 std::ostream& HCheckMaps::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1677 os << NameOf(value()) << " [" << *maps()->at(0).handle(); | |
| 1678 for (int i = 1; i < maps()->size(); ++i) { | |
| 1679 os << "," << *maps()->at(i).handle(); | |
| 1680 } | |
| 1681 os << "]"; | |
| 1682 if (IsStabilityCheck()) os << "(stability-check)"; | |
| 1683 return os; | |
| 1684 } | |
| 1685 | |
| 1686 | |
| 1687 HValue* HCheckMaps::Canonicalize() { | |
| 1688 if (!IsStabilityCheck() && maps_are_stable() && value()->IsConstant()) { | |
| 1689 HConstant* c_value = HConstant::cast(value()); | |
| 1690 if (c_value->HasObjectMap()) { | |
| 1691 for (int i = 0; i < maps()->size(); ++i) { | |
| 1692 if (c_value->ObjectMap() == maps()->at(i)) { | |
| 1693 if (maps()->size() > 1) { | |
| 1694 set_maps(new(block()->graph()->zone()) UniqueSet<Map>( | |
| 1695 maps()->at(i), block()->graph()->zone())); | |
| 1696 } | |
| 1697 MarkAsStabilityCheck(); | |
| 1698 break; | |
| 1699 } | |
| 1700 } | |
| 1701 } | |
| 1702 } | |
| 1703 return this; | |
| 1704 } | |
| 1705 | |
| 1706 | |
| 1707 std::ostream& HCheckValue::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1708 return os << NameOf(value()) << " " << Brief(*object().handle()); | |
| 1709 } | |
| 1710 | |
| 1711 | |
| 1712 HValue* HCheckValue::Canonicalize() { | |
| 1713 return (value()->IsConstant() && | |
| 1714 HConstant::cast(value())->EqualsUnique(object_)) ? NULL : this; | |
| 1715 } | |
| 1716 | |
| 1717 | |
| 1718 const char* HCheckInstanceType::GetCheckName() const { | |
| 1719 switch (check_) { | |
| 1720 case IS_SPEC_OBJECT: return "object"; | |
| 1721 case IS_JS_ARRAY: return "array"; | |
| 1722 case IS_JS_DATE: | |
| 1723 return "date"; | |
| 1724 case IS_STRING: return "string"; | |
| 1725 case IS_INTERNALIZED_STRING: return "internalized_string"; | |
| 1726 } | |
| 1727 UNREACHABLE(); | |
| 1728 return ""; | |
| 1729 } | |
| 1730 | |
| 1731 | |
| 1732 std::ostream& HCheckInstanceType::PrintDataTo( | |
| 1733 std::ostream& os) const { // NOLINT | |
| 1734 os << GetCheckName() << " "; | |
| 1735 return HUnaryOperation::PrintDataTo(os); | |
| 1736 } | |
| 1737 | |
| 1738 | |
| 1739 std::ostream& HCallStub::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1740 os << CodeStub::MajorName(major_key_) << " "; | |
| 1741 return HUnaryCall::PrintDataTo(os); | |
| 1742 } | |
| 1743 | |
| 1744 | |
| 1745 std::ostream& HUnknownOSRValue::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1746 const char* type = "expression"; | |
| 1747 if (environment_->is_local_index(index_)) type = "local"; | |
| 1748 if (environment_->is_special_index(index_)) type = "special"; | |
| 1749 if (environment_->is_parameter_index(index_)) type = "parameter"; | |
| 1750 return os << type << " @ " << index_; | |
| 1751 } | |
| 1752 | |
| 1753 | |
| 1754 std::ostream& HInstanceOf::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 1755 return os << NameOf(left()) << " " << NameOf(right()) << " " | |
| 1756 << NameOf(context()); | |
| 1757 } | |
| 1758 | |
| 1759 | |
| 1760 Range* HValue::InferRange(Zone* zone) { | |
| 1761 Range* result; | |
| 1762 if (representation().IsSmi() || type().IsSmi()) { | |
| 1763 result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue); | |
| 1764 result->set_can_be_minus_zero(false); | |
| 1765 } else { | |
| 1766 result = new(zone) Range(); | |
| 1767 result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32)); | |
| 1768 // TODO(jkummerow): The range cannot be minus zero when the upper type | |
| 1769 // bound is Integer32. | |
| 1770 } | |
| 1771 return result; | |
| 1772 } | |
| 1773 | |
| 1774 | |
| 1775 Range* HChange::InferRange(Zone* zone) { | |
| 1776 Range* input_range = value()->range(); | |
| 1777 if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) && | |
| 1778 (to().IsSmi() || | |
| 1779 (to().IsTagged() && | |
| 1780 input_range != NULL && | |
| 1781 input_range->IsInSmiRange()))) { | |
| 1782 set_type(HType::Smi()); | |
| 1783 ClearChangesFlag(kNewSpacePromotion); | |
| 1784 } | |
| 1785 if (to().IsSmiOrTagged() && | |
| 1786 input_range != NULL && | |
| 1787 input_range->IsInSmiRange() && | |
| 1788 (!SmiValuesAre32Bits() || | |
| 1789 !value()->CheckFlag(HValue::kUint32) || | |
| 1790 input_range->upper() != kMaxInt)) { | |
| 1791 // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32] | |
| 1792 // interval, so we treat kMaxInt as a sentinel for this entire interval. | |
| 1793 ClearFlag(kCanOverflow); | |
| 1794 } | |
| 1795 Range* result = (input_range != NULL) | |
| 1796 ? input_range->Copy(zone) | |
| 1797 : HValue::InferRange(zone); | |
| 1798 result->set_can_be_minus_zero(!to().IsSmiOrInteger32() || | |
| 1799 !(CheckFlag(kAllUsesTruncatingToInt32) || | |
| 1800 CheckFlag(kAllUsesTruncatingToSmi))); | |
| 1801 if (to().IsSmi()) result->ClampToSmi(); | |
| 1802 return result; | |
| 1803 } | |
| 1804 | |
| 1805 | |
| 1806 Range* HConstant::InferRange(Zone* zone) { | |
| 1807 if (HasInteger32Value()) { | |
| 1808 Range* result = new(zone) Range(int32_value_, int32_value_); | |
| 1809 result->set_can_be_minus_zero(false); | |
| 1810 return result; | |
| 1811 } | |
| 1812 return HValue::InferRange(zone); | |
| 1813 } | |
| 1814 | |
| 1815 | |
| 1816 SourcePosition HPhi::position() const { return block()->first()->position(); } | |
| 1817 | |
| 1818 | |
| 1819 Range* HPhi::InferRange(Zone* zone) { | |
| 1820 Representation r = representation(); | |
| 1821 if (r.IsSmiOrInteger32()) { | |
| 1822 if (block()->IsLoopHeader()) { | |
| 1823 Range* range = r.IsSmi() | |
| 1824 ? new(zone) Range(Smi::kMinValue, Smi::kMaxValue) | |
| 1825 : new(zone) Range(kMinInt, kMaxInt); | |
| 1826 return range; | |
| 1827 } else { | |
| 1828 Range* range = OperandAt(0)->range()->Copy(zone); | |
| 1829 for (int i = 1; i < OperandCount(); ++i) { | |
| 1830 range->Union(OperandAt(i)->range()); | |
| 1831 } | |
| 1832 return range; | |
| 1833 } | |
| 1834 } else { | |
| 1835 return HValue::InferRange(zone); | |
| 1836 } | |
| 1837 } | |
| 1838 | |
| 1839 | |
| 1840 Range* HAdd::InferRange(Zone* zone) { | |
| 1841 Representation r = representation(); | |
| 1842 if (r.IsSmiOrInteger32()) { | |
| 1843 Range* a = left()->range(); | |
| 1844 Range* b = right()->range(); | |
| 1845 Range* res = a->Copy(zone); | |
| 1846 if (!res->AddAndCheckOverflow(r, b) || | |
| 1847 (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) || | |
| 1848 (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) { | |
| 1849 ClearFlag(kCanOverflow); | |
| 1850 } | |
| 1851 res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) && | |
| 1852 !CheckFlag(kAllUsesTruncatingToInt32) && | |
| 1853 a->CanBeMinusZero() && b->CanBeMinusZero()); | |
| 1854 return res; | |
| 1855 } else { | |
| 1856 return HValue::InferRange(zone); | |
| 1857 } | |
| 1858 } | |
| 1859 | |
| 1860 | |
| 1861 Range* HSub::InferRange(Zone* zone) { | |
| 1862 Representation r = representation(); | |
| 1863 if (r.IsSmiOrInteger32()) { | |
| 1864 Range* a = left()->range(); | |
| 1865 Range* b = right()->range(); | |
| 1866 Range* res = a->Copy(zone); | |
| 1867 if (!res->SubAndCheckOverflow(r, b) || | |
| 1868 (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) || | |
| 1869 (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) { | |
| 1870 ClearFlag(kCanOverflow); | |
| 1871 } | |
| 1872 res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) && | |
| 1873 !CheckFlag(kAllUsesTruncatingToInt32) && | |
| 1874 a->CanBeMinusZero() && b->CanBeZero()); | |
| 1875 return res; | |
| 1876 } else { | |
| 1877 return HValue::InferRange(zone); | |
| 1878 } | |
| 1879 } | |
| 1880 | |
| 1881 | |
| 1882 Range* HMul::InferRange(Zone* zone) { | |
| 1883 Representation r = representation(); | |
| 1884 if (r.IsSmiOrInteger32()) { | |
| 1885 Range* a = left()->range(); | |
| 1886 Range* b = right()->range(); | |
| 1887 Range* res = a->Copy(zone); | |
| 1888 if (!res->MulAndCheckOverflow(r, b) || | |
| 1889 (((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) || | |
| 1890 (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) && | |
| 1891 MulMinusOne())) { | |
| 1892 // Truncated int multiplication is too precise and therefore not the | |
| 1893 // same as converting to Double and back. | |
| 1894 // Handle truncated integer multiplication by -1 special. | |
| 1895 ClearFlag(kCanOverflow); | |
| 1896 } | |
| 1897 res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) && | |
| 1898 !CheckFlag(kAllUsesTruncatingToInt32) && | |
| 1899 ((a->CanBeZero() && b->CanBeNegative()) || | |
| 1900 (a->CanBeNegative() && b->CanBeZero()))); | |
| 1901 return res; | |
| 1902 } else { | |
| 1903 return HValue::InferRange(zone); | |
| 1904 } | |
| 1905 } | |
| 1906 | |
| 1907 | |
| 1908 Range* HDiv::InferRange(Zone* zone) { | |
| 1909 if (representation().IsInteger32()) { | |
| 1910 Range* a = left()->range(); | |
| 1911 Range* b = right()->range(); | |
| 1912 Range* result = new(zone) Range(); | |
| 1913 result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) && | |
| 1914 (a->CanBeMinusZero() || | |
| 1915 (a->CanBeZero() && b->CanBeNegative()))); | |
| 1916 if (!a->Includes(kMinInt) || !b->Includes(-1)) { | |
| 1917 ClearFlag(kCanOverflow); | |
| 1918 } | |
| 1919 | |
| 1920 if (!b->CanBeZero()) { | |
| 1921 ClearFlag(kCanBeDivByZero); | |
| 1922 } | |
| 1923 return result; | |
| 1924 } else { | |
| 1925 return HValue::InferRange(zone); | |
| 1926 } | |
| 1927 } | |
| 1928 | |
| 1929 | |
| 1930 Range* HMathFloorOfDiv::InferRange(Zone* zone) { | |
| 1931 if (representation().IsInteger32()) { | |
| 1932 Range* a = left()->range(); | |
| 1933 Range* b = right()->range(); | |
| 1934 Range* result = new(zone) Range(); | |
| 1935 result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) && | |
| 1936 (a->CanBeMinusZero() || | |
| 1937 (a->CanBeZero() && b->CanBeNegative()))); | |
| 1938 if (!a->Includes(kMinInt)) { | |
| 1939 ClearFlag(kLeftCanBeMinInt); | |
| 1940 } | |
| 1941 | |
| 1942 if (!a->CanBeNegative()) { | |
| 1943 ClearFlag(HValue::kLeftCanBeNegative); | |
| 1944 } | |
| 1945 | |
| 1946 if (!a->CanBePositive()) { | |
| 1947 ClearFlag(HValue::kLeftCanBePositive); | |
| 1948 } | |
| 1949 | |
| 1950 if (!a->Includes(kMinInt) || !b->Includes(-1)) { | |
| 1951 ClearFlag(kCanOverflow); | |
| 1952 } | |
| 1953 | |
| 1954 if (!b->CanBeZero()) { | |
| 1955 ClearFlag(kCanBeDivByZero); | |
| 1956 } | |
| 1957 return result; | |
| 1958 } else { | |
| 1959 return HValue::InferRange(zone); | |
| 1960 } | |
| 1961 } | |
| 1962 | |
| 1963 | |
| 1964 // Returns the absolute value of its argument minus one, avoiding undefined | |
| 1965 // behavior at kMinInt. | |
| 1966 static int32_t AbsMinus1(int32_t a) { return a < 0 ? -(a + 1) : (a - 1); } | |
| 1967 | |
| 1968 | |
| 1969 Range* HMod::InferRange(Zone* zone) { | |
| 1970 if (representation().IsInteger32()) { | |
| 1971 Range* a = left()->range(); | |
| 1972 Range* b = right()->range(); | |
| 1973 | |
| 1974 // The magnitude of the modulus is bounded by the right operand. | |
| 1975 int32_t positive_bound = Max(AbsMinus1(b->lower()), AbsMinus1(b->upper())); | |
| 1976 | |
| 1977 // The result of the modulo operation has the sign of its left operand. | |
| 1978 bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative(); | |
| 1979 Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0, | |
| 1980 a->CanBePositive() ? positive_bound : 0); | |
| 1981 | |
| 1982 result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) && | |
| 1983 left_can_be_negative); | |
| 1984 | |
| 1985 if (!a->CanBeNegative()) { | |
| 1986 ClearFlag(HValue::kLeftCanBeNegative); | |
| 1987 } | |
| 1988 | |
| 1989 if (!a->Includes(kMinInt) || !b->Includes(-1)) { | |
| 1990 ClearFlag(HValue::kCanOverflow); | |
| 1991 } | |
| 1992 | |
| 1993 if (!b->CanBeZero()) { | |
| 1994 ClearFlag(HValue::kCanBeDivByZero); | |
| 1995 } | |
| 1996 return result; | |
| 1997 } else { | |
| 1998 return HValue::InferRange(zone); | |
| 1999 } | |
| 2000 } | |
| 2001 | |
| 2002 | |
| 2003 InductionVariableData* InductionVariableData::ExaminePhi(HPhi* phi) { | |
| 2004 if (phi->block()->loop_information() == NULL) return NULL; | |
| 2005 if (phi->OperandCount() != 2) return NULL; | |
| 2006 int32_t candidate_increment; | |
| 2007 | |
| 2008 candidate_increment = ComputeIncrement(phi, phi->OperandAt(0)); | |
| 2009 if (candidate_increment != 0) { | |
| 2010 return new(phi->block()->graph()->zone()) | |
| 2011 InductionVariableData(phi, phi->OperandAt(1), candidate_increment); | |
| 2012 } | |
| 2013 | |
| 2014 candidate_increment = ComputeIncrement(phi, phi->OperandAt(1)); | |
| 2015 if (candidate_increment != 0) { | |
| 2016 return new(phi->block()->graph()->zone()) | |
| 2017 InductionVariableData(phi, phi->OperandAt(0), candidate_increment); | |
| 2018 } | |
| 2019 | |
| 2020 return NULL; | |
| 2021 } | |
| 2022 | |
| 2023 | |
| 2024 /* | |
| 2025 * This function tries to match the following patterns (and all the relevant | |
| 2026 * variants related to |, & and + being commutative): | |
| 2027 * base | constant_or_mask | |
| 2028 * base & constant_and_mask | |
| 2029 * (base + constant_offset) & constant_and_mask | |
| 2030 * (base - constant_offset) & constant_and_mask | |
| 2031 */ | |
| 2032 void InductionVariableData::DecomposeBitwise( | |
| 2033 HValue* value, | |
| 2034 BitwiseDecompositionResult* result) { | |
| 2035 HValue* base = IgnoreOsrValue(value); | |
| 2036 result->base = value; | |
| 2037 | |
| 2038 if (!base->representation().IsInteger32()) return; | |
| 2039 | |
| 2040 if (base->IsBitwise()) { | |
| 2041 bool allow_offset = false; | |
| 2042 int32_t mask = 0; | |
| 2043 | |
| 2044 HBitwise* bitwise = HBitwise::cast(base); | |
| 2045 if (bitwise->right()->IsInteger32Constant()) { | |
| 2046 mask = bitwise->right()->GetInteger32Constant(); | |
| 2047 base = bitwise->left(); | |
| 2048 } else if (bitwise->left()->IsInteger32Constant()) { | |
| 2049 mask = bitwise->left()->GetInteger32Constant(); | |
| 2050 base = bitwise->right(); | |
| 2051 } else { | |
| 2052 return; | |
| 2053 } | |
| 2054 if (bitwise->op() == Token::BIT_AND) { | |
| 2055 result->and_mask = mask; | |
| 2056 allow_offset = true; | |
| 2057 } else if (bitwise->op() == Token::BIT_OR) { | |
| 2058 result->or_mask = mask; | |
| 2059 } else { | |
| 2060 return; | |
| 2061 } | |
| 2062 | |
| 2063 result->context = bitwise->context(); | |
| 2064 | |
| 2065 if (allow_offset) { | |
| 2066 if (base->IsAdd()) { | |
| 2067 HAdd* add = HAdd::cast(base); | |
| 2068 if (add->right()->IsInteger32Constant()) { | |
| 2069 base = add->left(); | |
| 2070 } else if (add->left()->IsInteger32Constant()) { | |
| 2071 base = add->right(); | |
| 2072 } | |
| 2073 } else if (base->IsSub()) { | |
| 2074 HSub* sub = HSub::cast(base); | |
| 2075 if (sub->right()->IsInteger32Constant()) { | |
| 2076 base = sub->left(); | |
| 2077 } | |
| 2078 } | |
| 2079 } | |
| 2080 | |
| 2081 result->base = base; | |
| 2082 } | |
| 2083 } | |
| 2084 | |
| 2085 | |
| 2086 void InductionVariableData::AddCheck(HBoundsCheck* check, | |
| 2087 int32_t upper_limit) { | |
| 2088 DCHECK(limit_validity() != NULL); | |
| 2089 if (limit_validity() != check->block() && | |
| 2090 !limit_validity()->Dominates(check->block())) return; | |
| 2091 if (!phi()->block()->current_loop()->IsNestedInThisLoop( | |
| 2092 check->block()->current_loop())) return; | |
| 2093 | |
| 2094 ChecksRelatedToLength* length_checks = checks(); | |
| 2095 while (length_checks != NULL) { | |
| 2096 if (length_checks->length() == check->length()) break; | |
| 2097 length_checks = length_checks->next(); | |
| 2098 } | |
| 2099 if (length_checks == NULL) { | |
| 2100 length_checks = new(check->block()->zone()) | |
| 2101 ChecksRelatedToLength(check->length(), checks()); | |
| 2102 checks_ = length_checks; | |
| 2103 } | |
| 2104 | |
| 2105 length_checks->AddCheck(check, upper_limit); | |
| 2106 } | |
| 2107 | |
| 2108 | |
| 2109 void InductionVariableData::ChecksRelatedToLength::CloseCurrentBlock() { | |
| 2110 if (checks() != NULL) { | |
| 2111 InductionVariableCheck* c = checks(); | |
| 2112 HBasicBlock* current_block = c->check()->block(); | |
| 2113 while (c != NULL && c->check()->block() == current_block) { | |
| 2114 c->set_upper_limit(current_upper_limit_); | |
| 2115 c = c->next(); | |
| 2116 } | |
| 2117 } | |
| 2118 } | |
| 2119 | |
| 2120 | |
| 2121 void InductionVariableData::ChecksRelatedToLength::UseNewIndexInCurrentBlock( | |
| 2122 Token::Value token, | |
| 2123 int32_t mask, | |
| 2124 HValue* index_base, | |
| 2125 HValue* context) { | |
| 2126 DCHECK(first_check_in_block() != NULL); | |
| 2127 HValue* previous_index = first_check_in_block()->index(); | |
| 2128 DCHECK(context != NULL); | |
| 2129 | |
| 2130 Zone* zone = index_base->block()->graph()->zone(); | |
| 2131 Isolate* isolate = index_base->block()->graph()->isolate(); | |
| 2132 set_added_constant(HConstant::New(isolate, zone, context, mask)); | |
| 2133 if (added_index() != NULL) { | |
| 2134 added_constant()->InsertBefore(added_index()); | |
| 2135 } else { | |
| 2136 added_constant()->InsertBefore(first_check_in_block()); | |
| 2137 } | |
| 2138 | |
| 2139 if (added_index() == NULL) { | |
| 2140 first_check_in_block()->ReplaceAllUsesWith(first_check_in_block()->index()); | |
| 2141 HInstruction* new_index = HBitwise::New(isolate, zone, context, token, | |
| 2142 index_base, added_constant()); | |
| 2143 DCHECK(new_index->IsBitwise()); | |
| 2144 new_index->ClearAllSideEffects(); | |
| 2145 new_index->AssumeRepresentation(Representation::Integer32()); | |
| 2146 set_added_index(HBitwise::cast(new_index)); | |
| 2147 added_index()->InsertBefore(first_check_in_block()); | |
| 2148 } | |
| 2149 DCHECK(added_index()->op() == token); | |
| 2150 | |
| 2151 added_index()->SetOperandAt(1, index_base); | |
| 2152 added_index()->SetOperandAt(2, added_constant()); | |
| 2153 first_check_in_block()->SetOperandAt(0, added_index()); | |
| 2154 if (previous_index->HasNoUses()) { | |
| 2155 previous_index->DeleteAndReplaceWith(NULL); | |
| 2156 } | |
| 2157 } | |
| 2158 | |
| 2159 void InductionVariableData::ChecksRelatedToLength::AddCheck( | |
| 2160 HBoundsCheck* check, | |
| 2161 int32_t upper_limit) { | |
| 2162 BitwiseDecompositionResult decomposition; | |
| 2163 InductionVariableData::DecomposeBitwise(check->index(), &decomposition); | |
| 2164 | |
| 2165 if (first_check_in_block() == NULL || | |
| 2166 first_check_in_block()->block() != check->block()) { | |
| 2167 CloseCurrentBlock(); | |
| 2168 | |
| 2169 first_check_in_block_ = check; | |
| 2170 set_added_index(NULL); | |
| 2171 set_added_constant(NULL); | |
| 2172 current_and_mask_in_block_ = decomposition.and_mask; | |
| 2173 current_or_mask_in_block_ = decomposition.or_mask; | |
| 2174 current_upper_limit_ = upper_limit; | |
| 2175 | |
| 2176 InductionVariableCheck* new_check = new(check->block()->graph()->zone()) | |
| 2177 InductionVariableCheck(check, checks_, upper_limit); | |
| 2178 checks_ = new_check; | |
| 2179 return; | |
| 2180 } | |
| 2181 | |
| 2182 if (upper_limit > current_upper_limit()) { | |
| 2183 current_upper_limit_ = upper_limit; | |
| 2184 } | |
| 2185 | |
| 2186 if (decomposition.and_mask != 0 && | |
| 2187 current_or_mask_in_block() == 0) { | |
| 2188 if (current_and_mask_in_block() == 0 || | |
| 2189 decomposition.and_mask > current_and_mask_in_block()) { | |
| 2190 UseNewIndexInCurrentBlock(Token::BIT_AND, | |
| 2191 decomposition.and_mask, | |
| 2192 decomposition.base, | |
| 2193 decomposition.context); | |
| 2194 current_and_mask_in_block_ = decomposition.and_mask; | |
| 2195 } | |
| 2196 check->set_skip_check(); | |
| 2197 } | |
| 2198 if (current_and_mask_in_block() == 0) { | |
| 2199 if (decomposition.or_mask > current_or_mask_in_block()) { | |
| 2200 UseNewIndexInCurrentBlock(Token::BIT_OR, | |
| 2201 decomposition.or_mask, | |
| 2202 decomposition.base, | |
| 2203 decomposition.context); | |
| 2204 current_or_mask_in_block_ = decomposition.or_mask; | |
| 2205 } | |
| 2206 check->set_skip_check(); | |
| 2207 } | |
| 2208 | |
| 2209 if (!check->skip_check()) { | |
| 2210 InductionVariableCheck* new_check = new(check->block()->graph()->zone()) | |
| 2211 InductionVariableCheck(check, checks_, upper_limit); | |
| 2212 checks_ = new_check; | |
| 2213 } | |
| 2214 } | |
| 2215 | |
| 2216 | |
| 2217 /* | |
| 2218 * This method detects if phi is an induction variable, with phi_operand as | |
| 2219 * its "incremented" value (the other operand would be the "base" value). | |
| 2220 * | |
| 2221 * It cheks is phi_operand has the form "phi + constant". | |
| 2222 * If yes, the constant is the increment that the induction variable gets at | |
| 2223 * every loop iteration. | |
| 2224 * Otherwise it returns 0. | |
| 2225 */ | |
| 2226 int32_t InductionVariableData::ComputeIncrement(HPhi* phi, | |
| 2227 HValue* phi_operand) { | |
| 2228 if (!phi_operand->representation().IsSmiOrInteger32()) return 0; | |
| 2229 | |
| 2230 if (phi_operand->IsAdd()) { | |
| 2231 HAdd* operation = HAdd::cast(phi_operand); | |
| 2232 if (operation->left() == phi && | |
| 2233 operation->right()->IsInteger32Constant()) { | |
| 2234 return operation->right()->GetInteger32Constant(); | |
| 2235 } else if (operation->right() == phi && | |
| 2236 operation->left()->IsInteger32Constant()) { | |
| 2237 return operation->left()->GetInteger32Constant(); | |
| 2238 } | |
| 2239 } else if (phi_operand->IsSub()) { | |
| 2240 HSub* operation = HSub::cast(phi_operand); | |
| 2241 if (operation->left() == phi && | |
| 2242 operation->right()->IsInteger32Constant()) { | |
| 2243 int constant = operation->right()->GetInteger32Constant(); | |
| 2244 if (constant == kMinInt) return 0; | |
| 2245 return -constant; | |
| 2246 } | |
| 2247 } | |
| 2248 | |
| 2249 return 0; | |
| 2250 } | |
| 2251 | |
| 2252 | |
| 2253 /* | |
| 2254 * Swaps the information in "update" with the one contained in "this". | |
| 2255 * The swapping is important because this method is used while doing a | |
| 2256 * dominator tree traversal, and "update" will retain the old data that | |
| 2257 * will be restored while backtracking. | |
| 2258 */ | |
| 2259 void InductionVariableData::UpdateAdditionalLimit( | |
| 2260 InductionVariableLimitUpdate* update) { | |
| 2261 DCHECK(update->updated_variable == this); | |
| 2262 if (update->limit_is_upper) { | |
| 2263 swap(&additional_upper_limit_, &update->limit); | |
| 2264 swap(&additional_upper_limit_is_included_, &update->limit_is_included); | |
| 2265 } else { | |
| 2266 swap(&additional_lower_limit_, &update->limit); | |
| 2267 swap(&additional_lower_limit_is_included_, &update->limit_is_included); | |
| 2268 } | |
| 2269 } | |
| 2270 | |
| 2271 | |
| 2272 int32_t InductionVariableData::ComputeUpperLimit(int32_t and_mask, | |
| 2273 int32_t or_mask) { | |
| 2274 // Should be Smi::kMaxValue but it must fit 32 bits; lower is safe anyway. | |
| 2275 const int32_t MAX_LIMIT = 1 << 30; | |
| 2276 | |
| 2277 int32_t result = MAX_LIMIT; | |
| 2278 | |
| 2279 if (limit() != NULL && | |
| 2280 limit()->IsInteger32Constant()) { | |
| 2281 int32_t limit_value = limit()->GetInteger32Constant(); | |
| 2282 if (!limit_included()) { | |
| 2283 limit_value--; | |
| 2284 } | |
| 2285 if (limit_value < result) result = limit_value; | |
| 2286 } | |
| 2287 | |
| 2288 if (additional_upper_limit() != NULL && | |
| 2289 additional_upper_limit()->IsInteger32Constant()) { | |
| 2290 int32_t limit_value = additional_upper_limit()->GetInteger32Constant(); | |
| 2291 if (!additional_upper_limit_is_included()) { | |
| 2292 limit_value--; | |
| 2293 } | |
| 2294 if (limit_value < result) result = limit_value; | |
| 2295 } | |
| 2296 | |
| 2297 if (and_mask > 0 && and_mask < MAX_LIMIT) { | |
| 2298 if (and_mask < result) result = and_mask; | |
| 2299 return result; | |
| 2300 } | |
| 2301 | |
| 2302 // Add the effect of the or_mask. | |
| 2303 result |= or_mask; | |
| 2304 | |
| 2305 return result >= MAX_LIMIT ? kNoLimit : result; | |
| 2306 } | |
| 2307 | |
| 2308 | |
| 2309 HValue* InductionVariableData::IgnoreOsrValue(HValue* v) { | |
| 2310 if (!v->IsPhi()) return v; | |
| 2311 HPhi* phi = HPhi::cast(v); | |
| 2312 if (phi->OperandCount() != 2) return v; | |
| 2313 if (phi->OperandAt(0)->block()->is_osr_entry()) { | |
| 2314 return phi->OperandAt(1); | |
| 2315 } else if (phi->OperandAt(1)->block()->is_osr_entry()) { | |
| 2316 return phi->OperandAt(0); | |
| 2317 } else { | |
| 2318 return v; | |
| 2319 } | |
| 2320 } | |
| 2321 | |
| 2322 | |
| 2323 InductionVariableData* InductionVariableData::GetInductionVariableData( | |
| 2324 HValue* v) { | |
| 2325 v = IgnoreOsrValue(v); | |
| 2326 if (v->IsPhi()) { | |
| 2327 return HPhi::cast(v)->induction_variable_data(); | |
| 2328 } | |
| 2329 return NULL; | |
| 2330 } | |
| 2331 | |
| 2332 | |
| 2333 /* | |
| 2334 * Check if a conditional branch to "current_branch" with token "token" is | |
| 2335 * the branch that keeps the induction loop running (and, conversely, will | |
| 2336 * terminate it if the "other_branch" is taken). | |
| 2337 * | |
| 2338 * Three conditions must be met: | |
| 2339 * - "current_branch" must be in the induction loop. | |
| 2340 * - "other_branch" must be out of the induction loop. | |
| 2341 * - "token" and the induction increment must be "compatible": the token should | |
| 2342 * be a condition that keeps the execution inside the loop until the limit is | |
| 2343 * reached. | |
| 2344 */ | |
| 2345 bool InductionVariableData::CheckIfBranchIsLoopGuard( | |
| 2346 Token::Value token, | |
| 2347 HBasicBlock* current_branch, | |
| 2348 HBasicBlock* other_branch) { | |
| 2349 if (!phi()->block()->current_loop()->IsNestedInThisLoop( | |
| 2350 current_branch->current_loop())) { | |
| 2351 return false; | |
| 2352 } | |
| 2353 | |
| 2354 if (phi()->block()->current_loop()->IsNestedInThisLoop( | |
| 2355 other_branch->current_loop())) { | |
| 2356 return false; | |
| 2357 } | |
| 2358 | |
| 2359 if (increment() > 0 && (token == Token::LT || token == Token::LTE)) { | |
| 2360 return true; | |
| 2361 } | |
| 2362 if (increment() < 0 && (token == Token::GT || token == Token::GTE)) { | |
| 2363 return true; | |
| 2364 } | |
| 2365 if (Token::IsInequalityOp(token) && (increment() == 1 || increment() == -1)) { | |
| 2366 return true; | |
| 2367 } | |
| 2368 | |
| 2369 return false; | |
| 2370 } | |
| 2371 | |
| 2372 | |
| 2373 void InductionVariableData::ComputeLimitFromPredecessorBlock( | |
| 2374 HBasicBlock* block, | |
| 2375 LimitFromPredecessorBlock* result) { | |
| 2376 if (block->predecessors()->length() != 1) return; | |
| 2377 HBasicBlock* predecessor = block->predecessors()->at(0); | |
| 2378 HInstruction* end = predecessor->last(); | |
| 2379 | |
| 2380 if (!end->IsCompareNumericAndBranch()) return; | |
| 2381 HCompareNumericAndBranch* branch = HCompareNumericAndBranch::cast(end); | |
| 2382 | |
| 2383 Token::Value token = branch->token(); | |
| 2384 if (!Token::IsArithmeticCompareOp(token)) return; | |
| 2385 | |
| 2386 HBasicBlock* other_target; | |
| 2387 if (block == branch->SuccessorAt(0)) { | |
| 2388 other_target = branch->SuccessorAt(1); | |
| 2389 } else { | |
| 2390 other_target = branch->SuccessorAt(0); | |
| 2391 token = Token::NegateCompareOp(token); | |
| 2392 DCHECK(block == branch->SuccessorAt(1)); | |
| 2393 } | |
| 2394 | |
| 2395 InductionVariableData* data; | |
| 2396 | |
| 2397 data = GetInductionVariableData(branch->left()); | |
| 2398 HValue* limit = branch->right(); | |
| 2399 if (data == NULL) { | |
| 2400 data = GetInductionVariableData(branch->right()); | |
| 2401 token = Token::ReverseCompareOp(token); | |
| 2402 limit = branch->left(); | |
| 2403 } | |
| 2404 | |
| 2405 if (data != NULL) { | |
| 2406 result->variable = data; | |
| 2407 result->token = token; | |
| 2408 result->limit = limit; | |
| 2409 result->other_target = other_target; | |
| 2410 } | |
| 2411 } | |
| 2412 | |
| 2413 | |
| 2414 /* | |
| 2415 * Compute the limit that is imposed on an induction variable when entering | |
| 2416 * "block" (if any). | |
| 2417 * If the limit is the "proper" induction limit (the one that makes the loop | |
| 2418 * terminate when the induction variable reaches it) it is stored directly in | |
| 2419 * the induction variable data. | |
| 2420 * Otherwise the limit is written in "additional_limit" and the method | |
| 2421 * returns true. | |
| 2422 */ | |
| 2423 bool InductionVariableData::ComputeInductionVariableLimit( | |
| 2424 HBasicBlock* block, | |
| 2425 InductionVariableLimitUpdate* additional_limit) { | |
| 2426 LimitFromPredecessorBlock limit; | |
| 2427 ComputeLimitFromPredecessorBlock(block, &limit); | |
| 2428 if (!limit.LimitIsValid()) return false; | |
| 2429 | |
| 2430 if (limit.variable->CheckIfBranchIsLoopGuard(limit.token, | |
| 2431 block, | |
| 2432 limit.other_target)) { | |
| 2433 limit.variable->limit_ = limit.limit; | |
| 2434 limit.variable->limit_included_ = limit.LimitIsIncluded(); | |
| 2435 limit.variable->limit_validity_ = block; | |
| 2436 limit.variable->induction_exit_block_ = block->predecessors()->at(0); | |
| 2437 limit.variable->induction_exit_target_ = limit.other_target; | |
| 2438 return false; | |
| 2439 } else { | |
| 2440 additional_limit->updated_variable = limit.variable; | |
| 2441 additional_limit->limit = limit.limit; | |
| 2442 additional_limit->limit_is_upper = limit.LimitIsUpper(); | |
| 2443 additional_limit->limit_is_included = limit.LimitIsIncluded(); | |
| 2444 return true; | |
| 2445 } | |
| 2446 } | |
| 2447 | |
| 2448 | |
| 2449 Range* HMathMinMax::InferRange(Zone* zone) { | |
| 2450 if (representation().IsSmiOrInteger32()) { | |
| 2451 Range* a = left()->range(); | |
| 2452 Range* b = right()->range(); | |
| 2453 Range* res = a->Copy(zone); | |
| 2454 if (operation_ == kMathMax) { | |
| 2455 res->CombinedMax(b); | |
| 2456 } else { | |
| 2457 DCHECK(operation_ == kMathMin); | |
| 2458 res->CombinedMin(b); | |
| 2459 } | |
| 2460 return res; | |
| 2461 } else { | |
| 2462 return HValue::InferRange(zone); | |
| 2463 } | |
| 2464 } | |
| 2465 | |
| 2466 | |
| 2467 void HPushArguments::AddInput(HValue* value) { | |
| 2468 inputs_.Add(NULL, value->block()->zone()); | |
| 2469 SetOperandAt(OperandCount() - 1, value); | |
| 2470 } | |
| 2471 | |
| 2472 | |
| 2473 std::ostream& HPhi::PrintTo(std::ostream& os) const { // NOLINT | |
| 2474 os << "["; | |
| 2475 for (int i = 0; i < OperandCount(); ++i) { | |
| 2476 os << " " << NameOf(OperandAt(i)) << " "; | |
| 2477 } | |
| 2478 return os << " uses" << UseCount() | |
| 2479 << representation_from_indirect_uses().Mnemonic() << " " | |
| 2480 << TypeOf(this) << "]"; | |
| 2481 } | |
| 2482 | |
| 2483 | |
| 2484 void HPhi::AddInput(HValue* value) { | |
| 2485 inputs_.Add(NULL, value->block()->zone()); | |
| 2486 SetOperandAt(OperandCount() - 1, value); | |
| 2487 // Mark phis that may have 'arguments' directly or indirectly as an operand. | |
| 2488 if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) { | |
| 2489 SetFlag(kIsArguments); | |
| 2490 } | |
| 2491 } | |
| 2492 | |
| 2493 | |
| 2494 bool HPhi::HasRealUses() { | |
| 2495 for (HUseIterator it(uses()); !it.Done(); it.Advance()) { | |
| 2496 if (!it.value()->IsPhi()) return true; | |
| 2497 } | |
| 2498 return false; | |
| 2499 } | |
| 2500 | |
| 2501 | |
| 2502 HValue* HPhi::GetRedundantReplacement() { | |
| 2503 HValue* candidate = NULL; | |
| 2504 int count = OperandCount(); | |
| 2505 int position = 0; | |
| 2506 while (position < count && candidate == NULL) { | |
| 2507 HValue* current = OperandAt(position++); | |
| 2508 if (current != this) candidate = current; | |
| 2509 } | |
| 2510 while (position < count) { | |
| 2511 HValue* current = OperandAt(position++); | |
| 2512 if (current != this && current != candidate) return NULL; | |
| 2513 } | |
| 2514 DCHECK(candidate != this); | |
| 2515 return candidate; | |
| 2516 } | |
| 2517 | |
| 2518 | |
| 2519 void HPhi::DeleteFromGraph() { | |
| 2520 DCHECK(block() != NULL); | |
| 2521 block()->RemovePhi(this); | |
| 2522 DCHECK(block() == NULL); | |
| 2523 } | |
| 2524 | |
| 2525 | |
| 2526 void HPhi::InitRealUses(int phi_id) { | |
| 2527 // Initialize real uses. | |
| 2528 phi_id_ = phi_id; | |
| 2529 // Compute a conservative approximation of truncating uses before inferring | |
| 2530 // representations. The proper, exact computation will be done later, when | |
| 2531 // inserting representation changes. | |
| 2532 SetFlag(kTruncatingToSmi); | |
| 2533 SetFlag(kTruncatingToInt32); | |
| 2534 for (HUseIterator it(uses()); !it.Done(); it.Advance()) { | |
| 2535 HValue* value = it.value(); | |
| 2536 if (!value->IsPhi()) { | |
| 2537 Representation rep = value->observed_input_representation(it.index()); | |
| 2538 representation_from_non_phi_uses_ = | |
| 2539 representation_from_non_phi_uses().generalize(rep); | |
| 2540 if (rep.IsSmi() || rep.IsInteger32() || rep.IsDouble()) { | |
| 2541 has_type_feedback_from_uses_ = true; | |
| 2542 } | |
| 2543 | |
| 2544 if (FLAG_trace_representation) { | |
| 2545 PrintF("#%d Phi is used by real #%d %s as %s\n", | |
| 2546 id(), value->id(), value->Mnemonic(), rep.Mnemonic()); | |
| 2547 } | |
| 2548 if (!value->IsSimulate()) { | |
| 2549 if (!value->CheckFlag(kTruncatingToSmi)) { | |
| 2550 ClearFlag(kTruncatingToSmi); | |
| 2551 } | |
| 2552 if (!value->CheckFlag(kTruncatingToInt32)) { | |
| 2553 ClearFlag(kTruncatingToInt32); | |
| 2554 } | |
| 2555 } | |
| 2556 } | |
| 2557 } | |
| 2558 } | |
| 2559 | |
| 2560 | |
| 2561 void HPhi::AddNonPhiUsesFrom(HPhi* other) { | |
| 2562 if (FLAG_trace_representation) { | |
| 2563 PrintF( | |
| 2564 "generalizing use representation '%s' of #%d Phi " | |
| 2565 "with uses of #%d Phi '%s'\n", | |
| 2566 representation_from_indirect_uses().Mnemonic(), id(), other->id(), | |
| 2567 other->representation_from_non_phi_uses().Mnemonic()); | |
| 2568 } | |
| 2569 | |
| 2570 representation_from_indirect_uses_ = | |
| 2571 representation_from_indirect_uses().generalize( | |
| 2572 other->representation_from_non_phi_uses()); | |
| 2573 } | |
| 2574 | |
| 2575 | |
| 2576 void HSimulate::MergeWith(ZoneList<HSimulate*>* list) { | |
| 2577 while (!list->is_empty()) { | |
| 2578 HSimulate* from = list->RemoveLast(); | |
| 2579 ZoneList<HValue*>* from_values = &from->values_; | |
| 2580 for (int i = 0; i < from_values->length(); ++i) { | |
| 2581 if (from->HasAssignedIndexAt(i)) { | |
| 2582 int index = from->GetAssignedIndexAt(i); | |
| 2583 if (HasValueForIndex(index)) continue; | |
| 2584 AddAssignedValue(index, from_values->at(i)); | |
| 2585 } else { | |
| 2586 if (pop_count_ > 0) { | |
| 2587 pop_count_--; | |
| 2588 } else { | |
| 2589 AddPushedValue(from_values->at(i)); | |
| 2590 } | |
| 2591 } | |
| 2592 } | |
| 2593 pop_count_ += from->pop_count_; | |
| 2594 from->DeleteAndReplaceWith(NULL); | |
| 2595 } | |
| 2596 } | |
| 2597 | |
| 2598 | |
| 2599 std::ostream& HSimulate::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 2600 os << "id=" << ast_id().ToInt(); | |
| 2601 if (pop_count_ > 0) os << " pop " << pop_count_; | |
| 2602 if (values_.length() > 0) { | |
| 2603 if (pop_count_ > 0) os << " /"; | |
| 2604 for (int i = values_.length() - 1; i >= 0; --i) { | |
| 2605 if (HasAssignedIndexAt(i)) { | |
| 2606 os << " var[" << GetAssignedIndexAt(i) << "] = "; | |
| 2607 } else { | |
| 2608 os << " push "; | |
| 2609 } | |
| 2610 os << NameOf(values_[i]); | |
| 2611 if (i > 0) os << ","; | |
| 2612 } | |
| 2613 } | |
| 2614 return os; | |
| 2615 } | |
| 2616 | |
| 2617 | |
| 2618 void HSimulate::ReplayEnvironment(HEnvironment* env) { | |
| 2619 if (is_done_with_replay()) return; | |
| 2620 DCHECK(env != NULL); | |
| 2621 env->set_ast_id(ast_id()); | |
| 2622 env->Drop(pop_count()); | |
| 2623 for (int i = values()->length() - 1; i >= 0; --i) { | |
| 2624 HValue* value = values()->at(i); | |
| 2625 if (HasAssignedIndexAt(i)) { | |
| 2626 env->Bind(GetAssignedIndexAt(i), value); | |
| 2627 } else { | |
| 2628 env->Push(value); | |
| 2629 } | |
| 2630 } | |
| 2631 set_done_with_replay(); | |
| 2632 } | |
| 2633 | |
| 2634 | |
| 2635 static void ReplayEnvironmentNested(const ZoneList<HValue*>* values, | |
| 2636 HCapturedObject* other) { | |
| 2637 for (int i = 0; i < values->length(); ++i) { | |
| 2638 HValue* value = values->at(i); | |
| 2639 if (value->IsCapturedObject()) { | |
| 2640 if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) { | |
| 2641 values->at(i) = other; | |
| 2642 } else { | |
| 2643 ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other); | |
| 2644 } | |
| 2645 } | |
| 2646 } | |
| 2647 } | |
| 2648 | |
| 2649 | |
| 2650 // Replay captured objects by replacing all captured objects with the | |
| 2651 // same capture id in the current and all outer environments. | |
| 2652 void HCapturedObject::ReplayEnvironment(HEnvironment* env) { | |
| 2653 DCHECK(env != NULL); | |
| 2654 while (env != NULL) { | |
| 2655 ReplayEnvironmentNested(env->values(), this); | |
| 2656 env = env->outer(); | |
| 2657 } | |
| 2658 } | |
| 2659 | |
| 2660 | |
| 2661 std::ostream& HCapturedObject::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 2662 os << "#" << capture_id() << " "; | |
| 2663 return HDematerializedObject::PrintDataTo(os); | |
| 2664 } | |
| 2665 | |
| 2666 | |
| 2667 void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target, | |
| 2668 Zone* zone) { | |
| 2669 DCHECK(return_target->IsInlineReturnTarget()); | |
| 2670 return_targets_.Add(return_target, zone); | |
| 2671 } | |
| 2672 | |
| 2673 | |
| 2674 std::ostream& HEnterInlined::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 2675 return os << function()->debug_name()->ToCString().get(); | |
| 2676 } | |
| 2677 | |
| 2678 | |
| 2679 static bool IsInteger32(double value) { | |
| 2680 if (value >= std::numeric_limits<int32_t>::min() && | |
| 2681 value <= std::numeric_limits<int32_t>::max()) { | |
| 2682 double roundtrip_value = static_cast<double>(static_cast<int32_t>(value)); | |
| 2683 return bit_cast<int64_t>(roundtrip_value) == bit_cast<int64_t>(value); | |
| 2684 } | |
| 2685 return false; | |
| 2686 } | |
| 2687 | |
| 2688 | |
| 2689 HConstant::HConstant(Special special) | |
| 2690 : HTemplateInstruction<0>(HType::TaggedNumber()), | |
| 2691 object_(Handle<Object>::null()), | |
| 2692 object_map_(Handle<Map>::null()), | |
| 2693 bit_field_(HasDoubleValueField::encode(true) | | |
| 2694 InstanceTypeField::encode(kUnknownInstanceType)), | |
| 2695 int32_value_(0) { | |
| 2696 DCHECK_EQ(kHoleNaN, special); | |
| 2697 std::memcpy(&double_value_, &kHoleNanInt64, sizeof(double_value_)); | |
| 2698 Initialize(Representation::Double()); | |
| 2699 } | |
| 2700 | |
| 2701 | |
| 2702 HConstant::HConstant(Handle<Object> object, Representation r) | |
| 2703 : HTemplateInstruction<0>(HType::FromValue(object)), | |
| 2704 object_(Unique<Object>::CreateUninitialized(object)), | |
| 2705 object_map_(Handle<Map>::null()), | |
| 2706 bit_field_( | |
| 2707 HasStableMapValueField::encode(false) | | |
| 2708 HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) | | |
| 2709 HasDoubleValueField::encode(false) | | |
| 2710 HasExternalReferenceValueField::encode(false) | | |
| 2711 IsNotInNewSpaceField::encode(true) | | |
| 2712 BooleanValueField::encode(object->BooleanValue()) | | |
| 2713 IsUndetectableField::encode(false) | IsCallableField::encode(false) | | |
| 2714 InstanceTypeField::encode(kUnknownInstanceType)) { | |
| 2715 if (object->IsHeapObject()) { | |
| 2716 Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object); | |
| 2717 Isolate* isolate = heap_object->GetIsolate(); | |
| 2718 Handle<Map> map(heap_object->map(), isolate); | |
| 2719 bit_field_ = IsNotInNewSpaceField::update( | |
| 2720 bit_field_, !isolate->heap()->InNewSpace(*object)); | |
| 2721 bit_field_ = InstanceTypeField::update(bit_field_, map->instance_type()); | |
| 2722 bit_field_ = | |
| 2723 IsUndetectableField::update(bit_field_, map->is_undetectable()); | |
| 2724 bit_field_ = IsCallableField::update(bit_field_, map->is_callable()); | |
| 2725 if (map->is_stable()) object_map_ = Unique<Map>::CreateImmovable(map); | |
| 2726 bit_field_ = HasStableMapValueField::update( | |
| 2727 bit_field_, | |
| 2728 HasMapValue() && Handle<Map>::cast(heap_object)->is_stable()); | |
| 2729 } | |
| 2730 if (object->IsNumber()) { | |
| 2731 double n = object->Number(); | |
| 2732 bool has_int32_value = IsInteger32(n); | |
| 2733 bit_field_ = HasInt32ValueField::update(bit_field_, has_int32_value); | |
| 2734 int32_value_ = DoubleToInt32(n); | |
| 2735 bit_field_ = HasSmiValueField::update( | |
| 2736 bit_field_, has_int32_value && Smi::IsValid(int32_value_)); | |
| 2737 double_value_ = n; | |
| 2738 bit_field_ = HasDoubleValueField::update(bit_field_, true); | |
| 2739 // TODO(titzer): if this heap number is new space, tenure a new one. | |
| 2740 } | |
| 2741 | |
| 2742 Initialize(r); | |
| 2743 } | |
| 2744 | |
| 2745 | |
| 2746 HConstant::HConstant(Unique<Object> object, Unique<Map> object_map, | |
| 2747 bool has_stable_map_value, Representation r, HType type, | |
| 2748 bool is_not_in_new_space, bool boolean_value, | |
| 2749 bool is_undetectable, InstanceType instance_type) | |
| 2750 : HTemplateInstruction<0>(type), | |
| 2751 object_(object), | |
| 2752 object_map_(object_map), | |
| 2753 bit_field_(HasStableMapValueField::encode(has_stable_map_value) | | |
| 2754 HasSmiValueField::encode(false) | | |
| 2755 HasInt32ValueField::encode(false) | | |
| 2756 HasDoubleValueField::encode(false) | | |
| 2757 HasExternalReferenceValueField::encode(false) | | |
| 2758 IsNotInNewSpaceField::encode(is_not_in_new_space) | | |
| 2759 BooleanValueField::encode(boolean_value) | | |
| 2760 IsUndetectableField::encode(is_undetectable) | | |
| 2761 InstanceTypeField::encode(instance_type)) { | |
| 2762 DCHECK(!object.handle().is_null()); | |
| 2763 DCHECK(!type.IsTaggedNumber() || type.IsNone()); | |
| 2764 Initialize(r); | |
| 2765 } | |
| 2766 | |
| 2767 | |
| 2768 HConstant::HConstant(int32_t integer_value, Representation r, | |
| 2769 bool is_not_in_new_space, Unique<Object> object) | |
| 2770 : object_(object), | |
| 2771 object_map_(Handle<Map>::null()), | |
| 2772 bit_field_(HasStableMapValueField::encode(false) | | |
| 2773 HasSmiValueField::encode(Smi::IsValid(integer_value)) | | |
| 2774 HasInt32ValueField::encode(true) | | |
| 2775 HasDoubleValueField::encode(true) | | |
| 2776 HasExternalReferenceValueField::encode(false) | | |
| 2777 IsNotInNewSpaceField::encode(is_not_in_new_space) | | |
| 2778 BooleanValueField::encode(integer_value != 0) | | |
| 2779 IsUndetectableField::encode(false) | | |
| 2780 InstanceTypeField::encode(kUnknownInstanceType)), | |
| 2781 int32_value_(integer_value), | |
| 2782 double_value_(FastI2D(integer_value)) { | |
| 2783 // It's possible to create a constant with a value in Smi-range but stored | |
| 2784 // in a (pre-existing) HeapNumber. See crbug.com/349878. | |
| 2785 bool could_be_heapobject = r.IsTagged() && !object.handle().is_null(); | |
| 2786 bool is_smi = HasSmiValue() && !could_be_heapobject; | |
| 2787 set_type(is_smi ? HType::Smi() : HType::TaggedNumber()); | |
| 2788 Initialize(r); | |
| 2789 } | |
| 2790 | |
| 2791 | |
| 2792 HConstant::HConstant(double double_value, Representation r, | |
| 2793 bool is_not_in_new_space, Unique<Object> object) | |
| 2794 : object_(object), | |
| 2795 object_map_(Handle<Map>::null()), | |
| 2796 bit_field_(HasStableMapValueField::encode(false) | | |
| 2797 HasInt32ValueField::encode(IsInteger32(double_value)) | | |
| 2798 HasDoubleValueField::encode(true) | | |
| 2799 HasExternalReferenceValueField::encode(false) | | |
| 2800 IsNotInNewSpaceField::encode(is_not_in_new_space) | | |
| 2801 BooleanValueField::encode(double_value != 0 && | |
| 2802 !std::isnan(double_value)) | | |
| 2803 IsUndetectableField::encode(false) | | |
| 2804 InstanceTypeField::encode(kUnknownInstanceType)), | |
| 2805 int32_value_(DoubleToInt32(double_value)), | |
| 2806 double_value_(double_value) { | |
| 2807 bit_field_ = HasSmiValueField::update( | |
| 2808 bit_field_, HasInteger32Value() && Smi::IsValid(int32_value_)); | |
| 2809 // It's possible to create a constant with a value in Smi-range but stored | |
| 2810 // in a (pre-existing) HeapNumber. See crbug.com/349878. | |
| 2811 bool could_be_heapobject = r.IsTagged() && !object.handle().is_null(); | |
| 2812 bool is_smi = HasSmiValue() && !could_be_heapobject; | |
| 2813 set_type(is_smi ? HType::Smi() : HType::TaggedNumber()); | |
| 2814 Initialize(r); | |
| 2815 } | |
| 2816 | |
| 2817 | |
| 2818 HConstant::HConstant(ExternalReference reference) | |
| 2819 : HTemplateInstruction<0>(HType::Any()), | |
| 2820 object_(Unique<Object>(Handle<Object>::null())), | |
| 2821 object_map_(Handle<Map>::null()), | |
| 2822 bit_field_( | |
| 2823 HasStableMapValueField::encode(false) | | |
| 2824 HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) | | |
| 2825 HasDoubleValueField::encode(false) | | |
| 2826 HasExternalReferenceValueField::encode(true) | | |
| 2827 IsNotInNewSpaceField::encode(true) | BooleanValueField::encode(true) | | |
| 2828 IsUndetectableField::encode(false) | | |
| 2829 InstanceTypeField::encode(kUnknownInstanceType)), | |
| 2830 external_reference_value_(reference) { | |
| 2831 Initialize(Representation::External()); | |
| 2832 } | |
| 2833 | |
| 2834 | |
| 2835 void HConstant::Initialize(Representation r) { | |
| 2836 if (r.IsNone()) { | |
| 2837 if (HasSmiValue() && SmiValuesAre31Bits()) { | |
| 2838 r = Representation::Smi(); | |
| 2839 } else if (HasInteger32Value()) { | |
| 2840 r = Representation::Integer32(); | |
| 2841 } else if (HasDoubleValue()) { | |
| 2842 r = Representation::Double(); | |
| 2843 } else if (HasExternalReferenceValue()) { | |
| 2844 r = Representation::External(); | |
| 2845 } else { | |
| 2846 Handle<Object> object = object_.handle(); | |
| 2847 if (object->IsJSObject()) { | |
| 2848 // Try to eagerly migrate JSObjects that have deprecated maps. | |
| 2849 Handle<JSObject> js_object = Handle<JSObject>::cast(object); | |
| 2850 if (js_object->map()->is_deprecated()) { | |
| 2851 JSObject::TryMigrateInstance(js_object); | |
| 2852 } | |
| 2853 } | |
| 2854 r = Representation::Tagged(); | |
| 2855 } | |
| 2856 } | |
| 2857 if (r.IsSmi()) { | |
| 2858 // If we have an existing handle, zap it, because it might be a heap | |
| 2859 // number which we must not re-use when copying this HConstant to | |
| 2860 // Tagged representation later, because having Smi representation now | |
| 2861 // could cause heap object checks not to get emitted. | |
| 2862 object_ = Unique<Object>(Handle<Object>::null()); | |
| 2863 } | |
| 2864 if (r.IsSmiOrInteger32() && object_.handle().is_null()) { | |
| 2865 // If it's not a heap object, it can't be in new space. | |
| 2866 bit_field_ = IsNotInNewSpaceField::update(bit_field_, true); | |
| 2867 } | |
| 2868 set_representation(r); | |
| 2869 SetFlag(kUseGVN); | |
| 2870 } | |
| 2871 | |
| 2872 | |
| 2873 bool HConstant::ImmortalImmovable() const { | |
| 2874 if (HasInteger32Value()) { | |
| 2875 return false; | |
| 2876 } | |
| 2877 if (HasDoubleValue()) { | |
| 2878 if (IsSpecialDouble()) { | |
| 2879 return true; | |
| 2880 } | |
| 2881 return false; | |
| 2882 } | |
| 2883 if (HasExternalReferenceValue()) { | |
| 2884 return false; | |
| 2885 } | |
| 2886 | |
| 2887 DCHECK(!object_.handle().is_null()); | |
| 2888 Heap* heap = isolate()->heap(); | |
| 2889 DCHECK(!object_.IsKnownGlobal(heap->minus_zero_value())); | |
| 2890 DCHECK(!object_.IsKnownGlobal(heap->nan_value())); | |
| 2891 return | |
| 2892 #define IMMORTAL_IMMOVABLE_ROOT(name) \ | |
| 2893 object_.IsKnownGlobal(heap->root(Heap::k##name##RootIndex)) || | |
| 2894 IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT) | |
| 2895 #undef IMMORTAL_IMMOVABLE_ROOT | |
| 2896 #define INTERNALIZED_STRING(name, value) \ | |
| 2897 object_.IsKnownGlobal(heap->name()) || | |
| 2898 INTERNALIZED_STRING_LIST(INTERNALIZED_STRING) | |
| 2899 #undef INTERNALIZED_STRING | |
| 2900 #define STRING_TYPE(NAME, size, name, Name) \ | |
| 2901 object_.IsKnownGlobal(heap->name##_map()) || | |
| 2902 STRING_TYPE_LIST(STRING_TYPE) | |
| 2903 #undef STRING_TYPE | |
| 2904 false; | |
| 2905 } | |
| 2906 | |
| 2907 | |
| 2908 bool HConstant::EmitAtUses() { | |
| 2909 DCHECK(IsLinked()); | |
| 2910 if (block()->graph()->has_osr() && | |
| 2911 block()->graph()->IsStandardConstant(this)) { | |
| 2912 // TODO(titzer): this seems like a hack that should be fixed by custom OSR. | |
| 2913 return true; | |
| 2914 } | |
| 2915 if (HasNoUses()) return true; | |
| 2916 if (IsCell()) return false; | |
| 2917 if (representation().IsDouble()) return false; | |
| 2918 if (representation().IsExternal()) return false; | |
| 2919 return true; | |
| 2920 } | |
| 2921 | |
| 2922 | |
| 2923 HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const { | |
| 2924 if (r.IsSmi() && !HasSmiValue()) return NULL; | |
| 2925 if (r.IsInteger32() && !HasInteger32Value()) return NULL; | |
| 2926 if (r.IsDouble() && !HasDoubleValue()) return NULL; | |
| 2927 if (r.IsExternal() && !HasExternalReferenceValue()) return NULL; | |
| 2928 if (HasInteger32Value()) { | |
| 2929 return new (zone) HConstant(int32_value_, r, NotInNewSpace(), object_); | |
| 2930 } | |
| 2931 if (HasDoubleValue()) { | |
| 2932 return new (zone) HConstant(double_value_, r, NotInNewSpace(), object_); | |
| 2933 } | |
| 2934 if (HasExternalReferenceValue()) { | |
| 2935 return new(zone) HConstant(external_reference_value_); | |
| 2936 } | |
| 2937 DCHECK(!object_.handle().is_null()); | |
| 2938 return new (zone) HConstant(object_, object_map_, HasStableMapValue(), r, | |
| 2939 type_, NotInNewSpace(), BooleanValue(), | |
| 2940 IsUndetectable(), GetInstanceType()); | |
| 2941 } | |
| 2942 | |
| 2943 | |
| 2944 Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) { | |
| 2945 HConstant* res = NULL; | |
| 2946 if (HasInteger32Value()) { | |
| 2947 res = new (zone) HConstant(int32_value_, Representation::Integer32(), | |
| 2948 NotInNewSpace(), object_); | |
| 2949 } else if (HasDoubleValue()) { | |
| 2950 res = new (zone) | |
| 2951 HConstant(DoubleToInt32(double_value_), Representation::Integer32(), | |
| 2952 NotInNewSpace(), object_); | |
| 2953 } | |
| 2954 return res != NULL ? Just(res) : Nothing<HConstant*>(); | |
| 2955 } | |
| 2956 | |
| 2957 | |
| 2958 Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Isolate* isolate, | |
| 2959 Zone* zone) { | |
| 2960 HConstant* res = NULL; | |
| 2961 Handle<Object> handle = this->handle(isolate); | |
| 2962 if (handle->IsBoolean()) { | |
| 2963 res = handle->BooleanValue() ? | |
| 2964 new(zone) HConstant(1) : new(zone) HConstant(0); | |
| 2965 } else if (handle->IsUndefined()) { | |
| 2966 res = new (zone) HConstant(std::numeric_limits<double>::quiet_NaN()); | |
| 2967 } else if (handle->IsNull()) { | |
| 2968 res = new(zone) HConstant(0); | |
| 2969 } | |
| 2970 return res != NULL ? Just(res) : Nothing<HConstant*>(); | |
| 2971 } | |
| 2972 | |
| 2973 | |
| 2974 std::ostream& HConstant::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 2975 if (HasInteger32Value()) { | |
| 2976 os << int32_value_ << " "; | |
| 2977 } else if (HasDoubleValue()) { | |
| 2978 os << double_value_ << " "; | |
| 2979 } else if (HasExternalReferenceValue()) { | |
| 2980 os << reinterpret_cast<void*>(external_reference_value_.address()) << " "; | |
| 2981 } else { | |
| 2982 // The handle() method is silently and lazily mutating the object. | |
| 2983 Handle<Object> h = const_cast<HConstant*>(this)->handle(isolate()); | |
| 2984 os << Brief(*h) << " "; | |
| 2985 if (HasStableMapValue()) os << "[stable-map] "; | |
| 2986 if (HasObjectMap()) os << "[map " << *ObjectMap().handle() << "] "; | |
| 2987 } | |
| 2988 if (!NotInNewSpace()) os << "[new space] "; | |
| 2989 return os; | |
| 2990 } | |
| 2991 | |
| 2992 | |
| 2993 std::ostream& HBinaryOperation::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 2994 os << NameOf(left()) << " " << NameOf(right()); | |
| 2995 if (CheckFlag(kCanOverflow)) os << " !"; | |
| 2996 if (CheckFlag(kBailoutOnMinusZero)) os << " -0?"; | |
| 2997 return os; | |
| 2998 } | |
| 2999 | |
| 3000 | |
| 3001 void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) { | |
| 3002 DCHECK(CheckFlag(kFlexibleRepresentation)); | |
| 3003 Representation new_rep = RepresentationFromInputs(); | |
| 3004 UpdateRepresentation(new_rep, h_infer, "inputs"); | |
| 3005 | |
| 3006 if (representation().IsSmi() && HasNonSmiUse()) { | |
| 3007 UpdateRepresentation( | |
| 3008 Representation::Integer32(), h_infer, "use requirements"); | |
| 3009 } | |
| 3010 | |
| 3011 if (observed_output_representation_.IsNone()) { | |
| 3012 new_rep = RepresentationFromUses(); | |
| 3013 UpdateRepresentation(new_rep, h_infer, "uses"); | |
| 3014 } else { | |
| 3015 new_rep = RepresentationFromOutput(); | |
| 3016 UpdateRepresentation(new_rep, h_infer, "output"); | |
| 3017 } | |
| 3018 } | |
| 3019 | |
| 3020 | |
| 3021 Representation HBinaryOperation::RepresentationFromInputs() { | |
| 3022 // Determine the worst case of observed input representations and | |
| 3023 // the currently assumed output representation. | |
| 3024 Representation rep = representation(); | |
| 3025 for (int i = 1; i <= 2; ++i) { | |
| 3026 rep = rep.generalize(observed_input_representation(i)); | |
| 3027 } | |
| 3028 // If any of the actual input representation is more general than what we | |
| 3029 // have so far but not Tagged, use that representation instead. | |
| 3030 Representation left_rep = left()->representation(); | |
| 3031 Representation right_rep = right()->representation(); | |
| 3032 if (!left_rep.IsTagged()) rep = rep.generalize(left_rep); | |
| 3033 if (!right_rep.IsTagged()) rep = rep.generalize(right_rep); | |
| 3034 | |
| 3035 return rep; | |
| 3036 } | |
| 3037 | |
| 3038 | |
| 3039 bool HBinaryOperation::IgnoreObservedOutputRepresentation( | |
| 3040 Representation current_rep) { | |
| 3041 return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) || | |
| 3042 (current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) && | |
| 3043 // Mul in Integer32 mode would be too precise. | |
| 3044 (!this->IsMul() || HMul::cast(this)->MulMinusOne()); | |
| 3045 } | |
| 3046 | |
| 3047 | |
| 3048 Representation HBinaryOperation::RepresentationFromOutput() { | |
| 3049 Representation rep = representation(); | |
| 3050 // Consider observed output representation, but ignore it if it's Double, | |
| 3051 // this instruction is not a division, and all its uses are truncating | |
| 3052 // to Integer32. | |
| 3053 if (observed_output_representation_.is_more_general_than(rep) && | |
| 3054 !IgnoreObservedOutputRepresentation(rep)) { | |
| 3055 return observed_output_representation_; | |
| 3056 } | |
| 3057 return Representation::None(); | |
| 3058 } | |
| 3059 | |
| 3060 | |
| 3061 void HBinaryOperation::AssumeRepresentation(Representation r) { | |
| 3062 set_observed_input_representation(1, r); | |
| 3063 set_observed_input_representation(2, r); | |
| 3064 HValue::AssumeRepresentation(r); | |
| 3065 } | |
| 3066 | |
| 3067 | |
| 3068 void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) { | |
| 3069 DCHECK(CheckFlag(kFlexibleRepresentation)); | |
| 3070 Representation new_rep = RepresentationFromInputs(); | |
| 3071 UpdateRepresentation(new_rep, h_infer, "inputs"); | |
| 3072 // Do not care about uses. | |
| 3073 } | |
| 3074 | |
| 3075 | |
| 3076 Range* HBitwise::InferRange(Zone* zone) { | |
| 3077 if (op() == Token::BIT_XOR) { | |
| 3078 if (left()->HasRange() && right()->HasRange()) { | |
| 3079 // The maximum value has the high bit, and all bits below, set: | |
| 3080 // (1 << high) - 1. | |
| 3081 // If the range can be negative, the minimum int is a negative number with | |
| 3082 // the high bit, and all bits below, unset: | |
| 3083 // -(1 << high). | |
| 3084 // If it cannot be negative, conservatively choose 0 as minimum int. | |
| 3085 int64_t left_upper = left()->range()->upper(); | |
| 3086 int64_t left_lower = left()->range()->lower(); | |
| 3087 int64_t right_upper = right()->range()->upper(); | |
| 3088 int64_t right_lower = right()->range()->lower(); | |
| 3089 | |
| 3090 if (left_upper < 0) left_upper = ~left_upper; | |
| 3091 if (left_lower < 0) left_lower = ~left_lower; | |
| 3092 if (right_upper < 0) right_upper = ~right_upper; | |
| 3093 if (right_lower < 0) right_lower = ~right_lower; | |
| 3094 | |
| 3095 int high = MostSignificantBit( | |
| 3096 static_cast<uint32_t>( | |
| 3097 left_upper | left_lower | right_upper | right_lower)); | |
| 3098 | |
| 3099 int64_t limit = 1; | |
| 3100 limit <<= high; | |
| 3101 int32_t min = (left()->range()->CanBeNegative() || | |
| 3102 right()->range()->CanBeNegative()) | |
| 3103 ? static_cast<int32_t>(-limit) : 0; | |
| 3104 return new(zone) Range(min, static_cast<int32_t>(limit - 1)); | |
| 3105 } | |
| 3106 Range* result = HValue::InferRange(zone); | |
| 3107 result->set_can_be_minus_zero(false); | |
| 3108 return result; | |
| 3109 } | |
| 3110 const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff); | |
| 3111 int32_t left_mask = (left()->range() != NULL) | |
| 3112 ? left()->range()->Mask() | |
| 3113 : kDefaultMask; | |
| 3114 int32_t right_mask = (right()->range() != NULL) | |
| 3115 ? right()->range()->Mask() | |
| 3116 : kDefaultMask; | |
| 3117 int32_t result_mask = (op() == Token::BIT_AND) | |
| 3118 ? left_mask & right_mask | |
| 3119 : left_mask | right_mask; | |
| 3120 if (result_mask >= 0) return new(zone) Range(0, result_mask); | |
| 3121 | |
| 3122 Range* result = HValue::InferRange(zone); | |
| 3123 result->set_can_be_minus_zero(false); | |
| 3124 return result; | |
| 3125 } | |
| 3126 | |
| 3127 | |
| 3128 Range* HSar::InferRange(Zone* zone) { | |
| 3129 if (right()->IsConstant()) { | |
| 3130 HConstant* c = HConstant::cast(right()); | |
| 3131 if (c->HasInteger32Value()) { | |
| 3132 Range* result = (left()->range() != NULL) | |
| 3133 ? left()->range()->Copy(zone) | |
| 3134 : new(zone) Range(); | |
| 3135 result->Sar(c->Integer32Value()); | |
| 3136 return result; | |
| 3137 } | |
| 3138 } | |
| 3139 return HValue::InferRange(zone); | |
| 3140 } | |
| 3141 | |
| 3142 | |
| 3143 Range* HShr::InferRange(Zone* zone) { | |
| 3144 if (right()->IsConstant()) { | |
| 3145 HConstant* c = HConstant::cast(right()); | |
| 3146 if (c->HasInteger32Value()) { | |
| 3147 int shift_count = c->Integer32Value() & 0x1f; | |
| 3148 if (left()->range()->CanBeNegative()) { | |
| 3149 // Only compute bounds if the result always fits into an int32. | |
| 3150 return (shift_count >= 1) | |
| 3151 ? new(zone) Range(0, | |
| 3152 static_cast<uint32_t>(0xffffffff) >> shift_count) | |
| 3153 : new(zone) Range(); | |
| 3154 } else { | |
| 3155 // For positive inputs we can use the >> operator. | |
| 3156 Range* result = (left()->range() != NULL) | |
| 3157 ? left()->range()->Copy(zone) | |
| 3158 : new(zone) Range(); | |
| 3159 result->Sar(c->Integer32Value()); | |
| 3160 return result; | |
| 3161 } | |
| 3162 } | |
| 3163 } | |
| 3164 return HValue::InferRange(zone); | |
| 3165 } | |
| 3166 | |
| 3167 | |
| 3168 Range* HShl::InferRange(Zone* zone) { | |
| 3169 if (right()->IsConstant()) { | |
| 3170 HConstant* c = HConstant::cast(right()); | |
| 3171 if (c->HasInteger32Value()) { | |
| 3172 Range* result = (left()->range() != NULL) | |
| 3173 ? left()->range()->Copy(zone) | |
| 3174 : new(zone) Range(); | |
| 3175 result->Shl(c->Integer32Value()); | |
| 3176 return result; | |
| 3177 } | |
| 3178 } | |
| 3179 return HValue::InferRange(zone); | |
| 3180 } | |
| 3181 | |
| 3182 | |
| 3183 Range* HLoadNamedField::InferRange(Zone* zone) { | |
| 3184 if (access().representation().IsInteger8()) { | |
| 3185 return new(zone) Range(kMinInt8, kMaxInt8); | |
| 3186 } | |
| 3187 if (access().representation().IsUInteger8()) { | |
| 3188 return new(zone) Range(kMinUInt8, kMaxUInt8); | |
| 3189 } | |
| 3190 if (access().representation().IsInteger16()) { | |
| 3191 return new(zone) Range(kMinInt16, kMaxInt16); | |
| 3192 } | |
| 3193 if (access().representation().IsUInteger16()) { | |
| 3194 return new(zone) Range(kMinUInt16, kMaxUInt16); | |
| 3195 } | |
| 3196 if (access().IsStringLength()) { | |
| 3197 return new(zone) Range(0, String::kMaxLength); | |
| 3198 } | |
| 3199 return HValue::InferRange(zone); | |
| 3200 } | |
| 3201 | |
| 3202 | |
| 3203 Range* HLoadKeyed::InferRange(Zone* zone) { | |
| 3204 switch (elements_kind()) { | |
| 3205 case INT8_ELEMENTS: | |
| 3206 return new(zone) Range(kMinInt8, kMaxInt8); | |
| 3207 case UINT8_ELEMENTS: | |
| 3208 case UINT8_CLAMPED_ELEMENTS: | |
| 3209 return new(zone) Range(kMinUInt8, kMaxUInt8); | |
| 3210 case INT16_ELEMENTS: | |
| 3211 return new(zone) Range(kMinInt16, kMaxInt16); | |
| 3212 case UINT16_ELEMENTS: | |
| 3213 return new(zone) Range(kMinUInt16, kMaxUInt16); | |
| 3214 default: | |
| 3215 return HValue::InferRange(zone); | |
| 3216 } | |
| 3217 } | |
| 3218 | |
| 3219 | |
| 3220 std::ostream& HCompareGeneric::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 3221 os << Token::Name(token()) << " "; | |
| 3222 return HBinaryOperation::PrintDataTo(os); | |
| 3223 } | |
| 3224 | |
| 3225 | |
| 3226 std::ostream& HStringCompareAndBranch::PrintDataTo( | |
| 3227 std::ostream& os) const { // NOLINT | |
| 3228 os << Token::Name(token()) << " "; | |
| 3229 return HControlInstruction::PrintDataTo(os); | |
| 3230 } | |
| 3231 | |
| 3232 | |
| 3233 std::ostream& HCompareNumericAndBranch::PrintDataTo( | |
| 3234 std::ostream& os) const { // NOLINT | |
| 3235 os << Token::Name(token()) << " " << NameOf(left()) << " " << NameOf(right()); | |
| 3236 return HControlInstruction::PrintDataTo(os); | |
| 3237 } | |
| 3238 | |
| 3239 | |
| 3240 std::ostream& HCompareObjectEqAndBranch::PrintDataTo( | |
| 3241 std::ostream& os) const { // NOLINT | |
| 3242 os << NameOf(left()) << " " << NameOf(right()); | |
| 3243 return HControlInstruction::PrintDataTo(os); | |
| 3244 } | |
| 3245 | |
| 3246 | |
| 3247 bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) { | |
| 3248 if (known_successor_index() != kNoKnownSuccessorIndex) { | |
| 3249 *block = SuccessorAt(known_successor_index()); | |
| 3250 return true; | |
| 3251 } | |
| 3252 if (FLAG_fold_constants && left()->IsConstant() && right()->IsConstant()) { | |
| 3253 *block = HConstant::cast(left())->DataEquals(HConstant::cast(right())) | |
| 3254 ? FirstSuccessor() : SecondSuccessor(); | |
| 3255 return true; | |
| 3256 } | |
| 3257 *block = NULL; | |
| 3258 return false; | |
| 3259 } | |
| 3260 | |
| 3261 | |
| 3262 bool HIsStringAndBranch::KnownSuccessorBlock(HBasicBlock** block) { | |
| 3263 if (known_successor_index() != kNoKnownSuccessorIndex) { | |
| 3264 *block = SuccessorAt(known_successor_index()); | |
| 3265 return true; | |
| 3266 } | |
| 3267 if (FLAG_fold_constants && value()->IsConstant()) { | |
| 3268 *block = HConstant::cast(value())->HasStringValue() | |
| 3269 ? FirstSuccessor() : SecondSuccessor(); | |
| 3270 return true; | |
| 3271 } | |
| 3272 if (value()->type().IsString()) { | |
| 3273 *block = FirstSuccessor(); | |
| 3274 return true; | |
| 3275 } | |
| 3276 if (value()->type().IsSmi() || | |
| 3277 value()->type().IsNull() || | |
| 3278 value()->type().IsBoolean() || | |
| 3279 value()->type().IsUndefined() || | |
| 3280 value()->type().IsJSObject()) { | |
| 3281 *block = SecondSuccessor(); | |
| 3282 return true; | |
| 3283 } | |
| 3284 *block = NULL; | |
| 3285 return false; | |
| 3286 } | |
| 3287 | |
| 3288 | |
| 3289 bool HIsUndetectableAndBranch::KnownSuccessorBlock(HBasicBlock** block) { | |
| 3290 if (FLAG_fold_constants && value()->IsConstant()) { | |
| 3291 *block = HConstant::cast(value())->IsUndetectable() | |
| 3292 ? FirstSuccessor() : SecondSuccessor(); | |
| 3293 return true; | |
| 3294 } | |
| 3295 *block = NULL; | |
| 3296 return false; | |
| 3297 } | |
| 3298 | |
| 3299 | |
| 3300 bool HHasInstanceTypeAndBranch::KnownSuccessorBlock(HBasicBlock** block) { | |
| 3301 if (FLAG_fold_constants && value()->IsConstant()) { | |
| 3302 InstanceType type = HConstant::cast(value())->GetInstanceType(); | |
| 3303 *block = (from_ <= type) && (type <= to_) | |
| 3304 ? FirstSuccessor() : SecondSuccessor(); | |
| 3305 return true; | |
| 3306 } | |
| 3307 *block = NULL; | |
| 3308 return false; | |
| 3309 } | |
| 3310 | |
| 3311 | |
| 3312 void HCompareHoleAndBranch::InferRepresentation( | |
| 3313 HInferRepresentationPhase* h_infer) { | |
| 3314 ChangeRepresentation(value()->representation()); | |
| 3315 } | |
| 3316 | |
| 3317 | |
| 3318 bool HCompareNumericAndBranch::KnownSuccessorBlock(HBasicBlock** block) { | |
| 3319 if (left() == right() && | |
| 3320 left()->representation().IsSmiOrInteger32()) { | |
| 3321 *block = (token() == Token::EQ || | |
| 3322 token() == Token::EQ_STRICT || | |
| 3323 token() == Token::LTE || | |
| 3324 token() == Token::GTE) | |
| 3325 ? FirstSuccessor() : SecondSuccessor(); | |
| 3326 return true; | |
| 3327 } | |
| 3328 *block = NULL; | |
| 3329 return false; | |
| 3330 } | |
| 3331 | |
| 3332 | |
| 3333 bool HCompareMinusZeroAndBranch::KnownSuccessorBlock(HBasicBlock** block) { | |
| 3334 if (FLAG_fold_constants && value()->IsConstant()) { | |
| 3335 HConstant* constant = HConstant::cast(value()); | |
| 3336 if (constant->HasDoubleValue()) { | |
| 3337 *block = IsMinusZero(constant->DoubleValue()) | |
| 3338 ? FirstSuccessor() : SecondSuccessor(); | |
| 3339 return true; | |
| 3340 } | |
| 3341 } | |
| 3342 if (value()->representation().IsSmiOrInteger32()) { | |
| 3343 // A Smi or Integer32 cannot contain minus zero. | |
| 3344 *block = SecondSuccessor(); | |
| 3345 return true; | |
| 3346 } | |
| 3347 *block = NULL; | |
| 3348 return false; | |
| 3349 } | |
| 3350 | |
| 3351 | |
| 3352 void HCompareMinusZeroAndBranch::InferRepresentation( | |
| 3353 HInferRepresentationPhase* h_infer) { | |
| 3354 ChangeRepresentation(value()->representation()); | |
| 3355 } | |
| 3356 | |
| 3357 | |
| 3358 std::ostream& HGoto::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 3359 return os << *SuccessorAt(0); | |
| 3360 } | |
| 3361 | |
| 3362 | |
| 3363 void HCompareNumericAndBranch::InferRepresentation( | |
| 3364 HInferRepresentationPhase* h_infer) { | |
| 3365 Representation left_rep = left()->representation(); | |
| 3366 Representation right_rep = right()->representation(); | |
| 3367 Representation observed_left = observed_input_representation(0); | |
| 3368 Representation observed_right = observed_input_representation(1); | |
| 3369 | |
| 3370 Representation rep = Representation::None(); | |
| 3371 rep = rep.generalize(observed_left); | |
| 3372 rep = rep.generalize(observed_right); | |
| 3373 if (rep.IsNone() || rep.IsSmiOrInteger32()) { | |
| 3374 if (!left_rep.IsTagged()) rep = rep.generalize(left_rep); | |
| 3375 if (!right_rep.IsTagged()) rep = rep.generalize(right_rep); | |
| 3376 } else { | |
| 3377 rep = Representation::Double(); | |
| 3378 } | |
| 3379 | |
| 3380 if (rep.IsDouble()) { | |
| 3381 // According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, === | |
| 3382 // and !=) have special handling of undefined, e.g. undefined == undefined | |
| 3383 // is 'true'. Relational comparisons have a different semantic, first | |
| 3384 // calling ToPrimitive() on their arguments. The standard Crankshaft | |
| 3385 // tagged-to-double conversion to ensure the HCompareNumericAndBranch's | |
| 3386 // inputs are doubles caused 'undefined' to be converted to NaN. That's | |
| 3387 // compatible out-of-the box with ordered relational comparisons (<, >, <=, | |
| 3388 // >=). However, for equality comparisons (and for 'in' and 'instanceof'), | |
| 3389 // it is not consistent with the spec. For example, it would cause undefined | |
| 3390 // == undefined (should be true) to be evaluated as NaN == NaN | |
| 3391 // (false). Therefore, any comparisons other than ordered relational | |
| 3392 // comparisons must cause a deopt when one of their arguments is undefined. | |
| 3393 // See also v8:1434 | |
| 3394 if (Token::IsOrderedRelationalCompareOp(token_) && !is_strong(strength())) { | |
| 3395 SetFlag(kAllowUndefinedAsNaN); | |
| 3396 } | |
| 3397 } | |
| 3398 ChangeRepresentation(rep); | |
| 3399 } | |
| 3400 | |
| 3401 | |
| 3402 std::ostream& HParameter::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 3403 return os << index(); | |
| 3404 } | |
| 3405 | |
| 3406 | |
| 3407 std::ostream& HLoadNamedField::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 3408 os << NameOf(object()) << access_; | |
| 3409 | |
| 3410 if (maps() != NULL) { | |
| 3411 os << " [" << *maps()->at(0).handle(); | |
| 3412 for (int i = 1; i < maps()->size(); ++i) { | |
| 3413 os << "," << *maps()->at(i).handle(); | |
| 3414 } | |
| 3415 os << "]"; | |
| 3416 } | |
| 3417 | |
| 3418 if (HasDependency()) os << " " << NameOf(dependency()); | |
| 3419 return os; | |
| 3420 } | |
| 3421 | |
| 3422 | |
| 3423 std::ostream& HLoadNamedGeneric::PrintDataTo( | |
| 3424 std::ostream& os) const { // NOLINT | |
| 3425 Handle<String> n = Handle<String>::cast(name()); | |
| 3426 return os << NameOf(object()) << "." << n->ToCString().get(); | |
| 3427 } | |
| 3428 | |
| 3429 | |
| 3430 std::ostream& HLoadKeyed::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 3431 if (!is_fixed_typed_array()) { | |
| 3432 os << NameOf(elements()); | |
| 3433 } else { | |
| 3434 DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND && | |
| 3435 elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND); | |
| 3436 os << NameOf(elements()) << "." << ElementsKindToString(elements_kind()); | |
| 3437 } | |
| 3438 | |
| 3439 os << "[" << NameOf(key()); | |
| 3440 if (IsDehoisted()) os << " + " << base_offset(); | |
| 3441 os << "]"; | |
| 3442 | |
| 3443 if (HasDependency()) os << " " << NameOf(dependency()); | |
| 3444 if (RequiresHoleCheck()) os << " check_hole"; | |
| 3445 return os; | |
| 3446 } | |
| 3447 | |
| 3448 | |
| 3449 bool HLoadKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) { | |
| 3450 // The base offset is usually simply the size of the array header, except | |
| 3451 // with dehoisting adds an addition offset due to a array index key | |
| 3452 // manipulation, in which case it becomes (array header size + | |
| 3453 // constant-offset-from-key * kPointerSize) | |
| 3454 uint32_t base_offset = BaseOffsetField::decode(bit_field_); | |
| 3455 v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset; | |
| 3456 addition_result += increase_by_value; | |
| 3457 if (!addition_result.IsValid()) return false; | |
| 3458 base_offset = addition_result.ValueOrDie(); | |
| 3459 if (!BaseOffsetField::is_valid(base_offset)) return false; | |
| 3460 bit_field_ = BaseOffsetField::update(bit_field_, base_offset); | |
| 3461 return true; | |
| 3462 } | |
| 3463 | |
| 3464 | |
| 3465 bool HLoadKeyed::UsesMustHandleHole() const { | |
| 3466 if (IsFastPackedElementsKind(elements_kind())) { | |
| 3467 return false; | |
| 3468 } | |
| 3469 | |
| 3470 if (IsFixedTypedArrayElementsKind(elements_kind())) { | |
| 3471 return false; | |
| 3472 } | |
| 3473 | |
| 3474 if (hole_mode() == ALLOW_RETURN_HOLE) { | |
| 3475 if (IsFastDoubleElementsKind(elements_kind())) { | |
| 3476 return AllUsesCanTreatHoleAsNaN(); | |
| 3477 } | |
| 3478 return true; | |
| 3479 } | |
| 3480 | |
| 3481 if (IsFastDoubleElementsKind(elements_kind())) { | |
| 3482 return false; | |
| 3483 } | |
| 3484 | |
| 3485 // Holes are only returned as tagged values. | |
| 3486 if (!representation().IsTagged()) { | |
| 3487 return false; | |
| 3488 } | |
| 3489 | |
| 3490 for (HUseIterator it(uses()); !it.Done(); it.Advance()) { | |
| 3491 HValue* use = it.value(); | |
| 3492 if (!use->IsChange()) return false; | |
| 3493 } | |
| 3494 | |
| 3495 return true; | |
| 3496 } | |
| 3497 | |
| 3498 | |
| 3499 bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const { | |
| 3500 return IsFastDoubleElementsKind(elements_kind()) && | |
| 3501 CheckUsesForFlag(HValue::kAllowUndefinedAsNaN); | |
| 3502 } | |
| 3503 | |
| 3504 | |
| 3505 bool HLoadKeyed::RequiresHoleCheck() const { | |
| 3506 if (IsFastPackedElementsKind(elements_kind())) { | |
| 3507 return false; | |
| 3508 } | |
| 3509 | |
| 3510 if (IsFixedTypedArrayElementsKind(elements_kind())) { | |
| 3511 return false; | |
| 3512 } | |
| 3513 | |
| 3514 if (hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { | |
| 3515 return false; | |
| 3516 } | |
| 3517 | |
| 3518 return !UsesMustHandleHole(); | |
| 3519 } | |
| 3520 | |
| 3521 | |
| 3522 std::ostream& HLoadKeyedGeneric::PrintDataTo( | |
| 3523 std::ostream& os) const { // NOLINT | |
| 3524 return os << NameOf(object()) << "[" << NameOf(key()) << "]"; | |
| 3525 } | |
| 3526 | |
| 3527 | |
| 3528 HValue* HLoadKeyedGeneric::Canonicalize() { | |
| 3529 // Recognize generic keyed loads that use property name generated | |
| 3530 // by for-in statement as a key and rewrite them into fast property load | |
| 3531 // by index. | |
| 3532 if (key()->IsLoadKeyed()) { | |
| 3533 HLoadKeyed* key_load = HLoadKeyed::cast(key()); | |
| 3534 if (key_load->elements()->IsForInCacheArray()) { | |
| 3535 HForInCacheArray* names_cache = | |
| 3536 HForInCacheArray::cast(key_load->elements()); | |
| 3537 | |
| 3538 if (names_cache->enumerable() == object()) { | |
| 3539 HForInCacheArray* index_cache = | |
| 3540 names_cache->index_cache(); | |
| 3541 HCheckMapValue* map_check = HCheckMapValue::New( | |
| 3542 block()->graph()->isolate(), block()->graph()->zone(), | |
| 3543 block()->graph()->GetInvalidContext(), object(), | |
| 3544 names_cache->map()); | |
| 3545 HInstruction* index = HLoadKeyed::New( | |
| 3546 block()->graph()->isolate(), block()->graph()->zone(), | |
| 3547 block()->graph()->GetInvalidContext(), index_cache, key_load->key(), | |
| 3548 key_load->key(), key_load->elements_kind()); | |
| 3549 map_check->InsertBefore(this); | |
| 3550 index->InsertBefore(this); | |
| 3551 return Prepend(new(block()->zone()) HLoadFieldByIndex( | |
| 3552 object(), index)); | |
| 3553 } | |
| 3554 } | |
| 3555 } | |
| 3556 | |
| 3557 return this; | |
| 3558 } | |
| 3559 | |
| 3560 | |
| 3561 std::ostream& HStoreNamedGeneric::PrintDataTo( | |
| 3562 std::ostream& os) const { // NOLINT | |
| 3563 Handle<String> n = Handle<String>::cast(name()); | |
| 3564 return os << NameOf(object()) << "." << n->ToCString().get() << " = " | |
| 3565 << NameOf(value()); | |
| 3566 } | |
| 3567 | |
| 3568 | |
| 3569 std::ostream& HStoreGlobalViaContext::PrintDataTo( | |
| 3570 std::ostream& os) const { // NOLINT | |
| 3571 return os << " depth:" << depth() << " slot:" << slot_index() << " = " | |
| 3572 << NameOf(value()); | |
| 3573 } | |
| 3574 | |
| 3575 | |
| 3576 std::ostream& HStoreNamedField::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 3577 os << NameOf(object()) << access_ << " = " << NameOf(value()); | |
| 3578 if (NeedsWriteBarrier()) os << " (write-barrier)"; | |
| 3579 if (has_transition()) os << " (transition map " << *transition_map() << ")"; | |
| 3580 return os; | |
| 3581 } | |
| 3582 | |
| 3583 | |
| 3584 std::ostream& HStoreKeyed::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 3585 if (!is_fixed_typed_array()) { | |
| 3586 os << NameOf(elements()); | |
| 3587 } else { | |
| 3588 DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND && | |
| 3589 elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND); | |
| 3590 os << NameOf(elements()) << "." << ElementsKindToString(elements_kind()); | |
| 3591 } | |
| 3592 | |
| 3593 os << "[" << NameOf(key()); | |
| 3594 if (IsDehoisted()) os << " + " << base_offset(); | |
| 3595 return os << "] = " << NameOf(value()); | |
| 3596 } | |
| 3597 | |
| 3598 | |
| 3599 std::ostream& HStoreKeyedGeneric::PrintDataTo( | |
| 3600 std::ostream& os) const { // NOLINT | |
| 3601 return os << NameOf(object()) << "[" << NameOf(key()) | |
| 3602 << "] = " << NameOf(value()); | |
| 3603 } | |
| 3604 | |
| 3605 | |
| 3606 std::ostream& HTransitionElementsKind::PrintDataTo( | |
| 3607 std::ostream& os) const { // NOLINT | |
| 3608 os << NameOf(object()); | |
| 3609 ElementsKind from_kind = original_map().handle()->elements_kind(); | |
| 3610 ElementsKind to_kind = transitioned_map().handle()->elements_kind(); | |
| 3611 os << " " << *original_map().handle() << " [" | |
| 3612 << ElementsAccessor::ForKind(from_kind)->name() << "] -> " | |
| 3613 << *transitioned_map().handle() << " [" | |
| 3614 << ElementsAccessor::ForKind(to_kind)->name() << "]"; | |
| 3615 if (IsSimpleMapChangeTransition(from_kind, to_kind)) os << " (simple)"; | |
| 3616 return os; | |
| 3617 } | |
| 3618 | |
| 3619 | |
| 3620 std::ostream& HLoadGlobalGeneric::PrintDataTo( | |
| 3621 std::ostream& os) const { // NOLINT | |
| 3622 return os << name()->ToCString().get() << " "; | |
| 3623 } | |
| 3624 | |
| 3625 | |
| 3626 std::ostream& HLoadGlobalViaContext::PrintDataTo( | |
| 3627 std::ostream& os) const { // NOLINT | |
| 3628 return os << "depth:" << depth() << " slot:" << slot_index(); | |
| 3629 } | |
| 3630 | |
| 3631 | |
| 3632 std::ostream& HInnerAllocatedObject::PrintDataTo( | |
| 3633 std::ostream& os) const { // NOLINT | |
| 3634 os << NameOf(base_object()) << " offset "; | |
| 3635 return offset()->PrintTo(os); | |
| 3636 } | |
| 3637 | |
| 3638 | |
| 3639 std::ostream& HLoadContextSlot::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 3640 return os << NameOf(value()) << "[" << slot_index() << "]"; | |
| 3641 } | |
| 3642 | |
| 3643 | |
| 3644 std::ostream& HStoreContextSlot::PrintDataTo( | |
| 3645 std::ostream& os) const { // NOLINT | |
| 3646 return os << NameOf(context()) << "[" << slot_index() | |
| 3647 << "] = " << NameOf(value()); | |
| 3648 } | |
| 3649 | |
| 3650 | |
| 3651 // Implementation of type inference and type conversions. Calculates | |
| 3652 // the inferred type of this instruction based on the input operands. | |
| 3653 | |
| 3654 HType HValue::CalculateInferredType() { | |
| 3655 return type_; | |
| 3656 } | |
| 3657 | |
| 3658 | |
| 3659 HType HPhi::CalculateInferredType() { | |
| 3660 if (OperandCount() == 0) return HType::Tagged(); | |
| 3661 HType result = OperandAt(0)->type(); | |
| 3662 for (int i = 1; i < OperandCount(); ++i) { | |
| 3663 HType current = OperandAt(i)->type(); | |
| 3664 result = result.Combine(current); | |
| 3665 } | |
| 3666 return result; | |
| 3667 } | |
| 3668 | |
| 3669 | |
| 3670 HType HChange::CalculateInferredType() { | |
| 3671 if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber(); | |
| 3672 return type(); | |
| 3673 } | |
| 3674 | |
| 3675 | |
| 3676 Representation HUnaryMathOperation::RepresentationFromInputs() { | |
| 3677 if (SupportsFlexibleFloorAndRound() && | |
| 3678 (op_ == kMathFloor || op_ == kMathRound)) { | |
| 3679 // Floor and Round always take a double input. The integral result can be | |
| 3680 // used as an integer or a double. Infer the representation from the uses. | |
| 3681 return Representation::None(); | |
| 3682 } | |
| 3683 Representation rep = representation(); | |
| 3684 // If any of the actual input representation is more general than what we | |
| 3685 // have so far but not Tagged, use that representation instead. | |
| 3686 Representation input_rep = value()->representation(); | |
| 3687 if (!input_rep.IsTagged()) { | |
| 3688 rep = rep.generalize(input_rep); | |
| 3689 } | |
| 3690 return rep; | |
| 3691 } | |
| 3692 | |
| 3693 | |
| 3694 bool HAllocate::HandleSideEffectDominator(GVNFlag side_effect, | |
| 3695 HValue* dominator) { | |
| 3696 DCHECK(side_effect == kNewSpacePromotion); | |
| 3697 Zone* zone = block()->zone(); | |
| 3698 Isolate* isolate = block()->isolate(); | |
| 3699 if (!FLAG_use_allocation_folding) return false; | |
| 3700 | |
| 3701 // Try to fold allocations together with their dominating allocations. | |
| 3702 if (!dominator->IsAllocate()) { | |
| 3703 if (FLAG_trace_allocation_folding) { | |
| 3704 PrintF("#%d (%s) cannot fold into #%d (%s)\n", | |
| 3705 id(), Mnemonic(), dominator->id(), dominator->Mnemonic()); | |
| 3706 } | |
| 3707 return false; | |
| 3708 } | |
| 3709 | |
| 3710 // Check whether we are folding within the same block for local folding. | |
| 3711 if (FLAG_use_local_allocation_folding && dominator->block() != block()) { | |
| 3712 if (FLAG_trace_allocation_folding) { | |
| 3713 PrintF("#%d (%s) cannot fold into #%d (%s), crosses basic blocks\n", | |
| 3714 id(), Mnemonic(), dominator->id(), dominator->Mnemonic()); | |
| 3715 } | |
| 3716 return false; | |
| 3717 } | |
| 3718 | |
| 3719 HAllocate* dominator_allocate = HAllocate::cast(dominator); | |
| 3720 HValue* dominator_size = dominator_allocate->size(); | |
| 3721 HValue* current_size = size(); | |
| 3722 | |
| 3723 // TODO(hpayer): Add support for non-constant allocation in dominator. | |
| 3724 if (!dominator_size->IsInteger32Constant()) { | |
| 3725 if (FLAG_trace_allocation_folding) { | |
| 3726 PrintF("#%d (%s) cannot fold into #%d (%s), " | |
| 3727 "dynamic allocation size in dominator\n", | |
| 3728 id(), Mnemonic(), dominator->id(), dominator->Mnemonic()); | |
| 3729 } | |
| 3730 return false; | |
| 3731 } | |
| 3732 | |
| 3733 | |
| 3734 if (!IsFoldable(dominator_allocate)) { | |
| 3735 if (FLAG_trace_allocation_folding) { | |
| 3736 PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n", id(), | |
| 3737 Mnemonic(), dominator->id(), dominator->Mnemonic()); | |
| 3738 } | |
| 3739 return false; | |
| 3740 } | |
| 3741 | |
| 3742 if (!has_size_upper_bound()) { | |
| 3743 if (FLAG_trace_allocation_folding) { | |
| 3744 PrintF("#%d (%s) cannot fold into #%d (%s), " | |
| 3745 "can't estimate total allocation size\n", | |
| 3746 id(), Mnemonic(), dominator->id(), dominator->Mnemonic()); | |
| 3747 } | |
| 3748 return false; | |
| 3749 } | |
| 3750 | |
| 3751 if (!current_size->IsInteger32Constant()) { | |
| 3752 // If it's not constant then it is a size_in_bytes calculation graph | |
| 3753 // like this: (const_header_size + const_element_size * size). | |
| 3754 DCHECK(current_size->IsInstruction()); | |
| 3755 | |
| 3756 HInstruction* current_instr = HInstruction::cast(current_size); | |
| 3757 if (!current_instr->Dominates(dominator_allocate)) { | |
| 3758 if (FLAG_trace_allocation_folding) { | |
| 3759 PrintF("#%d (%s) cannot fold into #%d (%s), dynamic size " | |
| 3760 "value does not dominate target allocation\n", | |
| 3761 id(), Mnemonic(), dominator_allocate->id(), | |
| 3762 dominator_allocate->Mnemonic()); | |
| 3763 } | |
| 3764 return false; | |
| 3765 } | |
| 3766 } | |
| 3767 | |
| 3768 DCHECK( | |
| 3769 (IsNewSpaceAllocation() && dominator_allocate->IsNewSpaceAllocation()) || | |
| 3770 (IsOldSpaceAllocation() && dominator_allocate->IsOldSpaceAllocation())); | |
| 3771 | |
| 3772 // First update the size of the dominator allocate instruction. | |
| 3773 dominator_size = dominator_allocate->size(); | |
| 3774 int32_t original_object_size = | |
| 3775 HConstant::cast(dominator_size)->GetInteger32Constant(); | |
| 3776 int32_t dominator_size_constant = original_object_size; | |
| 3777 | |
| 3778 if (MustAllocateDoubleAligned()) { | |
| 3779 if ((dominator_size_constant & kDoubleAlignmentMask) != 0) { | |
| 3780 dominator_size_constant += kDoubleSize / 2; | |
| 3781 } | |
| 3782 } | |
| 3783 | |
| 3784 int32_t current_size_max_value = size_upper_bound()->GetInteger32Constant(); | |
| 3785 int32_t new_dominator_size = dominator_size_constant + current_size_max_value; | |
| 3786 | |
| 3787 // Since we clear the first word after folded memory, we cannot use the | |
| 3788 // whole Page::kMaxRegularHeapObjectSize memory. | |
| 3789 if (new_dominator_size > Page::kMaxRegularHeapObjectSize - kPointerSize) { | |
| 3790 if (FLAG_trace_allocation_folding) { | |
| 3791 PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n", | |
| 3792 id(), Mnemonic(), dominator_allocate->id(), | |
| 3793 dominator_allocate->Mnemonic(), new_dominator_size); | |
| 3794 } | |
| 3795 return false; | |
| 3796 } | |
| 3797 | |
| 3798 HInstruction* new_dominator_size_value; | |
| 3799 | |
| 3800 if (current_size->IsInteger32Constant()) { | |
| 3801 new_dominator_size_value = HConstant::CreateAndInsertBefore( | |
| 3802 isolate, zone, context(), new_dominator_size, Representation::None(), | |
| 3803 dominator_allocate); | |
| 3804 } else { | |
| 3805 HValue* new_dominator_size_constant = HConstant::CreateAndInsertBefore( | |
| 3806 isolate, zone, context(), dominator_size_constant, | |
| 3807 Representation::Integer32(), dominator_allocate); | |
| 3808 | |
| 3809 // Add old and new size together and insert. | |
| 3810 current_size->ChangeRepresentation(Representation::Integer32()); | |
| 3811 | |
| 3812 new_dominator_size_value = HAdd::New( | |
| 3813 isolate, zone, context(), new_dominator_size_constant, current_size); | |
| 3814 new_dominator_size_value->ClearFlag(HValue::kCanOverflow); | |
| 3815 new_dominator_size_value->ChangeRepresentation(Representation::Integer32()); | |
| 3816 | |
| 3817 new_dominator_size_value->InsertBefore(dominator_allocate); | |
| 3818 } | |
| 3819 | |
| 3820 dominator_allocate->UpdateSize(new_dominator_size_value); | |
| 3821 | |
| 3822 if (MustAllocateDoubleAligned()) { | |
| 3823 if (!dominator_allocate->MustAllocateDoubleAligned()) { | |
| 3824 dominator_allocate->MakeDoubleAligned(); | |
| 3825 } | |
| 3826 } | |
| 3827 | |
| 3828 bool keep_new_space_iterable = FLAG_log_gc || FLAG_heap_stats; | |
| 3829 #ifdef VERIFY_HEAP | |
| 3830 keep_new_space_iterable = keep_new_space_iterable || FLAG_verify_heap; | |
| 3831 #endif | |
| 3832 | |
| 3833 if (keep_new_space_iterable && dominator_allocate->IsNewSpaceAllocation()) { | |
| 3834 dominator_allocate->MakePrefillWithFiller(); | |
| 3835 } else { | |
| 3836 // TODO(hpayer): This is a short-term hack to make allocation mementos | |
| 3837 // work again in new space. | |
| 3838 dominator_allocate->ClearNextMapWord(original_object_size); | |
| 3839 } | |
| 3840 | |
| 3841 dominator_allocate->UpdateClearNextMapWord(MustClearNextMapWord()); | |
| 3842 | |
| 3843 // After that replace the dominated allocate instruction. | |
| 3844 HInstruction* inner_offset = HConstant::CreateAndInsertBefore( | |
| 3845 isolate, zone, context(), dominator_size_constant, Representation::None(), | |
| 3846 this); | |
| 3847 | |
| 3848 HInstruction* dominated_allocate_instr = HInnerAllocatedObject::New( | |
| 3849 isolate, zone, context(), dominator_allocate, inner_offset, type()); | |
| 3850 dominated_allocate_instr->InsertBefore(this); | |
| 3851 DeleteAndReplaceWith(dominated_allocate_instr); | |
| 3852 if (FLAG_trace_allocation_folding) { | |
| 3853 PrintF("#%d (%s) folded into #%d (%s)\n", | |
| 3854 id(), Mnemonic(), dominator_allocate->id(), | |
| 3855 dominator_allocate->Mnemonic()); | |
| 3856 } | |
| 3857 return true; | |
| 3858 } | |
| 3859 | |
| 3860 | |
| 3861 void HAllocate::UpdateFreeSpaceFiller(int32_t free_space_size) { | |
| 3862 DCHECK(filler_free_space_size_ != NULL); | |
| 3863 Zone* zone = block()->zone(); | |
| 3864 // We must explicitly force Smi representation here because on x64 we | |
| 3865 // would otherwise automatically choose int32, but the actual store | |
| 3866 // requires a Smi-tagged value. | |
| 3867 HConstant* new_free_space_size = HConstant::CreateAndInsertBefore( | |
| 3868 block()->isolate(), zone, context(), | |
| 3869 filler_free_space_size_->value()->GetInteger32Constant() + | |
| 3870 free_space_size, | |
| 3871 Representation::Smi(), filler_free_space_size_); | |
| 3872 filler_free_space_size_->UpdateValue(new_free_space_size); | |
| 3873 } | |
| 3874 | |
| 3875 | |
| 3876 void HAllocate::CreateFreeSpaceFiller(int32_t free_space_size) { | |
| 3877 DCHECK(filler_free_space_size_ == NULL); | |
| 3878 Isolate* isolate = block()->isolate(); | |
| 3879 Zone* zone = block()->zone(); | |
| 3880 HInstruction* free_space_instr = | |
| 3881 HInnerAllocatedObject::New(isolate, zone, context(), dominating_allocate_, | |
| 3882 dominating_allocate_->size(), type()); | |
| 3883 free_space_instr->InsertBefore(this); | |
| 3884 HConstant* filler_map = HConstant::CreateAndInsertAfter( | |
| 3885 zone, Unique<Map>::CreateImmovable(isolate->factory()->free_space_map()), | |
| 3886 true, free_space_instr); | |
| 3887 HInstruction* store_map = | |
| 3888 HStoreNamedField::New(isolate, zone, context(), free_space_instr, | |
| 3889 HObjectAccess::ForMap(), filler_map); | |
| 3890 store_map->SetFlag(HValue::kHasNoObservableSideEffects); | |
| 3891 store_map->InsertAfter(filler_map); | |
| 3892 | |
| 3893 // We must explicitly force Smi representation here because on x64 we | |
| 3894 // would otherwise automatically choose int32, but the actual store | |
| 3895 // requires a Smi-tagged value. | |
| 3896 HConstant* filler_size = | |
| 3897 HConstant::CreateAndInsertAfter(isolate, zone, context(), free_space_size, | |
| 3898 Representation::Smi(), store_map); | |
| 3899 // Must force Smi representation for x64 (see comment above). | |
| 3900 HObjectAccess access = HObjectAccess::ForMapAndOffset( | |
| 3901 isolate->factory()->free_space_map(), FreeSpace::kSizeOffset, | |
| 3902 Representation::Smi()); | |
| 3903 HStoreNamedField* store_size = HStoreNamedField::New( | |
| 3904 isolate, zone, context(), free_space_instr, access, filler_size); | |
| 3905 store_size->SetFlag(HValue::kHasNoObservableSideEffects); | |
| 3906 store_size->InsertAfter(filler_size); | |
| 3907 filler_free_space_size_ = store_size; | |
| 3908 } | |
| 3909 | |
| 3910 | |
| 3911 void HAllocate::ClearNextMapWord(int offset) { | |
| 3912 if (MustClearNextMapWord()) { | |
| 3913 Zone* zone = block()->zone(); | |
| 3914 HObjectAccess access = | |
| 3915 HObjectAccess::ForObservableJSObjectOffset(offset); | |
| 3916 HStoreNamedField* clear_next_map = | |
| 3917 HStoreNamedField::New(block()->isolate(), zone, context(), this, access, | |
| 3918 block()->graph()->GetConstant0()); | |
| 3919 clear_next_map->ClearAllSideEffects(); | |
| 3920 clear_next_map->InsertAfter(this); | |
| 3921 } | |
| 3922 } | |
| 3923 | |
| 3924 | |
| 3925 std::ostream& HAllocate::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 3926 os << NameOf(size()) << " ("; | |
| 3927 if (IsNewSpaceAllocation()) os << "N"; | |
| 3928 if (IsOldSpaceAllocation()) os << "P"; | |
| 3929 if (MustAllocateDoubleAligned()) os << "A"; | |
| 3930 if (MustPrefillWithFiller()) os << "F"; | |
| 3931 return os << ")"; | |
| 3932 } | |
| 3933 | |
| 3934 | |
| 3935 bool HStoreKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) { | |
| 3936 // The base offset is usually simply the size of the array header, except | |
| 3937 // with dehoisting adds an addition offset due to a array index key | |
| 3938 // manipulation, in which case it becomes (array header size + | |
| 3939 // constant-offset-from-key * kPointerSize) | |
| 3940 v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset_; | |
| 3941 addition_result += increase_by_value; | |
| 3942 if (!addition_result.IsValid()) return false; | |
| 3943 base_offset_ = addition_result.ValueOrDie(); | |
| 3944 return true; | |
| 3945 } | |
| 3946 | |
| 3947 | |
| 3948 bool HStoreKeyed::NeedsCanonicalization() { | |
| 3949 switch (value()->opcode()) { | |
| 3950 case kLoadKeyed: { | |
| 3951 ElementsKind load_kind = HLoadKeyed::cast(value())->elements_kind(); | |
| 3952 return IsFixedFloatElementsKind(load_kind); | |
| 3953 } | |
| 3954 case kChange: { | |
| 3955 Representation from = HChange::cast(value())->from(); | |
| 3956 return from.IsTagged() || from.IsHeapObject(); | |
| 3957 } | |
| 3958 case kLoadNamedField: | |
| 3959 case kPhi: { | |
| 3960 // Better safe than sorry... | |
| 3961 return true; | |
| 3962 } | |
| 3963 default: | |
| 3964 return false; | |
| 3965 } | |
| 3966 } | |
| 3967 | |
| 3968 | |
| 3969 #define H_CONSTANT_INT(val) \ | |
| 3970 HConstant::New(isolate, zone, context, static_cast<int32_t>(val)) | |
| 3971 #define H_CONSTANT_DOUBLE(val) \ | |
| 3972 HConstant::New(isolate, zone, context, static_cast<double>(val)) | |
| 3973 | |
| 3974 #define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op) \ | |
| 3975 HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context, \ | |
| 3976 HValue* left, HValue* right, Strength strength) { \ | |
| 3977 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \ | |
| 3978 HConstant* c_left = HConstant::cast(left); \ | |
| 3979 HConstant* c_right = HConstant::cast(right); \ | |
| 3980 if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \ | |
| 3981 double double_res = c_left->DoubleValue() op c_right->DoubleValue(); \ | |
| 3982 if (IsInt32Double(double_res)) { \ | |
| 3983 return H_CONSTANT_INT(double_res); \ | |
| 3984 } \ | |
| 3985 return H_CONSTANT_DOUBLE(double_res); \ | |
| 3986 } \ | |
| 3987 } \ | |
| 3988 return new (zone) HInstr(context, left, right, strength); \ | |
| 3989 } | |
| 3990 | |
| 3991 | |
| 3992 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +) | |
| 3993 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *) | |
| 3994 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -) | |
| 3995 | |
| 3996 #undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR | |
| 3997 | |
| 3998 | |
| 3999 HInstruction* HStringAdd::New(Isolate* isolate, Zone* zone, HValue* context, | |
| 4000 HValue* left, HValue* right, | |
| 4001 PretenureFlag pretenure_flag, | |
| 4002 StringAddFlags flags, | |
| 4003 Handle<AllocationSite> allocation_site) { | |
| 4004 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { | |
| 4005 HConstant* c_right = HConstant::cast(right); | |
| 4006 HConstant* c_left = HConstant::cast(left); | |
| 4007 if (c_left->HasStringValue() && c_right->HasStringValue()) { | |
| 4008 Handle<String> left_string = c_left->StringValue(); | |
| 4009 Handle<String> right_string = c_right->StringValue(); | |
| 4010 // Prevent possible exception by invalid string length. | |
| 4011 if (left_string->length() + right_string->length() < String::kMaxLength) { | |
| 4012 MaybeHandle<String> concat = isolate->factory()->NewConsString( | |
| 4013 c_left->StringValue(), c_right->StringValue()); | |
| 4014 return HConstant::New(isolate, zone, context, concat.ToHandleChecked()); | |
| 4015 } | |
| 4016 } | |
| 4017 } | |
| 4018 return new (zone) | |
| 4019 HStringAdd(context, left, right, pretenure_flag, flags, allocation_site); | |
| 4020 } | |
| 4021 | |
| 4022 | |
| 4023 std::ostream& HStringAdd::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 4024 if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) { | |
| 4025 os << "_CheckBoth"; | |
| 4026 } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) { | |
| 4027 os << "_CheckLeft"; | |
| 4028 } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) { | |
| 4029 os << "_CheckRight"; | |
| 4030 } | |
| 4031 HBinaryOperation::PrintDataTo(os); | |
| 4032 os << " ("; | |
| 4033 if (pretenure_flag() == NOT_TENURED) | |
| 4034 os << "N"; | |
| 4035 else if (pretenure_flag() == TENURED) | |
| 4036 os << "D"; | |
| 4037 return os << ")"; | |
| 4038 } | |
| 4039 | |
| 4040 | |
| 4041 HInstruction* HStringCharFromCode::New(Isolate* isolate, Zone* zone, | |
| 4042 HValue* context, HValue* char_code) { | |
| 4043 if (FLAG_fold_constants && char_code->IsConstant()) { | |
| 4044 HConstant* c_code = HConstant::cast(char_code); | |
| 4045 if (c_code->HasNumberValue()) { | |
| 4046 if (std::isfinite(c_code->DoubleValue())) { | |
| 4047 uint32_t code = c_code->NumberValueAsInteger32() & 0xffff; | |
| 4048 return HConstant::New( | |
| 4049 isolate, zone, context, | |
| 4050 isolate->factory()->LookupSingleCharacterStringFromCode(code)); | |
| 4051 } | |
| 4052 return HConstant::New(isolate, zone, context, | |
| 4053 isolate->factory()->empty_string()); | |
| 4054 } | |
| 4055 } | |
| 4056 return new(zone) HStringCharFromCode(context, char_code); | |
| 4057 } | |
| 4058 | |
| 4059 | |
| 4060 HInstruction* HUnaryMathOperation::New(Isolate* isolate, Zone* zone, | |
| 4061 HValue* context, HValue* value, | |
| 4062 BuiltinFunctionId op) { | |
| 4063 do { | |
| 4064 if (!FLAG_fold_constants) break; | |
| 4065 if (!value->IsConstant()) break; | |
| 4066 HConstant* constant = HConstant::cast(value); | |
| 4067 if (!constant->HasNumberValue()) break; | |
| 4068 double d = constant->DoubleValue(); | |
| 4069 if (std::isnan(d)) { // NaN poisons everything. | |
| 4070 return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN()); | |
| 4071 } | |
| 4072 if (std::isinf(d)) { // +Infinity and -Infinity. | |
| 4073 switch (op) { | |
| 4074 case kMathExp: | |
| 4075 return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0); | |
| 4076 case kMathLog: | |
| 4077 case kMathSqrt: | |
| 4078 return H_CONSTANT_DOUBLE( | |
| 4079 (d > 0.0) ? d : std::numeric_limits<double>::quiet_NaN()); | |
| 4080 case kMathPowHalf: | |
| 4081 case kMathAbs: | |
| 4082 return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d); | |
| 4083 case kMathRound: | |
| 4084 case kMathFround: | |
| 4085 case kMathFloor: | |
| 4086 return H_CONSTANT_DOUBLE(d); | |
| 4087 case kMathClz32: | |
| 4088 return H_CONSTANT_INT(32); | |
| 4089 default: | |
| 4090 UNREACHABLE(); | |
| 4091 break; | |
| 4092 } | |
| 4093 } | |
| 4094 switch (op) { | |
| 4095 case kMathExp: | |
| 4096 return H_CONSTANT_DOUBLE(fast_exp(d)); | |
| 4097 case kMathLog: | |
| 4098 return H_CONSTANT_DOUBLE(std::log(d)); | |
| 4099 case kMathSqrt: | |
| 4100 return H_CONSTANT_DOUBLE(fast_sqrt(d)); | |
| 4101 case kMathPowHalf: | |
| 4102 return H_CONSTANT_DOUBLE(power_double_double(d, 0.5)); | |
| 4103 case kMathAbs: | |
| 4104 return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d); | |
| 4105 case kMathRound: | |
| 4106 // -0.5 .. -0.0 round to -0.0. | |
| 4107 if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0); | |
| 4108 // Doubles are represented as Significant * 2 ^ Exponent. If the | |
| 4109 // Exponent is not negative, the double value is already an integer. | |
| 4110 if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d); | |
| 4111 return H_CONSTANT_DOUBLE(Floor(d + 0.5)); | |
| 4112 case kMathFround: | |
| 4113 return H_CONSTANT_DOUBLE(static_cast<double>(static_cast<float>(d))); | |
| 4114 case kMathFloor: | |
| 4115 return H_CONSTANT_DOUBLE(Floor(d)); | |
| 4116 case kMathClz32: { | |
| 4117 uint32_t i = DoubleToUint32(d); | |
| 4118 return H_CONSTANT_INT(base::bits::CountLeadingZeros32(i)); | |
| 4119 } | |
| 4120 default: | |
| 4121 UNREACHABLE(); | |
| 4122 break; | |
| 4123 } | |
| 4124 } while (false); | |
| 4125 return new(zone) HUnaryMathOperation(context, value, op); | |
| 4126 } | |
| 4127 | |
| 4128 | |
| 4129 Representation HUnaryMathOperation::RepresentationFromUses() { | |
| 4130 if (op_ != kMathFloor && op_ != kMathRound) { | |
| 4131 return HValue::RepresentationFromUses(); | |
| 4132 } | |
| 4133 | |
| 4134 // The instruction can have an int32 or double output. Prefer a double | |
| 4135 // representation if there are double uses. | |
| 4136 bool use_double = false; | |
| 4137 | |
| 4138 for (HUseIterator it(uses()); !it.Done(); it.Advance()) { | |
| 4139 HValue* use = it.value(); | |
| 4140 int use_index = it.index(); | |
| 4141 Representation rep_observed = use->observed_input_representation(use_index); | |
| 4142 Representation rep_required = use->RequiredInputRepresentation(use_index); | |
| 4143 use_double |= (rep_observed.IsDouble() || rep_required.IsDouble()); | |
| 4144 if (use_double && !FLAG_trace_representation) { | |
| 4145 // Having seen one double is enough. | |
| 4146 break; | |
| 4147 } | |
| 4148 if (FLAG_trace_representation) { | |
| 4149 if (!rep_required.IsDouble() || rep_observed.IsDouble()) { | |
| 4150 PrintF("#%d %s is used by #%d %s as %s%s\n", | |
| 4151 id(), Mnemonic(), use->id(), | |
| 4152 use->Mnemonic(), rep_observed.Mnemonic(), | |
| 4153 (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : "")); | |
| 4154 } else { | |
| 4155 PrintF("#%d %s is required by #%d %s as %s%s\n", | |
| 4156 id(), Mnemonic(), use->id(), | |
| 4157 use->Mnemonic(), rep_required.Mnemonic(), | |
| 4158 (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : "")); | |
| 4159 } | |
| 4160 } | |
| 4161 } | |
| 4162 return use_double ? Representation::Double() : Representation::Integer32(); | |
| 4163 } | |
| 4164 | |
| 4165 | |
| 4166 HInstruction* HPower::New(Isolate* isolate, Zone* zone, HValue* context, | |
| 4167 HValue* left, HValue* right) { | |
| 4168 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { | |
| 4169 HConstant* c_left = HConstant::cast(left); | |
| 4170 HConstant* c_right = HConstant::cast(right); | |
| 4171 if (c_left->HasNumberValue() && c_right->HasNumberValue()) { | |
| 4172 double result = power_helper(c_left->DoubleValue(), | |
| 4173 c_right->DoubleValue()); | |
| 4174 return H_CONSTANT_DOUBLE(std::isnan(result) | |
| 4175 ? std::numeric_limits<double>::quiet_NaN() | |
| 4176 : result); | |
| 4177 } | |
| 4178 } | |
| 4179 return new(zone) HPower(left, right); | |
| 4180 } | |
| 4181 | |
| 4182 | |
| 4183 HInstruction* HMathMinMax::New(Isolate* isolate, Zone* zone, HValue* context, | |
| 4184 HValue* left, HValue* right, Operation op) { | |
| 4185 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { | |
| 4186 HConstant* c_left = HConstant::cast(left); | |
| 4187 HConstant* c_right = HConstant::cast(right); | |
| 4188 if (c_left->HasNumberValue() && c_right->HasNumberValue()) { | |
| 4189 double d_left = c_left->DoubleValue(); | |
| 4190 double d_right = c_right->DoubleValue(); | |
| 4191 if (op == kMathMin) { | |
| 4192 if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right); | |
| 4193 if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left); | |
| 4194 if (d_left == d_right) { | |
| 4195 // Handle +0 and -0. | |
| 4196 return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left | |
| 4197 : d_right); | |
| 4198 } | |
| 4199 } else { | |
| 4200 if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right); | |
| 4201 if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left); | |
| 4202 if (d_left == d_right) { | |
| 4203 // Handle +0 and -0. | |
| 4204 return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right | |
| 4205 : d_left); | |
| 4206 } | |
| 4207 } | |
| 4208 // All comparisons failed, must be NaN. | |
| 4209 return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN()); | |
| 4210 } | |
| 4211 } | |
| 4212 return new(zone) HMathMinMax(context, left, right, op); | |
| 4213 } | |
| 4214 | |
| 4215 | |
| 4216 HInstruction* HMod::New(Isolate* isolate, Zone* zone, HValue* context, | |
| 4217 HValue* left, HValue* right, Strength strength) { | |
| 4218 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { | |
| 4219 HConstant* c_left = HConstant::cast(left); | |
| 4220 HConstant* c_right = HConstant::cast(right); | |
| 4221 if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) { | |
| 4222 int32_t dividend = c_left->Integer32Value(); | |
| 4223 int32_t divisor = c_right->Integer32Value(); | |
| 4224 if (dividend == kMinInt && divisor == -1) { | |
| 4225 return H_CONSTANT_DOUBLE(-0.0); | |
| 4226 } | |
| 4227 if (divisor != 0) { | |
| 4228 int32_t res = dividend % divisor; | |
| 4229 if ((res == 0) && (dividend < 0)) { | |
| 4230 return H_CONSTANT_DOUBLE(-0.0); | |
| 4231 } | |
| 4232 return H_CONSTANT_INT(res); | |
| 4233 } | |
| 4234 } | |
| 4235 } | |
| 4236 return new (zone) HMod(context, left, right, strength); | |
| 4237 } | |
| 4238 | |
| 4239 | |
| 4240 HInstruction* HDiv::New(Isolate* isolate, Zone* zone, HValue* context, | |
| 4241 HValue* left, HValue* right, Strength strength) { | |
| 4242 // If left and right are constant values, try to return a constant value. | |
| 4243 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { | |
| 4244 HConstant* c_left = HConstant::cast(left); | |
| 4245 HConstant* c_right = HConstant::cast(right); | |
| 4246 if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { | |
| 4247 if (c_right->DoubleValue() != 0) { | |
| 4248 double double_res = c_left->DoubleValue() / c_right->DoubleValue(); | |
| 4249 if (IsInt32Double(double_res)) { | |
| 4250 return H_CONSTANT_INT(double_res); | |
| 4251 } | |
| 4252 return H_CONSTANT_DOUBLE(double_res); | |
| 4253 } else { | |
| 4254 int sign = Double(c_left->DoubleValue()).Sign() * | |
| 4255 Double(c_right->DoubleValue()).Sign(); // Right could be -0. | |
| 4256 return H_CONSTANT_DOUBLE(sign * V8_INFINITY); | |
| 4257 } | |
| 4258 } | |
| 4259 } | |
| 4260 return new (zone) HDiv(context, left, right, strength); | |
| 4261 } | |
| 4262 | |
| 4263 | |
| 4264 HInstruction* HBitwise::New(Isolate* isolate, Zone* zone, HValue* context, | |
| 4265 Token::Value op, HValue* left, HValue* right, | |
| 4266 Strength strength) { | |
| 4267 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { | |
| 4268 HConstant* c_left = HConstant::cast(left); | |
| 4269 HConstant* c_right = HConstant::cast(right); | |
| 4270 if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { | |
| 4271 int32_t result; | |
| 4272 int32_t v_left = c_left->NumberValueAsInteger32(); | |
| 4273 int32_t v_right = c_right->NumberValueAsInteger32(); | |
| 4274 switch (op) { | |
| 4275 case Token::BIT_XOR: | |
| 4276 result = v_left ^ v_right; | |
| 4277 break; | |
| 4278 case Token::BIT_AND: | |
| 4279 result = v_left & v_right; | |
| 4280 break; | |
| 4281 case Token::BIT_OR: | |
| 4282 result = v_left | v_right; | |
| 4283 break; | |
| 4284 default: | |
| 4285 result = 0; // Please the compiler. | |
| 4286 UNREACHABLE(); | |
| 4287 } | |
| 4288 return H_CONSTANT_INT(result); | |
| 4289 } | |
| 4290 } | |
| 4291 return new (zone) HBitwise(context, op, left, right, strength); | |
| 4292 } | |
| 4293 | |
| 4294 | |
| 4295 #define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result) \ | |
| 4296 HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context, \ | |
| 4297 HValue* left, HValue* right, Strength strength) { \ | |
| 4298 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \ | |
| 4299 HConstant* c_left = HConstant::cast(left); \ | |
| 4300 HConstant* c_right = HConstant::cast(right); \ | |
| 4301 if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \ | |
| 4302 return H_CONSTANT_INT(result); \ | |
| 4303 } \ | |
| 4304 } \ | |
| 4305 return new (zone) HInstr(context, left, right, strength); \ | |
| 4306 } | |
| 4307 | |
| 4308 | |
| 4309 DEFINE_NEW_H_BITWISE_INSTR(HSar, | |
| 4310 c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f)) | |
| 4311 DEFINE_NEW_H_BITWISE_INSTR(HShl, | |
| 4312 c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f)) | |
| 4313 | |
| 4314 #undef DEFINE_NEW_H_BITWISE_INSTR | |
| 4315 | |
| 4316 | |
| 4317 HInstruction* HShr::New(Isolate* isolate, Zone* zone, HValue* context, | |
| 4318 HValue* left, HValue* right, Strength strength) { | |
| 4319 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { | |
| 4320 HConstant* c_left = HConstant::cast(left); | |
| 4321 HConstant* c_right = HConstant::cast(right); | |
| 4322 if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { | |
| 4323 int32_t left_val = c_left->NumberValueAsInteger32(); | |
| 4324 int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f; | |
| 4325 if ((right_val == 0) && (left_val < 0)) { | |
| 4326 return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val)); | |
| 4327 } | |
| 4328 return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val); | |
| 4329 } | |
| 4330 } | |
| 4331 return new (zone) HShr(context, left, right, strength); | |
| 4332 } | |
| 4333 | |
| 4334 | |
| 4335 HInstruction* HSeqStringGetChar::New(Isolate* isolate, Zone* zone, | |
| 4336 HValue* context, String::Encoding encoding, | |
| 4337 HValue* string, HValue* index) { | |
| 4338 if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) { | |
| 4339 HConstant* c_string = HConstant::cast(string); | |
| 4340 HConstant* c_index = HConstant::cast(index); | |
| 4341 if (c_string->HasStringValue() && c_index->HasInteger32Value()) { | |
| 4342 Handle<String> s = c_string->StringValue(); | |
| 4343 int32_t i = c_index->Integer32Value(); | |
| 4344 DCHECK_LE(0, i); | |
| 4345 DCHECK_LT(i, s->length()); | |
| 4346 return H_CONSTANT_INT(s->Get(i)); | |
| 4347 } | |
| 4348 } | |
| 4349 return new(zone) HSeqStringGetChar(encoding, string, index); | |
| 4350 } | |
| 4351 | |
| 4352 | |
| 4353 #undef H_CONSTANT_INT | |
| 4354 #undef H_CONSTANT_DOUBLE | |
| 4355 | |
| 4356 | |
| 4357 std::ostream& HBitwise::PrintDataTo(std::ostream& os) const { // NOLINT | |
| 4358 os << Token::Name(op_) << " "; | |
| 4359 return HBitwiseBinaryOperation::PrintDataTo(os); | |
| 4360 } | |
| 4361 | |
| 4362 | |
| 4363 void HPhi::SimplifyConstantInputs() { | |
| 4364 // Convert constant inputs to integers when all uses are truncating. | |
| 4365 // This must happen before representation inference takes place. | |
| 4366 if (!CheckUsesForFlag(kTruncatingToInt32)) return; | |
| 4367 for (int i = 0; i < OperandCount(); ++i) { | |
| 4368 if (!OperandAt(i)->IsConstant()) return; | |
| 4369 } | |
| 4370 HGraph* graph = block()->graph(); | |
| 4371 for (int i = 0; i < OperandCount(); ++i) { | |
| 4372 HConstant* operand = HConstant::cast(OperandAt(i)); | |
| 4373 if (operand->HasInteger32Value()) { | |
| 4374 continue; | |
| 4375 } else if (operand->HasDoubleValue()) { | |
| 4376 HConstant* integer_input = HConstant::New( | |
| 4377 graph->isolate(), graph->zone(), graph->GetInvalidContext(), | |
| 4378 DoubleToInt32(operand->DoubleValue())); | |
| 4379 integer_input->InsertAfter(operand); | |
| 4380 SetOperandAt(i, integer_input); | |
| 4381 } else if (operand->HasBooleanValue()) { | |
| 4382 SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1() | |
| 4383 : graph->GetConstant0()); | |
| 4384 } else if (operand->ImmortalImmovable()) { | |
| 4385 SetOperandAt(i, graph->GetConstant0()); | |
| 4386 } | |
| 4387 } | |
| 4388 // Overwrite observed input representations because they are likely Tagged. | |
| 4389 for (HUseIterator it(uses()); !it.Done(); it.Advance()) { | |
| 4390 HValue* use = it.value(); | |
| 4391 if (use->IsBinaryOperation()) { | |
| 4392 HBinaryOperation::cast(use)->set_observed_input_representation( | |
| 4393 it.index(), Representation::Smi()); | |
| 4394 } | |
| 4395 } | |
| 4396 } | |
| 4397 | |
| 4398 | |
| 4399 void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) { | |
| 4400 DCHECK(CheckFlag(kFlexibleRepresentation)); | |
| 4401 Representation new_rep = RepresentationFromUses(); | |
| 4402 UpdateRepresentation(new_rep, h_infer, "uses"); | |
| 4403 new_rep = RepresentationFromInputs(); | |
| 4404 UpdateRepresentation(new_rep, h_infer, "inputs"); | |
| 4405 new_rep = RepresentationFromUseRequirements(); | |
| 4406 UpdateRepresentation(new_rep, h_infer, "use requirements"); | |
| 4407 } | |
| 4408 | |
| 4409 | |
| 4410 Representation HPhi::RepresentationFromInputs() { | |
| 4411 Representation r = representation(); | |
| 4412 for (int i = 0; i < OperandCount(); ++i) { | |
| 4413 // Ignore conservative Tagged assumption of parameters if we have | |
| 4414 // reason to believe that it's too conservative. | |
| 4415 if (has_type_feedback_from_uses() && OperandAt(i)->IsParameter()) { | |
| 4416 continue; | |
| 4417 } | |
| 4418 | |
| 4419 r = r.generalize(OperandAt(i)->KnownOptimalRepresentation()); | |
| 4420 } | |
| 4421 return r; | |
| 4422 } | |
| 4423 | |
| 4424 | |
| 4425 // Returns a representation if all uses agree on the same representation. | |
| 4426 // Integer32 is also returned when some uses are Smi but others are Integer32. | |
| 4427 Representation HValue::RepresentationFromUseRequirements() { | |
| 4428 Representation rep = Representation::None(); | |
| 4429 for (HUseIterator it(uses()); !it.Done(); it.Advance()) { | |
| 4430 // Ignore the use requirement from never run code | |
| 4431 if (it.value()->block()->IsUnreachable()) continue; | |
| 4432 | |
| 4433 // We check for observed_input_representation elsewhere. | |
| 4434 Representation use_rep = | |
| 4435 it.value()->RequiredInputRepresentation(it.index()); | |
| 4436 if (rep.IsNone()) { | |
| 4437 rep = use_rep; | |
| 4438 continue; | |
| 4439 } | |
| 4440 if (use_rep.IsNone() || rep.Equals(use_rep)) continue; | |
| 4441 if (rep.generalize(use_rep).IsInteger32()) { | |
| 4442 rep = Representation::Integer32(); | |
| 4443 continue; | |
| 4444 } | |
| 4445 return Representation::None(); | |
| 4446 } | |
| 4447 return rep; | |
| 4448 } | |
| 4449 | |
| 4450 | |
| 4451 bool HValue::HasNonSmiUse() { | |
| 4452 for (HUseIterator it(uses()); !it.Done(); it.Advance()) { | |
| 4453 // We check for observed_input_representation elsewhere. | |
| 4454 Representation use_rep = | |
| 4455 it.value()->RequiredInputRepresentation(it.index()); | |
| 4456 if (!use_rep.IsNone() && | |
| 4457 !use_rep.IsSmi() && | |
| 4458 !use_rep.IsTagged()) { | |
| 4459 return true; | |
| 4460 } | |
| 4461 } | |
| 4462 return false; | |
| 4463 } | |
| 4464 | |
| 4465 | |
| 4466 // Node-specific verification code is only included in debug mode. | |
| 4467 #ifdef DEBUG | |
| 4468 | |
| 4469 void HPhi::Verify() { | |
| 4470 DCHECK(OperandCount() == block()->predecessors()->length()); | |
| 4471 for (int i = 0; i < OperandCount(); ++i) { | |
| 4472 HValue* value = OperandAt(i); | |
| 4473 HBasicBlock* defining_block = value->block(); | |
| 4474 HBasicBlock* predecessor_block = block()->predecessors()->at(i); | |
| 4475 DCHECK(defining_block == predecessor_block || | |
| 4476 defining_block->Dominates(predecessor_block)); | |
| 4477 } | |
| 4478 } | |
| 4479 | |
| 4480 | |
| 4481 void HSimulate::Verify() { | |
| 4482 HInstruction::Verify(); | |
| 4483 DCHECK(HasAstId() || next()->IsEnterInlined()); | |
| 4484 } | |
| 4485 | |
| 4486 | |
| 4487 void HCheckHeapObject::Verify() { | |
| 4488 HInstruction::Verify(); | |
| 4489 DCHECK(HasNoUses()); | |
| 4490 } | |
| 4491 | |
| 4492 | |
| 4493 void HCheckValue::Verify() { | |
| 4494 HInstruction::Verify(); | |
| 4495 DCHECK(HasNoUses()); | |
| 4496 } | |
| 4497 | |
| 4498 #endif | |
| 4499 | |
| 4500 | |
| 4501 HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) { | |
| 4502 DCHECK(offset >= 0); | |
| 4503 DCHECK(offset < FixedArray::kHeaderSize); | |
| 4504 if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength(); | |
| 4505 return HObjectAccess(kInobject, offset); | |
| 4506 } | |
| 4507 | |
| 4508 | |
| 4509 HObjectAccess HObjectAccess::ForMapAndOffset(Handle<Map> map, int offset, | |
| 4510 Representation representation) { | |
| 4511 DCHECK(offset >= 0); | |
| 4512 Portion portion = kInobject; | |
| 4513 | |
| 4514 if (offset == JSObject::kElementsOffset) { | |
| 4515 portion = kElementsPointer; | |
| 4516 } else if (offset == JSObject::kMapOffset) { | |
| 4517 portion = kMaps; | |
| 4518 } | |
| 4519 bool existing_inobject_property = true; | |
| 4520 if (!map.is_null()) { | |
| 4521 existing_inobject_property = (offset < | |
| 4522 map->instance_size() - map->unused_property_fields() * kPointerSize); | |
| 4523 } | |
| 4524 return HObjectAccess(portion, offset, representation, Handle<String>::null(), | |
| 4525 false, existing_inobject_property); | |
| 4526 } | |
| 4527 | |
| 4528 | |
| 4529 HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) { | |
| 4530 switch (offset) { | |
| 4531 case AllocationSite::kTransitionInfoOffset: | |
| 4532 return HObjectAccess(kInobject, offset, Representation::Tagged()); | |
| 4533 case AllocationSite::kNestedSiteOffset: | |
| 4534 return HObjectAccess(kInobject, offset, Representation::Tagged()); | |
| 4535 case AllocationSite::kPretenureDataOffset: | |
| 4536 return HObjectAccess(kInobject, offset, Representation::Smi()); | |
| 4537 case AllocationSite::kPretenureCreateCountOffset: | |
| 4538 return HObjectAccess(kInobject, offset, Representation::Smi()); | |
| 4539 case AllocationSite::kDependentCodeOffset: | |
| 4540 return HObjectAccess(kInobject, offset, Representation::Tagged()); | |
| 4541 case AllocationSite::kWeakNextOffset: | |
| 4542 return HObjectAccess(kInobject, offset, Representation::Tagged()); | |
| 4543 default: | |
| 4544 UNREACHABLE(); | |
| 4545 } | |
| 4546 return HObjectAccess(kInobject, offset); | |
| 4547 } | |
| 4548 | |
| 4549 | |
| 4550 HObjectAccess HObjectAccess::ForContextSlot(int index) { | |
| 4551 DCHECK(index >= 0); | |
| 4552 Portion portion = kInobject; | |
| 4553 int offset = Context::kHeaderSize + index * kPointerSize; | |
| 4554 DCHECK_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag); | |
| 4555 return HObjectAccess(portion, offset, Representation::Tagged()); | |
| 4556 } | |
| 4557 | |
| 4558 | |
| 4559 HObjectAccess HObjectAccess::ForScriptContext(int index) { | |
| 4560 DCHECK(index >= 0); | |
| 4561 Portion portion = kInobject; | |
| 4562 int offset = ScriptContextTable::GetContextOffset(index); | |
| 4563 return HObjectAccess(portion, offset, Representation::Tagged()); | |
| 4564 } | |
| 4565 | |
| 4566 | |
| 4567 HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) { | |
| 4568 DCHECK(offset >= 0); | |
| 4569 Portion portion = kInobject; | |
| 4570 | |
| 4571 if (offset == JSObject::kElementsOffset) { | |
| 4572 portion = kElementsPointer; | |
| 4573 } else if (offset == JSArray::kLengthOffset) { | |
| 4574 portion = kArrayLengths; | |
| 4575 } else if (offset == JSObject::kMapOffset) { | |
| 4576 portion = kMaps; | |
| 4577 } | |
| 4578 return HObjectAccess(portion, offset); | |
| 4579 } | |
| 4580 | |
| 4581 | |
| 4582 HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset, | |
| 4583 Representation representation) { | |
| 4584 DCHECK(offset >= 0); | |
| 4585 return HObjectAccess(kBackingStore, offset, representation, | |
| 4586 Handle<String>::null(), false, false); | |
| 4587 } | |
| 4588 | |
| 4589 | |
| 4590 HObjectAccess HObjectAccess::ForField(Handle<Map> map, int index, | |
| 4591 Representation representation, | |
| 4592 Handle<Name> name) { | |
| 4593 if (index < 0) { | |
| 4594 // Negative property indices are in-object properties, indexed | |
| 4595 // from the end of the fixed part of the object. | |
| 4596 int offset = (index * kPointerSize) + map->instance_size(); | |
| 4597 return HObjectAccess(kInobject, offset, representation, name, false, true); | |
| 4598 } else { | |
| 4599 // Non-negative property indices are in the properties array. | |
| 4600 int offset = (index * kPointerSize) + FixedArray::kHeaderSize; | |
| 4601 return HObjectAccess(kBackingStore, offset, representation, name, | |
| 4602 false, false); | |
| 4603 } | |
| 4604 } | |
| 4605 | |
| 4606 | |
| 4607 void HObjectAccess::SetGVNFlags(HValue *instr, PropertyAccessType access_type) { | |
| 4608 // set the appropriate GVN flags for a given load or store instruction | |
| 4609 if (access_type == STORE) { | |
| 4610 // track dominating allocations in order to eliminate write barriers | |
| 4611 instr->SetDependsOnFlag(::v8::internal::kNewSpacePromotion); | |
| 4612 instr->SetFlag(HValue::kTrackSideEffectDominators); | |
| 4613 } else { | |
| 4614 // try to GVN loads, but don't hoist above map changes | |
| 4615 instr->SetFlag(HValue::kUseGVN); | |
| 4616 instr->SetDependsOnFlag(::v8::internal::kMaps); | |
| 4617 } | |
| 4618 | |
| 4619 switch (portion()) { | |
| 4620 case kArrayLengths: | |
| 4621 if (access_type == STORE) { | |
| 4622 instr->SetChangesFlag(::v8::internal::kArrayLengths); | |
| 4623 } else { | |
| 4624 instr->SetDependsOnFlag(::v8::internal::kArrayLengths); | |
| 4625 } | |
| 4626 break; | |
| 4627 case kStringLengths: | |
| 4628 if (access_type == STORE) { | |
| 4629 instr->SetChangesFlag(::v8::internal::kStringLengths); | |
| 4630 } else { | |
| 4631 instr->SetDependsOnFlag(::v8::internal::kStringLengths); | |
| 4632 } | |
| 4633 break; | |
| 4634 case kInobject: | |
| 4635 if (access_type == STORE) { | |
| 4636 instr->SetChangesFlag(::v8::internal::kInobjectFields); | |
| 4637 } else { | |
| 4638 instr->SetDependsOnFlag(::v8::internal::kInobjectFields); | |
| 4639 } | |
| 4640 break; | |
| 4641 case kDouble: | |
| 4642 if (access_type == STORE) { | |
| 4643 instr->SetChangesFlag(::v8::internal::kDoubleFields); | |
| 4644 } else { | |
| 4645 instr->SetDependsOnFlag(::v8::internal::kDoubleFields); | |
| 4646 } | |
| 4647 break; | |
| 4648 case kBackingStore: | |
| 4649 if (access_type == STORE) { | |
| 4650 instr->SetChangesFlag(::v8::internal::kBackingStoreFields); | |
| 4651 } else { | |
| 4652 instr->SetDependsOnFlag(::v8::internal::kBackingStoreFields); | |
| 4653 } | |
| 4654 break; | |
| 4655 case kElementsPointer: | |
| 4656 if (access_type == STORE) { | |
| 4657 instr->SetChangesFlag(::v8::internal::kElementsPointer); | |
| 4658 } else { | |
| 4659 instr->SetDependsOnFlag(::v8::internal::kElementsPointer); | |
| 4660 } | |
| 4661 break; | |
| 4662 case kMaps: | |
| 4663 if (access_type == STORE) { | |
| 4664 instr->SetChangesFlag(::v8::internal::kMaps); | |
| 4665 } else { | |
| 4666 instr->SetDependsOnFlag(::v8::internal::kMaps); | |
| 4667 } | |
| 4668 break; | |
| 4669 case kExternalMemory: | |
| 4670 if (access_type == STORE) { | |
| 4671 instr->SetChangesFlag(::v8::internal::kExternalMemory); | |
| 4672 } else { | |
| 4673 instr->SetDependsOnFlag(::v8::internal::kExternalMemory); | |
| 4674 } | |
| 4675 break; | |
| 4676 } | |
| 4677 } | |
| 4678 | |
| 4679 | |
| 4680 std::ostream& operator<<(std::ostream& os, const HObjectAccess& access) { | |
| 4681 os << "."; | |
| 4682 | |
| 4683 switch (access.portion()) { | |
| 4684 case HObjectAccess::kArrayLengths: | |
| 4685 case HObjectAccess::kStringLengths: | |
| 4686 os << "%length"; | |
| 4687 break; | |
| 4688 case HObjectAccess::kElementsPointer: | |
| 4689 os << "%elements"; | |
| 4690 break; | |
| 4691 case HObjectAccess::kMaps: | |
| 4692 os << "%map"; | |
| 4693 break; | |
| 4694 case HObjectAccess::kDouble: // fall through | |
| 4695 case HObjectAccess::kInobject: | |
| 4696 if (!access.name().is_null()) { | |
| 4697 os << Handle<String>::cast(access.name())->ToCString().get(); | |
| 4698 } | |
| 4699 os << "[in-object]"; | |
| 4700 break; | |
| 4701 case HObjectAccess::kBackingStore: | |
| 4702 if (!access.name().is_null()) { | |
| 4703 os << Handle<String>::cast(access.name())->ToCString().get(); | |
| 4704 } | |
| 4705 os << "[backing-store]"; | |
| 4706 break; | |
| 4707 case HObjectAccess::kExternalMemory: | |
| 4708 os << "[external-memory]"; | |
| 4709 break; | |
| 4710 } | |
| 4711 | |
| 4712 return os << "@" << access.offset(); | |
| 4713 } | |
| 4714 | |
| 4715 } // namespace internal | |
| 4716 } // namespace v8 | |
| OLD | NEW |