OLD | NEW |
| (Empty) |
1 // Copyright 2013 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "src/hydrogen-bce.h" | |
6 | |
7 namespace v8 { | |
8 namespace internal { | |
9 | |
10 | |
11 // We try to "factor up" HBoundsCheck instructions towards the root of the | |
12 // dominator tree. | |
13 // For now we handle checks where the index is like "exp + int32value". | |
14 // If in the dominator tree we check "exp + v1" and later (dominated) | |
15 // "exp + v2", if v2 <= v1 we can safely remove the second check, and if | |
16 // v2 > v1 we can use v2 in the 1st check and again remove the second. | |
17 // To do so we keep a dictionary of all checks where the key if the pair | |
18 // "exp, length". | |
19 // The class BoundsCheckKey represents this key. | |
20 class BoundsCheckKey : public ZoneObject { | |
21 public: | |
22 HValue* IndexBase() const { return index_base_; } | |
23 HValue* Length() const { return length_; } | |
24 | |
25 uint32_t Hash() { | |
26 return static_cast<uint32_t>(index_base_->Hashcode() ^ length_->Hashcode()); | |
27 } | |
28 | |
29 static BoundsCheckKey* Create(Zone* zone, | |
30 HBoundsCheck* check, | |
31 int32_t* offset) { | |
32 if (!check->index()->representation().IsSmiOrInteger32()) return NULL; | |
33 | |
34 HValue* index_base = NULL; | |
35 HConstant* constant = NULL; | |
36 bool is_sub = false; | |
37 | |
38 if (check->index()->IsAdd()) { | |
39 HAdd* index = HAdd::cast(check->index()); | |
40 if (index->left()->IsConstant()) { | |
41 constant = HConstant::cast(index->left()); | |
42 index_base = index->right(); | |
43 } else if (index->right()->IsConstant()) { | |
44 constant = HConstant::cast(index->right()); | |
45 index_base = index->left(); | |
46 } | |
47 } else if (check->index()->IsSub()) { | |
48 HSub* index = HSub::cast(check->index()); | |
49 is_sub = true; | |
50 if (index->right()->IsConstant()) { | |
51 constant = HConstant::cast(index->right()); | |
52 index_base = index->left(); | |
53 } | |
54 } else if (check->index()->IsConstant()) { | |
55 index_base = check->block()->graph()->GetConstant0(); | |
56 constant = HConstant::cast(check->index()); | |
57 } | |
58 | |
59 if (constant != NULL && constant->HasInteger32Value() && | |
60 constant->Integer32Value() != kMinInt) { | |
61 *offset = is_sub ? - constant->Integer32Value() | |
62 : constant->Integer32Value(); | |
63 } else { | |
64 *offset = 0; | |
65 index_base = check->index(); | |
66 } | |
67 | |
68 return new(zone) BoundsCheckKey(index_base, check->length()); | |
69 } | |
70 | |
71 private: | |
72 BoundsCheckKey(HValue* index_base, HValue* length) | |
73 : index_base_(index_base), | |
74 length_(length) { } | |
75 | |
76 HValue* index_base_; | |
77 HValue* length_; | |
78 | |
79 DISALLOW_COPY_AND_ASSIGN(BoundsCheckKey); | |
80 }; | |
81 | |
82 | |
83 // Data about each HBoundsCheck that can be eliminated or moved. | |
84 // It is the "value" in the dictionary indexed by "base-index, length" | |
85 // (the key is BoundsCheckKey). | |
86 // We scan the code with a dominator tree traversal. | |
87 // Traversing the dominator tree we keep a stack (implemented as a singly | |
88 // linked list) of "data" for each basic block that contains a relevant check | |
89 // with the same key (the dictionary holds the head of the list). | |
90 // We also keep all the "data" created for a given basic block in a list, and | |
91 // use it to "clean up" the dictionary when backtracking in the dominator tree | |
92 // traversal. | |
93 // Doing this each dictionary entry always directly points to the check that | |
94 // is dominating the code being examined now. | |
95 // We also track the current "offset" of the index expression and use it to | |
96 // decide if any check is already "covered" (so it can be removed) or not. | |
97 class BoundsCheckBbData: public ZoneObject { | |
98 public: | |
99 BoundsCheckKey* Key() const { return key_; } | |
100 int32_t LowerOffset() const { return lower_offset_; } | |
101 int32_t UpperOffset() const { return upper_offset_; } | |
102 HBasicBlock* BasicBlock() const { return basic_block_; } | |
103 HBoundsCheck* LowerCheck() const { return lower_check_; } | |
104 HBoundsCheck* UpperCheck() const { return upper_check_; } | |
105 BoundsCheckBbData* NextInBasicBlock() const { return next_in_bb_; } | |
106 BoundsCheckBbData* FatherInDominatorTree() const { return father_in_dt_; } | |
107 | |
108 bool OffsetIsCovered(int32_t offset) const { | |
109 return offset >= LowerOffset() && offset <= UpperOffset(); | |
110 } | |
111 | |
112 bool HasSingleCheck() { return lower_check_ == upper_check_; } | |
113 | |
114 void UpdateUpperOffsets(HBoundsCheck* check, int32_t offset) { | |
115 BoundsCheckBbData* data = FatherInDominatorTree(); | |
116 while (data != NULL && data->UpperCheck() == check) { | |
117 DCHECK(data->upper_offset_ < offset); | |
118 data->upper_offset_ = offset; | |
119 data = data->FatherInDominatorTree(); | |
120 } | |
121 } | |
122 | |
123 void UpdateLowerOffsets(HBoundsCheck* check, int32_t offset) { | |
124 BoundsCheckBbData* data = FatherInDominatorTree(); | |
125 while (data != NULL && data->LowerCheck() == check) { | |
126 DCHECK(data->lower_offset_ > offset); | |
127 data->lower_offset_ = offset; | |
128 data = data->FatherInDominatorTree(); | |
129 } | |
130 } | |
131 | |
132 // The goal of this method is to modify either upper_offset_ or | |
133 // lower_offset_ so that also new_offset is covered (the covered | |
134 // range grows). | |
135 // | |
136 // The precondition is that new_check follows UpperCheck() and | |
137 // LowerCheck() in the same basic block, and that new_offset is not | |
138 // covered (otherwise we could simply remove new_check). | |
139 // | |
140 // If HasSingleCheck() is true then new_check is added as "second check" | |
141 // (either upper or lower; note that HasSingleCheck() becomes false). | |
142 // Otherwise one of the current checks is modified so that it also covers | |
143 // new_offset, and new_check is removed. | |
144 void CoverCheck(HBoundsCheck* new_check, | |
145 int32_t new_offset) { | |
146 DCHECK(new_check->index()->representation().IsSmiOrInteger32()); | |
147 bool keep_new_check = false; | |
148 | |
149 if (new_offset > upper_offset_) { | |
150 upper_offset_ = new_offset; | |
151 if (HasSingleCheck()) { | |
152 keep_new_check = true; | |
153 upper_check_ = new_check; | |
154 } else { | |
155 TightenCheck(upper_check_, new_check, new_offset); | |
156 UpdateUpperOffsets(upper_check_, upper_offset_); | |
157 } | |
158 } else if (new_offset < lower_offset_) { | |
159 lower_offset_ = new_offset; | |
160 if (HasSingleCheck()) { | |
161 keep_new_check = true; | |
162 lower_check_ = new_check; | |
163 } else { | |
164 TightenCheck(lower_check_, new_check, new_offset); | |
165 UpdateLowerOffsets(lower_check_, lower_offset_); | |
166 } | |
167 } else { | |
168 // Should never have called CoverCheck() in this case. | |
169 UNREACHABLE(); | |
170 } | |
171 | |
172 if (!keep_new_check) { | |
173 if (FLAG_trace_bce) { | |
174 base::OS::Print("Eliminating check #%d after tightening\n", | |
175 new_check->id()); | |
176 } | |
177 new_check->block()->graph()->isolate()->counters()-> | |
178 bounds_checks_eliminated()->Increment(); | |
179 new_check->DeleteAndReplaceWith(new_check->ActualValue()); | |
180 } else { | |
181 HBoundsCheck* first_check = new_check == lower_check_ ? upper_check_ | |
182 : lower_check_; | |
183 if (FLAG_trace_bce) { | |
184 base::OS::Print("Moving second check #%d after first check #%d\n", | |
185 new_check->id(), first_check->id()); | |
186 } | |
187 // The length is guaranteed to be live at first_check. | |
188 DCHECK(new_check->length() == first_check->length()); | |
189 HInstruction* old_position = new_check->next(); | |
190 new_check->Unlink(); | |
191 new_check->InsertAfter(first_check); | |
192 MoveIndexIfNecessary(new_check->index(), new_check, old_position); | |
193 } | |
194 } | |
195 | |
196 BoundsCheckBbData(BoundsCheckKey* key, | |
197 int32_t lower_offset, | |
198 int32_t upper_offset, | |
199 HBasicBlock* bb, | |
200 HBoundsCheck* lower_check, | |
201 HBoundsCheck* upper_check, | |
202 BoundsCheckBbData* next_in_bb, | |
203 BoundsCheckBbData* father_in_dt) | |
204 : key_(key), | |
205 lower_offset_(lower_offset), | |
206 upper_offset_(upper_offset), | |
207 basic_block_(bb), | |
208 lower_check_(lower_check), | |
209 upper_check_(upper_check), | |
210 next_in_bb_(next_in_bb), | |
211 father_in_dt_(father_in_dt) { } | |
212 | |
213 private: | |
214 BoundsCheckKey* key_; | |
215 int32_t lower_offset_; | |
216 int32_t upper_offset_; | |
217 HBasicBlock* basic_block_; | |
218 HBoundsCheck* lower_check_; | |
219 HBoundsCheck* upper_check_; | |
220 BoundsCheckBbData* next_in_bb_; | |
221 BoundsCheckBbData* father_in_dt_; | |
222 | |
223 void MoveIndexIfNecessary(HValue* index_raw, | |
224 HBoundsCheck* insert_before, | |
225 HInstruction* end_of_scan_range) { | |
226 // index_raw can be HAdd(index_base, offset), HSub(index_base, offset), | |
227 // HConstant(offset) or index_base directly. | |
228 // In the latter case, no need to move anything. | |
229 if (index_raw->IsAdd() || index_raw->IsSub()) { | |
230 HArithmeticBinaryOperation* index = | |
231 HArithmeticBinaryOperation::cast(index_raw); | |
232 HValue* left_input = index->left(); | |
233 HValue* right_input = index->right(); | |
234 HValue* context = index->context(); | |
235 bool must_move_index = false; | |
236 bool must_move_left_input = false; | |
237 bool must_move_right_input = false; | |
238 bool must_move_context = false; | |
239 for (HInstruction* cursor = end_of_scan_range; cursor != insert_before;) { | |
240 if (cursor == left_input) must_move_left_input = true; | |
241 if (cursor == right_input) must_move_right_input = true; | |
242 if (cursor == context) must_move_context = true; | |
243 if (cursor == index) must_move_index = true; | |
244 if (cursor->previous() == NULL) { | |
245 cursor = cursor->block()->dominator()->end(); | |
246 } else { | |
247 cursor = cursor->previous(); | |
248 } | |
249 } | |
250 if (must_move_index) { | |
251 index->Unlink(); | |
252 index->InsertBefore(insert_before); | |
253 } | |
254 // The BCE algorithm only selects mergeable bounds checks that share | |
255 // the same "index_base", so we'll only ever have to move constants. | |
256 if (must_move_left_input) { | |
257 HConstant::cast(left_input)->Unlink(); | |
258 HConstant::cast(left_input)->InsertBefore(index); | |
259 } | |
260 if (must_move_right_input) { | |
261 HConstant::cast(right_input)->Unlink(); | |
262 HConstant::cast(right_input)->InsertBefore(index); | |
263 } | |
264 if (must_move_context) { | |
265 // Contexts are always constants. | |
266 HConstant::cast(context)->Unlink(); | |
267 HConstant::cast(context)->InsertBefore(index); | |
268 } | |
269 } else if (index_raw->IsConstant()) { | |
270 HConstant* index = HConstant::cast(index_raw); | |
271 bool must_move = false; | |
272 for (HInstruction* cursor = end_of_scan_range; cursor != insert_before;) { | |
273 if (cursor == index) must_move = true; | |
274 if (cursor->previous() == NULL) { | |
275 cursor = cursor->block()->dominator()->end(); | |
276 } else { | |
277 cursor = cursor->previous(); | |
278 } | |
279 } | |
280 if (must_move) { | |
281 index->Unlink(); | |
282 index->InsertBefore(insert_before); | |
283 } | |
284 } | |
285 } | |
286 | |
287 void TightenCheck(HBoundsCheck* original_check, | |
288 HBoundsCheck* tighter_check, | |
289 int32_t new_offset) { | |
290 DCHECK(original_check->length() == tighter_check->length()); | |
291 MoveIndexIfNecessary(tighter_check->index(), original_check, tighter_check); | |
292 original_check->ReplaceAllUsesWith(original_check->index()); | |
293 original_check->SetOperandAt(0, tighter_check->index()); | |
294 if (FLAG_trace_bce) { | |
295 base::OS::Print("Tightened check #%d with offset %d from #%d\n", | |
296 original_check->id(), new_offset, tighter_check->id()); | |
297 } | |
298 } | |
299 | |
300 DISALLOW_COPY_AND_ASSIGN(BoundsCheckBbData); | |
301 }; | |
302 | |
303 | |
304 static bool BoundsCheckKeyMatch(void* key1, void* key2) { | |
305 BoundsCheckKey* k1 = static_cast<BoundsCheckKey*>(key1); | |
306 BoundsCheckKey* k2 = static_cast<BoundsCheckKey*>(key2); | |
307 return k1->IndexBase() == k2->IndexBase() && k1->Length() == k2->Length(); | |
308 } | |
309 | |
310 | |
311 BoundsCheckTable::BoundsCheckTable(Zone* zone) | |
312 : ZoneHashMap(BoundsCheckKeyMatch, ZoneHashMap::kDefaultHashMapCapacity, | |
313 ZoneAllocationPolicy(zone)) { } | |
314 | |
315 | |
316 BoundsCheckBbData** BoundsCheckTable::LookupOrInsert(BoundsCheckKey* key, | |
317 Zone* zone) { | |
318 return reinterpret_cast<BoundsCheckBbData**>( | |
319 &(ZoneHashMap::LookupOrInsert(key, key->Hash(), | |
320 ZoneAllocationPolicy(zone))->value)); | |
321 } | |
322 | |
323 | |
324 void BoundsCheckTable::Insert(BoundsCheckKey* key, | |
325 BoundsCheckBbData* data, | |
326 Zone* zone) { | |
327 ZoneHashMap::LookupOrInsert(key, key->Hash(), ZoneAllocationPolicy(zone)) | |
328 ->value = data; | |
329 } | |
330 | |
331 | |
332 void BoundsCheckTable::Delete(BoundsCheckKey* key) { | |
333 Remove(key, key->Hash()); | |
334 } | |
335 | |
336 | |
337 class HBoundsCheckEliminationState { | |
338 public: | |
339 HBasicBlock* block_; | |
340 BoundsCheckBbData* bb_data_list_; | |
341 int index_; | |
342 }; | |
343 | |
344 | |
345 // Eliminates checks in bb and recursively in the dominated blocks. | |
346 // Also replace the results of check instructions with the original value, if | |
347 // the result is used. This is safe now, since we don't do code motion after | |
348 // this point. It enables better register allocation since the value produced | |
349 // by check instructions is really a copy of the original value. | |
350 void HBoundsCheckEliminationPhase::EliminateRedundantBoundsChecks( | |
351 HBasicBlock* entry) { | |
352 // Allocate the stack. | |
353 HBoundsCheckEliminationState* stack = | |
354 zone()->NewArray<HBoundsCheckEliminationState>(graph()->blocks()->length()); | |
355 | |
356 // Explicitly push the entry block. | |
357 stack[0].block_ = entry; | |
358 stack[0].bb_data_list_ = PreProcessBlock(entry); | |
359 stack[0].index_ = 0; | |
360 int stack_depth = 1; | |
361 | |
362 // Implement depth-first traversal with a stack. | |
363 while (stack_depth > 0) { | |
364 int current = stack_depth - 1; | |
365 HBoundsCheckEliminationState* state = &stack[current]; | |
366 const ZoneList<HBasicBlock*>* children = state->block_->dominated_blocks(); | |
367 | |
368 if (state->index_ < children->length()) { | |
369 // Recursively visit children blocks. | |
370 HBasicBlock* child = children->at(state->index_++); | |
371 int next = stack_depth++; | |
372 stack[next].block_ = child; | |
373 stack[next].bb_data_list_ = PreProcessBlock(child); | |
374 stack[next].index_ = 0; | |
375 } else { | |
376 // Finished with all children; post process the block. | |
377 PostProcessBlock(state->block_, state->bb_data_list_); | |
378 stack_depth--; | |
379 } | |
380 } | |
381 } | |
382 | |
383 | |
384 BoundsCheckBbData* HBoundsCheckEliminationPhase::PreProcessBlock( | |
385 HBasicBlock* bb) { | |
386 BoundsCheckBbData* bb_data_list = NULL; | |
387 | |
388 for (HInstructionIterator it(bb); !it.Done(); it.Advance()) { | |
389 HInstruction* i = it.Current(); | |
390 if (!i->IsBoundsCheck()) continue; | |
391 | |
392 HBoundsCheck* check = HBoundsCheck::cast(i); | |
393 int32_t offset = 0; | |
394 BoundsCheckKey* key = | |
395 BoundsCheckKey::Create(zone(), check, &offset); | |
396 if (key == NULL) continue; | |
397 BoundsCheckBbData** data_p = table_.LookupOrInsert(key, zone()); | |
398 BoundsCheckBbData* data = *data_p; | |
399 if (data == NULL) { | |
400 bb_data_list = new(zone()) BoundsCheckBbData(key, | |
401 offset, | |
402 offset, | |
403 bb, | |
404 check, | |
405 check, | |
406 bb_data_list, | |
407 NULL); | |
408 *data_p = bb_data_list; | |
409 if (FLAG_trace_bce) { | |
410 base::OS::Print("Fresh bounds check data for block #%d: [%d]\n", | |
411 bb->block_id(), offset); | |
412 } | |
413 } else if (data->OffsetIsCovered(offset)) { | |
414 bb->graph()->isolate()->counters()-> | |
415 bounds_checks_eliminated()->Increment(); | |
416 if (FLAG_trace_bce) { | |
417 base::OS::Print("Eliminating bounds check #%d, offset %d is covered\n", | |
418 check->id(), offset); | |
419 } | |
420 check->DeleteAndReplaceWith(check->ActualValue()); | |
421 } else if (data->BasicBlock() == bb) { | |
422 // TODO(jkummerow): I think the following logic would be preferable: | |
423 // if (data->Basicblock() == bb || | |
424 // graph()->use_optimistic_licm() || | |
425 // bb->IsLoopSuccessorDominator()) { | |
426 // data->CoverCheck(check, offset) | |
427 // } else { | |
428 // /* add pristine BCBbData like in (data == NULL) case above */ | |
429 // } | |
430 // Even better would be: distinguish between read-only dominator-imposed | |
431 // knowledge and modifiable upper/lower checks. | |
432 // What happens currently is that the first bounds check in a dominated | |
433 // block will stay around while any further checks are hoisted out, | |
434 // which doesn't make sense. Investigate/fix this in a future CL. | |
435 data->CoverCheck(check, offset); | |
436 } else if (graph()->use_optimistic_licm() || | |
437 bb->IsLoopSuccessorDominator()) { | |
438 int32_t new_lower_offset = offset < data->LowerOffset() | |
439 ? offset | |
440 : data->LowerOffset(); | |
441 int32_t new_upper_offset = offset > data->UpperOffset() | |
442 ? offset | |
443 : data->UpperOffset(); | |
444 bb_data_list = new(zone()) BoundsCheckBbData(key, | |
445 new_lower_offset, | |
446 new_upper_offset, | |
447 bb, | |
448 data->LowerCheck(), | |
449 data->UpperCheck(), | |
450 bb_data_list, | |
451 data); | |
452 if (FLAG_trace_bce) { | |
453 base::OS::Print("Updated bounds check data for block #%d: [%d - %d]\n", | |
454 bb->block_id(), new_lower_offset, new_upper_offset); | |
455 } | |
456 table_.Insert(key, bb_data_list, zone()); | |
457 } | |
458 } | |
459 | |
460 return bb_data_list; | |
461 } | |
462 | |
463 | |
464 void HBoundsCheckEliminationPhase::PostProcessBlock( | |
465 HBasicBlock* block, BoundsCheckBbData* data) { | |
466 while (data != NULL) { | |
467 if (data->FatherInDominatorTree()) { | |
468 table_.Insert(data->Key(), data->FatherInDominatorTree(), zone()); | |
469 } else { | |
470 table_.Delete(data->Key()); | |
471 } | |
472 data = data->NextInBasicBlock(); | |
473 } | |
474 } | |
475 | |
476 } // namespace internal | |
477 } // namespace v8 | |
OLD | NEW |