OLD | NEW |
| (Empty) |
1 // Copyright 2012 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "src/arm/lithium-codegen-arm.h" | |
6 #include "src/arm/lithium-gap-resolver-arm.h" | |
7 #include "src/base/bits.h" | |
8 #include "src/code-factory.h" | |
9 #include "src/code-stubs.h" | |
10 #include "src/hydrogen-osr.h" | |
11 #include "src/ic/ic.h" | |
12 #include "src/ic/stub-cache.h" | |
13 #include "src/profiler/cpu-profiler.h" | |
14 | |
15 namespace v8 { | |
16 namespace internal { | |
17 | |
18 | |
19 class SafepointGenerator final : public CallWrapper { | |
20 public: | |
21 SafepointGenerator(LCodeGen* codegen, | |
22 LPointerMap* pointers, | |
23 Safepoint::DeoptMode mode) | |
24 : codegen_(codegen), | |
25 pointers_(pointers), | |
26 deopt_mode_(mode) { } | |
27 virtual ~SafepointGenerator() {} | |
28 | |
29 void BeforeCall(int call_size) const override {} | |
30 | |
31 void AfterCall() const override { | |
32 codegen_->RecordSafepoint(pointers_, deopt_mode_); | |
33 } | |
34 | |
35 private: | |
36 LCodeGen* codegen_; | |
37 LPointerMap* pointers_; | |
38 Safepoint::DeoptMode deopt_mode_; | |
39 }; | |
40 | |
41 | |
42 #define __ masm()-> | |
43 | |
44 bool LCodeGen::GenerateCode() { | |
45 LPhase phase("Z_Code generation", chunk()); | |
46 DCHECK(is_unused()); | |
47 status_ = GENERATING; | |
48 | |
49 // Open a frame scope to indicate that there is a frame on the stack. The | |
50 // NONE indicates that the scope shouldn't actually generate code to set up | |
51 // the frame (that is done in GeneratePrologue). | |
52 FrameScope frame_scope(masm_, StackFrame::NONE); | |
53 | |
54 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && | |
55 GenerateJumpTable() && GenerateSafepointTable(); | |
56 } | |
57 | |
58 | |
59 void LCodeGen::FinishCode(Handle<Code> code) { | |
60 DCHECK(is_done()); | |
61 code->set_stack_slots(GetStackSlotCount()); | |
62 code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); | |
63 PopulateDeoptimizationData(code); | |
64 } | |
65 | |
66 | |
67 void LCodeGen::SaveCallerDoubles() { | |
68 DCHECK(info()->saves_caller_doubles()); | |
69 DCHECK(NeedsEagerFrame()); | |
70 Comment(";;; Save clobbered callee double registers"); | |
71 int count = 0; | |
72 BitVector* doubles = chunk()->allocated_double_registers(); | |
73 BitVector::Iterator save_iterator(doubles); | |
74 while (!save_iterator.Done()) { | |
75 __ vstr(DoubleRegister::from_code(save_iterator.Current()), | |
76 MemOperand(sp, count * kDoubleSize)); | |
77 save_iterator.Advance(); | |
78 count++; | |
79 } | |
80 } | |
81 | |
82 | |
83 void LCodeGen::RestoreCallerDoubles() { | |
84 DCHECK(info()->saves_caller_doubles()); | |
85 DCHECK(NeedsEagerFrame()); | |
86 Comment(";;; Restore clobbered callee double registers"); | |
87 BitVector* doubles = chunk()->allocated_double_registers(); | |
88 BitVector::Iterator save_iterator(doubles); | |
89 int count = 0; | |
90 while (!save_iterator.Done()) { | |
91 __ vldr(DoubleRegister::from_code(save_iterator.Current()), | |
92 MemOperand(sp, count * kDoubleSize)); | |
93 save_iterator.Advance(); | |
94 count++; | |
95 } | |
96 } | |
97 | |
98 | |
99 bool LCodeGen::GeneratePrologue() { | |
100 DCHECK(is_generating()); | |
101 | |
102 if (info()->IsOptimizing()) { | |
103 ProfileEntryHookStub::MaybeCallEntryHook(masm_); | |
104 | |
105 #ifdef DEBUG | |
106 if (strlen(FLAG_stop_at) > 0 && | |
107 info_->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { | |
108 __ stop("stop_at"); | |
109 } | |
110 #endif | |
111 | |
112 // r1: Callee's JS function. | |
113 // cp: Callee's context. | |
114 // pp: Callee's constant pool pointer (if enabled) | |
115 // fp: Caller's frame pointer. | |
116 // lr: Caller's pc. | |
117 | |
118 // Sloppy mode functions and builtins need to replace the receiver with the | |
119 // global proxy when called as functions (without an explicit receiver | |
120 // object). | |
121 if (info()->MustReplaceUndefinedReceiverWithGlobalProxy()) { | |
122 Label ok; | |
123 int receiver_offset = info_->scope()->num_parameters() * kPointerSize; | |
124 __ ldr(r2, MemOperand(sp, receiver_offset)); | |
125 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex); | |
126 __ b(ne, &ok); | |
127 | |
128 __ ldr(r2, GlobalObjectOperand()); | |
129 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalProxyOffset)); | |
130 | |
131 __ str(r2, MemOperand(sp, receiver_offset)); | |
132 | |
133 __ bind(&ok); | |
134 } | |
135 } | |
136 | |
137 info()->set_prologue_offset(masm_->pc_offset()); | |
138 if (NeedsEagerFrame()) { | |
139 if (info()->IsStub()) { | |
140 __ StubPrologue(); | |
141 } else { | |
142 __ Prologue(info()->IsCodePreAgingActive()); | |
143 } | |
144 frame_is_built_ = true; | |
145 } | |
146 | |
147 // Reserve space for the stack slots needed by the code. | |
148 int slots = GetStackSlotCount(); | |
149 if (slots > 0) { | |
150 if (FLAG_debug_code) { | |
151 __ sub(sp, sp, Operand(slots * kPointerSize)); | |
152 __ push(r0); | |
153 __ push(r1); | |
154 __ add(r0, sp, Operand(slots * kPointerSize)); | |
155 __ mov(r1, Operand(kSlotsZapValue)); | |
156 Label loop; | |
157 __ bind(&loop); | |
158 __ sub(r0, r0, Operand(kPointerSize)); | |
159 __ str(r1, MemOperand(r0, 2 * kPointerSize)); | |
160 __ cmp(r0, sp); | |
161 __ b(ne, &loop); | |
162 __ pop(r1); | |
163 __ pop(r0); | |
164 } else { | |
165 __ sub(sp, sp, Operand(slots * kPointerSize)); | |
166 } | |
167 } | |
168 | |
169 if (info()->saves_caller_doubles()) { | |
170 SaveCallerDoubles(); | |
171 } | |
172 return !is_aborted(); | |
173 } | |
174 | |
175 | |
176 void LCodeGen::DoPrologue(LPrologue* instr) { | |
177 Comment(";;; Prologue begin"); | |
178 | |
179 // Possibly allocate a local context. | |
180 if (info()->scope()->num_heap_slots() > 0) { | |
181 Comment(";;; Allocate local context"); | |
182 bool need_write_barrier = true; | |
183 // Argument to NewContext is the function, which is in r1. | |
184 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; | |
185 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; | |
186 if (info()->scope()->is_script_scope()) { | |
187 __ push(r1); | |
188 __ Push(info()->scope()->GetScopeInfo(info()->isolate())); | |
189 __ CallRuntime(Runtime::kNewScriptContext, 2); | |
190 deopt_mode = Safepoint::kLazyDeopt; | |
191 } else if (slots <= FastNewContextStub::kMaximumSlots) { | |
192 FastNewContextStub stub(isolate(), slots); | |
193 __ CallStub(&stub); | |
194 // Result of FastNewContextStub is always in new space. | |
195 need_write_barrier = false; | |
196 } else { | |
197 __ push(r1); | |
198 __ CallRuntime(Runtime::kNewFunctionContext, 1); | |
199 } | |
200 RecordSafepoint(deopt_mode); | |
201 | |
202 // Context is returned in both r0 and cp. It replaces the context | |
203 // passed to us. It's saved in the stack and kept live in cp. | |
204 __ mov(cp, r0); | |
205 __ str(r0, MemOperand(fp, StandardFrameConstants::kContextOffset)); | |
206 // Copy any necessary parameters into the context. | |
207 int num_parameters = scope()->num_parameters(); | |
208 int first_parameter = scope()->has_this_declaration() ? -1 : 0; | |
209 for (int i = first_parameter; i < num_parameters; i++) { | |
210 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i); | |
211 if (var->IsContextSlot()) { | |
212 int parameter_offset = StandardFrameConstants::kCallerSPOffset + | |
213 (num_parameters - 1 - i) * kPointerSize; | |
214 // Load parameter from stack. | |
215 __ ldr(r0, MemOperand(fp, parameter_offset)); | |
216 // Store it in the context. | |
217 MemOperand target = ContextOperand(cp, var->index()); | |
218 __ str(r0, target); | |
219 // Update the write barrier. This clobbers r3 and r0. | |
220 if (need_write_barrier) { | |
221 __ RecordWriteContextSlot( | |
222 cp, | |
223 target.offset(), | |
224 r0, | |
225 r3, | |
226 GetLinkRegisterState(), | |
227 kSaveFPRegs); | |
228 } else if (FLAG_debug_code) { | |
229 Label done; | |
230 __ JumpIfInNewSpace(cp, r0, &done); | |
231 __ Abort(kExpectedNewSpaceObject); | |
232 __ bind(&done); | |
233 } | |
234 } | |
235 } | |
236 Comment(";;; End allocate local context"); | |
237 } | |
238 | |
239 Comment(";;; Prologue end"); | |
240 } | |
241 | |
242 | |
243 void LCodeGen::GenerateOsrPrologue() { | |
244 // Generate the OSR entry prologue at the first unknown OSR value, or if there | |
245 // are none, at the OSR entrypoint instruction. | |
246 if (osr_pc_offset_ >= 0) return; | |
247 | |
248 osr_pc_offset_ = masm()->pc_offset(); | |
249 | |
250 // Adjust the frame size, subsuming the unoptimized frame into the | |
251 // optimized frame. | |
252 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); | |
253 DCHECK(slots >= 0); | |
254 __ sub(sp, sp, Operand(slots * kPointerSize)); | |
255 } | |
256 | |
257 | |
258 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { | |
259 if (instr->IsCall()) { | |
260 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); | |
261 } | |
262 if (!instr->IsLazyBailout() && !instr->IsGap()) { | |
263 safepoints_.BumpLastLazySafepointIndex(); | |
264 } | |
265 } | |
266 | |
267 | |
268 bool LCodeGen::GenerateDeferredCode() { | |
269 DCHECK(is_generating()); | |
270 if (deferred_.length() > 0) { | |
271 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { | |
272 LDeferredCode* code = deferred_[i]; | |
273 | |
274 HValue* value = | |
275 instructions_->at(code->instruction_index())->hydrogen_value(); | |
276 RecordAndWritePosition( | |
277 chunk()->graph()->SourcePositionToScriptPosition(value->position())); | |
278 | |
279 Comment(";;; <@%d,#%d> " | |
280 "-------------------- Deferred %s --------------------", | |
281 code->instruction_index(), | |
282 code->instr()->hydrogen_value()->id(), | |
283 code->instr()->Mnemonic()); | |
284 __ bind(code->entry()); | |
285 if (NeedsDeferredFrame()) { | |
286 Comment(";;; Build frame"); | |
287 DCHECK(!frame_is_built_); | |
288 DCHECK(info()->IsStub()); | |
289 frame_is_built_ = true; | |
290 __ PushFixedFrame(); | |
291 __ mov(scratch0(), Operand(Smi::FromInt(StackFrame::STUB))); | |
292 __ push(scratch0()); | |
293 __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); | |
294 Comment(";;; Deferred code"); | |
295 } | |
296 code->Generate(); | |
297 if (NeedsDeferredFrame()) { | |
298 Comment(";;; Destroy frame"); | |
299 DCHECK(frame_is_built_); | |
300 __ pop(ip); | |
301 __ PopFixedFrame(); | |
302 frame_is_built_ = false; | |
303 } | |
304 __ jmp(code->exit()); | |
305 } | |
306 } | |
307 | |
308 // Force constant pool emission at the end of the deferred code to make | |
309 // sure that no constant pools are emitted after. | |
310 masm()->CheckConstPool(true, false); | |
311 | |
312 return !is_aborted(); | |
313 } | |
314 | |
315 | |
316 bool LCodeGen::GenerateJumpTable() { | |
317 // Check that the jump table is accessible from everywhere in the function | |
318 // code, i.e. that offsets to the table can be encoded in the 24bit signed | |
319 // immediate of a branch instruction. | |
320 // To simplify we consider the code size from the first instruction to the | |
321 // end of the jump table. We also don't consider the pc load delta. | |
322 // Each entry in the jump table generates one instruction and inlines one | |
323 // 32bit data after it. | |
324 if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) + | |
325 jump_table_.length() * 7)) { | |
326 Abort(kGeneratedCodeIsTooLarge); | |
327 } | |
328 | |
329 if (jump_table_.length() > 0) { | |
330 Label needs_frame, call_deopt_entry; | |
331 | |
332 Comment(";;; -------------------- Jump table --------------------"); | |
333 Address base = jump_table_[0].address; | |
334 | |
335 Register entry_offset = scratch0(); | |
336 | |
337 int length = jump_table_.length(); | |
338 for (int i = 0; i < length; i++) { | |
339 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i]; | |
340 __ bind(&table_entry->label); | |
341 | |
342 DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type); | |
343 Address entry = table_entry->address; | |
344 DeoptComment(table_entry->deopt_info); | |
345 | |
346 // Second-level deopt table entries are contiguous and small, so instead | |
347 // of loading the full, absolute address of each one, load an immediate | |
348 // offset which will be added to the base address later. | |
349 __ mov(entry_offset, Operand(entry - base)); | |
350 | |
351 if (table_entry->needs_frame) { | |
352 DCHECK(!info()->saves_caller_doubles()); | |
353 Comment(";;; call deopt with frame"); | |
354 __ PushFixedFrame(); | |
355 __ bl(&needs_frame); | |
356 } else { | |
357 __ bl(&call_deopt_entry); | |
358 } | |
359 info()->LogDeoptCallPosition(masm()->pc_offset(), | |
360 table_entry->deopt_info.inlining_id); | |
361 masm()->CheckConstPool(false, false); | |
362 } | |
363 | |
364 if (needs_frame.is_linked()) { | |
365 __ bind(&needs_frame); | |
366 // This variant of deopt can only be used with stubs. Since we don't | |
367 // have a function pointer to install in the stack frame that we're | |
368 // building, install a special marker there instead. | |
369 DCHECK(info()->IsStub()); | |
370 __ mov(ip, Operand(Smi::FromInt(StackFrame::STUB))); | |
371 __ push(ip); | |
372 __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); | |
373 } | |
374 | |
375 Comment(";;; call deopt"); | |
376 __ bind(&call_deopt_entry); | |
377 | |
378 if (info()->saves_caller_doubles()) { | |
379 DCHECK(info()->IsStub()); | |
380 RestoreCallerDoubles(); | |
381 } | |
382 | |
383 // Add the base address to the offset previously loaded in entry_offset. | |
384 __ add(entry_offset, entry_offset, | |
385 Operand(ExternalReference::ForDeoptEntry(base))); | |
386 __ bx(entry_offset); | |
387 } | |
388 | |
389 // Force constant pool emission at the end of the deopt jump table to make | |
390 // sure that no constant pools are emitted after. | |
391 masm()->CheckConstPool(true, false); | |
392 | |
393 // The deoptimization jump table is the last part of the instruction | |
394 // sequence. Mark the generated code as done unless we bailed out. | |
395 if (!is_aborted()) status_ = DONE; | |
396 return !is_aborted(); | |
397 } | |
398 | |
399 | |
400 bool LCodeGen::GenerateSafepointTable() { | |
401 DCHECK(is_done()); | |
402 safepoints_.Emit(masm(), GetStackSlotCount()); | |
403 return !is_aborted(); | |
404 } | |
405 | |
406 | |
407 Register LCodeGen::ToRegister(int code) const { | |
408 return Register::from_code(code); | |
409 } | |
410 | |
411 | |
412 DwVfpRegister LCodeGen::ToDoubleRegister(int code) const { | |
413 return DwVfpRegister::from_code(code); | |
414 } | |
415 | |
416 | |
417 Register LCodeGen::ToRegister(LOperand* op) const { | |
418 DCHECK(op->IsRegister()); | |
419 return ToRegister(op->index()); | |
420 } | |
421 | |
422 | |
423 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { | |
424 if (op->IsRegister()) { | |
425 return ToRegister(op->index()); | |
426 } else if (op->IsConstantOperand()) { | |
427 LConstantOperand* const_op = LConstantOperand::cast(op); | |
428 HConstant* constant = chunk_->LookupConstant(const_op); | |
429 Handle<Object> literal = constant->handle(isolate()); | |
430 Representation r = chunk_->LookupLiteralRepresentation(const_op); | |
431 if (r.IsInteger32()) { | |
432 AllowDeferredHandleDereference get_number; | |
433 DCHECK(literal->IsNumber()); | |
434 __ mov(scratch, Operand(static_cast<int32_t>(literal->Number()))); | |
435 } else if (r.IsDouble()) { | |
436 Abort(kEmitLoadRegisterUnsupportedDoubleImmediate); | |
437 } else { | |
438 DCHECK(r.IsSmiOrTagged()); | |
439 __ Move(scratch, literal); | |
440 } | |
441 return scratch; | |
442 } else if (op->IsStackSlot()) { | |
443 __ ldr(scratch, ToMemOperand(op)); | |
444 return scratch; | |
445 } | |
446 UNREACHABLE(); | |
447 return scratch; | |
448 } | |
449 | |
450 | |
451 DwVfpRegister LCodeGen::ToDoubleRegister(LOperand* op) const { | |
452 DCHECK(op->IsDoubleRegister()); | |
453 return ToDoubleRegister(op->index()); | |
454 } | |
455 | |
456 | |
457 DwVfpRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op, | |
458 SwVfpRegister flt_scratch, | |
459 DwVfpRegister dbl_scratch) { | |
460 if (op->IsDoubleRegister()) { | |
461 return ToDoubleRegister(op->index()); | |
462 } else if (op->IsConstantOperand()) { | |
463 LConstantOperand* const_op = LConstantOperand::cast(op); | |
464 HConstant* constant = chunk_->LookupConstant(const_op); | |
465 Handle<Object> literal = constant->handle(isolate()); | |
466 Representation r = chunk_->LookupLiteralRepresentation(const_op); | |
467 if (r.IsInteger32()) { | |
468 DCHECK(literal->IsNumber()); | |
469 __ mov(ip, Operand(static_cast<int32_t>(literal->Number()))); | |
470 __ vmov(flt_scratch, ip); | |
471 __ vcvt_f64_s32(dbl_scratch, flt_scratch); | |
472 return dbl_scratch; | |
473 } else if (r.IsDouble()) { | |
474 Abort(kUnsupportedDoubleImmediate); | |
475 } else if (r.IsTagged()) { | |
476 Abort(kUnsupportedTaggedImmediate); | |
477 } | |
478 } else if (op->IsStackSlot()) { | |
479 // TODO(regis): Why is vldr not taking a MemOperand? | |
480 // __ vldr(dbl_scratch, ToMemOperand(op)); | |
481 MemOperand mem_op = ToMemOperand(op); | |
482 __ vldr(dbl_scratch, mem_op.rn(), mem_op.offset()); | |
483 return dbl_scratch; | |
484 } | |
485 UNREACHABLE(); | |
486 return dbl_scratch; | |
487 } | |
488 | |
489 | |
490 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { | |
491 HConstant* constant = chunk_->LookupConstant(op); | |
492 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); | |
493 return constant->handle(isolate()); | |
494 } | |
495 | |
496 | |
497 bool LCodeGen::IsInteger32(LConstantOperand* op) const { | |
498 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); | |
499 } | |
500 | |
501 | |
502 bool LCodeGen::IsSmi(LConstantOperand* op) const { | |
503 return chunk_->LookupLiteralRepresentation(op).IsSmi(); | |
504 } | |
505 | |
506 | |
507 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { | |
508 return ToRepresentation(op, Representation::Integer32()); | |
509 } | |
510 | |
511 | |
512 int32_t LCodeGen::ToRepresentation(LConstantOperand* op, | |
513 const Representation& r) const { | |
514 HConstant* constant = chunk_->LookupConstant(op); | |
515 int32_t value = constant->Integer32Value(); | |
516 if (r.IsInteger32()) return value; | |
517 DCHECK(r.IsSmiOrTagged()); | |
518 return reinterpret_cast<int32_t>(Smi::FromInt(value)); | |
519 } | |
520 | |
521 | |
522 Smi* LCodeGen::ToSmi(LConstantOperand* op) const { | |
523 HConstant* constant = chunk_->LookupConstant(op); | |
524 return Smi::FromInt(constant->Integer32Value()); | |
525 } | |
526 | |
527 | |
528 double LCodeGen::ToDouble(LConstantOperand* op) const { | |
529 HConstant* constant = chunk_->LookupConstant(op); | |
530 DCHECK(constant->HasDoubleValue()); | |
531 return constant->DoubleValue(); | |
532 } | |
533 | |
534 | |
535 Operand LCodeGen::ToOperand(LOperand* op) { | |
536 if (op->IsConstantOperand()) { | |
537 LConstantOperand* const_op = LConstantOperand::cast(op); | |
538 HConstant* constant = chunk()->LookupConstant(const_op); | |
539 Representation r = chunk_->LookupLiteralRepresentation(const_op); | |
540 if (r.IsSmi()) { | |
541 DCHECK(constant->HasSmiValue()); | |
542 return Operand(Smi::FromInt(constant->Integer32Value())); | |
543 } else if (r.IsInteger32()) { | |
544 DCHECK(constant->HasInteger32Value()); | |
545 return Operand(constant->Integer32Value()); | |
546 } else if (r.IsDouble()) { | |
547 Abort(kToOperandUnsupportedDoubleImmediate); | |
548 } | |
549 DCHECK(r.IsTagged()); | |
550 return Operand(constant->handle(isolate())); | |
551 } else if (op->IsRegister()) { | |
552 return Operand(ToRegister(op)); | |
553 } else if (op->IsDoubleRegister()) { | |
554 Abort(kToOperandIsDoubleRegisterUnimplemented); | |
555 return Operand::Zero(); | |
556 } | |
557 // Stack slots not implemented, use ToMemOperand instead. | |
558 UNREACHABLE(); | |
559 return Operand::Zero(); | |
560 } | |
561 | |
562 | |
563 static int ArgumentsOffsetWithoutFrame(int index) { | |
564 DCHECK(index < 0); | |
565 return -(index + 1) * kPointerSize; | |
566 } | |
567 | |
568 | |
569 MemOperand LCodeGen::ToMemOperand(LOperand* op) const { | |
570 DCHECK(!op->IsRegister()); | |
571 DCHECK(!op->IsDoubleRegister()); | |
572 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); | |
573 if (NeedsEagerFrame()) { | |
574 return MemOperand(fp, StackSlotOffset(op->index())); | |
575 } else { | |
576 // Retrieve parameter without eager stack-frame relative to the | |
577 // stack-pointer. | |
578 return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index())); | |
579 } | |
580 } | |
581 | |
582 | |
583 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { | |
584 DCHECK(op->IsDoubleStackSlot()); | |
585 if (NeedsEagerFrame()) { | |
586 return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize); | |
587 } else { | |
588 // Retrieve parameter without eager stack-frame relative to the | |
589 // stack-pointer. | |
590 return MemOperand( | |
591 sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize); | |
592 } | |
593 } | |
594 | |
595 | |
596 void LCodeGen::WriteTranslation(LEnvironment* environment, | |
597 Translation* translation) { | |
598 if (environment == NULL) return; | |
599 | |
600 // The translation includes one command per value in the environment. | |
601 int translation_size = environment->translation_size(); | |
602 | |
603 WriteTranslation(environment->outer(), translation); | |
604 WriteTranslationFrame(environment, translation); | |
605 | |
606 int object_index = 0; | |
607 int dematerialized_index = 0; | |
608 for (int i = 0; i < translation_size; ++i) { | |
609 LOperand* value = environment->values()->at(i); | |
610 AddToTranslation( | |
611 environment, translation, value, environment->HasTaggedValueAt(i), | |
612 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); | |
613 } | |
614 } | |
615 | |
616 | |
617 void LCodeGen::AddToTranslation(LEnvironment* environment, | |
618 Translation* translation, | |
619 LOperand* op, | |
620 bool is_tagged, | |
621 bool is_uint32, | |
622 int* object_index_pointer, | |
623 int* dematerialized_index_pointer) { | |
624 if (op == LEnvironment::materialization_marker()) { | |
625 int object_index = (*object_index_pointer)++; | |
626 if (environment->ObjectIsDuplicateAt(object_index)) { | |
627 int dupe_of = environment->ObjectDuplicateOfAt(object_index); | |
628 translation->DuplicateObject(dupe_of); | |
629 return; | |
630 } | |
631 int object_length = environment->ObjectLengthAt(object_index); | |
632 if (environment->ObjectIsArgumentsAt(object_index)) { | |
633 translation->BeginArgumentsObject(object_length); | |
634 } else { | |
635 translation->BeginCapturedObject(object_length); | |
636 } | |
637 int dematerialized_index = *dematerialized_index_pointer; | |
638 int env_offset = environment->translation_size() + dematerialized_index; | |
639 *dematerialized_index_pointer += object_length; | |
640 for (int i = 0; i < object_length; ++i) { | |
641 LOperand* value = environment->values()->at(env_offset + i); | |
642 AddToTranslation(environment, | |
643 translation, | |
644 value, | |
645 environment->HasTaggedValueAt(env_offset + i), | |
646 environment->HasUint32ValueAt(env_offset + i), | |
647 object_index_pointer, | |
648 dematerialized_index_pointer); | |
649 } | |
650 return; | |
651 } | |
652 | |
653 if (op->IsStackSlot()) { | |
654 int index = op->index(); | |
655 if (index >= 0) { | |
656 index += StandardFrameConstants::kFixedFrameSize / kPointerSize; | |
657 } | |
658 if (is_tagged) { | |
659 translation->StoreStackSlot(index); | |
660 } else if (is_uint32) { | |
661 translation->StoreUint32StackSlot(index); | |
662 } else { | |
663 translation->StoreInt32StackSlot(index); | |
664 } | |
665 } else if (op->IsDoubleStackSlot()) { | |
666 int index = op->index(); | |
667 if (index >= 0) { | |
668 index += StandardFrameConstants::kFixedFrameSize / kPointerSize; | |
669 } | |
670 translation->StoreDoubleStackSlot(index); | |
671 } else if (op->IsRegister()) { | |
672 Register reg = ToRegister(op); | |
673 if (is_tagged) { | |
674 translation->StoreRegister(reg); | |
675 } else if (is_uint32) { | |
676 translation->StoreUint32Register(reg); | |
677 } else { | |
678 translation->StoreInt32Register(reg); | |
679 } | |
680 } else if (op->IsDoubleRegister()) { | |
681 DoubleRegister reg = ToDoubleRegister(op); | |
682 translation->StoreDoubleRegister(reg); | |
683 } else if (op->IsConstantOperand()) { | |
684 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); | |
685 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); | |
686 translation->StoreLiteral(src_index); | |
687 } else { | |
688 UNREACHABLE(); | |
689 } | |
690 } | |
691 | |
692 | |
693 int LCodeGen::CallCodeSize(Handle<Code> code, RelocInfo::Mode mode) { | |
694 int size = masm()->CallSize(code, mode); | |
695 if (code->kind() == Code::BINARY_OP_IC || | |
696 code->kind() == Code::COMPARE_IC) { | |
697 size += Assembler::kInstrSize; // extra nop() added in CallCodeGeneric. | |
698 } | |
699 return size; | |
700 } | |
701 | |
702 | |
703 void LCodeGen::CallCode(Handle<Code> code, | |
704 RelocInfo::Mode mode, | |
705 LInstruction* instr, | |
706 TargetAddressStorageMode storage_mode) { | |
707 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, storage_mode); | |
708 } | |
709 | |
710 | |
711 void LCodeGen::CallCodeGeneric(Handle<Code> code, | |
712 RelocInfo::Mode mode, | |
713 LInstruction* instr, | |
714 SafepointMode safepoint_mode, | |
715 TargetAddressStorageMode storage_mode) { | |
716 DCHECK(instr != NULL); | |
717 // Block literal pool emission to ensure nop indicating no inlined smi code | |
718 // is in the correct position. | |
719 Assembler::BlockConstPoolScope block_const_pool(masm()); | |
720 __ Call(code, mode, TypeFeedbackId::None(), al, storage_mode); | |
721 RecordSafepointWithLazyDeopt(instr, safepoint_mode); | |
722 | |
723 // Signal that we don't inline smi code before these stubs in the | |
724 // optimizing code generator. | |
725 if (code->kind() == Code::BINARY_OP_IC || | |
726 code->kind() == Code::COMPARE_IC) { | |
727 __ nop(); | |
728 } | |
729 } | |
730 | |
731 | |
732 void LCodeGen::CallRuntime(const Runtime::Function* function, | |
733 int num_arguments, | |
734 LInstruction* instr, | |
735 SaveFPRegsMode save_doubles) { | |
736 DCHECK(instr != NULL); | |
737 | |
738 __ CallRuntime(function, num_arguments, save_doubles); | |
739 | |
740 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); | |
741 } | |
742 | |
743 | |
744 void LCodeGen::LoadContextFromDeferred(LOperand* context) { | |
745 if (context->IsRegister()) { | |
746 __ Move(cp, ToRegister(context)); | |
747 } else if (context->IsStackSlot()) { | |
748 __ ldr(cp, ToMemOperand(context)); | |
749 } else if (context->IsConstantOperand()) { | |
750 HConstant* constant = | |
751 chunk_->LookupConstant(LConstantOperand::cast(context)); | |
752 __ Move(cp, Handle<Object>::cast(constant->handle(isolate()))); | |
753 } else { | |
754 UNREACHABLE(); | |
755 } | |
756 } | |
757 | |
758 | |
759 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, | |
760 int argc, | |
761 LInstruction* instr, | |
762 LOperand* context) { | |
763 LoadContextFromDeferred(context); | |
764 __ CallRuntimeSaveDoubles(id); | |
765 RecordSafepointWithRegisters( | |
766 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); | |
767 } | |
768 | |
769 | |
770 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, | |
771 Safepoint::DeoptMode mode) { | |
772 environment->set_has_been_used(); | |
773 if (!environment->HasBeenRegistered()) { | |
774 // Physical stack frame layout: | |
775 // -x ............. -4 0 ..................................... y | |
776 // [incoming arguments] [spill slots] [pushed outgoing arguments] | |
777 | |
778 // Layout of the environment: | |
779 // 0 ..................................................... size-1 | |
780 // [parameters] [locals] [expression stack including arguments] | |
781 | |
782 // Layout of the translation: | |
783 // 0 ........................................................ size - 1 + 4 | |
784 // [expression stack including arguments] [locals] [4 words] [parameters] | |
785 // |>------------ translation_size ------------<| | |
786 | |
787 int frame_count = 0; | |
788 int jsframe_count = 0; | |
789 for (LEnvironment* e = environment; e != NULL; e = e->outer()) { | |
790 ++frame_count; | |
791 if (e->frame_type() == JS_FUNCTION) { | |
792 ++jsframe_count; | |
793 } | |
794 } | |
795 Translation translation(&translations_, frame_count, jsframe_count, zone()); | |
796 WriteTranslation(environment, &translation); | |
797 int deoptimization_index = deoptimizations_.length(); | |
798 int pc_offset = masm()->pc_offset(); | |
799 environment->Register(deoptimization_index, | |
800 translation.index(), | |
801 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); | |
802 deoptimizations_.Add(environment, zone()); | |
803 } | |
804 } | |
805 | |
806 | |
807 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr, | |
808 Deoptimizer::DeoptReason deopt_reason, | |
809 Deoptimizer::BailoutType bailout_type) { | |
810 LEnvironment* environment = instr->environment(); | |
811 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); | |
812 DCHECK(environment->HasBeenRegistered()); | |
813 int id = environment->deoptimization_index(); | |
814 Address entry = | |
815 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); | |
816 if (entry == NULL) { | |
817 Abort(kBailoutWasNotPrepared); | |
818 return; | |
819 } | |
820 | |
821 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { | |
822 Register scratch = scratch0(); | |
823 ExternalReference count = ExternalReference::stress_deopt_count(isolate()); | |
824 | |
825 // Store the condition on the stack if necessary | |
826 if (condition != al) { | |
827 __ mov(scratch, Operand::Zero(), LeaveCC, NegateCondition(condition)); | |
828 __ mov(scratch, Operand(1), LeaveCC, condition); | |
829 __ push(scratch); | |
830 } | |
831 | |
832 __ push(r1); | |
833 __ mov(scratch, Operand(count)); | |
834 __ ldr(r1, MemOperand(scratch)); | |
835 __ sub(r1, r1, Operand(1), SetCC); | |
836 __ mov(r1, Operand(FLAG_deopt_every_n_times), LeaveCC, eq); | |
837 __ str(r1, MemOperand(scratch)); | |
838 __ pop(r1); | |
839 | |
840 if (condition != al) { | |
841 // Clean up the stack before the deoptimizer call | |
842 __ pop(scratch); | |
843 } | |
844 | |
845 __ Call(entry, RelocInfo::RUNTIME_ENTRY, eq); | |
846 | |
847 // 'Restore' the condition in a slightly hacky way. (It would be better | |
848 // to use 'msr' and 'mrs' instructions here, but they are not supported by | |
849 // our ARM simulator). | |
850 if (condition != al) { | |
851 condition = ne; | |
852 __ cmp(scratch, Operand::Zero()); | |
853 } | |
854 } | |
855 | |
856 if (info()->ShouldTrapOnDeopt()) { | |
857 __ stop("trap_on_deopt", condition); | |
858 } | |
859 | |
860 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason); | |
861 | |
862 DCHECK(info()->IsStub() || frame_is_built_); | |
863 // Go through jump table if we need to handle condition, build frame, or | |
864 // restore caller doubles. | |
865 if (condition == al && frame_is_built_ && | |
866 !info()->saves_caller_doubles()) { | |
867 DeoptComment(deopt_info); | |
868 __ Call(entry, RelocInfo::RUNTIME_ENTRY); | |
869 info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id); | |
870 } else { | |
871 Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type, | |
872 !frame_is_built_); | |
873 // We often have several deopts to the same entry, reuse the last | |
874 // jump entry if this is the case. | |
875 if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() || | |
876 jump_table_.is_empty() || | |
877 !table_entry.IsEquivalentTo(jump_table_.last())) { | |
878 jump_table_.Add(table_entry, zone()); | |
879 } | |
880 __ b(condition, &jump_table_.last().label); | |
881 } | |
882 } | |
883 | |
884 | |
885 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr, | |
886 Deoptimizer::DeoptReason deopt_reason) { | |
887 Deoptimizer::BailoutType bailout_type = info()->IsStub() | |
888 ? Deoptimizer::LAZY | |
889 : Deoptimizer::EAGER; | |
890 DeoptimizeIf(condition, instr, deopt_reason, bailout_type); | |
891 } | |
892 | |
893 | |
894 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { | |
895 int length = deoptimizations_.length(); | |
896 if (length == 0) return; | |
897 Handle<DeoptimizationInputData> data = | |
898 DeoptimizationInputData::New(isolate(), length, TENURED); | |
899 | |
900 Handle<ByteArray> translations = | |
901 translations_.CreateByteArray(isolate()->factory()); | |
902 data->SetTranslationByteArray(*translations); | |
903 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); | |
904 data->SetOptimizationId(Smi::FromInt(info_->optimization_id())); | |
905 if (info_->IsOptimizing()) { | |
906 // Reference to shared function info does not change between phases. | |
907 AllowDeferredHandleDereference allow_handle_dereference; | |
908 data->SetSharedFunctionInfo(*info_->shared_info()); | |
909 } else { | |
910 data->SetSharedFunctionInfo(Smi::FromInt(0)); | |
911 } | |
912 data->SetWeakCellCache(Smi::FromInt(0)); | |
913 | |
914 Handle<FixedArray> literals = | |
915 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); | |
916 { AllowDeferredHandleDereference copy_handles; | |
917 for (int i = 0; i < deoptimization_literals_.length(); i++) { | |
918 literals->set(i, *deoptimization_literals_[i]); | |
919 } | |
920 data->SetLiteralArray(*literals); | |
921 } | |
922 | |
923 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt())); | |
924 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); | |
925 | |
926 // Populate the deoptimization entries. | |
927 for (int i = 0; i < length; i++) { | |
928 LEnvironment* env = deoptimizations_[i]; | |
929 data->SetAstId(i, env->ast_id()); | |
930 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); | |
931 data->SetArgumentsStackHeight(i, | |
932 Smi::FromInt(env->arguments_stack_height())); | |
933 data->SetPc(i, Smi::FromInt(env->pc_offset())); | |
934 } | |
935 code->set_deoptimization_data(*data); | |
936 } | |
937 | |
938 | |
939 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { | |
940 DCHECK_EQ(0, deoptimization_literals_.length()); | |
941 for (auto function : chunk()->inlined_functions()) { | |
942 DefineDeoptimizationLiteral(function); | |
943 } | |
944 inlined_function_count_ = deoptimization_literals_.length(); | |
945 } | |
946 | |
947 | |
948 void LCodeGen::RecordSafepointWithLazyDeopt( | |
949 LInstruction* instr, SafepointMode safepoint_mode) { | |
950 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { | |
951 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); | |
952 } else { | |
953 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | |
954 RecordSafepointWithRegisters( | |
955 instr->pointer_map(), 0, Safepoint::kLazyDeopt); | |
956 } | |
957 } | |
958 | |
959 | |
960 void LCodeGen::RecordSafepoint( | |
961 LPointerMap* pointers, | |
962 Safepoint::Kind kind, | |
963 int arguments, | |
964 Safepoint::DeoptMode deopt_mode) { | |
965 DCHECK(expected_safepoint_kind_ == kind); | |
966 | |
967 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); | |
968 Safepoint safepoint = safepoints_.DefineSafepoint(masm(), | |
969 kind, arguments, deopt_mode); | |
970 for (int i = 0; i < operands->length(); i++) { | |
971 LOperand* pointer = operands->at(i); | |
972 if (pointer->IsStackSlot()) { | |
973 safepoint.DefinePointerSlot(pointer->index(), zone()); | |
974 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { | |
975 safepoint.DefinePointerRegister(ToRegister(pointer), zone()); | |
976 } | |
977 } | |
978 } | |
979 | |
980 | |
981 void LCodeGen::RecordSafepoint(LPointerMap* pointers, | |
982 Safepoint::DeoptMode deopt_mode) { | |
983 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); | |
984 } | |
985 | |
986 | |
987 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { | |
988 LPointerMap empty_pointers(zone()); | |
989 RecordSafepoint(&empty_pointers, deopt_mode); | |
990 } | |
991 | |
992 | |
993 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, | |
994 int arguments, | |
995 Safepoint::DeoptMode deopt_mode) { | |
996 RecordSafepoint( | |
997 pointers, Safepoint::kWithRegisters, arguments, deopt_mode); | |
998 } | |
999 | |
1000 | |
1001 void LCodeGen::RecordAndWritePosition(int position) { | |
1002 if (position == RelocInfo::kNoPosition) return; | |
1003 masm()->positions_recorder()->RecordPosition(position); | |
1004 masm()->positions_recorder()->WriteRecordedPositions(); | |
1005 } | |
1006 | |
1007 | |
1008 static const char* LabelType(LLabel* label) { | |
1009 if (label->is_loop_header()) return " (loop header)"; | |
1010 if (label->is_osr_entry()) return " (OSR entry)"; | |
1011 return ""; | |
1012 } | |
1013 | |
1014 | |
1015 void LCodeGen::DoLabel(LLabel* label) { | |
1016 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", | |
1017 current_instruction_, | |
1018 label->hydrogen_value()->id(), | |
1019 label->block_id(), | |
1020 LabelType(label)); | |
1021 __ bind(label->label()); | |
1022 current_block_ = label->block_id(); | |
1023 DoGap(label); | |
1024 } | |
1025 | |
1026 | |
1027 void LCodeGen::DoParallelMove(LParallelMove* move) { | |
1028 resolver_.Resolve(move); | |
1029 } | |
1030 | |
1031 | |
1032 void LCodeGen::DoGap(LGap* gap) { | |
1033 for (int i = LGap::FIRST_INNER_POSITION; | |
1034 i <= LGap::LAST_INNER_POSITION; | |
1035 i++) { | |
1036 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); | |
1037 LParallelMove* move = gap->GetParallelMove(inner_pos); | |
1038 if (move != NULL) DoParallelMove(move); | |
1039 } | |
1040 } | |
1041 | |
1042 | |
1043 void LCodeGen::DoInstructionGap(LInstructionGap* instr) { | |
1044 DoGap(instr); | |
1045 } | |
1046 | |
1047 | |
1048 void LCodeGen::DoParameter(LParameter* instr) { | |
1049 // Nothing to do. | |
1050 } | |
1051 | |
1052 | |
1053 void LCodeGen::DoCallStub(LCallStub* instr) { | |
1054 DCHECK(ToRegister(instr->context()).is(cp)); | |
1055 DCHECK(ToRegister(instr->result()).is(r0)); | |
1056 switch (instr->hydrogen()->major_key()) { | |
1057 case CodeStub::RegExpExec: { | |
1058 RegExpExecStub stub(isolate()); | |
1059 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
1060 break; | |
1061 } | |
1062 case CodeStub::SubString: { | |
1063 SubStringStub stub(isolate()); | |
1064 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
1065 break; | |
1066 } | |
1067 default: | |
1068 UNREACHABLE(); | |
1069 } | |
1070 } | |
1071 | |
1072 | |
1073 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { | |
1074 GenerateOsrPrologue(); | |
1075 } | |
1076 | |
1077 | |
1078 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { | |
1079 Register dividend = ToRegister(instr->dividend()); | |
1080 int32_t divisor = instr->divisor(); | |
1081 DCHECK(dividend.is(ToRegister(instr->result()))); | |
1082 | |
1083 // Theoretically, a variation of the branch-free code for integer division by | |
1084 // a power of 2 (calculating the remainder via an additional multiplication | |
1085 // (which gets simplified to an 'and') and subtraction) should be faster, and | |
1086 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to | |
1087 // indicate that positive dividends are heavily favored, so the branching | |
1088 // version performs better. | |
1089 HMod* hmod = instr->hydrogen(); | |
1090 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); | |
1091 Label dividend_is_not_negative, done; | |
1092 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { | |
1093 __ cmp(dividend, Operand::Zero()); | |
1094 __ b(pl, ÷nd_is_not_negative); | |
1095 // Note that this is correct even for kMinInt operands. | |
1096 __ rsb(dividend, dividend, Operand::Zero()); | |
1097 __ and_(dividend, dividend, Operand(mask)); | |
1098 __ rsb(dividend, dividend, Operand::Zero(), SetCC); | |
1099 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1100 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
1101 } | |
1102 __ b(&done); | |
1103 } | |
1104 | |
1105 __ bind(÷nd_is_not_negative); | |
1106 __ and_(dividend, dividend, Operand(mask)); | |
1107 __ bind(&done); | |
1108 } | |
1109 | |
1110 | |
1111 void LCodeGen::DoModByConstI(LModByConstI* instr) { | |
1112 Register dividend = ToRegister(instr->dividend()); | |
1113 int32_t divisor = instr->divisor(); | |
1114 Register result = ToRegister(instr->result()); | |
1115 DCHECK(!dividend.is(result)); | |
1116 | |
1117 if (divisor == 0) { | |
1118 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero); | |
1119 return; | |
1120 } | |
1121 | |
1122 __ TruncatingDiv(result, dividend, Abs(divisor)); | |
1123 __ mov(ip, Operand(Abs(divisor))); | |
1124 __ smull(result, ip, result, ip); | |
1125 __ sub(result, dividend, result, SetCC); | |
1126 | |
1127 // Check for negative zero. | |
1128 HMod* hmod = instr->hydrogen(); | |
1129 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1130 Label remainder_not_zero; | |
1131 __ b(ne, &remainder_not_zero); | |
1132 __ cmp(dividend, Operand::Zero()); | |
1133 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero); | |
1134 __ bind(&remainder_not_zero); | |
1135 } | |
1136 } | |
1137 | |
1138 | |
1139 void LCodeGen::DoModI(LModI* instr) { | |
1140 HMod* hmod = instr->hydrogen(); | |
1141 if (CpuFeatures::IsSupported(SUDIV)) { | |
1142 CpuFeatureScope scope(masm(), SUDIV); | |
1143 | |
1144 Register left_reg = ToRegister(instr->left()); | |
1145 Register right_reg = ToRegister(instr->right()); | |
1146 Register result_reg = ToRegister(instr->result()); | |
1147 | |
1148 Label done; | |
1149 // Check for x % 0, sdiv might signal an exception. We have to deopt in this | |
1150 // case because we can't return a NaN. | |
1151 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) { | |
1152 __ cmp(right_reg, Operand::Zero()); | |
1153 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero); | |
1154 } | |
1155 | |
1156 // Check for kMinInt % -1, sdiv will return kMinInt, which is not what we | |
1157 // want. We have to deopt if we care about -0, because we can't return that. | |
1158 if (hmod->CheckFlag(HValue::kCanOverflow)) { | |
1159 Label no_overflow_possible; | |
1160 __ cmp(left_reg, Operand(kMinInt)); | |
1161 __ b(ne, &no_overflow_possible); | |
1162 __ cmp(right_reg, Operand(-1)); | |
1163 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1164 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
1165 } else { | |
1166 __ b(ne, &no_overflow_possible); | |
1167 __ mov(result_reg, Operand::Zero()); | |
1168 __ jmp(&done); | |
1169 } | |
1170 __ bind(&no_overflow_possible); | |
1171 } | |
1172 | |
1173 // For 'r3 = r1 % r2' we can have the following ARM code: | |
1174 // sdiv r3, r1, r2 | |
1175 // mls r3, r3, r2, r1 | |
1176 | |
1177 __ sdiv(result_reg, left_reg, right_reg); | |
1178 __ Mls(result_reg, result_reg, right_reg, left_reg); | |
1179 | |
1180 // If we care about -0, test if the dividend is <0 and the result is 0. | |
1181 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1182 __ cmp(result_reg, Operand::Zero()); | |
1183 __ b(ne, &done); | |
1184 __ cmp(left_reg, Operand::Zero()); | |
1185 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero); | |
1186 } | |
1187 __ bind(&done); | |
1188 | |
1189 } else { | |
1190 // General case, without any SDIV support. | |
1191 Register left_reg = ToRegister(instr->left()); | |
1192 Register right_reg = ToRegister(instr->right()); | |
1193 Register result_reg = ToRegister(instr->result()); | |
1194 Register scratch = scratch0(); | |
1195 DCHECK(!scratch.is(left_reg)); | |
1196 DCHECK(!scratch.is(right_reg)); | |
1197 DCHECK(!scratch.is(result_reg)); | |
1198 DwVfpRegister dividend = ToDoubleRegister(instr->temp()); | |
1199 DwVfpRegister divisor = ToDoubleRegister(instr->temp2()); | |
1200 DCHECK(!divisor.is(dividend)); | |
1201 LowDwVfpRegister quotient = double_scratch0(); | |
1202 DCHECK(!quotient.is(dividend)); | |
1203 DCHECK(!quotient.is(divisor)); | |
1204 | |
1205 Label done; | |
1206 // Check for x % 0, we have to deopt in this case because we can't return a | |
1207 // NaN. | |
1208 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) { | |
1209 __ cmp(right_reg, Operand::Zero()); | |
1210 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero); | |
1211 } | |
1212 | |
1213 __ Move(result_reg, left_reg); | |
1214 // Load the arguments in VFP registers. The divisor value is preloaded | |
1215 // before. Be careful that 'right_reg' is only live on entry. | |
1216 // TODO(svenpanne) The last comments seems to be wrong nowadays. | |
1217 __ vmov(double_scratch0().low(), left_reg); | |
1218 __ vcvt_f64_s32(dividend, double_scratch0().low()); | |
1219 __ vmov(double_scratch0().low(), right_reg); | |
1220 __ vcvt_f64_s32(divisor, double_scratch0().low()); | |
1221 | |
1222 // We do not care about the sign of the divisor. Note that we still handle | |
1223 // the kMinInt % -1 case correctly, though. | |
1224 __ vabs(divisor, divisor); | |
1225 // Compute the quotient and round it to a 32bit integer. | |
1226 __ vdiv(quotient, dividend, divisor); | |
1227 __ vcvt_s32_f64(quotient.low(), quotient); | |
1228 __ vcvt_f64_s32(quotient, quotient.low()); | |
1229 | |
1230 // Compute the remainder in result. | |
1231 __ vmul(double_scratch0(), divisor, quotient); | |
1232 __ vcvt_s32_f64(double_scratch0().low(), double_scratch0()); | |
1233 __ vmov(scratch, double_scratch0().low()); | |
1234 __ sub(result_reg, left_reg, scratch, SetCC); | |
1235 | |
1236 // If we care about -0, test if the dividend is <0 and the result is 0. | |
1237 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1238 __ b(ne, &done); | |
1239 __ cmp(left_reg, Operand::Zero()); | |
1240 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero); | |
1241 } | |
1242 __ bind(&done); | |
1243 } | |
1244 } | |
1245 | |
1246 | |
1247 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { | |
1248 Register dividend = ToRegister(instr->dividend()); | |
1249 int32_t divisor = instr->divisor(); | |
1250 Register result = ToRegister(instr->result()); | |
1251 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); | |
1252 DCHECK(!result.is(dividend)); | |
1253 | |
1254 // Check for (0 / -x) that will produce negative zero. | |
1255 HDiv* hdiv = instr->hydrogen(); | |
1256 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { | |
1257 __ cmp(dividend, Operand::Zero()); | |
1258 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
1259 } | |
1260 // Check for (kMinInt / -1). | |
1261 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { | |
1262 __ cmp(dividend, Operand(kMinInt)); | |
1263 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow); | |
1264 } | |
1265 // Deoptimize if remainder will not be 0. | |
1266 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && | |
1267 divisor != 1 && divisor != -1) { | |
1268 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); | |
1269 __ tst(dividend, Operand(mask)); | |
1270 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision); | |
1271 } | |
1272 | |
1273 if (divisor == -1) { // Nice shortcut, not needed for correctness. | |
1274 __ rsb(result, dividend, Operand(0)); | |
1275 return; | |
1276 } | |
1277 int32_t shift = WhichPowerOf2Abs(divisor); | |
1278 if (shift == 0) { | |
1279 __ mov(result, dividend); | |
1280 } else if (shift == 1) { | |
1281 __ add(result, dividend, Operand(dividend, LSR, 31)); | |
1282 } else { | |
1283 __ mov(result, Operand(dividend, ASR, 31)); | |
1284 __ add(result, dividend, Operand(result, LSR, 32 - shift)); | |
1285 } | |
1286 if (shift > 0) __ mov(result, Operand(result, ASR, shift)); | |
1287 if (divisor < 0) __ rsb(result, result, Operand(0)); | |
1288 } | |
1289 | |
1290 | |
1291 void LCodeGen::DoDivByConstI(LDivByConstI* instr) { | |
1292 Register dividend = ToRegister(instr->dividend()); | |
1293 int32_t divisor = instr->divisor(); | |
1294 Register result = ToRegister(instr->result()); | |
1295 DCHECK(!dividend.is(result)); | |
1296 | |
1297 if (divisor == 0) { | |
1298 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero); | |
1299 return; | |
1300 } | |
1301 | |
1302 // Check for (0 / -x) that will produce negative zero. | |
1303 HDiv* hdiv = instr->hydrogen(); | |
1304 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { | |
1305 __ cmp(dividend, Operand::Zero()); | |
1306 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
1307 } | |
1308 | |
1309 __ TruncatingDiv(result, dividend, Abs(divisor)); | |
1310 if (divisor < 0) __ rsb(result, result, Operand::Zero()); | |
1311 | |
1312 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { | |
1313 __ mov(ip, Operand(divisor)); | |
1314 __ smull(scratch0(), ip, result, ip); | |
1315 __ sub(scratch0(), scratch0(), dividend, SetCC); | |
1316 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision); | |
1317 } | |
1318 } | |
1319 | |
1320 | |
1321 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. | |
1322 void LCodeGen::DoDivI(LDivI* instr) { | |
1323 HBinaryOperation* hdiv = instr->hydrogen(); | |
1324 Register dividend = ToRegister(instr->dividend()); | |
1325 Register divisor = ToRegister(instr->divisor()); | |
1326 Register result = ToRegister(instr->result()); | |
1327 | |
1328 // Check for x / 0. | |
1329 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { | |
1330 __ cmp(divisor, Operand::Zero()); | |
1331 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero); | |
1332 } | |
1333 | |
1334 // Check for (0 / -x) that will produce negative zero. | |
1335 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1336 Label positive; | |
1337 if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) { | |
1338 // Do the test only if it hadn't be done above. | |
1339 __ cmp(divisor, Operand::Zero()); | |
1340 } | |
1341 __ b(pl, &positive); | |
1342 __ cmp(dividend, Operand::Zero()); | |
1343 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
1344 __ bind(&positive); | |
1345 } | |
1346 | |
1347 // Check for (kMinInt / -1). | |
1348 if (hdiv->CheckFlag(HValue::kCanOverflow) && | |
1349 (!CpuFeatures::IsSupported(SUDIV) || | |
1350 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) { | |
1351 // We don't need to check for overflow when truncating with sdiv | |
1352 // support because, on ARM, sdiv kMinInt, -1 -> kMinInt. | |
1353 __ cmp(dividend, Operand(kMinInt)); | |
1354 __ cmp(divisor, Operand(-1), eq); | |
1355 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow); | |
1356 } | |
1357 | |
1358 if (CpuFeatures::IsSupported(SUDIV)) { | |
1359 CpuFeatureScope scope(masm(), SUDIV); | |
1360 __ sdiv(result, dividend, divisor); | |
1361 } else { | |
1362 DoubleRegister vleft = ToDoubleRegister(instr->temp()); | |
1363 DoubleRegister vright = double_scratch0(); | |
1364 __ vmov(double_scratch0().low(), dividend); | |
1365 __ vcvt_f64_s32(vleft, double_scratch0().low()); | |
1366 __ vmov(double_scratch0().low(), divisor); | |
1367 __ vcvt_f64_s32(vright, double_scratch0().low()); | |
1368 __ vdiv(vleft, vleft, vright); // vleft now contains the result. | |
1369 __ vcvt_s32_f64(double_scratch0().low(), vleft); | |
1370 __ vmov(result, double_scratch0().low()); | |
1371 } | |
1372 | |
1373 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { | |
1374 // Compute remainder and deopt if it's not zero. | |
1375 Register remainder = scratch0(); | |
1376 __ Mls(remainder, result, divisor, dividend); | |
1377 __ cmp(remainder, Operand::Zero()); | |
1378 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision); | |
1379 } | |
1380 } | |
1381 | |
1382 | |
1383 void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) { | |
1384 DwVfpRegister addend = ToDoubleRegister(instr->addend()); | |
1385 DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier()); | |
1386 DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand()); | |
1387 | |
1388 // This is computed in-place. | |
1389 DCHECK(addend.is(ToDoubleRegister(instr->result()))); | |
1390 | |
1391 __ vmla(addend, multiplier, multiplicand); | |
1392 } | |
1393 | |
1394 | |
1395 void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) { | |
1396 DwVfpRegister minuend = ToDoubleRegister(instr->minuend()); | |
1397 DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier()); | |
1398 DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand()); | |
1399 | |
1400 // This is computed in-place. | |
1401 DCHECK(minuend.is(ToDoubleRegister(instr->result()))); | |
1402 | |
1403 __ vmls(minuend, multiplier, multiplicand); | |
1404 } | |
1405 | |
1406 | |
1407 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { | |
1408 Register dividend = ToRegister(instr->dividend()); | |
1409 Register result = ToRegister(instr->result()); | |
1410 int32_t divisor = instr->divisor(); | |
1411 | |
1412 // If the divisor is 1, return the dividend. | |
1413 if (divisor == 1) { | |
1414 __ Move(result, dividend); | |
1415 return; | |
1416 } | |
1417 | |
1418 // If the divisor is positive, things are easy: There can be no deopts and we | |
1419 // can simply do an arithmetic right shift. | |
1420 int32_t shift = WhichPowerOf2Abs(divisor); | |
1421 if (divisor > 1) { | |
1422 __ mov(result, Operand(dividend, ASR, shift)); | |
1423 return; | |
1424 } | |
1425 | |
1426 // If the divisor is negative, we have to negate and handle edge cases. | |
1427 __ rsb(result, dividend, Operand::Zero(), SetCC); | |
1428 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1429 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
1430 } | |
1431 | |
1432 // Dividing by -1 is basically negation, unless we overflow. | |
1433 if (divisor == -1) { | |
1434 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { | |
1435 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
1436 } | |
1437 return; | |
1438 } | |
1439 | |
1440 // If the negation could not overflow, simply shifting is OK. | |
1441 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { | |
1442 __ mov(result, Operand(result, ASR, shift)); | |
1443 return; | |
1444 } | |
1445 | |
1446 __ mov(result, Operand(kMinInt / divisor), LeaveCC, vs); | |
1447 __ mov(result, Operand(result, ASR, shift), LeaveCC, vc); | |
1448 } | |
1449 | |
1450 | |
1451 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { | |
1452 Register dividend = ToRegister(instr->dividend()); | |
1453 int32_t divisor = instr->divisor(); | |
1454 Register result = ToRegister(instr->result()); | |
1455 DCHECK(!dividend.is(result)); | |
1456 | |
1457 if (divisor == 0) { | |
1458 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero); | |
1459 return; | |
1460 } | |
1461 | |
1462 // Check for (0 / -x) that will produce negative zero. | |
1463 HMathFloorOfDiv* hdiv = instr->hydrogen(); | |
1464 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { | |
1465 __ cmp(dividend, Operand::Zero()); | |
1466 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
1467 } | |
1468 | |
1469 // Easy case: We need no dynamic check for the dividend and the flooring | |
1470 // division is the same as the truncating division. | |
1471 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || | |
1472 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { | |
1473 __ TruncatingDiv(result, dividend, Abs(divisor)); | |
1474 if (divisor < 0) __ rsb(result, result, Operand::Zero()); | |
1475 return; | |
1476 } | |
1477 | |
1478 // In the general case we may need to adjust before and after the truncating | |
1479 // division to get a flooring division. | |
1480 Register temp = ToRegister(instr->temp()); | |
1481 DCHECK(!temp.is(dividend) && !temp.is(result)); | |
1482 Label needs_adjustment, done; | |
1483 __ cmp(dividend, Operand::Zero()); | |
1484 __ b(divisor > 0 ? lt : gt, &needs_adjustment); | |
1485 __ TruncatingDiv(result, dividend, Abs(divisor)); | |
1486 if (divisor < 0) __ rsb(result, result, Operand::Zero()); | |
1487 __ jmp(&done); | |
1488 __ bind(&needs_adjustment); | |
1489 __ add(temp, dividend, Operand(divisor > 0 ? 1 : -1)); | |
1490 __ TruncatingDiv(result, temp, Abs(divisor)); | |
1491 if (divisor < 0) __ rsb(result, result, Operand::Zero()); | |
1492 __ sub(result, result, Operand(1)); | |
1493 __ bind(&done); | |
1494 } | |
1495 | |
1496 | |
1497 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. | |
1498 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { | |
1499 HBinaryOperation* hdiv = instr->hydrogen(); | |
1500 Register left = ToRegister(instr->dividend()); | |
1501 Register right = ToRegister(instr->divisor()); | |
1502 Register result = ToRegister(instr->result()); | |
1503 | |
1504 // Check for x / 0. | |
1505 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { | |
1506 __ cmp(right, Operand::Zero()); | |
1507 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero); | |
1508 } | |
1509 | |
1510 // Check for (0 / -x) that will produce negative zero. | |
1511 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1512 Label positive; | |
1513 if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) { | |
1514 // Do the test only if it hadn't be done above. | |
1515 __ cmp(right, Operand::Zero()); | |
1516 } | |
1517 __ b(pl, &positive); | |
1518 __ cmp(left, Operand::Zero()); | |
1519 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
1520 __ bind(&positive); | |
1521 } | |
1522 | |
1523 // Check for (kMinInt / -1). | |
1524 if (hdiv->CheckFlag(HValue::kCanOverflow) && | |
1525 (!CpuFeatures::IsSupported(SUDIV) || | |
1526 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) { | |
1527 // We don't need to check for overflow when truncating with sdiv | |
1528 // support because, on ARM, sdiv kMinInt, -1 -> kMinInt. | |
1529 __ cmp(left, Operand(kMinInt)); | |
1530 __ cmp(right, Operand(-1), eq); | |
1531 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow); | |
1532 } | |
1533 | |
1534 if (CpuFeatures::IsSupported(SUDIV)) { | |
1535 CpuFeatureScope scope(masm(), SUDIV); | |
1536 __ sdiv(result, left, right); | |
1537 } else { | |
1538 DoubleRegister vleft = ToDoubleRegister(instr->temp()); | |
1539 DoubleRegister vright = double_scratch0(); | |
1540 __ vmov(double_scratch0().low(), left); | |
1541 __ vcvt_f64_s32(vleft, double_scratch0().low()); | |
1542 __ vmov(double_scratch0().low(), right); | |
1543 __ vcvt_f64_s32(vright, double_scratch0().low()); | |
1544 __ vdiv(vleft, vleft, vright); // vleft now contains the result. | |
1545 __ vcvt_s32_f64(double_scratch0().low(), vleft); | |
1546 __ vmov(result, double_scratch0().low()); | |
1547 } | |
1548 | |
1549 Label done; | |
1550 Register remainder = scratch0(); | |
1551 __ Mls(remainder, result, right, left); | |
1552 __ cmp(remainder, Operand::Zero()); | |
1553 __ b(eq, &done); | |
1554 __ eor(remainder, remainder, Operand(right)); | |
1555 __ add(result, result, Operand(remainder, ASR, 31)); | |
1556 __ bind(&done); | |
1557 } | |
1558 | |
1559 | |
1560 void LCodeGen::DoMulI(LMulI* instr) { | |
1561 Register result = ToRegister(instr->result()); | |
1562 // Note that result may alias left. | |
1563 Register left = ToRegister(instr->left()); | |
1564 LOperand* right_op = instr->right(); | |
1565 | |
1566 bool bailout_on_minus_zero = | |
1567 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); | |
1568 bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | |
1569 | |
1570 if (right_op->IsConstantOperand()) { | |
1571 int32_t constant = ToInteger32(LConstantOperand::cast(right_op)); | |
1572 | |
1573 if (bailout_on_minus_zero && (constant < 0)) { | |
1574 // The case of a null constant will be handled separately. | |
1575 // If constant is negative and left is null, the result should be -0. | |
1576 __ cmp(left, Operand::Zero()); | |
1577 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
1578 } | |
1579 | |
1580 switch (constant) { | |
1581 case -1: | |
1582 if (overflow) { | |
1583 __ rsb(result, left, Operand::Zero(), SetCC); | |
1584 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
1585 } else { | |
1586 __ rsb(result, left, Operand::Zero()); | |
1587 } | |
1588 break; | |
1589 case 0: | |
1590 if (bailout_on_minus_zero) { | |
1591 // If left is strictly negative and the constant is null, the | |
1592 // result is -0. Deoptimize if required, otherwise return 0. | |
1593 __ cmp(left, Operand::Zero()); | |
1594 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero); | |
1595 } | |
1596 __ mov(result, Operand::Zero()); | |
1597 break; | |
1598 case 1: | |
1599 __ Move(result, left); | |
1600 break; | |
1601 default: | |
1602 // Multiplying by powers of two and powers of two plus or minus | |
1603 // one can be done faster with shifted operands. | |
1604 // For other constants we emit standard code. | |
1605 int32_t mask = constant >> 31; | |
1606 uint32_t constant_abs = (constant + mask) ^ mask; | |
1607 | |
1608 if (base::bits::IsPowerOfTwo32(constant_abs)) { | |
1609 int32_t shift = WhichPowerOf2(constant_abs); | |
1610 __ mov(result, Operand(left, LSL, shift)); | |
1611 // Correct the sign of the result is the constant is negative. | |
1612 if (constant < 0) __ rsb(result, result, Operand::Zero()); | |
1613 } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) { | |
1614 int32_t shift = WhichPowerOf2(constant_abs - 1); | |
1615 __ add(result, left, Operand(left, LSL, shift)); | |
1616 // Correct the sign of the result is the constant is negative. | |
1617 if (constant < 0) __ rsb(result, result, Operand::Zero()); | |
1618 } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) { | |
1619 int32_t shift = WhichPowerOf2(constant_abs + 1); | |
1620 __ rsb(result, left, Operand(left, LSL, shift)); | |
1621 // Correct the sign of the result is the constant is negative. | |
1622 if (constant < 0) __ rsb(result, result, Operand::Zero()); | |
1623 } else { | |
1624 // Generate standard code. | |
1625 __ mov(ip, Operand(constant)); | |
1626 __ mul(result, left, ip); | |
1627 } | |
1628 } | |
1629 | |
1630 } else { | |
1631 DCHECK(right_op->IsRegister()); | |
1632 Register right = ToRegister(right_op); | |
1633 | |
1634 if (overflow) { | |
1635 Register scratch = scratch0(); | |
1636 // scratch:result = left * right. | |
1637 if (instr->hydrogen()->representation().IsSmi()) { | |
1638 __ SmiUntag(result, left); | |
1639 __ smull(result, scratch, result, right); | |
1640 } else { | |
1641 __ smull(result, scratch, left, right); | |
1642 } | |
1643 __ cmp(scratch, Operand(result, ASR, 31)); | |
1644 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow); | |
1645 } else { | |
1646 if (instr->hydrogen()->representation().IsSmi()) { | |
1647 __ SmiUntag(result, left); | |
1648 __ mul(result, result, right); | |
1649 } else { | |
1650 __ mul(result, left, right); | |
1651 } | |
1652 } | |
1653 | |
1654 if (bailout_on_minus_zero) { | |
1655 Label done; | |
1656 __ teq(left, Operand(right)); | |
1657 __ b(pl, &done); | |
1658 // Bail out if the result is minus zero. | |
1659 __ cmp(result, Operand::Zero()); | |
1660 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
1661 __ bind(&done); | |
1662 } | |
1663 } | |
1664 } | |
1665 | |
1666 | |
1667 void LCodeGen::DoBitI(LBitI* instr) { | |
1668 LOperand* left_op = instr->left(); | |
1669 LOperand* right_op = instr->right(); | |
1670 DCHECK(left_op->IsRegister()); | |
1671 Register left = ToRegister(left_op); | |
1672 Register result = ToRegister(instr->result()); | |
1673 Operand right(no_reg); | |
1674 | |
1675 if (right_op->IsStackSlot()) { | |
1676 right = Operand(EmitLoadRegister(right_op, ip)); | |
1677 } else { | |
1678 DCHECK(right_op->IsRegister() || right_op->IsConstantOperand()); | |
1679 right = ToOperand(right_op); | |
1680 } | |
1681 | |
1682 switch (instr->op()) { | |
1683 case Token::BIT_AND: | |
1684 __ and_(result, left, right); | |
1685 break; | |
1686 case Token::BIT_OR: | |
1687 __ orr(result, left, right); | |
1688 break; | |
1689 case Token::BIT_XOR: | |
1690 if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) { | |
1691 __ mvn(result, Operand(left)); | |
1692 } else { | |
1693 __ eor(result, left, right); | |
1694 } | |
1695 break; | |
1696 default: | |
1697 UNREACHABLE(); | |
1698 break; | |
1699 } | |
1700 } | |
1701 | |
1702 | |
1703 void LCodeGen::DoShiftI(LShiftI* instr) { | |
1704 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so | |
1705 // result may alias either of them. | |
1706 LOperand* right_op = instr->right(); | |
1707 Register left = ToRegister(instr->left()); | |
1708 Register result = ToRegister(instr->result()); | |
1709 Register scratch = scratch0(); | |
1710 if (right_op->IsRegister()) { | |
1711 // Mask the right_op operand. | |
1712 __ and_(scratch, ToRegister(right_op), Operand(0x1F)); | |
1713 switch (instr->op()) { | |
1714 case Token::ROR: | |
1715 __ mov(result, Operand(left, ROR, scratch)); | |
1716 break; | |
1717 case Token::SAR: | |
1718 __ mov(result, Operand(left, ASR, scratch)); | |
1719 break; | |
1720 case Token::SHR: | |
1721 if (instr->can_deopt()) { | |
1722 __ mov(result, Operand(left, LSR, scratch), SetCC); | |
1723 DeoptimizeIf(mi, instr, Deoptimizer::kNegativeValue); | |
1724 } else { | |
1725 __ mov(result, Operand(left, LSR, scratch)); | |
1726 } | |
1727 break; | |
1728 case Token::SHL: | |
1729 __ mov(result, Operand(left, LSL, scratch)); | |
1730 break; | |
1731 default: | |
1732 UNREACHABLE(); | |
1733 break; | |
1734 } | |
1735 } else { | |
1736 // Mask the right_op operand. | |
1737 int value = ToInteger32(LConstantOperand::cast(right_op)); | |
1738 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); | |
1739 switch (instr->op()) { | |
1740 case Token::ROR: | |
1741 if (shift_count != 0) { | |
1742 __ mov(result, Operand(left, ROR, shift_count)); | |
1743 } else { | |
1744 __ Move(result, left); | |
1745 } | |
1746 break; | |
1747 case Token::SAR: | |
1748 if (shift_count != 0) { | |
1749 __ mov(result, Operand(left, ASR, shift_count)); | |
1750 } else { | |
1751 __ Move(result, left); | |
1752 } | |
1753 break; | |
1754 case Token::SHR: | |
1755 if (shift_count != 0) { | |
1756 __ mov(result, Operand(left, LSR, shift_count)); | |
1757 } else { | |
1758 if (instr->can_deopt()) { | |
1759 __ tst(left, Operand(0x80000000)); | |
1760 DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue); | |
1761 } | |
1762 __ Move(result, left); | |
1763 } | |
1764 break; | |
1765 case Token::SHL: | |
1766 if (shift_count != 0) { | |
1767 if (instr->hydrogen_value()->representation().IsSmi() && | |
1768 instr->can_deopt()) { | |
1769 if (shift_count != 1) { | |
1770 __ mov(result, Operand(left, LSL, shift_count - 1)); | |
1771 __ SmiTag(result, result, SetCC); | |
1772 } else { | |
1773 __ SmiTag(result, left, SetCC); | |
1774 } | |
1775 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
1776 } else { | |
1777 __ mov(result, Operand(left, LSL, shift_count)); | |
1778 } | |
1779 } else { | |
1780 __ Move(result, left); | |
1781 } | |
1782 break; | |
1783 default: | |
1784 UNREACHABLE(); | |
1785 break; | |
1786 } | |
1787 } | |
1788 } | |
1789 | |
1790 | |
1791 void LCodeGen::DoSubI(LSubI* instr) { | |
1792 LOperand* left = instr->left(); | |
1793 LOperand* right = instr->right(); | |
1794 LOperand* result = instr->result(); | |
1795 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | |
1796 SBit set_cond = can_overflow ? SetCC : LeaveCC; | |
1797 | |
1798 if (right->IsStackSlot()) { | |
1799 Register right_reg = EmitLoadRegister(right, ip); | |
1800 __ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond); | |
1801 } else { | |
1802 DCHECK(right->IsRegister() || right->IsConstantOperand()); | |
1803 __ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond); | |
1804 } | |
1805 | |
1806 if (can_overflow) { | |
1807 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
1808 } | |
1809 } | |
1810 | |
1811 | |
1812 void LCodeGen::DoRSubI(LRSubI* instr) { | |
1813 LOperand* left = instr->left(); | |
1814 LOperand* right = instr->right(); | |
1815 LOperand* result = instr->result(); | |
1816 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | |
1817 SBit set_cond = can_overflow ? SetCC : LeaveCC; | |
1818 | |
1819 if (right->IsStackSlot()) { | |
1820 Register right_reg = EmitLoadRegister(right, ip); | |
1821 __ rsb(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond); | |
1822 } else { | |
1823 DCHECK(right->IsRegister() || right->IsConstantOperand()); | |
1824 __ rsb(ToRegister(result), ToRegister(left), ToOperand(right), set_cond); | |
1825 } | |
1826 | |
1827 if (can_overflow) { | |
1828 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
1829 } | |
1830 } | |
1831 | |
1832 | |
1833 void LCodeGen::DoConstantI(LConstantI* instr) { | |
1834 __ mov(ToRegister(instr->result()), Operand(instr->value())); | |
1835 } | |
1836 | |
1837 | |
1838 void LCodeGen::DoConstantS(LConstantS* instr) { | |
1839 __ mov(ToRegister(instr->result()), Operand(instr->value())); | |
1840 } | |
1841 | |
1842 | |
1843 void LCodeGen::DoConstantD(LConstantD* instr) { | |
1844 DCHECK(instr->result()->IsDoubleRegister()); | |
1845 DwVfpRegister result = ToDoubleRegister(instr->result()); | |
1846 #if V8_HOST_ARCH_IA32 | |
1847 // Need some crappy work-around for x87 sNaN -> qNaN breakage in simulator | |
1848 // builds. | |
1849 uint64_t bits = instr->bits(); | |
1850 if ((bits & V8_UINT64_C(0x7FF8000000000000)) == | |
1851 V8_UINT64_C(0x7FF0000000000000)) { | |
1852 uint32_t lo = static_cast<uint32_t>(bits); | |
1853 uint32_t hi = static_cast<uint32_t>(bits >> 32); | |
1854 __ mov(ip, Operand(lo)); | |
1855 __ mov(scratch0(), Operand(hi)); | |
1856 __ vmov(result, ip, scratch0()); | |
1857 return; | |
1858 } | |
1859 #endif | |
1860 double v = instr->value(); | |
1861 __ Vmov(result, v, scratch0()); | |
1862 } | |
1863 | |
1864 | |
1865 void LCodeGen::DoConstantE(LConstantE* instr) { | |
1866 __ mov(ToRegister(instr->result()), Operand(instr->value())); | |
1867 } | |
1868 | |
1869 | |
1870 void LCodeGen::DoConstantT(LConstantT* instr) { | |
1871 Handle<Object> object = instr->value(isolate()); | |
1872 AllowDeferredHandleDereference smi_check; | |
1873 __ Move(ToRegister(instr->result()), object); | |
1874 } | |
1875 | |
1876 | |
1877 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { | |
1878 Register result = ToRegister(instr->result()); | |
1879 Register map = ToRegister(instr->value()); | |
1880 __ EnumLength(result, map); | |
1881 } | |
1882 | |
1883 | |
1884 void LCodeGen::DoDateField(LDateField* instr) { | |
1885 Register object = ToRegister(instr->date()); | |
1886 Register result = ToRegister(instr->result()); | |
1887 Register scratch = ToRegister(instr->temp()); | |
1888 Smi* index = instr->index(); | |
1889 DCHECK(object.is(result)); | |
1890 DCHECK(object.is(r0)); | |
1891 DCHECK(!scratch.is(scratch0())); | |
1892 DCHECK(!scratch.is(object)); | |
1893 | |
1894 if (index->value() == 0) { | |
1895 __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset)); | |
1896 } else { | |
1897 Label runtime, done; | |
1898 if (index->value() < JSDate::kFirstUncachedField) { | |
1899 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); | |
1900 __ mov(scratch, Operand(stamp)); | |
1901 __ ldr(scratch, MemOperand(scratch)); | |
1902 __ ldr(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset)); | |
1903 __ cmp(scratch, scratch0()); | |
1904 __ b(ne, &runtime); | |
1905 __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset + | |
1906 kPointerSize * index->value())); | |
1907 __ jmp(&done); | |
1908 } | |
1909 __ bind(&runtime); | |
1910 __ PrepareCallCFunction(2, scratch); | |
1911 __ mov(r1, Operand(index)); | |
1912 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); | |
1913 __ bind(&done); | |
1914 } | |
1915 } | |
1916 | |
1917 | |
1918 MemOperand LCodeGen::BuildSeqStringOperand(Register string, | |
1919 LOperand* index, | |
1920 String::Encoding encoding) { | |
1921 if (index->IsConstantOperand()) { | |
1922 int offset = ToInteger32(LConstantOperand::cast(index)); | |
1923 if (encoding == String::TWO_BYTE_ENCODING) { | |
1924 offset *= kUC16Size; | |
1925 } | |
1926 STATIC_ASSERT(kCharSize == 1); | |
1927 return FieldMemOperand(string, SeqString::kHeaderSize + offset); | |
1928 } | |
1929 Register scratch = scratch0(); | |
1930 DCHECK(!scratch.is(string)); | |
1931 DCHECK(!scratch.is(ToRegister(index))); | |
1932 if (encoding == String::ONE_BYTE_ENCODING) { | |
1933 __ add(scratch, string, Operand(ToRegister(index))); | |
1934 } else { | |
1935 STATIC_ASSERT(kUC16Size == 2); | |
1936 __ add(scratch, string, Operand(ToRegister(index), LSL, 1)); | |
1937 } | |
1938 return FieldMemOperand(scratch, SeqString::kHeaderSize); | |
1939 } | |
1940 | |
1941 | |
1942 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { | |
1943 String::Encoding encoding = instr->hydrogen()->encoding(); | |
1944 Register string = ToRegister(instr->string()); | |
1945 Register result = ToRegister(instr->result()); | |
1946 | |
1947 if (FLAG_debug_code) { | |
1948 Register scratch = scratch0(); | |
1949 __ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset)); | |
1950 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); | |
1951 | |
1952 __ and_(scratch, scratch, | |
1953 Operand(kStringRepresentationMask | kStringEncodingMask)); | |
1954 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; | |
1955 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; | |
1956 __ cmp(scratch, Operand(encoding == String::ONE_BYTE_ENCODING | |
1957 ? one_byte_seq_type : two_byte_seq_type)); | |
1958 __ Check(eq, kUnexpectedStringType); | |
1959 } | |
1960 | |
1961 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding); | |
1962 if (encoding == String::ONE_BYTE_ENCODING) { | |
1963 __ ldrb(result, operand); | |
1964 } else { | |
1965 __ ldrh(result, operand); | |
1966 } | |
1967 } | |
1968 | |
1969 | |
1970 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { | |
1971 String::Encoding encoding = instr->hydrogen()->encoding(); | |
1972 Register string = ToRegister(instr->string()); | |
1973 Register value = ToRegister(instr->value()); | |
1974 | |
1975 if (FLAG_debug_code) { | |
1976 Register index = ToRegister(instr->index()); | |
1977 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; | |
1978 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; | |
1979 int encoding_mask = | |
1980 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING | |
1981 ? one_byte_seq_type : two_byte_seq_type; | |
1982 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask); | |
1983 } | |
1984 | |
1985 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding); | |
1986 if (encoding == String::ONE_BYTE_ENCODING) { | |
1987 __ strb(value, operand); | |
1988 } else { | |
1989 __ strh(value, operand); | |
1990 } | |
1991 } | |
1992 | |
1993 | |
1994 void LCodeGen::DoAddI(LAddI* instr) { | |
1995 LOperand* left = instr->left(); | |
1996 LOperand* right = instr->right(); | |
1997 LOperand* result = instr->result(); | |
1998 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | |
1999 SBit set_cond = can_overflow ? SetCC : LeaveCC; | |
2000 | |
2001 if (right->IsStackSlot()) { | |
2002 Register right_reg = EmitLoadRegister(right, ip); | |
2003 __ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond); | |
2004 } else { | |
2005 DCHECK(right->IsRegister() || right->IsConstantOperand()); | |
2006 __ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond); | |
2007 } | |
2008 | |
2009 if (can_overflow) { | |
2010 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
2011 } | |
2012 } | |
2013 | |
2014 | |
2015 void LCodeGen::DoMathMinMax(LMathMinMax* instr) { | |
2016 LOperand* left = instr->left(); | |
2017 LOperand* right = instr->right(); | |
2018 HMathMinMax::Operation operation = instr->hydrogen()->operation(); | |
2019 if (instr->hydrogen()->representation().IsSmiOrInteger32()) { | |
2020 Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge; | |
2021 Register left_reg = ToRegister(left); | |
2022 Operand right_op = (right->IsRegister() || right->IsConstantOperand()) | |
2023 ? ToOperand(right) | |
2024 : Operand(EmitLoadRegister(right, ip)); | |
2025 Register result_reg = ToRegister(instr->result()); | |
2026 __ cmp(left_reg, right_op); | |
2027 __ Move(result_reg, left_reg, condition); | |
2028 __ mov(result_reg, right_op, LeaveCC, NegateCondition(condition)); | |
2029 } else { | |
2030 DCHECK(instr->hydrogen()->representation().IsDouble()); | |
2031 DwVfpRegister left_reg = ToDoubleRegister(left); | |
2032 DwVfpRegister right_reg = ToDoubleRegister(right); | |
2033 DwVfpRegister result_reg = ToDoubleRegister(instr->result()); | |
2034 Label result_is_nan, return_left, return_right, check_zero, done; | |
2035 __ VFPCompareAndSetFlags(left_reg, right_reg); | |
2036 if (operation == HMathMinMax::kMathMin) { | |
2037 __ b(mi, &return_left); | |
2038 __ b(gt, &return_right); | |
2039 } else { | |
2040 __ b(mi, &return_right); | |
2041 __ b(gt, &return_left); | |
2042 } | |
2043 __ b(vs, &result_is_nan); | |
2044 // Left equals right => check for -0. | |
2045 __ VFPCompareAndSetFlags(left_reg, 0.0); | |
2046 if (left_reg.is(result_reg) || right_reg.is(result_reg)) { | |
2047 __ b(ne, &done); // left == right != 0. | |
2048 } else { | |
2049 __ b(ne, &return_left); // left == right != 0. | |
2050 } | |
2051 // At this point, both left and right are either 0 or -0. | |
2052 if (operation == HMathMinMax::kMathMin) { | |
2053 // We could use a single 'vorr' instruction here if we had NEON support. | |
2054 __ vneg(left_reg, left_reg); | |
2055 __ vsub(result_reg, left_reg, right_reg); | |
2056 __ vneg(result_reg, result_reg); | |
2057 } else { | |
2058 // Since we operate on +0 and/or -0, vadd and vand have the same effect; | |
2059 // the decision for vadd is easy because vand is a NEON instruction. | |
2060 __ vadd(result_reg, left_reg, right_reg); | |
2061 } | |
2062 __ b(&done); | |
2063 | |
2064 __ bind(&result_is_nan); | |
2065 __ vadd(result_reg, left_reg, right_reg); | |
2066 __ b(&done); | |
2067 | |
2068 __ bind(&return_right); | |
2069 __ Move(result_reg, right_reg); | |
2070 if (!left_reg.is(result_reg)) { | |
2071 __ b(&done); | |
2072 } | |
2073 | |
2074 __ bind(&return_left); | |
2075 __ Move(result_reg, left_reg); | |
2076 | |
2077 __ bind(&done); | |
2078 } | |
2079 } | |
2080 | |
2081 | |
2082 void LCodeGen::DoArithmeticD(LArithmeticD* instr) { | |
2083 DwVfpRegister left = ToDoubleRegister(instr->left()); | |
2084 DwVfpRegister right = ToDoubleRegister(instr->right()); | |
2085 DwVfpRegister result = ToDoubleRegister(instr->result()); | |
2086 switch (instr->op()) { | |
2087 case Token::ADD: | |
2088 __ vadd(result, left, right); | |
2089 break; | |
2090 case Token::SUB: | |
2091 __ vsub(result, left, right); | |
2092 break; | |
2093 case Token::MUL: | |
2094 __ vmul(result, left, right); | |
2095 break; | |
2096 case Token::DIV: | |
2097 __ vdiv(result, left, right); | |
2098 break; | |
2099 case Token::MOD: { | |
2100 __ PrepareCallCFunction(0, 2, scratch0()); | |
2101 __ MovToFloatParameters(left, right); | |
2102 __ CallCFunction( | |
2103 ExternalReference::mod_two_doubles_operation(isolate()), | |
2104 0, 2); | |
2105 // Move the result in the double result register. | |
2106 __ MovFromFloatResult(result); | |
2107 break; | |
2108 } | |
2109 default: | |
2110 UNREACHABLE(); | |
2111 break; | |
2112 } | |
2113 } | |
2114 | |
2115 | |
2116 void LCodeGen::DoArithmeticT(LArithmeticT* instr) { | |
2117 DCHECK(ToRegister(instr->context()).is(cp)); | |
2118 DCHECK(ToRegister(instr->left()).is(r1)); | |
2119 DCHECK(ToRegister(instr->right()).is(r0)); | |
2120 DCHECK(ToRegister(instr->result()).is(r0)); | |
2121 | |
2122 Handle<Code> code = | |
2123 CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code(); | |
2124 // Block literal pool emission to ensure nop indicating no inlined smi code | |
2125 // is in the correct position. | |
2126 Assembler::BlockConstPoolScope block_const_pool(masm()); | |
2127 CallCode(code, RelocInfo::CODE_TARGET, instr); | |
2128 } | |
2129 | |
2130 | |
2131 template<class InstrType> | |
2132 void LCodeGen::EmitBranch(InstrType instr, Condition condition) { | |
2133 int left_block = instr->TrueDestination(chunk_); | |
2134 int right_block = instr->FalseDestination(chunk_); | |
2135 | |
2136 int next_block = GetNextEmittedBlock(); | |
2137 | |
2138 if (right_block == left_block || condition == al) { | |
2139 EmitGoto(left_block); | |
2140 } else if (left_block == next_block) { | |
2141 __ b(NegateCondition(condition), chunk_->GetAssemblyLabel(right_block)); | |
2142 } else if (right_block == next_block) { | |
2143 __ b(condition, chunk_->GetAssemblyLabel(left_block)); | |
2144 } else { | |
2145 __ b(condition, chunk_->GetAssemblyLabel(left_block)); | |
2146 __ b(chunk_->GetAssemblyLabel(right_block)); | |
2147 } | |
2148 } | |
2149 | |
2150 | |
2151 template <class InstrType> | |
2152 void LCodeGen::EmitTrueBranch(InstrType instr, Condition condition) { | |
2153 int true_block = instr->TrueDestination(chunk_); | |
2154 __ b(condition, chunk_->GetAssemblyLabel(true_block)); | |
2155 } | |
2156 | |
2157 | |
2158 template <class InstrType> | |
2159 void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition) { | |
2160 int false_block = instr->FalseDestination(chunk_); | |
2161 __ b(condition, chunk_->GetAssemblyLabel(false_block)); | |
2162 } | |
2163 | |
2164 | |
2165 void LCodeGen::DoDebugBreak(LDebugBreak* instr) { | |
2166 __ stop("LBreak"); | |
2167 } | |
2168 | |
2169 | |
2170 void LCodeGen::DoBranch(LBranch* instr) { | |
2171 Representation r = instr->hydrogen()->value()->representation(); | |
2172 if (r.IsInteger32() || r.IsSmi()) { | |
2173 DCHECK(!info()->IsStub()); | |
2174 Register reg = ToRegister(instr->value()); | |
2175 __ cmp(reg, Operand::Zero()); | |
2176 EmitBranch(instr, ne); | |
2177 } else if (r.IsDouble()) { | |
2178 DCHECK(!info()->IsStub()); | |
2179 DwVfpRegister reg = ToDoubleRegister(instr->value()); | |
2180 // Test the double value. Zero and NaN are false. | |
2181 __ VFPCompareAndSetFlags(reg, 0.0); | |
2182 __ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN -> false) | |
2183 EmitBranch(instr, ne); | |
2184 } else { | |
2185 DCHECK(r.IsTagged()); | |
2186 Register reg = ToRegister(instr->value()); | |
2187 HType type = instr->hydrogen()->value()->type(); | |
2188 if (type.IsBoolean()) { | |
2189 DCHECK(!info()->IsStub()); | |
2190 __ CompareRoot(reg, Heap::kTrueValueRootIndex); | |
2191 EmitBranch(instr, eq); | |
2192 } else if (type.IsSmi()) { | |
2193 DCHECK(!info()->IsStub()); | |
2194 __ cmp(reg, Operand::Zero()); | |
2195 EmitBranch(instr, ne); | |
2196 } else if (type.IsJSArray()) { | |
2197 DCHECK(!info()->IsStub()); | |
2198 EmitBranch(instr, al); | |
2199 } else if (type.IsHeapNumber()) { | |
2200 DCHECK(!info()->IsStub()); | |
2201 DwVfpRegister dbl_scratch = double_scratch0(); | |
2202 __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); | |
2203 // Test the double value. Zero and NaN are false. | |
2204 __ VFPCompareAndSetFlags(dbl_scratch, 0.0); | |
2205 __ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN) | |
2206 EmitBranch(instr, ne); | |
2207 } else if (type.IsString()) { | |
2208 DCHECK(!info()->IsStub()); | |
2209 __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset)); | |
2210 __ cmp(ip, Operand::Zero()); | |
2211 EmitBranch(instr, ne); | |
2212 } else { | |
2213 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); | |
2214 // Avoid deopts in the case where we've never executed this path before. | |
2215 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic(); | |
2216 | |
2217 if (expected.Contains(ToBooleanStub::UNDEFINED)) { | |
2218 // undefined -> false. | |
2219 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); | |
2220 __ b(eq, instr->FalseLabel(chunk_)); | |
2221 } | |
2222 if (expected.Contains(ToBooleanStub::BOOLEAN)) { | |
2223 // Boolean -> its value. | |
2224 __ CompareRoot(reg, Heap::kTrueValueRootIndex); | |
2225 __ b(eq, instr->TrueLabel(chunk_)); | |
2226 __ CompareRoot(reg, Heap::kFalseValueRootIndex); | |
2227 __ b(eq, instr->FalseLabel(chunk_)); | |
2228 } | |
2229 if (expected.Contains(ToBooleanStub::NULL_TYPE)) { | |
2230 // 'null' -> false. | |
2231 __ CompareRoot(reg, Heap::kNullValueRootIndex); | |
2232 __ b(eq, instr->FalseLabel(chunk_)); | |
2233 } | |
2234 | |
2235 if (expected.Contains(ToBooleanStub::SMI)) { | |
2236 // Smis: 0 -> false, all other -> true. | |
2237 __ cmp(reg, Operand::Zero()); | |
2238 __ b(eq, instr->FalseLabel(chunk_)); | |
2239 __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); | |
2240 } else if (expected.NeedsMap()) { | |
2241 // If we need a map later and have a Smi -> deopt. | |
2242 __ SmiTst(reg); | |
2243 DeoptimizeIf(eq, instr, Deoptimizer::kSmi); | |
2244 } | |
2245 | |
2246 const Register map = scratch0(); | |
2247 if (expected.NeedsMap()) { | |
2248 __ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset)); | |
2249 | |
2250 if (expected.CanBeUndetectable()) { | |
2251 // Undetectable -> false. | |
2252 __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset)); | |
2253 __ tst(ip, Operand(1 << Map::kIsUndetectable)); | |
2254 __ b(ne, instr->FalseLabel(chunk_)); | |
2255 } | |
2256 } | |
2257 | |
2258 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { | |
2259 // spec object -> true. | |
2260 __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE); | |
2261 __ b(ge, instr->TrueLabel(chunk_)); | |
2262 } | |
2263 | |
2264 if (expected.Contains(ToBooleanStub::STRING)) { | |
2265 // String value -> false iff empty. | |
2266 Label not_string; | |
2267 __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE); | |
2268 __ b(ge, ¬_string); | |
2269 __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset)); | |
2270 __ cmp(ip, Operand::Zero()); | |
2271 __ b(ne, instr->TrueLabel(chunk_)); | |
2272 __ b(instr->FalseLabel(chunk_)); | |
2273 __ bind(¬_string); | |
2274 } | |
2275 | |
2276 if (expected.Contains(ToBooleanStub::SYMBOL)) { | |
2277 // Symbol value -> true. | |
2278 __ CompareInstanceType(map, ip, SYMBOL_TYPE); | |
2279 __ b(eq, instr->TrueLabel(chunk_)); | |
2280 } | |
2281 | |
2282 if (expected.Contains(ToBooleanStub::SIMD_VALUE)) { | |
2283 // SIMD value -> true. | |
2284 __ CompareInstanceType(map, ip, SIMD128_VALUE_TYPE); | |
2285 __ b(eq, instr->TrueLabel(chunk_)); | |
2286 } | |
2287 | |
2288 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { | |
2289 // heap number -> false iff +0, -0, or NaN. | |
2290 DwVfpRegister dbl_scratch = double_scratch0(); | |
2291 Label not_heap_number; | |
2292 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); | |
2293 __ b(ne, ¬_heap_number); | |
2294 __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); | |
2295 __ VFPCompareAndSetFlags(dbl_scratch, 0.0); | |
2296 __ cmp(r0, r0, vs); // NaN -> false. | |
2297 __ b(eq, instr->FalseLabel(chunk_)); // +0, -0 -> false. | |
2298 __ b(instr->TrueLabel(chunk_)); | |
2299 __ bind(¬_heap_number); | |
2300 } | |
2301 | |
2302 if (!expected.IsGeneric()) { | |
2303 // We've seen something for the first time -> deopt. | |
2304 // This can only happen if we are not generic already. | |
2305 DeoptimizeIf(al, instr, Deoptimizer::kUnexpectedObject); | |
2306 } | |
2307 } | |
2308 } | |
2309 } | |
2310 | |
2311 | |
2312 void LCodeGen::EmitGoto(int block) { | |
2313 if (!IsNextEmittedBlock(block)) { | |
2314 __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block))); | |
2315 } | |
2316 } | |
2317 | |
2318 | |
2319 void LCodeGen::DoGoto(LGoto* instr) { | |
2320 EmitGoto(instr->block_id()); | |
2321 } | |
2322 | |
2323 | |
2324 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { | |
2325 Condition cond = kNoCondition; | |
2326 switch (op) { | |
2327 case Token::EQ: | |
2328 case Token::EQ_STRICT: | |
2329 cond = eq; | |
2330 break; | |
2331 case Token::NE: | |
2332 case Token::NE_STRICT: | |
2333 cond = ne; | |
2334 break; | |
2335 case Token::LT: | |
2336 cond = is_unsigned ? lo : lt; | |
2337 break; | |
2338 case Token::GT: | |
2339 cond = is_unsigned ? hi : gt; | |
2340 break; | |
2341 case Token::LTE: | |
2342 cond = is_unsigned ? ls : le; | |
2343 break; | |
2344 case Token::GTE: | |
2345 cond = is_unsigned ? hs : ge; | |
2346 break; | |
2347 case Token::IN: | |
2348 case Token::INSTANCEOF: | |
2349 default: | |
2350 UNREACHABLE(); | |
2351 } | |
2352 return cond; | |
2353 } | |
2354 | |
2355 | |
2356 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { | |
2357 LOperand* left = instr->left(); | |
2358 LOperand* right = instr->right(); | |
2359 bool is_unsigned = | |
2360 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || | |
2361 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); | |
2362 Condition cond = TokenToCondition(instr->op(), is_unsigned); | |
2363 | |
2364 if (left->IsConstantOperand() && right->IsConstantOperand()) { | |
2365 // We can statically evaluate the comparison. | |
2366 double left_val = ToDouble(LConstantOperand::cast(left)); | |
2367 double right_val = ToDouble(LConstantOperand::cast(right)); | |
2368 int next_block = EvalComparison(instr->op(), left_val, right_val) ? | |
2369 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); | |
2370 EmitGoto(next_block); | |
2371 } else { | |
2372 if (instr->is_double()) { | |
2373 // Compare left and right operands as doubles and load the | |
2374 // resulting flags into the normal status register. | |
2375 __ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right)); | |
2376 // If a NaN is involved, i.e. the result is unordered (V set), | |
2377 // jump to false block label. | |
2378 __ b(vs, instr->FalseLabel(chunk_)); | |
2379 } else { | |
2380 if (right->IsConstantOperand()) { | |
2381 int32_t value = ToInteger32(LConstantOperand::cast(right)); | |
2382 if (instr->hydrogen_value()->representation().IsSmi()) { | |
2383 __ cmp(ToRegister(left), Operand(Smi::FromInt(value))); | |
2384 } else { | |
2385 __ cmp(ToRegister(left), Operand(value)); | |
2386 } | |
2387 } else if (left->IsConstantOperand()) { | |
2388 int32_t value = ToInteger32(LConstantOperand::cast(left)); | |
2389 if (instr->hydrogen_value()->representation().IsSmi()) { | |
2390 __ cmp(ToRegister(right), Operand(Smi::FromInt(value))); | |
2391 } else { | |
2392 __ cmp(ToRegister(right), Operand(value)); | |
2393 } | |
2394 // We commuted the operands, so commute the condition. | |
2395 cond = CommuteCondition(cond); | |
2396 } else { | |
2397 __ cmp(ToRegister(left), ToRegister(right)); | |
2398 } | |
2399 } | |
2400 EmitBranch(instr, cond); | |
2401 } | |
2402 } | |
2403 | |
2404 | |
2405 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { | |
2406 Register left = ToRegister(instr->left()); | |
2407 Register right = ToRegister(instr->right()); | |
2408 | |
2409 __ cmp(left, Operand(right)); | |
2410 EmitBranch(instr, eq); | |
2411 } | |
2412 | |
2413 | |
2414 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) { | |
2415 if (instr->hydrogen()->representation().IsTagged()) { | |
2416 Register input_reg = ToRegister(instr->object()); | |
2417 __ mov(ip, Operand(factory()->the_hole_value())); | |
2418 __ cmp(input_reg, ip); | |
2419 EmitBranch(instr, eq); | |
2420 return; | |
2421 } | |
2422 | |
2423 DwVfpRegister input_reg = ToDoubleRegister(instr->object()); | |
2424 __ VFPCompareAndSetFlags(input_reg, input_reg); | |
2425 EmitFalseBranch(instr, vc); | |
2426 | |
2427 Register scratch = scratch0(); | |
2428 __ VmovHigh(scratch, input_reg); | |
2429 __ cmp(scratch, Operand(kHoleNanUpper32)); | |
2430 EmitBranch(instr, eq); | |
2431 } | |
2432 | |
2433 | |
2434 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) { | |
2435 Representation rep = instr->hydrogen()->value()->representation(); | |
2436 DCHECK(!rep.IsInteger32()); | |
2437 Register scratch = ToRegister(instr->temp()); | |
2438 | |
2439 if (rep.IsDouble()) { | |
2440 DwVfpRegister value = ToDoubleRegister(instr->value()); | |
2441 __ VFPCompareAndSetFlags(value, 0.0); | |
2442 EmitFalseBranch(instr, ne); | |
2443 __ VmovHigh(scratch, value); | |
2444 __ cmp(scratch, Operand(0x80000000)); | |
2445 } else { | |
2446 Register value = ToRegister(instr->value()); | |
2447 __ CheckMap(value, | |
2448 scratch, | |
2449 Heap::kHeapNumberMapRootIndex, | |
2450 instr->FalseLabel(chunk()), | |
2451 DO_SMI_CHECK); | |
2452 __ ldr(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset)); | |
2453 __ ldr(ip, FieldMemOperand(value, HeapNumber::kMantissaOffset)); | |
2454 __ cmp(scratch, Operand(0x80000000)); | |
2455 __ cmp(ip, Operand(0x00000000), eq); | |
2456 } | |
2457 EmitBranch(instr, eq); | |
2458 } | |
2459 | |
2460 | |
2461 Condition LCodeGen::EmitIsString(Register input, | |
2462 Register temp1, | |
2463 Label* is_not_string, | |
2464 SmiCheck check_needed = INLINE_SMI_CHECK) { | |
2465 if (check_needed == INLINE_SMI_CHECK) { | |
2466 __ JumpIfSmi(input, is_not_string); | |
2467 } | |
2468 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); | |
2469 | |
2470 return lt; | |
2471 } | |
2472 | |
2473 | |
2474 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { | |
2475 Register reg = ToRegister(instr->value()); | |
2476 Register temp1 = ToRegister(instr->temp()); | |
2477 | |
2478 SmiCheck check_needed = | |
2479 instr->hydrogen()->value()->type().IsHeapObject() | |
2480 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | |
2481 Condition true_cond = | |
2482 EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed); | |
2483 | |
2484 EmitBranch(instr, true_cond); | |
2485 } | |
2486 | |
2487 | |
2488 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { | |
2489 Register input_reg = EmitLoadRegister(instr->value(), ip); | |
2490 __ SmiTst(input_reg); | |
2491 EmitBranch(instr, eq); | |
2492 } | |
2493 | |
2494 | |
2495 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { | |
2496 Register input = ToRegister(instr->value()); | |
2497 Register temp = ToRegister(instr->temp()); | |
2498 | |
2499 if (!instr->hydrogen()->value()->type().IsHeapObject()) { | |
2500 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); | |
2501 } | |
2502 __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); | |
2503 __ ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); | |
2504 __ tst(temp, Operand(1 << Map::kIsUndetectable)); | |
2505 EmitBranch(instr, ne); | |
2506 } | |
2507 | |
2508 | |
2509 static Condition ComputeCompareCondition(Token::Value op) { | |
2510 switch (op) { | |
2511 case Token::EQ_STRICT: | |
2512 case Token::EQ: | |
2513 return eq; | |
2514 case Token::LT: | |
2515 return lt; | |
2516 case Token::GT: | |
2517 return gt; | |
2518 case Token::LTE: | |
2519 return le; | |
2520 case Token::GTE: | |
2521 return ge; | |
2522 default: | |
2523 UNREACHABLE(); | |
2524 return kNoCondition; | |
2525 } | |
2526 } | |
2527 | |
2528 | |
2529 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { | |
2530 DCHECK(ToRegister(instr->context()).is(cp)); | |
2531 DCHECK(ToRegister(instr->left()).is(r1)); | |
2532 DCHECK(ToRegister(instr->right()).is(r0)); | |
2533 | |
2534 Handle<Code> code = CodeFactory::StringCompare(isolate()).code(); | |
2535 CallCode(code, RelocInfo::CODE_TARGET, instr); | |
2536 __ cmp(r0, Operand::Zero()); | |
2537 | |
2538 EmitBranch(instr, ComputeCompareCondition(instr->op())); | |
2539 } | |
2540 | |
2541 | |
2542 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { | |
2543 InstanceType from = instr->from(); | |
2544 InstanceType to = instr->to(); | |
2545 if (from == FIRST_TYPE) return to; | |
2546 DCHECK(from == to || to == LAST_TYPE); | |
2547 return from; | |
2548 } | |
2549 | |
2550 | |
2551 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { | |
2552 InstanceType from = instr->from(); | |
2553 InstanceType to = instr->to(); | |
2554 if (from == to) return eq; | |
2555 if (to == LAST_TYPE) return hs; | |
2556 if (from == FIRST_TYPE) return ls; | |
2557 UNREACHABLE(); | |
2558 return eq; | |
2559 } | |
2560 | |
2561 | |
2562 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { | |
2563 Register scratch = scratch0(); | |
2564 Register input = ToRegister(instr->value()); | |
2565 | |
2566 if (!instr->hydrogen()->value()->type().IsHeapObject()) { | |
2567 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); | |
2568 } | |
2569 | |
2570 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); | |
2571 EmitBranch(instr, BranchCondition(instr->hydrogen())); | |
2572 } | |
2573 | |
2574 | |
2575 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { | |
2576 Register input = ToRegister(instr->value()); | |
2577 Register result = ToRegister(instr->result()); | |
2578 | |
2579 __ AssertString(input); | |
2580 | |
2581 __ ldr(result, FieldMemOperand(input, String::kHashFieldOffset)); | |
2582 __ IndexFromHash(result, result); | |
2583 } | |
2584 | |
2585 | |
2586 void LCodeGen::DoHasCachedArrayIndexAndBranch( | |
2587 LHasCachedArrayIndexAndBranch* instr) { | |
2588 Register input = ToRegister(instr->value()); | |
2589 Register scratch = scratch0(); | |
2590 | |
2591 __ ldr(scratch, | |
2592 FieldMemOperand(input, String::kHashFieldOffset)); | |
2593 __ tst(scratch, Operand(String::kContainsCachedArrayIndexMask)); | |
2594 EmitBranch(instr, eq); | |
2595 } | |
2596 | |
2597 | |
2598 // Branches to a label or falls through with the answer in flags. Trashes | |
2599 // the temp registers, but not the input. | |
2600 void LCodeGen::EmitClassOfTest(Label* is_true, | |
2601 Label* is_false, | |
2602 Handle<String>class_name, | |
2603 Register input, | |
2604 Register temp, | |
2605 Register temp2) { | |
2606 DCHECK(!input.is(temp)); | |
2607 DCHECK(!input.is(temp2)); | |
2608 DCHECK(!temp.is(temp2)); | |
2609 | |
2610 __ JumpIfSmi(input, is_false); | |
2611 | |
2612 if (String::Equals(isolate()->factory()->Function_string(), class_name)) { | |
2613 // Assuming the following assertions, we can use the same compares to test | |
2614 // for both being a function type and being in the object type range. | |
2615 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); | |
2616 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == | |
2617 FIRST_SPEC_OBJECT_TYPE + 1); | |
2618 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == | |
2619 LAST_SPEC_OBJECT_TYPE - 1); | |
2620 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); | |
2621 __ CompareObjectType(input, temp, temp2, FIRST_SPEC_OBJECT_TYPE); | |
2622 __ b(lt, is_false); | |
2623 __ b(eq, is_true); | |
2624 __ cmp(temp2, Operand(LAST_SPEC_OBJECT_TYPE)); | |
2625 __ b(eq, is_true); | |
2626 } else { | |
2627 // Faster code path to avoid two compares: subtract lower bound from the | |
2628 // actual type and do a signed compare with the width of the type range. | |
2629 __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); | |
2630 __ ldrb(temp2, FieldMemOperand(temp, Map::kInstanceTypeOffset)); | |
2631 __ sub(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); | |
2632 __ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - | |
2633 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); | |
2634 __ b(gt, is_false); | |
2635 } | |
2636 | |
2637 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. | |
2638 // Check if the constructor in the map is a function. | |
2639 Register instance_type = ip; | |
2640 __ GetMapConstructor(temp, temp, temp2, instance_type); | |
2641 | |
2642 // Objects with a non-function constructor have class 'Object'. | |
2643 __ cmp(instance_type, Operand(JS_FUNCTION_TYPE)); | |
2644 if (class_name->IsOneByteEqualTo(STATIC_CHAR_VECTOR("Object"))) { | |
2645 __ b(ne, is_true); | |
2646 } else { | |
2647 __ b(ne, is_false); | |
2648 } | |
2649 | |
2650 // temp now contains the constructor function. Grab the | |
2651 // instance class name from there. | |
2652 __ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); | |
2653 __ ldr(temp, FieldMemOperand(temp, | |
2654 SharedFunctionInfo::kInstanceClassNameOffset)); | |
2655 // The class name we are testing against is internalized since it's a literal. | |
2656 // The name in the constructor is internalized because of the way the context | |
2657 // is booted. This routine isn't expected to work for random API-created | |
2658 // classes and it doesn't have to because you can't access it with natives | |
2659 // syntax. Since both sides are internalized it is sufficient to use an | |
2660 // identity comparison. | |
2661 __ cmp(temp, Operand(class_name)); | |
2662 // End with the answer in flags. | |
2663 } | |
2664 | |
2665 | |
2666 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { | |
2667 Register input = ToRegister(instr->value()); | |
2668 Register temp = scratch0(); | |
2669 Register temp2 = ToRegister(instr->temp()); | |
2670 Handle<String> class_name = instr->hydrogen()->class_name(); | |
2671 | |
2672 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), | |
2673 class_name, input, temp, temp2); | |
2674 | |
2675 EmitBranch(instr, eq); | |
2676 } | |
2677 | |
2678 | |
2679 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { | |
2680 Register reg = ToRegister(instr->value()); | |
2681 Register temp = ToRegister(instr->temp()); | |
2682 | |
2683 __ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); | |
2684 __ cmp(temp, Operand(instr->map())); | |
2685 EmitBranch(instr, eq); | |
2686 } | |
2687 | |
2688 | |
2689 void LCodeGen::DoInstanceOf(LInstanceOf* instr) { | |
2690 DCHECK(ToRegister(instr->context()).is(cp)); | |
2691 DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister())); | |
2692 DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister())); | |
2693 DCHECK(ToRegister(instr->result()).is(r0)); | |
2694 InstanceOfStub stub(isolate()); | |
2695 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
2696 } | |
2697 | |
2698 | |
2699 void LCodeGen::DoHasInPrototypeChainAndBranch( | |
2700 LHasInPrototypeChainAndBranch* instr) { | |
2701 Register const object = ToRegister(instr->object()); | |
2702 Register const object_map = scratch0(); | |
2703 Register const object_prototype = object_map; | |
2704 Register const prototype = ToRegister(instr->prototype()); | |
2705 | |
2706 // The {object} must be a spec object. It's sufficient to know that {object} | |
2707 // is not a smi, since all other non-spec objects have {null} prototypes and | |
2708 // will be ruled out below. | |
2709 if (instr->hydrogen()->ObjectNeedsSmiCheck()) { | |
2710 __ SmiTst(object); | |
2711 EmitFalseBranch(instr, eq); | |
2712 } | |
2713 | |
2714 // Loop through the {object}s prototype chain looking for the {prototype}. | |
2715 __ ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset)); | |
2716 Label loop; | |
2717 __ bind(&loop); | |
2718 __ ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset)); | |
2719 __ cmp(object_prototype, prototype); | |
2720 EmitTrueBranch(instr, eq); | |
2721 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex); | |
2722 EmitFalseBranch(instr, eq); | |
2723 __ ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset)); | |
2724 __ b(&loop); | |
2725 } | |
2726 | |
2727 | |
2728 void LCodeGen::DoCmpT(LCmpT* instr) { | |
2729 DCHECK(ToRegister(instr->context()).is(cp)); | |
2730 Token::Value op = instr->op(); | |
2731 | |
2732 Handle<Code> ic = | |
2733 CodeFactory::CompareIC(isolate(), op, instr->strength()).code(); | |
2734 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
2735 // This instruction also signals no smi code inlined. | |
2736 __ cmp(r0, Operand::Zero()); | |
2737 | |
2738 Condition condition = ComputeCompareCondition(op); | |
2739 __ LoadRoot(ToRegister(instr->result()), | |
2740 Heap::kTrueValueRootIndex, | |
2741 condition); | |
2742 __ LoadRoot(ToRegister(instr->result()), | |
2743 Heap::kFalseValueRootIndex, | |
2744 NegateCondition(condition)); | |
2745 } | |
2746 | |
2747 | |
2748 void LCodeGen::DoReturn(LReturn* instr) { | |
2749 if (FLAG_trace && info()->IsOptimizing()) { | |
2750 // Push the return value on the stack as the parameter. | |
2751 // Runtime::TraceExit returns its parameter in r0. We're leaving the code | |
2752 // managed by the register allocator and tearing down the frame, it's | |
2753 // safe to write to the context register. | |
2754 __ push(r0); | |
2755 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); | |
2756 __ CallRuntime(Runtime::kTraceExit, 1); | |
2757 } | |
2758 if (info()->saves_caller_doubles()) { | |
2759 RestoreCallerDoubles(); | |
2760 } | |
2761 if (NeedsEagerFrame()) { | |
2762 masm_->LeaveFrame(StackFrame::JAVA_SCRIPT); | |
2763 } | |
2764 { ConstantPoolUnavailableScope constant_pool_unavailable(masm()); | |
2765 if (instr->has_constant_parameter_count()) { | |
2766 int parameter_count = ToInteger32(instr->constant_parameter_count()); | |
2767 int32_t sp_delta = (parameter_count + 1) * kPointerSize; | |
2768 if (sp_delta != 0) { | |
2769 __ add(sp, sp, Operand(sp_delta)); | |
2770 } | |
2771 } else { | |
2772 DCHECK(info()->IsStub()); // Functions would need to drop one more value. | |
2773 Register reg = ToRegister(instr->parameter_count()); | |
2774 // The argument count parameter is a smi | |
2775 __ SmiUntag(reg); | |
2776 __ add(sp, sp, Operand(reg, LSL, kPointerSizeLog2)); | |
2777 } | |
2778 | |
2779 __ Jump(lr); | |
2780 } | |
2781 } | |
2782 | |
2783 | |
2784 template <class T> | |
2785 void LCodeGen::EmitVectorLoadICRegisters(T* instr) { | |
2786 Register vector_register = ToRegister(instr->temp_vector()); | |
2787 Register slot_register = LoadDescriptor::SlotRegister(); | |
2788 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister())); | |
2789 DCHECK(slot_register.is(r0)); | |
2790 | |
2791 AllowDeferredHandleDereference vector_structure_check; | |
2792 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); | |
2793 __ Move(vector_register, vector); | |
2794 // No need to allocate this register. | |
2795 FeedbackVectorSlot slot = instr->hydrogen()->slot(); | |
2796 int index = vector->GetIndex(slot); | |
2797 __ mov(slot_register, Operand(Smi::FromInt(index))); | |
2798 } | |
2799 | |
2800 | |
2801 template <class T> | |
2802 void LCodeGen::EmitVectorStoreICRegisters(T* instr) { | |
2803 Register vector_register = ToRegister(instr->temp_vector()); | |
2804 Register slot_register = ToRegister(instr->temp_slot()); | |
2805 | |
2806 AllowDeferredHandleDereference vector_structure_check; | |
2807 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); | |
2808 __ Move(vector_register, vector); | |
2809 FeedbackVectorSlot slot = instr->hydrogen()->slot(); | |
2810 int index = vector->GetIndex(slot); | |
2811 __ mov(slot_register, Operand(Smi::FromInt(index))); | |
2812 } | |
2813 | |
2814 | |
2815 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { | |
2816 DCHECK(ToRegister(instr->context()).is(cp)); | |
2817 DCHECK(ToRegister(instr->global_object()) | |
2818 .is(LoadDescriptor::ReceiverRegister())); | |
2819 DCHECK(ToRegister(instr->result()).is(r0)); | |
2820 | |
2821 __ mov(LoadDescriptor::NameRegister(), Operand(instr->name())); | |
2822 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr); | |
2823 Handle<Code> ic = | |
2824 CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(), | |
2825 SLOPPY, PREMONOMORPHIC).code(); | |
2826 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
2827 } | |
2828 | |
2829 | |
2830 void LCodeGen::DoLoadGlobalViaContext(LLoadGlobalViaContext* instr) { | |
2831 DCHECK(ToRegister(instr->context()).is(cp)); | |
2832 DCHECK(ToRegister(instr->result()).is(r0)); | |
2833 | |
2834 int const slot = instr->slot_index(); | |
2835 int const depth = instr->depth(); | |
2836 if (depth <= LoadGlobalViaContextStub::kMaximumDepth) { | |
2837 __ mov(LoadGlobalViaContextDescriptor::SlotRegister(), Operand(slot)); | |
2838 Handle<Code> stub = | |
2839 CodeFactory::LoadGlobalViaContext(isolate(), depth).code(); | |
2840 CallCode(stub, RelocInfo::CODE_TARGET, instr); | |
2841 } else { | |
2842 __ Push(Smi::FromInt(slot)); | |
2843 __ CallRuntime(Runtime::kLoadGlobalViaContext, 1); | |
2844 } | |
2845 } | |
2846 | |
2847 | |
2848 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { | |
2849 Register context = ToRegister(instr->context()); | |
2850 Register result = ToRegister(instr->result()); | |
2851 __ ldr(result, ContextOperand(context, instr->slot_index())); | |
2852 if (instr->hydrogen()->RequiresHoleCheck()) { | |
2853 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); | |
2854 __ cmp(result, ip); | |
2855 if (instr->hydrogen()->DeoptimizesOnHole()) { | |
2856 DeoptimizeIf(eq, instr, Deoptimizer::kHole); | |
2857 } else { | |
2858 __ mov(result, Operand(factory()->undefined_value()), LeaveCC, eq); | |
2859 } | |
2860 } | |
2861 } | |
2862 | |
2863 | |
2864 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { | |
2865 Register context = ToRegister(instr->context()); | |
2866 Register value = ToRegister(instr->value()); | |
2867 Register scratch = scratch0(); | |
2868 MemOperand target = ContextOperand(context, instr->slot_index()); | |
2869 | |
2870 Label skip_assignment; | |
2871 | |
2872 if (instr->hydrogen()->RequiresHoleCheck()) { | |
2873 __ ldr(scratch, target); | |
2874 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); | |
2875 __ cmp(scratch, ip); | |
2876 if (instr->hydrogen()->DeoptimizesOnHole()) { | |
2877 DeoptimizeIf(eq, instr, Deoptimizer::kHole); | |
2878 } else { | |
2879 __ b(ne, &skip_assignment); | |
2880 } | |
2881 } | |
2882 | |
2883 __ str(value, target); | |
2884 if (instr->hydrogen()->NeedsWriteBarrier()) { | |
2885 SmiCheck check_needed = | |
2886 instr->hydrogen()->value()->type().IsHeapObject() | |
2887 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | |
2888 __ RecordWriteContextSlot(context, | |
2889 target.offset(), | |
2890 value, | |
2891 scratch, | |
2892 GetLinkRegisterState(), | |
2893 kSaveFPRegs, | |
2894 EMIT_REMEMBERED_SET, | |
2895 check_needed); | |
2896 } | |
2897 | |
2898 __ bind(&skip_assignment); | |
2899 } | |
2900 | |
2901 | |
2902 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { | |
2903 HObjectAccess access = instr->hydrogen()->access(); | |
2904 int offset = access.offset(); | |
2905 Register object = ToRegister(instr->object()); | |
2906 | |
2907 if (access.IsExternalMemory()) { | |
2908 Register result = ToRegister(instr->result()); | |
2909 MemOperand operand = MemOperand(object, offset); | |
2910 __ Load(result, operand, access.representation()); | |
2911 return; | |
2912 } | |
2913 | |
2914 if (instr->hydrogen()->representation().IsDouble()) { | |
2915 DwVfpRegister result = ToDoubleRegister(instr->result()); | |
2916 __ vldr(result, FieldMemOperand(object, offset)); | |
2917 return; | |
2918 } | |
2919 | |
2920 Register result = ToRegister(instr->result()); | |
2921 if (!access.IsInobject()) { | |
2922 __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); | |
2923 object = result; | |
2924 } | |
2925 MemOperand operand = FieldMemOperand(object, offset); | |
2926 __ Load(result, operand, access.representation()); | |
2927 } | |
2928 | |
2929 | |
2930 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { | |
2931 DCHECK(ToRegister(instr->context()).is(cp)); | |
2932 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); | |
2933 DCHECK(ToRegister(instr->result()).is(r0)); | |
2934 | |
2935 // Name is always in r2. | |
2936 __ mov(LoadDescriptor::NameRegister(), Operand(instr->name())); | |
2937 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr); | |
2938 Handle<Code> ic = | |
2939 CodeFactory::LoadICInOptimizedCode( | |
2940 isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(), | |
2941 instr->hydrogen()->initialization_state()).code(); | |
2942 CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); | |
2943 } | |
2944 | |
2945 | |
2946 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { | |
2947 Register scratch = scratch0(); | |
2948 Register function = ToRegister(instr->function()); | |
2949 Register result = ToRegister(instr->result()); | |
2950 | |
2951 // Get the prototype or initial map from the function. | |
2952 __ ldr(result, | |
2953 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); | |
2954 | |
2955 // Check that the function has a prototype or an initial map. | |
2956 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); | |
2957 __ cmp(result, ip); | |
2958 DeoptimizeIf(eq, instr, Deoptimizer::kHole); | |
2959 | |
2960 // If the function does not have an initial map, we're done. | |
2961 Label done; | |
2962 __ CompareObjectType(result, scratch, scratch, MAP_TYPE); | |
2963 __ b(ne, &done); | |
2964 | |
2965 // Get the prototype from the initial map. | |
2966 __ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); | |
2967 | |
2968 // All done. | |
2969 __ bind(&done); | |
2970 } | |
2971 | |
2972 | |
2973 void LCodeGen::DoLoadRoot(LLoadRoot* instr) { | |
2974 Register result = ToRegister(instr->result()); | |
2975 __ LoadRoot(result, instr->index()); | |
2976 } | |
2977 | |
2978 | |
2979 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { | |
2980 Register arguments = ToRegister(instr->arguments()); | |
2981 Register result = ToRegister(instr->result()); | |
2982 // There are two words between the frame pointer and the last argument. | |
2983 // Subtracting from length accounts for one of them add one more. | |
2984 if (instr->length()->IsConstantOperand()) { | |
2985 int const_length = ToInteger32(LConstantOperand::cast(instr->length())); | |
2986 if (instr->index()->IsConstantOperand()) { | |
2987 int const_index = ToInteger32(LConstantOperand::cast(instr->index())); | |
2988 int index = (const_length - const_index) + 1; | |
2989 __ ldr(result, MemOperand(arguments, index * kPointerSize)); | |
2990 } else { | |
2991 Register index = ToRegister(instr->index()); | |
2992 __ rsb(result, index, Operand(const_length + 1)); | |
2993 __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2)); | |
2994 } | |
2995 } else if (instr->index()->IsConstantOperand()) { | |
2996 Register length = ToRegister(instr->length()); | |
2997 int const_index = ToInteger32(LConstantOperand::cast(instr->index())); | |
2998 int loc = const_index - 1; | |
2999 if (loc != 0) { | |
3000 __ sub(result, length, Operand(loc)); | |
3001 __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2)); | |
3002 } else { | |
3003 __ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2)); | |
3004 } | |
3005 } else { | |
3006 Register length = ToRegister(instr->length()); | |
3007 Register index = ToRegister(instr->index()); | |
3008 __ sub(result, length, index); | |
3009 __ add(result, result, Operand(1)); | |
3010 __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2)); | |
3011 } | |
3012 } | |
3013 | |
3014 | |
3015 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) { | |
3016 Register external_pointer = ToRegister(instr->elements()); | |
3017 Register key = no_reg; | |
3018 ElementsKind elements_kind = instr->elements_kind(); | |
3019 bool key_is_constant = instr->key()->IsConstantOperand(); | |
3020 int constant_key = 0; | |
3021 if (key_is_constant) { | |
3022 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); | |
3023 if (constant_key & 0xF0000000) { | |
3024 Abort(kArrayIndexConstantValueTooBig); | |
3025 } | |
3026 } else { | |
3027 key = ToRegister(instr->key()); | |
3028 } | |
3029 int element_size_shift = ElementsKindToShiftSize(elements_kind); | |
3030 int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) | |
3031 ? (element_size_shift - kSmiTagSize) : element_size_shift; | |
3032 int base_offset = instr->base_offset(); | |
3033 | |
3034 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) { | |
3035 DwVfpRegister result = ToDoubleRegister(instr->result()); | |
3036 Operand operand = key_is_constant | |
3037 ? Operand(constant_key << element_size_shift) | |
3038 : Operand(key, LSL, shift_size); | |
3039 __ add(scratch0(), external_pointer, operand); | |
3040 if (elements_kind == FLOAT32_ELEMENTS) { | |
3041 __ vldr(double_scratch0().low(), scratch0(), base_offset); | |
3042 __ vcvt_f64_f32(result, double_scratch0().low()); | |
3043 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS | |
3044 __ vldr(result, scratch0(), base_offset); | |
3045 } | |
3046 } else { | |
3047 Register result = ToRegister(instr->result()); | |
3048 MemOperand mem_operand = PrepareKeyedOperand( | |
3049 key, external_pointer, key_is_constant, constant_key, | |
3050 element_size_shift, shift_size, base_offset); | |
3051 switch (elements_kind) { | |
3052 case INT8_ELEMENTS: | |
3053 __ ldrsb(result, mem_operand); | |
3054 break; | |
3055 case UINT8_ELEMENTS: | |
3056 case UINT8_CLAMPED_ELEMENTS: | |
3057 __ ldrb(result, mem_operand); | |
3058 break; | |
3059 case INT16_ELEMENTS: | |
3060 __ ldrsh(result, mem_operand); | |
3061 break; | |
3062 case UINT16_ELEMENTS: | |
3063 __ ldrh(result, mem_operand); | |
3064 break; | |
3065 case INT32_ELEMENTS: | |
3066 __ ldr(result, mem_operand); | |
3067 break; | |
3068 case UINT32_ELEMENTS: | |
3069 __ ldr(result, mem_operand); | |
3070 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { | |
3071 __ cmp(result, Operand(0x80000000)); | |
3072 DeoptimizeIf(cs, instr, Deoptimizer::kNegativeValue); | |
3073 } | |
3074 break; | |
3075 case FLOAT32_ELEMENTS: | |
3076 case FLOAT64_ELEMENTS: | |
3077 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
3078 case FAST_HOLEY_ELEMENTS: | |
3079 case FAST_HOLEY_SMI_ELEMENTS: | |
3080 case FAST_DOUBLE_ELEMENTS: | |
3081 case FAST_ELEMENTS: | |
3082 case FAST_SMI_ELEMENTS: | |
3083 case DICTIONARY_ELEMENTS: | |
3084 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
3085 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: | |
3086 UNREACHABLE(); | |
3087 break; | |
3088 } | |
3089 } | |
3090 } | |
3091 | |
3092 | |
3093 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { | |
3094 Register elements = ToRegister(instr->elements()); | |
3095 bool key_is_constant = instr->key()->IsConstantOperand(); | |
3096 Register key = no_reg; | |
3097 DwVfpRegister result = ToDoubleRegister(instr->result()); | |
3098 Register scratch = scratch0(); | |
3099 | |
3100 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); | |
3101 | |
3102 int base_offset = instr->base_offset(); | |
3103 if (key_is_constant) { | |
3104 int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); | |
3105 if (constant_key & 0xF0000000) { | |
3106 Abort(kArrayIndexConstantValueTooBig); | |
3107 } | |
3108 base_offset += constant_key * kDoubleSize; | |
3109 } | |
3110 __ add(scratch, elements, Operand(base_offset)); | |
3111 | |
3112 if (!key_is_constant) { | |
3113 key = ToRegister(instr->key()); | |
3114 int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) | |
3115 ? (element_size_shift - kSmiTagSize) : element_size_shift; | |
3116 __ add(scratch, scratch, Operand(key, LSL, shift_size)); | |
3117 } | |
3118 | |
3119 __ vldr(result, scratch, 0); | |
3120 | |
3121 if (instr->hydrogen()->RequiresHoleCheck()) { | |
3122 __ ldr(scratch, MemOperand(scratch, sizeof(kHoleNanLower32))); | |
3123 __ cmp(scratch, Operand(kHoleNanUpper32)); | |
3124 DeoptimizeIf(eq, instr, Deoptimizer::kHole); | |
3125 } | |
3126 } | |
3127 | |
3128 | |
3129 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { | |
3130 Register elements = ToRegister(instr->elements()); | |
3131 Register result = ToRegister(instr->result()); | |
3132 Register scratch = scratch0(); | |
3133 Register store_base = scratch; | |
3134 int offset = instr->base_offset(); | |
3135 | |
3136 if (instr->key()->IsConstantOperand()) { | |
3137 LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); | |
3138 offset += ToInteger32(const_operand) * kPointerSize; | |
3139 store_base = elements; | |
3140 } else { | |
3141 Register key = ToRegister(instr->key()); | |
3142 // Even though the HLoadKeyed instruction forces the input | |
3143 // representation for the key to be an integer, the input gets replaced | |
3144 // during bound check elimination with the index argument to the bounds | |
3145 // check, which can be tagged, so that case must be handled here, too. | |
3146 if (instr->hydrogen()->key()->representation().IsSmi()) { | |
3147 __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key)); | |
3148 } else { | |
3149 __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2)); | |
3150 } | |
3151 } | |
3152 __ ldr(result, MemOperand(store_base, offset)); | |
3153 | |
3154 // Check for the hole value. | |
3155 if (instr->hydrogen()->RequiresHoleCheck()) { | |
3156 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { | |
3157 __ SmiTst(result); | |
3158 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi); | |
3159 } else { | |
3160 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); | |
3161 __ cmp(result, scratch); | |
3162 DeoptimizeIf(eq, instr, Deoptimizer::kHole); | |
3163 } | |
3164 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { | |
3165 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS); | |
3166 Label done; | |
3167 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); | |
3168 __ cmp(result, scratch); | |
3169 __ b(ne, &done); | |
3170 if (info()->IsStub()) { | |
3171 // A stub can safely convert the hole to undefined only if the array | |
3172 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise | |
3173 // it needs to bail out. | |
3174 __ LoadRoot(result, Heap::kArrayProtectorRootIndex); | |
3175 __ ldr(result, FieldMemOperand(result, Cell::kValueOffset)); | |
3176 __ cmp(result, Operand(Smi::FromInt(Isolate::kArrayProtectorValid))); | |
3177 DeoptimizeIf(ne, instr, Deoptimizer::kHole); | |
3178 } | |
3179 __ LoadRoot(result, Heap::kUndefinedValueRootIndex); | |
3180 __ bind(&done); | |
3181 } | |
3182 } | |
3183 | |
3184 | |
3185 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) { | |
3186 if (instr->is_fixed_typed_array()) { | |
3187 DoLoadKeyedExternalArray(instr); | |
3188 } else if (instr->hydrogen()->representation().IsDouble()) { | |
3189 DoLoadKeyedFixedDoubleArray(instr); | |
3190 } else { | |
3191 DoLoadKeyedFixedArray(instr); | |
3192 } | |
3193 } | |
3194 | |
3195 | |
3196 MemOperand LCodeGen::PrepareKeyedOperand(Register key, | |
3197 Register base, | |
3198 bool key_is_constant, | |
3199 int constant_key, | |
3200 int element_size, | |
3201 int shift_size, | |
3202 int base_offset) { | |
3203 if (key_is_constant) { | |
3204 return MemOperand(base, (constant_key << element_size) + base_offset); | |
3205 } | |
3206 | |
3207 if (base_offset == 0) { | |
3208 if (shift_size >= 0) { | |
3209 return MemOperand(base, key, LSL, shift_size); | |
3210 } else { | |
3211 DCHECK_EQ(-1, shift_size); | |
3212 return MemOperand(base, key, LSR, 1); | |
3213 } | |
3214 } | |
3215 | |
3216 if (shift_size >= 0) { | |
3217 __ add(scratch0(), base, Operand(key, LSL, shift_size)); | |
3218 return MemOperand(scratch0(), base_offset); | |
3219 } else { | |
3220 DCHECK_EQ(-1, shift_size); | |
3221 __ add(scratch0(), base, Operand(key, ASR, 1)); | |
3222 return MemOperand(scratch0(), base_offset); | |
3223 } | |
3224 } | |
3225 | |
3226 | |
3227 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { | |
3228 DCHECK(ToRegister(instr->context()).is(cp)); | |
3229 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); | |
3230 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister())); | |
3231 | |
3232 if (instr->hydrogen()->HasVectorAndSlot()) { | |
3233 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr); | |
3234 } | |
3235 | |
3236 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode( | |
3237 isolate(), instr->hydrogen()->language_mode(), | |
3238 instr->hydrogen()->initialization_state()).code(); | |
3239 CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); | |
3240 } | |
3241 | |
3242 | |
3243 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { | |
3244 Register scratch = scratch0(); | |
3245 Register result = ToRegister(instr->result()); | |
3246 | |
3247 if (instr->hydrogen()->from_inlined()) { | |
3248 __ sub(result, sp, Operand(2 * kPointerSize)); | |
3249 } else { | |
3250 // Check if the calling frame is an arguments adaptor frame. | |
3251 Label done, adapted; | |
3252 __ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | |
3253 __ ldr(result, MemOperand(scratch, StandardFrameConstants::kContextOffset)); | |
3254 __ cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | |
3255 | |
3256 // Result is the frame pointer for the frame if not adapted and for the real | |
3257 // frame below the adaptor frame if adapted. | |
3258 __ mov(result, fp, LeaveCC, ne); | |
3259 __ mov(result, scratch, LeaveCC, eq); | |
3260 } | |
3261 } | |
3262 | |
3263 | |
3264 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { | |
3265 Register elem = ToRegister(instr->elements()); | |
3266 Register result = ToRegister(instr->result()); | |
3267 | |
3268 Label done; | |
3269 | |
3270 // If no arguments adaptor frame the number of arguments is fixed. | |
3271 __ cmp(fp, elem); | |
3272 __ mov(result, Operand(scope()->num_parameters())); | |
3273 __ b(eq, &done); | |
3274 | |
3275 // Arguments adaptor frame present. Get argument length from there. | |
3276 __ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | |
3277 __ ldr(result, | |
3278 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); | |
3279 __ SmiUntag(result); | |
3280 | |
3281 // Argument length is in result register. | |
3282 __ bind(&done); | |
3283 } | |
3284 | |
3285 | |
3286 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { | |
3287 Register receiver = ToRegister(instr->receiver()); | |
3288 Register function = ToRegister(instr->function()); | |
3289 Register result = ToRegister(instr->result()); | |
3290 Register scratch = scratch0(); | |
3291 | |
3292 // If the receiver is null or undefined, we have to pass the global | |
3293 // object as a receiver to normal functions. Values have to be | |
3294 // passed unchanged to builtins and strict-mode functions. | |
3295 Label global_object, result_in_receiver; | |
3296 | |
3297 if (!instr->hydrogen()->known_function()) { | |
3298 // Do not transform the receiver to object for strict mode | |
3299 // functions. | |
3300 __ ldr(scratch, | |
3301 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); | |
3302 __ ldr(scratch, | |
3303 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); | |
3304 int mask = 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize); | |
3305 __ tst(scratch, Operand(mask)); | |
3306 __ b(ne, &result_in_receiver); | |
3307 | |
3308 // Do not transform the receiver to object for builtins. | |
3309 __ tst(scratch, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); | |
3310 __ b(ne, &result_in_receiver); | |
3311 } | |
3312 | |
3313 // Normal function. Replace undefined or null with global receiver. | |
3314 __ LoadRoot(scratch, Heap::kNullValueRootIndex); | |
3315 __ cmp(receiver, scratch); | |
3316 __ b(eq, &global_object); | |
3317 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); | |
3318 __ cmp(receiver, scratch); | |
3319 __ b(eq, &global_object); | |
3320 | |
3321 // Deoptimize if the receiver is not a JS object. | |
3322 __ SmiTst(receiver); | |
3323 DeoptimizeIf(eq, instr, Deoptimizer::kSmi); | |
3324 __ CompareObjectType(receiver, scratch, scratch, FIRST_SPEC_OBJECT_TYPE); | |
3325 DeoptimizeIf(lt, instr, Deoptimizer::kNotAJavaScriptObject); | |
3326 | |
3327 __ b(&result_in_receiver); | |
3328 __ bind(&global_object); | |
3329 __ ldr(result, FieldMemOperand(function, JSFunction::kContextOffset)); | |
3330 __ ldr(result, | |
3331 ContextOperand(result, Context::GLOBAL_OBJECT_INDEX)); | |
3332 __ ldr(result, FieldMemOperand(result, GlobalObject::kGlobalProxyOffset)); | |
3333 | |
3334 if (result.is(receiver)) { | |
3335 __ bind(&result_in_receiver); | |
3336 } else { | |
3337 Label result_ok; | |
3338 __ b(&result_ok); | |
3339 __ bind(&result_in_receiver); | |
3340 __ mov(result, receiver); | |
3341 __ bind(&result_ok); | |
3342 } | |
3343 } | |
3344 | |
3345 | |
3346 void LCodeGen::DoApplyArguments(LApplyArguments* instr) { | |
3347 Register receiver = ToRegister(instr->receiver()); | |
3348 Register function = ToRegister(instr->function()); | |
3349 Register length = ToRegister(instr->length()); | |
3350 Register elements = ToRegister(instr->elements()); | |
3351 Register scratch = scratch0(); | |
3352 DCHECK(receiver.is(r0)); // Used for parameter count. | |
3353 DCHECK(function.is(r1)); // Required by InvokeFunction. | |
3354 DCHECK(ToRegister(instr->result()).is(r0)); | |
3355 | |
3356 // Copy the arguments to this function possibly from the | |
3357 // adaptor frame below it. | |
3358 const uint32_t kArgumentsLimit = 1 * KB; | |
3359 __ cmp(length, Operand(kArgumentsLimit)); | |
3360 DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments); | |
3361 | |
3362 // Push the receiver and use the register to keep the original | |
3363 // number of arguments. | |
3364 __ push(receiver); | |
3365 __ mov(receiver, length); | |
3366 // The arguments are at a one pointer size offset from elements. | |
3367 __ add(elements, elements, Operand(1 * kPointerSize)); | |
3368 | |
3369 // Loop through the arguments pushing them onto the execution | |
3370 // stack. | |
3371 Label invoke, loop; | |
3372 // length is a small non-negative integer, due to the test above. | |
3373 __ cmp(length, Operand::Zero()); | |
3374 __ b(eq, &invoke); | |
3375 __ bind(&loop); | |
3376 __ ldr(scratch, MemOperand(elements, length, LSL, 2)); | |
3377 __ push(scratch); | |
3378 __ sub(length, length, Operand(1), SetCC); | |
3379 __ b(ne, &loop); | |
3380 | |
3381 __ bind(&invoke); | |
3382 DCHECK(instr->HasPointerMap()); | |
3383 LPointerMap* pointers = instr->pointer_map(); | |
3384 SafepointGenerator safepoint_generator( | |
3385 this, pointers, Safepoint::kLazyDeopt); | |
3386 // The number of arguments is stored in receiver which is r0, as expected | |
3387 // by InvokeFunction. | |
3388 ParameterCount actual(receiver); | |
3389 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator); | |
3390 } | |
3391 | |
3392 | |
3393 void LCodeGen::DoPushArgument(LPushArgument* instr) { | |
3394 LOperand* argument = instr->value(); | |
3395 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { | |
3396 Abort(kDoPushArgumentNotImplementedForDoubleType); | |
3397 } else { | |
3398 Register argument_reg = EmitLoadRegister(argument, ip); | |
3399 __ push(argument_reg); | |
3400 } | |
3401 } | |
3402 | |
3403 | |
3404 void LCodeGen::DoDrop(LDrop* instr) { | |
3405 __ Drop(instr->count()); | |
3406 } | |
3407 | |
3408 | |
3409 void LCodeGen::DoThisFunction(LThisFunction* instr) { | |
3410 Register result = ToRegister(instr->result()); | |
3411 __ ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); | |
3412 } | |
3413 | |
3414 | |
3415 void LCodeGen::DoContext(LContext* instr) { | |
3416 // If there is a non-return use, the context must be moved to a register. | |
3417 Register result = ToRegister(instr->result()); | |
3418 if (info()->IsOptimizing()) { | |
3419 __ ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); | |
3420 } else { | |
3421 // If there is no frame, the context must be in cp. | |
3422 DCHECK(result.is(cp)); | |
3423 } | |
3424 } | |
3425 | |
3426 | |
3427 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { | |
3428 DCHECK(ToRegister(instr->context()).is(cp)); | |
3429 __ Move(scratch0(), instr->hydrogen()->pairs()); | |
3430 __ push(scratch0()); | |
3431 __ mov(scratch0(), Operand(Smi::FromInt(instr->hydrogen()->flags()))); | |
3432 __ push(scratch0()); | |
3433 CallRuntime(Runtime::kDeclareGlobals, 2, instr); | |
3434 } | |
3435 | |
3436 | |
3437 void LCodeGen::CallKnownFunction(Handle<JSFunction> function, | |
3438 int formal_parameter_count, int arity, | |
3439 LInstruction* instr) { | |
3440 bool dont_adapt_arguments = | |
3441 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; | |
3442 bool can_invoke_directly = | |
3443 dont_adapt_arguments || formal_parameter_count == arity; | |
3444 | |
3445 Register function_reg = r1; | |
3446 | |
3447 LPointerMap* pointers = instr->pointer_map(); | |
3448 | |
3449 if (can_invoke_directly) { | |
3450 // Change context. | |
3451 __ ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset)); | |
3452 | |
3453 // Always initialize r0 to the number of actual arguments. | |
3454 __ mov(r0, Operand(arity)); | |
3455 | |
3456 // Invoke function. | |
3457 __ ldr(ip, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset)); | |
3458 __ Call(ip); | |
3459 | |
3460 // Set up deoptimization. | |
3461 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); | |
3462 } else { | |
3463 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); | |
3464 ParameterCount count(arity); | |
3465 ParameterCount expected(formal_parameter_count); | |
3466 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator); | |
3467 } | |
3468 } | |
3469 | |
3470 | |
3471 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) { | |
3472 DCHECK(instr->context() != NULL); | |
3473 DCHECK(ToRegister(instr->context()).is(cp)); | |
3474 Register input = ToRegister(instr->value()); | |
3475 Register result = ToRegister(instr->result()); | |
3476 Register scratch = scratch0(); | |
3477 | |
3478 // Deoptimize if not a heap number. | |
3479 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); | |
3480 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); | |
3481 __ cmp(scratch, Operand(ip)); | |
3482 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber); | |
3483 | |
3484 Label done; | |
3485 Register exponent = scratch0(); | |
3486 scratch = no_reg; | |
3487 __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); | |
3488 // Check the sign of the argument. If the argument is positive, just | |
3489 // return it. | |
3490 __ tst(exponent, Operand(HeapNumber::kSignMask)); | |
3491 // Move the input to the result if necessary. | |
3492 __ Move(result, input); | |
3493 __ b(eq, &done); | |
3494 | |
3495 // Input is negative. Reverse its sign. | |
3496 // Preserve the value of all registers. | |
3497 { | |
3498 PushSafepointRegistersScope scope(this); | |
3499 | |
3500 // Registers were saved at the safepoint, so we can use | |
3501 // many scratch registers. | |
3502 Register tmp1 = input.is(r1) ? r0 : r1; | |
3503 Register tmp2 = input.is(r2) ? r0 : r2; | |
3504 Register tmp3 = input.is(r3) ? r0 : r3; | |
3505 Register tmp4 = input.is(r4) ? r0 : r4; | |
3506 | |
3507 // exponent: floating point exponent value. | |
3508 | |
3509 Label allocated, slow; | |
3510 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex); | |
3511 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow); | |
3512 __ b(&allocated); | |
3513 | |
3514 // Slow case: Call the runtime system to do the number allocation. | |
3515 __ bind(&slow); | |
3516 | |
3517 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, | |
3518 instr->context()); | |
3519 // Set the pointer to the new heap number in tmp. | |
3520 if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0)); | |
3521 // Restore input_reg after call to runtime. | |
3522 __ LoadFromSafepointRegisterSlot(input, input); | |
3523 __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); | |
3524 | |
3525 __ bind(&allocated); | |
3526 // exponent: floating point exponent value. | |
3527 // tmp1: allocated heap number. | |
3528 __ bic(exponent, exponent, Operand(HeapNumber::kSignMask)); | |
3529 __ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset)); | |
3530 __ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset)); | |
3531 __ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset)); | |
3532 | |
3533 __ StoreToSafepointRegisterSlot(tmp1, result); | |
3534 } | |
3535 | |
3536 __ bind(&done); | |
3537 } | |
3538 | |
3539 | |
3540 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) { | |
3541 Register input = ToRegister(instr->value()); | |
3542 Register result = ToRegister(instr->result()); | |
3543 __ cmp(input, Operand::Zero()); | |
3544 __ Move(result, input, pl); | |
3545 // We can make rsb conditional because the previous cmp instruction | |
3546 // will clear the V (overflow) flag and rsb won't set this flag | |
3547 // if input is positive. | |
3548 __ rsb(result, input, Operand::Zero(), SetCC, mi); | |
3549 // Deoptimize on overflow. | |
3550 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
3551 } | |
3552 | |
3553 | |
3554 void LCodeGen::DoMathAbs(LMathAbs* instr) { | |
3555 // Class for deferred case. | |
3556 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode { | |
3557 public: | |
3558 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr) | |
3559 : LDeferredCode(codegen), instr_(instr) { } | |
3560 void Generate() override { | |
3561 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); | |
3562 } | |
3563 LInstruction* instr() override { return instr_; } | |
3564 | |
3565 private: | |
3566 LMathAbs* instr_; | |
3567 }; | |
3568 | |
3569 Representation r = instr->hydrogen()->value()->representation(); | |
3570 if (r.IsDouble()) { | |
3571 DwVfpRegister input = ToDoubleRegister(instr->value()); | |
3572 DwVfpRegister result = ToDoubleRegister(instr->result()); | |
3573 __ vabs(result, input); | |
3574 } else if (r.IsSmiOrInteger32()) { | |
3575 EmitIntegerMathAbs(instr); | |
3576 } else { | |
3577 // Representation is tagged. | |
3578 DeferredMathAbsTaggedHeapNumber* deferred = | |
3579 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr); | |
3580 Register input = ToRegister(instr->value()); | |
3581 // Smi check. | |
3582 __ JumpIfNotSmi(input, deferred->entry()); | |
3583 // If smi, handle it directly. | |
3584 EmitIntegerMathAbs(instr); | |
3585 __ bind(deferred->exit()); | |
3586 } | |
3587 } | |
3588 | |
3589 | |
3590 void LCodeGen::DoMathFloor(LMathFloor* instr) { | |
3591 DwVfpRegister input = ToDoubleRegister(instr->value()); | |
3592 Register result = ToRegister(instr->result()); | |
3593 Register input_high = scratch0(); | |
3594 Label done, exact; | |
3595 | |
3596 __ TryInt32Floor(result, input, input_high, double_scratch0(), &done, &exact); | |
3597 DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN); | |
3598 | |
3599 __ bind(&exact); | |
3600 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
3601 // Test for -0. | |
3602 __ cmp(result, Operand::Zero()); | |
3603 __ b(ne, &done); | |
3604 __ cmp(input_high, Operand::Zero()); | |
3605 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero); | |
3606 } | |
3607 __ bind(&done); | |
3608 } | |
3609 | |
3610 | |
3611 void LCodeGen::DoMathRound(LMathRound* instr) { | |
3612 DwVfpRegister input = ToDoubleRegister(instr->value()); | |
3613 Register result = ToRegister(instr->result()); | |
3614 DwVfpRegister double_scratch1 = ToDoubleRegister(instr->temp()); | |
3615 DwVfpRegister input_plus_dot_five = double_scratch1; | |
3616 Register input_high = scratch0(); | |
3617 DwVfpRegister dot_five = double_scratch0(); | |
3618 Label convert, done; | |
3619 | |
3620 __ Vmov(dot_five, 0.5, scratch0()); | |
3621 __ vabs(double_scratch1, input); | |
3622 __ VFPCompareAndSetFlags(double_scratch1, dot_five); | |
3623 // If input is in [-0.5, -0], the result is -0. | |
3624 // If input is in [+0, +0.5[, the result is +0. | |
3625 // If the input is +0.5, the result is 1. | |
3626 __ b(hi, &convert); // Out of [-0.5, +0.5]. | |
3627 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
3628 __ VmovHigh(input_high, input); | |
3629 __ cmp(input_high, Operand::Zero()); | |
3630 // [-0.5, -0]. | |
3631 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero); | |
3632 } | |
3633 __ VFPCompareAndSetFlags(input, dot_five); | |
3634 __ mov(result, Operand(1), LeaveCC, eq); // +0.5. | |
3635 // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on | |
3636 // flag kBailoutOnMinusZero. | |
3637 __ mov(result, Operand::Zero(), LeaveCC, ne); | |
3638 __ b(&done); | |
3639 | |
3640 __ bind(&convert); | |
3641 __ vadd(input_plus_dot_five, input, dot_five); | |
3642 // Reuse dot_five (double_scratch0) as we no longer need this value. | |
3643 __ TryInt32Floor(result, input_plus_dot_five, input_high, double_scratch0(), | |
3644 &done, &done); | |
3645 DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN); | |
3646 __ bind(&done); | |
3647 } | |
3648 | |
3649 | |
3650 void LCodeGen::DoMathFround(LMathFround* instr) { | |
3651 DwVfpRegister input_reg = ToDoubleRegister(instr->value()); | |
3652 DwVfpRegister output_reg = ToDoubleRegister(instr->result()); | |
3653 LowDwVfpRegister scratch = double_scratch0(); | |
3654 __ vcvt_f32_f64(scratch.low(), input_reg); | |
3655 __ vcvt_f64_f32(output_reg, scratch.low()); | |
3656 } | |
3657 | |
3658 | |
3659 void LCodeGen::DoMathSqrt(LMathSqrt* instr) { | |
3660 DwVfpRegister input = ToDoubleRegister(instr->value()); | |
3661 DwVfpRegister result = ToDoubleRegister(instr->result()); | |
3662 __ vsqrt(result, input); | |
3663 } | |
3664 | |
3665 | |
3666 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { | |
3667 DwVfpRegister input = ToDoubleRegister(instr->value()); | |
3668 DwVfpRegister result = ToDoubleRegister(instr->result()); | |
3669 DwVfpRegister temp = double_scratch0(); | |
3670 | |
3671 // Note that according to ECMA-262 15.8.2.13: | |
3672 // Math.pow(-Infinity, 0.5) == Infinity | |
3673 // Math.sqrt(-Infinity) == NaN | |
3674 Label done; | |
3675 __ vmov(temp, -V8_INFINITY, scratch0()); | |
3676 __ VFPCompareAndSetFlags(input, temp); | |
3677 __ vneg(result, temp, eq); | |
3678 __ b(&done, eq); | |
3679 | |
3680 // Add +0 to convert -0 to +0. | |
3681 __ vadd(result, input, kDoubleRegZero); | |
3682 __ vsqrt(result, result); | |
3683 __ bind(&done); | |
3684 } | |
3685 | |
3686 | |
3687 void LCodeGen::DoPower(LPower* instr) { | |
3688 Representation exponent_type = instr->hydrogen()->right()->representation(); | |
3689 // Having marked this as a call, we can use any registers. | |
3690 // Just make sure that the input/output registers are the expected ones. | |
3691 Register tagged_exponent = MathPowTaggedDescriptor::exponent(); | |
3692 DCHECK(!instr->right()->IsDoubleRegister() || | |
3693 ToDoubleRegister(instr->right()).is(d1)); | |
3694 DCHECK(!instr->right()->IsRegister() || | |
3695 ToRegister(instr->right()).is(tagged_exponent)); | |
3696 DCHECK(ToDoubleRegister(instr->left()).is(d0)); | |
3697 DCHECK(ToDoubleRegister(instr->result()).is(d2)); | |
3698 | |
3699 if (exponent_type.IsSmi()) { | |
3700 MathPowStub stub(isolate(), MathPowStub::TAGGED); | |
3701 __ CallStub(&stub); | |
3702 } else if (exponent_type.IsTagged()) { | |
3703 Label no_deopt; | |
3704 __ JumpIfSmi(tagged_exponent, &no_deopt); | |
3705 DCHECK(!r6.is(tagged_exponent)); | |
3706 __ ldr(r6, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset)); | |
3707 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); | |
3708 __ cmp(r6, Operand(ip)); | |
3709 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber); | |
3710 __ bind(&no_deopt); | |
3711 MathPowStub stub(isolate(), MathPowStub::TAGGED); | |
3712 __ CallStub(&stub); | |
3713 } else if (exponent_type.IsInteger32()) { | |
3714 MathPowStub stub(isolate(), MathPowStub::INTEGER); | |
3715 __ CallStub(&stub); | |
3716 } else { | |
3717 DCHECK(exponent_type.IsDouble()); | |
3718 MathPowStub stub(isolate(), MathPowStub::DOUBLE); | |
3719 __ CallStub(&stub); | |
3720 } | |
3721 } | |
3722 | |
3723 | |
3724 void LCodeGen::DoMathExp(LMathExp* instr) { | |
3725 DwVfpRegister input = ToDoubleRegister(instr->value()); | |
3726 DwVfpRegister result = ToDoubleRegister(instr->result()); | |
3727 DwVfpRegister double_scratch1 = ToDoubleRegister(instr->double_temp()); | |
3728 DwVfpRegister double_scratch2 = double_scratch0(); | |
3729 Register temp1 = ToRegister(instr->temp1()); | |
3730 Register temp2 = ToRegister(instr->temp2()); | |
3731 | |
3732 MathExpGenerator::EmitMathExp( | |
3733 masm(), input, result, double_scratch1, double_scratch2, | |
3734 temp1, temp2, scratch0()); | |
3735 } | |
3736 | |
3737 | |
3738 void LCodeGen::DoMathLog(LMathLog* instr) { | |
3739 __ PrepareCallCFunction(0, 1, scratch0()); | |
3740 __ MovToFloatParameter(ToDoubleRegister(instr->value())); | |
3741 __ CallCFunction(ExternalReference::math_log_double_function(isolate()), | |
3742 0, 1); | |
3743 __ MovFromFloatResult(ToDoubleRegister(instr->result())); | |
3744 } | |
3745 | |
3746 | |
3747 void LCodeGen::DoMathClz32(LMathClz32* instr) { | |
3748 Register input = ToRegister(instr->value()); | |
3749 Register result = ToRegister(instr->result()); | |
3750 __ clz(result, input); | |
3751 } | |
3752 | |
3753 | |
3754 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { | |
3755 DCHECK(ToRegister(instr->context()).is(cp)); | |
3756 DCHECK(ToRegister(instr->function()).is(r1)); | |
3757 DCHECK(instr->HasPointerMap()); | |
3758 | |
3759 Handle<JSFunction> known_function = instr->hydrogen()->known_function(); | |
3760 if (known_function.is_null()) { | |
3761 LPointerMap* pointers = instr->pointer_map(); | |
3762 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); | |
3763 ParameterCount count(instr->arity()); | |
3764 __ InvokeFunction(r1, count, CALL_FUNCTION, generator); | |
3765 } else { | |
3766 CallKnownFunction(known_function, | |
3767 instr->hydrogen()->formal_parameter_count(), | |
3768 instr->arity(), instr); | |
3769 } | |
3770 } | |
3771 | |
3772 | |
3773 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { | |
3774 DCHECK(ToRegister(instr->result()).is(r0)); | |
3775 | |
3776 if (instr->hydrogen()->IsTailCall()) { | |
3777 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL); | |
3778 | |
3779 if (instr->target()->IsConstantOperand()) { | |
3780 LConstantOperand* target = LConstantOperand::cast(instr->target()); | |
3781 Handle<Code> code = Handle<Code>::cast(ToHandle(target)); | |
3782 __ Jump(code, RelocInfo::CODE_TARGET); | |
3783 } else { | |
3784 DCHECK(instr->target()->IsRegister()); | |
3785 Register target = ToRegister(instr->target()); | |
3786 // Make sure we don't emit any additional entries in the constant pool | |
3787 // before the call to ensure that the CallCodeSize() calculated the | |
3788 // correct | |
3789 // number of instructions for the constant pool load. | |
3790 { | |
3791 ConstantPoolUnavailableScope constant_pool_unavailable(masm_); | |
3792 __ add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag)); | |
3793 } | |
3794 __ Jump(target); | |
3795 } | |
3796 } else { | |
3797 LPointerMap* pointers = instr->pointer_map(); | |
3798 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); | |
3799 | |
3800 if (instr->target()->IsConstantOperand()) { | |
3801 LConstantOperand* target = LConstantOperand::cast(instr->target()); | |
3802 Handle<Code> code = Handle<Code>::cast(ToHandle(target)); | |
3803 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); | |
3804 PlatformInterfaceDescriptor* call_descriptor = | |
3805 instr->descriptor().platform_specific_descriptor(); | |
3806 if (call_descriptor != NULL) { | |
3807 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None(), al, | |
3808 call_descriptor->storage_mode()); | |
3809 } else { | |
3810 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None(), al); | |
3811 } | |
3812 } else { | |
3813 DCHECK(instr->target()->IsRegister()); | |
3814 Register target = ToRegister(instr->target()); | |
3815 generator.BeforeCall(__ CallSize(target)); | |
3816 // Make sure we don't emit any additional entries in the constant pool | |
3817 // before the call to ensure that the CallCodeSize() calculated the | |
3818 // correct | |
3819 // number of instructions for the constant pool load. | |
3820 { | |
3821 ConstantPoolUnavailableScope constant_pool_unavailable(masm_); | |
3822 __ add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag)); | |
3823 } | |
3824 __ Call(target); | |
3825 } | |
3826 generator.AfterCall(); | |
3827 } | |
3828 } | |
3829 | |
3830 | |
3831 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) { | |
3832 DCHECK(ToRegister(instr->function()).is(r1)); | |
3833 DCHECK(ToRegister(instr->result()).is(r0)); | |
3834 | |
3835 __ mov(r0, Operand(instr->arity())); | |
3836 | |
3837 // Change context. | |
3838 __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); | |
3839 | |
3840 // Load the code entry address | |
3841 __ ldr(ip, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); | |
3842 __ Call(ip); | |
3843 | |
3844 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); | |
3845 } | |
3846 | |
3847 | |
3848 void LCodeGen::DoCallFunction(LCallFunction* instr) { | |
3849 DCHECK(ToRegister(instr->context()).is(cp)); | |
3850 DCHECK(ToRegister(instr->function()).is(r1)); | |
3851 DCHECK(ToRegister(instr->result()).is(r0)); | |
3852 | |
3853 int arity = instr->arity(); | |
3854 CallFunctionFlags flags = instr->hydrogen()->function_flags(); | |
3855 if (instr->hydrogen()->HasVectorAndSlot()) { | |
3856 Register slot_register = ToRegister(instr->temp_slot()); | |
3857 Register vector_register = ToRegister(instr->temp_vector()); | |
3858 DCHECK(slot_register.is(r3)); | |
3859 DCHECK(vector_register.is(r2)); | |
3860 | |
3861 AllowDeferredHandleDereference vector_structure_check; | |
3862 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); | |
3863 int index = vector->GetIndex(instr->hydrogen()->slot()); | |
3864 | |
3865 __ Move(vector_register, vector); | |
3866 __ mov(slot_register, Operand(Smi::FromInt(index))); | |
3867 | |
3868 CallICState::CallType call_type = | |
3869 (flags & CALL_AS_METHOD) ? CallICState::METHOD : CallICState::FUNCTION; | |
3870 | |
3871 Handle<Code> ic = | |
3872 CodeFactory::CallICInOptimizedCode(isolate(), arity, call_type).code(); | |
3873 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
3874 } else { | |
3875 CallFunctionStub stub(isolate(), arity, flags); | |
3876 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
3877 } | |
3878 } | |
3879 | |
3880 | |
3881 void LCodeGen::DoCallNew(LCallNew* instr) { | |
3882 DCHECK(ToRegister(instr->context()).is(cp)); | |
3883 DCHECK(ToRegister(instr->constructor()).is(r1)); | |
3884 DCHECK(ToRegister(instr->result()).is(r0)); | |
3885 | |
3886 __ mov(r0, Operand(instr->arity())); | |
3887 // No cell in r2 for construct type feedback in optimized code | |
3888 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); | |
3889 CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS); | |
3890 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
3891 } | |
3892 | |
3893 | |
3894 void LCodeGen::DoCallNewArray(LCallNewArray* instr) { | |
3895 DCHECK(ToRegister(instr->context()).is(cp)); | |
3896 DCHECK(ToRegister(instr->constructor()).is(r1)); | |
3897 DCHECK(ToRegister(instr->result()).is(r0)); | |
3898 | |
3899 __ mov(r0, Operand(instr->arity())); | |
3900 if (instr->arity() == 1) { | |
3901 // We only need the allocation site for the case we have a length argument. | |
3902 // The case may bail out to the runtime, which will determine the correct | |
3903 // elements kind with the site. | |
3904 __ Move(r2, instr->hydrogen()->site()); | |
3905 } else { | |
3906 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); | |
3907 } | |
3908 ElementsKind kind = instr->hydrogen()->elements_kind(); | |
3909 AllocationSiteOverrideMode override_mode = | |
3910 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) | |
3911 ? DISABLE_ALLOCATION_SITES | |
3912 : DONT_OVERRIDE; | |
3913 | |
3914 if (instr->arity() == 0) { | |
3915 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); | |
3916 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
3917 } else if (instr->arity() == 1) { | |
3918 Label done; | |
3919 if (IsFastPackedElementsKind(kind)) { | |
3920 Label packed_case; | |
3921 // We might need a change here | |
3922 // look at the first argument | |
3923 __ ldr(r5, MemOperand(sp, 0)); | |
3924 __ cmp(r5, Operand::Zero()); | |
3925 __ b(eq, &packed_case); | |
3926 | |
3927 ElementsKind holey_kind = GetHoleyElementsKind(kind); | |
3928 ArraySingleArgumentConstructorStub stub(isolate(), | |
3929 holey_kind, | |
3930 override_mode); | |
3931 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
3932 __ jmp(&done); | |
3933 __ bind(&packed_case); | |
3934 } | |
3935 | |
3936 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); | |
3937 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
3938 __ bind(&done); | |
3939 } else { | |
3940 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode); | |
3941 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
3942 } | |
3943 } | |
3944 | |
3945 | |
3946 void LCodeGen::DoCallRuntime(LCallRuntime* instr) { | |
3947 CallRuntime(instr->function(), instr->arity(), instr); | |
3948 } | |
3949 | |
3950 | |
3951 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { | |
3952 Register function = ToRegister(instr->function()); | |
3953 Register code_object = ToRegister(instr->code_object()); | |
3954 __ add(code_object, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); | |
3955 __ str(code_object, | |
3956 FieldMemOperand(function, JSFunction::kCodeEntryOffset)); | |
3957 } | |
3958 | |
3959 | |
3960 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { | |
3961 Register result = ToRegister(instr->result()); | |
3962 Register base = ToRegister(instr->base_object()); | |
3963 if (instr->offset()->IsConstantOperand()) { | |
3964 LConstantOperand* offset = LConstantOperand::cast(instr->offset()); | |
3965 __ add(result, base, Operand(ToInteger32(offset))); | |
3966 } else { | |
3967 Register offset = ToRegister(instr->offset()); | |
3968 __ add(result, base, offset); | |
3969 } | |
3970 } | |
3971 | |
3972 | |
3973 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { | |
3974 Representation representation = instr->representation(); | |
3975 | |
3976 Register object = ToRegister(instr->object()); | |
3977 Register scratch = scratch0(); | |
3978 HObjectAccess access = instr->hydrogen()->access(); | |
3979 int offset = access.offset(); | |
3980 | |
3981 if (access.IsExternalMemory()) { | |
3982 Register value = ToRegister(instr->value()); | |
3983 MemOperand operand = MemOperand(object, offset); | |
3984 __ Store(value, operand, representation); | |
3985 return; | |
3986 } | |
3987 | |
3988 __ AssertNotSmi(object); | |
3989 | |
3990 DCHECK(!representation.IsSmi() || | |
3991 !instr->value()->IsConstantOperand() || | |
3992 IsSmi(LConstantOperand::cast(instr->value()))); | |
3993 if (representation.IsDouble()) { | |
3994 DCHECK(access.IsInobject()); | |
3995 DCHECK(!instr->hydrogen()->has_transition()); | |
3996 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); | |
3997 DwVfpRegister value = ToDoubleRegister(instr->value()); | |
3998 __ vstr(value, FieldMemOperand(object, offset)); | |
3999 return; | |
4000 } | |
4001 | |
4002 if (instr->hydrogen()->has_transition()) { | |
4003 Handle<Map> transition = instr->hydrogen()->transition_map(); | |
4004 AddDeprecationDependency(transition); | |
4005 __ mov(scratch, Operand(transition)); | |
4006 __ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); | |
4007 if (instr->hydrogen()->NeedsWriteBarrierForMap()) { | |
4008 Register temp = ToRegister(instr->temp()); | |
4009 // Update the write barrier for the map field. | |
4010 __ RecordWriteForMap(object, | |
4011 scratch, | |
4012 temp, | |
4013 GetLinkRegisterState(), | |
4014 kSaveFPRegs); | |
4015 } | |
4016 } | |
4017 | |
4018 // Do the store. | |
4019 Register value = ToRegister(instr->value()); | |
4020 if (access.IsInobject()) { | |
4021 MemOperand operand = FieldMemOperand(object, offset); | |
4022 __ Store(value, operand, representation); | |
4023 if (instr->hydrogen()->NeedsWriteBarrier()) { | |
4024 // Update the write barrier for the object for in-object properties. | |
4025 __ RecordWriteField(object, | |
4026 offset, | |
4027 value, | |
4028 scratch, | |
4029 GetLinkRegisterState(), | |
4030 kSaveFPRegs, | |
4031 EMIT_REMEMBERED_SET, | |
4032 instr->hydrogen()->SmiCheckForWriteBarrier(), | |
4033 instr->hydrogen()->PointersToHereCheckForValue()); | |
4034 } | |
4035 } else { | |
4036 __ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset)); | |
4037 MemOperand operand = FieldMemOperand(scratch, offset); | |
4038 __ Store(value, operand, representation); | |
4039 if (instr->hydrogen()->NeedsWriteBarrier()) { | |
4040 // Update the write barrier for the properties array. | |
4041 // object is used as a scratch register. | |
4042 __ RecordWriteField(scratch, | |
4043 offset, | |
4044 value, | |
4045 object, | |
4046 GetLinkRegisterState(), | |
4047 kSaveFPRegs, | |
4048 EMIT_REMEMBERED_SET, | |
4049 instr->hydrogen()->SmiCheckForWriteBarrier(), | |
4050 instr->hydrogen()->PointersToHereCheckForValue()); | |
4051 } | |
4052 } | |
4053 } | |
4054 | |
4055 | |
4056 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { | |
4057 DCHECK(ToRegister(instr->context()).is(cp)); | |
4058 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); | |
4059 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); | |
4060 | |
4061 if (instr->hydrogen()->HasVectorAndSlot()) { | |
4062 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr); | |
4063 } | |
4064 | |
4065 __ mov(StoreDescriptor::NameRegister(), Operand(instr->name())); | |
4066 Handle<Code> ic = CodeFactory::StoreICInOptimizedCode( | |
4067 isolate(), instr->language_mode(), | |
4068 instr->hydrogen()->initialization_state()).code(); | |
4069 CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); | |
4070 } | |
4071 | |
4072 | |
4073 void LCodeGen::DoStoreGlobalViaContext(LStoreGlobalViaContext* instr) { | |
4074 DCHECK(ToRegister(instr->context()).is(cp)); | |
4075 DCHECK(ToRegister(instr->value()) | |
4076 .is(StoreGlobalViaContextDescriptor::ValueRegister())); | |
4077 | |
4078 int const slot = instr->slot_index(); | |
4079 int const depth = instr->depth(); | |
4080 if (depth <= StoreGlobalViaContextStub::kMaximumDepth) { | |
4081 __ mov(StoreGlobalViaContextDescriptor::SlotRegister(), Operand(slot)); | |
4082 Handle<Code> stub = CodeFactory::StoreGlobalViaContext( | |
4083 isolate(), depth, instr->language_mode()) | |
4084 .code(); | |
4085 CallCode(stub, RelocInfo::CODE_TARGET, instr); | |
4086 } else { | |
4087 __ Push(Smi::FromInt(slot)); | |
4088 __ push(StoreGlobalViaContextDescriptor::ValueRegister()); | |
4089 __ CallRuntime(is_strict(instr->language_mode()) | |
4090 ? Runtime::kStoreGlobalViaContext_Strict | |
4091 : Runtime::kStoreGlobalViaContext_Sloppy, | |
4092 2); | |
4093 } | |
4094 } | |
4095 | |
4096 | |
4097 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { | |
4098 Condition cc = instr->hydrogen()->allow_equality() ? hi : hs; | |
4099 if (instr->index()->IsConstantOperand()) { | |
4100 Operand index = ToOperand(instr->index()); | |
4101 Register length = ToRegister(instr->length()); | |
4102 __ cmp(length, index); | |
4103 cc = CommuteCondition(cc); | |
4104 } else { | |
4105 Register index = ToRegister(instr->index()); | |
4106 Operand length = ToOperand(instr->length()); | |
4107 __ cmp(index, length); | |
4108 } | |
4109 if (FLAG_debug_code && instr->hydrogen()->skip_check()) { | |
4110 Label done; | |
4111 __ b(NegateCondition(cc), &done); | |
4112 __ stop("eliminated bounds check failed"); | |
4113 __ bind(&done); | |
4114 } else { | |
4115 DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds); | |
4116 } | |
4117 } | |
4118 | |
4119 | |
4120 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) { | |
4121 Register external_pointer = ToRegister(instr->elements()); | |
4122 Register key = no_reg; | |
4123 ElementsKind elements_kind = instr->elements_kind(); | |
4124 bool key_is_constant = instr->key()->IsConstantOperand(); | |
4125 int constant_key = 0; | |
4126 if (key_is_constant) { | |
4127 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); | |
4128 if (constant_key & 0xF0000000) { | |
4129 Abort(kArrayIndexConstantValueTooBig); | |
4130 } | |
4131 } else { | |
4132 key = ToRegister(instr->key()); | |
4133 } | |
4134 int element_size_shift = ElementsKindToShiftSize(elements_kind); | |
4135 int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) | |
4136 ? (element_size_shift - kSmiTagSize) : element_size_shift; | |
4137 int base_offset = instr->base_offset(); | |
4138 | |
4139 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) { | |
4140 Register address = scratch0(); | |
4141 DwVfpRegister value(ToDoubleRegister(instr->value())); | |
4142 if (key_is_constant) { | |
4143 if (constant_key != 0) { | |
4144 __ add(address, external_pointer, | |
4145 Operand(constant_key << element_size_shift)); | |
4146 } else { | |
4147 address = external_pointer; | |
4148 } | |
4149 } else { | |
4150 __ add(address, external_pointer, Operand(key, LSL, shift_size)); | |
4151 } | |
4152 if (elements_kind == FLOAT32_ELEMENTS) { | |
4153 __ vcvt_f32_f64(double_scratch0().low(), value); | |
4154 __ vstr(double_scratch0().low(), address, base_offset); | |
4155 } else { // Storing doubles, not floats. | |
4156 __ vstr(value, address, base_offset); | |
4157 } | |
4158 } else { | |
4159 Register value(ToRegister(instr->value())); | |
4160 MemOperand mem_operand = PrepareKeyedOperand( | |
4161 key, external_pointer, key_is_constant, constant_key, | |
4162 element_size_shift, shift_size, | |
4163 base_offset); | |
4164 switch (elements_kind) { | |
4165 case UINT8_ELEMENTS: | |
4166 case UINT8_CLAMPED_ELEMENTS: | |
4167 case INT8_ELEMENTS: | |
4168 __ strb(value, mem_operand); | |
4169 break; | |
4170 case INT16_ELEMENTS: | |
4171 case UINT16_ELEMENTS: | |
4172 __ strh(value, mem_operand); | |
4173 break; | |
4174 case INT32_ELEMENTS: | |
4175 case UINT32_ELEMENTS: | |
4176 __ str(value, mem_operand); | |
4177 break; | |
4178 case FLOAT32_ELEMENTS: | |
4179 case FLOAT64_ELEMENTS: | |
4180 case FAST_DOUBLE_ELEMENTS: | |
4181 case FAST_ELEMENTS: | |
4182 case FAST_SMI_ELEMENTS: | |
4183 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
4184 case FAST_HOLEY_ELEMENTS: | |
4185 case FAST_HOLEY_SMI_ELEMENTS: | |
4186 case DICTIONARY_ELEMENTS: | |
4187 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
4188 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: | |
4189 UNREACHABLE(); | |
4190 break; | |
4191 } | |
4192 } | |
4193 } | |
4194 | |
4195 | |
4196 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) { | |
4197 DwVfpRegister value = ToDoubleRegister(instr->value()); | |
4198 Register elements = ToRegister(instr->elements()); | |
4199 Register scratch = scratch0(); | |
4200 DwVfpRegister double_scratch = double_scratch0(); | |
4201 bool key_is_constant = instr->key()->IsConstantOperand(); | |
4202 int base_offset = instr->base_offset(); | |
4203 | |
4204 // Calculate the effective address of the slot in the array to store the | |
4205 // double value. | |
4206 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); | |
4207 if (key_is_constant) { | |
4208 int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); | |
4209 if (constant_key & 0xF0000000) { | |
4210 Abort(kArrayIndexConstantValueTooBig); | |
4211 } | |
4212 __ add(scratch, elements, | |
4213 Operand((constant_key << element_size_shift) + base_offset)); | |
4214 } else { | |
4215 int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) | |
4216 ? (element_size_shift - kSmiTagSize) : element_size_shift; | |
4217 __ add(scratch, elements, Operand(base_offset)); | |
4218 __ add(scratch, scratch, | |
4219 Operand(ToRegister(instr->key()), LSL, shift_size)); | |
4220 } | |
4221 | |
4222 if (instr->NeedsCanonicalization()) { | |
4223 // Force a canonical NaN. | |
4224 if (masm()->emit_debug_code()) { | |
4225 __ vmrs(ip); | |
4226 __ tst(ip, Operand(kVFPDefaultNaNModeControlBit)); | |
4227 __ Assert(ne, kDefaultNaNModeNotSet); | |
4228 } | |
4229 __ VFPCanonicalizeNaN(double_scratch, value); | |
4230 __ vstr(double_scratch, scratch, 0); | |
4231 } else { | |
4232 __ vstr(value, scratch, 0); | |
4233 } | |
4234 } | |
4235 | |
4236 | |
4237 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) { | |
4238 Register value = ToRegister(instr->value()); | |
4239 Register elements = ToRegister(instr->elements()); | |
4240 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) | |
4241 : no_reg; | |
4242 Register scratch = scratch0(); | |
4243 Register store_base = scratch; | |
4244 int offset = instr->base_offset(); | |
4245 | |
4246 // Do the store. | |
4247 if (instr->key()->IsConstantOperand()) { | |
4248 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); | |
4249 LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); | |
4250 offset += ToInteger32(const_operand) * kPointerSize; | |
4251 store_base = elements; | |
4252 } else { | |
4253 // Even though the HLoadKeyed instruction forces the input | |
4254 // representation for the key to be an integer, the input gets replaced | |
4255 // during bound check elimination with the index argument to the bounds | |
4256 // check, which can be tagged, so that case must be handled here, too. | |
4257 if (instr->hydrogen()->key()->representation().IsSmi()) { | |
4258 __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key)); | |
4259 } else { | |
4260 __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2)); | |
4261 } | |
4262 } | |
4263 __ str(value, MemOperand(store_base, offset)); | |
4264 | |
4265 if (instr->hydrogen()->NeedsWriteBarrier()) { | |
4266 SmiCheck check_needed = | |
4267 instr->hydrogen()->value()->type().IsHeapObject() | |
4268 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | |
4269 // Compute address of modified element and store it into key register. | |
4270 __ add(key, store_base, Operand(offset)); | |
4271 __ RecordWrite(elements, | |
4272 key, | |
4273 value, | |
4274 GetLinkRegisterState(), | |
4275 kSaveFPRegs, | |
4276 EMIT_REMEMBERED_SET, | |
4277 check_needed, | |
4278 instr->hydrogen()->PointersToHereCheckForValue()); | |
4279 } | |
4280 } | |
4281 | |
4282 | |
4283 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) { | |
4284 // By cases: external, fast double | |
4285 if (instr->is_fixed_typed_array()) { | |
4286 DoStoreKeyedExternalArray(instr); | |
4287 } else if (instr->hydrogen()->value()->representation().IsDouble()) { | |
4288 DoStoreKeyedFixedDoubleArray(instr); | |
4289 } else { | |
4290 DoStoreKeyedFixedArray(instr); | |
4291 } | |
4292 } | |
4293 | |
4294 | |
4295 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { | |
4296 DCHECK(ToRegister(instr->context()).is(cp)); | |
4297 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); | |
4298 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister())); | |
4299 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); | |
4300 | |
4301 if (instr->hydrogen()->HasVectorAndSlot()) { | |
4302 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr); | |
4303 } | |
4304 | |
4305 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode( | |
4306 isolate(), instr->language_mode(), | |
4307 instr->hydrogen()->initialization_state()).code(); | |
4308 CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); | |
4309 } | |
4310 | |
4311 | |
4312 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) { | |
4313 class DeferredMaybeGrowElements final : public LDeferredCode { | |
4314 public: | |
4315 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr) | |
4316 : LDeferredCode(codegen), instr_(instr) {} | |
4317 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); } | |
4318 LInstruction* instr() override { return instr_; } | |
4319 | |
4320 private: | |
4321 LMaybeGrowElements* instr_; | |
4322 }; | |
4323 | |
4324 Register result = r0; | |
4325 DeferredMaybeGrowElements* deferred = | |
4326 new (zone()) DeferredMaybeGrowElements(this, instr); | |
4327 LOperand* key = instr->key(); | |
4328 LOperand* current_capacity = instr->current_capacity(); | |
4329 | |
4330 DCHECK(instr->hydrogen()->key()->representation().IsInteger32()); | |
4331 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32()); | |
4332 DCHECK(key->IsConstantOperand() || key->IsRegister()); | |
4333 DCHECK(current_capacity->IsConstantOperand() || | |
4334 current_capacity->IsRegister()); | |
4335 | |
4336 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) { | |
4337 int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); | |
4338 int32_t constant_capacity = | |
4339 ToInteger32(LConstantOperand::cast(current_capacity)); | |
4340 if (constant_key >= constant_capacity) { | |
4341 // Deferred case. | |
4342 __ jmp(deferred->entry()); | |
4343 } | |
4344 } else if (key->IsConstantOperand()) { | |
4345 int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); | |
4346 __ cmp(ToRegister(current_capacity), Operand(constant_key)); | |
4347 __ b(le, deferred->entry()); | |
4348 } else if (current_capacity->IsConstantOperand()) { | |
4349 int32_t constant_capacity = | |
4350 ToInteger32(LConstantOperand::cast(current_capacity)); | |
4351 __ cmp(ToRegister(key), Operand(constant_capacity)); | |
4352 __ b(ge, deferred->entry()); | |
4353 } else { | |
4354 __ cmp(ToRegister(key), ToRegister(current_capacity)); | |
4355 __ b(ge, deferred->entry()); | |
4356 } | |
4357 | |
4358 if (instr->elements()->IsRegister()) { | |
4359 __ Move(result, ToRegister(instr->elements())); | |
4360 } else { | |
4361 __ ldr(result, ToMemOperand(instr->elements())); | |
4362 } | |
4363 | |
4364 __ bind(deferred->exit()); | |
4365 } | |
4366 | |
4367 | |
4368 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) { | |
4369 // TODO(3095996): Get rid of this. For now, we need to make the | |
4370 // result register contain a valid pointer because it is already | |
4371 // contained in the register pointer map. | |
4372 Register result = r0; | |
4373 __ mov(result, Operand::Zero()); | |
4374 | |
4375 // We have to call a stub. | |
4376 { | |
4377 PushSafepointRegistersScope scope(this); | |
4378 if (instr->object()->IsRegister()) { | |
4379 __ Move(result, ToRegister(instr->object())); | |
4380 } else { | |
4381 __ ldr(result, ToMemOperand(instr->object())); | |
4382 } | |
4383 | |
4384 LOperand* key = instr->key(); | |
4385 if (key->IsConstantOperand()) { | |
4386 __ Move(r3, Operand(ToSmi(LConstantOperand::cast(key)))); | |
4387 } else { | |
4388 __ Move(r3, ToRegister(key)); | |
4389 __ SmiTag(r3); | |
4390 } | |
4391 | |
4392 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(), | |
4393 instr->hydrogen()->kind()); | |
4394 __ CallStub(&stub); | |
4395 RecordSafepointWithLazyDeopt( | |
4396 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | |
4397 __ StoreToSafepointRegisterSlot(result, result); | |
4398 } | |
4399 | |
4400 // Deopt on smi, which means the elements array changed to dictionary mode. | |
4401 __ SmiTst(result); | |
4402 DeoptimizeIf(eq, instr, Deoptimizer::kSmi); | |
4403 } | |
4404 | |
4405 | |
4406 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { | |
4407 Register object_reg = ToRegister(instr->object()); | |
4408 Register scratch = scratch0(); | |
4409 | |
4410 Handle<Map> from_map = instr->original_map(); | |
4411 Handle<Map> to_map = instr->transitioned_map(); | |
4412 ElementsKind from_kind = instr->from_kind(); | |
4413 ElementsKind to_kind = instr->to_kind(); | |
4414 | |
4415 Label not_applicable; | |
4416 __ ldr(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset)); | |
4417 __ cmp(scratch, Operand(from_map)); | |
4418 __ b(ne, ¬_applicable); | |
4419 | |
4420 if (IsSimpleMapChangeTransition(from_kind, to_kind)) { | |
4421 Register new_map_reg = ToRegister(instr->new_map_temp()); | |
4422 __ mov(new_map_reg, Operand(to_map)); | |
4423 __ str(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset)); | |
4424 // Write barrier. | |
4425 __ RecordWriteForMap(object_reg, | |
4426 new_map_reg, | |
4427 scratch, | |
4428 GetLinkRegisterState(), | |
4429 kDontSaveFPRegs); | |
4430 } else { | |
4431 DCHECK(ToRegister(instr->context()).is(cp)); | |
4432 DCHECK(object_reg.is(r0)); | |
4433 PushSafepointRegistersScope scope(this); | |
4434 __ Move(r1, to_map); | |
4435 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE; | |
4436 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array); | |
4437 __ CallStub(&stub); | |
4438 RecordSafepointWithRegisters( | |
4439 instr->pointer_map(), 0, Safepoint::kLazyDeopt); | |
4440 } | |
4441 __ bind(¬_applicable); | |
4442 } | |
4443 | |
4444 | |
4445 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { | |
4446 Register object = ToRegister(instr->object()); | |
4447 Register temp = ToRegister(instr->temp()); | |
4448 Label no_memento_found; | |
4449 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found); | |
4450 DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound); | |
4451 __ bind(&no_memento_found); | |
4452 } | |
4453 | |
4454 | |
4455 void LCodeGen::DoStringAdd(LStringAdd* instr) { | |
4456 DCHECK(ToRegister(instr->context()).is(cp)); | |
4457 DCHECK(ToRegister(instr->left()).is(r1)); | |
4458 DCHECK(ToRegister(instr->right()).is(r0)); | |
4459 StringAddStub stub(isolate(), | |
4460 instr->hydrogen()->flags(), | |
4461 instr->hydrogen()->pretenure_flag()); | |
4462 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
4463 } | |
4464 | |
4465 | |
4466 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { | |
4467 class DeferredStringCharCodeAt final : public LDeferredCode { | |
4468 public: | |
4469 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) | |
4470 : LDeferredCode(codegen), instr_(instr) { } | |
4471 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); } | |
4472 LInstruction* instr() override { return instr_; } | |
4473 | |
4474 private: | |
4475 LStringCharCodeAt* instr_; | |
4476 }; | |
4477 | |
4478 DeferredStringCharCodeAt* deferred = | |
4479 new(zone()) DeferredStringCharCodeAt(this, instr); | |
4480 | |
4481 StringCharLoadGenerator::Generate(masm(), | |
4482 ToRegister(instr->string()), | |
4483 ToRegister(instr->index()), | |
4484 ToRegister(instr->result()), | |
4485 deferred->entry()); | |
4486 __ bind(deferred->exit()); | |
4487 } | |
4488 | |
4489 | |
4490 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { | |
4491 Register string = ToRegister(instr->string()); | |
4492 Register result = ToRegister(instr->result()); | |
4493 Register scratch = scratch0(); | |
4494 | |
4495 // TODO(3095996): Get rid of this. For now, we need to make the | |
4496 // result register contain a valid pointer because it is already | |
4497 // contained in the register pointer map. | |
4498 __ mov(result, Operand::Zero()); | |
4499 | |
4500 PushSafepointRegistersScope scope(this); | |
4501 __ push(string); | |
4502 // Push the index as a smi. This is safe because of the checks in | |
4503 // DoStringCharCodeAt above. | |
4504 if (instr->index()->IsConstantOperand()) { | |
4505 int const_index = ToInteger32(LConstantOperand::cast(instr->index())); | |
4506 __ mov(scratch, Operand(Smi::FromInt(const_index))); | |
4507 __ push(scratch); | |
4508 } else { | |
4509 Register index = ToRegister(instr->index()); | |
4510 __ SmiTag(index); | |
4511 __ push(index); | |
4512 } | |
4513 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr, | |
4514 instr->context()); | |
4515 __ AssertSmi(r0); | |
4516 __ SmiUntag(r0); | |
4517 __ StoreToSafepointRegisterSlot(r0, result); | |
4518 } | |
4519 | |
4520 | |
4521 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { | |
4522 class DeferredStringCharFromCode final : public LDeferredCode { | |
4523 public: | |
4524 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) | |
4525 : LDeferredCode(codegen), instr_(instr) { } | |
4526 void Generate() override { | |
4527 codegen()->DoDeferredStringCharFromCode(instr_); | |
4528 } | |
4529 LInstruction* instr() override { return instr_; } | |
4530 | |
4531 private: | |
4532 LStringCharFromCode* instr_; | |
4533 }; | |
4534 | |
4535 DeferredStringCharFromCode* deferred = | |
4536 new(zone()) DeferredStringCharFromCode(this, instr); | |
4537 | |
4538 DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); | |
4539 Register char_code = ToRegister(instr->char_code()); | |
4540 Register result = ToRegister(instr->result()); | |
4541 DCHECK(!char_code.is(result)); | |
4542 | |
4543 __ cmp(char_code, Operand(String::kMaxOneByteCharCode)); | |
4544 __ b(hi, deferred->entry()); | |
4545 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); | |
4546 __ add(result, result, Operand(char_code, LSL, kPointerSizeLog2)); | |
4547 __ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize)); | |
4548 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | |
4549 __ cmp(result, ip); | |
4550 __ b(eq, deferred->entry()); | |
4551 __ bind(deferred->exit()); | |
4552 } | |
4553 | |
4554 | |
4555 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { | |
4556 Register char_code = ToRegister(instr->char_code()); | |
4557 Register result = ToRegister(instr->result()); | |
4558 | |
4559 // TODO(3095996): Get rid of this. For now, we need to make the | |
4560 // result register contain a valid pointer because it is already | |
4561 // contained in the register pointer map. | |
4562 __ mov(result, Operand::Zero()); | |
4563 | |
4564 PushSafepointRegistersScope scope(this); | |
4565 __ SmiTag(char_code); | |
4566 __ push(char_code); | |
4567 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context()); | |
4568 __ StoreToSafepointRegisterSlot(r0, result); | |
4569 } | |
4570 | |
4571 | |
4572 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { | |
4573 LOperand* input = instr->value(); | |
4574 DCHECK(input->IsRegister() || input->IsStackSlot()); | |
4575 LOperand* output = instr->result(); | |
4576 DCHECK(output->IsDoubleRegister()); | |
4577 SwVfpRegister single_scratch = double_scratch0().low(); | |
4578 if (input->IsStackSlot()) { | |
4579 Register scratch = scratch0(); | |
4580 __ ldr(scratch, ToMemOperand(input)); | |
4581 __ vmov(single_scratch, scratch); | |
4582 } else { | |
4583 __ vmov(single_scratch, ToRegister(input)); | |
4584 } | |
4585 __ vcvt_f64_s32(ToDoubleRegister(output), single_scratch); | |
4586 } | |
4587 | |
4588 | |
4589 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { | |
4590 LOperand* input = instr->value(); | |
4591 LOperand* output = instr->result(); | |
4592 | |
4593 SwVfpRegister flt_scratch = double_scratch0().low(); | |
4594 __ vmov(flt_scratch, ToRegister(input)); | |
4595 __ vcvt_f64_u32(ToDoubleRegister(output), flt_scratch); | |
4596 } | |
4597 | |
4598 | |
4599 void LCodeGen::DoNumberTagI(LNumberTagI* instr) { | |
4600 class DeferredNumberTagI final : public LDeferredCode { | |
4601 public: | |
4602 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) | |
4603 : LDeferredCode(codegen), instr_(instr) { } | |
4604 void Generate() override { | |
4605 codegen()->DoDeferredNumberTagIU(instr_, | |
4606 instr_->value(), | |
4607 instr_->temp1(), | |
4608 instr_->temp2(), | |
4609 SIGNED_INT32); | |
4610 } | |
4611 LInstruction* instr() override { return instr_; } | |
4612 | |
4613 private: | |
4614 LNumberTagI* instr_; | |
4615 }; | |
4616 | |
4617 Register src = ToRegister(instr->value()); | |
4618 Register dst = ToRegister(instr->result()); | |
4619 | |
4620 DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr); | |
4621 __ SmiTag(dst, src, SetCC); | |
4622 __ b(vs, deferred->entry()); | |
4623 __ bind(deferred->exit()); | |
4624 } | |
4625 | |
4626 | |
4627 void LCodeGen::DoNumberTagU(LNumberTagU* instr) { | |
4628 class DeferredNumberTagU final : public LDeferredCode { | |
4629 public: | |
4630 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) | |
4631 : LDeferredCode(codegen), instr_(instr) { } | |
4632 void Generate() override { | |
4633 codegen()->DoDeferredNumberTagIU(instr_, | |
4634 instr_->value(), | |
4635 instr_->temp1(), | |
4636 instr_->temp2(), | |
4637 UNSIGNED_INT32); | |
4638 } | |
4639 LInstruction* instr() override { return instr_; } | |
4640 | |
4641 private: | |
4642 LNumberTagU* instr_; | |
4643 }; | |
4644 | |
4645 Register input = ToRegister(instr->value()); | |
4646 Register result = ToRegister(instr->result()); | |
4647 | |
4648 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); | |
4649 __ cmp(input, Operand(Smi::kMaxValue)); | |
4650 __ b(hi, deferred->entry()); | |
4651 __ SmiTag(result, input); | |
4652 __ bind(deferred->exit()); | |
4653 } | |
4654 | |
4655 | |
4656 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, | |
4657 LOperand* value, | |
4658 LOperand* temp1, | |
4659 LOperand* temp2, | |
4660 IntegerSignedness signedness) { | |
4661 Label done, slow; | |
4662 Register src = ToRegister(value); | |
4663 Register dst = ToRegister(instr->result()); | |
4664 Register tmp1 = scratch0(); | |
4665 Register tmp2 = ToRegister(temp1); | |
4666 Register tmp3 = ToRegister(temp2); | |
4667 LowDwVfpRegister dbl_scratch = double_scratch0(); | |
4668 | |
4669 if (signedness == SIGNED_INT32) { | |
4670 // There was overflow, so bits 30 and 31 of the original integer | |
4671 // disagree. Try to allocate a heap number in new space and store | |
4672 // the value in there. If that fails, call the runtime system. | |
4673 if (dst.is(src)) { | |
4674 __ SmiUntag(src, dst); | |
4675 __ eor(src, src, Operand(0x80000000)); | |
4676 } | |
4677 __ vmov(dbl_scratch.low(), src); | |
4678 __ vcvt_f64_s32(dbl_scratch, dbl_scratch.low()); | |
4679 } else { | |
4680 __ vmov(dbl_scratch.low(), src); | |
4681 __ vcvt_f64_u32(dbl_scratch, dbl_scratch.low()); | |
4682 } | |
4683 | |
4684 if (FLAG_inline_new) { | |
4685 __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex); | |
4686 __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow, DONT_TAG_RESULT); | |
4687 __ b(&done); | |
4688 } | |
4689 | |
4690 // Slow case: Call the runtime system to do the number allocation. | |
4691 __ bind(&slow); | |
4692 { | |
4693 // TODO(3095996): Put a valid pointer value in the stack slot where the | |
4694 // result register is stored, as this register is in the pointer map, but | |
4695 // contains an integer value. | |
4696 __ mov(dst, Operand::Zero()); | |
4697 | |
4698 // Preserve the value of all registers. | |
4699 PushSafepointRegistersScope scope(this); | |
4700 | |
4701 // NumberTagI and NumberTagD use the context from the frame, rather than | |
4702 // the environment's HContext or HInlinedContext value. | |
4703 // They only call Runtime::kAllocateHeapNumber. | |
4704 // The corresponding HChange instructions are added in a phase that does | |
4705 // not have easy access to the local context. | |
4706 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); | |
4707 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); | |
4708 RecordSafepointWithRegisters( | |
4709 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); | |
4710 __ sub(r0, r0, Operand(kHeapObjectTag)); | |
4711 __ StoreToSafepointRegisterSlot(r0, dst); | |
4712 } | |
4713 | |
4714 // Done. Put the value in dbl_scratch into the value of the allocated heap | |
4715 // number. | |
4716 __ bind(&done); | |
4717 __ vstr(dbl_scratch, dst, HeapNumber::kValueOffset); | |
4718 __ add(dst, dst, Operand(kHeapObjectTag)); | |
4719 } | |
4720 | |
4721 | |
4722 void LCodeGen::DoNumberTagD(LNumberTagD* instr) { | |
4723 class DeferredNumberTagD final : public LDeferredCode { | |
4724 public: | |
4725 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) | |
4726 : LDeferredCode(codegen), instr_(instr) { } | |
4727 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); } | |
4728 LInstruction* instr() override { return instr_; } | |
4729 | |
4730 private: | |
4731 LNumberTagD* instr_; | |
4732 }; | |
4733 | |
4734 DwVfpRegister input_reg = ToDoubleRegister(instr->value()); | |
4735 Register scratch = scratch0(); | |
4736 Register reg = ToRegister(instr->result()); | |
4737 Register temp1 = ToRegister(instr->temp()); | |
4738 Register temp2 = ToRegister(instr->temp2()); | |
4739 | |
4740 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); | |
4741 if (FLAG_inline_new) { | |
4742 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex); | |
4743 // We want the untagged address first for performance | |
4744 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(), | |
4745 DONT_TAG_RESULT); | |
4746 } else { | |
4747 __ jmp(deferred->entry()); | |
4748 } | |
4749 __ bind(deferred->exit()); | |
4750 __ vstr(input_reg, reg, HeapNumber::kValueOffset); | |
4751 // Now that we have finished with the object's real address tag it | |
4752 __ add(reg, reg, Operand(kHeapObjectTag)); | |
4753 } | |
4754 | |
4755 | |
4756 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { | |
4757 // TODO(3095996): Get rid of this. For now, we need to make the | |
4758 // result register contain a valid pointer because it is already | |
4759 // contained in the register pointer map. | |
4760 Register reg = ToRegister(instr->result()); | |
4761 __ mov(reg, Operand::Zero()); | |
4762 | |
4763 PushSafepointRegistersScope scope(this); | |
4764 // NumberTagI and NumberTagD use the context from the frame, rather than | |
4765 // the environment's HContext or HInlinedContext value. | |
4766 // They only call Runtime::kAllocateHeapNumber. | |
4767 // The corresponding HChange instructions are added in a phase that does | |
4768 // not have easy access to the local context. | |
4769 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); | |
4770 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); | |
4771 RecordSafepointWithRegisters( | |
4772 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); | |
4773 __ sub(r0, r0, Operand(kHeapObjectTag)); | |
4774 __ StoreToSafepointRegisterSlot(r0, reg); | |
4775 } | |
4776 | |
4777 | |
4778 void LCodeGen::DoSmiTag(LSmiTag* instr) { | |
4779 HChange* hchange = instr->hydrogen(); | |
4780 Register input = ToRegister(instr->value()); | |
4781 Register output = ToRegister(instr->result()); | |
4782 if (hchange->CheckFlag(HValue::kCanOverflow) && | |
4783 hchange->value()->CheckFlag(HValue::kUint32)) { | |
4784 __ tst(input, Operand(0xc0000000)); | |
4785 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow); | |
4786 } | |
4787 if (hchange->CheckFlag(HValue::kCanOverflow) && | |
4788 !hchange->value()->CheckFlag(HValue::kUint32)) { | |
4789 __ SmiTag(output, input, SetCC); | |
4790 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
4791 } else { | |
4792 __ SmiTag(output, input); | |
4793 } | |
4794 } | |
4795 | |
4796 | |
4797 void LCodeGen::DoSmiUntag(LSmiUntag* instr) { | |
4798 Register input = ToRegister(instr->value()); | |
4799 Register result = ToRegister(instr->result()); | |
4800 if (instr->needs_check()) { | |
4801 STATIC_ASSERT(kHeapObjectTag == 1); | |
4802 // If the input is a HeapObject, SmiUntag will set the carry flag. | |
4803 __ SmiUntag(result, input, SetCC); | |
4804 DeoptimizeIf(cs, instr, Deoptimizer::kNotASmi); | |
4805 } else { | |
4806 __ SmiUntag(result, input); | |
4807 } | |
4808 } | |
4809 | |
4810 | |
4811 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg, | |
4812 DwVfpRegister result_reg, | |
4813 NumberUntagDMode mode) { | |
4814 bool can_convert_undefined_to_nan = | |
4815 instr->hydrogen()->can_convert_undefined_to_nan(); | |
4816 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero(); | |
4817 | |
4818 Register scratch = scratch0(); | |
4819 SwVfpRegister flt_scratch = double_scratch0().low(); | |
4820 DCHECK(!result_reg.is(double_scratch0())); | |
4821 Label convert, load_smi, done; | |
4822 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { | |
4823 // Smi check. | |
4824 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi); | |
4825 // Heap number map check. | |
4826 __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); | |
4827 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); | |
4828 __ cmp(scratch, Operand(ip)); | |
4829 if (can_convert_undefined_to_nan) { | |
4830 __ b(ne, &convert); | |
4831 } else { | |
4832 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber); | |
4833 } | |
4834 // load heap number | |
4835 __ vldr(result_reg, input_reg, HeapNumber::kValueOffset - kHeapObjectTag); | |
4836 if (deoptimize_on_minus_zero) { | |
4837 __ VmovLow(scratch, result_reg); | |
4838 __ cmp(scratch, Operand::Zero()); | |
4839 __ b(ne, &done); | |
4840 __ VmovHigh(scratch, result_reg); | |
4841 __ cmp(scratch, Operand(HeapNumber::kSignMask)); | |
4842 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); | |
4843 } | |
4844 __ jmp(&done); | |
4845 if (can_convert_undefined_to_nan) { | |
4846 __ bind(&convert); | |
4847 // Convert undefined (and hole) to NaN. | |
4848 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | |
4849 __ cmp(input_reg, Operand(ip)); | |
4850 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined); | |
4851 __ LoadRoot(scratch, Heap::kNanValueRootIndex); | |
4852 __ vldr(result_reg, scratch, HeapNumber::kValueOffset - kHeapObjectTag); | |
4853 __ jmp(&done); | |
4854 } | |
4855 } else { | |
4856 __ SmiUntag(scratch, input_reg); | |
4857 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); | |
4858 } | |
4859 // Smi to double register conversion | |
4860 __ bind(&load_smi); | |
4861 // scratch: untagged value of input_reg | |
4862 __ vmov(flt_scratch, scratch); | |
4863 __ vcvt_f64_s32(result_reg, flt_scratch); | |
4864 __ bind(&done); | |
4865 } | |
4866 | |
4867 | |
4868 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { | |
4869 Register input_reg = ToRegister(instr->value()); | |
4870 Register scratch1 = scratch0(); | |
4871 Register scratch2 = ToRegister(instr->temp()); | |
4872 LowDwVfpRegister double_scratch = double_scratch0(); | |
4873 DwVfpRegister double_scratch2 = ToDoubleRegister(instr->temp2()); | |
4874 | |
4875 DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2)); | |
4876 DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1)); | |
4877 | |
4878 Label done; | |
4879 | |
4880 // The input was optimistically untagged; revert it. | |
4881 // The carry flag is set when we reach this deferred code as we just executed | |
4882 // SmiUntag(heap_object, SetCC) | |
4883 STATIC_ASSERT(kHeapObjectTag == 1); | |
4884 __ adc(scratch2, input_reg, Operand(input_reg)); | |
4885 | |
4886 // Heap number map check. | |
4887 __ ldr(scratch1, FieldMemOperand(scratch2, HeapObject::kMapOffset)); | |
4888 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); | |
4889 __ cmp(scratch1, Operand(ip)); | |
4890 | |
4891 if (instr->truncating()) { | |
4892 // Performs a truncating conversion of a floating point number as used by | |
4893 // the JS bitwise operations. | |
4894 Label no_heap_number, check_bools, check_false; | |
4895 __ b(ne, &no_heap_number); | |
4896 __ TruncateHeapNumberToI(input_reg, scratch2); | |
4897 __ b(&done); | |
4898 | |
4899 // Check for Oddballs. Undefined/False is converted to zero and True to one | |
4900 // for truncating conversions. | |
4901 __ bind(&no_heap_number); | |
4902 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | |
4903 __ cmp(scratch2, Operand(ip)); | |
4904 __ b(ne, &check_bools); | |
4905 __ mov(input_reg, Operand::Zero()); | |
4906 __ b(&done); | |
4907 | |
4908 __ bind(&check_bools); | |
4909 __ LoadRoot(ip, Heap::kTrueValueRootIndex); | |
4910 __ cmp(scratch2, Operand(ip)); | |
4911 __ b(ne, &check_false); | |
4912 __ mov(input_reg, Operand(1)); | |
4913 __ b(&done); | |
4914 | |
4915 __ bind(&check_false); | |
4916 __ LoadRoot(ip, Heap::kFalseValueRootIndex); | |
4917 __ cmp(scratch2, Operand(ip)); | |
4918 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefinedBoolean); | |
4919 __ mov(input_reg, Operand::Zero()); | |
4920 } else { | |
4921 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber); | |
4922 | |
4923 __ sub(ip, scratch2, Operand(kHeapObjectTag)); | |
4924 __ vldr(double_scratch2, ip, HeapNumber::kValueOffset); | |
4925 __ TryDoubleToInt32Exact(input_reg, double_scratch2, double_scratch); | |
4926 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN); | |
4927 | |
4928 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
4929 __ cmp(input_reg, Operand::Zero()); | |
4930 __ b(ne, &done); | |
4931 __ VmovHigh(scratch1, double_scratch2); | |
4932 __ tst(scratch1, Operand(HeapNumber::kSignMask)); | |
4933 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero); | |
4934 } | |
4935 } | |
4936 __ bind(&done); | |
4937 } | |
4938 | |
4939 | |
4940 void LCodeGen::DoTaggedToI(LTaggedToI* instr) { | |
4941 class DeferredTaggedToI final : public LDeferredCode { | |
4942 public: | |
4943 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) | |
4944 : LDeferredCode(codegen), instr_(instr) { } | |
4945 void Generate() override { codegen()->DoDeferredTaggedToI(instr_); } | |
4946 LInstruction* instr() override { return instr_; } | |
4947 | |
4948 private: | |
4949 LTaggedToI* instr_; | |
4950 }; | |
4951 | |
4952 LOperand* input = instr->value(); | |
4953 DCHECK(input->IsRegister()); | |
4954 DCHECK(input->Equals(instr->result())); | |
4955 | |
4956 Register input_reg = ToRegister(input); | |
4957 | |
4958 if (instr->hydrogen()->value()->representation().IsSmi()) { | |
4959 __ SmiUntag(input_reg); | |
4960 } else { | |
4961 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); | |
4962 | |
4963 // Optimistically untag the input. | |
4964 // If the input is a HeapObject, SmiUntag will set the carry flag. | |
4965 __ SmiUntag(input_reg, SetCC); | |
4966 // Branch to deferred code if the input was tagged. | |
4967 // The deferred code will take care of restoring the tag. | |
4968 __ b(cs, deferred->entry()); | |
4969 __ bind(deferred->exit()); | |
4970 } | |
4971 } | |
4972 | |
4973 | |
4974 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { | |
4975 LOperand* input = instr->value(); | |
4976 DCHECK(input->IsRegister()); | |
4977 LOperand* result = instr->result(); | |
4978 DCHECK(result->IsDoubleRegister()); | |
4979 | |
4980 Register input_reg = ToRegister(input); | |
4981 DwVfpRegister result_reg = ToDoubleRegister(result); | |
4982 | |
4983 HValue* value = instr->hydrogen()->value(); | |
4984 NumberUntagDMode mode = value->representation().IsSmi() | |
4985 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; | |
4986 | |
4987 EmitNumberUntagD(instr, input_reg, result_reg, mode); | |
4988 } | |
4989 | |
4990 | |
4991 void LCodeGen::DoDoubleToI(LDoubleToI* instr) { | |
4992 Register result_reg = ToRegister(instr->result()); | |
4993 Register scratch1 = scratch0(); | |
4994 DwVfpRegister double_input = ToDoubleRegister(instr->value()); | |
4995 LowDwVfpRegister double_scratch = double_scratch0(); | |
4996 | |
4997 if (instr->truncating()) { | |
4998 __ TruncateDoubleToI(result_reg, double_input); | |
4999 } else { | |
5000 __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch); | |
5001 // Deoptimize if the input wasn't a int32 (inside a double). | |
5002 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN); | |
5003 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
5004 Label done; | |
5005 __ cmp(result_reg, Operand::Zero()); | |
5006 __ b(ne, &done); | |
5007 __ VmovHigh(scratch1, double_input); | |
5008 __ tst(scratch1, Operand(HeapNumber::kSignMask)); | |
5009 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero); | |
5010 __ bind(&done); | |
5011 } | |
5012 } | |
5013 } | |
5014 | |
5015 | |
5016 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) { | |
5017 Register result_reg = ToRegister(instr->result()); | |
5018 Register scratch1 = scratch0(); | |
5019 DwVfpRegister double_input = ToDoubleRegister(instr->value()); | |
5020 LowDwVfpRegister double_scratch = double_scratch0(); | |
5021 | |
5022 if (instr->truncating()) { | |
5023 __ TruncateDoubleToI(result_reg, double_input); | |
5024 } else { | |
5025 __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch); | |
5026 // Deoptimize if the input wasn't a int32 (inside a double). | |
5027 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN); | |
5028 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
5029 Label done; | |
5030 __ cmp(result_reg, Operand::Zero()); | |
5031 __ b(ne, &done); | |
5032 __ VmovHigh(scratch1, double_input); | |
5033 __ tst(scratch1, Operand(HeapNumber::kSignMask)); | |
5034 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero); | |
5035 __ bind(&done); | |
5036 } | |
5037 } | |
5038 __ SmiTag(result_reg, SetCC); | |
5039 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); | |
5040 } | |
5041 | |
5042 | |
5043 void LCodeGen::DoCheckSmi(LCheckSmi* instr) { | |
5044 LOperand* input = instr->value(); | |
5045 __ SmiTst(ToRegister(input)); | |
5046 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi); | |
5047 } | |
5048 | |
5049 | |
5050 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { | |
5051 if (!instr->hydrogen()->value()->type().IsHeapObject()) { | |
5052 LOperand* input = instr->value(); | |
5053 __ SmiTst(ToRegister(input)); | |
5054 DeoptimizeIf(eq, instr, Deoptimizer::kSmi); | |
5055 } | |
5056 } | |
5057 | |
5058 | |
5059 void LCodeGen::DoCheckArrayBufferNotNeutered( | |
5060 LCheckArrayBufferNotNeutered* instr) { | |
5061 Register view = ToRegister(instr->view()); | |
5062 Register scratch = scratch0(); | |
5063 | |
5064 __ ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset)); | |
5065 __ ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset)); | |
5066 __ tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift)); | |
5067 DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds); | |
5068 } | |
5069 | |
5070 | |
5071 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { | |
5072 Register input = ToRegister(instr->value()); | |
5073 Register scratch = scratch0(); | |
5074 | |
5075 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); | |
5076 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); | |
5077 | |
5078 if (instr->hydrogen()->is_interval_check()) { | |
5079 InstanceType first; | |
5080 InstanceType last; | |
5081 instr->hydrogen()->GetCheckInterval(&first, &last); | |
5082 | |
5083 __ cmp(scratch, Operand(first)); | |
5084 | |
5085 // If there is only one type in the interval check for equality. | |
5086 if (first == last) { | |
5087 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType); | |
5088 } else { | |
5089 DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType); | |
5090 // Omit check for the last type. | |
5091 if (last != LAST_TYPE) { | |
5092 __ cmp(scratch, Operand(last)); | |
5093 DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType); | |
5094 } | |
5095 } | |
5096 } else { | |
5097 uint8_t mask; | |
5098 uint8_t tag; | |
5099 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); | |
5100 | |
5101 if (base::bits::IsPowerOfTwo32(mask)) { | |
5102 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag)); | |
5103 __ tst(scratch, Operand(mask)); | |
5104 DeoptimizeIf(tag == 0 ? ne : eq, instr, Deoptimizer::kWrongInstanceType); | |
5105 } else { | |
5106 __ and_(scratch, scratch, Operand(mask)); | |
5107 __ cmp(scratch, Operand(tag)); | |
5108 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType); | |
5109 } | |
5110 } | |
5111 } | |
5112 | |
5113 | |
5114 void LCodeGen::DoCheckValue(LCheckValue* instr) { | |
5115 Register reg = ToRegister(instr->value()); | |
5116 Handle<HeapObject> object = instr->hydrogen()->object().handle(); | |
5117 AllowDeferredHandleDereference smi_check; | |
5118 if (isolate()->heap()->InNewSpace(*object)) { | |
5119 Register reg = ToRegister(instr->value()); | |
5120 Handle<Cell> cell = isolate()->factory()->NewCell(object); | |
5121 __ mov(ip, Operand(cell)); | |
5122 __ ldr(ip, FieldMemOperand(ip, Cell::kValueOffset)); | |
5123 __ cmp(reg, ip); | |
5124 } else { | |
5125 __ cmp(reg, Operand(object)); | |
5126 } | |
5127 DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch); | |
5128 } | |
5129 | |
5130 | |
5131 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { | |
5132 { | |
5133 PushSafepointRegistersScope scope(this); | |
5134 __ push(object); | |
5135 __ mov(cp, Operand::Zero()); | |
5136 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); | |
5137 RecordSafepointWithRegisters( | |
5138 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); | |
5139 __ StoreToSafepointRegisterSlot(r0, scratch0()); | |
5140 } | |
5141 __ tst(scratch0(), Operand(kSmiTagMask)); | |
5142 DeoptimizeIf(eq, instr, Deoptimizer::kInstanceMigrationFailed); | |
5143 } | |
5144 | |
5145 | |
5146 void LCodeGen::DoCheckMaps(LCheckMaps* instr) { | |
5147 class DeferredCheckMaps final : public LDeferredCode { | |
5148 public: | |
5149 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) | |
5150 : LDeferredCode(codegen), instr_(instr), object_(object) { | |
5151 SetExit(check_maps()); | |
5152 } | |
5153 void Generate() override { | |
5154 codegen()->DoDeferredInstanceMigration(instr_, object_); | |
5155 } | |
5156 Label* check_maps() { return &check_maps_; } | |
5157 LInstruction* instr() override { return instr_; } | |
5158 | |
5159 private: | |
5160 LCheckMaps* instr_; | |
5161 Label check_maps_; | |
5162 Register object_; | |
5163 }; | |
5164 | |
5165 if (instr->hydrogen()->IsStabilityCheck()) { | |
5166 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); | |
5167 for (int i = 0; i < maps->size(); ++i) { | |
5168 AddStabilityDependency(maps->at(i).handle()); | |
5169 } | |
5170 return; | |
5171 } | |
5172 | |
5173 Register map_reg = scratch0(); | |
5174 | |
5175 LOperand* input = instr->value(); | |
5176 DCHECK(input->IsRegister()); | |
5177 Register reg = ToRegister(input); | |
5178 | |
5179 __ ldr(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset)); | |
5180 | |
5181 DeferredCheckMaps* deferred = NULL; | |
5182 if (instr->hydrogen()->HasMigrationTarget()) { | |
5183 deferred = new(zone()) DeferredCheckMaps(this, instr, reg); | |
5184 __ bind(deferred->check_maps()); | |
5185 } | |
5186 | |
5187 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); | |
5188 Label success; | |
5189 for (int i = 0; i < maps->size() - 1; i++) { | |
5190 Handle<Map> map = maps->at(i).handle(); | |
5191 __ CompareMap(map_reg, map, &success); | |
5192 __ b(eq, &success); | |
5193 } | |
5194 | |
5195 Handle<Map> map = maps->at(maps->size() - 1).handle(); | |
5196 __ CompareMap(map_reg, map, &success); | |
5197 if (instr->hydrogen()->HasMigrationTarget()) { | |
5198 __ b(ne, deferred->entry()); | |
5199 } else { | |
5200 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap); | |
5201 } | |
5202 | |
5203 __ bind(&success); | |
5204 } | |
5205 | |
5206 | |
5207 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { | |
5208 DwVfpRegister value_reg = ToDoubleRegister(instr->unclamped()); | |
5209 Register result_reg = ToRegister(instr->result()); | |
5210 __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0()); | |
5211 } | |
5212 | |
5213 | |
5214 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { | |
5215 Register unclamped_reg = ToRegister(instr->unclamped()); | |
5216 Register result_reg = ToRegister(instr->result()); | |
5217 __ ClampUint8(result_reg, unclamped_reg); | |
5218 } | |
5219 | |
5220 | |
5221 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { | |
5222 Register scratch = scratch0(); | |
5223 Register input_reg = ToRegister(instr->unclamped()); | |
5224 Register result_reg = ToRegister(instr->result()); | |
5225 DwVfpRegister temp_reg = ToDoubleRegister(instr->temp()); | |
5226 Label is_smi, done, heap_number; | |
5227 | |
5228 // Both smi and heap number cases are handled. | |
5229 __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi); | |
5230 | |
5231 // Check for heap number | |
5232 __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); | |
5233 __ cmp(scratch, Operand(factory()->heap_number_map())); | |
5234 __ b(eq, &heap_number); | |
5235 | |
5236 // Check for undefined. Undefined is converted to zero for clamping | |
5237 // conversions. | |
5238 __ cmp(input_reg, Operand(factory()->undefined_value())); | |
5239 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined); | |
5240 __ mov(result_reg, Operand::Zero()); | |
5241 __ jmp(&done); | |
5242 | |
5243 // Heap number | |
5244 __ bind(&heap_number); | |
5245 __ vldr(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); | |
5246 __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0()); | |
5247 __ jmp(&done); | |
5248 | |
5249 // smi | |
5250 __ bind(&is_smi); | |
5251 __ ClampUint8(result_reg, result_reg); | |
5252 | |
5253 __ bind(&done); | |
5254 } | |
5255 | |
5256 | |
5257 void LCodeGen::DoDoubleBits(LDoubleBits* instr) { | |
5258 DwVfpRegister value_reg = ToDoubleRegister(instr->value()); | |
5259 Register result_reg = ToRegister(instr->result()); | |
5260 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) { | |
5261 __ VmovHigh(result_reg, value_reg); | |
5262 } else { | |
5263 __ VmovLow(result_reg, value_reg); | |
5264 } | |
5265 } | |
5266 | |
5267 | |
5268 void LCodeGen::DoConstructDouble(LConstructDouble* instr) { | |
5269 Register hi_reg = ToRegister(instr->hi()); | |
5270 Register lo_reg = ToRegister(instr->lo()); | |
5271 DwVfpRegister result_reg = ToDoubleRegister(instr->result()); | |
5272 __ VmovHigh(result_reg, hi_reg); | |
5273 __ VmovLow(result_reg, lo_reg); | |
5274 } | |
5275 | |
5276 | |
5277 void LCodeGen::DoAllocate(LAllocate* instr) { | |
5278 class DeferredAllocate final : public LDeferredCode { | |
5279 public: | |
5280 DeferredAllocate(LCodeGen* codegen, LAllocate* instr) | |
5281 : LDeferredCode(codegen), instr_(instr) { } | |
5282 void Generate() override { codegen()->DoDeferredAllocate(instr_); } | |
5283 LInstruction* instr() override { return instr_; } | |
5284 | |
5285 private: | |
5286 LAllocate* instr_; | |
5287 }; | |
5288 | |
5289 DeferredAllocate* deferred = | |
5290 new(zone()) DeferredAllocate(this, instr); | |
5291 | |
5292 Register result = ToRegister(instr->result()); | |
5293 Register scratch = ToRegister(instr->temp1()); | |
5294 Register scratch2 = ToRegister(instr->temp2()); | |
5295 | |
5296 // Allocate memory for the object. | |
5297 AllocationFlags flags = TAG_OBJECT; | |
5298 if (instr->hydrogen()->MustAllocateDoubleAligned()) { | |
5299 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); | |
5300 } | |
5301 if (instr->hydrogen()->IsOldSpaceAllocation()) { | |
5302 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); | |
5303 flags = static_cast<AllocationFlags>(flags | PRETENURE); | |
5304 } | |
5305 | |
5306 if (instr->size()->IsConstantOperand()) { | |
5307 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | |
5308 CHECK(size <= Page::kMaxRegularHeapObjectSize); | |
5309 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); | |
5310 } else { | |
5311 Register size = ToRegister(instr->size()); | |
5312 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); | |
5313 } | |
5314 | |
5315 __ bind(deferred->exit()); | |
5316 | |
5317 if (instr->hydrogen()->MustPrefillWithFiller()) { | |
5318 STATIC_ASSERT(kHeapObjectTag == 1); | |
5319 if (instr->size()->IsConstantOperand()) { | |
5320 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | |
5321 __ mov(scratch, Operand(size - kHeapObjectTag)); | |
5322 } else { | |
5323 __ sub(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag)); | |
5324 } | |
5325 __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); | |
5326 Label loop; | |
5327 __ bind(&loop); | |
5328 __ sub(scratch, scratch, Operand(kPointerSize), SetCC); | |
5329 __ str(scratch2, MemOperand(result, scratch)); | |
5330 __ b(ge, &loop); | |
5331 } | |
5332 } | |
5333 | |
5334 | |
5335 void LCodeGen::DoDeferredAllocate(LAllocate* instr) { | |
5336 Register result = ToRegister(instr->result()); | |
5337 | |
5338 // TODO(3095996): Get rid of this. For now, we need to make the | |
5339 // result register contain a valid pointer because it is already | |
5340 // contained in the register pointer map. | |
5341 __ mov(result, Operand(Smi::FromInt(0))); | |
5342 | |
5343 PushSafepointRegistersScope scope(this); | |
5344 if (instr->size()->IsRegister()) { | |
5345 Register size = ToRegister(instr->size()); | |
5346 DCHECK(!size.is(result)); | |
5347 __ SmiTag(size); | |
5348 __ push(size); | |
5349 } else { | |
5350 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | |
5351 if (size >= 0 && size <= Smi::kMaxValue) { | |
5352 __ Push(Smi::FromInt(size)); | |
5353 } else { | |
5354 // We should never get here at runtime => abort | |
5355 __ stop("invalid allocation size"); | |
5356 return; | |
5357 } | |
5358 } | |
5359 | |
5360 int flags = AllocateDoubleAlignFlag::encode( | |
5361 instr->hydrogen()->MustAllocateDoubleAligned()); | |
5362 if (instr->hydrogen()->IsOldSpaceAllocation()) { | |
5363 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); | |
5364 flags = AllocateTargetSpace::update(flags, OLD_SPACE); | |
5365 } else { | |
5366 flags = AllocateTargetSpace::update(flags, NEW_SPACE); | |
5367 } | |
5368 __ Push(Smi::FromInt(flags)); | |
5369 | |
5370 CallRuntimeFromDeferred( | |
5371 Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); | |
5372 __ StoreToSafepointRegisterSlot(r0, result); | |
5373 } | |
5374 | |
5375 | |
5376 void LCodeGen::DoToFastProperties(LToFastProperties* instr) { | |
5377 DCHECK(ToRegister(instr->value()).is(r0)); | |
5378 __ push(r0); | |
5379 CallRuntime(Runtime::kToFastProperties, 1, instr); | |
5380 } | |
5381 | |
5382 | |
5383 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { | |
5384 DCHECK(ToRegister(instr->context()).is(cp)); | |
5385 Label materialized; | |
5386 // Registers will be used as follows: | |
5387 // r6 = literals array. | |
5388 // r1 = regexp literal. | |
5389 // r0 = regexp literal clone. | |
5390 // r2-5 are used as temporaries. | |
5391 int literal_offset = | |
5392 LiteralsArray::OffsetOfLiteralAt(instr->hydrogen()->literal_index()); | |
5393 __ Move(r6, instr->hydrogen()->literals()); | |
5394 __ ldr(r1, FieldMemOperand(r6, literal_offset)); | |
5395 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | |
5396 __ cmp(r1, ip); | |
5397 __ b(ne, &materialized); | |
5398 | |
5399 // Create regexp literal using runtime function | |
5400 // Result will be in r0. | |
5401 __ mov(r5, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); | |
5402 __ mov(r4, Operand(instr->hydrogen()->pattern())); | |
5403 __ mov(r3, Operand(instr->hydrogen()->flags())); | |
5404 __ Push(r6, r5, r4, r3); | |
5405 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); | |
5406 __ mov(r1, r0); | |
5407 | |
5408 __ bind(&materialized); | |
5409 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; | |
5410 Label allocated, runtime_allocate; | |
5411 | |
5412 __ Allocate(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT); | |
5413 __ jmp(&allocated); | |
5414 | |
5415 __ bind(&runtime_allocate); | |
5416 __ mov(r0, Operand(Smi::FromInt(size))); | |
5417 __ Push(r1, r0); | |
5418 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); | |
5419 __ pop(r1); | |
5420 | |
5421 __ bind(&allocated); | |
5422 // Copy the content into the newly allocated memory. | |
5423 __ CopyFields(r0, r1, double_scratch0(), size / kPointerSize); | |
5424 } | |
5425 | |
5426 | |
5427 void LCodeGen::DoTypeof(LTypeof* instr) { | |
5428 DCHECK(ToRegister(instr->value()).is(r3)); | |
5429 DCHECK(ToRegister(instr->result()).is(r0)); | |
5430 Label end, do_call; | |
5431 Register value_register = ToRegister(instr->value()); | |
5432 __ JumpIfNotSmi(value_register, &do_call); | |
5433 __ mov(r0, Operand(isolate()->factory()->number_string())); | |
5434 __ jmp(&end); | |
5435 __ bind(&do_call); | |
5436 TypeofStub stub(isolate()); | |
5437 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
5438 __ bind(&end); | |
5439 } | |
5440 | |
5441 | |
5442 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { | |
5443 Register input = ToRegister(instr->value()); | |
5444 | |
5445 Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_), | |
5446 instr->FalseLabel(chunk_), | |
5447 input, | |
5448 instr->type_literal()); | |
5449 if (final_branch_condition != kNoCondition) { | |
5450 EmitBranch(instr, final_branch_condition); | |
5451 } | |
5452 } | |
5453 | |
5454 | |
5455 Condition LCodeGen::EmitTypeofIs(Label* true_label, | |
5456 Label* false_label, | |
5457 Register input, | |
5458 Handle<String> type_name) { | |
5459 Condition final_branch_condition = kNoCondition; | |
5460 Register scratch = scratch0(); | |
5461 Factory* factory = isolate()->factory(); | |
5462 if (String::Equals(type_name, factory->number_string())) { | |
5463 __ JumpIfSmi(input, true_label); | |
5464 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); | |
5465 __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex); | |
5466 final_branch_condition = eq; | |
5467 | |
5468 } else if (String::Equals(type_name, factory->string_string())) { | |
5469 __ JumpIfSmi(input, false_label); | |
5470 __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE); | |
5471 final_branch_condition = lt; | |
5472 | |
5473 } else if (String::Equals(type_name, factory->symbol_string())) { | |
5474 __ JumpIfSmi(input, false_label); | |
5475 __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE); | |
5476 final_branch_condition = eq; | |
5477 | |
5478 } else if (String::Equals(type_name, factory->boolean_string())) { | |
5479 __ CompareRoot(input, Heap::kTrueValueRootIndex); | |
5480 __ b(eq, true_label); | |
5481 __ CompareRoot(input, Heap::kFalseValueRootIndex); | |
5482 final_branch_condition = eq; | |
5483 | |
5484 } else if (String::Equals(type_name, factory->undefined_string())) { | |
5485 __ CompareRoot(input, Heap::kUndefinedValueRootIndex); | |
5486 __ b(eq, true_label); | |
5487 __ JumpIfSmi(input, false_label); | |
5488 // Check for undetectable objects => true. | |
5489 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); | |
5490 __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); | |
5491 __ tst(scratch, Operand(1 << Map::kIsUndetectable)); | |
5492 final_branch_condition = ne; | |
5493 | |
5494 } else if (String::Equals(type_name, factory->function_string())) { | |
5495 __ JumpIfSmi(input, false_label); | |
5496 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); | |
5497 __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); | |
5498 __ and_(scratch, scratch, | |
5499 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); | |
5500 __ cmp(scratch, Operand(1 << Map::kIsCallable)); | |
5501 final_branch_condition = eq; | |
5502 | |
5503 } else if (String::Equals(type_name, factory->object_string())) { | |
5504 __ JumpIfSmi(input, false_label); | |
5505 __ CompareRoot(input, Heap::kNullValueRootIndex); | |
5506 __ b(eq, true_label); | |
5507 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); | |
5508 __ CompareObjectType(input, scratch, ip, FIRST_SPEC_OBJECT_TYPE); | |
5509 __ b(lt, false_label); | |
5510 // Check for callable or undetectable objects => false. | |
5511 __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); | |
5512 __ tst(scratch, | |
5513 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); | |
5514 final_branch_condition = eq; | |
5515 | |
5516 // clang-format off | |
5517 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ | |
5518 } else if (String::Equals(type_name, factory->type##_string())) { \ | |
5519 __ JumpIfSmi(input, false_label); \ | |
5520 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); \ | |
5521 __ CompareRoot(scratch, Heap::k##Type##MapRootIndex); \ | |
5522 final_branch_condition = eq; | |
5523 SIMD128_TYPES(SIMD128_TYPE) | |
5524 #undef SIMD128_TYPE | |
5525 // clang-format on | |
5526 | |
5527 } else { | |
5528 __ b(false_label); | |
5529 } | |
5530 | |
5531 return final_branch_condition; | |
5532 } | |
5533 | |
5534 | |
5535 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { | |
5536 Register temp1 = ToRegister(instr->temp()); | |
5537 | |
5538 EmitIsConstructCall(temp1, scratch0()); | |
5539 EmitBranch(instr, eq); | |
5540 } | |
5541 | |
5542 | |
5543 void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) { | |
5544 DCHECK(!temp1.is(temp2)); | |
5545 // Get the frame pointer for the calling frame. | |
5546 __ ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | |
5547 | |
5548 // Skip the arguments adaptor frame if it exists. | |
5549 __ ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); | |
5550 __ cmp(temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | |
5551 __ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset), eq); | |
5552 | |
5553 // Check the marker in the calling frame. | |
5554 __ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); | |
5555 __ cmp(temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); | |
5556 } | |
5557 | |
5558 | |
5559 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { | |
5560 if (info()->ShouldEnsureSpaceForLazyDeopt()) { | |
5561 // Ensure that we have enough space after the previous lazy-bailout | |
5562 // instruction for patching the code here. | |
5563 int current_pc = masm()->pc_offset(); | |
5564 if (current_pc < last_lazy_deopt_pc_ + space_needed) { | |
5565 // Block literal pool emission for duration of padding. | |
5566 Assembler::BlockConstPoolScope block_const_pool(masm()); | |
5567 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; | |
5568 DCHECK_EQ(0, padding_size % Assembler::kInstrSize); | |
5569 while (padding_size > 0) { | |
5570 __ nop(); | |
5571 padding_size -= Assembler::kInstrSize; | |
5572 } | |
5573 } | |
5574 } | |
5575 last_lazy_deopt_pc_ = masm()->pc_offset(); | |
5576 } | |
5577 | |
5578 | |
5579 void LCodeGen::DoLazyBailout(LLazyBailout* instr) { | |
5580 last_lazy_deopt_pc_ = masm()->pc_offset(); | |
5581 DCHECK(instr->HasEnvironment()); | |
5582 LEnvironment* env = instr->environment(); | |
5583 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); | |
5584 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); | |
5585 } | |
5586 | |
5587 | |
5588 void LCodeGen::DoDeoptimize(LDeoptimize* instr) { | |
5589 Deoptimizer::BailoutType type = instr->hydrogen()->type(); | |
5590 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the | |
5591 // needed return address), even though the implementation of LAZY and EAGER is | |
5592 // now identical. When LAZY is eventually completely folded into EAGER, remove | |
5593 // the special case below. | |
5594 if (info()->IsStub() && type == Deoptimizer::EAGER) { | |
5595 type = Deoptimizer::LAZY; | |
5596 } | |
5597 | |
5598 DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type); | |
5599 } | |
5600 | |
5601 | |
5602 void LCodeGen::DoDummy(LDummy* instr) { | |
5603 // Nothing to see here, move on! | |
5604 } | |
5605 | |
5606 | |
5607 void LCodeGen::DoDummyUse(LDummyUse* instr) { | |
5608 // Nothing to see here, move on! | |
5609 } | |
5610 | |
5611 | |
5612 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { | |
5613 PushSafepointRegistersScope scope(this); | |
5614 LoadContextFromDeferred(instr->context()); | |
5615 __ CallRuntimeSaveDoubles(Runtime::kStackGuard); | |
5616 RecordSafepointWithLazyDeopt( | |
5617 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | |
5618 DCHECK(instr->HasEnvironment()); | |
5619 LEnvironment* env = instr->environment(); | |
5620 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); | |
5621 } | |
5622 | |
5623 | |
5624 void LCodeGen::DoStackCheck(LStackCheck* instr) { | |
5625 class DeferredStackCheck final : public LDeferredCode { | |
5626 public: | |
5627 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) | |
5628 : LDeferredCode(codegen), instr_(instr) { } | |
5629 void Generate() override { codegen()->DoDeferredStackCheck(instr_); } | |
5630 LInstruction* instr() override { return instr_; } | |
5631 | |
5632 private: | |
5633 LStackCheck* instr_; | |
5634 }; | |
5635 | |
5636 DCHECK(instr->HasEnvironment()); | |
5637 LEnvironment* env = instr->environment(); | |
5638 // There is no LLazyBailout instruction for stack-checks. We have to | |
5639 // prepare for lazy deoptimization explicitly here. | |
5640 if (instr->hydrogen()->is_function_entry()) { | |
5641 // Perform stack overflow check. | |
5642 Label done; | |
5643 __ LoadRoot(ip, Heap::kStackLimitRootIndex); | |
5644 __ cmp(sp, Operand(ip)); | |
5645 __ b(hs, &done); | |
5646 Handle<Code> stack_check = isolate()->builtins()->StackCheck(); | |
5647 PredictableCodeSizeScope predictable(masm()); | |
5648 predictable.ExpectSize(CallCodeSize(stack_check, RelocInfo::CODE_TARGET)); | |
5649 DCHECK(instr->context()->IsRegister()); | |
5650 DCHECK(ToRegister(instr->context()).is(cp)); | |
5651 CallCode(stack_check, RelocInfo::CODE_TARGET, instr); | |
5652 __ bind(&done); | |
5653 } else { | |
5654 DCHECK(instr->hydrogen()->is_backwards_branch()); | |
5655 // Perform stack overflow check if this goto needs it before jumping. | |
5656 DeferredStackCheck* deferred_stack_check = | |
5657 new(zone()) DeferredStackCheck(this, instr); | |
5658 __ LoadRoot(ip, Heap::kStackLimitRootIndex); | |
5659 __ cmp(sp, Operand(ip)); | |
5660 __ b(lo, deferred_stack_check->entry()); | |
5661 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); | |
5662 __ bind(instr->done_label()); | |
5663 deferred_stack_check->SetExit(instr->done_label()); | |
5664 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); | |
5665 // Don't record a deoptimization index for the safepoint here. | |
5666 // This will be done explicitly when emitting call and the safepoint in | |
5667 // the deferred code. | |
5668 } | |
5669 } | |
5670 | |
5671 | |
5672 void LCodeGen::DoOsrEntry(LOsrEntry* instr) { | |
5673 // This is a pseudo-instruction that ensures that the environment here is | |
5674 // properly registered for deoptimization and records the assembler's PC | |
5675 // offset. | |
5676 LEnvironment* environment = instr->environment(); | |
5677 | |
5678 // If the environment were already registered, we would have no way of | |
5679 // backpatching it with the spill slot operands. | |
5680 DCHECK(!environment->HasBeenRegistered()); | |
5681 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); | |
5682 | |
5683 GenerateOsrPrologue(); | |
5684 } | |
5685 | |
5686 | |
5687 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { | |
5688 __ SmiTst(r0); | |
5689 DeoptimizeIf(eq, instr, Deoptimizer::kSmi); | |
5690 | |
5691 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); | |
5692 __ CompareObjectType(r0, r1, r1, LAST_JS_PROXY_TYPE); | |
5693 DeoptimizeIf(le, instr, Deoptimizer::kWrongInstanceType); | |
5694 | |
5695 Label use_cache, call_runtime; | |
5696 Register null_value = r5; | |
5697 __ LoadRoot(null_value, Heap::kNullValueRootIndex); | |
5698 __ CheckEnumCache(null_value, &call_runtime); | |
5699 | |
5700 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); | |
5701 __ b(&use_cache); | |
5702 | |
5703 // Get the set of properties to enumerate. | |
5704 __ bind(&call_runtime); | |
5705 __ push(r0); | |
5706 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); | |
5707 | |
5708 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); | |
5709 __ LoadRoot(ip, Heap::kMetaMapRootIndex); | |
5710 __ cmp(r1, ip); | |
5711 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap); | |
5712 __ bind(&use_cache); | |
5713 } | |
5714 | |
5715 | |
5716 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { | |
5717 Register map = ToRegister(instr->map()); | |
5718 Register result = ToRegister(instr->result()); | |
5719 Label load_cache, done; | |
5720 __ EnumLength(result, map); | |
5721 __ cmp(result, Operand(Smi::FromInt(0))); | |
5722 __ b(ne, &load_cache); | |
5723 __ mov(result, Operand(isolate()->factory()->empty_fixed_array())); | |
5724 __ jmp(&done); | |
5725 | |
5726 __ bind(&load_cache); | |
5727 __ LoadInstanceDescriptors(map, result); | |
5728 __ ldr(result, | |
5729 FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); | |
5730 __ ldr(result, | |
5731 FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); | |
5732 __ cmp(result, Operand::Zero()); | |
5733 DeoptimizeIf(eq, instr, Deoptimizer::kNoCache); | |
5734 | |
5735 __ bind(&done); | |
5736 } | |
5737 | |
5738 | |
5739 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { | |
5740 Register object = ToRegister(instr->value()); | |
5741 Register map = ToRegister(instr->map()); | |
5742 __ ldr(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset)); | |
5743 __ cmp(map, scratch0()); | |
5744 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap); | |
5745 } | |
5746 | |
5747 | |
5748 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, | |
5749 Register result, | |
5750 Register object, | |
5751 Register index) { | |
5752 PushSafepointRegistersScope scope(this); | |
5753 __ Push(object); | |
5754 __ Push(index); | |
5755 __ mov(cp, Operand::Zero()); | |
5756 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); | |
5757 RecordSafepointWithRegisters( | |
5758 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); | |
5759 __ StoreToSafepointRegisterSlot(r0, result); | |
5760 } | |
5761 | |
5762 | |
5763 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { | |
5764 class DeferredLoadMutableDouble final : public LDeferredCode { | |
5765 public: | |
5766 DeferredLoadMutableDouble(LCodeGen* codegen, | |
5767 LLoadFieldByIndex* instr, | |
5768 Register result, | |
5769 Register object, | |
5770 Register index) | |
5771 : LDeferredCode(codegen), | |
5772 instr_(instr), | |
5773 result_(result), | |
5774 object_(object), | |
5775 index_(index) { | |
5776 } | |
5777 void Generate() override { | |
5778 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_); | |
5779 } | |
5780 LInstruction* instr() override { return instr_; } | |
5781 | |
5782 private: | |
5783 LLoadFieldByIndex* instr_; | |
5784 Register result_; | |
5785 Register object_; | |
5786 Register index_; | |
5787 }; | |
5788 | |
5789 Register object = ToRegister(instr->object()); | |
5790 Register index = ToRegister(instr->index()); | |
5791 Register result = ToRegister(instr->result()); | |
5792 Register scratch = scratch0(); | |
5793 | |
5794 DeferredLoadMutableDouble* deferred; | |
5795 deferred = new(zone()) DeferredLoadMutableDouble( | |
5796 this, instr, result, object, index); | |
5797 | |
5798 Label out_of_object, done; | |
5799 | |
5800 __ tst(index, Operand(Smi::FromInt(1))); | |
5801 __ b(ne, deferred->entry()); | |
5802 __ mov(index, Operand(index, ASR, 1)); | |
5803 | |
5804 __ cmp(index, Operand::Zero()); | |
5805 __ b(lt, &out_of_object); | |
5806 | |
5807 __ add(scratch, object, Operand::PointerOffsetFromSmiKey(index)); | |
5808 __ ldr(result, FieldMemOperand(scratch, JSObject::kHeaderSize)); | |
5809 | |
5810 __ b(&done); | |
5811 | |
5812 __ bind(&out_of_object); | |
5813 __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); | |
5814 // Index is equal to negated out of object property index plus 1. | |
5815 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); | |
5816 __ sub(scratch, result, Operand::PointerOffsetFromSmiKey(index)); | |
5817 __ ldr(result, FieldMemOperand(scratch, | |
5818 FixedArray::kHeaderSize - kPointerSize)); | |
5819 __ bind(deferred->exit()); | |
5820 __ bind(&done); | |
5821 } | |
5822 | |
5823 | |
5824 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) { | |
5825 Register context = ToRegister(instr->context()); | |
5826 __ str(context, MemOperand(fp, StandardFrameConstants::kContextOffset)); | |
5827 } | |
5828 | |
5829 | |
5830 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) { | |
5831 Handle<ScopeInfo> scope_info = instr->scope_info(); | |
5832 __ Push(scope_info); | |
5833 __ push(ToRegister(instr->function())); | |
5834 CallRuntime(Runtime::kPushBlockContext, 2, instr); | |
5835 RecordSafepoint(Safepoint::kNoLazyDeopt); | |
5836 } | |
5837 | |
5838 | |
5839 #undef __ | |
5840 | |
5841 } // namespace internal | |
5842 } // namespace v8 | |
OLD | NEW |