OLD | NEW |
| (Empty) |
1 // Copyright 2013 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #if V8_TARGET_ARCH_X64 | |
6 | |
7 #include "src/base/bits.h" | |
8 #include "src/code-factory.h" | |
9 #include "src/code-stubs.h" | |
10 #include "src/hydrogen-osr.h" | |
11 #include "src/ic/ic.h" | |
12 #include "src/ic/stub-cache.h" | |
13 #include "src/profiler/cpu-profiler.h" | |
14 #include "src/x64/lithium-codegen-x64.h" | |
15 | |
16 namespace v8 { | |
17 namespace internal { | |
18 | |
19 | |
20 // When invoking builtins, we need to record the safepoint in the middle of | |
21 // the invoke instruction sequence generated by the macro assembler. | |
22 class SafepointGenerator final : public CallWrapper { | |
23 public: | |
24 SafepointGenerator(LCodeGen* codegen, | |
25 LPointerMap* pointers, | |
26 Safepoint::DeoptMode mode) | |
27 : codegen_(codegen), | |
28 pointers_(pointers), | |
29 deopt_mode_(mode) { } | |
30 virtual ~SafepointGenerator() {} | |
31 | |
32 void BeforeCall(int call_size) const override {} | |
33 | |
34 void AfterCall() const override { | |
35 codegen_->RecordSafepoint(pointers_, deopt_mode_); | |
36 } | |
37 | |
38 private: | |
39 LCodeGen* codegen_; | |
40 LPointerMap* pointers_; | |
41 Safepoint::DeoptMode deopt_mode_; | |
42 }; | |
43 | |
44 | |
45 #define __ masm()-> | |
46 | |
47 bool LCodeGen::GenerateCode() { | |
48 LPhase phase("Z_Code generation", chunk()); | |
49 DCHECK(is_unused()); | |
50 status_ = GENERATING; | |
51 | |
52 // Open a frame scope to indicate that there is a frame on the stack. The | |
53 // MANUAL indicates that the scope shouldn't actually generate code to set up | |
54 // the frame (that is done in GeneratePrologue). | |
55 FrameScope frame_scope(masm_, StackFrame::MANUAL); | |
56 | |
57 return GeneratePrologue() && | |
58 GenerateBody() && | |
59 GenerateDeferredCode() && | |
60 GenerateJumpTable() && | |
61 GenerateSafepointTable(); | |
62 } | |
63 | |
64 | |
65 void LCodeGen::FinishCode(Handle<Code> code) { | |
66 DCHECK(is_done()); | |
67 code->set_stack_slots(GetStackSlotCount()); | |
68 code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); | |
69 PopulateDeoptimizationData(code); | |
70 } | |
71 | |
72 | |
73 #ifdef _MSC_VER | |
74 void LCodeGen::MakeSureStackPagesMapped(int offset) { | |
75 const int kPageSize = 4 * KB; | |
76 for (offset -= kPageSize; offset > 0; offset -= kPageSize) { | |
77 __ movp(Operand(rsp, offset), rax); | |
78 } | |
79 } | |
80 #endif | |
81 | |
82 | |
83 void LCodeGen::SaveCallerDoubles() { | |
84 DCHECK(info()->saves_caller_doubles()); | |
85 DCHECK(NeedsEagerFrame()); | |
86 Comment(";;; Save clobbered callee double registers"); | |
87 int count = 0; | |
88 BitVector* doubles = chunk()->allocated_double_registers(); | |
89 BitVector::Iterator save_iterator(doubles); | |
90 while (!save_iterator.Done()) { | |
91 __ Movsd(MemOperand(rsp, count * kDoubleSize), | |
92 XMMRegister::from_code(save_iterator.Current())); | |
93 save_iterator.Advance(); | |
94 count++; | |
95 } | |
96 } | |
97 | |
98 | |
99 void LCodeGen::RestoreCallerDoubles() { | |
100 DCHECK(info()->saves_caller_doubles()); | |
101 DCHECK(NeedsEagerFrame()); | |
102 Comment(";;; Restore clobbered callee double registers"); | |
103 BitVector* doubles = chunk()->allocated_double_registers(); | |
104 BitVector::Iterator save_iterator(doubles); | |
105 int count = 0; | |
106 while (!save_iterator.Done()) { | |
107 __ Movsd(XMMRegister::from_code(save_iterator.Current()), | |
108 MemOperand(rsp, count * kDoubleSize)); | |
109 save_iterator.Advance(); | |
110 count++; | |
111 } | |
112 } | |
113 | |
114 | |
115 bool LCodeGen::GeneratePrologue() { | |
116 DCHECK(is_generating()); | |
117 | |
118 if (info()->IsOptimizing()) { | |
119 ProfileEntryHookStub::MaybeCallEntryHook(masm_); | |
120 | |
121 #ifdef DEBUG | |
122 if (strlen(FLAG_stop_at) > 0 && | |
123 info_->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { | |
124 __ int3(); | |
125 } | |
126 #endif | |
127 | |
128 // Sloppy mode functions need to replace the receiver with the global proxy | |
129 // when called as functions (without an explicit receiver object). | |
130 if (info()->MustReplaceUndefinedReceiverWithGlobalProxy()) { | |
131 Label ok; | |
132 StackArgumentsAccessor args(rsp, scope()->num_parameters()); | |
133 __ movp(rcx, args.GetReceiverOperand()); | |
134 | |
135 __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex); | |
136 __ j(not_equal, &ok, Label::kNear); | |
137 | |
138 __ movp(rcx, GlobalObjectOperand()); | |
139 __ movp(rcx, FieldOperand(rcx, GlobalObject::kGlobalProxyOffset)); | |
140 | |
141 __ movp(args.GetReceiverOperand(), rcx); | |
142 | |
143 __ bind(&ok); | |
144 } | |
145 } | |
146 | |
147 info()->set_prologue_offset(masm_->pc_offset()); | |
148 if (NeedsEagerFrame()) { | |
149 DCHECK(!frame_is_built_); | |
150 frame_is_built_ = true; | |
151 if (info()->IsStub()) { | |
152 __ StubPrologue(); | |
153 } else { | |
154 __ Prologue(info()->IsCodePreAgingActive()); | |
155 } | |
156 } | |
157 | |
158 // Reserve space for the stack slots needed by the code. | |
159 int slots = GetStackSlotCount(); | |
160 if (slots > 0) { | |
161 if (FLAG_debug_code) { | |
162 __ subp(rsp, Immediate(slots * kPointerSize)); | |
163 #ifdef _MSC_VER | |
164 MakeSureStackPagesMapped(slots * kPointerSize); | |
165 #endif | |
166 __ Push(rax); | |
167 __ Set(rax, slots); | |
168 __ Set(kScratchRegister, kSlotsZapValue); | |
169 Label loop; | |
170 __ bind(&loop); | |
171 __ movp(MemOperand(rsp, rax, times_pointer_size, 0), | |
172 kScratchRegister); | |
173 __ decl(rax); | |
174 __ j(not_zero, &loop); | |
175 __ Pop(rax); | |
176 } else { | |
177 __ subp(rsp, Immediate(slots * kPointerSize)); | |
178 #ifdef _MSC_VER | |
179 MakeSureStackPagesMapped(slots * kPointerSize); | |
180 #endif | |
181 } | |
182 | |
183 if (info()->saves_caller_doubles()) { | |
184 SaveCallerDoubles(); | |
185 } | |
186 } | |
187 return !is_aborted(); | |
188 } | |
189 | |
190 | |
191 void LCodeGen::DoPrologue(LPrologue* instr) { | |
192 Comment(";;; Prologue begin"); | |
193 | |
194 // Possibly allocate a local context. | |
195 if (info_->num_heap_slots() > 0) { | |
196 Comment(";;; Allocate local context"); | |
197 bool need_write_barrier = true; | |
198 // Argument to NewContext is the function, which is still in rdi. | |
199 int slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; | |
200 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; | |
201 if (info()->scope()->is_script_scope()) { | |
202 __ Push(rdi); | |
203 __ Push(info()->scope()->GetScopeInfo(info()->isolate())); | |
204 __ CallRuntime(Runtime::kNewScriptContext, 2); | |
205 deopt_mode = Safepoint::kLazyDeopt; | |
206 } else if (slots <= FastNewContextStub::kMaximumSlots) { | |
207 FastNewContextStub stub(isolate(), slots); | |
208 __ CallStub(&stub); | |
209 // Result of FastNewContextStub is always in new space. | |
210 need_write_barrier = false; | |
211 } else { | |
212 __ Push(rdi); | |
213 __ CallRuntime(Runtime::kNewFunctionContext, 1); | |
214 } | |
215 RecordSafepoint(deopt_mode); | |
216 | |
217 // Context is returned in rax. It replaces the context passed to us. | |
218 // It's saved in the stack and kept live in rsi. | |
219 __ movp(rsi, rax); | |
220 __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax); | |
221 | |
222 // Copy any necessary parameters into the context. | |
223 int num_parameters = scope()->num_parameters(); | |
224 int first_parameter = scope()->has_this_declaration() ? -1 : 0; | |
225 for (int i = first_parameter; i < num_parameters; i++) { | |
226 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i); | |
227 if (var->IsContextSlot()) { | |
228 int parameter_offset = StandardFrameConstants::kCallerSPOffset + | |
229 (num_parameters - 1 - i) * kPointerSize; | |
230 // Load parameter from stack. | |
231 __ movp(rax, Operand(rbp, parameter_offset)); | |
232 // Store it in the context. | |
233 int context_offset = Context::SlotOffset(var->index()); | |
234 __ movp(Operand(rsi, context_offset), rax); | |
235 // Update the write barrier. This clobbers rax and rbx. | |
236 if (need_write_barrier) { | |
237 __ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs); | |
238 } else if (FLAG_debug_code) { | |
239 Label done; | |
240 __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear); | |
241 __ Abort(kExpectedNewSpaceObject); | |
242 __ bind(&done); | |
243 } | |
244 } | |
245 } | |
246 Comment(";;; End allocate local context"); | |
247 } | |
248 | |
249 Comment(";;; Prologue end"); | |
250 } | |
251 | |
252 | |
253 void LCodeGen::GenerateOsrPrologue() { | |
254 // Generate the OSR entry prologue at the first unknown OSR value, or if there | |
255 // are none, at the OSR entrypoint instruction. | |
256 if (osr_pc_offset_ >= 0) return; | |
257 | |
258 osr_pc_offset_ = masm()->pc_offset(); | |
259 | |
260 // Adjust the frame size, subsuming the unoptimized frame into the | |
261 // optimized frame. | |
262 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); | |
263 DCHECK(slots >= 0); | |
264 __ subp(rsp, Immediate(slots * kPointerSize)); | |
265 } | |
266 | |
267 | |
268 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { | |
269 if (instr->IsCall()) { | |
270 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); | |
271 } | |
272 if (!instr->IsLazyBailout() && !instr->IsGap()) { | |
273 safepoints_.BumpLastLazySafepointIndex(); | |
274 } | |
275 } | |
276 | |
277 | |
278 void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) { | |
279 if (FLAG_debug_code && FLAG_enable_slow_asserts && instr->HasResult() && | |
280 instr->hydrogen_value()->representation().IsInteger32() && | |
281 instr->result()->IsRegister()) { | |
282 __ AssertZeroExtended(ToRegister(instr->result())); | |
283 } | |
284 | |
285 if (instr->HasResult() && instr->MustSignExtendResult(chunk())) { | |
286 // We sign extend the dehoisted key at the definition point when the pointer | |
287 // size is 64-bit. For x32 port, we sign extend the dehoisted key at the use | |
288 // points and MustSignExtendResult is always false. We can't use | |
289 // STATIC_ASSERT here as the pointer size is 32-bit for x32. | |
290 DCHECK(kPointerSize == kInt64Size); | |
291 if (instr->result()->IsRegister()) { | |
292 Register result_reg = ToRegister(instr->result()); | |
293 __ movsxlq(result_reg, result_reg); | |
294 } else { | |
295 // Sign extend the 32bit result in the stack slots. | |
296 DCHECK(instr->result()->IsStackSlot()); | |
297 Operand src = ToOperand(instr->result()); | |
298 __ movsxlq(kScratchRegister, src); | |
299 __ movq(src, kScratchRegister); | |
300 } | |
301 } | |
302 } | |
303 | |
304 | |
305 bool LCodeGen::GenerateJumpTable() { | |
306 if (jump_table_.length() == 0) return !is_aborted(); | |
307 | |
308 Label needs_frame; | |
309 Comment(";;; -------------------- Jump table --------------------"); | |
310 for (int i = 0; i < jump_table_.length(); i++) { | |
311 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i]; | |
312 __ bind(&table_entry->label); | |
313 Address entry = table_entry->address; | |
314 DeoptComment(table_entry->deopt_info); | |
315 if (table_entry->needs_frame) { | |
316 DCHECK(!info()->saves_caller_doubles()); | |
317 __ Move(kScratchRegister, ExternalReference::ForDeoptEntry(entry)); | |
318 __ call(&needs_frame); | |
319 } else { | |
320 if (info()->saves_caller_doubles()) { | |
321 DCHECK(info()->IsStub()); | |
322 RestoreCallerDoubles(); | |
323 } | |
324 __ call(entry, RelocInfo::RUNTIME_ENTRY); | |
325 } | |
326 info()->LogDeoptCallPosition(masm()->pc_offset(), | |
327 table_entry->deopt_info.inlining_id); | |
328 } | |
329 | |
330 if (needs_frame.is_linked()) { | |
331 __ bind(&needs_frame); | |
332 /* stack layout | |
333 4: return address <-- rsp | |
334 3: garbage | |
335 2: garbage | |
336 1: garbage | |
337 0: garbage | |
338 */ | |
339 // Reserve space for context and stub marker. | |
340 __ subp(rsp, Immediate(2 * kPointerSize)); | |
341 __ Push(MemOperand(rsp, 2 * kPointerSize)); // Copy return address. | |
342 __ Push(kScratchRegister); // Save entry address for ret(0) | |
343 | |
344 /* stack layout | |
345 4: return address | |
346 3: garbage | |
347 2: garbage | |
348 1: return address | |
349 0: entry address <-- rsp | |
350 */ | |
351 | |
352 // Remember context pointer. | |
353 __ movp(kScratchRegister, | |
354 MemOperand(rbp, StandardFrameConstants::kContextOffset)); | |
355 // Save context pointer into the stack frame. | |
356 __ movp(MemOperand(rsp, 3 * kPointerSize), kScratchRegister); | |
357 | |
358 // Create a stack frame. | |
359 __ movp(MemOperand(rsp, 4 * kPointerSize), rbp); | |
360 __ leap(rbp, MemOperand(rsp, 4 * kPointerSize)); | |
361 | |
362 // This variant of deopt can only be used with stubs. Since we don't | |
363 // have a function pointer to install in the stack frame that we're | |
364 // building, install a special marker there instead. | |
365 DCHECK(info()->IsStub()); | |
366 __ Move(MemOperand(rsp, 2 * kPointerSize), Smi::FromInt(StackFrame::STUB)); | |
367 | |
368 /* stack layout | |
369 4: old rbp | |
370 3: context pointer | |
371 2: stub marker | |
372 1: return address | |
373 0: entry address <-- rsp | |
374 */ | |
375 __ ret(0); | |
376 } | |
377 | |
378 return !is_aborted(); | |
379 } | |
380 | |
381 | |
382 bool LCodeGen::GenerateDeferredCode() { | |
383 DCHECK(is_generating()); | |
384 if (deferred_.length() > 0) { | |
385 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { | |
386 LDeferredCode* code = deferred_[i]; | |
387 | |
388 HValue* value = | |
389 instructions_->at(code->instruction_index())->hydrogen_value(); | |
390 RecordAndWritePosition( | |
391 chunk()->graph()->SourcePositionToScriptPosition(value->position())); | |
392 | |
393 Comment(";;; <@%d,#%d> " | |
394 "-------------------- Deferred %s --------------------", | |
395 code->instruction_index(), | |
396 code->instr()->hydrogen_value()->id(), | |
397 code->instr()->Mnemonic()); | |
398 __ bind(code->entry()); | |
399 if (NeedsDeferredFrame()) { | |
400 Comment(";;; Build frame"); | |
401 DCHECK(!frame_is_built_); | |
402 DCHECK(info()->IsStub()); | |
403 frame_is_built_ = true; | |
404 // Build the frame in such a way that esi isn't trashed. | |
405 __ pushq(rbp); // Caller's frame pointer. | |
406 __ Push(Operand(rbp, StandardFrameConstants::kContextOffset)); | |
407 __ Push(Smi::FromInt(StackFrame::STUB)); | |
408 __ leap(rbp, Operand(rsp, 2 * kPointerSize)); | |
409 Comment(";;; Deferred code"); | |
410 } | |
411 code->Generate(); | |
412 if (NeedsDeferredFrame()) { | |
413 __ bind(code->done()); | |
414 Comment(";;; Destroy frame"); | |
415 DCHECK(frame_is_built_); | |
416 frame_is_built_ = false; | |
417 __ movp(rsp, rbp); | |
418 __ popq(rbp); | |
419 } | |
420 __ jmp(code->exit()); | |
421 } | |
422 } | |
423 | |
424 // Deferred code is the last part of the instruction sequence. Mark | |
425 // the generated code as done unless we bailed out. | |
426 if (!is_aborted()) status_ = DONE; | |
427 return !is_aborted(); | |
428 } | |
429 | |
430 | |
431 bool LCodeGen::GenerateSafepointTable() { | |
432 DCHECK(is_done()); | |
433 safepoints_.Emit(masm(), GetStackSlotCount()); | |
434 return !is_aborted(); | |
435 } | |
436 | |
437 | |
438 Register LCodeGen::ToRegister(int index) const { | |
439 return Register::from_code(index); | |
440 } | |
441 | |
442 | |
443 XMMRegister LCodeGen::ToDoubleRegister(int index) const { | |
444 return XMMRegister::from_code(index); | |
445 } | |
446 | |
447 | |
448 Register LCodeGen::ToRegister(LOperand* op) const { | |
449 DCHECK(op->IsRegister()); | |
450 return ToRegister(op->index()); | |
451 } | |
452 | |
453 | |
454 XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const { | |
455 DCHECK(op->IsDoubleRegister()); | |
456 return ToDoubleRegister(op->index()); | |
457 } | |
458 | |
459 | |
460 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { | |
461 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); | |
462 } | |
463 | |
464 | |
465 bool LCodeGen::IsExternalConstant(LConstantOperand* op) const { | |
466 return chunk_->LookupLiteralRepresentation(op).IsExternal(); | |
467 } | |
468 | |
469 | |
470 bool LCodeGen::IsDehoistedKeyConstant(LConstantOperand* op) const { | |
471 return op->IsConstantOperand() && | |
472 chunk_->IsDehoistedKey(chunk_->LookupConstant(op)); | |
473 } | |
474 | |
475 | |
476 bool LCodeGen::IsSmiConstant(LConstantOperand* op) const { | |
477 return chunk_->LookupLiteralRepresentation(op).IsSmi(); | |
478 } | |
479 | |
480 | |
481 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { | |
482 return ToRepresentation(op, Representation::Integer32()); | |
483 } | |
484 | |
485 | |
486 int32_t LCodeGen::ToRepresentation(LConstantOperand* op, | |
487 const Representation& r) const { | |
488 HConstant* constant = chunk_->LookupConstant(op); | |
489 int32_t value = constant->Integer32Value(); | |
490 if (r.IsInteger32()) return value; | |
491 DCHECK(SmiValuesAre31Bits() && r.IsSmiOrTagged()); | |
492 return static_cast<int32_t>(reinterpret_cast<intptr_t>(Smi::FromInt(value))); | |
493 } | |
494 | |
495 | |
496 Smi* LCodeGen::ToSmi(LConstantOperand* op) const { | |
497 HConstant* constant = chunk_->LookupConstant(op); | |
498 return Smi::FromInt(constant->Integer32Value()); | |
499 } | |
500 | |
501 | |
502 double LCodeGen::ToDouble(LConstantOperand* op) const { | |
503 HConstant* constant = chunk_->LookupConstant(op); | |
504 DCHECK(constant->HasDoubleValue()); | |
505 return constant->DoubleValue(); | |
506 } | |
507 | |
508 | |
509 ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const { | |
510 HConstant* constant = chunk_->LookupConstant(op); | |
511 DCHECK(constant->HasExternalReferenceValue()); | |
512 return constant->ExternalReferenceValue(); | |
513 } | |
514 | |
515 | |
516 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { | |
517 HConstant* constant = chunk_->LookupConstant(op); | |
518 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); | |
519 return constant->handle(isolate()); | |
520 } | |
521 | |
522 | |
523 static int ArgumentsOffsetWithoutFrame(int index) { | |
524 DCHECK(index < 0); | |
525 return -(index + 1) * kPointerSize + kPCOnStackSize; | |
526 } | |
527 | |
528 | |
529 Operand LCodeGen::ToOperand(LOperand* op) const { | |
530 // Does not handle registers. In X64 assembler, plain registers are not | |
531 // representable as an Operand. | |
532 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); | |
533 if (NeedsEagerFrame()) { | |
534 return Operand(rbp, StackSlotOffset(op->index())); | |
535 } else { | |
536 // Retrieve parameter without eager stack-frame relative to the | |
537 // stack-pointer. | |
538 return Operand(rsp, ArgumentsOffsetWithoutFrame(op->index())); | |
539 } | |
540 } | |
541 | |
542 | |
543 void LCodeGen::WriteTranslation(LEnvironment* environment, | |
544 Translation* translation) { | |
545 if (environment == NULL) return; | |
546 | |
547 // The translation includes one command per value in the environment. | |
548 int translation_size = environment->translation_size(); | |
549 | |
550 WriteTranslation(environment->outer(), translation); | |
551 WriteTranslationFrame(environment, translation); | |
552 | |
553 int object_index = 0; | |
554 int dematerialized_index = 0; | |
555 for (int i = 0; i < translation_size; ++i) { | |
556 LOperand* value = environment->values()->at(i); | |
557 AddToTranslation( | |
558 environment, translation, value, environment->HasTaggedValueAt(i), | |
559 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); | |
560 } | |
561 } | |
562 | |
563 | |
564 void LCodeGen::AddToTranslation(LEnvironment* environment, | |
565 Translation* translation, | |
566 LOperand* op, | |
567 bool is_tagged, | |
568 bool is_uint32, | |
569 int* object_index_pointer, | |
570 int* dematerialized_index_pointer) { | |
571 if (op == LEnvironment::materialization_marker()) { | |
572 int object_index = (*object_index_pointer)++; | |
573 if (environment->ObjectIsDuplicateAt(object_index)) { | |
574 int dupe_of = environment->ObjectDuplicateOfAt(object_index); | |
575 translation->DuplicateObject(dupe_of); | |
576 return; | |
577 } | |
578 int object_length = environment->ObjectLengthAt(object_index); | |
579 if (environment->ObjectIsArgumentsAt(object_index)) { | |
580 translation->BeginArgumentsObject(object_length); | |
581 } else { | |
582 translation->BeginCapturedObject(object_length); | |
583 } | |
584 int dematerialized_index = *dematerialized_index_pointer; | |
585 int env_offset = environment->translation_size() + dematerialized_index; | |
586 *dematerialized_index_pointer += object_length; | |
587 for (int i = 0; i < object_length; ++i) { | |
588 LOperand* value = environment->values()->at(env_offset + i); | |
589 AddToTranslation(environment, | |
590 translation, | |
591 value, | |
592 environment->HasTaggedValueAt(env_offset + i), | |
593 environment->HasUint32ValueAt(env_offset + i), | |
594 object_index_pointer, | |
595 dematerialized_index_pointer); | |
596 } | |
597 return; | |
598 } | |
599 | |
600 if (op->IsStackSlot()) { | |
601 int index = op->index(); | |
602 if (index >= 0) { | |
603 index += StandardFrameConstants::kFixedFrameSize / kPointerSize; | |
604 } | |
605 if (is_tagged) { | |
606 translation->StoreStackSlot(index); | |
607 } else if (is_uint32) { | |
608 translation->StoreUint32StackSlot(index); | |
609 } else { | |
610 translation->StoreInt32StackSlot(index); | |
611 } | |
612 } else if (op->IsDoubleStackSlot()) { | |
613 int index = op->index(); | |
614 if (index >= 0) { | |
615 index += StandardFrameConstants::kFixedFrameSize / kPointerSize; | |
616 } | |
617 translation->StoreDoubleStackSlot(index); | |
618 } else if (op->IsRegister()) { | |
619 Register reg = ToRegister(op); | |
620 if (is_tagged) { | |
621 translation->StoreRegister(reg); | |
622 } else if (is_uint32) { | |
623 translation->StoreUint32Register(reg); | |
624 } else { | |
625 translation->StoreInt32Register(reg); | |
626 } | |
627 } else if (op->IsDoubleRegister()) { | |
628 XMMRegister reg = ToDoubleRegister(op); | |
629 translation->StoreDoubleRegister(reg); | |
630 } else if (op->IsConstantOperand()) { | |
631 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); | |
632 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); | |
633 translation->StoreLiteral(src_index); | |
634 } else { | |
635 UNREACHABLE(); | |
636 } | |
637 } | |
638 | |
639 | |
640 void LCodeGen::CallCodeGeneric(Handle<Code> code, | |
641 RelocInfo::Mode mode, | |
642 LInstruction* instr, | |
643 SafepointMode safepoint_mode, | |
644 int argc) { | |
645 DCHECK(instr != NULL); | |
646 __ call(code, mode); | |
647 RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc); | |
648 | |
649 // Signal that we don't inline smi code before these stubs in the | |
650 // optimizing code generator. | |
651 if (code->kind() == Code::BINARY_OP_IC || | |
652 code->kind() == Code::COMPARE_IC) { | |
653 __ nop(); | |
654 } | |
655 } | |
656 | |
657 | |
658 void LCodeGen::CallCode(Handle<Code> code, | |
659 RelocInfo::Mode mode, | |
660 LInstruction* instr) { | |
661 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0); | |
662 } | |
663 | |
664 | |
665 void LCodeGen::CallRuntime(const Runtime::Function* function, | |
666 int num_arguments, | |
667 LInstruction* instr, | |
668 SaveFPRegsMode save_doubles) { | |
669 DCHECK(instr != NULL); | |
670 DCHECK(instr->HasPointerMap()); | |
671 | |
672 __ CallRuntime(function, num_arguments, save_doubles); | |
673 | |
674 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0); | |
675 } | |
676 | |
677 | |
678 void LCodeGen::LoadContextFromDeferred(LOperand* context) { | |
679 if (context->IsRegister()) { | |
680 if (!ToRegister(context).is(rsi)) { | |
681 __ movp(rsi, ToRegister(context)); | |
682 } | |
683 } else if (context->IsStackSlot()) { | |
684 __ movp(rsi, ToOperand(context)); | |
685 } else if (context->IsConstantOperand()) { | |
686 HConstant* constant = | |
687 chunk_->LookupConstant(LConstantOperand::cast(context)); | |
688 __ Move(rsi, Handle<Object>::cast(constant->handle(isolate()))); | |
689 } else { | |
690 UNREACHABLE(); | |
691 } | |
692 } | |
693 | |
694 | |
695 | |
696 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, | |
697 int argc, | |
698 LInstruction* instr, | |
699 LOperand* context) { | |
700 LoadContextFromDeferred(context); | |
701 | |
702 __ CallRuntimeSaveDoubles(id); | |
703 RecordSafepointWithRegisters( | |
704 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); | |
705 } | |
706 | |
707 | |
708 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, | |
709 Safepoint::DeoptMode mode) { | |
710 environment->set_has_been_used(); | |
711 if (!environment->HasBeenRegistered()) { | |
712 // Physical stack frame layout: | |
713 // -x ............. -4 0 ..................................... y | |
714 // [incoming arguments] [spill slots] [pushed outgoing arguments] | |
715 | |
716 // Layout of the environment: | |
717 // 0 ..................................................... size-1 | |
718 // [parameters] [locals] [expression stack including arguments] | |
719 | |
720 // Layout of the translation: | |
721 // 0 ........................................................ size - 1 + 4 | |
722 // [expression stack including arguments] [locals] [4 words] [parameters] | |
723 // |>------------ translation_size ------------<| | |
724 | |
725 int frame_count = 0; | |
726 int jsframe_count = 0; | |
727 for (LEnvironment* e = environment; e != NULL; e = e->outer()) { | |
728 ++frame_count; | |
729 if (e->frame_type() == JS_FUNCTION) { | |
730 ++jsframe_count; | |
731 } | |
732 } | |
733 Translation translation(&translations_, frame_count, jsframe_count, zone()); | |
734 WriteTranslation(environment, &translation); | |
735 int deoptimization_index = deoptimizations_.length(); | |
736 int pc_offset = masm()->pc_offset(); | |
737 environment->Register(deoptimization_index, | |
738 translation.index(), | |
739 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); | |
740 deoptimizations_.Add(environment, environment->zone()); | |
741 } | |
742 } | |
743 | |
744 | |
745 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr, | |
746 Deoptimizer::DeoptReason deopt_reason, | |
747 Deoptimizer::BailoutType bailout_type) { | |
748 LEnvironment* environment = instr->environment(); | |
749 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); | |
750 DCHECK(environment->HasBeenRegistered()); | |
751 int id = environment->deoptimization_index(); | |
752 Address entry = | |
753 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); | |
754 if (entry == NULL) { | |
755 Abort(kBailoutWasNotPrepared); | |
756 return; | |
757 } | |
758 | |
759 if (DeoptEveryNTimes()) { | |
760 ExternalReference count = ExternalReference::stress_deopt_count(isolate()); | |
761 Label no_deopt; | |
762 __ pushfq(); | |
763 __ pushq(rax); | |
764 Operand count_operand = masm()->ExternalOperand(count, kScratchRegister); | |
765 __ movl(rax, count_operand); | |
766 __ subl(rax, Immediate(1)); | |
767 __ j(not_zero, &no_deopt, Label::kNear); | |
768 if (FLAG_trap_on_deopt) __ int3(); | |
769 __ movl(rax, Immediate(FLAG_deopt_every_n_times)); | |
770 __ movl(count_operand, rax); | |
771 __ popq(rax); | |
772 __ popfq(); | |
773 DCHECK(frame_is_built_); | |
774 __ call(entry, RelocInfo::RUNTIME_ENTRY); | |
775 __ bind(&no_deopt); | |
776 __ movl(count_operand, rax); | |
777 __ popq(rax); | |
778 __ popfq(); | |
779 } | |
780 | |
781 if (info()->ShouldTrapOnDeopt()) { | |
782 Label done; | |
783 if (cc != no_condition) { | |
784 __ j(NegateCondition(cc), &done, Label::kNear); | |
785 } | |
786 __ int3(); | |
787 __ bind(&done); | |
788 } | |
789 | |
790 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason); | |
791 | |
792 DCHECK(info()->IsStub() || frame_is_built_); | |
793 // Go through jump table if we need to handle condition, build frame, or | |
794 // restore caller doubles. | |
795 if (cc == no_condition && frame_is_built_ && | |
796 !info()->saves_caller_doubles()) { | |
797 DeoptComment(deopt_info); | |
798 __ call(entry, RelocInfo::RUNTIME_ENTRY); | |
799 info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id); | |
800 } else { | |
801 Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type, | |
802 !frame_is_built_); | |
803 // We often have several deopts to the same entry, reuse the last | |
804 // jump entry if this is the case. | |
805 if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() || | |
806 jump_table_.is_empty() || | |
807 !table_entry.IsEquivalentTo(jump_table_.last())) { | |
808 jump_table_.Add(table_entry, zone()); | |
809 } | |
810 if (cc == no_condition) { | |
811 __ jmp(&jump_table_.last().label); | |
812 } else { | |
813 __ j(cc, &jump_table_.last().label); | |
814 } | |
815 } | |
816 } | |
817 | |
818 | |
819 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr, | |
820 Deoptimizer::DeoptReason deopt_reason) { | |
821 Deoptimizer::BailoutType bailout_type = info()->IsStub() | |
822 ? Deoptimizer::LAZY | |
823 : Deoptimizer::EAGER; | |
824 DeoptimizeIf(cc, instr, deopt_reason, bailout_type); | |
825 } | |
826 | |
827 | |
828 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { | |
829 int length = deoptimizations_.length(); | |
830 if (length == 0) return; | |
831 Handle<DeoptimizationInputData> data = | |
832 DeoptimizationInputData::New(isolate(), length, TENURED); | |
833 | |
834 Handle<ByteArray> translations = | |
835 translations_.CreateByteArray(isolate()->factory()); | |
836 data->SetTranslationByteArray(*translations); | |
837 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); | |
838 data->SetOptimizationId(Smi::FromInt(info_->optimization_id())); | |
839 if (info_->IsOptimizing()) { | |
840 // Reference to shared function info does not change between phases. | |
841 AllowDeferredHandleDereference allow_handle_dereference; | |
842 data->SetSharedFunctionInfo(*info_->shared_info()); | |
843 } else { | |
844 data->SetSharedFunctionInfo(Smi::FromInt(0)); | |
845 } | |
846 data->SetWeakCellCache(Smi::FromInt(0)); | |
847 | |
848 Handle<FixedArray> literals = | |
849 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); | |
850 { AllowDeferredHandleDereference copy_handles; | |
851 for (int i = 0; i < deoptimization_literals_.length(); i++) { | |
852 literals->set(i, *deoptimization_literals_[i]); | |
853 } | |
854 data->SetLiteralArray(*literals); | |
855 } | |
856 | |
857 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt())); | |
858 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); | |
859 | |
860 // Populate the deoptimization entries. | |
861 for (int i = 0; i < length; i++) { | |
862 LEnvironment* env = deoptimizations_[i]; | |
863 data->SetAstId(i, env->ast_id()); | |
864 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); | |
865 data->SetArgumentsStackHeight(i, | |
866 Smi::FromInt(env->arguments_stack_height())); | |
867 data->SetPc(i, Smi::FromInt(env->pc_offset())); | |
868 } | |
869 code->set_deoptimization_data(*data); | |
870 } | |
871 | |
872 | |
873 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { | |
874 DCHECK_EQ(0, deoptimization_literals_.length()); | |
875 for (auto function : chunk()->inlined_functions()) { | |
876 DefineDeoptimizationLiteral(function); | |
877 } | |
878 inlined_function_count_ = deoptimization_literals_.length(); | |
879 } | |
880 | |
881 | |
882 void LCodeGen::RecordSafepointWithLazyDeopt( | |
883 LInstruction* instr, SafepointMode safepoint_mode, int argc) { | |
884 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { | |
885 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); | |
886 } else { | |
887 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS); | |
888 RecordSafepointWithRegisters( | |
889 instr->pointer_map(), argc, Safepoint::kLazyDeopt); | |
890 } | |
891 } | |
892 | |
893 | |
894 void LCodeGen::RecordSafepoint( | |
895 LPointerMap* pointers, | |
896 Safepoint::Kind kind, | |
897 int arguments, | |
898 Safepoint::DeoptMode deopt_mode) { | |
899 DCHECK(kind == expected_safepoint_kind_); | |
900 | |
901 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); | |
902 | |
903 Safepoint safepoint = safepoints_.DefineSafepoint(masm(), | |
904 kind, arguments, deopt_mode); | |
905 for (int i = 0; i < operands->length(); i++) { | |
906 LOperand* pointer = operands->at(i); | |
907 if (pointer->IsStackSlot()) { | |
908 safepoint.DefinePointerSlot(pointer->index(), zone()); | |
909 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { | |
910 safepoint.DefinePointerRegister(ToRegister(pointer), zone()); | |
911 } | |
912 } | |
913 } | |
914 | |
915 | |
916 void LCodeGen::RecordSafepoint(LPointerMap* pointers, | |
917 Safepoint::DeoptMode deopt_mode) { | |
918 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); | |
919 } | |
920 | |
921 | |
922 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { | |
923 LPointerMap empty_pointers(zone()); | |
924 RecordSafepoint(&empty_pointers, deopt_mode); | |
925 } | |
926 | |
927 | |
928 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, | |
929 int arguments, | |
930 Safepoint::DeoptMode deopt_mode) { | |
931 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); | |
932 } | |
933 | |
934 | |
935 void LCodeGen::RecordAndWritePosition(int position) { | |
936 if (position == RelocInfo::kNoPosition) return; | |
937 masm()->positions_recorder()->RecordPosition(position); | |
938 masm()->positions_recorder()->WriteRecordedPositions(); | |
939 } | |
940 | |
941 | |
942 static const char* LabelType(LLabel* label) { | |
943 if (label->is_loop_header()) return " (loop header)"; | |
944 if (label->is_osr_entry()) return " (OSR entry)"; | |
945 return ""; | |
946 } | |
947 | |
948 | |
949 void LCodeGen::DoLabel(LLabel* label) { | |
950 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", | |
951 current_instruction_, | |
952 label->hydrogen_value()->id(), | |
953 label->block_id(), | |
954 LabelType(label)); | |
955 __ bind(label->label()); | |
956 current_block_ = label->block_id(); | |
957 DoGap(label); | |
958 } | |
959 | |
960 | |
961 void LCodeGen::DoParallelMove(LParallelMove* move) { | |
962 resolver_.Resolve(move); | |
963 } | |
964 | |
965 | |
966 void LCodeGen::DoGap(LGap* gap) { | |
967 for (int i = LGap::FIRST_INNER_POSITION; | |
968 i <= LGap::LAST_INNER_POSITION; | |
969 i++) { | |
970 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); | |
971 LParallelMove* move = gap->GetParallelMove(inner_pos); | |
972 if (move != NULL) DoParallelMove(move); | |
973 } | |
974 } | |
975 | |
976 | |
977 void LCodeGen::DoInstructionGap(LInstructionGap* instr) { | |
978 DoGap(instr); | |
979 } | |
980 | |
981 | |
982 void LCodeGen::DoParameter(LParameter* instr) { | |
983 // Nothing to do. | |
984 } | |
985 | |
986 | |
987 void LCodeGen::DoCallStub(LCallStub* instr) { | |
988 DCHECK(ToRegister(instr->context()).is(rsi)); | |
989 DCHECK(ToRegister(instr->result()).is(rax)); | |
990 switch (instr->hydrogen()->major_key()) { | |
991 case CodeStub::RegExpExec: { | |
992 RegExpExecStub stub(isolate()); | |
993 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
994 break; | |
995 } | |
996 case CodeStub::SubString: { | |
997 SubStringStub stub(isolate()); | |
998 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
999 break; | |
1000 } | |
1001 default: | |
1002 UNREACHABLE(); | |
1003 } | |
1004 } | |
1005 | |
1006 | |
1007 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { | |
1008 GenerateOsrPrologue(); | |
1009 } | |
1010 | |
1011 | |
1012 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { | |
1013 Register dividend = ToRegister(instr->dividend()); | |
1014 int32_t divisor = instr->divisor(); | |
1015 DCHECK(dividend.is(ToRegister(instr->result()))); | |
1016 | |
1017 // Theoretically, a variation of the branch-free code for integer division by | |
1018 // a power of 2 (calculating the remainder via an additional multiplication | |
1019 // (which gets simplified to an 'and') and subtraction) should be faster, and | |
1020 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to | |
1021 // indicate that positive dividends are heavily favored, so the branching | |
1022 // version performs better. | |
1023 HMod* hmod = instr->hydrogen(); | |
1024 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); | |
1025 Label dividend_is_not_negative, done; | |
1026 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { | |
1027 __ testl(dividend, dividend); | |
1028 __ j(not_sign, ÷nd_is_not_negative, Label::kNear); | |
1029 // Note that this is correct even for kMinInt operands. | |
1030 __ negl(dividend); | |
1031 __ andl(dividend, Immediate(mask)); | |
1032 __ negl(dividend); | |
1033 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1034 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero); | |
1035 } | |
1036 __ jmp(&done, Label::kNear); | |
1037 } | |
1038 | |
1039 __ bind(÷nd_is_not_negative); | |
1040 __ andl(dividend, Immediate(mask)); | |
1041 __ bind(&done); | |
1042 } | |
1043 | |
1044 | |
1045 void LCodeGen::DoModByConstI(LModByConstI* instr) { | |
1046 Register dividend = ToRegister(instr->dividend()); | |
1047 int32_t divisor = instr->divisor(); | |
1048 DCHECK(ToRegister(instr->result()).is(rax)); | |
1049 | |
1050 if (divisor == 0) { | |
1051 DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero); | |
1052 return; | |
1053 } | |
1054 | |
1055 __ TruncatingDiv(dividend, Abs(divisor)); | |
1056 __ imull(rdx, rdx, Immediate(Abs(divisor))); | |
1057 __ movl(rax, dividend); | |
1058 __ subl(rax, rdx); | |
1059 | |
1060 // Check for negative zero. | |
1061 HMod* hmod = instr->hydrogen(); | |
1062 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1063 Label remainder_not_zero; | |
1064 __ j(not_zero, &remainder_not_zero, Label::kNear); | |
1065 __ cmpl(dividend, Immediate(0)); | |
1066 DeoptimizeIf(less, instr, Deoptimizer::kMinusZero); | |
1067 __ bind(&remainder_not_zero); | |
1068 } | |
1069 } | |
1070 | |
1071 | |
1072 void LCodeGen::DoModI(LModI* instr) { | |
1073 HMod* hmod = instr->hydrogen(); | |
1074 | |
1075 Register left_reg = ToRegister(instr->left()); | |
1076 DCHECK(left_reg.is(rax)); | |
1077 Register right_reg = ToRegister(instr->right()); | |
1078 DCHECK(!right_reg.is(rax)); | |
1079 DCHECK(!right_reg.is(rdx)); | |
1080 Register result_reg = ToRegister(instr->result()); | |
1081 DCHECK(result_reg.is(rdx)); | |
1082 | |
1083 Label done; | |
1084 // Check for x % 0, idiv would signal a divide error. We have to | |
1085 // deopt in this case because we can't return a NaN. | |
1086 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) { | |
1087 __ testl(right_reg, right_reg); | |
1088 DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero); | |
1089 } | |
1090 | |
1091 // Check for kMinInt % -1, idiv would signal a divide error. We | |
1092 // have to deopt if we care about -0, because we can't return that. | |
1093 if (hmod->CheckFlag(HValue::kCanOverflow)) { | |
1094 Label no_overflow_possible; | |
1095 __ cmpl(left_reg, Immediate(kMinInt)); | |
1096 __ j(not_zero, &no_overflow_possible, Label::kNear); | |
1097 __ cmpl(right_reg, Immediate(-1)); | |
1098 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1099 DeoptimizeIf(equal, instr, Deoptimizer::kMinusZero); | |
1100 } else { | |
1101 __ j(not_equal, &no_overflow_possible, Label::kNear); | |
1102 __ Set(result_reg, 0); | |
1103 __ jmp(&done, Label::kNear); | |
1104 } | |
1105 __ bind(&no_overflow_possible); | |
1106 } | |
1107 | |
1108 // Sign extend dividend in eax into edx:eax, since we are using only the low | |
1109 // 32 bits of the values. | |
1110 __ cdq(); | |
1111 | |
1112 // If we care about -0, test if the dividend is <0 and the result is 0. | |
1113 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1114 Label positive_left; | |
1115 __ testl(left_reg, left_reg); | |
1116 __ j(not_sign, &positive_left, Label::kNear); | |
1117 __ idivl(right_reg); | |
1118 __ testl(result_reg, result_reg); | |
1119 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero); | |
1120 __ jmp(&done, Label::kNear); | |
1121 __ bind(&positive_left); | |
1122 } | |
1123 __ idivl(right_reg); | |
1124 __ bind(&done); | |
1125 } | |
1126 | |
1127 | |
1128 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { | |
1129 Register dividend = ToRegister(instr->dividend()); | |
1130 int32_t divisor = instr->divisor(); | |
1131 DCHECK(dividend.is(ToRegister(instr->result()))); | |
1132 | |
1133 // If the divisor is positive, things are easy: There can be no deopts and we | |
1134 // can simply do an arithmetic right shift. | |
1135 if (divisor == 1) return; | |
1136 int32_t shift = WhichPowerOf2Abs(divisor); | |
1137 if (divisor > 1) { | |
1138 __ sarl(dividend, Immediate(shift)); | |
1139 return; | |
1140 } | |
1141 | |
1142 // If the divisor is negative, we have to negate and handle edge cases. | |
1143 __ negl(dividend); | |
1144 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1145 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero); | |
1146 } | |
1147 | |
1148 // Dividing by -1 is basically negation, unless we overflow. | |
1149 if (divisor == -1) { | |
1150 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { | |
1151 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
1152 } | |
1153 return; | |
1154 } | |
1155 | |
1156 // If the negation could not overflow, simply shifting is OK. | |
1157 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { | |
1158 __ sarl(dividend, Immediate(shift)); | |
1159 return; | |
1160 } | |
1161 | |
1162 Label not_kmin_int, done; | |
1163 __ j(no_overflow, ¬_kmin_int, Label::kNear); | |
1164 __ movl(dividend, Immediate(kMinInt / divisor)); | |
1165 __ jmp(&done, Label::kNear); | |
1166 __ bind(¬_kmin_int); | |
1167 __ sarl(dividend, Immediate(shift)); | |
1168 __ bind(&done); | |
1169 } | |
1170 | |
1171 | |
1172 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { | |
1173 Register dividend = ToRegister(instr->dividend()); | |
1174 int32_t divisor = instr->divisor(); | |
1175 DCHECK(ToRegister(instr->result()).is(rdx)); | |
1176 | |
1177 if (divisor == 0) { | |
1178 DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero); | |
1179 return; | |
1180 } | |
1181 | |
1182 // Check for (0 / -x) that will produce negative zero. | |
1183 HMathFloorOfDiv* hdiv = instr->hydrogen(); | |
1184 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { | |
1185 __ testl(dividend, dividend); | |
1186 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero); | |
1187 } | |
1188 | |
1189 // Easy case: We need no dynamic check for the dividend and the flooring | |
1190 // division is the same as the truncating division. | |
1191 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || | |
1192 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { | |
1193 __ TruncatingDiv(dividend, Abs(divisor)); | |
1194 if (divisor < 0) __ negl(rdx); | |
1195 return; | |
1196 } | |
1197 | |
1198 // In the general case we may need to adjust before and after the truncating | |
1199 // division to get a flooring division. | |
1200 Register temp = ToRegister(instr->temp3()); | |
1201 DCHECK(!temp.is(dividend) && !temp.is(rax) && !temp.is(rdx)); | |
1202 Label needs_adjustment, done; | |
1203 __ cmpl(dividend, Immediate(0)); | |
1204 __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear); | |
1205 __ TruncatingDiv(dividend, Abs(divisor)); | |
1206 if (divisor < 0) __ negl(rdx); | |
1207 __ jmp(&done, Label::kNear); | |
1208 __ bind(&needs_adjustment); | |
1209 __ leal(temp, Operand(dividend, divisor > 0 ? 1 : -1)); | |
1210 __ TruncatingDiv(temp, Abs(divisor)); | |
1211 if (divisor < 0) __ negl(rdx); | |
1212 __ decl(rdx); | |
1213 __ bind(&done); | |
1214 } | |
1215 | |
1216 | |
1217 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. | |
1218 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { | |
1219 HBinaryOperation* hdiv = instr->hydrogen(); | |
1220 Register dividend = ToRegister(instr->dividend()); | |
1221 Register divisor = ToRegister(instr->divisor()); | |
1222 Register remainder = ToRegister(instr->temp()); | |
1223 Register result = ToRegister(instr->result()); | |
1224 DCHECK(dividend.is(rax)); | |
1225 DCHECK(remainder.is(rdx)); | |
1226 DCHECK(result.is(rax)); | |
1227 DCHECK(!divisor.is(rax)); | |
1228 DCHECK(!divisor.is(rdx)); | |
1229 | |
1230 // Check for x / 0. | |
1231 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { | |
1232 __ testl(divisor, divisor); | |
1233 DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero); | |
1234 } | |
1235 | |
1236 // Check for (0 / -x) that will produce negative zero. | |
1237 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1238 Label dividend_not_zero; | |
1239 __ testl(dividend, dividend); | |
1240 __ j(not_zero, ÷nd_not_zero, Label::kNear); | |
1241 __ testl(divisor, divisor); | |
1242 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero); | |
1243 __ bind(÷nd_not_zero); | |
1244 } | |
1245 | |
1246 // Check for (kMinInt / -1). | |
1247 if (hdiv->CheckFlag(HValue::kCanOverflow)) { | |
1248 Label dividend_not_min_int; | |
1249 __ cmpl(dividend, Immediate(kMinInt)); | |
1250 __ j(not_zero, ÷nd_not_min_int, Label::kNear); | |
1251 __ cmpl(divisor, Immediate(-1)); | |
1252 DeoptimizeIf(zero, instr, Deoptimizer::kOverflow); | |
1253 __ bind(÷nd_not_min_int); | |
1254 } | |
1255 | |
1256 // Sign extend to rdx (= remainder). | |
1257 __ cdq(); | |
1258 __ idivl(divisor); | |
1259 | |
1260 Label done; | |
1261 __ testl(remainder, remainder); | |
1262 __ j(zero, &done, Label::kNear); | |
1263 __ xorl(remainder, divisor); | |
1264 __ sarl(remainder, Immediate(31)); | |
1265 __ addl(result, remainder); | |
1266 __ bind(&done); | |
1267 } | |
1268 | |
1269 | |
1270 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { | |
1271 Register dividend = ToRegister(instr->dividend()); | |
1272 int32_t divisor = instr->divisor(); | |
1273 Register result = ToRegister(instr->result()); | |
1274 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); | |
1275 DCHECK(!result.is(dividend)); | |
1276 | |
1277 // Check for (0 / -x) that will produce negative zero. | |
1278 HDiv* hdiv = instr->hydrogen(); | |
1279 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { | |
1280 __ testl(dividend, dividend); | |
1281 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero); | |
1282 } | |
1283 // Check for (kMinInt / -1). | |
1284 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { | |
1285 __ cmpl(dividend, Immediate(kMinInt)); | |
1286 DeoptimizeIf(zero, instr, Deoptimizer::kOverflow); | |
1287 } | |
1288 // Deoptimize if remainder will not be 0. | |
1289 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && | |
1290 divisor != 1 && divisor != -1) { | |
1291 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); | |
1292 __ testl(dividend, Immediate(mask)); | |
1293 DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision); | |
1294 } | |
1295 __ Move(result, dividend); | |
1296 int32_t shift = WhichPowerOf2Abs(divisor); | |
1297 if (shift > 0) { | |
1298 // The arithmetic shift is always OK, the 'if' is an optimization only. | |
1299 if (shift > 1) __ sarl(result, Immediate(31)); | |
1300 __ shrl(result, Immediate(32 - shift)); | |
1301 __ addl(result, dividend); | |
1302 __ sarl(result, Immediate(shift)); | |
1303 } | |
1304 if (divisor < 0) __ negl(result); | |
1305 } | |
1306 | |
1307 | |
1308 void LCodeGen::DoDivByConstI(LDivByConstI* instr) { | |
1309 Register dividend = ToRegister(instr->dividend()); | |
1310 int32_t divisor = instr->divisor(); | |
1311 DCHECK(ToRegister(instr->result()).is(rdx)); | |
1312 | |
1313 if (divisor == 0) { | |
1314 DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero); | |
1315 return; | |
1316 } | |
1317 | |
1318 // Check for (0 / -x) that will produce negative zero. | |
1319 HDiv* hdiv = instr->hydrogen(); | |
1320 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { | |
1321 __ testl(dividend, dividend); | |
1322 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero); | |
1323 } | |
1324 | |
1325 __ TruncatingDiv(dividend, Abs(divisor)); | |
1326 if (divisor < 0) __ negl(rdx); | |
1327 | |
1328 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { | |
1329 __ movl(rax, rdx); | |
1330 __ imull(rax, rax, Immediate(divisor)); | |
1331 __ subl(rax, dividend); | |
1332 DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision); | |
1333 } | |
1334 } | |
1335 | |
1336 | |
1337 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. | |
1338 void LCodeGen::DoDivI(LDivI* instr) { | |
1339 HBinaryOperation* hdiv = instr->hydrogen(); | |
1340 Register dividend = ToRegister(instr->dividend()); | |
1341 Register divisor = ToRegister(instr->divisor()); | |
1342 Register remainder = ToRegister(instr->temp()); | |
1343 DCHECK(dividend.is(rax)); | |
1344 DCHECK(remainder.is(rdx)); | |
1345 DCHECK(ToRegister(instr->result()).is(rax)); | |
1346 DCHECK(!divisor.is(rax)); | |
1347 DCHECK(!divisor.is(rdx)); | |
1348 | |
1349 // Check for x / 0. | |
1350 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { | |
1351 __ testl(divisor, divisor); | |
1352 DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero); | |
1353 } | |
1354 | |
1355 // Check for (0 / -x) that will produce negative zero. | |
1356 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1357 Label dividend_not_zero; | |
1358 __ testl(dividend, dividend); | |
1359 __ j(not_zero, ÷nd_not_zero, Label::kNear); | |
1360 __ testl(divisor, divisor); | |
1361 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero); | |
1362 __ bind(÷nd_not_zero); | |
1363 } | |
1364 | |
1365 // Check for (kMinInt / -1). | |
1366 if (hdiv->CheckFlag(HValue::kCanOverflow)) { | |
1367 Label dividend_not_min_int; | |
1368 __ cmpl(dividend, Immediate(kMinInt)); | |
1369 __ j(not_zero, ÷nd_not_min_int, Label::kNear); | |
1370 __ cmpl(divisor, Immediate(-1)); | |
1371 DeoptimizeIf(zero, instr, Deoptimizer::kOverflow); | |
1372 __ bind(÷nd_not_min_int); | |
1373 } | |
1374 | |
1375 // Sign extend to rdx (= remainder). | |
1376 __ cdq(); | |
1377 __ idivl(divisor); | |
1378 | |
1379 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { | |
1380 // Deoptimize if remainder is not 0. | |
1381 __ testl(remainder, remainder); | |
1382 DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision); | |
1383 } | |
1384 } | |
1385 | |
1386 | |
1387 void LCodeGen::DoMulI(LMulI* instr) { | |
1388 Register left = ToRegister(instr->left()); | |
1389 LOperand* right = instr->right(); | |
1390 | |
1391 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1392 if (instr->hydrogen_value()->representation().IsSmi()) { | |
1393 __ movp(kScratchRegister, left); | |
1394 } else { | |
1395 __ movl(kScratchRegister, left); | |
1396 } | |
1397 } | |
1398 | |
1399 bool can_overflow = | |
1400 instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | |
1401 if (right->IsConstantOperand()) { | |
1402 int32_t right_value = ToInteger32(LConstantOperand::cast(right)); | |
1403 if (right_value == -1) { | |
1404 __ negl(left); | |
1405 } else if (right_value == 0) { | |
1406 __ xorl(left, left); | |
1407 } else if (right_value == 2) { | |
1408 __ addl(left, left); | |
1409 } else if (!can_overflow) { | |
1410 // If the multiplication is known to not overflow, we | |
1411 // can use operations that don't set the overflow flag | |
1412 // correctly. | |
1413 switch (right_value) { | |
1414 case 1: | |
1415 // Do nothing. | |
1416 break; | |
1417 case 3: | |
1418 __ leal(left, Operand(left, left, times_2, 0)); | |
1419 break; | |
1420 case 4: | |
1421 __ shll(left, Immediate(2)); | |
1422 break; | |
1423 case 5: | |
1424 __ leal(left, Operand(left, left, times_4, 0)); | |
1425 break; | |
1426 case 8: | |
1427 __ shll(left, Immediate(3)); | |
1428 break; | |
1429 case 9: | |
1430 __ leal(left, Operand(left, left, times_8, 0)); | |
1431 break; | |
1432 case 16: | |
1433 __ shll(left, Immediate(4)); | |
1434 break; | |
1435 default: | |
1436 __ imull(left, left, Immediate(right_value)); | |
1437 break; | |
1438 } | |
1439 } else { | |
1440 __ imull(left, left, Immediate(right_value)); | |
1441 } | |
1442 } else if (right->IsStackSlot()) { | |
1443 if (instr->hydrogen_value()->representation().IsSmi()) { | |
1444 __ SmiToInteger64(left, left); | |
1445 __ imulp(left, ToOperand(right)); | |
1446 } else { | |
1447 __ imull(left, ToOperand(right)); | |
1448 } | |
1449 } else { | |
1450 if (instr->hydrogen_value()->representation().IsSmi()) { | |
1451 __ SmiToInteger64(left, left); | |
1452 __ imulp(left, ToRegister(right)); | |
1453 } else { | |
1454 __ imull(left, ToRegister(right)); | |
1455 } | |
1456 } | |
1457 | |
1458 if (can_overflow) { | |
1459 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
1460 } | |
1461 | |
1462 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
1463 // Bail out if the result is supposed to be negative zero. | |
1464 Label done; | |
1465 if (instr->hydrogen_value()->representation().IsSmi()) { | |
1466 __ testp(left, left); | |
1467 } else { | |
1468 __ testl(left, left); | |
1469 } | |
1470 __ j(not_zero, &done, Label::kNear); | |
1471 if (right->IsConstantOperand()) { | |
1472 // Constant can't be represented as 32-bit Smi due to immediate size | |
1473 // limit. | |
1474 DCHECK(SmiValuesAre32Bits() | |
1475 ? !instr->hydrogen_value()->representation().IsSmi() | |
1476 : SmiValuesAre31Bits()); | |
1477 if (ToInteger32(LConstantOperand::cast(right)) < 0) { | |
1478 DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero); | |
1479 } else if (ToInteger32(LConstantOperand::cast(right)) == 0) { | |
1480 __ cmpl(kScratchRegister, Immediate(0)); | |
1481 DeoptimizeIf(less, instr, Deoptimizer::kMinusZero); | |
1482 } | |
1483 } else if (right->IsStackSlot()) { | |
1484 if (instr->hydrogen_value()->representation().IsSmi()) { | |
1485 __ orp(kScratchRegister, ToOperand(right)); | |
1486 } else { | |
1487 __ orl(kScratchRegister, ToOperand(right)); | |
1488 } | |
1489 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero); | |
1490 } else { | |
1491 // Test the non-zero operand for negative sign. | |
1492 if (instr->hydrogen_value()->representation().IsSmi()) { | |
1493 __ orp(kScratchRegister, ToRegister(right)); | |
1494 } else { | |
1495 __ orl(kScratchRegister, ToRegister(right)); | |
1496 } | |
1497 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero); | |
1498 } | |
1499 __ bind(&done); | |
1500 } | |
1501 } | |
1502 | |
1503 | |
1504 void LCodeGen::DoBitI(LBitI* instr) { | |
1505 LOperand* left = instr->left(); | |
1506 LOperand* right = instr->right(); | |
1507 DCHECK(left->Equals(instr->result())); | |
1508 DCHECK(left->IsRegister()); | |
1509 | |
1510 if (right->IsConstantOperand()) { | |
1511 int32_t right_operand = | |
1512 ToRepresentation(LConstantOperand::cast(right), | |
1513 instr->hydrogen()->right()->representation()); | |
1514 switch (instr->op()) { | |
1515 case Token::BIT_AND: | |
1516 __ andl(ToRegister(left), Immediate(right_operand)); | |
1517 break; | |
1518 case Token::BIT_OR: | |
1519 __ orl(ToRegister(left), Immediate(right_operand)); | |
1520 break; | |
1521 case Token::BIT_XOR: | |
1522 if (right_operand == int32_t(~0)) { | |
1523 __ notl(ToRegister(left)); | |
1524 } else { | |
1525 __ xorl(ToRegister(left), Immediate(right_operand)); | |
1526 } | |
1527 break; | |
1528 default: | |
1529 UNREACHABLE(); | |
1530 break; | |
1531 } | |
1532 } else if (right->IsStackSlot()) { | |
1533 switch (instr->op()) { | |
1534 case Token::BIT_AND: | |
1535 if (instr->IsInteger32()) { | |
1536 __ andl(ToRegister(left), ToOperand(right)); | |
1537 } else { | |
1538 __ andp(ToRegister(left), ToOperand(right)); | |
1539 } | |
1540 break; | |
1541 case Token::BIT_OR: | |
1542 if (instr->IsInteger32()) { | |
1543 __ orl(ToRegister(left), ToOperand(right)); | |
1544 } else { | |
1545 __ orp(ToRegister(left), ToOperand(right)); | |
1546 } | |
1547 break; | |
1548 case Token::BIT_XOR: | |
1549 if (instr->IsInteger32()) { | |
1550 __ xorl(ToRegister(left), ToOperand(right)); | |
1551 } else { | |
1552 __ xorp(ToRegister(left), ToOperand(right)); | |
1553 } | |
1554 break; | |
1555 default: | |
1556 UNREACHABLE(); | |
1557 break; | |
1558 } | |
1559 } else { | |
1560 DCHECK(right->IsRegister()); | |
1561 switch (instr->op()) { | |
1562 case Token::BIT_AND: | |
1563 if (instr->IsInteger32()) { | |
1564 __ andl(ToRegister(left), ToRegister(right)); | |
1565 } else { | |
1566 __ andp(ToRegister(left), ToRegister(right)); | |
1567 } | |
1568 break; | |
1569 case Token::BIT_OR: | |
1570 if (instr->IsInteger32()) { | |
1571 __ orl(ToRegister(left), ToRegister(right)); | |
1572 } else { | |
1573 __ orp(ToRegister(left), ToRegister(right)); | |
1574 } | |
1575 break; | |
1576 case Token::BIT_XOR: | |
1577 if (instr->IsInteger32()) { | |
1578 __ xorl(ToRegister(left), ToRegister(right)); | |
1579 } else { | |
1580 __ xorp(ToRegister(left), ToRegister(right)); | |
1581 } | |
1582 break; | |
1583 default: | |
1584 UNREACHABLE(); | |
1585 break; | |
1586 } | |
1587 } | |
1588 } | |
1589 | |
1590 | |
1591 void LCodeGen::DoShiftI(LShiftI* instr) { | |
1592 LOperand* left = instr->left(); | |
1593 LOperand* right = instr->right(); | |
1594 DCHECK(left->Equals(instr->result())); | |
1595 DCHECK(left->IsRegister()); | |
1596 if (right->IsRegister()) { | |
1597 DCHECK(ToRegister(right).is(rcx)); | |
1598 | |
1599 switch (instr->op()) { | |
1600 case Token::ROR: | |
1601 __ rorl_cl(ToRegister(left)); | |
1602 break; | |
1603 case Token::SAR: | |
1604 __ sarl_cl(ToRegister(left)); | |
1605 break; | |
1606 case Token::SHR: | |
1607 __ shrl_cl(ToRegister(left)); | |
1608 if (instr->can_deopt()) { | |
1609 __ testl(ToRegister(left), ToRegister(left)); | |
1610 DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue); | |
1611 } | |
1612 break; | |
1613 case Token::SHL: | |
1614 __ shll_cl(ToRegister(left)); | |
1615 break; | |
1616 default: | |
1617 UNREACHABLE(); | |
1618 break; | |
1619 } | |
1620 } else { | |
1621 int32_t value = ToInteger32(LConstantOperand::cast(right)); | |
1622 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); | |
1623 switch (instr->op()) { | |
1624 case Token::ROR: | |
1625 if (shift_count != 0) { | |
1626 __ rorl(ToRegister(left), Immediate(shift_count)); | |
1627 } | |
1628 break; | |
1629 case Token::SAR: | |
1630 if (shift_count != 0) { | |
1631 __ sarl(ToRegister(left), Immediate(shift_count)); | |
1632 } | |
1633 break; | |
1634 case Token::SHR: | |
1635 if (shift_count != 0) { | |
1636 __ shrl(ToRegister(left), Immediate(shift_count)); | |
1637 } else if (instr->can_deopt()) { | |
1638 __ testl(ToRegister(left), ToRegister(left)); | |
1639 DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue); | |
1640 } | |
1641 break; | |
1642 case Token::SHL: | |
1643 if (shift_count != 0) { | |
1644 if (instr->hydrogen_value()->representation().IsSmi()) { | |
1645 if (SmiValuesAre32Bits()) { | |
1646 __ shlp(ToRegister(left), Immediate(shift_count)); | |
1647 } else { | |
1648 DCHECK(SmiValuesAre31Bits()); | |
1649 if (instr->can_deopt()) { | |
1650 if (shift_count != 1) { | |
1651 __ shll(ToRegister(left), Immediate(shift_count - 1)); | |
1652 } | |
1653 __ Integer32ToSmi(ToRegister(left), ToRegister(left)); | |
1654 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
1655 } else { | |
1656 __ shll(ToRegister(left), Immediate(shift_count)); | |
1657 } | |
1658 } | |
1659 } else { | |
1660 __ shll(ToRegister(left), Immediate(shift_count)); | |
1661 } | |
1662 } | |
1663 break; | |
1664 default: | |
1665 UNREACHABLE(); | |
1666 break; | |
1667 } | |
1668 } | |
1669 } | |
1670 | |
1671 | |
1672 void LCodeGen::DoSubI(LSubI* instr) { | |
1673 LOperand* left = instr->left(); | |
1674 LOperand* right = instr->right(); | |
1675 DCHECK(left->Equals(instr->result())); | |
1676 | |
1677 if (right->IsConstantOperand()) { | |
1678 int32_t right_operand = | |
1679 ToRepresentation(LConstantOperand::cast(right), | |
1680 instr->hydrogen()->right()->representation()); | |
1681 __ subl(ToRegister(left), Immediate(right_operand)); | |
1682 } else if (right->IsRegister()) { | |
1683 if (instr->hydrogen_value()->representation().IsSmi()) { | |
1684 __ subp(ToRegister(left), ToRegister(right)); | |
1685 } else { | |
1686 __ subl(ToRegister(left), ToRegister(right)); | |
1687 } | |
1688 } else { | |
1689 if (instr->hydrogen_value()->representation().IsSmi()) { | |
1690 __ subp(ToRegister(left), ToOperand(right)); | |
1691 } else { | |
1692 __ subl(ToRegister(left), ToOperand(right)); | |
1693 } | |
1694 } | |
1695 | |
1696 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { | |
1697 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
1698 } | |
1699 } | |
1700 | |
1701 | |
1702 void LCodeGen::DoConstantI(LConstantI* instr) { | |
1703 Register dst = ToRegister(instr->result()); | |
1704 if (instr->value() == 0) { | |
1705 __ xorl(dst, dst); | |
1706 } else { | |
1707 __ movl(dst, Immediate(instr->value())); | |
1708 } | |
1709 } | |
1710 | |
1711 | |
1712 void LCodeGen::DoConstantS(LConstantS* instr) { | |
1713 __ Move(ToRegister(instr->result()), instr->value()); | |
1714 } | |
1715 | |
1716 | |
1717 void LCodeGen::DoConstantD(LConstantD* instr) { | |
1718 __ Move(ToDoubleRegister(instr->result()), instr->bits()); | |
1719 } | |
1720 | |
1721 | |
1722 void LCodeGen::DoConstantE(LConstantE* instr) { | |
1723 __ LoadAddress(ToRegister(instr->result()), instr->value()); | |
1724 } | |
1725 | |
1726 | |
1727 void LCodeGen::DoConstantT(LConstantT* instr) { | |
1728 Handle<Object> object = instr->value(isolate()); | |
1729 AllowDeferredHandleDereference smi_check; | |
1730 __ Move(ToRegister(instr->result()), object); | |
1731 } | |
1732 | |
1733 | |
1734 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { | |
1735 Register result = ToRegister(instr->result()); | |
1736 Register map = ToRegister(instr->value()); | |
1737 __ EnumLength(result, map); | |
1738 } | |
1739 | |
1740 | |
1741 void LCodeGen::DoDateField(LDateField* instr) { | |
1742 Register object = ToRegister(instr->date()); | |
1743 Register result = ToRegister(instr->result()); | |
1744 Smi* index = instr->index(); | |
1745 DCHECK(object.is(result)); | |
1746 DCHECK(object.is(rax)); | |
1747 | |
1748 if (FLAG_debug_code) { | |
1749 __ AssertNotSmi(object); | |
1750 __ CmpObjectType(object, JS_DATE_TYPE, kScratchRegister); | |
1751 __ Check(equal, kOperandIsNotADate); | |
1752 } | |
1753 | |
1754 if (index->value() == 0) { | |
1755 __ movp(result, FieldOperand(object, JSDate::kValueOffset)); | |
1756 } else { | |
1757 Label runtime, done; | |
1758 if (index->value() < JSDate::kFirstUncachedField) { | |
1759 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); | |
1760 Operand stamp_operand = __ ExternalOperand(stamp); | |
1761 __ movp(kScratchRegister, stamp_operand); | |
1762 __ cmpp(kScratchRegister, FieldOperand(object, | |
1763 JSDate::kCacheStampOffset)); | |
1764 __ j(not_equal, &runtime, Label::kNear); | |
1765 __ movp(result, FieldOperand(object, JSDate::kValueOffset + | |
1766 kPointerSize * index->value())); | |
1767 __ jmp(&done, Label::kNear); | |
1768 } | |
1769 __ bind(&runtime); | |
1770 __ PrepareCallCFunction(2); | |
1771 __ movp(arg_reg_1, object); | |
1772 __ Move(arg_reg_2, index, Assembler::RelocInfoNone()); | |
1773 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); | |
1774 __ bind(&done); | |
1775 } | |
1776 } | |
1777 | |
1778 | |
1779 Operand LCodeGen::BuildSeqStringOperand(Register string, | |
1780 LOperand* index, | |
1781 String::Encoding encoding) { | |
1782 if (index->IsConstantOperand()) { | |
1783 int offset = ToInteger32(LConstantOperand::cast(index)); | |
1784 if (encoding == String::TWO_BYTE_ENCODING) { | |
1785 offset *= kUC16Size; | |
1786 } | |
1787 STATIC_ASSERT(kCharSize == 1); | |
1788 return FieldOperand(string, SeqString::kHeaderSize + offset); | |
1789 } | |
1790 return FieldOperand( | |
1791 string, ToRegister(index), | |
1792 encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2, | |
1793 SeqString::kHeaderSize); | |
1794 } | |
1795 | |
1796 | |
1797 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { | |
1798 String::Encoding encoding = instr->hydrogen()->encoding(); | |
1799 Register result = ToRegister(instr->result()); | |
1800 Register string = ToRegister(instr->string()); | |
1801 | |
1802 if (FLAG_debug_code) { | |
1803 __ Push(string); | |
1804 __ movp(string, FieldOperand(string, HeapObject::kMapOffset)); | |
1805 __ movzxbp(string, FieldOperand(string, Map::kInstanceTypeOffset)); | |
1806 | |
1807 __ andb(string, Immediate(kStringRepresentationMask | kStringEncodingMask)); | |
1808 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; | |
1809 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; | |
1810 __ cmpp(string, Immediate(encoding == String::ONE_BYTE_ENCODING | |
1811 ? one_byte_seq_type : two_byte_seq_type)); | |
1812 __ Check(equal, kUnexpectedStringType); | |
1813 __ Pop(string); | |
1814 } | |
1815 | |
1816 Operand operand = BuildSeqStringOperand(string, instr->index(), encoding); | |
1817 if (encoding == String::ONE_BYTE_ENCODING) { | |
1818 __ movzxbl(result, operand); | |
1819 } else { | |
1820 __ movzxwl(result, operand); | |
1821 } | |
1822 } | |
1823 | |
1824 | |
1825 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { | |
1826 String::Encoding encoding = instr->hydrogen()->encoding(); | |
1827 Register string = ToRegister(instr->string()); | |
1828 | |
1829 if (FLAG_debug_code) { | |
1830 Register value = ToRegister(instr->value()); | |
1831 Register index = ToRegister(instr->index()); | |
1832 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; | |
1833 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; | |
1834 int encoding_mask = | |
1835 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING | |
1836 ? one_byte_seq_type : two_byte_seq_type; | |
1837 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask); | |
1838 } | |
1839 | |
1840 Operand operand = BuildSeqStringOperand(string, instr->index(), encoding); | |
1841 if (instr->value()->IsConstantOperand()) { | |
1842 int value = ToInteger32(LConstantOperand::cast(instr->value())); | |
1843 DCHECK_LE(0, value); | |
1844 if (encoding == String::ONE_BYTE_ENCODING) { | |
1845 DCHECK_LE(value, String::kMaxOneByteCharCode); | |
1846 __ movb(operand, Immediate(value)); | |
1847 } else { | |
1848 DCHECK_LE(value, String::kMaxUtf16CodeUnit); | |
1849 __ movw(operand, Immediate(value)); | |
1850 } | |
1851 } else { | |
1852 Register value = ToRegister(instr->value()); | |
1853 if (encoding == String::ONE_BYTE_ENCODING) { | |
1854 __ movb(operand, value); | |
1855 } else { | |
1856 __ movw(operand, value); | |
1857 } | |
1858 } | |
1859 } | |
1860 | |
1861 | |
1862 void LCodeGen::DoAddI(LAddI* instr) { | |
1863 LOperand* left = instr->left(); | |
1864 LOperand* right = instr->right(); | |
1865 | |
1866 Representation target_rep = instr->hydrogen()->representation(); | |
1867 bool is_p = target_rep.IsSmi() || target_rep.IsExternal(); | |
1868 | |
1869 if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) { | |
1870 if (right->IsConstantOperand()) { | |
1871 // No support for smi-immediates for 32-bit SMI. | |
1872 DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits()); | |
1873 int32_t offset = | |
1874 ToRepresentation(LConstantOperand::cast(right), | |
1875 instr->hydrogen()->right()->representation()); | |
1876 if (is_p) { | |
1877 __ leap(ToRegister(instr->result()), | |
1878 MemOperand(ToRegister(left), offset)); | |
1879 } else { | |
1880 __ leal(ToRegister(instr->result()), | |
1881 MemOperand(ToRegister(left), offset)); | |
1882 } | |
1883 } else { | |
1884 Operand address(ToRegister(left), ToRegister(right), times_1, 0); | |
1885 if (is_p) { | |
1886 __ leap(ToRegister(instr->result()), address); | |
1887 } else { | |
1888 __ leal(ToRegister(instr->result()), address); | |
1889 } | |
1890 } | |
1891 } else { | |
1892 if (right->IsConstantOperand()) { | |
1893 // No support for smi-immediates for 32-bit SMI. | |
1894 DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits()); | |
1895 int32_t right_operand = | |
1896 ToRepresentation(LConstantOperand::cast(right), | |
1897 instr->hydrogen()->right()->representation()); | |
1898 if (is_p) { | |
1899 __ addp(ToRegister(left), Immediate(right_operand)); | |
1900 } else { | |
1901 __ addl(ToRegister(left), Immediate(right_operand)); | |
1902 } | |
1903 } else if (right->IsRegister()) { | |
1904 if (is_p) { | |
1905 __ addp(ToRegister(left), ToRegister(right)); | |
1906 } else { | |
1907 __ addl(ToRegister(left), ToRegister(right)); | |
1908 } | |
1909 } else { | |
1910 if (is_p) { | |
1911 __ addp(ToRegister(left), ToOperand(right)); | |
1912 } else { | |
1913 __ addl(ToRegister(left), ToOperand(right)); | |
1914 } | |
1915 } | |
1916 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { | |
1917 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
1918 } | |
1919 } | |
1920 } | |
1921 | |
1922 | |
1923 void LCodeGen::DoMathMinMax(LMathMinMax* instr) { | |
1924 LOperand* left = instr->left(); | |
1925 LOperand* right = instr->right(); | |
1926 DCHECK(left->Equals(instr->result())); | |
1927 HMathMinMax::Operation operation = instr->hydrogen()->operation(); | |
1928 if (instr->hydrogen()->representation().IsSmiOrInteger32()) { | |
1929 Label return_left; | |
1930 Condition condition = (operation == HMathMinMax::kMathMin) | |
1931 ? less_equal | |
1932 : greater_equal; | |
1933 Register left_reg = ToRegister(left); | |
1934 if (right->IsConstantOperand()) { | |
1935 Immediate right_imm = Immediate( | |
1936 ToRepresentation(LConstantOperand::cast(right), | |
1937 instr->hydrogen()->right()->representation())); | |
1938 DCHECK(SmiValuesAre32Bits() | |
1939 ? !instr->hydrogen()->representation().IsSmi() | |
1940 : SmiValuesAre31Bits()); | |
1941 __ cmpl(left_reg, right_imm); | |
1942 __ j(condition, &return_left, Label::kNear); | |
1943 __ movp(left_reg, right_imm); | |
1944 } else if (right->IsRegister()) { | |
1945 Register right_reg = ToRegister(right); | |
1946 if (instr->hydrogen_value()->representation().IsSmi()) { | |
1947 __ cmpp(left_reg, right_reg); | |
1948 } else { | |
1949 __ cmpl(left_reg, right_reg); | |
1950 } | |
1951 __ j(condition, &return_left, Label::kNear); | |
1952 __ movp(left_reg, right_reg); | |
1953 } else { | |
1954 Operand right_op = ToOperand(right); | |
1955 if (instr->hydrogen_value()->representation().IsSmi()) { | |
1956 __ cmpp(left_reg, right_op); | |
1957 } else { | |
1958 __ cmpl(left_reg, right_op); | |
1959 } | |
1960 __ j(condition, &return_left, Label::kNear); | |
1961 __ movp(left_reg, right_op); | |
1962 } | |
1963 __ bind(&return_left); | |
1964 } else { | |
1965 DCHECK(instr->hydrogen()->representation().IsDouble()); | |
1966 Label check_nan_left, check_zero, return_left, return_right; | |
1967 Condition condition = (operation == HMathMinMax::kMathMin) ? below : above; | |
1968 XMMRegister left_reg = ToDoubleRegister(left); | |
1969 XMMRegister right_reg = ToDoubleRegister(right); | |
1970 __ ucomisd(left_reg, right_reg); | |
1971 __ j(parity_even, &check_nan_left, Label::kNear); // At least one NaN. | |
1972 __ j(equal, &check_zero, Label::kNear); // left == right. | |
1973 __ j(condition, &return_left, Label::kNear); | |
1974 __ jmp(&return_right, Label::kNear); | |
1975 | |
1976 __ bind(&check_zero); | |
1977 XMMRegister xmm_scratch = double_scratch0(); | |
1978 __ Xorpd(xmm_scratch, xmm_scratch); | |
1979 __ ucomisd(left_reg, xmm_scratch); | |
1980 __ j(not_equal, &return_left, Label::kNear); // left == right != 0. | |
1981 // At this point, both left and right are either 0 or -0. | |
1982 if (operation == HMathMinMax::kMathMin) { | |
1983 __ orps(left_reg, right_reg); | |
1984 } else { | |
1985 // Since we operate on +0 and/or -0, addsd and andsd have the same effect. | |
1986 __ addsd(left_reg, right_reg); | |
1987 } | |
1988 __ jmp(&return_left, Label::kNear); | |
1989 | |
1990 __ bind(&check_nan_left); | |
1991 __ ucomisd(left_reg, left_reg); // NaN check. | |
1992 __ j(parity_even, &return_left, Label::kNear); | |
1993 __ bind(&return_right); | |
1994 __ Movapd(left_reg, right_reg); | |
1995 | |
1996 __ bind(&return_left); | |
1997 } | |
1998 } | |
1999 | |
2000 | |
2001 void LCodeGen::DoArithmeticD(LArithmeticD* instr) { | |
2002 XMMRegister left = ToDoubleRegister(instr->left()); | |
2003 XMMRegister right = ToDoubleRegister(instr->right()); | |
2004 XMMRegister result = ToDoubleRegister(instr->result()); | |
2005 switch (instr->op()) { | |
2006 case Token::ADD: | |
2007 if (CpuFeatures::IsSupported(AVX)) { | |
2008 CpuFeatureScope scope(masm(), AVX); | |
2009 __ vaddsd(result, left, right); | |
2010 } else { | |
2011 DCHECK(result.is(left)); | |
2012 __ addsd(left, right); | |
2013 } | |
2014 break; | |
2015 case Token::SUB: | |
2016 if (CpuFeatures::IsSupported(AVX)) { | |
2017 CpuFeatureScope scope(masm(), AVX); | |
2018 __ vsubsd(result, left, right); | |
2019 } else { | |
2020 DCHECK(result.is(left)); | |
2021 __ subsd(left, right); | |
2022 } | |
2023 break; | |
2024 case Token::MUL: | |
2025 if (CpuFeatures::IsSupported(AVX)) { | |
2026 CpuFeatureScope scope(masm(), AVX); | |
2027 __ vmulsd(result, left, right); | |
2028 } else { | |
2029 DCHECK(result.is(left)); | |
2030 __ mulsd(left, right); | |
2031 } | |
2032 break; | |
2033 case Token::DIV: | |
2034 if (CpuFeatures::IsSupported(AVX)) { | |
2035 CpuFeatureScope scope(masm(), AVX); | |
2036 __ vdivsd(result, left, right); | |
2037 } else { | |
2038 DCHECK(result.is(left)); | |
2039 __ divsd(left, right); | |
2040 } | |
2041 // Don't delete this mov. It may improve performance on some CPUs, | |
2042 // when there is a (v)mulsd depending on the result | |
2043 __ Movapd(result, result); | |
2044 break; | |
2045 case Token::MOD: { | |
2046 XMMRegister xmm_scratch = double_scratch0(); | |
2047 __ PrepareCallCFunction(2); | |
2048 __ Movapd(xmm_scratch, left); | |
2049 DCHECK(right.is(xmm1)); | |
2050 __ CallCFunction( | |
2051 ExternalReference::mod_two_doubles_operation(isolate()), 2); | |
2052 __ Movapd(result, xmm_scratch); | |
2053 break; | |
2054 } | |
2055 default: | |
2056 UNREACHABLE(); | |
2057 break; | |
2058 } | |
2059 } | |
2060 | |
2061 | |
2062 void LCodeGen::DoArithmeticT(LArithmeticT* instr) { | |
2063 DCHECK(ToRegister(instr->context()).is(rsi)); | |
2064 DCHECK(ToRegister(instr->left()).is(rdx)); | |
2065 DCHECK(ToRegister(instr->right()).is(rax)); | |
2066 DCHECK(ToRegister(instr->result()).is(rax)); | |
2067 | |
2068 Handle<Code> code = | |
2069 CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code(); | |
2070 CallCode(code, RelocInfo::CODE_TARGET, instr); | |
2071 } | |
2072 | |
2073 | |
2074 template<class InstrType> | |
2075 void LCodeGen::EmitBranch(InstrType instr, Condition cc) { | |
2076 int left_block = instr->TrueDestination(chunk_); | |
2077 int right_block = instr->FalseDestination(chunk_); | |
2078 | |
2079 int next_block = GetNextEmittedBlock(); | |
2080 | |
2081 if (right_block == left_block || cc == no_condition) { | |
2082 EmitGoto(left_block); | |
2083 } else if (left_block == next_block) { | |
2084 __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block)); | |
2085 } else if (right_block == next_block) { | |
2086 __ j(cc, chunk_->GetAssemblyLabel(left_block)); | |
2087 } else { | |
2088 __ j(cc, chunk_->GetAssemblyLabel(left_block)); | |
2089 if (cc != always) { | |
2090 __ jmp(chunk_->GetAssemblyLabel(right_block)); | |
2091 } | |
2092 } | |
2093 } | |
2094 | |
2095 | |
2096 template <class InstrType> | |
2097 void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) { | |
2098 int true_block = instr->TrueDestination(chunk_); | |
2099 __ j(cc, chunk_->GetAssemblyLabel(true_block)); | |
2100 } | |
2101 | |
2102 | |
2103 template <class InstrType> | |
2104 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) { | |
2105 int false_block = instr->FalseDestination(chunk_); | |
2106 __ j(cc, chunk_->GetAssemblyLabel(false_block)); | |
2107 } | |
2108 | |
2109 | |
2110 void LCodeGen::DoDebugBreak(LDebugBreak* instr) { | |
2111 __ int3(); | |
2112 } | |
2113 | |
2114 | |
2115 void LCodeGen::DoBranch(LBranch* instr) { | |
2116 Representation r = instr->hydrogen()->value()->representation(); | |
2117 if (r.IsInteger32()) { | |
2118 DCHECK(!info()->IsStub()); | |
2119 Register reg = ToRegister(instr->value()); | |
2120 __ testl(reg, reg); | |
2121 EmitBranch(instr, not_zero); | |
2122 } else if (r.IsSmi()) { | |
2123 DCHECK(!info()->IsStub()); | |
2124 Register reg = ToRegister(instr->value()); | |
2125 __ testp(reg, reg); | |
2126 EmitBranch(instr, not_zero); | |
2127 } else if (r.IsDouble()) { | |
2128 DCHECK(!info()->IsStub()); | |
2129 XMMRegister reg = ToDoubleRegister(instr->value()); | |
2130 XMMRegister xmm_scratch = double_scratch0(); | |
2131 __ Xorpd(xmm_scratch, xmm_scratch); | |
2132 __ ucomisd(reg, xmm_scratch); | |
2133 EmitBranch(instr, not_equal); | |
2134 } else { | |
2135 DCHECK(r.IsTagged()); | |
2136 Register reg = ToRegister(instr->value()); | |
2137 HType type = instr->hydrogen()->value()->type(); | |
2138 if (type.IsBoolean()) { | |
2139 DCHECK(!info()->IsStub()); | |
2140 __ CompareRoot(reg, Heap::kTrueValueRootIndex); | |
2141 EmitBranch(instr, equal); | |
2142 } else if (type.IsSmi()) { | |
2143 DCHECK(!info()->IsStub()); | |
2144 __ SmiCompare(reg, Smi::FromInt(0)); | |
2145 EmitBranch(instr, not_equal); | |
2146 } else if (type.IsJSArray()) { | |
2147 DCHECK(!info()->IsStub()); | |
2148 EmitBranch(instr, no_condition); | |
2149 } else if (type.IsHeapNumber()) { | |
2150 DCHECK(!info()->IsStub()); | |
2151 XMMRegister xmm_scratch = double_scratch0(); | |
2152 __ Xorpd(xmm_scratch, xmm_scratch); | |
2153 __ ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset)); | |
2154 EmitBranch(instr, not_equal); | |
2155 } else if (type.IsString()) { | |
2156 DCHECK(!info()->IsStub()); | |
2157 __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0)); | |
2158 EmitBranch(instr, not_equal); | |
2159 } else { | |
2160 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); | |
2161 // Avoid deopts in the case where we've never executed this path before. | |
2162 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic(); | |
2163 | |
2164 if (expected.Contains(ToBooleanStub::UNDEFINED)) { | |
2165 // undefined -> false. | |
2166 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); | |
2167 __ j(equal, instr->FalseLabel(chunk_)); | |
2168 } | |
2169 if (expected.Contains(ToBooleanStub::BOOLEAN)) { | |
2170 // true -> true. | |
2171 __ CompareRoot(reg, Heap::kTrueValueRootIndex); | |
2172 __ j(equal, instr->TrueLabel(chunk_)); | |
2173 // false -> false. | |
2174 __ CompareRoot(reg, Heap::kFalseValueRootIndex); | |
2175 __ j(equal, instr->FalseLabel(chunk_)); | |
2176 } | |
2177 if (expected.Contains(ToBooleanStub::NULL_TYPE)) { | |
2178 // 'null' -> false. | |
2179 __ CompareRoot(reg, Heap::kNullValueRootIndex); | |
2180 __ j(equal, instr->FalseLabel(chunk_)); | |
2181 } | |
2182 | |
2183 if (expected.Contains(ToBooleanStub::SMI)) { | |
2184 // Smis: 0 -> false, all other -> true. | |
2185 __ Cmp(reg, Smi::FromInt(0)); | |
2186 __ j(equal, instr->FalseLabel(chunk_)); | |
2187 __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); | |
2188 } else if (expected.NeedsMap()) { | |
2189 // If we need a map later and have a Smi -> deopt. | |
2190 __ testb(reg, Immediate(kSmiTagMask)); | |
2191 DeoptimizeIf(zero, instr, Deoptimizer::kSmi); | |
2192 } | |
2193 | |
2194 const Register map = kScratchRegister; | |
2195 if (expected.NeedsMap()) { | |
2196 __ movp(map, FieldOperand(reg, HeapObject::kMapOffset)); | |
2197 | |
2198 if (expected.CanBeUndetectable()) { | |
2199 // Undetectable -> false. | |
2200 __ testb(FieldOperand(map, Map::kBitFieldOffset), | |
2201 Immediate(1 << Map::kIsUndetectable)); | |
2202 __ j(not_zero, instr->FalseLabel(chunk_)); | |
2203 } | |
2204 } | |
2205 | |
2206 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { | |
2207 // spec object -> true. | |
2208 __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE); | |
2209 __ j(above_equal, instr->TrueLabel(chunk_)); | |
2210 } | |
2211 | |
2212 if (expected.Contains(ToBooleanStub::STRING)) { | |
2213 // String value -> false iff empty. | |
2214 Label not_string; | |
2215 __ CmpInstanceType(map, FIRST_NONSTRING_TYPE); | |
2216 __ j(above_equal, ¬_string, Label::kNear); | |
2217 __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0)); | |
2218 __ j(not_zero, instr->TrueLabel(chunk_)); | |
2219 __ jmp(instr->FalseLabel(chunk_)); | |
2220 __ bind(¬_string); | |
2221 } | |
2222 | |
2223 if (expected.Contains(ToBooleanStub::SYMBOL)) { | |
2224 // Symbol value -> true. | |
2225 __ CmpInstanceType(map, SYMBOL_TYPE); | |
2226 __ j(equal, instr->TrueLabel(chunk_)); | |
2227 } | |
2228 | |
2229 if (expected.Contains(ToBooleanStub::SIMD_VALUE)) { | |
2230 // SIMD value -> true. | |
2231 __ CmpInstanceType(map, SIMD128_VALUE_TYPE); | |
2232 __ j(equal, instr->TrueLabel(chunk_)); | |
2233 } | |
2234 | |
2235 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { | |
2236 // heap number -> false iff +0, -0, or NaN. | |
2237 Label not_heap_number; | |
2238 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); | |
2239 __ j(not_equal, ¬_heap_number, Label::kNear); | |
2240 XMMRegister xmm_scratch = double_scratch0(); | |
2241 __ Xorpd(xmm_scratch, xmm_scratch); | |
2242 __ ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset)); | |
2243 __ j(zero, instr->FalseLabel(chunk_)); | |
2244 __ jmp(instr->TrueLabel(chunk_)); | |
2245 __ bind(¬_heap_number); | |
2246 } | |
2247 | |
2248 if (!expected.IsGeneric()) { | |
2249 // We've seen something for the first time -> deopt. | |
2250 // This can only happen if we are not generic already. | |
2251 DeoptimizeIf(no_condition, instr, Deoptimizer::kUnexpectedObject); | |
2252 } | |
2253 } | |
2254 } | |
2255 } | |
2256 | |
2257 | |
2258 void LCodeGen::EmitGoto(int block) { | |
2259 if (!IsNextEmittedBlock(block)) { | |
2260 __ jmp(chunk_->GetAssemblyLabel(chunk_->LookupDestination(block))); | |
2261 } | |
2262 } | |
2263 | |
2264 | |
2265 void LCodeGen::DoGoto(LGoto* instr) { | |
2266 EmitGoto(instr->block_id()); | |
2267 } | |
2268 | |
2269 | |
2270 inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { | |
2271 Condition cond = no_condition; | |
2272 switch (op) { | |
2273 case Token::EQ: | |
2274 case Token::EQ_STRICT: | |
2275 cond = equal; | |
2276 break; | |
2277 case Token::NE: | |
2278 case Token::NE_STRICT: | |
2279 cond = not_equal; | |
2280 break; | |
2281 case Token::LT: | |
2282 cond = is_unsigned ? below : less; | |
2283 break; | |
2284 case Token::GT: | |
2285 cond = is_unsigned ? above : greater; | |
2286 break; | |
2287 case Token::LTE: | |
2288 cond = is_unsigned ? below_equal : less_equal; | |
2289 break; | |
2290 case Token::GTE: | |
2291 cond = is_unsigned ? above_equal : greater_equal; | |
2292 break; | |
2293 case Token::IN: | |
2294 case Token::INSTANCEOF: | |
2295 default: | |
2296 UNREACHABLE(); | |
2297 } | |
2298 return cond; | |
2299 } | |
2300 | |
2301 | |
2302 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { | |
2303 LOperand* left = instr->left(); | |
2304 LOperand* right = instr->right(); | |
2305 bool is_unsigned = | |
2306 instr->is_double() || | |
2307 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || | |
2308 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); | |
2309 Condition cc = TokenToCondition(instr->op(), is_unsigned); | |
2310 | |
2311 if (left->IsConstantOperand() && right->IsConstantOperand()) { | |
2312 // We can statically evaluate the comparison. | |
2313 double left_val = ToDouble(LConstantOperand::cast(left)); | |
2314 double right_val = ToDouble(LConstantOperand::cast(right)); | |
2315 int next_block = EvalComparison(instr->op(), left_val, right_val) ? | |
2316 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); | |
2317 EmitGoto(next_block); | |
2318 } else { | |
2319 if (instr->is_double()) { | |
2320 // Don't base result on EFLAGS when a NaN is involved. Instead | |
2321 // jump to the false block. | |
2322 __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right)); | |
2323 __ j(parity_even, instr->FalseLabel(chunk_)); | |
2324 } else { | |
2325 int32_t value; | |
2326 if (right->IsConstantOperand()) { | |
2327 value = ToInteger32(LConstantOperand::cast(right)); | |
2328 if (instr->hydrogen_value()->representation().IsSmi()) { | |
2329 __ Cmp(ToRegister(left), Smi::FromInt(value)); | |
2330 } else { | |
2331 __ cmpl(ToRegister(left), Immediate(value)); | |
2332 } | |
2333 } else if (left->IsConstantOperand()) { | |
2334 value = ToInteger32(LConstantOperand::cast(left)); | |
2335 if (instr->hydrogen_value()->representation().IsSmi()) { | |
2336 if (right->IsRegister()) { | |
2337 __ Cmp(ToRegister(right), Smi::FromInt(value)); | |
2338 } else { | |
2339 __ Cmp(ToOperand(right), Smi::FromInt(value)); | |
2340 } | |
2341 } else if (right->IsRegister()) { | |
2342 __ cmpl(ToRegister(right), Immediate(value)); | |
2343 } else { | |
2344 __ cmpl(ToOperand(right), Immediate(value)); | |
2345 } | |
2346 // We commuted the operands, so commute the condition. | |
2347 cc = CommuteCondition(cc); | |
2348 } else if (instr->hydrogen_value()->representation().IsSmi()) { | |
2349 if (right->IsRegister()) { | |
2350 __ cmpp(ToRegister(left), ToRegister(right)); | |
2351 } else { | |
2352 __ cmpp(ToRegister(left), ToOperand(right)); | |
2353 } | |
2354 } else { | |
2355 if (right->IsRegister()) { | |
2356 __ cmpl(ToRegister(left), ToRegister(right)); | |
2357 } else { | |
2358 __ cmpl(ToRegister(left), ToOperand(right)); | |
2359 } | |
2360 } | |
2361 } | |
2362 EmitBranch(instr, cc); | |
2363 } | |
2364 } | |
2365 | |
2366 | |
2367 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { | |
2368 Register left = ToRegister(instr->left()); | |
2369 | |
2370 if (instr->right()->IsConstantOperand()) { | |
2371 Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right())); | |
2372 __ Cmp(left, right); | |
2373 } else { | |
2374 Register right = ToRegister(instr->right()); | |
2375 __ cmpp(left, right); | |
2376 } | |
2377 EmitBranch(instr, equal); | |
2378 } | |
2379 | |
2380 | |
2381 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) { | |
2382 if (instr->hydrogen()->representation().IsTagged()) { | |
2383 Register input_reg = ToRegister(instr->object()); | |
2384 __ Cmp(input_reg, factory()->the_hole_value()); | |
2385 EmitBranch(instr, equal); | |
2386 return; | |
2387 } | |
2388 | |
2389 XMMRegister input_reg = ToDoubleRegister(instr->object()); | |
2390 __ ucomisd(input_reg, input_reg); | |
2391 EmitFalseBranch(instr, parity_odd); | |
2392 | |
2393 __ subp(rsp, Immediate(kDoubleSize)); | |
2394 __ Movsd(MemOperand(rsp, 0), input_reg); | |
2395 __ addp(rsp, Immediate(kDoubleSize)); | |
2396 | |
2397 int offset = sizeof(kHoleNanUpper32); | |
2398 __ cmpl(MemOperand(rsp, -offset), Immediate(kHoleNanUpper32)); | |
2399 EmitBranch(instr, equal); | |
2400 } | |
2401 | |
2402 | |
2403 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) { | |
2404 Representation rep = instr->hydrogen()->value()->representation(); | |
2405 DCHECK(!rep.IsInteger32()); | |
2406 | |
2407 if (rep.IsDouble()) { | |
2408 XMMRegister value = ToDoubleRegister(instr->value()); | |
2409 XMMRegister xmm_scratch = double_scratch0(); | |
2410 __ Xorpd(xmm_scratch, xmm_scratch); | |
2411 __ ucomisd(xmm_scratch, value); | |
2412 EmitFalseBranch(instr, not_equal); | |
2413 __ movmskpd(kScratchRegister, value); | |
2414 __ testl(kScratchRegister, Immediate(1)); | |
2415 EmitBranch(instr, not_zero); | |
2416 } else { | |
2417 Register value = ToRegister(instr->value()); | |
2418 Handle<Map> map = masm()->isolate()->factory()->heap_number_map(); | |
2419 __ CheckMap(value, map, instr->FalseLabel(chunk()), DO_SMI_CHECK); | |
2420 __ cmpl(FieldOperand(value, HeapNumber::kExponentOffset), | |
2421 Immediate(0x1)); | |
2422 EmitFalseBranch(instr, no_overflow); | |
2423 __ cmpl(FieldOperand(value, HeapNumber::kMantissaOffset), | |
2424 Immediate(0x00000000)); | |
2425 EmitBranch(instr, equal); | |
2426 } | |
2427 } | |
2428 | |
2429 | |
2430 Condition LCodeGen::EmitIsString(Register input, | |
2431 Register temp1, | |
2432 Label* is_not_string, | |
2433 SmiCheck check_needed = INLINE_SMI_CHECK) { | |
2434 if (check_needed == INLINE_SMI_CHECK) { | |
2435 __ JumpIfSmi(input, is_not_string); | |
2436 } | |
2437 | |
2438 Condition cond = masm_->IsObjectStringType(input, temp1, temp1); | |
2439 | |
2440 return cond; | |
2441 } | |
2442 | |
2443 | |
2444 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { | |
2445 Register reg = ToRegister(instr->value()); | |
2446 Register temp = ToRegister(instr->temp()); | |
2447 | |
2448 SmiCheck check_needed = | |
2449 instr->hydrogen()->value()->type().IsHeapObject() | |
2450 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | |
2451 | |
2452 Condition true_cond = EmitIsString( | |
2453 reg, temp, instr->FalseLabel(chunk_), check_needed); | |
2454 | |
2455 EmitBranch(instr, true_cond); | |
2456 } | |
2457 | |
2458 | |
2459 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { | |
2460 Condition is_smi; | |
2461 if (instr->value()->IsRegister()) { | |
2462 Register input = ToRegister(instr->value()); | |
2463 is_smi = masm()->CheckSmi(input); | |
2464 } else { | |
2465 Operand input = ToOperand(instr->value()); | |
2466 is_smi = masm()->CheckSmi(input); | |
2467 } | |
2468 EmitBranch(instr, is_smi); | |
2469 } | |
2470 | |
2471 | |
2472 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { | |
2473 Register input = ToRegister(instr->value()); | |
2474 Register temp = ToRegister(instr->temp()); | |
2475 | |
2476 if (!instr->hydrogen()->value()->type().IsHeapObject()) { | |
2477 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); | |
2478 } | |
2479 __ movp(temp, FieldOperand(input, HeapObject::kMapOffset)); | |
2480 __ testb(FieldOperand(temp, Map::kBitFieldOffset), | |
2481 Immediate(1 << Map::kIsUndetectable)); | |
2482 EmitBranch(instr, not_zero); | |
2483 } | |
2484 | |
2485 | |
2486 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { | |
2487 DCHECK(ToRegister(instr->context()).is(rsi)); | |
2488 DCHECK(ToRegister(instr->left()).is(rdx)); | |
2489 DCHECK(ToRegister(instr->right()).is(rax)); | |
2490 | |
2491 Handle<Code> code = CodeFactory::StringCompare(isolate()).code(); | |
2492 CallCode(code, RelocInfo::CODE_TARGET, instr); | |
2493 __ testp(rax, rax); | |
2494 | |
2495 EmitBranch(instr, TokenToCondition(instr->op(), false)); | |
2496 } | |
2497 | |
2498 | |
2499 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { | |
2500 InstanceType from = instr->from(); | |
2501 InstanceType to = instr->to(); | |
2502 if (from == FIRST_TYPE) return to; | |
2503 DCHECK(from == to || to == LAST_TYPE); | |
2504 return from; | |
2505 } | |
2506 | |
2507 | |
2508 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { | |
2509 InstanceType from = instr->from(); | |
2510 InstanceType to = instr->to(); | |
2511 if (from == to) return equal; | |
2512 if (to == LAST_TYPE) return above_equal; | |
2513 if (from == FIRST_TYPE) return below_equal; | |
2514 UNREACHABLE(); | |
2515 return equal; | |
2516 } | |
2517 | |
2518 | |
2519 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { | |
2520 Register input = ToRegister(instr->value()); | |
2521 | |
2522 if (!instr->hydrogen()->value()->type().IsHeapObject()) { | |
2523 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); | |
2524 } | |
2525 | |
2526 __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister); | |
2527 EmitBranch(instr, BranchCondition(instr->hydrogen())); | |
2528 } | |
2529 | |
2530 | |
2531 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { | |
2532 Register input = ToRegister(instr->value()); | |
2533 Register result = ToRegister(instr->result()); | |
2534 | |
2535 __ AssertString(input); | |
2536 | |
2537 __ movl(result, FieldOperand(input, String::kHashFieldOffset)); | |
2538 DCHECK(String::kHashShift >= kSmiTagSize); | |
2539 __ IndexFromHash(result, result); | |
2540 } | |
2541 | |
2542 | |
2543 void LCodeGen::DoHasCachedArrayIndexAndBranch( | |
2544 LHasCachedArrayIndexAndBranch* instr) { | |
2545 Register input = ToRegister(instr->value()); | |
2546 | |
2547 __ testl(FieldOperand(input, String::kHashFieldOffset), | |
2548 Immediate(String::kContainsCachedArrayIndexMask)); | |
2549 EmitBranch(instr, equal); | |
2550 } | |
2551 | |
2552 | |
2553 // Branches to a label or falls through with the answer in the z flag. | |
2554 // Trashes the temp register. | |
2555 void LCodeGen::EmitClassOfTest(Label* is_true, | |
2556 Label* is_false, | |
2557 Handle<String> class_name, | |
2558 Register input, | |
2559 Register temp, | |
2560 Register temp2) { | |
2561 DCHECK(!input.is(temp)); | |
2562 DCHECK(!input.is(temp2)); | |
2563 DCHECK(!temp.is(temp2)); | |
2564 | |
2565 __ JumpIfSmi(input, is_false); | |
2566 | |
2567 if (String::Equals(isolate()->factory()->Function_string(), class_name)) { | |
2568 // Assuming the following assertions, we can use the same compares to test | |
2569 // for both being a function type and being in the object type range. | |
2570 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); | |
2571 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == | |
2572 FIRST_SPEC_OBJECT_TYPE + 1); | |
2573 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == | |
2574 LAST_SPEC_OBJECT_TYPE - 1); | |
2575 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); | |
2576 __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp); | |
2577 __ j(below, is_false); | |
2578 __ j(equal, is_true); | |
2579 __ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE); | |
2580 __ j(equal, is_true); | |
2581 } else { | |
2582 // Faster code path to avoid two compares: subtract lower bound from the | |
2583 // actual type and do a signed compare with the width of the type range. | |
2584 __ movp(temp, FieldOperand(input, HeapObject::kMapOffset)); | |
2585 __ movzxbl(temp2, FieldOperand(temp, Map::kInstanceTypeOffset)); | |
2586 __ subp(temp2, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); | |
2587 __ cmpp(temp2, Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - | |
2588 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); | |
2589 __ j(above, is_false); | |
2590 } | |
2591 | |
2592 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. | |
2593 // Check if the constructor in the map is a function. | |
2594 __ GetMapConstructor(temp, temp, kScratchRegister); | |
2595 | |
2596 // Objects with a non-function constructor have class 'Object'. | |
2597 __ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE); | |
2598 if (String::Equals(class_name, isolate()->factory()->Object_string())) { | |
2599 __ j(not_equal, is_true); | |
2600 } else { | |
2601 __ j(not_equal, is_false); | |
2602 } | |
2603 | |
2604 // temp now contains the constructor function. Grab the | |
2605 // instance class name from there. | |
2606 __ movp(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset)); | |
2607 __ movp(temp, FieldOperand(temp, | |
2608 SharedFunctionInfo::kInstanceClassNameOffset)); | |
2609 // The class name we are testing against is internalized since it's a literal. | |
2610 // The name in the constructor is internalized because of the way the context | |
2611 // is booted. This routine isn't expected to work for random API-created | |
2612 // classes and it doesn't have to because you can't access it with natives | |
2613 // syntax. Since both sides are internalized it is sufficient to use an | |
2614 // identity comparison. | |
2615 DCHECK(class_name->IsInternalizedString()); | |
2616 __ Cmp(temp, class_name); | |
2617 // End with the answer in the z flag. | |
2618 } | |
2619 | |
2620 | |
2621 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { | |
2622 Register input = ToRegister(instr->value()); | |
2623 Register temp = ToRegister(instr->temp()); | |
2624 Register temp2 = ToRegister(instr->temp2()); | |
2625 Handle<String> class_name = instr->hydrogen()->class_name(); | |
2626 | |
2627 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), | |
2628 class_name, input, temp, temp2); | |
2629 | |
2630 EmitBranch(instr, equal); | |
2631 } | |
2632 | |
2633 | |
2634 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { | |
2635 Register reg = ToRegister(instr->value()); | |
2636 | |
2637 __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map()); | |
2638 EmitBranch(instr, equal); | |
2639 } | |
2640 | |
2641 | |
2642 void LCodeGen::DoInstanceOf(LInstanceOf* instr) { | |
2643 DCHECK(ToRegister(instr->context()).is(rsi)); | |
2644 DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister())); | |
2645 DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister())); | |
2646 DCHECK(ToRegister(instr->result()).is(rax)); | |
2647 InstanceOfStub stub(isolate()); | |
2648 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
2649 } | |
2650 | |
2651 | |
2652 void LCodeGen::DoHasInPrototypeChainAndBranch( | |
2653 LHasInPrototypeChainAndBranch* instr) { | |
2654 Register const object = ToRegister(instr->object()); | |
2655 Register const object_map = kScratchRegister; | |
2656 Register const object_prototype = object_map; | |
2657 Register const prototype = ToRegister(instr->prototype()); | |
2658 | |
2659 // The {object} must be a spec object. It's sufficient to know that {object} | |
2660 // is not a smi, since all other non-spec objects have {null} prototypes and | |
2661 // will be ruled out below. | |
2662 if (instr->hydrogen()->ObjectNeedsSmiCheck()) { | |
2663 Condition is_smi = __ CheckSmi(object); | |
2664 EmitFalseBranch(instr, is_smi); | |
2665 } | |
2666 | |
2667 // Loop through the {object}s prototype chain looking for the {prototype}. | |
2668 __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset)); | |
2669 Label loop; | |
2670 __ bind(&loop); | |
2671 __ movp(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset)); | |
2672 __ cmpp(object_prototype, prototype); | |
2673 EmitTrueBranch(instr, equal); | |
2674 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex); | |
2675 EmitFalseBranch(instr, equal); | |
2676 __ movp(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset)); | |
2677 __ jmp(&loop); | |
2678 } | |
2679 | |
2680 | |
2681 void LCodeGen::DoCmpT(LCmpT* instr) { | |
2682 DCHECK(ToRegister(instr->context()).is(rsi)); | |
2683 Token::Value op = instr->op(); | |
2684 | |
2685 Handle<Code> ic = | |
2686 CodeFactory::CompareIC(isolate(), op, instr->strength()).code(); | |
2687 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
2688 | |
2689 Condition condition = TokenToCondition(op, false); | |
2690 Label true_value, done; | |
2691 __ testp(rax, rax); | |
2692 __ j(condition, &true_value, Label::kNear); | |
2693 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); | |
2694 __ jmp(&done, Label::kNear); | |
2695 __ bind(&true_value); | |
2696 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); | |
2697 __ bind(&done); | |
2698 } | |
2699 | |
2700 | |
2701 void LCodeGen::DoReturn(LReturn* instr) { | |
2702 if (FLAG_trace && info()->IsOptimizing()) { | |
2703 // Preserve the return value on the stack and rely on the runtime call | |
2704 // to return the value in the same register. We're leaving the code | |
2705 // managed by the register allocator and tearing down the frame, it's | |
2706 // safe to write to the context register. | |
2707 __ Push(rax); | |
2708 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); | |
2709 __ CallRuntime(Runtime::kTraceExit, 1); | |
2710 } | |
2711 if (info()->saves_caller_doubles()) { | |
2712 RestoreCallerDoubles(); | |
2713 } | |
2714 if (NeedsEagerFrame()) { | |
2715 __ movp(rsp, rbp); | |
2716 __ popq(rbp); | |
2717 } | |
2718 if (instr->has_constant_parameter_count()) { | |
2719 __ Ret((ToInteger32(instr->constant_parameter_count()) + 1) * kPointerSize, | |
2720 rcx); | |
2721 } else { | |
2722 DCHECK(info()->IsStub()); // Functions would need to drop one more value. | |
2723 Register reg = ToRegister(instr->parameter_count()); | |
2724 // The argument count parameter is a smi | |
2725 __ SmiToInteger32(reg, reg); | |
2726 Register return_addr_reg = reg.is(rcx) ? rbx : rcx; | |
2727 __ PopReturnAddressTo(return_addr_reg); | |
2728 __ shlp(reg, Immediate(kPointerSizeLog2)); | |
2729 __ addp(rsp, reg); | |
2730 __ jmp(return_addr_reg); | |
2731 } | |
2732 } | |
2733 | |
2734 | |
2735 template <class T> | |
2736 void LCodeGen::EmitVectorLoadICRegisters(T* instr) { | |
2737 Register vector_register = ToRegister(instr->temp_vector()); | |
2738 Register slot_register = LoadWithVectorDescriptor::SlotRegister(); | |
2739 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister())); | |
2740 DCHECK(slot_register.is(rax)); | |
2741 | |
2742 AllowDeferredHandleDereference vector_structure_check; | |
2743 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); | |
2744 __ Move(vector_register, vector); | |
2745 // No need to allocate this register. | |
2746 FeedbackVectorSlot slot = instr->hydrogen()->slot(); | |
2747 int index = vector->GetIndex(slot); | |
2748 __ Move(slot_register, Smi::FromInt(index)); | |
2749 } | |
2750 | |
2751 | |
2752 template <class T> | |
2753 void LCodeGen::EmitVectorStoreICRegisters(T* instr) { | |
2754 Register vector_register = ToRegister(instr->temp_vector()); | |
2755 Register slot_register = ToRegister(instr->temp_slot()); | |
2756 | |
2757 AllowDeferredHandleDereference vector_structure_check; | |
2758 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); | |
2759 __ Move(vector_register, vector); | |
2760 FeedbackVectorSlot slot = instr->hydrogen()->slot(); | |
2761 int index = vector->GetIndex(slot); | |
2762 __ Move(slot_register, Smi::FromInt(index)); | |
2763 } | |
2764 | |
2765 | |
2766 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { | |
2767 DCHECK(ToRegister(instr->context()).is(rsi)); | |
2768 DCHECK(ToRegister(instr->global_object()) | |
2769 .is(LoadDescriptor::ReceiverRegister())); | |
2770 DCHECK(ToRegister(instr->result()).is(rax)); | |
2771 | |
2772 __ Move(LoadDescriptor::NameRegister(), instr->name()); | |
2773 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr); | |
2774 Handle<Code> ic = | |
2775 CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(), | |
2776 SLOPPY, PREMONOMORPHIC).code(); | |
2777 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
2778 } | |
2779 | |
2780 | |
2781 void LCodeGen::DoLoadGlobalViaContext(LLoadGlobalViaContext* instr) { | |
2782 DCHECK(ToRegister(instr->context()).is(rsi)); | |
2783 DCHECK(ToRegister(instr->result()).is(rax)); | |
2784 int const slot = instr->slot_index(); | |
2785 int const depth = instr->depth(); | |
2786 if (depth <= LoadGlobalViaContextStub::kMaximumDepth) { | |
2787 __ Set(LoadGlobalViaContextDescriptor::SlotRegister(), slot); | |
2788 Handle<Code> stub = | |
2789 CodeFactory::LoadGlobalViaContext(isolate(), depth).code(); | |
2790 CallCode(stub, RelocInfo::CODE_TARGET, instr); | |
2791 } else { | |
2792 __ Push(Smi::FromInt(slot)); | |
2793 __ CallRuntime(Runtime::kLoadGlobalViaContext, 1); | |
2794 } | |
2795 } | |
2796 | |
2797 | |
2798 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { | |
2799 Register context = ToRegister(instr->context()); | |
2800 Register result = ToRegister(instr->result()); | |
2801 __ movp(result, ContextOperand(context, instr->slot_index())); | |
2802 if (instr->hydrogen()->RequiresHoleCheck()) { | |
2803 __ CompareRoot(result, Heap::kTheHoleValueRootIndex); | |
2804 if (instr->hydrogen()->DeoptimizesOnHole()) { | |
2805 DeoptimizeIf(equal, instr, Deoptimizer::kHole); | |
2806 } else { | |
2807 Label is_not_hole; | |
2808 __ j(not_equal, &is_not_hole, Label::kNear); | |
2809 __ LoadRoot(result, Heap::kUndefinedValueRootIndex); | |
2810 __ bind(&is_not_hole); | |
2811 } | |
2812 } | |
2813 } | |
2814 | |
2815 | |
2816 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { | |
2817 Register context = ToRegister(instr->context()); | |
2818 Register value = ToRegister(instr->value()); | |
2819 | |
2820 Operand target = ContextOperand(context, instr->slot_index()); | |
2821 | |
2822 Label skip_assignment; | |
2823 if (instr->hydrogen()->RequiresHoleCheck()) { | |
2824 __ CompareRoot(target, Heap::kTheHoleValueRootIndex); | |
2825 if (instr->hydrogen()->DeoptimizesOnHole()) { | |
2826 DeoptimizeIf(equal, instr, Deoptimizer::kHole); | |
2827 } else { | |
2828 __ j(not_equal, &skip_assignment); | |
2829 } | |
2830 } | |
2831 __ movp(target, value); | |
2832 | |
2833 if (instr->hydrogen()->NeedsWriteBarrier()) { | |
2834 SmiCheck check_needed = | |
2835 instr->hydrogen()->value()->type().IsHeapObject() | |
2836 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | |
2837 int offset = Context::SlotOffset(instr->slot_index()); | |
2838 Register scratch = ToRegister(instr->temp()); | |
2839 __ RecordWriteContextSlot(context, | |
2840 offset, | |
2841 value, | |
2842 scratch, | |
2843 kSaveFPRegs, | |
2844 EMIT_REMEMBERED_SET, | |
2845 check_needed); | |
2846 } | |
2847 | |
2848 __ bind(&skip_assignment); | |
2849 } | |
2850 | |
2851 | |
2852 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { | |
2853 HObjectAccess access = instr->hydrogen()->access(); | |
2854 int offset = access.offset(); | |
2855 | |
2856 if (access.IsExternalMemory()) { | |
2857 Register result = ToRegister(instr->result()); | |
2858 if (instr->object()->IsConstantOperand()) { | |
2859 DCHECK(result.is(rax)); | |
2860 __ load_rax(ToExternalReference(LConstantOperand::cast(instr->object()))); | |
2861 } else { | |
2862 Register object = ToRegister(instr->object()); | |
2863 __ Load(result, MemOperand(object, offset), access.representation()); | |
2864 } | |
2865 return; | |
2866 } | |
2867 | |
2868 Register object = ToRegister(instr->object()); | |
2869 if (instr->hydrogen()->representation().IsDouble()) { | |
2870 DCHECK(access.IsInobject()); | |
2871 XMMRegister result = ToDoubleRegister(instr->result()); | |
2872 __ Movsd(result, FieldOperand(object, offset)); | |
2873 return; | |
2874 } | |
2875 | |
2876 Register result = ToRegister(instr->result()); | |
2877 if (!access.IsInobject()) { | |
2878 __ movp(result, FieldOperand(object, JSObject::kPropertiesOffset)); | |
2879 object = result; | |
2880 } | |
2881 | |
2882 Representation representation = access.representation(); | |
2883 if (representation.IsSmi() && SmiValuesAre32Bits() && | |
2884 instr->hydrogen()->representation().IsInteger32()) { | |
2885 if (FLAG_debug_code) { | |
2886 Register scratch = kScratchRegister; | |
2887 __ Load(scratch, FieldOperand(object, offset), representation); | |
2888 __ AssertSmi(scratch); | |
2889 } | |
2890 | |
2891 // Read int value directly from upper half of the smi. | |
2892 STATIC_ASSERT(kSmiTag == 0); | |
2893 DCHECK(kSmiTagSize + kSmiShiftSize == 32); | |
2894 offset += kPointerSize / 2; | |
2895 representation = Representation::Integer32(); | |
2896 } | |
2897 __ Load(result, FieldOperand(object, offset), representation); | |
2898 } | |
2899 | |
2900 | |
2901 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { | |
2902 DCHECK(ToRegister(instr->context()).is(rsi)); | |
2903 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); | |
2904 DCHECK(ToRegister(instr->result()).is(rax)); | |
2905 | |
2906 __ Move(LoadDescriptor::NameRegister(), instr->name()); | |
2907 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr); | |
2908 Handle<Code> ic = | |
2909 CodeFactory::LoadICInOptimizedCode( | |
2910 isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(), | |
2911 instr->hydrogen()->initialization_state()).code(); | |
2912 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
2913 } | |
2914 | |
2915 | |
2916 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { | |
2917 Register function = ToRegister(instr->function()); | |
2918 Register result = ToRegister(instr->result()); | |
2919 | |
2920 // Get the prototype or initial map from the function. | |
2921 __ movp(result, | |
2922 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); | |
2923 | |
2924 // Check that the function has a prototype or an initial map. | |
2925 __ CompareRoot(result, Heap::kTheHoleValueRootIndex); | |
2926 DeoptimizeIf(equal, instr, Deoptimizer::kHole); | |
2927 | |
2928 // If the function does not have an initial map, we're done. | |
2929 Label done; | |
2930 __ CmpObjectType(result, MAP_TYPE, kScratchRegister); | |
2931 __ j(not_equal, &done, Label::kNear); | |
2932 | |
2933 // Get the prototype from the initial map. | |
2934 __ movp(result, FieldOperand(result, Map::kPrototypeOffset)); | |
2935 | |
2936 // All done. | |
2937 __ bind(&done); | |
2938 } | |
2939 | |
2940 | |
2941 void LCodeGen::DoLoadRoot(LLoadRoot* instr) { | |
2942 Register result = ToRegister(instr->result()); | |
2943 __ LoadRoot(result, instr->index()); | |
2944 } | |
2945 | |
2946 | |
2947 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { | |
2948 Register arguments = ToRegister(instr->arguments()); | |
2949 Register result = ToRegister(instr->result()); | |
2950 | |
2951 if (instr->length()->IsConstantOperand() && | |
2952 instr->index()->IsConstantOperand()) { | |
2953 int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index())); | |
2954 int32_t const_length = ToInteger32(LConstantOperand::cast(instr->length())); | |
2955 if (const_index >= 0 && const_index < const_length) { | |
2956 StackArgumentsAccessor args(arguments, const_length, | |
2957 ARGUMENTS_DONT_CONTAIN_RECEIVER); | |
2958 __ movp(result, args.GetArgumentOperand(const_index)); | |
2959 } else if (FLAG_debug_code) { | |
2960 __ int3(); | |
2961 } | |
2962 } else { | |
2963 Register length = ToRegister(instr->length()); | |
2964 // There are two words between the frame pointer and the last argument. | |
2965 // Subtracting from length accounts for one of them add one more. | |
2966 if (instr->index()->IsRegister()) { | |
2967 __ subl(length, ToRegister(instr->index())); | |
2968 } else { | |
2969 __ subl(length, ToOperand(instr->index())); | |
2970 } | |
2971 StackArgumentsAccessor args(arguments, length, | |
2972 ARGUMENTS_DONT_CONTAIN_RECEIVER); | |
2973 __ movp(result, args.GetArgumentOperand(0)); | |
2974 } | |
2975 } | |
2976 | |
2977 | |
2978 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) { | |
2979 ElementsKind elements_kind = instr->elements_kind(); | |
2980 LOperand* key = instr->key(); | |
2981 if (kPointerSize == kInt32Size && !key->IsConstantOperand()) { | |
2982 Register key_reg = ToRegister(key); | |
2983 Representation key_representation = | |
2984 instr->hydrogen()->key()->representation(); | |
2985 if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) { | |
2986 __ SmiToInteger64(key_reg, key_reg); | |
2987 } else if (instr->hydrogen()->IsDehoisted()) { | |
2988 // Sign extend key because it could be a 32 bit negative value | |
2989 // and the dehoisted address computation happens in 64 bits | |
2990 __ movsxlq(key_reg, key_reg); | |
2991 } | |
2992 } | |
2993 Operand operand(BuildFastArrayOperand( | |
2994 instr->elements(), | |
2995 key, | |
2996 instr->hydrogen()->key()->representation(), | |
2997 elements_kind, | |
2998 instr->base_offset())); | |
2999 | |
3000 if (elements_kind == FLOAT32_ELEMENTS) { | |
3001 XMMRegister result(ToDoubleRegister(instr->result())); | |
3002 __ movss(result, operand); | |
3003 __ cvtss2sd(result, result); | |
3004 } else if (elements_kind == FLOAT64_ELEMENTS) { | |
3005 __ Movsd(ToDoubleRegister(instr->result()), operand); | |
3006 } else { | |
3007 Register result(ToRegister(instr->result())); | |
3008 switch (elements_kind) { | |
3009 case INT8_ELEMENTS: | |
3010 __ movsxbl(result, operand); | |
3011 break; | |
3012 case UINT8_ELEMENTS: | |
3013 case UINT8_CLAMPED_ELEMENTS: | |
3014 __ movzxbl(result, operand); | |
3015 break; | |
3016 case INT16_ELEMENTS: | |
3017 __ movsxwl(result, operand); | |
3018 break; | |
3019 case UINT16_ELEMENTS: | |
3020 __ movzxwl(result, operand); | |
3021 break; | |
3022 case INT32_ELEMENTS: | |
3023 __ movl(result, operand); | |
3024 break; | |
3025 case UINT32_ELEMENTS: | |
3026 __ movl(result, operand); | |
3027 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { | |
3028 __ testl(result, result); | |
3029 DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue); | |
3030 } | |
3031 break; | |
3032 case FLOAT32_ELEMENTS: | |
3033 case FLOAT64_ELEMENTS: | |
3034 case FAST_ELEMENTS: | |
3035 case FAST_SMI_ELEMENTS: | |
3036 case FAST_DOUBLE_ELEMENTS: | |
3037 case FAST_HOLEY_ELEMENTS: | |
3038 case FAST_HOLEY_SMI_ELEMENTS: | |
3039 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
3040 case DICTIONARY_ELEMENTS: | |
3041 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
3042 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: | |
3043 UNREACHABLE(); | |
3044 break; | |
3045 } | |
3046 } | |
3047 } | |
3048 | |
3049 | |
3050 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { | |
3051 XMMRegister result(ToDoubleRegister(instr->result())); | |
3052 LOperand* key = instr->key(); | |
3053 if (kPointerSize == kInt32Size && !key->IsConstantOperand() && | |
3054 instr->hydrogen()->IsDehoisted()) { | |
3055 // Sign extend key because it could be a 32 bit negative value | |
3056 // and the dehoisted address computation happens in 64 bits | |
3057 __ movsxlq(ToRegister(key), ToRegister(key)); | |
3058 } | |
3059 if (instr->hydrogen()->RequiresHoleCheck()) { | |
3060 Operand hole_check_operand = BuildFastArrayOperand( | |
3061 instr->elements(), | |
3062 key, | |
3063 instr->hydrogen()->key()->representation(), | |
3064 FAST_DOUBLE_ELEMENTS, | |
3065 instr->base_offset() + sizeof(kHoleNanLower32)); | |
3066 __ cmpl(hole_check_operand, Immediate(kHoleNanUpper32)); | |
3067 DeoptimizeIf(equal, instr, Deoptimizer::kHole); | |
3068 } | |
3069 | |
3070 Operand double_load_operand = BuildFastArrayOperand( | |
3071 instr->elements(), | |
3072 key, | |
3073 instr->hydrogen()->key()->representation(), | |
3074 FAST_DOUBLE_ELEMENTS, | |
3075 instr->base_offset()); | |
3076 __ Movsd(result, double_load_operand); | |
3077 } | |
3078 | |
3079 | |
3080 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { | |
3081 HLoadKeyed* hinstr = instr->hydrogen(); | |
3082 Register result = ToRegister(instr->result()); | |
3083 LOperand* key = instr->key(); | |
3084 bool requires_hole_check = hinstr->RequiresHoleCheck(); | |
3085 Representation representation = hinstr->representation(); | |
3086 int offset = instr->base_offset(); | |
3087 | |
3088 if (kPointerSize == kInt32Size && !key->IsConstantOperand() && | |
3089 instr->hydrogen()->IsDehoisted()) { | |
3090 // Sign extend key because it could be a 32 bit negative value | |
3091 // and the dehoisted address computation happens in 64 bits | |
3092 __ movsxlq(ToRegister(key), ToRegister(key)); | |
3093 } | |
3094 if (representation.IsInteger32() && SmiValuesAre32Bits() && | |
3095 hinstr->elements_kind() == FAST_SMI_ELEMENTS) { | |
3096 DCHECK(!requires_hole_check); | |
3097 if (FLAG_debug_code) { | |
3098 Register scratch = kScratchRegister; | |
3099 __ Load(scratch, | |
3100 BuildFastArrayOperand(instr->elements(), | |
3101 key, | |
3102 instr->hydrogen()->key()->representation(), | |
3103 FAST_ELEMENTS, | |
3104 offset), | |
3105 Representation::Smi()); | |
3106 __ AssertSmi(scratch); | |
3107 } | |
3108 // Read int value directly from upper half of the smi. | |
3109 STATIC_ASSERT(kSmiTag == 0); | |
3110 DCHECK(kSmiTagSize + kSmiShiftSize == 32); | |
3111 offset += kPointerSize / 2; | |
3112 } | |
3113 | |
3114 __ Load(result, | |
3115 BuildFastArrayOperand(instr->elements(), key, | |
3116 instr->hydrogen()->key()->representation(), | |
3117 FAST_ELEMENTS, offset), | |
3118 representation); | |
3119 | |
3120 // Check for the hole value. | |
3121 if (requires_hole_check) { | |
3122 if (IsFastSmiElementsKind(hinstr->elements_kind())) { | |
3123 Condition smi = __ CheckSmi(result); | |
3124 DeoptimizeIf(NegateCondition(smi), instr, Deoptimizer::kNotASmi); | |
3125 } else { | |
3126 __ CompareRoot(result, Heap::kTheHoleValueRootIndex); | |
3127 DeoptimizeIf(equal, instr, Deoptimizer::kHole); | |
3128 } | |
3129 } else if (hinstr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { | |
3130 DCHECK(hinstr->elements_kind() == FAST_HOLEY_ELEMENTS); | |
3131 Label done; | |
3132 __ CompareRoot(result, Heap::kTheHoleValueRootIndex); | |
3133 __ j(not_equal, &done); | |
3134 if (info()->IsStub()) { | |
3135 // A stub can safely convert the hole to undefined only if the array | |
3136 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise | |
3137 // it needs to bail out. | |
3138 __ LoadRoot(result, Heap::kArrayProtectorRootIndex); | |
3139 __ Cmp(FieldOperand(result, Cell::kValueOffset), | |
3140 Smi::FromInt(Isolate::kArrayProtectorValid)); | |
3141 DeoptimizeIf(not_equal, instr, Deoptimizer::kHole); | |
3142 } | |
3143 __ Move(result, isolate()->factory()->undefined_value()); | |
3144 __ bind(&done); | |
3145 } | |
3146 } | |
3147 | |
3148 | |
3149 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) { | |
3150 if (instr->is_fixed_typed_array()) { | |
3151 DoLoadKeyedExternalArray(instr); | |
3152 } else if (instr->hydrogen()->representation().IsDouble()) { | |
3153 DoLoadKeyedFixedDoubleArray(instr); | |
3154 } else { | |
3155 DoLoadKeyedFixedArray(instr); | |
3156 } | |
3157 } | |
3158 | |
3159 | |
3160 Operand LCodeGen::BuildFastArrayOperand( | |
3161 LOperand* elements_pointer, | |
3162 LOperand* key, | |
3163 Representation key_representation, | |
3164 ElementsKind elements_kind, | |
3165 uint32_t offset) { | |
3166 Register elements_pointer_reg = ToRegister(elements_pointer); | |
3167 int shift_size = ElementsKindToShiftSize(elements_kind); | |
3168 if (key->IsConstantOperand()) { | |
3169 int32_t constant_value = ToInteger32(LConstantOperand::cast(key)); | |
3170 if (constant_value & 0xF0000000) { | |
3171 Abort(kArrayIndexConstantValueTooBig); | |
3172 } | |
3173 return Operand(elements_pointer_reg, | |
3174 (constant_value << shift_size) + offset); | |
3175 } else { | |
3176 // Guaranteed by ArrayInstructionInterface::KeyedAccessIndexRequirement(). | |
3177 DCHECK(key_representation.IsInteger32()); | |
3178 | |
3179 ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size); | |
3180 return Operand(elements_pointer_reg, | |
3181 ToRegister(key), | |
3182 scale_factor, | |
3183 offset); | |
3184 } | |
3185 } | |
3186 | |
3187 | |
3188 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { | |
3189 DCHECK(ToRegister(instr->context()).is(rsi)); | |
3190 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); | |
3191 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister())); | |
3192 | |
3193 if (instr->hydrogen()->HasVectorAndSlot()) { | |
3194 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr); | |
3195 } | |
3196 | |
3197 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode( | |
3198 isolate(), instr->hydrogen()->language_mode(), | |
3199 instr->hydrogen()->initialization_state()).code(); | |
3200 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
3201 } | |
3202 | |
3203 | |
3204 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { | |
3205 Register result = ToRegister(instr->result()); | |
3206 | |
3207 if (instr->hydrogen()->from_inlined()) { | |
3208 __ leap(result, Operand(rsp, -kFPOnStackSize + -kPCOnStackSize)); | |
3209 } else { | |
3210 // Check for arguments adapter frame. | |
3211 Label done, adapted; | |
3212 __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); | |
3213 __ Cmp(Operand(result, StandardFrameConstants::kContextOffset), | |
3214 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); | |
3215 __ j(equal, &adapted, Label::kNear); | |
3216 | |
3217 // No arguments adaptor frame. | |
3218 __ movp(result, rbp); | |
3219 __ jmp(&done, Label::kNear); | |
3220 | |
3221 // Arguments adaptor frame present. | |
3222 __ bind(&adapted); | |
3223 __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); | |
3224 | |
3225 // Result is the frame pointer for the frame if not adapted and for the real | |
3226 // frame below the adaptor frame if adapted. | |
3227 __ bind(&done); | |
3228 } | |
3229 } | |
3230 | |
3231 | |
3232 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { | |
3233 Register result = ToRegister(instr->result()); | |
3234 | |
3235 Label done; | |
3236 | |
3237 // If no arguments adaptor frame the number of arguments is fixed. | |
3238 if (instr->elements()->IsRegister()) { | |
3239 __ cmpp(rbp, ToRegister(instr->elements())); | |
3240 } else { | |
3241 __ cmpp(rbp, ToOperand(instr->elements())); | |
3242 } | |
3243 __ movl(result, Immediate(scope()->num_parameters())); | |
3244 __ j(equal, &done, Label::kNear); | |
3245 | |
3246 // Arguments adaptor frame present. Get argument length from there. | |
3247 __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); | |
3248 __ SmiToInteger32(result, | |
3249 Operand(result, | |
3250 ArgumentsAdaptorFrameConstants::kLengthOffset)); | |
3251 | |
3252 // Argument length is in result register. | |
3253 __ bind(&done); | |
3254 } | |
3255 | |
3256 | |
3257 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { | |
3258 Register receiver = ToRegister(instr->receiver()); | |
3259 Register function = ToRegister(instr->function()); | |
3260 | |
3261 // If the receiver is null or undefined, we have to pass the global | |
3262 // object as a receiver to normal functions. Values have to be | |
3263 // passed unchanged to builtins and strict-mode functions. | |
3264 Label global_object, receiver_ok; | |
3265 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; | |
3266 | |
3267 if (!instr->hydrogen()->known_function()) { | |
3268 // Do not transform the receiver to object for strict mode | |
3269 // functions. | |
3270 __ movp(kScratchRegister, | |
3271 FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); | |
3272 __ testb(FieldOperand(kScratchRegister, | |
3273 SharedFunctionInfo::kStrictModeByteOffset), | |
3274 Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte)); | |
3275 __ j(not_equal, &receiver_ok, dist); | |
3276 | |
3277 // Do not transform the receiver to object for builtins. | |
3278 __ testb(FieldOperand(kScratchRegister, | |
3279 SharedFunctionInfo::kNativeByteOffset), | |
3280 Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte)); | |
3281 __ j(not_equal, &receiver_ok, dist); | |
3282 } | |
3283 | |
3284 // Normal function. Replace undefined or null with global receiver. | |
3285 __ CompareRoot(receiver, Heap::kNullValueRootIndex); | |
3286 __ j(equal, &global_object, Label::kNear); | |
3287 __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex); | |
3288 __ j(equal, &global_object, Label::kNear); | |
3289 | |
3290 // The receiver should be a JS object. | |
3291 Condition is_smi = __ CheckSmi(receiver); | |
3292 DeoptimizeIf(is_smi, instr, Deoptimizer::kSmi); | |
3293 __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, kScratchRegister); | |
3294 DeoptimizeIf(below, instr, Deoptimizer::kNotAJavaScriptObject); | |
3295 | |
3296 __ jmp(&receiver_ok, Label::kNear); | |
3297 __ bind(&global_object); | |
3298 __ movp(receiver, FieldOperand(function, JSFunction::kContextOffset)); | |
3299 __ movp(receiver, | |
3300 Operand(receiver, | |
3301 Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); | |
3302 __ movp(receiver, FieldOperand(receiver, GlobalObject::kGlobalProxyOffset)); | |
3303 | |
3304 __ bind(&receiver_ok); | |
3305 } | |
3306 | |
3307 | |
3308 void LCodeGen::DoApplyArguments(LApplyArguments* instr) { | |
3309 Register receiver = ToRegister(instr->receiver()); | |
3310 Register function = ToRegister(instr->function()); | |
3311 Register length = ToRegister(instr->length()); | |
3312 Register elements = ToRegister(instr->elements()); | |
3313 DCHECK(receiver.is(rax)); // Used for parameter count. | |
3314 DCHECK(function.is(rdi)); // Required by InvokeFunction. | |
3315 DCHECK(ToRegister(instr->result()).is(rax)); | |
3316 | |
3317 // Copy the arguments to this function possibly from the | |
3318 // adaptor frame below it. | |
3319 const uint32_t kArgumentsLimit = 1 * KB; | |
3320 __ cmpp(length, Immediate(kArgumentsLimit)); | |
3321 DeoptimizeIf(above, instr, Deoptimizer::kTooManyArguments); | |
3322 | |
3323 __ Push(receiver); | |
3324 __ movp(receiver, length); | |
3325 | |
3326 // Loop through the arguments pushing them onto the execution | |
3327 // stack. | |
3328 Label invoke, loop; | |
3329 // length is a small non-negative integer, due to the test above. | |
3330 __ testl(length, length); | |
3331 __ j(zero, &invoke, Label::kNear); | |
3332 __ bind(&loop); | |
3333 StackArgumentsAccessor args(elements, length, | |
3334 ARGUMENTS_DONT_CONTAIN_RECEIVER); | |
3335 __ Push(args.GetArgumentOperand(0)); | |
3336 __ decl(length); | |
3337 __ j(not_zero, &loop); | |
3338 | |
3339 // Invoke the function. | |
3340 __ bind(&invoke); | |
3341 DCHECK(instr->HasPointerMap()); | |
3342 LPointerMap* pointers = instr->pointer_map(); | |
3343 SafepointGenerator safepoint_generator( | |
3344 this, pointers, Safepoint::kLazyDeopt); | |
3345 ParameterCount actual(rax); | |
3346 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator); | |
3347 } | |
3348 | |
3349 | |
3350 void LCodeGen::DoPushArgument(LPushArgument* instr) { | |
3351 LOperand* argument = instr->value(); | |
3352 EmitPushTaggedOperand(argument); | |
3353 } | |
3354 | |
3355 | |
3356 void LCodeGen::DoDrop(LDrop* instr) { | |
3357 __ Drop(instr->count()); | |
3358 } | |
3359 | |
3360 | |
3361 void LCodeGen::DoThisFunction(LThisFunction* instr) { | |
3362 Register result = ToRegister(instr->result()); | |
3363 __ movp(result, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); | |
3364 } | |
3365 | |
3366 | |
3367 void LCodeGen::DoContext(LContext* instr) { | |
3368 Register result = ToRegister(instr->result()); | |
3369 if (info()->IsOptimizing()) { | |
3370 __ movp(result, Operand(rbp, StandardFrameConstants::kContextOffset)); | |
3371 } else { | |
3372 // If there is no frame, the context must be in rsi. | |
3373 DCHECK(result.is(rsi)); | |
3374 } | |
3375 } | |
3376 | |
3377 | |
3378 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { | |
3379 DCHECK(ToRegister(instr->context()).is(rsi)); | |
3380 __ Push(instr->hydrogen()->pairs()); | |
3381 __ Push(Smi::FromInt(instr->hydrogen()->flags())); | |
3382 CallRuntime(Runtime::kDeclareGlobals, 2, instr); | |
3383 } | |
3384 | |
3385 | |
3386 void LCodeGen::CallKnownFunction(Handle<JSFunction> function, | |
3387 int formal_parameter_count, int arity, | |
3388 LInstruction* instr) { | |
3389 bool dont_adapt_arguments = | |
3390 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; | |
3391 bool can_invoke_directly = | |
3392 dont_adapt_arguments || formal_parameter_count == arity; | |
3393 | |
3394 Register function_reg = rdi; | |
3395 LPointerMap* pointers = instr->pointer_map(); | |
3396 | |
3397 if (can_invoke_directly) { | |
3398 // Change context. | |
3399 __ movp(rsi, FieldOperand(function_reg, JSFunction::kContextOffset)); | |
3400 | |
3401 // Always initialize rax to the number of actual arguments. | |
3402 __ Set(rax, arity); | |
3403 | |
3404 // Invoke function. | |
3405 if (function.is_identical_to(info()->closure())) { | |
3406 __ CallSelf(); | |
3407 } else { | |
3408 __ Call(FieldOperand(function_reg, JSFunction::kCodeEntryOffset)); | |
3409 } | |
3410 | |
3411 // Set up deoptimization. | |
3412 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0); | |
3413 } else { | |
3414 // We need to adapt arguments. | |
3415 SafepointGenerator generator( | |
3416 this, pointers, Safepoint::kLazyDeopt); | |
3417 ParameterCount count(arity); | |
3418 ParameterCount expected(formal_parameter_count); | |
3419 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator); | |
3420 } | |
3421 } | |
3422 | |
3423 | |
3424 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { | |
3425 DCHECK(ToRegister(instr->result()).is(rax)); | |
3426 | |
3427 if (instr->hydrogen()->IsTailCall()) { | |
3428 if (NeedsEagerFrame()) __ leave(); | |
3429 | |
3430 if (instr->target()->IsConstantOperand()) { | |
3431 LConstantOperand* target = LConstantOperand::cast(instr->target()); | |
3432 Handle<Code> code = Handle<Code>::cast(ToHandle(target)); | |
3433 __ jmp(code, RelocInfo::CODE_TARGET); | |
3434 } else { | |
3435 DCHECK(instr->target()->IsRegister()); | |
3436 Register target = ToRegister(instr->target()); | |
3437 __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag)); | |
3438 __ jmp(target); | |
3439 } | |
3440 } else { | |
3441 LPointerMap* pointers = instr->pointer_map(); | |
3442 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); | |
3443 | |
3444 if (instr->target()->IsConstantOperand()) { | |
3445 LConstantOperand* target = LConstantOperand::cast(instr->target()); | |
3446 Handle<Code> code = Handle<Code>::cast(ToHandle(target)); | |
3447 generator.BeforeCall(__ CallSize(code)); | |
3448 __ call(code, RelocInfo::CODE_TARGET); | |
3449 } else { | |
3450 DCHECK(instr->target()->IsRegister()); | |
3451 Register target = ToRegister(instr->target()); | |
3452 generator.BeforeCall(__ CallSize(target)); | |
3453 __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag)); | |
3454 __ call(target); | |
3455 } | |
3456 generator.AfterCall(); | |
3457 } | |
3458 } | |
3459 | |
3460 | |
3461 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) { | |
3462 DCHECK(ToRegister(instr->function()).is(rdi)); | |
3463 DCHECK(ToRegister(instr->result()).is(rax)); | |
3464 | |
3465 __ Set(rax, instr->arity()); | |
3466 | |
3467 // Change context. | |
3468 __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); | |
3469 | |
3470 LPointerMap* pointers = instr->pointer_map(); | |
3471 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); | |
3472 | |
3473 bool is_self_call = false; | |
3474 if (instr->hydrogen()->function()->IsConstant()) { | |
3475 Handle<JSFunction> jsfun = Handle<JSFunction>::null(); | |
3476 HConstant* fun_const = HConstant::cast(instr->hydrogen()->function()); | |
3477 jsfun = Handle<JSFunction>::cast(fun_const->handle(isolate())); | |
3478 is_self_call = jsfun.is_identical_to(info()->closure()); | |
3479 } | |
3480 | |
3481 if (is_self_call) { | |
3482 __ CallSelf(); | |
3483 } else { | |
3484 Operand target = FieldOperand(rdi, JSFunction::kCodeEntryOffset); | |
3485 generator.BeforeCall(__ CallSize(target)); | |
3486 __ Call(target); | |
3487 } | |
3488 generator.AfterCall(); | |
3489 } | |
3490 | |
3491 | |
3492 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) { | |
3493 Register input_reg = ToRegister(instr->value()); | |
3494 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), | |
3495 Heap::kHeapNumberMapRootIndex); | |
3496 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber); | |
3497 | |
3498 Label slow, allocated, done; | |
3499 Register tmp = input_reg.is(rax) ? rcx : rax; | |
3500 Register tmp2 = tmp.is(rcx) ? rdx : input_reg.is(rcx) ? rdx : rcx; | |
3501 | |
3502 // Preserve the value of all registers. | |
3503 PushSafepointRegistersScope scope(this); | |
3504 | |
3505 __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset)); | |
3506 // Check the sign of the argument. If the argument is positive, just | |
3507 // return it. We do not need to patch the stack since |input| and | |
3508 // |result| are the same register and |input| will be restored | |
3509 // unchanged by popping safepoint registers. | |
3510 __ testl(tmp, Immediate(HeapNumber::kSignMask)); | |
3511 __ j(zero, &done); | |
3512 | |
3513 __ AllocateHeapNumber(tmp, tmp2, &slow); | |
3514 __ jmp(&allocated, Label::kNear); | |
3515 | |
3516 // Slow case: Call the runtime system to do the number allocation. | |
3517 __ bind(&slow); | |
3518 CallRuntimeFromDeferred( | |
3519 Runtime::kAllocateHeapNumber, 0, instr, instr->context()); | |
3520 // Set the pointer to the new heap number in tmp. | |
3521 if (!tmp.is(rax)) __ movp(tmp, rax); | |
3522 // Restore input_reg after call to runtime. | |
3523 __ LoadFromSafepointRegisterSlot(input_reg, input_reg); | |
3524 | |
3525 __ bind(&allocated); | |
3526 __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset)); | |
3527 __ shlq(tmp2, Immediate(1)); | |
3528 __ shrq(tmp2, Immediate(1)); | |
3529 __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2); | |
3530 __ StoreToSafepointRegisterSlot(input_reg, tmp); | |
3531 | |
3532 __ bind(&done); | |
3533 } | |
3534 | |
3535 | |
3536 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) { | |
3537 Register input_reg = ToRegister(instr->value()); | |
3538 __ testl(input_reg, input_reg); | |
3539 Label is_positive; | |
3540 __ j(not_sign, &is_positive, Label::kNear); | |
3541 __ negl(input_reg); // Sets flags. | |
3542 DeoptimizeIf(negative, instr, Deoptimizer::kOverflow); | |
3543 __ bind(&is_positive); | |
3544 } | |
3545 | |
3546 | |
3547 void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) { | |
3548 Register input_reg = ToRegister(instr->value()); | |
3549 __ testp(input_reg, input_reg); | |
3550 Label is_positive; | |
3551 __ j(not_sign, &is_positive, Label::kNear); | |
3552 __ negp(input_reg); // Sets flags. | |
3553 DeoptimizeIf(negative, instr, Deoptimizer::kOverflow); | |
3554 __ bind(&is_positive); | |
3555 } | |
3556 | |
3557 | |
3558 void LCodeGen::DoMathAbs(LMathAbs* instr) { | |
3559 // Class for deferred case. | |
3560 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode { | |
3561 public: | |
3562 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr) | |
3563 : LDeferredCode(codegen), instr_(instr) { } | |
3564 void Generate() override { | |
3565 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); | |
3566 } | |
3567 LInstruction* instr() override { return instr_; } | |
3568 | |
3569 private: | |
3570 LMathAbs* instr_; | |
3571 }; | |
3572 | |
3573 DCHECK(instr->value()->Equals(instr->result())); | |
3574 Representation r = instr->hydrogen()->value()->representation(); | |
3575 | |
3576 if (r.IsDouble()) { | |
3577 XMMRegister scratch = double_scratch0(); | |
3578 XMMRegister input_reg = ToDoubleRegister(instr->value()); | |
3579 __ Xorpd(scratch, scratch); | |
3580 __ subsd(scratch, input_reg); | |
3581 __ andps(input_reg, scratch); | |
3582 } else if (r.IsInteger32()) { | |
3583 EmitIntegerMathAbs(instr); | |
3584 } else if (r.IsSmi()) { | |
3585 EmitSmiMathAbs(instr); | |
3586 } else { // Tagged case. | |
3587 DeferredMathAbsTaggedHeapNumber* deferred = | |
3588 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr); | |
3589 Register input_reg = ToRegister(instr->value()); | |
3590 // Smi check. | |
3591 __ JumpIfNotSmi(input_reg, deferred->entry()); | |
3592 EmitSmiMathAbs(instr); | |
3593 __ bind(deferred->exit()); | |
3594 } | |
3595 } | |
3596 | |
3597 | |
3598 void LCodeGen::DoMathFloor(LMathFloor* instr) { | |
3599 XMMRegister xmm_scratch = double_scratch0(); | |
3600 Register output_reg = ToRegister(instr->result()); | |
3601 XMMRegister input_reg = ToDoubleRegister(instr->value()); | |
3602 | |
3603 if (CpuFeatures::IsSupported(SSE4_1)) { | |
3604 CpuFeatureScope scope(masm(), SSE4_1); | |
3605 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
3606 // Deoptimize if minus zero. | |
3607 __ Movq(output_reg, input_reg); | |
3608 __ subq(output_reg, Immediate(1)); | |
3609 DeoptimizeIf(overflow, instr, Deoptimizer::kMinusZero); | |
3610 } | |
3611 __ roundsd(xmm_scratch, input_reg, kRoundDown); | |
3612 __ cvttsd2si(output_reg, xmm_scratch); | |
3613 __ cmpl(output_reg, Immediate(0x1)); | |
3614 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
3615 } else { | |
3616 Label negative_sign, done; | |
3617 // Deoptimize on unordered. | |
3618 __ Xorpd(xmm_scratch, xmm_scratch); // Zero the register. | |
3619 __ ucomisd(input_reg, xmm_scratch); | |
3620 DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN); | |
3621 __ j(below, &negative_sign, Label::kNear); | |
3622 | |
3623 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
3624 // Check for negative zero. | |
3625 Label positive_sign; | |
3626 __ j(above, &positive_sign, Label::kNear); | |
3627 __ movmskpd(output_reg, input_reg); | |
3628 __ testq(output_reg, Immediate(1)); | |
3629 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero); | |
3630 __ Set(output_reg, 0); | |
3631 __ jmp(&done); | |
3632 __ bind(&positive_sign); | |
3633 } | |
3634 | |
3635 // Use truncating instruction (OK because input is positive). | |
3636 __ cvttsd2si(output_reg, input_reg); | |
3637 // Overflow is signalled with minint. | |
3638 __ cmpl(output_reg, Immediate(0x1)); | |
3639 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
3640 __ jmp(&done, Label::kNear); | |
3641 | |
3642 // Non-zero negative reaches here. | |
3643 __ bind(&negative_sign); | |
3644 // Truncate, then compare and compensate. | |
3645 __ cvttsd2si(output_reg, input_reg); | |
3646 __ Cvtlsi2sd(xmm_scratch, output_reg); | |
3647 __ ucomisd(input_reg, xmm_scratch); | |
3648 __ j(equal, &done, Label::kNear); | |
3649 __ subl(output_reg, Immediate(1)); | |
3650 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
3651 | |
3652 __ bind(&done); | |
3653 } | |
3654 } | |
3655 | |
3656 | |
3657 void LCodeGen::DoMathRound(LMathRound* instr) { | |
3658 const XMMRegister xmm_scratch = double_scratch0(); | |
3659 Register output_reg = ToRegister(instr->result()); | |
3660 XMMRegister input_reg = ToDoubleRegister(instr->value()); | |
3661 XMMRegister input_temp = ToDoubleRegister(instr->temp()); | |
3662 static int64_t one_half = V8_INT64_C(0x3FE0000000000000); // 0.5 | |
3663 static int64_t minus_one_half = V8_INT64_C(0xBFE0000000000000); // -0.5 | |
3664 | |
3665 Label done, round_to_zero, below_one_half; | |
3666 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; | |
3667 __ movq(kScratchRegister, one_half); | |
3668 __ Movq(xmm_scratch, kScratchRegister); | |
3669 __ ucomisd(xmm_scratch, input_reg); | |
3670 __ j(above, &below_one_half, Label::kNear); | |
3671 | |
3672 // CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x). | |
3673 __ addsd(xmm_scratch, input_reg); | |
3674 __ cvttsd2si(output_reg, xmm_scratch); | |
3675 // Overflow is signalled with minint. | |
3676 __ cmpl(output_reg, Immediate(0x1)); | |
3677 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
3678 __ jmp(&done, dist); | |
3679 | |
3680 __ bind(&below_one_half); | |
3681 __ movq(kScratchRegister, minus_one_half); | |
3682 __ Movq(xmm_scratch, kScratchRegister); | |
3683 __ ucomisd(xmm_scratch, input_reg); | |
3684 __ j(below_equal, &round_to_zero, Label::kNear); | |
3685 | |
3686 // CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then | |
3687 // compare and compensate. | |
3688 __ Movapd(input_temp, input_reg); // Do not alter input_reg. | |
3689 __ subsd(input_temp, xmm_scratch); | |
3690 __ cvttsd2si(output_reg, input_temp); | |
3691 // Catch minint due to overflow, and to prevent overflow when compensating. | |
3692 __ cmpl(output_reg, Immediate(0x1)); | |
3693 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
3694 | |
3695 __ Cvtlsi2sd(xmm_scratch, output_reg); | |
3696 __ ucomisd(xmm_scratch, input_temp); | |
3697 __ j(equal, &done, dist); | |
3698 __ subl(output_reg, Immediate(1)); | |
3699 // No overflow because we already ruled out minint. | |
3700 __ jmp(&done, dist); | |
3701 | |
3702 __ bind(&round_to_zero); | |
3703 // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if | |
3704 // we can ignore the difference between a result of -0 and +0. | |
3705 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | |
3706 __ Movq(output_reg, input_reg); | |
3707 __ testq(output_reg, output_reg); | |
3708 DeoptimizeIf(negative, instr, Deoptimizer::kMinusZero); | |
3709 } | |
3710 __ Set(output_reg, 0); | |
3711 __ bind(&done); | |
3712 } | |
3713 | |
3714 | |
3715 void LCodeGen::DoMathFround(LMathFround* instr) { | |
3716 XMMRegister input_reg = ToDoubleRegister(instr->value()); | |
3717 XMMRegister output_reg = ToDoubleRegister(instr->result()); | |
3718 __ cvtsd2ss(output_reg, input_reg); | |
3719 __ cvtss2sd(output_reg, output_reg); | |
3720 } | |
3721 | |
3722 | |
3723 void LCodeGen::DoMathSqrt(LMathSqrt* instr) { | |
3724 XMMRegister output = ToDoubleRegister(instr->result()); | |
3725 if (instr->value()->IsDoubleRegister()) { | |
3726 XMMRegister input = ToDoubleRegister(instr->value()); | |
3727 __ sqrtsd(output, input); | |
3728 } else { | |
3729 Operand input = ToOperand(instr->value()); | |
3730 __ sqrtsd(output, input); | |
3731 } | |
3732 } | |
3733 | |
3734 | |
3735 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { | |
3736 XMMRegister xmm_scratch = double_scratch0(); | |
3737 XMMRegister input_reg = ToDoubleRegister(instr->value()); | |
3738 DCHECK(ToDoubleRegister(instr->result()).is(input_reg)); | |
3739 | |
3740 // Note that according to ECMA-262 15.8.2.13: | |
3741 // Math.pow(-Infinity, 0.5) == Infinity | |
3742 // Math.sqrt(-Infinity) == NaN | |
3743 Label done, sqrt; | |
3744 // Check base for -Infinity. According to IEEE-754, double-precision | |
3745 // -Infinity has the highest 12 bits set and the lowest 52 bits cleared. | |
3746 __ movq(kScratchRegister, V8_INT64_C(0xFFF0000000000000)); | |
3747 __ Movq(xmm_scratch, kScratchRegister); | |
3748 __ ucomisd(xmm_scratch, input_reg); | |
3749 // Comparing -Infinity with NaN results in "unordered", which sets the | |
3750 // zero flag as if both were equal. However, it also sets the carry flag. | |
3751 __ j(not_equal, &sqrt, Label::kNear); | |
3752 __ j(carry, &sqrt, Label::kNear); | |
3753 // If input is -Infinity, return Infinity. | |
3754 __ Xorpd(input_reg, input_reg); | |
3755 __ subsd(input_reg, xmm_scratch); | |
3756 __ jmp(&done, Label::kNear); | |
3757 | |
3758 // Square root. | |
3759 __ bind(&sqrt); | |
3760 __ Xorpd(xmm_scratch, xmm_scratch); | |
3761 __ addsd(input_reg, xmm_scratch); // Convert -0 to +0. | |
3762 __ sqrtsd(input_reg, input_reg); | |
3763 __ bind(&done); | |
3764 } | |
3765 | |
3766 | |
3767 void LCodeGen::DoPower(LPower* instr) { | |
3768 Representation exponent_type = instr->hydrogen()->right()->representation(); | |
3769 // Having marked this as a call, we can use any registers. | |
3770 // Just make sure that the input/output registers are the expected ones. | |
3771 | |
3772 Register tagged_exponent = MathPowTaggedDescriptor::exponent(); | |
3773 DCHECK(!instr->right()->IsRegister() || | |
3774 ToRegister(instr->right()).is(tagged_exponent)); | |
3775 DCHECK(!instr->right()->IsDoubleRegister() || | |
3776 ToDoubleRegister(instr->right()).is(xmm1)); | |
3777 DCHECK(ToDoubleRegister(instr->left()).is(xmm2)); | |
3778 DCHECK(ToDoubleRegister(instr->result()).is(xmm3)); | |
3779 | |
3780 if (exponent_type.IsSmi()) { | |
3781 MathPowStub stub(isolate(), MathPowStub::TAGGED); | |
3782 __ CallStub(&stub); | |
3783 } else if (exponent_type.IsTagged()) { | |
3784 Label no_deopt; | |
3785 __ JumpIfSmi(tagged_exponent, &no_deopt, Label::kNear); | |
3786 __ CmpObjectType(tagged_exponent, HEAP_NUMBER_TYPE, rcx); | |
3787 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber); | |
3788 __ bind(&no_deopt); | |
3789 MathPowStub stub(isolate(), MathPowStub::TAGGED); | |
3790 __ CallStub(&stub); | |
3791 } else if (exponent_type.IsInteger32()) { | |
3792 MathPowStub stub(isolate(), MathPowStub::INTEGER); | |
3793 __ CallStub(&stub); | |
3794 } else { | |
3795 DCHECK(exponent_type.IsDouble()); | |
3796 MathPowStub stub(isolate(), MathPowStub::DOUBLE); | |
3797 __ CallStub(&stub); | |
3798 } | |
3799 } | |
3800 | |
3801 | |
3802 void LCodeGen::DoMathExp(LMathExp* instr) { | |
3803 XMMRegister input = ToDoubleRegister(instr->value()); | |
3804 XMMRegister result = ToDoubleRegister(instr->result()); | |
3805 XMMRegister temp0 = double_scratch0(); | |
3806 Register temp1 = ToRegister(instr->temp1()); | |
3807 Register temp2 = ToRegister(instr->temp2()); | |
3808 | |
3809 MathExpGenerator::EmitMathExp(masm(), input, result, temp0, temp1, temp2); | |
3810 } | |
3811 | |
3812 | |
3813 void LCodeGen::DoMathLog(LMathLog* instr) { | |
3814 DCHECK(instr->value()->Equals(instr->result())); | |
3815 XMMRegister input_reg = ToDoubleRegister(instr->value()); | |
3816 XMMRegister xmm_scratch = double_scratch0(); | |
3817 Label positive, done, zero; | |
3818 __ Xorpd(xmm_scratch, xmm_scratch); | |
3819 __ ucomisd(input_reg, xmm_scratch); | |
3820 __ j(above, &positive, Label::kNear); | |
3821 __ j(not_carry, &zero, Label::kNear); | |
3822 __ pcmpeqd(input_reg, input_reg); | |
3823 __ jmp(&done, Label::kNear); | |
3824 __ bind(&zero); | |
3825 ExternalReference ninf = | |
3826 ExternalReference::address_of_negative_infinity(); | |
3827 Operand ninf_operand = masm()->ExternalOperand(ninf); | |
3828 __ Movsd(input_reg, ninf_operand); | |
3829 __ jmp(&done, Label::kNear); | |
3830 __ bind(&positive); | |
3831 __ fldln2(); | |
3832 __ subp(rsp, Immediate(kDoubleSize)); | |
3833 __ Movsd(Operand(rsp, 0), input_reg); | |
3834 __ fld_d(Operand(rsp, 0)); | |
3835 __ fyl2x(); | |
3836 __ fstp_d(Operand(rsp, 0)); | |
3837 __ Movsd(input_reg, Operand(rsp, 0)); | |
3838 __ addp(rsp, Immediate(kDoubleSize)); | |
3839 __ bind(&done); | |
3840 } | |
3841 | |
3842 | |
3843 void LCodeGen::DoMathClz32(LMathClz32* instr) { | |
3844 Register input = ToRegister(instr->value()); | |
3845 Register result = ToRegister(instr->result()); | |
3846 | |
3847 __ Lzcntl(result, input); | |
3848 } | |
3849 | |
3850 | |
3851 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { | |
3852 DCHECK(ToRegister(instr->context()).is(rsi)); | |
3853 DCHECK(ToRegister(instr->function()).is(rdi)); | |
3854 DCHECK(instr->HasPointerMap()); | |
3855 | |
3856 Handle<JSFunction> known_function = instr->hydrogen()->known_function(); | |
3857 if (known_function.is_null()) { | |
3858 LPointerMap* pointers = instr->pointer_map(); | |
3859 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); | |
3860 ParameterCount count(instr->arity()); | |
3861 __ InvokeFunction(rdi, count, CALL_FUNCTION, generator); | |
3862 } else { | |
3863 CallKnownFunction(known_function, | |
3864 instr->hydrogen()->formal_parameter_count(), | |
3865 instr->arity(), instr); | |
3866 } | |
3867 } | |
3868 | |
3869 | |
3870 void LCodeGen::DoCallFunction(LCallFunction* instr) { | |
3871 DCHECK(ToRegister(instr->context()).is(rsi)); | |
3872 DCHECK(ToRegister(instr->function()).is(rdi)); | |
3873 DCHECK(ToRegister(instr->result()).is(rax)); | |
3874 | |
3875 int arity = instr->arity(); | |
3876 CallFunctionFlags flags = instr->hydrogen()->function_flags(); | |
3877 if (instr->hydrogen()->HasVectorAndSlot()) { | |
3878 Register slot_register = ToRegister(instr->temp_slot()); | |
3879 Register vector_register = ToRegister(instr->temp_vector()); | |
3880 DCHECK(slot_register.is(rdx)); | |
3881 DCHECK(vector_register.is(rbx)); | |
3882 | |
3883 AllowDeferredHandleDereference vector_structure_check; | |
3884 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); | |
3885 int index = vector->GetIndex(instr->hydrogen()->slot()); | |
3886 | |
3887 __ Move(vector_register, vector); | |
3888 __ Move(slot_register, Smi::FromInt(index)); | |
3889 | |
3890 CallICState::CallType call_type = | |
3891 (flags & CALL_AS_METHOD) ? CallICState::METHOD : CallICState::FUNCTION; | |
3892 | |
3893 Handle<Code> ic = | |
3894 CodeFactory::CallICInOptimizedCode(isolate(), arity, call_type).code(); | |
3895 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
3896 } else { | |
3897 CallFunctionStub stub(isolate(), arity, flags); | |
3898 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
3899 } | |
3900 } | |
3901 | |
3902 | |
3903 void LCodeGen::DoCallNew(LCallNew* instr) { | |
3904 DCHECK(ToRegister(instr->context()).is(rsi)); | |
3905 DCHECK(ToRegister(instr->constructor()).is(rdi)); | |
3906 DCHECK(ToRegister(instr->result()).is(rax)); | |
3907 | |
3908 __ Set(rax, instr->arity()); | |
3909 // No cell in ebx for construct type feedback in optimized code | |
3910 __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); | |
3911 CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS); | |
3912 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
3913 } | |
3914 | |
3915 | |
3916 void LCodeGen::DoCallNewArray(LCallNewArray* instr) { | |
3917 DCHECK(ToRegister(instr->context()).is(rsi)); | |
3918 DCHECK(ToRegister(instr->constructor()).is(rdi)); | |
3919 DCHECK(ToRegister(instr->result()).is(rax)); | |
3920 | |
3921 __ Set(rax, instr->arity()); | |
3922 if (instr->arity() == 1) { | |
3923 // We only need the allocation site for the case we have a length argument. | |
3924 // The case may bail out to the runtime, which will determine the correct | |
3925 // elements kind with the site. | |
3926 __ Move(rbx, instr->hydrogen()->site()); | |
3927 } else { | |
3928 __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); | |
3929 } | |
3930 | |
3931 ElementsKind kind = instr->hydrogen()->elements_kind(); | |
3932 AllocationSiteOverrideMode override_mode = | |
3933 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) | |
3934 ? DISABLE_ALLOCATION_SITES | |
3935 : DONT_OVERRIDE; | |
3936 | |
3937 if (instr->arity() == 0) { | |
3938 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); | |
3939 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
3940 } else if (instr->arity() == 1) { | |
3941 Label done; | |
3942 if (IsFastPackedElementsKind(kind)) { | |
3943 Label packed_case; | |
3944 // We might need a change here | |
3945 // look at the first argument | |
3946 __ movp(rcx, Operand(rsp, 0)); | |
3947 __ testp(rcx, rcx); | |
3948 __ j(zero, &packed_case, Label::kNear); | |
3949 | |
3950 ElementsKind holey_kind = GetHoleyElementsKind(kind); | |
3951 ArraySingleArgumentConstructorStub stub(isolate(), | |
3952 holey_kind, | |
3953 override_mode); | |
3954 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
3955 __ jmp(&done, Label::kNear); | |
3956 __ bind(&packed_case); | |
3957 } | |
3958 | |
3959 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); | |
3960 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
3961 __ bind(&done); | |
3962 } else { | |
3963 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode); | |
3964 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); | |
3965 } | |
3966 } | |
3967 | |
3968 | |
3969 void LCodeGen::DoCallRuntime(LCallRuntime* instr) { | |
3970 DCHECK(ToRegister(instr->context()).is(rsi)); | |
3971 CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles()); | |
3972 } | |
3973 | |
3974 | |
3975 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { | |
3976 Register function = ToRegister(instr->function()); | |
3977 Register code_object = ToRegister(instr->code_object()); | |
3978 __ leap(code_object, FieldOperand(code_object, Code::kHeaderSize)); | |
3979 __ movp(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object); | |
3980 } | |
3981 | |
3982 | |
3983 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { | |
3984 Register result = ToRegister(instr->result()); | |
3985 Register base = ToRegister(instr->base_object()); | |
3986 if (instr->offset()->IsConstantOperand()) { | |
3987 LConstantOperand* offset = LConstantOperand::cast(instr->offset()); | |
3988 __ leap(result, Operand(base, ToInteger32(offset))); | |
3989 } else { | |
3990 Register offset = ToRegister(instr->offset()); | |
3991 __ leap(result, Operand(base, offset, times_1, 0)); | |
3992 } | |
3993 } | |
3994 | |
3995 | |
3996 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { | |
3997 HStoreNamedField* hinstr = instr->hydrogen(); | |
3998 Representation representation = instr->representation(); | |
3999 | |
4000 HObjectAccess access = hinstr->access(); | |
4001 int offset = access.offset(); | |
4002 | |
4003 if (access.IsExternalMemory()) { | |
4004 DCHECK(!hinstr->NeedsWriteBarrier()); | |
4005 Register value = ToRegister(instr->value()); | |
4006 if (instr->object()->IsConstantOperand()) { | |
4007 DCHECK(value.is(rax)); | |
4008 LConstantOperand* object = LConstantOperand::cast(instr->object()); | |
4009 __ store_rax(ToExternalReference(object)); | |
4010 } else { | |
4011 Register object = ToRegister(instr->object()); | |
4012 __ Store(MemOperand(object, offset), value, representation); | |
4013 } | |
4014 return; | |
4015 } | |
4016 | |
4017 Register object = ToRegister(instr->object()); | |
4018 __ AssertNotSmi(object); | |
4019 | |
4020 DCHECK(!representation.IsSmi() || | |
4021 !instr->value()->IsConstantOperand() || | |
4022 IsInteger32Constant(LConstantOperand::cast(instr->value()))); | |
4023 if (!FLAG_unbox_double_fields && representation.IsDouble()) { | |
4024 DCHECK(access.IsInobject()); | |
4025 DCHECK(!hinstr->has_transition()); | |
4026 DCHECK(!hinstr->NeedsWriteBarrier()); | |
4027 XMMRegister value = ToDoubleRegister(instr->value()); | |
4028 __ Movsd(FieldOperand(object, offset), value); | |
4029 return; | |
4030 } | |
4031 | |
4032 if (hinstr->has_transition()) { | |
4033 Handle<Map> transition = hinstr->transition_map(); | |
4034 AddDeprecationDependency(transition); | |
4035 if (!hinstr->NeedsWriteBarrierForMap()) { | |
4036 __ Move(FieldOperand(object, HeapObject::kMapOffset), transition); | |
4037 } else { | |
4038 Register temp = ToRegister(instr->temp()); | |
4039 __ Move(kScratchRegister, transition); | |
4040 __ movp(FieldOperand(object, HeapObject::kMapOffset), kScratchRegister); | |
4041 // Update the write barrier for the map field. | |
4042 __ RecordWriteForMap(object, | |
4043 kScratchRegister, | |
4044 temp, | |
4045 kSaveFPRegs); | |
4046 } | |
4047 } | |
4048 | |
4049 // Do the store. | |
4050 Register write_register = object; | |
4051 if (!access.IsInobject()) { | |
4052 write_register = ToRegister(instr->temp()); | |
4053 __ movp(write_register, FieldOperand(object, JSObject::kPropertiesOffset)); | |
4054 } | |
4055 | |
4056 if (representation.IsSmi() && SmiValuesAre32Bits() && | |
4057 hinstr->value()->representation().IsInteger32()) { | |
4058 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY); | |
4059 if (FLAG_debug_code) { | |
4060 Register scratch = kScratchRegister; | |
4061 __ Load(scratch, FieldOperand(write_register, offset), representation); | |
4062 __ AssertSmi(scratch); | |
4063 } | |
4064 // Store int value directly to upper half of the smi. | |
4065 STATIC_ASSERT(kSmiTag == 0); | |
4066 DCHECK(kSmiTagSize + kSmiShiftSize == 32); | |
4067 offset += kPointerSize / 2; | |
4068 representation = Representation::Integer32(); | |
4069 } | |
4070 | |
4071 Operand operand = FieldOperand(write_register, offset); | |
4072 | |
4073 if (FLAG_unbox_double_fields && representation.IsDouble()) { | |
4074 DCHECK(access.IsInobject()); | |
4075 XMMRegister value = ToDoubleRegister(instr->value()); | |
4076 __ Movsd(operand, value); | |
4077 | |
4078 } else if (instr->value()->IsRegister()) { | |
4079 Register value = ToRegister(instr->value()); | |
4080 __ Store(operand, value, representation); | |
4081 } else { | |
4082 LConstantOperand* operand_value = LConstantOperand::cast(instr->value()); | |
4083 if (IsInteger32Constant(operand_value)) { | |
4084 DCHECK(!hinstr->NeedsWriteBarrier()); | |
4085 int32_t value = ToInteger32(operand_value); | |
4086 if (representation.IsSmi()) { | |
4087 __ Move(operand, Smi::FromInt(value)); | |
4088 | |
4089 } else { | |
4090 __ movl(operand, Immediate(value)); | |
4091 } | |
4092 | |
4093 } else if (IsExternalConstant(operand_value)) { | |
4094 DCHECK(!hinstr->NeedsWriteBarrier()); | |
4095 ExternalReference ptr = ToExternalReference(operand_value); | |
4096 __ Move(kScratchRegister, ptr); | |
4097 __ movp(operand, kScratchRegister); | |
4098 } else { | |
4099 Handle<Object> handle_value = ToHandle(operand_value); | |
4100 DCHECK(!hinstr->NeedsWriteBarrier()); | |
4101 __ Move(operand, handle_value); | |
4102 } | |
4103 } | |
4104 | |
4105 if (hinstr->NeedsWriteBarrier()) { | |
4106 Register value = ToRegister(instr->value()); | |
4107 Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object; | |
4108 // Update the write barrier for the object for in-object properties. | |
4109 __ RecordWriteField(write_register, | |
4110 offset, | |
4111 value, | |
4112 temp, | |
4113 kSaveFPRegs, | |
4114 EMIT_REMEMBERED_SET, | |
4115 hinstr->SmiCheckForWriteBarrier(), | |
4116 hinstr->PointersToHereCheckForValue()); | |
4117 } | |
4118 } | |
4119 | |
4120 | |
4121 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { | |
4122 DCHECK(ToRegister(instr->context()).is(rsi)); | |
4123 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); | |
4124 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); | |
4125 | |
4126 if (instr->hydrogen()->HasVectorAndSlot()) { | |
4127 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr); | |
4128 } | |
4129 | |
4130 __ Move(StoreDescriptor::NameRegister(), instr->hydrogen()->name()); | |
4131 Handle<Code> ic = CodeFactory::StoreICInOptimizedCode( | |
4132 isolate(), instr->language_mode(), | |
4133 instr->hydrogen()->initialization_state()).code(); | |
4134 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
4135 } | |
4136 | |
4137 | |
4138 void LCodeGen::DoStoreGlobalViaContext(LStoreGlobalViaContext* instr) { | |
4139 DCHECK(ToRegister(instr->context()).is(rsi)); | |
4140 DCHECK(ToRegister(instr->value()) | |
4141 .is(StoreGlobalViaContextDescriptor::ValueRegister())); | |
4142 int const slot = instr->slot_index(); | |
4143 int const depth = instr->depth(); | |
4144 if (depth <= StoreGlobalViaContextStub::kMaximumDepth) { | |
4145 __ Set(StoreGlobalViaContextDescriptor::SlotRegister(), slot); | |
4146 Handle<Code> stub = CodeFactory::StoreGlobalViaContext( | |
4147 isolate(), depth, instr->language_mode()) | |
4148 .code(); | |
4149 CallCode(stub, RelocInfo::CODE_TARGET, instr); | |
4150 } else { | |
4151 __ Push(Smi::FromInt(slot)); | |
4152 __ Push(StoreGlobalViaContextDescriptor::ValueRegister()); | |
4153 __ CallRuntime(is_strict(instr->language_mode()) | |
4154 ? Runtime::kStoreGlobalViaContext_Strict | |
4155 : Runtime::kStoreGlobalViaContext_Sloppy, | |
4156 2); | |
4157 } | |
4158 } | |
4159 | |
4160 | |
4161 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { | |
4162 Representation representation = instr->hydrogen()->length()->representation(); | |
4163 DCHECK(representation.Equals(instr->hydrogen()->index()->representation())); | |
4164 DCHECK(representation.IsSmiOrInteger32()); | |
4165 | |
4166 Condition cc = instr->hydrogen()->allow_equality() ? below : below_equal; | |
4167 if (instr->length()->IsConstantOperand()) { | |
4168 int32_t length = ToInteger32(LConstantOperand::cast(instr->length())); | |
4169 Register index = ToRegister(instr->index()); | |
4170 if (representation.IsSmi()) { | |
4171 __ Cmp(index, Smi::FromInt(length)); | |
4172 } else { | |
4173 __ cmpl(index, Immediate(length)); | |
4174 } | |
4175 cc = CommuteCondition(cc); | |
4176 } else if (instr->index()->IsConstantOperand()) { | |
4177 int32_t index = ToInteger32(LConstantOperand::cast(instr->index())); | |
4178 if (instr->length()->IsRegister()) { | |
4179 Register length = ToRegister(instr->length()); | |
4180 if (representation.IsSmi()) { | |
4181 __ Cmp(length, Smi::FromInt(index)); | |
4182 } else { | |
4183 __ cmpl(length, Immediate(index)); | |
4184 } | |
4185 } else { | |
4186 Operand length = ToOperand(instr->length()); | |
4187 if (representation.IsSmi()) { | |
4188 __ Cmp(length, Smi::FromInt(index)); | |
4189 } else { | |
4190 __ cmpl(length, Immediate(index)); | |
4191 } | |
4192 } | |
4193 } else { | |
4194 Register index = ToRegister(instr->index()); | |
4195 if (instr->length()->IsRegister()) { | |
4196 Register length = ToRegister(instr->length()); | |
4197 if (representation.IsSmi()) { | |
4198 __ cmpp(length, index); | |
4199 } else { | |
4200 __ cmpl(length, index); | |
4201 } | |
4202 } else { | |
4203 Operand length = ToOperand(instr->length()); | |
4204 if (representation.IsSmi()) { | |
4205 __ cmpp(length, index); | |
4206 } else { | |
4207 __ cmpl(length, index); | |
4208 } | |
4209 } | |
4210 } | |
4211 if (FLAG_debug_code && instr->hydrogen()->skip_check()) { | |
4212 Label done; | |
4213 __ j(NegateCondition(cc), &done, Label::kNear); | |
4214 __ int3(); | |
4215 __ bind(&done); | |
4216 } else { | |
4217 DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds); | |
4218 } | |
4219 } | |
4220 | |
4221 | |
4222 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) { | |
4223 ElementsKind elements_kind = instr->elements_kind(); | |
4224 LOperand* key = instr->key(); | |
4225 if (kPointerSize == kInt32Size && !key->IsConstantOperand()) { | |
4226 Register key_reg = ToRegister(key); | |
4227 Representation key_representation = | |
4228 instr->hydrogen()->key()->representation(); | |
4229 if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) { | |
4230 __ SmiToInteger64(key_reg, key_reg); | |
4231 } else if (instr->hydrogen()->IsDehoisted()) { | |
4232 // Sign extend key because it could be a 32 bit negative value | |
4233 // and the dehoisted address computation happens in 64 bits | |
4234 __ movsxlq(key_reg, key_reg); | |
4235 } | |
4236 } | |
4237 Operand operand(BuildFastArrayOperand( | |
4238 instr->elements(), | |
4239 key, | |
4240 instr->hydrogen()->key()->representation(), | |
4241 elements_kind, | |
4242 instr->base_offset())); | |
4243 | |
4244 if (elements_kind == FLOAT32_ELEMENTS) { | |
4245 XMMRegister value(ToDoubleRegister(instr->value())); | |
4246 __ cvtsd2ss(value, value); | |
4247 __ movss(operand, value); | |
4248 } else if (elements_kind == FLOAT64_ELEMENTS) { | |
4249 __ Movsd(operand, ToDoubleRegister(instr->value())); | |
4250 } else { | |
4251 Register value(ToRegister(instr->value())); | |
4252 switch (elements_kind) { | |
4253 case INT8_ELEMENTS: | |
4254 case UINT8_ELEMENTS: | |
4255 case UINT8_CLAMPED_ELEMENTS: | |
4256 __ movb(operand, value); | |
4257 break; | |
4258 case INT16_ELEMENTS: | |
4259 case UINT16_ELEMENTS: | |
4260 __ movw(operand, value); | |
4261 break; | |
4262 case INT32_ELEMENTS: | |
4263 case UINT32_ELEMENTS: | |
4264 __ movl(operand, value); | |
4265 break; | |
4266 case FLOAT32_ELEMENTS: | |
4267 case FLOAT64_ELEMENTS: | |
4268 case FAST_ELEMENTS: | |
4269 case FAST_SMI_ELEMENTS: | |
4270 case FAST_DOUBLE_ELEMENTS: | |
4271 case FAST_HOLEY_ELEMENTS: | |
4272 case FAST_HOLEY_SMI_ELEMENTS: | |
4273 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
4274 case DICTIONARY_ELEMENTS: | |
4275 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
4276 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: | |
4277 UNREACHABLE(); | |
4278 break; | |
4279 } | |
4280 } | |
4281 } | |
4282 | |
4283 | |
4284 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) { | |
4285 XMMRegister value = ToDoubleRegister(instr->value()); | |
4286 LOperand* key = instr->key(); | |
4287 if (kPointerSize == kInt32Size && !key->IsConstantOperand() && | |
4288 instr->hydrogen()->IsDehoisted()) { | |
4289 // Sign extend key because it could be a 32 bit negative value | |
4290 // and the dehoisted address computation happens in 64 bits | |
4291 __ movsxlq(ToRegister(key), ToRegister(key)); | |
4292 } | |
4293 if (instr->NeedsCanonicalization()) { | |
4294 XMMRegister xmm_scratch = double_scratch0(); | |
4295 // Turn potential sNaN value into qNaN. | |
4296 __ Xorpd(xmm_scratch, xmm_scratch); | |
4297 __ subsd(value, xmm_scratch); | |
4298 } | |
4299 | |
4300 Operand double_store_operand = BuildFastArrayOperand( | |
4301 instr->elements(), | |
4302 key, | |
4303 instr->hydrogen()->key()->representation(), | |
4304 FAST_DOUBLE_ELEMENTS, | |
4305 instr->base_offset()); | |
4306 | |
4307 __ Movsd(double_store_operand, value); | |
4308 } | |
4309 | |
4310 | |
4311 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) { | |
4312 HStoreKeyed* hinstr = instr->hydrogen(); | |
4313 LOperand* key = instr->key(); | |
4314 int offset = instr->base_offset(); | |
4315 Representation representation = hinstr->value()->representation(); | |
4316 | |
4317 if (kPointerSize == kInt32Size && !key->IsConstantOperand() && | |
4318 instr->hydrogen()->IsDehoisted()) { | |
4319 // Sign extend key because it could be a 32 bit negative value | |
4320 // and the dehoisted address computation happens in 64 bits | |
4321 __ movsxlq(ToRegister(key), ToRegister(key)); | |
4322 } | |
4323 if (representation.IsInteger32() && SmiValuesAre32Bits()) { | |
4324 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY); | |
4325 DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS); | |
4326 if (FLAG_debug_code) { | |
4327 Register scratch = kScratchRegister; | |
4328 __ Load(scratch, | |
4329 BuildFastArrayOperand(instr->elements(), | |
4330 key, | |
4331 instr->hydrogen()->key()->representation(), | |
4332 FAST_ELEMENTS, | |
4333 offset), | |
4334 Representation::Smi()); | |
4335 __ AssertSmi(scratch); | |
4336 } | |
4337 // Store int value directly to upper half of the smi. | |
4338 STATIC_ASSERT(kSmiTag == 0); | |
4339 DCHECK(kSmiTagSize + kSmiShiftSize == 32); | |
4340 offset += kPointerSize / 2; | |
4341 } | |
4342 | |
4343 Operand operand = | |
4344 BuildFastArrayOperand(instr->elements(), | |
4345 key, | |
4346 instr->hydrogen()->key()->representation(), | |
4347 FAST_ELEMENTS, | |
4348 offset); | |
4349 if (instr->value()->IsRegister()) { | |
4350 __ Store(operand, ToRegister(instr->value()), representation); | |
4351 } else { | |
4352 LConstantOperand* operand_value = LConstantOperand::cast(instr->value()); | |
4353 if (IsInteger32Constant(operand_value)) { | |
4354 int32_t value = ToInteger32(operand_value); | |
4355 if (representation.IsSmi()) { | |
4356 __ Move(operand, Smi::FromInt(value)); | |
4357 | |
4358 } else { | |
4359 __ movl(operand, Immediate(value)); | |
4360 } | |
4361 } else { | |
4362 Handle<Object> handle_value = ToHandle(operand_value); | |
4363 __ Move(operand, handle_value); | |
4364 } | |
4365 } | |
4366 | |
4367 if (hinstr->NeedsWriteBarrier()) { | |
4368 Register elements = ToRegister(instr->elements()); | |
4369 DCHECK(instr->value()->IsRegister()); | |
4370 Register value = ToRegister(instr->value()); | |
4371 DCHECK(!key->IsConstantOperand()); | |
4372 SmiCheck check_needed = hinstr->value()->type().IsHeapObject() | |
4373 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | |
4374 // Compute address of modified element and store it into key register. | |
4375 Register key_reg(ToRegister(key)); | |
4376 __ leap(key_reg, operand); | |
4377 __ RecordWrite(elements, | |
4378 key_reg, | |
4379 value, | |
4380 kSaveFPRegs, | |
4381 EMIT_REMEMBERED_SET, | |
4382 check_needed, | |
4383 hinstr->PointersToHereCheckForValue()); | |
4384 } | |
4385 } | |
4386 | |
4387 | |
4388 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) { | |
4389 if (instr->is_fixed_typed_array()) { | |
4390 DoStoreKeyedExternalArray(instr); | |
4391 } else if (instr->hydrogen()->value()->representation().IsDouble()) { | |
4392 DoStoreKeyedFixedDoubleArray(instr); | |
4393 } else { | |
4394 DoStoreKeyedFixedArray(instr); | |
4395 } | |
4396 } | |
4397 | |
4398 | |
4399 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { | |
4400 DCHECK(ToRegister(instr->context()).is(rsi)); | |
4401 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); | |
4402 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister())); | |
4403 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); | |
4404 | |
4405 if (instr->hydrogen()->HasVectorAndSlot()) { | |
4406 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr); | |
4407 } | |
4408 | |
4409 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode( | |
4410 isolate(), instr->language_mode(), | |
4411 instr->hydrogen()->initialization_state()).code(); | |
4412 CallCode(ic, RelocInfo::CODE_TARGET, instr); | |
4413 } | |
4414 | |
4415 | |
4416 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) { | |
4417 class DeferredMaybeGrowElements final : public LDeferredCode { | |
4418 public: | |
4419 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr) | |
4420 : LDeferredCode(codegen), instr_(instr) {} | |
4421 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); } | |
4422 LInstruction* instr() override { return instr_; } | |
4423 | |
4424 private: | |
4425 LMaybeGrowElements* instr_; | |
4426 }; | |
4427 | |
4428 Register result = rax; | |
4429 DeferredMaybeGrowElements* deferred = | |
4430 new (zone()) DeferredMaybeGrowElements(this, instr); | |
4431 LOperand* key = instr->key(); | |
4432 LOperand* current_capacity = instr->current_capacity(); | |
4433 | |
4434 DCHECK(instr->hydrogen()->key()->representation().IsInteger32()); | |
4435 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32()); | |
4436 DCHECK(key->IsConstantOperand() || key->IsRegister()); | |
4437 DCHECK(current_capacity->IsConstantOperand() || | |
4438 current_capacity->IsRegister()); | |
4439 | |
4440 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) { | |
4441 int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); | |
4442 int32_t constant_capacity = | |
4443 ToInteger32(LConstantOperand::cast(current_capacity)); | |
4444 if (constant_key >= constant_capacity) { | |
4445 // Deferred case. | |
4446 __ jmp(deferred->entry()); | |
4447 } | |
4448 } else if (key->IsConstantOperand()) { | |
4449 int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); | |
4450 __ cmpl(ToRegister(current_capacity), Immediate(constant_key)); | |
4451 __ j(less_equal, deferred->entry()); | |
4452 } else if (current_capacity->IsConstantOperand()) { | |
4453 int32_t constant_capacity = | |
4454 ToInteger32(LConstantOperand::cast(current_capacity)); | |
4455 __ cmpl(ToRegister(key), Immediate(constant_capacity)); | |
4456 __ j(greater_equal, deferred->entry()); | |
4457 } else { | |
4458 __ cmpl(ToRegister(key), ToRegister(current_capacity)); | |
4459 __ j(greater_equal, deferred->entry()); | |
4460 } | |
4461 | |
4462 if (instr->elements()->IsRegister()) { | |
4463 __ movp(result, ToRegister(instr->elements())); | |
4464 } else { | |
4465 __ movp(result, ToOperand(instr->elements())); | |
4466 } | |
4467 | |
4468 __ bind(deferred->exit()); | |
4469 } | |
4470 | |
4471 | |
4472 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) { | |
4473 // TODO(3095996): Get rid of this. For now, we need to make the | |
4474 // result register contain a valid pointer because it is already | |
4475 // contained in the register pointer map. | |
4476 Register result = rax; | |
4477 __ Move(result, Smi::FromInt(0)); | |
4478 | |
4479 // We have to call a stub. | |
4480 { | |
4481 PushSafepointRegistersScope scope(this); | |
4482 if (instr->object()->IsConstantOperand()) { | |
4483 LConstantOperand* constant_object = | |
4484 LConstantOperand::cast(instr->object()); | |
4485 if (IsSmiConstant(constant_object)) { | |
4486 Smi* immediate = ToSmi(constant_object); | |
4487 __ Move(result, immediate); | |
4488 } else { | |
4489 Handle<Object> handle_value = ToHandle(constant_object); | |
4490 __ Move(result, handle_value); | |
4491 } | |
4492 } else if (instr->object()->IsRegister()) { | |
4493 __ Move(result, ToRegister(instr->object())); | |
4494 } else { | |
4495 __ movp(result, ToOperand(instr->object())); | |
4496 } | |
4497 | |
4498 LOperand* key = instr->key(); | |
4499 if (key->IsConstantOperand()) { | |
4500 __ Move(rbx, ToSmi(LConstantOperand::cast(key))); | |
4501 } else { | |
4502 __ Move(rbx, ToRegister(key)); | |
4503 __ Integer32ToSmi(rbx, rbx); | |
4504 } | |
4505 | |
4506 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(), | |
4507 instr->hydrogen()->kind()); | |
4508 __ CallStub(&stub); | |
4509 RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0); | |
4510 __ StoreToSafepointRegisterSlot(result, result); | |
4511 } | |
4512 | |
4513 // Deopt on smi, which means the elements array changed to dictionary mode. | |
4514 Condition is_smi = __ CheckSmi(result); | |
4515 DeoptimizeIf(is_smi, instr, Deoptimizer::kSmi); | |
4516 } | |
4517 | |
4518 | |
4519 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { | |
4520 Register object_reg = ToRegister(instr->object()); | |
4521 | |
4522 Handle<Map> from_map = instr->original_map(); | |
4523 Handle<Map> to_map = instr->transitioned_map(); | |
4524 ElementsKind from_kind = instr->from_kind(); | |
4525 ElementsKind to_kind = instr->to_kind(); | |
4526 | |
4527 Label not_applicable; | |
4528 __ Cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map); | |
4529 __ j(not_equal, ¬_applicable); | |
4530 if (IsSimpleMapChangeTransition(from_kind, to_kind)) { | |
4531 Register new_map_reg = ToRegister(instr->new_map_temp()); | |
4532 __ Move(new_map_reg, to_map, RelocInfo::EMBEDDED_OBJECT); | |
4533 __ movp(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg); | |
4534 // Write barrier. | |
4535 __ RecordWriteForMap(object_reg, new_map_reg, ToRegister(instr->temp()), | |
4536 kDontSaveFPRegs); | |
4537 } else { | |
4538 DCHECK(object_reg.is(rax)); | |
4539 DCHECK(ToRegister(instr->context()).is(rsi)); | |
4540 PushSafepointRegistersScope scope(this); | |
4541 __ Move(rbx, to_map); | |
4542 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE; | |
4543 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array); | |
4544 __ CallStub(&stub); | |
4545 RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0); | |
4546 } | |
4547 __ bind(¬_applicable); | |
4548 } | |
4549 | |
4550 | |
4551 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { | |
4552 Register object = ToRegister(instr->object()); | |
4553 Register temp = ToRegister(instr->temp()); | |
4554 Label no_memento_found; | |
4555 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found); | |
4556 DeoptimizeIf(equal, instr, Deoptimizer::kMementoFound); | |
4557 __ bind(&no_memento_found); | |
4558 } | |
4559 | |
4560 | |
4561 void LCodeGen::DoStringAdd(LStringAdd* instr) { | |
4562 DCHECK(ToRegister(instr->context()).is(rsi)); | |
4563 DCHECK(ToRegister(instr->left()).is(rdx)); | |
4564 DCHECK(ToRegister(instr->right()).is(rax)); | |
4565 StringAddStub stub(isolate(), | |
4566 instr->hydrogen()->flags(), | |
4567 instr->hydrogen()->pretenure_flag()); | |
4568 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
4569 } | |
4570 | |
4571 | |
4572 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { | |
4573 class DeferredStringCharCodeAt final : public LDeferredCode { | |
4574 public: | |
4575 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) | |
4576 : LDeferredCode(codegen), instr_(instr) { } | |
4577 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); } | |
4578 LInstruction* instr() override { return instr_; } | |
4579 | |
4580 private: | |
4581 LStringCharCodeAt* instr_; | |
4582 }; | |
4583 | |
4584 DeferredStringCharCodeAt* deferred = | |
4585 new(zone()) DeferredStringCharCodeAt(this, instr); | |
4586 | |
4587 StringCharLoadGenerator::Generate(masm(), | |
4588 ToRegister(instr->string()), | |
4589 ToRegister(instr->index()), | |
4590 ToRegister(instr->result()), | |
4591 deferred->entry()); | |
4592 __ bind(deferred->exit()); | |
4593 } | |
4594 | |
4595 | |
4596 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { | |
4597 Register string = ToRegister(instr->string()); | |
4598 Register result = ToRegister(instr->result()); | |
4599 | |
4600 // TODO(3095996): Get rid of this. For now, we need to make the | |
4601 // result register contain a valid pointer because it is already | |
4602 // contained in the register pointer map. | |
4603 __ Set(result, 0); | |
4604 | |
4605 PushSafepointRegistersScope scope(this); | |
4606 __ Push(string); | |
4607 // Push the index as a smi. This is safe because of the checks in | |
4608 // DoStringCharCodeAt above. | |
4609 STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue); | |
4610 if (instr->index()->IsConstantOperand()) { | |
4611 int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index())); | |
4612 __ Push(Smi::FromInt(const_index)); | |
4613 } else { | |
4614 Register index = ToRegister(instr->index()); | |
4615 __ Integer32ToSmi(index, index); | |
4616 __ Push(index); | |
4617 } | |
4618 CallRuntimeFromDeferred( | |
4619 Runtime::kStringCharCodeAtRT, 2, instr, instr->context()); | |
4620 __ AssertSmi(rax); | |
4621 __ SmiToInteger32(rax, rax); | |
4622 __ StoreToSafepointRegisterSlot(result, rax); | |
4623 } | |
4624 | |
4625 | |
4626 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { | |
4627 class DeferredStringCharFromCode final : public LDeferredCode { | |
4628 public: | |
4629 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) | |
4630 : LDeferredCode(codegen), instr_(instr) { } | |
4631 void Generate() override { | |
4632 codegen()->DoDeferredStringCharFromCode(instr_); | |
4633 } | |
4634 LInstruction* instr() override { return instr_; } | |
4635 | |
4636 private: | |
4637 LStringCharFromCode* instr_; | |
4638 }; | |
4639 | |
4640 DeferredStringCharFromCode* deferred = | |
4641 new(zone()) DeferredStringCharFromCode(this, instr); | |
4642 | |
4643 DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); | |
4644 Register char_code = ToRegister(instr->char_code()); | |
4645 Register result = ToRegister(instr->result()); | |
4646 DCHECK(!char_code.is(result)); | |
4647 | |
4648 __ cmpl(char_code, Immediate(String::kMaxOneByteCharCode)); | |
4649 __ j(above, deferred->entry()); | |
4650 __ movsxlq(char_code, char_code); | |
4651 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); | |
4652 __ movp(result, FieldOperand(result, | |
4653 char_code, times_pointer_size, | |
4654 FixedArray::kHeaderSize)); | |
4655 __ CompareRoot(result, Heap::kUndefinedValueRootIndex); | |
4656 __ j(equal, deferred->entry()); | |
4657 __ bind(deferred->exit()); | |
4658 } | |
4659 | |
4660 | |
4661 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { | |
4662 Register char_code = ToRegister(instr->char_code()); | |
4663 Register result = ToRegister(instr->result()); | |
4664 | |
4665 // TODO(3095996): Get rid of this. For now, we need to make the | |
4666 // result register contain a valid pointer because it is already | |
4667 // contained in the register pointer map. | |
4668 __ Set(result, 0); | |
4669 | |
4670 PushSafepointRegistersScope scope(this); | |
4671 __ Integer32ToSmi(char_code, char_code); | |
4672 __ Push(char_code); | |
4673 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context()); | |
4674 __ StoreToSafepointRegisterSlot(result, rax); | |
4675 } | |
4676 | |
4677 | |
4678 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { | |
4679 LOperand* input = instr->value(); | |
4680 DCHECK(input->IsRegister() || input->IsStackSlot()); | |
4681 LOperand* output = instr->result(); | |
4682 DCHECK(output->IsDoubleRegister()); | |
4683 if (input->IsRegister()) { | |
4684 __ Cvtlsi2sd(ToDoubleRegister(output), ToRegister(input)); | |
4685 } else { | |
4686 __ Cvtlsi2sd(ToDoubleRegister(output), ToOperand(input)); | |
4687 } | |
4688 } | |
4689 | |
4690 | |
4691 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { | |
4692 LOperand* input = instr->value(); | |
4693 LOperand* output = instr->result(); | |
4694 | |
4695 __ LoadUint32(ToDoubleRegister(output), ToRegister(input)); | |
4696 } | |
4697 | |
4698 | |
4699 void LCodeGen::DoNumberTagI(LNumberTagI* instr) { | |
4700 class DeferredNumberTagI final : public LDeferredCode { | |
4701 public: | |
4702 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) | |
4703 : LDeferredCode(codegen), instr_(instr) { } | |
4704 void Generate() override { | |
4705 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(), | |
4706 instr_->temp2(), SIGNED_INT32); | |
4707 } | |
4708 LInstruction* instr() override { return instr_; } | |
4709 | |
4710 private: | |
4711 LNumberTagI* instr_; | |
4712 }; | |
4713 | |
4714 LOperand* input = instr->value(); | |
4715 DCHECK(input->IsRegister() && input->Equals(instr->result())); | |
4716 Register reg = ToRegister(input); | |
4717 | |
4718 if (SmiValuesAre32Bits()) { | |
4719 __ Integer32ToSmi(reg, reg); | |
4720 } else { | |
4721 DCHECK(SmiValuesAre31Bits()); | |
4722 DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr); | |
4723 __ Integer32ToSmi(reg, reg); | |
4724 __ j(overflow, deferred->entry()); | |
4725 __ bind(deferred->exit()); | |
4726 } | |
4727 } | |
4728 | |
4729 | |
4730 void LCodeGen::DoNumberTagU(LNumberTagU* instr) { | |
4731 class DeferredNumberTagU final : public LDeferredCode { | |
4732 public: | |
4733 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) | |
4734 : LDeferredCode(codegen), instr_(instr) { } | |
4735 void Generate() override { | |
4736 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(), | |
4737 instr_->temp2(), UNSIGNED_INT32); | |
4738 } | |
4739 LInstruction* instr() override { return instr_; } | |
4740 | |
4741 private: | |
4742 LNumberTagU* instr_; | |
4743 }; | |
4744 | |
4745 LOperand* input = instr->value(); | |
4746 DCHECK(input->IsRegister() && input->Equals(instr->result())); | |
4747 Register reg = ToRegister(input); | |
4748 | |
4749 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); | |
4750 __ cmpl(reg, Immediate(Smi::kMaxValue)); | |
4751 __ j(above, deferred->entry()); | |
4752 __ Integer32ToSmi(reg, reg); | |
4753 __ bind(deferred->exit()); | |
4754 } | |
4755 | |
4756 | |
4757 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, | |
4758 LOperand* value, | |
4759 LOperand* temp1, | |
4760 LOperand* temp2, | |
4761 IntegerSignedness signedness) { | |
4762 Label done, slow; | |
4763 Register reg = ToRegister(value); | |
4764 Register tmp = ToRegister(temp1); | |
4765 XMMRegister temp_xmm = ToDoubleRegister(temp2); | |
4766 | |
4767 // Load value into temp_xmm which will be preserved across potential call to | |
4768 // runtime (MacroAssembler::EnterExitFrameEpilogue preserves only allocatable | |
4769 // XMM registers on x64). | |
4770 if (signedness == SIGNED_INT32) { | |
4771 DCHECK(SmiValuesAre31Bits()); | |
4772 // There was overflow, so bits 30 and 31 of the original integer | |
4773 // disagree. Try to allocate a heap number in new space and store | |
4774 // the value in there. If that fails, call the runtime system. | |
4775 __ SmiToInteger32(reg, reg); | |
4776 __ xorl(reg, Immediate(0x80000000)); | |
4777 __ Cvtlsi2sd(temp_xmm, reg); | |
4778 } else { | |
4779 DCHECK(signedness == UNSIGNED_INT32); | |
4780 __ LoadUint32(temp_xmm, reg); | |
4781 } | |
4782 | |
4783 if (FLAG_inline_new) { | |
4784 __ AllocateHeapNumber(reg, tmp, &slow); | |
4785 __ jmp(&done, kPointerSize == kInt64Size ? Label::kNear : Label::kFar); | |
4786 } | |
4787 | |
4788 // Slow case: Call the runtime system to do the number allocation. | |
4789 __ bind(&slow); | |
4790 { | |
4791 // Put a valid pointer value in the stack slot where the result | |
4792 // register is stored, as this register is in the pointer map, but contains | |
4793 // an integer value. | |
4794 __ Set(reg, 0); | |
4795 | |
4796 // Preserve the value of all registers. | |
4797 PushSafepointRegistersScope scope(this); | |
4798 | |
4799 // NumberTagIU uses the context from the frame, rather than | |
4800 // the environment's HContext or HInlinedContext value. | |
4801 // They only call Runtime::kAllocateHeapNumber. | |
4802 // The corresponding HChange instructions are added in a phase that does | |
4803 // not have easy access to the local context. | |
4804 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); | |
4805 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); | |
4806 RecordSafepointWithRegisters( | |
4807 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); | |
4808 __ StoreToSafepointRegisterSlot(reg, rax); | |
4809 } | |
4810 | |
4811 // Done. Put the value in temp_xmm into the value of the allocated heap | |
4812 // number. | |
4813 __ bind(&done); | |
4814 __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), temp_xmm); | |
4815 } | |
4816 | |
4817 | |
4818 void LCodeGen::DoNumberTagD(LNumberTagD* instr) { | |
4819 class DeferredNumberTagD final : public LDeferredCode { | |
4820 public: | |
4821 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) | |
4822 : LDeferredCode(codegen), instr_(instr) { } | |
4823 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); } | |
4824 LInstruction* instr() override { return instr_; } | |
4825 | |
4826 private: | |
4827 LNumberTagD* instr_; | |
4828 }; | |
4829 | |
4830 XMMRegister input_reg = ToDoubleRegister(instr->value()); | |
4831 Register reg = ToRegister(instr->result()); | |
4832 Register tmp = ToRegister(instr->temp()); | |
4833 | |
4834 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); | |
4835 if (FLAG_inline_new) { | |
4836 __ AllocateHeapNumber(reg, tmp, deferred->entry()); | |
4837 } else { | |
4838 __ jmp(deferred->entry()); | |
4839 } | |
4840 __ bind(deferred->exit()); | |
4841 __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg); | |
4842 } | |
4843 | |
4844 | |
4845 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { | |
4846 // TODO(3095996): Get rid of this. For now, we need to make the | |
4847 // result register contain a valid pointer because it is already | |
4848 // contained in the register pointer map. | |
4849 Register reg = ToRegister(instr->result()); | |
4850 __ Move(reg, Smi::FromInt(0)); | |
4851 | |
4852 { | |
4853 PushSafepointRegistersScope scope(this); | |
4854 // NumberTagD uses the context from the frame, rather than | |
4855 // the environment's HContext or HInlinedContext value. | |
4856 // They only call Runtime::kAllocateHeapNumber. | |
4857 // The corresponding HChange instructions are added in a phase that does | |
4858 // not have easy access to the local context. | |
4859 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); | |
4860 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); | |
4861 RecordSafepointWithRegisters( | |
4862 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); | |
4863 __ movp(kScratchRegister, rax); | |
4864 } | |
4865 __ movp(reg, kScratchRegister); | |
4866 } | |
4867 | |
4868 | |
4869 void LCodeGen::DoSmiTag(LSmiTag* instr) { | |
4870 HChange* hchange = instr->hydrogen(); | |
4871 Register input = ToRegister(instr->value()); | |
4872 Register output = ToRegister(instr->result()); | |
4873 if (hchange->CheckFlag(HValue::kCanOverflow) && | |
4874 hchange->value()->CheckFlag(HValue::kUint32)) { | |
4875 Condition is_smi = __ CheckUInteger32ValidSmiValue(input); | |
4876 DeoptimizeIf(NegateCondition(is_smi), instr, Deoptimizer::kOverflow); | |
4877 } | |
4878 __ Integer32ToSmi(output, input); | |
4879 if (hchange->CheckFlag(HValue::kCanOverflow) && | |
4880 !hchange->value()->CheckFlag(HValue::kUint32)) { | |
4881 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
4882 } | |
4883 } | |
4884 | |
4885 | |
4886 void LCodeGen::DoSmiUntag(LSmiUntag* instr) { | |
4887 DCHECK(instr->value()->Equals(instr->result())); | |
4888 Register input = ToRegister(instr->value()); | |
4889 if (instr->needs_check()) { | |
4890 Condition is_smi = __ CheckSmi(input); | |
4891 DeoptimizeIf(NegateCondition(is_smi), instr, Deoptimizer::kNotASmi); | |
4892 } else { | |
4893 __ AssertSmi(input); | |
4894 } | |
4895 __ SmiToInteger32(input, input); | |
4896 } | |
4897 | |
4898 | |
4899 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg, | |
4900 XMMRegister result_reg, NumberUntagDMode mode) { | |
4901 bool can_convert_undefined_to_nan = | |
4902 instr->hydrogen()->can_convert_undefined_to_nan(); | |
4903 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero(); | |
4904 | |
4905 Label convert, load_smi, done; | |
4906 | |
4907 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { | |
4908 // Smi check. | |
4909 __ JumpIfSmi(input_reg, &load_smi, Label::kNear); | |
4910 | |
4911 // Heap number map check. | |
4912 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), | |
4913 Heap::kHeapNumberMapRootIndex); | |
4914 | |
4915 // On x64 it is safe to load at heap number offset before evaluating the map | |
4916 // check, since all heap objects are at least two words long. | |
4917 __ Movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset)); | |
4918 | |
4919 if (can_convert_undefined_to_nan) { | |
4920 __ j(not_equal, &convert, Label::kNear); | |
4921 } else { | |
4922 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber); | |
4923 } | |
4924 | |
4925 if (deoptimize_on_minus_zero) { | |
4926 XMMRegister xmm_scratch = double_scratch0(); | |
4927 __ Xorpd(xmm_scratch, xmm_scratch); | |
4928 __ ucomisd(xmm_scratch, result_reg); | |
4929 __ j(not_equal, &done, Label::kNear); | |
4930 __ movmskpd(kScratchRegister, result_reg); | |
4931 __ testq(kScratchRegister, Immediate(1)); | |
4932 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero); | |
4933 } | |
4934 __ jmp(&done, Label::kNear); | |
4935 | |
4936 if (can_convert_undefined_to_nan) { | |
4937 __ bind(&convert); | |
4938 | |
4939 // Convert undefined (and hole) to NaN. Compute NaN as 0/0. | |
4940 __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex); | |
4941 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined); | |
4942 | |
4943 __ pcmpeqd(result_reg, result_reg); | |
4944 __ jmp(&done, Label::kNear); | |
4945 } | |
4946 } else { | |
4947 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); | |
4948 } | |
4949 | |
4950 // Smi to XMM conversion | |
4951 __ bind(&load_smi); | |
4952 __ SmiToInteger32(kScratchRegister, input_reg); | |
4953 __ Cvtlsi2sd(result_reg, kScratchRegister); | |
4954 __ bind(&done); | |
4955 } | |
4956 | |
4957 | |
4958 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) { | |
4959 Register input_reg = ToRegister(instr->value()); | |
4960 | |
4961 if (instr->truncating()) { | |
4962 Label no_heap_number, check_bools, check_false; | |
4963 | |
4964 // Heap number map check. | |
4965 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), | |
4966 Heap::kHeapNumberMapRootIndex); | |
4967 __ j(not_equal, &no_heap_number, Label::kNear); | |
4968 __ TruncateHeapNumberToI(input_reg, input_reg); | |
4969 __ jmp(done); | |
4970 | |
4971 __ bind(&no_heap_number); | |
4972 // Check for Oddballs. Undefined/False is converted to zero and True to one | |
4973 // for truncating conversions. | |
4974 __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex); | |
4975 __ j(not_equal, &check_bools, Label::kNear); | |
4976 __ Set(input_reg, 0); | |
4977 __ jmp(done); | |
4978 | |
4979 __ bind(&check_bools); | |
4980 __ CompareRoot(input_reg, Heap::kTrueValueRootIndex); | |
4981 __ j(not_equal, &check_false, Label::kNear); | |
4982 __ Set(input_reg, 1); | |
4983 __ jmp(done); | |
4984 | |
4985 __ bind(&check_false); | |
4986 __ CompareRoot(input_reg, Heap::kFalseValueRootIndex); | |
4987 DeoptimizeIf(not_equal, instr, | |
4988 Deoptimizer::kNotAHeapNumberUndefinedBoolean); | |
4989 __ Set(input_reg, 0); | |
4990 } else { | |
4991 XMMRegister scratch = ToDoubleRegister(instr->temp()); | |
4992 DCHECK(!scratch.is(xmm0)); | |
4993 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), | |
4994 Heap::kHeapNumberMapRootIndex); | |
4995 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber); | |
4996 __ Movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); | |
4997 __ cvttsd2si(input_reg, xmm0); | |
4998 __ Cvtlsi2sd(scratch, input_reg); | |
4999 __ ucomisd(xmm0, scratch); | |
5000 DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision); | |
5001 DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN); | |
5002 if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) { | |
5003 __ testl(input_reg, input_reg); | |
5004 __ j(not_zero, done); | |
5005 __ movmskpd(input_reg, xmm0); | |
5006 __ andl(input_reg, Immediate(1)); | |
5007 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero); | |
5008 } | |
5009 } | |
5010 } | |
5011 | |
5012 | |
5013 void LCodeGen::DoTaggedToI(LTaggedToI* instr) { | |
5014 class DeferredTaggedToI final : public LDeferredCode { | |
5015 public: | |
5016 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) | |
5017 : LDeferredCode(codegen), instr_(instr) { } | |
5018 void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); } | |
5019 LInstruction* instr() override { return instr_; } | |
5020 | |
5021 private: | |
5022 LTaggedToI* instr_; | |
5023 }; | |
5024 | |
5025 LOperand* input = instr->value(); | |
5026 DCHECK(input->IsRegister()); | |
5027 DCHECK(input->Equals(instr->result())); | |
5028 Register input_reg = ToRegister(input); | |
5029 | |
5030 if (instr->hydrogen()->value()->representation().IsSmi()) { | |
5031 __ SmiToInteger32(input_reg, input_reg); | |
5032 } else { | |
5033 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); | |
5034 __ JumpIfNotSmi(input_reg, deferred->entry()); | |
5035 __ SmiToInteger32(input_reg, input_reg); | |
5036 __ bind(deferred->exit()); | |
5037 } | |
5038 } | |
5039 | |
5040 | |
5041 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { | |
5042 LOperand* input = instr->value(); | |
5043 DCHECK(input->IsRegister()); | |
5044 LOperand* result = instr->result(); | |
5045 DCHECK(result->IsDoubleRegister()); | |
5046 | |
5047 Register input_reg = ToRegister(input); | |
5048 XMMRegister result_reg = ToDoubleRegister(result); | |
5049 | |
5050 HValue* value = instr->hydrogen()->value(); | |
5051 NumberUntagDMode mode = value->representation().IsSmi() | |
5052 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; | |
5053 | |
5054 EmitNumberUntagD(instr, input_reg, result_reg, mode); | |
5055 } | |
5056 | |
5057 | |
5058 void LCodeGen::DoDoubleToI(LDoubleToI* instr) { | |
5059 LOperand* input = instr->value(); | |
5060 DCHECK(input->IsDoubleRegister()); | |
5061 LOperand* result = instr->result(); | |
5062 DCHECK(result->IsRegister()); | |
5063 | |
5064 XMMRegister input_reg = ToDoubleRegister(input); | |
5065 Register result_reg = ToRegister(result); | |
5066 | |
5067 if (instr->truncating()) { | |
5068 __ TruncateDoubleToI(result_reg, input_reg); | |
5069 } else { | |
5070 Label lost_precision, is_nan, minus_zero, done; | |
5071 XMMRegister xmm_scratch = double_scratch0(); | |
5072 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; | |
5073 __ DoubleToI(result_reg, input_reg, xmm_scratch, | |
5074 instr->hydrogen()->GetMinusZeroMode(), &lost_precision, | |
5075 &is_nan, &minus_zero, dist); | |
5076 __ jmp(&done, dist); | |
5077 __ bind(&lost_precision); | |
5078 DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision); | |
5079 __ bind(&is_nan); | |
5080 DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN); | |
5081 __ bind(&minus_zero); | |
5082 DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero); | |
5083 __ bind(&done); | |
5084 } | |
5085 } | |
5086 | |
5087 | |
5088 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) { | |
5089 LOperand* input = instr->value(); | |
5090 DCHECK(input->IsDoubleRegister()); | |
5091 LOperand* result = instr->result(); | |
5092 DCHECK(result->IsRegister()); | |
5093 | |
5094 XMMRegister input_reg = ToDoubleRegister(input); | |
5095 Register result_reg = ToRegister(result); | |
5096 | |
5097 Label lost_precision, is_nan, minus_zero, done; | |
5098 XMMRegister xmm_scratch = double_scratch0(); | |
5099 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; | |
5100 __ DoubleToI(result_reg, input_reg, xmm_scratch, | |
5101 instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan, | |
5102 &minus_zero, dist); | |
5103 __ jmp(&done, dist); | |
5104 __ bind(&lost_precision); | |
5105 DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision); | |
5106 __ bind(&is_nan); | |
5107 DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN); | |
5108 __ bind(&minus_zero); | |
5109 DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero); | |
5110 __ bind(&done); | |
5111 __ Integer32ToSmi(result_reg, result_reg); | |
5112 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow); | |
5113 } | |
5114 | |
5115 | |
5116 void LCodeGen::DoCheckSmi(LCheckSmi* instr) { | |
5117 LOperand* input = instr->value(); | |
5118 Condition cc = masm()->CheckSmi(ToRegister(input)); | |
5119 DeoptimizeIf(NegateCondition(cc), instr, Deoptimizer::kNotASmi); | |
5120 } | |
5121 | |
5122 | |
5123 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { | |
5124 if (!instr->hydrogen()->value()->type().IsHeapObject()) { | |
5125 LOperand* input = instr->value(); | |
5126 Condition cc = masm()->CheckSmi(ToRegister(input)); | |
5127 DeoptimizeIf(cc, instr, Deoptimizer::kSmi); | |
5128 } | |
5129 } | |
5130 | |
5131 | |
5132 void LCodeGen::DoCheckArrayBufferNotNeutered( | |
5133 LCheckArrayBufferNotNeutered* instr) { | |
5134 Register view = ToRegister(instr->view()); | |
5135 | |
5136 __ movp(kScratchRegister, | |
5137 FieldOperand(view, JSArrayBufferView::kBufferOffset)); | |
5138 __ testb(FieldOperand(kScratchRegister, JSArrayBuffer::kBitFieldOffset), | |
5139 Immediate(1 << JSArrayBuffer::WasNeutered::kShift)); | |
5140 DeoptimizeIf(not_zero, instr, Deoptimizer::kOutOfBounds); | |
5141 } | |
5142 | |
5143 | |
5144 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { | |
5145 Register input = ToRegister(instr->value()); | |
5146 | |
5147 __ movp(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset)); | |
5148 | |
5149 if (instr->hydrogen()->is_interval_check()) { | |
5150 InstanceType first; | |
5151 InstanceType last; | |
5152 instr->hydrogen()->GetCheckInterval(&first, &last); | |
5153 | |
5154 __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset), | |
5155 Immediate(static_cast<int8_t>(first))); | |
5156 | |
5157 // If there is only one type in the interval check for equality. | |
5158 if (first == last) { | |
5159 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType); | |
5160 } else { | |
5161 DeoptimizeIf(below, instr, Deoptimizer::kWrongInstanceType); | |
5162 // Omit check for the last type. | |
5163 if (last != LAST_TYPE) { | |
5164 __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset), | |
5165 Immediate(static_cast<int8_t>(last))); | |
5166 DeoptimizeIf(above, instr, Deoptimizer::kWrongInstanceType); | |
5167 } | |
5168 } | |
5169 } else { | |
5170 uint8_t mask; | |
5171 uint8_t tag; | |
5172 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); | |
5173 | |
5174 if (base::bits::IsPowerOfTwo32(mask)) { | |
5175 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag)); | |
5176 __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset), | |
5177 Immediate(mask)); | |
5178 DeoptimizeIf(tag == 0 ? not_zero : zero, instr, | |
5179 Deoptimizer::kWrongInstanceType); | |
5180 } else { | |
5181 __ movzxbl(kScratchRegister, | |
5182 FieldOperand(kScratchRegister, Map::kInstanceTypeOffset)); | |
5183 __ andb(kScratchRegister, Immediate(mask)); | |
5184 __ cmpb(kScratchRegister, Immediate(tag)); | |
5185 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType); | |
5186 } | |
5187 } | |
5188 } | |
5189 | |
5190 | |
5191 void LCodeGen::DoCheckValue(LCheckValue* instr) { | |
5192 Register reg = ToRegister(instr->value()); | |
5193 __ Cmp(reg, instr->hydrogen()->object().handle()); | |
5194 DeoptimizeIf(not_equal, instr, Deoptimizer::kValueMismatch); | |
5195 } | |
5196 | |
5197 | |
5198 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { | |
5199 { | |
5200 PushSafepointRegistersScope scope(this); | |
5201 __ Push(object); | |
5202 __ Set(rsi, 0); | |
5203 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); | |
5204 RecordSafepointWithRegisters( | |
5205 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); | |
5206 | |
5207 __ testp(rax, Immediate(kSmiTagMask)); | |
5208 } | |
5209 DeoptimizeIf(zero, instr, Deoptimizer::kInstanceMigrationFailed); | |
5210 } | |
5211 | |
5212 | |
5213 void LCodeGen::DoCheckMaps(LCheckMaps* instr) { | |
5214 class DeferredCheckMaps final : public LDeferredCode { | |
5215 public: | |
5216 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) | |
5217 : LDeferredCode(codegen), instr_(instr), object_(object) { | |
5218 SetExit(check_maps()); | |
5219 } | |
5220 void Generate() override { | |
5221 codegen()->DoDeferredInstanceMigration(instr_, object_); | |
5222 } | |
5223 Label* check_maps() { return &check_maps_; } | |
5224 LInstruction* instr() override { return instr_; } | |
5225 | |
5226 private: | |
5227 LCheckMaps* instr_; | |
5228 Label check_maps_; | |
5229 Register object_; | |
5230 }; | |
5231 | |
5232 if (instr->hydrogen()->IsStabilityCheck()) { | |
5233 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); | |
5234 for (int i = 0; i < maps->size(); ++i) { | |
5235 AddStabilityDependency(maps->at(i).handle()); | |
5236 } | |
5237 return; | |
5238 } | |
5239 | |
5240 LOperand* input = instr->value(); | |
5241 DCHECK(input->IsRegister()); | |
5242 Register reg = ToRegister(input); | |
5243 | |
5244 DeferredCheckMaps* deferred = NULL; | |
5245 if (instr->hydrogen()->HasMigrationTarget()) { | |
5246 deferred = new(zone()) DeferredCheckMaps(this, instr, reg); | |
5247 __ bind(deferred->check_maps()); | |
5248 } | |
5249 | |
5250 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); | |
5251 Label success; | |
5252 for (int i = 0; i < maps->size() - 1; i++) { | |
5253 Handle<Map> map = maps->at(i).handle(); | |
5254 __ CompareMap(reg, map); | |
5255 __ j(equal, &success, Label::kNear); | |
5256 } | |
5257 | |
5258 Handle<Map> map = maps->at(maps->size() - 1).handle(); | |
5259 __ CompareMap(reg, map); | |
5260 if (instr->hydrogen()->HasMigrationTarget()) { | |
5261 __ j(not_equal, deferred->entry()); | |
5262 } else { | |
5263 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap); | |
5264 } | |
5265 | |
5266 __ bind(&success); | |
5267 } | |
5268 | |
5269 | |
5270 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { | |
5271 XMMRegister value_reg = ToDoubleRegister(instr->unclamped()); | |
5272 XMMRegister xmm_scratch = double_scratch0(); | |
5273 Register result_reg = ToRegister(instr->result()); | |
5274 __ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg); | |
5275 } | |
5276 | |
5277 | |
5278 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { | |
5279 DCHECK(instr->unclamped()->Equals(instr->result())); | |
5280 Register value_reg = ToRegister(instr->result()); | |
5281 __ ClampUint8(value_reg); | |
5282 } | |
5283 | |
5284 | |
5285 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { | |
5286 DCHECK(instr->unclamped()->Equals(instr->result())); | |
5287 Register input_reg = ToRegister(instr->unclamped()); | |
5288 XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm()); | |
5289 XMMRegister xmm_scratch = double_scratch0(); | |
5290 Label is_smi, done, heap_number; | |
5291 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; | |
5292 __ JumpIfSmi(input_reg, &is_smi, dist); | |
5293 | |
5294 // Check for heap number | |
5295 __ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset), | |
5296 factory()->heap_number_map()); | |
5297 __ j(equal, &heap_number, Label::kNear); | |
5298 | |
5299 // Check for undefined. Undefined is converted to zero for clamping | |
5300 // conversions. | |
5301 __ Cmp(input_reg, factory()->undefined_value()); | |
5302 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined); | |
5303 __ xorl(input_reg, input_reg); | |
5304 __ jmp(&done, Label::kNear); | |
5305 | |
5306 // Heap number | |
5307 __ bind(&heap_number); | |
5308 __ Movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset)); | |
5309 __ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg); | |
5310 __ jmp(&done, Label::kNear); | |
5311 | |
5312 // smi | |
5313 __ bind(&is_smi); | |
5314 __ SmiToInteger32(input_reg, input_reg); | |
5315 __ ClampUint8(input_reg); | |
5316 | |
5317 __ bind(&done); | |
5318 } | |
5319 | |
5320 | |
5321 void LCodeGen::DoDoubleBits(LDoubleBits* instr) { | |
5322 XMMRegister value_reg = ToDoubleRegister(instr->value()); | |
5323 Register result_reg = ToRegister(instr->result()); | |
5324 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) { | |
5325 __ Movq(result_reg, value_reg); | |
5326 __ shrq(result_reg, Immediate(32)); | |
5327 } else { | |
5328 __ Movd(result_reg, value_reg); | |
5329 } | |
5330 } | |
5331 | |
5332 | |
5333 void LCodeGen::DoConstructDouble(LConstructDouble* instr) { | |
5334 Register hi_reg = ToRegister(instr->hi()); | |
5335 Register lo_reg = ToRegister(instr->lo()); | |
5336 XMMRegister result_reg = ToDoubleRegister(instr->result()); | |
5337 XMMRegister xmm_scratch = double_scratch0(); | |
5338 __ Movd(result_reg, hi_reg); | |
5339 __ psllq(result_reg, 32); | |
5340 __ Movd(xmm_scratch, lo_reg); | |
5341 __ orps(result_reg, xmm_scratch); | |
5342 } | |
5343 | |
5344 | |
5345 void LCodeGen::DoAllocate(LAllocate* instr) { | |
5346 class DeferredAllocate final : public LDeferredCode { | |
5347 public: | |
5348 DeferredAllocate(LCodeGen* codegen, LAllocate* instr) | |
5349 : LDeferredCode(codegen), instr_(instr) { } | |
5350 void Generate() override { codegen()->DoDeferredAllocate(instr_); } | |
5351 LInstruction* instr() override { return instr_; } | |
5352 | |
5353 private: | |
5354 LAllocate* instr_; | |
5355 }; | |
5356 | |
5357 DeferredAllocate* deferred = | |
5358 new(zone()) DeferredAllocate(this, instr); | |
5359 | |
5360 Register result = ToRegister(instr->result()); | |
5361 Register temp = ToRegister(instr->temp()); | |
5362 | |
5363 // Allocate memory for the object. | |
5364 AllocationFlags flags = TAG_OBJECT; | |
5365 if (instr->hydrogen()->MustAllocateDoubleAligned()) { | |
5366 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); | |
5367 } | |
5368 if (instr->hydrogen()->IsOldSpaceAllocation()) { | |
5369 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); | |
5370 flags = static_cast<AllocationFlags>(flags | PRETENURE); | |
5371 } | |
5372 | |
5373 if (instr->size()->IsConstantOperand()) { | |
5374 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | |
5375 CHECK(size <= Page::kMaxRegularHeapObjectSize); | |
5376 __ Allocate(size, result, temp, no_reg, deferred->entry(), flags); | |
5377 } else { | |
5378 Register size = ToRegister(instr->size()); | |
5379 __ Allocate(size, result, temp, no_reg, deferred->entry(), flags); | |
5380 } | |
5381 | |
5382 __ bind(deferred->exit()); | |
5383 | |
5384 if (instr->hydrogen()->MustPrefillWithFiller()) { | |
5385 if (instr->size()->IsConstantOperand()) { | |
5386 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | |
5387 __ movl(temp, Immediate((size / kPointerSize) - 1)); | |
5388 } else { | |
5389 temp = ToRegister(instr->size()); | |
5390 __ sarp(temp, Immediate(kPointerSizeLog2)); | |
5391 __ decl(temp); | |
5392 } | |
5393 Label loop; | |
5394 __ bind(&loop); | |
5395 __ Move(FieldOperand(result, temp, times_pointer_size, 0), | |
5396 isolate()->factory()->one_pointer_filler_map()); | |
5397 __ decl(temp); | |
5398 __ j(not_zero, &loop); | |
5399 } | |
5400 } | |
5401 | |
5402 | |
5403 void LCodeGen::DoDeferredAllocate(LAllocate* instr) { | |
5404 Register result = ToRegister(instr->result()); | |
5405 | |
5406 // TODO(3095996): Get rid of this. For now, we need to make the | |
5407 // result register contain a valid pointer because it is already | |
5408 // contained in the register pointer map. | |
5409 __ Move(result, Smi::FromInt(0)); | |
5410 | |
5411 PushSafepointRegistersScope scope(this); | |
5412 if (instr->size()->IsRegister()) { | |
5413 Register size = ToRegister(instr->size()); | |
5414 DCHECK(!size.is(result)); | |
5415 __ Integer32ToSmi(size, size); | |
5416 __ Push(size); | |
5417 } else { | |
5418 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | |
5419 __ Push(Smi::FromInt(size)); | |
5420 } | |
5421 | |
5422 int flags = 0; | |
5423 if (instr->hydrogen()->IsOldSpaceAllocation()) { | |
5424 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); | |
5425 flags = AllocateTargetSpace::update(flags, OLD_SPACE); | |
5426 } else { | |
5427 flags = AllocateTargetSpace::update(flags, NEW_SPACE); | |
5428 } | |
5429 __ Push(Smi::FromInt(flags)); | |
5430 | |
5431 CallRuntimeFromDeferred( | |
5432 Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); | |
5433 __ StoreToSafepointRegisterSlot(result, rax); | |
5434 } | |
5435 | |
5436 | |
5437 void LCodeGen::DoToFastProperties(LToFastProperties* instr) { | |
5438 DCHECK(ToRegister(instr->value()).is(rax)); | |
5439 __ Push(rax); | |
5440 CallRuntime(Runtime::kToFastProperties, 1, instr); | |
5441 } | |
5442 | |
5443 | |
5444 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { | |
5445 DCHECK(ToRegister(instr->context()).is(rsi)); | |
5446 Label materialized; | |
5447 // Registers will be used as follows: | |
5448 // rcx = literals array. | |
5449 // rbx = regexp literal. | |
5450 // rax = regexp literal clone. | |
5451 int literal_offset = | |
5452 LiteralsArray::OffsetOfLiteralAt(instr->hydrogen()->literal_index()); | |
5453 __ Move(rcx, instr->hydrogen()->literals()); | |
5454 __ movp(rbx, FieldOperand(rcx, literal_offset)); | |
5455 __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); | |
5456 __ j(not_equal, &materialized, Label::kNear); | |
5457 | |
5458 // Create regexp literal using runtime function | |
5459 // Result will be in rax. | |
5460 __ Push(rcx); | |
5461 __ Push(Smi::FromInt(instr->hydrogen()->literal_index())); | |
5462 __ Push(instr->hydrogen()->pattern()); | |
5463 __ Push(instr->hydrogen()->flags()); | |
5464 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); | |
5465 __ movp(rbx, rax); | |
5466 | |
5467 __ bind(&materialized); | |
5468 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; | |
5469 Label allocated, runtime_allocate; | |
5470 __ Allocate(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT); | |
5471 __ jmp(&allocated, Label::kNear); | |
5472 | |
5473 __ bind(&runtime_allocate); | |
5474 __ Push(rbx); | |
5475 __ Push(Smi::FromInt(size)); | |
5476 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); | |
5477 __ Pop(rbx); | |
5478 | |
5479 __ bind(&allocated); | |
5480 // Copy the content into the newly allocated memory. | |
5481 // (Unroll copy loop once for better throughput). | |
5482 for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { | |
5483 __ movp(rdx, FieldOperand(rbx, i)); | |
5484 __ movp(rcx, FieldOperand(rbx, i + kPointerSize)); | |
5485 __ movp(FieldOperand(rax, i), rdx); | |
5486 __ movp(FieldOperand(rax, i + kPointerSize), rcx); | |
5487 } | |
5488 if ((size % (2 * kPointerSize)) != 0) { | |
5489 __ movp(rdx, FieldOperand(rbx, size - kPointerSize)); | |
5490 __ movp(FieldOperand(rax, size - kPointerSize), rdx); | |
5491 } | |
5492 } | |
5493 | |
5494 | |
5495 void LCodeGen::DoTypeof(LTypeof* instr) { | |
5496 DCHECK(ToRegister(instr->context()).is(rsi)); | |
5497 DCHECK(ToRegister(instr->value()).is(rbx)); | |
5498 Label end, do_call; | |
5499 Register value_register = ToRegister(instr->value()); | |
5500 __ JumpIfNotSmi(value_register, &do_call); | |
5501 __ Move(rax, isolate()->factory()->number_string()); | |
5502 __ jmp(&end); | |
5503 __ bind(&do_call); | |
5504 TypeofStub stub(isolate()); | |
5505 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); | |
5506 __ bind(&end); | |
5507 } | |
5508 | |
5509 | |
5510 void LCodeGen::EmitPushTaggedOperand(LOperand* operand) { | |
5511 DCHECK(!operand->IsDoubleRegister()); | |
5512 if (operand->IsConstantOperand()) { | |
5513 __ Push(ToHandle(LConstantOperand::cast(operand))); | |
5514 } else if (operand->IsRegister()) { | |
5515 __ Push(ToRegister(operand)); | |
5516 } else { | |
5517 __ Push(ToOperand(operand)); | |
5518 } | |
5519 } | |
5520 | |
5521 | |
5522 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { | |
5523 Register input = ToRegister(instr->value()); | |
5524 Condition final_branch_condition = EmitTypeofIs(instr, input); | |
5525 if (final_branch_condition != no_condition) { | |
5526 EmitBranch(instr, final_branch_condition); | |
5527 } | |
5528 } | |
5529 | |
5530 | |
5531 Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) { | |
5532 Label* true_label = instr->TrueLabel(chunk_); | |
5533 Label* false_label = instr->FalseLabel(chunk_); | |
5534 Handle<String> type_name = instr->type_literal(); | |
5535 int left_block = instr->TrueDestination(chunk_); | |
5536 int right_block = instr->FalseDestination(chunk_); | |
5537 int next_block = GetNextEmittedBlock(); | |
5538 | |
5539 Label::Distance true_distance = left_block == next_block ? Label::kNear | |
5540 : Label::kFar; | |
5541 Label::Distance false_distance = right_block == next_block ? Label::kNear | |
5542 : Label::kFar; | |
5543 Condition final_branch_condition = no_condition; | |
5544 Factory* factory = isolate()->factory(); | |
5545 if (String::Equals(type_name, factory->number_string())) { | |
5546 __ JumpIfSmi(input, true_label, true_distance); | |
5547 __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset), | |
5548 Heap::kHeapNumberMapRootIndex); | |
5549 | |
5550 final_branch_condition = equal; | |
5551 | |
5552 } else if (String::Equals(type_name, factory->string_string())) { | |
5553 __ JumpIfSmi(input, false_label, false_distance); | |
5554 __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input); | |
5555 final_branch_condition = below; | |
5556 | |
5557 } else if (String::Equals(type_name, factory->symbol_string())) { | |
5558 __ JumpIfSmi(input, false_label, false_distance); | |
5559 __ CmpObjectType(input, SYMBOL_TYPE, input); | |
5560 final_branch_condition = equal; | |
5561 | |
5562 } else if (String::Equals(type_name, factory->boolean_string())) { | |
5563 __ CompareRoot(input, Heap::kTrueValueRootIndex); | |
5564 __ j(equal, true_label, true_distance); | |
5565 __ CompareRoot(input, Heap::kFalseValueRootIndex); | |
5566 final_branch_condition = equal; | |
5567 | |
5568 } else if (String::Equals(type_name, factory->undefined_string())) { | |
5569 __ CompareRoot(input, Heap::kUndefinedValueRootIndex); | |
5570 __ j(equal, true_label, true_distance); | |
5571 __ JumpIfSmi(input, false_label, false_distance); | |
5572 // Check for undetectable objects => true. | |
5573 __ movp(input, FieldOperand(input, HeapObject::kMapOffset)); | |
5574 __ testb(FieldOperand(input, Map::kBitFieldOffset), | |
5575 Immediate(1 << Map::kIsUndetectable)); | |
5576 final_branch_condition = not_zero; | |
5577 | |
5578 } else if (String::Equals(type_name, factory->function_string())) { | |
5579 __ JumpIfSmi(input, false_label, false_distance); | |
5580 // Check for callable and not undetectable objects => true. | |
5581 __ movp(input, FieldOperand(input, HeapObject::kMapOffset)); | |
5582 __ movzxbl(input, FieldOperand(input, Map::kBitFieldOffset)); | |
5583 __ andb(input, | |
5584 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); | |
5585 __ cmpb(input, Immediate(1 << Map::kIsCallable)); | |
5586 final_branch_condition = equal; | |
5587 | |
5588 } else if (String::Equals(type_name, factory->object_string())) { | |
5589 __ JumpIfSmi(input, false_label, false_distance); | |
5590 __ CompareRoot(input, Heap::kNullValueRootIndex); | |
5591 __ j(equal, true_label, true_distance); | |
5592 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); | |
5593 __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, input); | |
5594 __ j(below, false_label, false_distance); | |
5595 // Check for callable or undetectable objects => false. | |
5596 __ testb(FieldOperand(input, Map::kBitFieldOffset), | |
5597 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); | |
5598 final_branch_condition = zero; | |
5599 | |
5600 // clang-format off | |
5601 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ | |
5602 } else if (String::Equals(type_name, factory->type##_string())) { \ | |
5603 __ JumpIfSmi(input, false_label, false_distance); \ | |
5604 __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset), \ | |
5605 Heap::k##Type##MapRootIndex); \ | |
5606 final_branch_condition = equal; | |
5607 SIMD128_TYPES(SIMD128_TYPE) | |
5608 #undef SIMD128_TYPE | |
5609 // clang-format on | |
5610 | |
5611 } else { | |
5612 __ jmp(false_label, false_distance); | |
5613 } | |
5614 | |
5615 return final_branch_condition; | |
5616 } | |
5617 | |
5618 | |
5619 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { | |
5620 Register temp = ToRegister(instr->temp()); | |
5621 | |
5622 EmitIsConstructCall(temp); | |
5623 EmitBranch(instr, equal); | |
5624 } | |
5625 | |
5626 | |
5627 void LCodeGen::EmitIsConstructCall(Register temp) { | |
5628 // Get the frame pointer for the calling frame. | |
5629 __ movp(temp, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); | |
5630 | |
5631 // Skip the arguments adaptor frame if it exists. | |
5632 Label check_frame_marker; | |
5633 __ Cmp(Operand(temp, StandardFrameConstants::kContextOffset), | |
5634 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); | |
5635 __ j(not_equal, &check_frame_marker, Label::kNear); | |
5636 __ movp(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset)); | |
5637 | |
5638 // Check the marker in the calling frame. | |
5639 __ bind(&check_frame_marker); | |
5640 __ Cmp(Operand(temp, StandardFrameConstants::kMarkerOffset), | |
5641 Smi::FromInt(StackFrame::CONSTRUCT)); | |
5642 } | |
5643 | |
5644 | |
5645 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { | |
5646 if (info()->ShouldEnsureSpaceForLazyDeopt()) { | |
5647 // Ensure that we have enough space after the previous lazy-bailout | |
5648 // instruction for patching the code here. | |
5649 int current_pc = masm()->pc_offset(); | |
5650 if (current_pc < last_lazy_deopt_pc_ + space_needed) { | |
5651 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; | |
5652 __ Nop(padding_size); | |
5653 } | |
5654 } | |
5655 last_lazy_deopt_pc_ = masm()->pc_offset(); | |
5656 } | |
5657 | |
5658 | |
5659 void LCodeGen::DoLazyBailout(LLazyBailout* instr) { | |
5660 last_lazy_deopt_pc_ = masm()->pc_offset(); | |
5661 DCHECK(instr->HasEnvironment()); | |
5662 LEnvironment* env = instr->environment(); | |
5663 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); | |
5664 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); | |
5665 } | |
5666 | |
5667 | |
5668 void LCodeGen::DoDeoptimize(LDeoptimize* instr) { | |
5669 Deoptimizer::BailoutType type = instr->hydrogen()->type(); | |
5670 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the | |
5671 // needed return address), even though the implementation of LAZY and EAGER is | |
5672 // now identical. When LAZY is eventually completely folded into EAGER, remove | |
5673 // the special case below. | |
5674 if (info()->IsStub() && type == Deoptimizer::EAGER) { | |
5675 type = Deoptimizer::LAZY; | |
5676 } | |
5677 DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type); | |
5678 } | |
5679 | |
5680 | |
5681 void LCodeGen::DoDummy(LDummy* instr) { | |
5682 // Nothing to see here, move on! | |
5683 } | |
5684 | |
5685 | |
5686 void LCodeGen::DoDummyUse(LDummyUse* instr) { | |
5687 // Nothing to see here, move on! | |
5688 } | |
5689 | |
5690 | |
5691 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { | |
5692 PushSafepointRegistersScope scope(this); | |
5693 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); | |
5694 __ CallRuntimeSaveDoubles(Runtime::kStackGuard); | |
5695 RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0); | |
5696 DCHECK(instr->HasEnvironment()); | |
5697 LEnvironment* env = instr->environment(); | |
5698 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); | |
5699 } | |
5700 | |
5701 | |
5702 void LCodeGen::DoStackCheck(LStackCheck* instr) { | |
5703 class DeferredStackCheck final : public LDeferredCode { | |
5704 public: | |
5705 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) | |
5706 : LDeferredCode(codegen), instr_(instr) { } | |
5707 void Generate() override { codegen()->DoDeferredStackCheck(instr_); } | |
5708 LInstruction* instr() override { return instr_; } | |
5709 | |
5710 private: | |
5711 LStackCheck* instr_; | |
5712 }; | |
5713 | |
5714 DCHECK(instr->HasEnvironment()); | |
5715 LEnvironment* env = instr->environment(); | |
5716 // There is no LLazyBailout instruction for stack-checks. We have to | |
5717 // prepare for lazy deoptimization explicitly here. | |
5718 if (instr->hydrogen()->is_function_entry()) { | |
5719 // Perform stack overflow check. | |
5720 Label done; | |
5721 __ CompareRoot(rsp, Heap::kStackLimitRootIndex); | |
5722 __ j(above_equal, &done, Label::kNear); | |
5723 | |
5724 DCHECK(instr->context()->IsRegister()); | |
5725 DCHECK(ToRegister(instr->context()).is(rsi)); | |
5726 CallCode(isolate()->builtins()->StackCheck(), | |
5727 RelocInfo::CODE_TARGET, | |
5728 instr); | |
5729 __ bind(&done); | |
5730 } else { | |
5731 DCHECK(instr->hydrogen()->is_backwards_branch()); | |
5732 // Perform stack overflow check if this goto needs it before jumping. | |
5733 DeferredStackCheck* deferred_stack_check = | |
5734 new(zone()) DeferredStackCheck(this, instr); | |
5735 __ CompareRoot(rsp, Heap::kStackLimitRootIndex); | |
5736 __ j(below, deferred_stack_check->entry()); | |
5737 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); | |
5738 __ bind(instr->done_label()); | |
5739 deferred_stack_check->SetExit(instr->done_label()); | |
5740 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); | |
5741 // Don't record a deoptimization index for the safepoint here. | |
5742 // This will be done explicitly when emitting call and the safepoint in | |
5743 // the deferred code. | |
5744 } | |
5745 } | |
5746 | |
5747 | |
5748 void LCodeGen::DoOsrEntry(LOsrEntry* instr) { | |
5749 // This is a pseudo-instruction that ensures that the environment here is | |
5750 // properly registered for deoptimization and records the assembler's PC | |
5751 // offset. | |
5752 LEnvironment* environment = instr->environment(); | |
5753 | |
5754 // If the environment were already registered, we would have no way of | |
5755 // backpatching it with the spill slot operands. | |
5756 DCHECK(!environment->HasBeenRegistered()); | |
5757 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); | |
5758 | |
5759 GenerateOsrPrologue(); | |
5760 } | |
5761 | |
5762 | |
5763 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { | |
5764 DCHECK(ToRegister(instr->context()).is(rsi)); | |
5765 | |
5766 Condition cc = masm()->CheckSmi(rax); | |
5767 DeoptimizeIf(cc, instr, Deoptimizer::kSmi); | |
5768 | |
5769 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); | |
5770 __ CmpObjectType(rax, LAST_JS_PROXY_TYPE, rcx); | |
5771 DeoptimizeIf(below_equal, instr, Deoptimizer::kWrongInstanceType); | |
5772 | |
5773 Label use_cache, call_runtime; | |
5774 Register null_value = rdi; | |
5775 __ LoadRoot(null_value, Heap::kNullValueRootIndex); | |
5776 __ CheckEnumCache(null_value, &call_runtime); | |
5777 | |
5778 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset)); | |
5779 __ jmp(&use_cache, Label::kNear); | |
5780 | |
5781 // Get the set of properties to enumerate. | |
5782 __ bind(&call_runtime); | |
5783 __ Push(rax); | |
5784 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); | |
5785 | |
5786 __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), | |
5787 Heap::kMetaMapRootIndex); | |
5788 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap); | |
5789 __ bind(&use_cache); | |
5790 } | |
5791 | |
5792 | |
5793 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { | |
5794 Register map = ToRegister(instr->map()); | |
5795 Register result = ToRegister(instr->result()); | |
5796 Label load_cache, done; | |
5797 __ EnumLength(result, map); | |
5798 __ Cmp(result, Smi::FromInt(0)); | |
5799 __ j(not_equal, &load_cache, Label::kNear); | |
5800 __ LoadRoot(result, Heap::kEmptyFixedArrayRootIndex); | |
5801 __ jmp(&done, Label::kNear); | |
5802 __ bind(&load_cache); | |
5803 __ LoadInstanceDescriptors(map, result); | |
5804 __ movp(result, | |
5805 FieldOperand(result, DescriptorArray::kEnumCacheOffset)); | |
5806 __ movp(result, | |
5807 FieldOperand(result, FixedArray::SizeFor(instr->idx()))); | |
5808 __ bind(&done); | |
5809 Condition cc = masm()->CheckSmi(result); | |
5810 DeoptimizeIf(cc, instr, Deoptimizer::kNoCache); | |
5811 } | |
5812 | |
5813 | |
5814 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { | |
5815 Register object = ToRegister(instr->value()); | |
5816 __ cmpp(ToRegister(instr->map()), | |
5817 FieldOperand(object, HeapObject::kMapOffset)); | |
5818 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap); | |
5819 } | |
5820 | |
5821 | |
5822 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, | |
5823 Register object, | |
5824 Register index) { | |
5825 PushSafepointRegistersScope scope(this); | |
5826 __ Push(object); | |
5827 __ Push(index); | |
5828 __ xorp(rsi, rsi); | |
5829 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); | |
5830 RecordSafepointWithRegisters( | |
5831 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); | |
5832 __ StoreToSafepointRegisterSlot(object, rax); | |
5833 } | |
5834 | |
5835 | |
5836 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { | |
5837 class DeferredLoadMutableDouble final : public LDeferredCode { | |
5838 public: | |
5839 DeferredLoadMutableDouble(LCodeGen* codegen, | |
5840 LLoadFieldByIndex* instr, | |
5841 Register object, | |
5842 Register index) | |
5843 : LDeferredCode(codegen), | |
5844 instr_(instr), | |
5845 object_(object), | |
5846 index_(index) { | |
5847 } | |
5848 void Generate() override { | |
5849 codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_); | |
5850 } | |
5851 LInstruction* instr() override { return instr_; } | |
5852 | |
5853 private: | |
5854 LLoadFieldByIndex* instr_; | |
5855 Register object_; | |
5856 Register index_; | |
5857 }; | |
5858 | |
5859 Register object = ToRegister(instr->object()); | |
5860 Register index = ToRegister(instr->index()); | |
5861 | |
5862 DeferredLoadMutableDouble* deferred; | |
5863 deferred = new(zone()) DeferredLoadMutableDouble(this, instr, object, index); | |
5864 | |
5865 Label out_of_object, done; | |
5866 __ Move(kScratchRegister, Smi::FromInt(1)); | |
5867 __ testp(index, kScratchRegister); | |
5868 __ j(not_zero, deferred->entry()); | |
5869 | |
5870 __ sarp(index, Immediate(1)); | |
5871 | |
5872 __ SmiToInteger32(index, index); | |
5873 __ cmpl(index, Immediate(0)); | |
5874 __ j(less, &out_of_object, Label::kNear); | |
5875 __ movp(object, FieldOperand(object, | |
5876 index, | |
5877 times_pointer_size, | |
5878 JSObject::kHeaderSize)); | |
5879 __ jmp(&done, Label::kNear); | |
5880 | |
5881 __ bind(&out_of_object); | |
5882 __ movp(object, FieldOperand(object, JSObject::kPropertiesOffset)); | |
5883 __ negl(index); | |
5884 // Index is now equal to out of object property index plus 1. | |
5885 __ movp(object, FieldOperand(object, | |
5886 index, | |
5887 times_pointer_size, | |
5888 FixedArray::kHeaderSize - kPointerSize)); | |
5889 __ bind(deferred->exit()); | |
5890 __ bind(&done); | |
5891 } | |
5892 | |
5893 | |
5894 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) { | |
5895 Register context = ToRegister(instr->context()); | |
5896 __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), context); | |
5897 } | |
5898 | |
5899 | |
5900 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) { | |
5901 Handle<ScopeInfo> scope_info = instr->scope_info(); | |
5902 __ Push(scope_info); | |
5903 __ Push(ToRegister(instr->function())); | |
5904 CallRuntime(Runtime::kPushBlockContext, 2, instr); | |
5905 RecordSafepoint(Safepoint::kNoLazyDeopt); | |
5906 } | |
5907 | |
5908 | |
5909 #undef __ | |
5910 | |
5911 } // namespace internal | |
5912 } // namespace v8 | |
5913 | |
5914 #endif // V8_TARGET_ARCH_X64 | |
OLD | NEW |