| Index: ui/gfx/geometry/cubic_bezier.cc
|
| diff --git a/ui/gfx/geometry/cubic_bezier.cc b/ui/gfx/geometry/cubic_bezier.cc
|
| deleted file mode 100644
|
| index f9f786e7326105174ccff060fdb2ae0d2a186ab4..0000000000000000000000000000000000000000
|
| --- a/ui/gfx/geometry/cubic_bezier.cc
|
| +++ /dev/null
|
| @@ -1,139 +0,0 @@
|
| -// Copyright 2014 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "ui/gfx/geometry/cubic_bezier.h"
|
| -
|
| -#include <algorithm>
|
| -#include <cmath>
|
| -
|
| -#include "base/logging.h"
|
| -
|
| -namespace gfx {
|
| -
|
| -namespace {
|
| -
|
| -static const double kBezierEpsilon = 1e-7;
|
| -static const int MAX_STEPS = 30;
|
| -
|
| -static double eval_bezier(double p1, double p2, double t) {
|
| - const double p1_times_3 = 3.0 * p1;
|
| - const double p2_times_3 = 3.0 * p2;
|
| - const double h3 = p1_times_3;
|
| - const double h1 = p1_times_3 - p2_times_3 + 1.0;
|
| - const double h2 = p2_times_3 - 6.0 * p1;
|
| - return t * (t * (t * h1 + h2) + h3);
|
| -}
|
| -
|
| -static double eval_bezier_derivative(double p1, double p2, double t) {
|
| - const double h1 = 9.0 * p1 - 9.0 * p2 + 3.0;
|
| - const double h2 = 6.0 * p2 - 12.0 * p1;
|
| - const double h3 = 3.0 * p1;
|
| - return t * (t * h1 + h2) + h3;
|
| -}
|
| -
|
| -// Finds t such that eval_bezier(x1, x2, t) = x.
|
| -// There is a unique solution if x1 and x2 lie within (0, 1).
|
| -static double bezier_interp(double x1,
|
| - double x2,
|
| - double x) {
|
| - DCHECK_GE(1.0, x1);
|
| - DCHECK_LE(0.0, x1);
|
| - DCHECK_GE(1.0, x2);
|
| - DCHECK_LE(0.0, x2);
|
| -
|
| - x1 = std::min(std::max(x1, 0.0), 1.0);
|
| - x2 = std::min(std::max(x2, 0.0), 1.0);
|
| - x = std::min(std::max(x, 0.0), 1.0);
|
| -
|
| - // We're just going to do bisection for now (for simplicity), but we could
|
| - // easily do some newton steps if this turns out to be a bottleneck.
|
| - double t = 0.0;
|
| - double step = 1.0;
|
| - for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) {
|
| - const double error = eval_bezier(x1, x2, t) - x;
|
| - if (std::abs(error) < kBezierEpsilon)
|
| - break;
|
| - t += error > 0.0 ? -step : step;
|
| - }
|
| -
|
| - // We should have terminated the above loop because we got close to x, not
|
| - // because we exceeded MAX_STEPS. Do a DCHECK here to confirm.
|
| - DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x));
|
| -
|
| - return t;
|
| -}
|
| -
|
| -} // namespace
|
| -
|
| -CubicBezier::CubicBezier(double x1, double y1, double x2, double y2)
|
| - : x1_(x1),
|
| - y1_(y1),
|
| - x2_(x2),
|
| - y2_(y2) {
|
| -}
|
| -
|
| -CubicBezier::~CubicBezier() {
|
| -}
|
| -
|
| -double CubicBezier::Solve(double x) const {
|
| - return eval_bezier(y1_, y2_, bezier_interp(x1_, x2_, x));
|
| -}
|
| -
|
| -double CubicBezier::Slope(double x) const {
|
| - double t = bezier_interp(x1_, x2_, x);
|
| - double dx_dt = eval_bezier_derivative(x1_, x2_, t);
|
| - double dy_dt = eval_bezier_derivative(y1_, y2_, t);
|
| - return dy_dt / dx_dt;
|
| -}
|
| -
|
| -void CubicBezier::Range(double* min, double* max) const {
|
| - *min = 0;
|
| - *max = 1;
|
| - if (0 <= y1_ && y1_ < 1 && 0 <= y2_ && y2_ <= 1)
|
| - return;
|
| -
|
| - // Represent the function's derivative in the form at^2 + bt + c.
|
| - // (Technically this is (dy/dt)*(1/3), which is suitable for finding zeros
|
| - // but does not actually give the slope of the curve.)
|
| - double a = 3 * (y1_ - y2_) + 1;
|
| - double b = 2 * (y2_ - 2 * y1_);
|
| - double c = y1_;
|
| -
|
| - // Check if the derivative is constant.
|
| - if (std::abs(a) < kBezierEpsilon &&
|
| - std::abs(b) < kBezierEpsilon)
|
| - return;
|
| -
|
| - // Zeros of the function's derivative.
|
| - double t_1 = 0;
|
| - double t_2 = 0;
|
| -
|
| - if (std::abs(a) < kBezierEpsilon) {
|
| - // The function's derivative is linear.
|
| - t_1 = -c / b;
|
| - } else {
|
| - // The function's derivative is a quadratic. We find the zeros of this
|
| - // quadratic using the quadratic formula.
|
| - double discriminant = b * b - 4 * a * c;
|
| - if (discriminant < 0)
|
| - return;
|
| - double discriminant_sqrt = sqrt(discriminant);
|
| - t_1 = (-b + discriminant_sqrt) / (2 * a);
|
| - t_2 = (-b - discriminant_sqrt) / (2 * a);
|
| - }
|
| -
|
| - double sol_1 = 0;
|
| - double sol_2 = 0;
|
| -
|
| - if (0 < t_1 && t_1 < 1)
|
| - sol_1 = eval_bezier(y1_, y2_, t_1);
|
| -
|
| - if (0 < t_2 && t_2 < 1)
|
| - sol_2 = eval_bezier(y1_, y2_, t_2);
|
| -
|
| - *min = std::min(std::min(*min, sol_1), sol_2);
|
| - *max = std::max(std::max(*max, sol_1), sol_2);
|
| -}
|
| -
|
| -} // namespace gfx
|
|
|