Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(552)

Unified Diff: lib/src/checker/rules.dart

Issue 1401273002: Move DDC to analyzer-based checker (Closed) Base URL: git@github.com:dart-lang/dev_compiler.git@master
Patch Set: rebase Created 5 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « lib/src/checker/resolver.dart ('k') | lib/src/codegen/code_generator.dart » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: lib/src/checker/rules.dart
diff --git a/lib/src/checker/rules.dart b/lib/src/checker/rules.dart
index f4d35bcfb7302ab3e80a8093cf0d91e64e999789..eebfcac6da47522939b7f2fe0edc5dafd719022f 100644
--- a/lib/src/checker/rules.dart
+++ b/lib/src/checker/rules.dart
@@ -4,731 +4,4 @@
library dev_compiler.src.checker.rules;
-import 'package:analyzer/src/generated/ast.dart';
-import 'package:analyzer/src/generated/element.dart';
-import 'package:analyzer/src/generated/resolver.dart';
-
-import '../../strong_mode.dart' show StrongModeOptions;
-import '../info.dart';
-import '../utils.dart' as utils;
-
-class TypeRules {
- final TypeProvider provider;
-
- /// Map of fields / properties / methods on Object.
- final Map<String, DartType> objectMembers;
-
- final StrongModeOptions options;
- DownwardsInference inferrer;
-
- TypeRules(TypeProvider provider, {this.options})
- : provider = provider,
- objectMembers = utils.getObjectMemberMap(provider) {
- inferrer = new DownwardsInference(this);
- }
-
- /// Given a type t, if t is an interface type with a call method
- /// defined, return the function type for the call method, otherwise
- /// return null.
- FunctionType getCallMethodType(DartType t) {
- if (t is InterfaceType) {
- ClassElement element = t.element;
- InheritanceManager manager = new InheritanceManager(element.library);
- FunctionType callType = manager.lookupMemberType(t, "call");
- return callType;
- }
- return null;
- }
-
- /// Given an expression, return its type assuming it is
- /// in the caller position of a call (that is, accounting
- /// for the possibility of a call method). Returns null
- /// if expression is not statically callable.
- FunctionType getTypeAsCaller(Expression applicand) {
- var t = getStaticType(applicand);
- if (t is InterfaceType) {
- return getCallMethodType(t);
- }
- if (t is FunctionType) return t;
- return null;
- }
-
- /// Gets the expected return type of the given function [body], either from
- /// a normal return/yield, or from a yield*.
- DartType getExpectedReturnType(FunctionBody body, {bool yieldStar: false}) {
- FunctionType functionType;
- var parent = body.parent;
- if (parent is Declaration) {
- functionType = elementType(parent.element);
- } else {
- assert(parent is FunctionExpression);
- functionType = getStaticType(parent);
- }
-
- var type = functionType.returnType;
-
- InterfaceType expectedType = null;
- if (body.isAsynchronous) {
- if (body.isGenerator) {
- // Stream<T> -> T
- expectedType = provider.streamType;
- } else {
- // Future<T> -> T
- // TODO(vsm): Revisit with issue #228.
- expectedType = provider.futureType;
- }
- } else {
- if (body.isGenerator) {
- // Iterable<T> -> T
- expectedType = provider.iterableType;
- } else {
- // T -> T
- return type;
- }
- }
- if (yieldStar) {
- if (type.isDynamic) {
- // Ensure it's at least a Stream / Iterable.
- return expectedType.substitute4([provider.dynamicType]);
- } else {
- // Analyzer will provide a separate error if expected type
- // is not compatible with type.
- return type;
- }
- }
- if (type.isDynamic) {
- return type;
- } else if (type is InterfaceType && type.element == expectedType.element) {
- return type.typeArguments[0];
- } else {
- // Malformed type - fallback on analyzer error.
- return null;
- }
- }
-
- DartType getStaticType(Expression expr) {
- return expr.staticType ?? provider.dynamicType;
- }
-
- bool _isBottom(DartType t, {bool dynamicIsBottom: false}) {
- if (t.isDynamic && dynamicIsBottom) return true;
- // TODO(vsm): We need direct support for non-nullability in DartType.
- // This should check on "true/nonnullable" Bottom
- if (t.isBottom) return true;
- return false;
- }
-
- bool _isTop(DartType t, {bool dynamicIsBottom: false}) {
- if (t.isDynamic && !dynamicIsBottom) return true;
- if (t.isObject) return true;
- return false;
- }
-
- bool _anyParameterType(FunctionType ft, bool predicate(DartType t)) {
- return ft.normalParameterTypes.any(predicate) ||
- ft.optionalParameterTypes.any(predicate) ||
- ft.namedParameterTypes.values.any(predicate);
- }
-
- // TODO(leafp): Revisit this.
- bool isGroundType(DartType t) {
- if (t is TypeParameterType) return false;
- if (_isTop(t)) return true;
-
- if (t is FunctionType) {
- if (!_isTop(t.returnType) ||
- _anyParameterType(t, (pt) => !_isBottom(pt, dynamicIsBottom: true))) {
- return false;
- } else {
- return true;
- }
- }
-
- if (t is InterfaceType) {
- var typeArguments = t.typeArguments;
- for (var typeArgument in typeArguments) {
- if (!_isTop(typeArgument)) return false;
- }
- return true;
- }
-
- // We should not see any other type aside from malformed code.
- return false;
- }
-
- /// Check that f1 is a subtype of f2. [ignoreReturn] is used in the DDC
- /// checker to determine whether f1 would be a subtype of f2 if the return
- /// type of f1 is set to match f2's return type.
- // [fuzzyArrows] indicates whether or not the f1 and f2 should be
- // treated as fuzzy arrow types (and hence dynamic parameters to f2 treated as
- // bottom).
- bool isFunctionSubTypeOf(FunctionType f1, FunctionType f2,
- {bool fuzzyArrows: true, bool ignoreReturn: false}) {
- final r1s = f1.normalParameterTypes;
- final o1s = f1.optionalParameterTypes;
- final n1s = f1.namedParameterTypes;
- final r2s = f2.normalParameterTypes;
- final o2s = f2.optionalParameterTypes;
- final n2s = f2.namedParameterTypes;
- final ret1 = ignoreReturn ? f2.returnType : f1.returnType;
- final ret2 = f2.returnType;
-
- // A -> B <: C -> D if C <: A and
- // either D is void or B <: D
- if (!ret2.isVoid && !isSubTypeOf(ret1, ret2)) return false;
-
- // Reject if one has named and the other has optional
- if (n1s.length > 0 && o2s.length > 0) return false;
- if (n2s.length > 0 && o1s.length > 0) return false;
-
- // f2 has named parameters
- if (n2s.length > 0) {
- // Check that every named parameter in f2 has a match in f1
- for (String k2 in n2s.keys) {
- if (!n1s.containsKey(k2)) return false;
- if (!isSubTypeOf(n2s[k2], n1s[k2],
- dynamicIsBottom: fuzzyArrows)) return false;
- }
- }
- // If we get here, we either have no named parameters,
- // or else the named parameters match and we have no optional
- // parameters
-
- // If f1 has more required parameters, reject
- if (r1s.length > r2s.length) return false;
-
- // If f2 has more required + optional parameters, reject
- if (r2s.length + o2s.length > r1s.length + o1s.length) return false;
-
- // The parameter lists must look like the following at this point
- // where rrr is a region of required, and ooo is a region of optionals.
- // f1: rrr ooo ooo ooo
- // f2: rrr rrr ooo
- int rr = r1s.length; // required in both
- int or = r2s.length - r1s.length; // optional in f1, required in f2
- int oo = o2s.length; // optional in both
-
- for (int i = 0; i < rr; ++i) {
- if (!isSubTypeOf(r2s[i], r1s[i],
- dynamicIsBottom: fuzzyArrows)) return false;
- }
- for (int i = 0, j = rr; i < or; ++i, ++j) {
- if (!isSubTypeOf(r2s[j], o1s[i],
- dynamicIsBottom: fuzzyArrows)) return false;
- }
- for (int i = or, j = 0; i < oo; ++i, ++j) {
- if (!isSubTypeOf(o2s[j], o1s[i],
- dynamicIsBottom: fuzzyArrows)) return false;
- }
- return true;
- }
-
- bool _isInterfaceSubTypeOf(InterfaceType i1, InterfaceType i2) {
- if (i1 == i2) return true;
-
- if (i1.element == i2.element) {
- List<DartType> tArgs1 = i1.typeArguments;
- List<DartType> tArgs2 = i2.typeArguments;
-
- // TODO(leafp): Verify that this is always true
- // Do raw types get filled in?
- assert(tArgs1.length == tArgs2.length);
-
- for (int i = 0; i < tArgs1.length; i++) {
- DartType t1 = tArgs1[i];
- DartType t2 = tArgs2[i];
- if (!isSubTypeOf(t1, t2)) return false;
- }
- return true;
- }
-
- if (i2.isDartCoreFunction) {
- if (i1.element.getMethod("call") != null) return true;
- }
-
- if (i1 == provider.objectType) return false;
-
- if (_isInterfaceSubTypeOf(i1.superclass, i2)) return true;
-
- for (final parent in i1.interfaces) {
- if (_isInterfaceSubTypeOf(parent, i2)) return true;
- }
-
- for (final parent in i1.mixins) {
- if (_isInterfaceSubTypeOf(parent, i2)) return true;
- }
-
- return false;
- }
-
- bool isSubTypeOf(DartType t1, DartType t2, {bool dynamicIsBottom: false}) {
- if (t1 == t2) return true;
-
- // Trivially true.
- if (_isTop(t2, dynamicIsBottom: dynamicIsBottom) ||
- _isBottom(t1, dynamicIsBottom: dynamicIsBottom)) {
- return true;
- }
-
- // Trivially false.
- if (_isTop(t1, dynamicIsBottom: dynamicIsBottom) ||
- _isBottom(t2, dynamicIsBottom: dynamicIsBottom)) {
- return false;
- }
-
- // The null type is a subtype of any nullable type, which is all Dart types.
- // TODO(vsm): Note, t1.isBottom still allows for null confusingly.
- // _isBottom(t1) does not necessarily imply t1.isBottom if there are
- // nonnullable types in the system.
- if (t1.isBottom) {
- return true;
- }
-
- // S <: T where S is a type variable
- // T is not dynamic or object (handled above)
- // S != T (handled above)
- // So only true if bound of S is S' and
- // S' <: T
- if (t1 is TypeParameterType) {
- DartType bound = t1.element.bound;
- if (bound == null) return false;
- return isSubTypeOf(bound, t2);
- }
-
- if (t2 is TypeParameterType) {
- return false;
- }
-
- if (t2.isDartCoreFunction) {
- if (t1 is FunctionType) return true;
- if (t1.element is ClassElement) {
- if ((t1.element as ClassElement).getMethod("call") != null) return true;
- }
- }
-
- // "Traditional" name-based subtype check.
- if (t1 is InterfaceType && t2 is InterfaceType) {
- return _isInterfaceSubTypeOf(t1, t2);
- }
-
- if (t1 is! FunctionType && t2 is! FunctionType) return false;
-
- if (t1 is InterfaceType && t2 is FunctionType) {
- var callType = getCallMethodType(t1);
- if (callType == null) return false;
- return isFunctionSubTypeOf(callType, t2);
- }
-
- if (t1 is FunctionType && t2 is InterfaceType) {
- return false;
- }
-
- // Functions
- // Note: it appears under the hood all Dart functions map to a class /
- // hidden type that:
- // (a) subtypes Object (an internal _FunctionImpl in the VM)
- // (b) implements Function
- // (c) provides standard Object members (hashCode, toString)
- // (d) contains private members (corresponding to _FunctionImpl?)
- // (e) provides a call method to handle the actual function invocation
- //
- // The standard Dart subtyping rules are structural in nature. I.e.,
- // bivariant on arguments and return type.
- //
- // The below tries for a more traditional subtyping rule:
- // - covariant on return type
- // - contravariant on parameters
- // - 'sensible' (?) rules on optional and/or named params
- // but doesn't properly mix with class subtyping. I suspect Java 8 lambdas
- // essentially map to dynamic (and rely on invokedynamic) due to similar
- // issues.
- return isFunctionSubTypeOf(t1 as FunctionType, t2 as FunctionType);
- }
-
- bool isAssignable(DartType t1, DartType t2) {
- return isSubTypeOf(t1, t2);
- }
-
- // Produce a coercion which coerces something of type fromT
- // to something of type toT.
- // If wrap is true and both are function types, a closure
- // wrapper coercion is produced using _wrapTo (see above)
- // Returns the error coercion if the types cannot be coerced
- // according to our current criteria.
- Coercion _coerceTo(DartType fromT, DartType toT) {
- // We can use anything as void
- if (toT.isVoid) return Coercion.identity(toT);
-
- // fromT <: toT, no coercion needed
- if (isSubTypeOf(fromT, toT)) return Coercion.identity(toT);
-
- // For now, reject conversions between function types and
- // call method objects. We could choose to allow casts here.
- // Wrapping a function type to assign it to a call method
- // object will never succeed. Wrapping the other way could
- // be allowed.
- if ((fromT is FunctionType && getCallMethodType(toT) != null) ||
- (toT is FunctionType && getCallMethodType(fromT) != null)) {
- return Coercion.error();
- }
-
- // Downcast if toT <: fromT
- if (isSubTypeOf(toT, fromT)) return Coercion.cast(fromT, toT);
-
- // Downcast if toT <===> fromT
- // The intention here is to allow casts that are sideways in the restricted
- // type system, but allowed in the regular dart type system, since these
- // are likely to succeed. The canonical example is List<dynamic> and
- // Iterable<T> for some concrete T (e.g. Object). These are unrelated
- // in the restricted system, but List<dynamic> <: Iterable<T> in dart.
- if (fromT.isAssignableTo(toT)) {
- return Coercion.cast(fromT, toT);
- }
- return Coercion.error();
- }
-
- StaticInfo checkAssignment(Expression expr, DartType toT) {
- final fromT = getStaticType(expr);
- final Coercion c = _coerceTo(fromT, toT);
- if (c is Identity) return null;
- if (c is CoercionError) return new StaticTypeError(this, expr, toT);
- var reason = null;
-
- var errors = <String>[];
- var ok = inferrer.inferExpression(expr, toT, errors);
- if (ok) return InferredType.create(this, expr, toT);
- reason = (errors.isNotEmpty) ? errors.first : null;
-
- if (c is Cast) return DownCast.create(this, expr, c, reason: reason);
- assert(false);
- return null;
- }
-
- DartType elementType(Element e) {
- if (e == null) {
- // Malformed code - just return dynamic.
- return provider.dynamicType;
- }
- return (e as dynamic).type;
- }
-
- /// Returns `true` if the target expression is dynamic.
- // TODO(jmesserly): remove this in favor of utils? Or a static method here?
- bool isDynamicTarget(Expression target) => utils.isDynamicTarget(target);
-
- /// Returns `true` if the expression is a dynamic function call or method
- /// invocation.
- bool isDynamicCall(Expression call) {
- var ft = getTypeAsCaller(call);
- // TODO(leafp): This will currently return true if t is Function
- // This is probably the most correct thing to do for now, since
- // this code is also used by the back end. Maybe revisit at some
- // point?
- if (ft == null) return true;
- // Dynamic as the parameter type is treated as bottom. A function with
- // a dynamic parameter type requires a dynamic call in general.
- // However, as an optimization, if we have an original definition, we know
- // dynamic is reified as Object - in this case a regular call is fine.
- if (call is SimpleIdentifier) {
- var element = call.staticElement;
- if (element is FunctionElement || element is MethodElement) {
- // An original declaration.
- return false;
- }
- }
-
- return _anyParameterType(ft, (pt) => pt.isDynamic);
- }
-}
-
-class DownwardsInference {
- final TypeRules rules;
-
- DownwardsInference(this.rules);
-
- /// Called for each list literal which gets inferred
- void annotateListLiteral(ListLiteral e, List<DartType> targs) {}
-
- /// Called for each map literal which gets inferred
- void annotateMapLiteral(MapLiteral e, List<DartType> targs) {}
-
- /// Called for each new/const which gets inferred
- void annotateInstanceCreationExpression(
- InstanceCreationExpression e, List<DartType> targs) {}
-
- /// Called for cast from dynamic required for inference to succeed
- void annotateCastFromDynamic(Expression e, DartType t) {}
-
- /// Called for each function expression return type inferred
- void annotateFunctionExpression(FunctionExpression e, DartType returnType) {}
-
- /// Downward inference
- bool inferExpression(Expression e, DartType t, List<String> errors) {
- // Don't cast top level expressions, only sub-expressions
- return _inferExpression(e, t, errors, cast: false);
- }
-
- /// Downward inference
- bool _inferExpression(Expression e, DartType t, List<String> errors,
- {cast: true}) {
- if (e is ConditionalExpression) {
- return _inferConditionalExpression(e, t, errors);
- }
- if (e is ParenthesizedExpression) {
- return _inferParenthesizedExpression(e, t, errors);
- }
- if (rules.isSubTypeOf(rules.getStaticType(e), t)) return true;
- if (cast && rules.getStaticType(e).isDynamic) {
- annotateCastFromDynamic(e, t);
- return true;
- }
- if (e is FunctionExpression) return _inferFunctionExpression(e, t, errors);
- if (e is ListLiteral) return _inferListLiteral(e, t, errors);
- if (e is MapLiteral) return _inferMapLiteral(e, t, errors);
- if (e is NamedExpression) return _inferNamedExpression(e, t, errors);
- if (e is InstanceCreationExpression) {
- return _inferInstanceCreationExpression(e, t, errors);
- }
- errors.add("$e cannot be typed as $t");
- return false;
- }
-
- /// If t1 = I<dynamic, ..., dynamic>, then look for a supertype
- /// of t1 of the form K<S0, ..., Sm> where t2 = K<S0', ..., Sm'>
- /// If the supertype exists, use the constraints S0 <: S0', ... Sm <: Sm'
- /// to derive a concrete instantation for I of the form <T0, ..., Tn>,
- /// such that I<T0, .., Tn> <: t2
- List<DartType> _matchTypes(InterfaceType t1, InterfaceType t2) {
- if (t1 == t2) return t2.typeArguments;
- var tArgs1 = t1.typeArguments;
- var tArgs2 = t2.typeArguments;
- // If t1 isn't a raw type, bail out
- if (tArgs1 != null && tArgs1.any((t) => !t.isDynamic)) return null;
-
- // This is our inferred type argument list. We start at all dynamic,
- // and fill in with inferred types when we reach a match.
- var actuals =
- new List<DartType>.filled(tArgs1.length, rules.provider.dynamicType);
-
- // When we find the supertype of t1 with the same
- // classname as t2 (see below), we have the following:
- // If t1 is an instantiation of a class T1<X0, ..., Xn>
- // and t2 is an instantiation of a class T2<Y0, ...., Ym>
- // of the form t2 = T2<S0, ..., Sm>
- // then we want to choose instantiations for the Xi
- // T0, ..., Tn such that T1<T0, ..., Tn> <: t2 .
- // To find this, we simply instantate T1 with
- // X0, ..., Xn, and then find its superclass
- // T2<T0', ..., Tn'>. We then solve the constraint
- // set T0' <: S0, ..., Tn' <: Sn for the Xi.
- // Currently, we only handle constraints where
- // the Ti' is one of the Xi'. If there are multiple
- // constraints on some Xi, we choose the lower of the
- // two (if it exists).
- bool permute(List<DartType> permutedArgs) {
- if (permutedArgs == null) return false;
- var ps = t1.typeParameters;
- var ts = ps.map((p) => p.type).toList();
- for (int i = 0; i < permutedArgs.length; i++) {
- var tVar = permutedArgs[i];
- var tActual = tArgs2[i];
- var index = ts.indexOf(tVar);
- if (index >= 0 && rules.isSubTypeOf(tActual, actuals[index])) {
- actuals[index] = tActual;
- }
- }
- return actuals.any((x) => !x.isDynamic);
- }
-
- // Look for the first supertype of t1 with the same class name as t2.
- bool match(InterfaceType t1) {
- if (t1.element == t2.element) {
- return permute(t1.typeArguments);
- }
-
- if (t1 == rules.provider.objectType) return false;
-
- if (match(t1.superclass)) return true;
-
- for (final parent in t1.interfaces) {
- if (match(parent)) return true;
- }
-
- for (final parent in t1.mixins) {
- if (match(parent)) return true;
- }
- return false;
- }
-
- // We have that t1 = T1<dynamic, ..., dynamic>.
- // To match t1 against t2, we use the uninstantiated version
- // of t1, essentially treating it as an instantiation with
- // fresh variables, and solve for the variables.
- // t1.element.type will be of the form T1<X0, ..., Xn>
- if (!match(t1.element.type)) return null;
- var newT1 = t1.element.type.substitute4(actuals);
- // If we found a solution, return it.
- if (rules.isSubTypeOf(newT1, t2)) return actuals;
- return null;
- }
-
- /// These assume that e is not already a subtype of t
-
- bool _inferConditionalExpression(
- ConditionalExpression e, DartType t, errors) {
- return _inferExpression(e.thenExpression, t, errors) &&
- _inferExpression(e.elseExpression, t, errors);
- }
-
- bool _inferParenthesizedExpression(
- ParenthesizedExpression e, DartType t, errors) {
- return _inferExpression(e.expression, t, errors);
- }
-
- bool _inferInstanceCreationExpression(
- InstanceCreationExpression e, DartType t, errors) {
- var arguments = e.argumentList.arguments;
- var rawType = rules.getStaticType(e);
- // rawType is the instantiated type of the instance
- if (rawType is! InterfaceType) return false;
- var type = (rawType as InterfaceType);
- if (type.typeParameters == null ||
- type.typeParameters.length == 0) return false;
- if (e.constructorName.type == null) return false;
- // classTypeName is the type name of the class being instantiated
- var classTypeName = e.constructorName.type;
- // Check that we were not passed any type arguments
- if (classTypeName.typeArguments != null) return false;
- // Infer type arguments
- if (t is! InterfaceType) return false;
- var targs = _matchTypes(type, t);
- if (targs == null) return false;
- if (e.staticElement == null) return false;
- var constructorElement = e.staticElement;
- // From the constructor element get:
- // the instantiated type of the constructor, then
- // the uninstantiated element for the constructor, then
- // the uninstantiated type for the constructor
- var rawConstructorElement =
- constructorElement.type.element as ConstructorElement;
- var baseType = rawConstructorElement.type;
- if (baseType == null) return false;
- // From the interface type (instantiated), get:
- // the uninstantiated element, then
- // the uninstantiated type, then
- // the type arguments (aka the type parameters)
- var tparams = type.element.type.typeArguments;
- // Take the uninstantiated constructor type, and replace the type
- // parameters with the inferred arguments.
- var fType = baseType.substitute2(targs, tparams);
- {
- var rTypes = fType.normalParameterTypes;
- var oTypes = fType.optionalParameterTypes;
- var pTypes = new List.from(rTypes)..addAll(oTypes);
- var pArgs = arguments.where((x) => x is! NamedExpression);
- var pi = 0;
- for (var arg in pArgs) {
- if (pi >= pTypes.length) return false;
- var argType = pTypes[pi];
- if (!_inferExpression(arg, argType, errors)) return false;
- pi++;
- }
- var nTypes = fType.namedParameterTypes;
- for (var arg0 in arguments) {
- if (arg0 is! NamedExpression) continue;
- var arg = arg0 as NamedExpression;
- SimpleIdentifier nameNode = arg.name.label;
- String name = nameNode.name;
- var argType = nTypes[name];
- if (argType == null) return false;
- if (!_inferExpression(arg, argType, errors)) return false;
- }
- }
- annotateInstanceCreationExpression(e, targs);
- return true;
- }
-
- bool _inferNamedExpression(NamedExpression e, DartType t, errors) {
- return _inferExpression(e.expression, t, errors);
- }
-
- bool _inferFunctionExpression(FunctionExpression e, DartType t, errors) {
- if (t is! FunctionType) return false;
- var fType = t as FunctionType;
- var eType = e.staticType as FunctionType;
- if (eType is! FunctionType) return false;
-
- // We have a function literal, so we can treat the arrow type
- // as non-fuzzy. Since we're not improving on parameter types
- // currently, if this check fails then we cannot succeed, so
- // bail out. Otherwise, we never need to check the parameter types
- // again.
- if (!rules.isFunctionSubTypeOf(eType, fType,
- fuzzyArrows: false, ignoreReturn: true)) return false;
-
- // This only entered inference because of fuzzy typing.
- // The function type is already specific enough, we can just
- // succeed and treat it as a successful inference
- if (rules.isSubTypeOf(eType.returnType, fType.returnType)) return true;
-
- // Fuzzy typing again, handle the void case (not caught by the previous)
- if (fType.returnType.isVoid) return true;
-
- if (e.body is! ExpressionFunctionBody) return false;
- var body = (e.body as ExpressionFunctionBody).expression;
- if (!_inferExpression(body, fType.returnType, errors)) return false;
-
- // TODO(leafp): Try narrowing the argument types if possible
- // to get better code in the function body. This requires checking
- // that the body is well-typed at the more specific type.
-
- // At this point, we know that the parameter types are in the appropriate subtype
- // relation, and we have checked that we can type the body at the appropriate return
- // type, so we can are done.
- annotateFunctionExpression(e, fType.returnType);
- return true;
- }
-
- bool _inferListLiteral(ListLiteral e, DartType t, errors) {
- var dyn = rules.provider.dynamicType;
- var listT = rules.provider.listType.substitute4([dyn]);
- // List <: t (using dart rules) must be true
- if (!listT.isSubtypeOf(t)) return false;
- // The list literal must have no type arguments
- if (e.typeArguments != null) return false;
- if (t is! InterfaceType) return false;
- var targs = _matchTypes(listT, t);
- if (targs == null) return false;
- assert(targs.length == 1);
- var etype = targs[0];
- assert(!etype.isDynamic);
- var elements = e.elements;
- var b = elements.every((e) => _inferExpression(e, etype, errors));
- if (b) annotateListLiteral(e, targs);
- return b;
- }
-
- bool _inferMapLiteral(MapLiteral e, DartType t, errors) {
- var dyn = rules.provider.dynamicType;
- var mapT = rules.provider.mapType.substitute4([dyn, dyn]);
- // Map <: t (using dart rules) must be true
- if (!mapT.isSubtypeOf(t)) return false;
- // The map literal must have no type arguments
- if (e.typeArguments != null) return false;
- if (t is! InterfaceType) return false;
- var targs = _matchTypes(mapT, t);
- if (targs == null) return false;
- assert(targs.length == 2);
- var kType = targs[0];
- var vType = targs[1];
- assert(!(kType.isDynamic && vType.isDynamic));
- var entries = e.entries;
- bool inferEntry(MapLiteralEntry entry) {
- return _inferExpression(entry.key, kType, errors) &&
- _inferExpression(entry.value, vType, errors);
- }
- var b = entries.every(inferEntry);
- if (b) annotateMapLiteral(e, targs);
- return b;
- }
-}
+export 'package:analyzer/src/task/strong/rules.dart';
« no previous file with comments | « lib/src/checker/resolver.dart ('k') | lib/src/codegen/code_generator.dart » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698