| Index: analyzer/lib/src/generated/resolver.dart
|
| diff --git a/analyzer/lib/src/generated/resolver.dart b/analyzer/lib/src/generated/resolver.dart
|
| deleted file mode 100644
|
| index 49fc6c797dbba3b06d1751515bcc705ed477f46f..0000000000000000000000000000000000000000
|
| --- a/analyzer/lib/src/generated/resolver.dart
|
| +++ /dev/null
|
| @@ -1,15196 +0,0 @@
|
| -// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
|
| -// for details. All rights reserved. Use of this source code is governed by a
|
| -// BSD-style license that can be found in the LICENSE file.
|
| -
|
| -library engine.resolver;
|
| -
|
| -import 'dart:collection';
|
| -
|
| -import 'ast.dart';
|
| -import 'constant.dart';
|
| -import 'element.dart';
|
| -import 'element_resolver.dart';
|
| -import 'engine.dart';
|
| -import 'error.dart';
|
| -import 'error_verifier.dart';
|
| -import 'html.dart' as ht;
|
| -import 'java_core.dart';
|
| -import 'java_engine.dart';
|
| -import 'scanner.dart' as sc;
|
| -import 'sdk.dart' show DartSdk, SdkLibrary;
|
| -import 'source.dart';
|
| -import 'static_type_analyzer.dart';
|
| -import 'utilities_dart.dart';
|
| -
|
| -/**
|
| - * Callback signature used by ImplicitConstructorBuilder to register
|
| - * computations to be performed, and their dependencies. A call to this
|
| - * callback indicates that [computation] may be used to compute implicit
|
| - * constructors for [classElement], but that the computation may not be invoked
|
| - * until after implicit constructors have been built for [superclassElement].
|
| - */
|
| -typedef void ImplicitConstructorBuilderCallback(ClassElement classElement,
|
| - ClassElement superclassElement, void computation());
|
| -
|
| -typedef LibraryResolver LibraryResolverFactory(AnalysisContext context);
|
| -
|
| -typedef ResolverVisitor ResolverVisitorFactory(
|
| - Library library, Source source, TypeProvider typeProvider);
|
| -
|
| -typedef StaticTypeAnalyzer StaticTypeAnalyzerFactory(ResolverVisitor visitor);
|
| -
|
| -typedef TypeResolverVisitor TypeResolverVisitorFactory(
|
| - Library library, Source source, TypeProvider typeProvider);
|
| -
|
| -typedef void VoidFunction();
|
| -
|
| -/**
|
| - * Instances of the class `BestPracticesVerifier` traverse an AST structure looking for
|
| - * violations of Dart best practices.
|
| - */
|
| -class BestPracticesVerifier extends RecursiveAstVisitor<Object> {
|
| -// static String _HASHCODE_GETTER_NAME = "hashCode";
|
| -
|
| - static String _NULL_TYPE_NAME = "Null";
|
| -
|
| - static String _TO_INT_METHOD_NAME = "toInt";
|
| -
|
| - /**
|
| - * The class containing the AST nodes being visited, or `null` if we are not in the scope of
|
| - * a class.
|
| - */
|
| - ClassElement _enclosingClass;
|
| -
|
| - /**
|
| - * The error reporter by which errors will be reported.
|
| - */
|
| - final ErrorReporter _errorReporter;
|
| -
|
| - /**
|
| - * The type Future<Null>, which is needed for determining whether it is safe
|
| - * to have a bare "return;" in an async method.
|
| - */
|
| - final InterfaceType _futureNullType;
|
| -
|
| - /**
|
| - * Create a new instance of the [BestPracticesVerifier].
|
| - *
|
| - * @param errorReporter the error reporter
|
| - */
|
| - BestPracticesVerifier(this._errorReporter, TypeProvider typeProvider)
|
| - : _futureNullType = typeProvider.futureNullType;
|
| -
|
| - @override
|
| - Object visitArgumentList(ArgumentList node) {
|
| - _checkForArgumentTypesNotAssignableInList(node);
|
| - return super.visitArgumentList(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitAsExpression(AsExpression node) {
|
| - _checkForUnnecessaryCast(node);
|
| - return super.visitAsExpression(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitAssignmentExpression(AssignmentExpression node) {
|
| - sc.TokenType operatorType = node.operator.type;
|
| - if (operatorType == sc.TokenType.EQ) {
|
| - _checkForUseOfVoidResult(node.rightHandSide);
|
| - _checkForInvalidAssignment(node.leftHandSide, node.rightHandSide);
|
| - } else {
|
| - _checkForDeprecatedMemberUse(node.bestElement, node);
|
| - }
|
| - return super.visitAssignmentExpression(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitBinaryExpression(BinaryExpression node) {
|
| - _checkForDivisionOptimizationHint(node);
|
| - _checkForDeprecatedMemberUse(node.bestElement, node);
|
| - return super.visitBinaryExpression(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitClassDeclaration(ClassDeclaration node) {
|
| - ClassElement outerClass = _enclosingClass;
|
| - try {
|
| - _enclosingClass = node.element;
|
| - // Commented out until we decide that we want this hint in the analyzer
|
| - // checkForOverrideEqualsButNotHashCode(node);
|
| - return super.visitClassDeclaration(node);
|
| - } finally {
|
| - _enclosingClass = outerClass;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitExportDirective(ExportDirective node) {
|
| - _checkForDeprecatedMemberUse(node.uriElement, node);
|
| - return super.visitExportDirective(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| - _checkForMissingReturn(node.returnType, node.functionExpression.body);
|
| - return super.visitFunctionDeclaration(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitImportDirective(ImportDirective node) {
|
| - _checkForDeprecatedMemberUse(node.uriElement, node);
|
| - ImportElement importElement = node.element;
|
| - if (importElement != null) {
|
| - if (importElement.isDeferred) {
|
| - _checkForLoadLibraryFunction(node, importElement);
|
| - }
|
| - }
|
| - return super.visitImportDirective(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitIndexExpression(IndexExpression node) {
|
| - _checkForDeprecatedMemberUse(node.bestElement, node);
|
| - return super.visitIndexExpression(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitInstanceCreationExpression(InstanceCreationExpression node) {
|
| - _checkForDeprecatedMemberUse(node.staticElement, node);
|
| - return super.visitInstanceCreationExpression(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitIsExpression(IsExpression node) {
|
| - _checkAllTypeChecks(node);
|
| - return super.visitIsExpression(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitMethodDeclaration(MethodDeclaration node) {
|
| - // This was determined to not be a good hint, see: dartbug.com/16029
|
| - //checkForOverridingPrivateMember(node);
|
| - _checkForMissingReturn(node.returnType, node.body);
|
| - return super.visitMethodDeclaration(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitPostfixExpression(PostfixExpression node) {
|
| - _checkForDeprecatedMemberUse(node.bestElement, node);
|
| - return super.visitPostfixExpression(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitPrefixExpression(PrefixExpression node) {
|
| - _checkForDeprecatedMemberUse(node.bestElement, node);
|
| - return super.visitPrefixExpression(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitRedirectingConstructorInvocation(
|
| - RedirectingConstructorInvocation node) {
|
| - _checkForDeprecatedMemberUse(node.staticElement, node);
|
| - return super.visitRedirectingConstructorInvocation(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitSimpleIdentifier(SimpleIdentifier node) {
|
| - _checkForDeprecatedMemberUseAtIdentifier(node);
|
| - return super.visitSimpleIdentifier(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitSuperConstructorInvocation(SuperConstructorInvocation node) {
|
| - _checkForDeprecatedMemberUse(node.staticElement, node);
|
| - return super.visitSuperConstructorInvocation(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitVariableDeclaration(VariableDeclaration node) {
|
| - _checkForUseOfVoidResult(node.initializer);
|
| - _checkForInvalidAssignment(node.name, node.initializer);
|
| - return super.visitVariableDeclaration(node);
|
| - }
|
| -
|
| - /**
|
| - * Check for the passed is expression for the unnecessary type check hint codes as well as null
|
| - * checks expressed using an is expression.
|
| - *
|
| - * @param node the is expression to check
|
| - * @return `true` if and only if a hint code is generated on the passed node
|
| - * See [HintCode.TYPE_CHECK_IS_NOT_NULL], [HintCode.TYPE_CHECK_IS_NULL],
|
| - * [HintCode.UNNECESSARY_TYPE_CHECK_TRUE], and
|
| - * [HintCode.UNNECESSARY_TYPE_CHECK_FALSE].
|
| - */
|
| - bool _checkAllTypeChecks(IsExpression node) {
|
| - Expression expression = node.expression;
|
| - TypeName typeName = node.type;
|
| - DartType lhsType = expression.staticType;
|
| - DartType rhsType = typeName.type;
|
| - if (lhsType == null || rhsType == null) {
|
| - return false;
|
| - }
|
| - String rhsNameStr = typeName.name.name;
|
| - // if x is dynamic
|
| - if (rhsType.isDynamic && rhsNameStr == sc.Keyword.DYNAMIC.syntax) {
|
| - if (node.notOperator == null) {
|
| - // the is case
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.UNNECESSARY_TYPE_CHECK_TRUE, node);
|
| - } else {
|
| - // the is not case
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.UNNECESSARY_TYPE_CHECK_FALSE, node);
|
| - }
|
| - return true;
|
| - }
|
| - Element rhsElement = rhsType.element;
|
| - LibraryElement libraryElement =
|
| - rhsElement != null ? rhsElement.library : null;
|
| - if (libraryElement != null && libraryElement.isDartCore) {
|
| - // if x is Object or null is Null
|
| - if (rhsType.isObject ||
|
| - (expression is NullLiteral && rhsNameStr == _NULL_TYPE_NAME)) {
|
| - if (node.notOperator == null) {
|
| - // the is case
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.UNNECESSARY_TYPE_CHECK_TRUE, node);
|
| - } else {
|
| - // the is not case
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.UNNECESSARY_TYPE_CHECK_FALSE, node);
|
| - }
|
| - return true;
|
| - } else if (rhsNameStr == _NULL_TYPE_NAME) {
|
| - if (node.notOperator == null) {
|
| - // the is case
|
| - _errorReporter.reportErrorForNode(HintCode.TYPE_CHECK_IS_NULL, node);
|
| - } else {
|
| - // the is not case
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.TYPE_CHECK_IS_NOT_NULL, node);
|
| - }
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * This verifies that the passed expression can be assigned to its corresponding parameters.
|
| - *
|
| - * This method corresponds to ErrorVerifier.checkForArgumentTypeNotAssignable.
|
| - *
|
| - * TODO (jwren) In the ErrorVerifier there are other warnings that we could have a corresponding
|
| - * hint for: see other callers of ErrorVerifier.checkForArgumentTypeNotAssignable(..).
|
| - *
|
| - * @param expression the expression to evaluate
|
| - * @param expectedStaticType the expected static type of the parameter
|
| - * @param actualStaticType the actual static type of the argument
|
| - * @param expectedPropagatedType the expected propagated type of the parameter, may be
|
| - * `null`
|
| - * @param actualPropagatedType the expected propagated type of the parameter, may be `null`
|
| - * @return `true` if and only if an hint code is generated on the passed node
|
| - * See [HintCode.ARGUMENT_TYPE_NOT_ASSIGNABLE].
|
| - */
|
| - bool _checkForArgumentTypeNotAssignable(Expression expression,
|
| - DartType expectedStaticType, DartType actualStaticType,
|
| - DartType expectedPropagatedType, DartType actualPropagatedType,
|
| - ErrorCode hintCode) {
|
| - //
|
| - // Warning case: test static type information
|
| - //
|
| - if (actualStaticType != null && expectedStaticType != null) {
|
| - if (!actualStaticType.isAssignableTo(expectedStaticType)) {
|
| - // A warning was created in the ErrorVerifier, return false, don't
|
| - // create a hint when a warning has already been created.
|
| - return false;
|
| - }
|
| - }
|
| - //
|
| - // Hint case: test propagated type information
|
| - //
|
| - // Compute the best types to use.
|
| - DartType expectedBestType = expectedPropagatedType != null
|
| - ? expectedPropagatedType
|
| - : expectedStaticType;
|
| - DartType actualBestType =
|
| - actualPropagatedType != null ? actualPropagatedType : actualStaticType;
|
| - if (actualBestType != null && expectedBestType != null) {
|
| - if (!actualBestType.isAssignableTo(expectedBestType)) {
|
| - _errorReporter.reportTypeErrorForNode(
|
| - hintCode, expression, [actualBestType, expectedBestType]);
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * This verifies that the passed argument can be assigned to its corresponding parameter.
|
| - *
|
| - * This method corresponds to ErrorCode.checkForArgumentTypeNotAssignableForArgument.
|
| - *
|
| - * @param argument the argument to evaluate
|
| - * @return `true` if and only if an hint code is generated on the passed node
|
| - * See [HintCode.ARGUMENT_TYPE_NOT_ASSIGNABLE].
|
| - */
|
| - bool _checkForArgumentTypeNotAssignableForArgument(Expression argument) {
|
| - if (argument == null) {
|
| - return false;
|
| - }
|
| - ParameterElement staticParameterElement = argument.staticParameterElement;
|
| - DartType staticParameterType =
|
| - staticParameterElement == null ? null : staticParameterElement.type;
|
| - ParameterElement propagatedParameterElement =
|
| - argument.propagatedParameterElement;
|
| - DartType propagatedParameterType = propagatedParameterElement == null
|
| - ? null
|
| - : propagatedParameterElement.type;
|
| - return _checkForArgumentTypeNotAssignableWithExpectedTypes(argument,
|
| - staticParameterType, propagatedParameterType,
|
| - HintCode.ARGUMENT_TYPE_NOT_ASSIGNABLE);
|
| - }
|
| -
|
| - /**
|
| - * This verifies that the passed expression can be assigned to its corresponding parameters.
|
| - *
|
| - * This method corresponds to ErrorCode.checkForArgumentTypeNotAssignableWithExpectedTypes.
|
| - *
|
| - * @param expression the expression to evaluate
|
| - * @param expectedStaticType the expected static type
|
| - * @param expectedPropagatedType the expected propagated type, may be `null`
|
| - * @return `true` if and only if an hint code is generated on the passed node
|
| - * See [HintCode.ARGUMENT_TYPE_NOT_ASSIGNABLE].
|
| - */
|
| - bool _checkForArgumentTypeNotAssignableWithExpectedTypes(
|
| - Expression expression, DartType expectedStaticType,
|
| - DartType expectedPropagatedType, ErrorCode errorCode) =>
|
| - _checkForArgumentTypeNotAssignable(expression, expectedStaticType,
|
| - expression.staticType, expectedPropagatedType,
|
| - expression.propagatedType, errorCode);
|
| -
|
| - /**
|
| - * This verifies that the passed arguments can be assigned to their corresponding parameters.
|
| - *
|
| - * This method corresponds to ErrorCode.checkForArgumentTypesNotAssignableInList.
|
| - *
|
| - * @param node the arguments to evaluate
|
| - * @return `true` if and only if an hint code is generated on the passed node
|
| - * See [HintCode.ARGUMENT_TYPE_NOT_ASSIGNABLE].
|
| - */
|
| - bool _checkForArgumentTypesNotAssignableInList(ArgumentList argumentList) {
|
| - if (argumentList == null) {
|
| - return false;
|
| - }
|
| - bool problemReported = false;
|
| - for (Expression argument in argumentList.arguments) {
|
| - if (_checkForArgumentTypeNotAssignableForArgument(argument)) {
|
| - problemReported = true;
|
| - }
|
| - }
|
| - return problemReported;
|
| - }
|
| -
|
| - /**
|
| - * Given some [Element], look at the associated metadata and report the use of the member if
|
| - * it is declared as deprecated.
|
| - *
|
| - * @param element some element to check for deprecated use of
|
| - * @param node the node use for the location of the error
|
| - * @return `true` if and only if a hint code is generated on the passed node
|
| - * See [HintCode.DEPRECATED_MEMBER_USE].
|
| - */
|
| - bool _checkForDeprecatedMemberUse(Element element, AstNode node) {
|
| - if (element != null && element.isDeprecated) {
|
| - String displayName = element.displayName;
|
| - if (element is ConstructorElement) {
|
| - // TODO(jwren) We should modify ConstructorElement.getDisplayName(),
|
| - // or have the logic centralized elsewhere, instead of doing this logic
|
| - // here.
|
| - ConstructorElement constructorElement = element;
|
| - displayName = constructorElement.enclosingElement.displayName;
|
| - if (!constructorElement.displayName.isEmpty) {
|
| - displayName = "$displayName.${constructorElement.displayName}";
|
| - }
|
| - }
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.DEPRECATED_MEMBER_USE, node, [displayName]);
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * For [SimpleIdentifier]s, only call [checkForDeprecatedMemberUse]
|
| - * if the node is not in a declaration context.
|
| - *
|
| - * Also, if the identifier is a constructor name in a constructor invocation, then calls to the
|
| - * deprecated constructor will be caught by
|
| - * [visitInstanceCreationExpression] and
|
| - * [visitSuperConstructorInvocation], and can be ignored by
|
| - * this visit method.
|
| - *
|
| - * @param identifier some simple identifier to check for deprecated use of
|
| - * @return `true` if and only if a hint code is generated on the passed node
|
| - * See [HintCode.DEPRECATED_MEMBER_USE].
|
| - */
|
| - bool _checkForDeprecatedMemberUseAtIdentifier(SimpleIdentifier identifier) {
|
| - if (identifier.inDeclarationContext()) {
|
| - return false;
|
| - }
|
| - AstNode parent = identifier.parent;
|
| - if ((parent is ConstructorName && identical(identifier, parent.name)) ||
|
| - (parent is SuperConstructorInvocation &&
|
| - identical(identifier, parent.constructorName)) ||
|
| - parent is HideCombinator) {
|
| - return false;
|
| - }
|
| - return _checkForDeprecatedMemberUse(identifier.bestElement, identifier);
|
| - }
|
| -
|
| - /**
|
| - * Check for the passed binary expression for the [HintCode.DIVISION_OPTIMIZATION].
|
| - *
|
| - * @param node the binary expression to check
|
| - * @return `true` if and only if a hint code is generated on the passed node
|
| - * See [HintCode.DIVISION_OPTIMIZATION].
|
| - */
|
| - bool _checkForDivisionOptimizationHint(BinaryExpression node) {
|
| - // Return if the operator is not '/'
|
| - if (node.operator.type != sc.TokenType.SLASH) {
|
| - return false;
|
| - }
|
| - // Return if the '/' operator is not defined in core, or if we don't know
|
| - // its static or propagated type
|
| - MethodElement methodElement = node.bestElement;
|
| - if (methodElement == null) {
|
| - return false;
|
| - }
|
| - LibraryElement libraryElement = methodElement.library;
|
| - if (libraryElement != null && !libraryElement.isDartCore) {
|
| - return false;
|
| - }
|
| - // Report error if the (x/y) has toInt() invoked on it
|
| - if (node.parent is ParenthesizedExpression) {
|
| - ParenthesizedExpression parenthesizedExpression =
|
| - _wrapParenthesizedExpression(node.parent as ParenthesizedExpression);
|
| - if (parenthesizedExpression.parent is MethodInvocation) {
|
| - MethodInvocation methodInvocation =
|
| - parenthesizedExpression.parent as MethodInvocation;
|
| - if (_TO_INT_METHOD_NAME == methodInvocation.methodName.name &&
|
| - methodInvocation.argumentList.arguments.isEmpty) {
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.DIVISION_OPTIMIZATION, methodInvocation);
|
| - return true;
|
| - }
|
| - }
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * This verifies that the passed left hand side and right hand side represent a valid assignment.
|
| - *
|
| - * This method corresponds to ErrorVerifier.checkForInvalidAssignment.
|
| - *
|
| - * @param lhs the left hand side expression
|
| - * @param rhs the right hand side expression
|
| - * @return `true` if and only if an error code is generated on the passed node
|
| - * See [HintCode.INVALID_ASSIGNMENT].
|
| - */
|
| - bool _checkForInvalidAssignment(Expression lhs, Expression rhs) {
|
| - if (lhs == null || rhs == null) {
|
| - return false;
|
| - }
|
| - VariableElement leftVariableElement = ErrorVerifier.getVariableElement(lhs);
|
| - DartType leftType = (leftVariableElement == null)
|
| - ? ErrorVerifier.getStaticType(lhs)
|
| - : leftVariableElement.type;
|
| - DartType staticRightType = ErrorVerifier.getStaticType(rhs);
|
| - if (!staticRightType.isAssignableTo(leftType)) {
|
| - // The warning was generated on this rhs
|
| - return false;
|
| - }
|
| - // Test for, and then generate the hint
|
| - DartType bestRightType = rhs.bestType;
|
| - if (leftType != null && bestRightType != null) {
|
| - if (!bestRightType.isAssignableTo(leftType)) {
|
| - _errorReporter.reportTypeErrorForNode(
|
| - HintCode.INVALID_ASSIGNMENT, rhs, [bestRightType, leftType]);
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * Check that the imported library does not define a loadLibrary function. The import has already
|
| - * been determined to be deferred when this is called.
|
| - *
|
| - * @param node the import directive to evaluate
|
| - * @param importElement the [ImportElement] retrieved from the node
|
| - * @return `true` if and only if an error code is generated on the passed node
|
| - * See [CompileTimeErrorCode.IMPORT_DEFERRED_LIBRARY_WITH_LOAD_FUNCTION].
|
| - */
|
| - bool _checkForLoadLibraryFunction(
|
| - ImportDirective node, ImportElement importElement) {
|
| - LibraryElement importedLibrary = importElement.importedLibrary;
|
| - if (importedLibrary == null) {
|
| - return false;
|
| - }
|
| - if (importedLibrary.hasLoadLibraryFunction) {
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.IMPORT_DEFERRED_LIBRARY_WITH_LOAD_FUNCTION, node,
|
| - [importedLibrary.name]);
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * Generate a hint for functions or methods that have a return type, but do not have a return
|
| - * statement on all branches. At the end of blocks with no return, Dart implicitly returns
|
| - * `null`, avoiding these implicit returns is considered a best practice.
|
| - *
|
| - * Note: for async functions/methods, this hint only applies when the
|
| - * function has a return type that Future<Null> is not assignable to.
|
| - *
|
| - * @param node the binary expression to check
|
| - * @param body the function body
|
| - * @return `true` if and only if a hint code is generated on the passed node
|
| - * See [HintCode.MISSING_RETURN].
|
| - */
|
| - bool _checkForMissingReturn(TypeName returnType, FunctionBody body) {
|
| - // Check that the method or function has a return type, and a function body
|
| - if (returnType == null || body == null) {
|
| - return false;
|
| - }
|
| - // Check that the body is a BlockFunctionBody
|
| - if (body is! BlockFunctionBody) {
|
| - return false;
|
| - }
|
| - // Generators are never required to have a return statement.
|
| - if (body.isGenerator) {
|
| - return false;
|
| - }
|
| - // Check that the type is resolvable, and is not "void"
|
| - DartType returnTypeType = returnType.type;
|
| - if (returnTypeType == null || returnTypeType.isVoid) {
|
| - return false;
|
| - }
|
| - // For async, give no hint if Future<Null> is assignable to the return
|
| - // type.
|
| - if (body.isAsynchronous && _futureNullType.isAssignableTo(returnTypeType)) {
|
| - return false;
|
| - }
|
| - // Check the block for a return statement, if not, create the hint
|
| - BlockFunctionBody blockFunctionBody = body as BlockFunctionBody;
|
| - if (!ExitDetector.exits(blockFunctionBody)) {
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.MISSING_RETURN, returnType, [returnTypeType.displayName]);
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * Check for the passed class declaration for the
|
| - * [HintCode.OVERRIDE_EQUALS_BUT_NOT_HASH_CODE] hint code.
|
| - *
|
| - * @param node the class declaration to check
|
| - * @return `true` if and only if a hint code is generated on the passed node
|
| - * See [HintCode.OVERRIDE_EQUALS_BUT_NOT_HASH_CODE].
|
| - */
|
| -// bool _checkForOverrideEqualsButNotHashCode(ClassDeclaration node) {
|
| -// ClassElement classElement = node.element;
|
| -// if (classElement == null) {
|
| -// return false;
|
| -// }
|
| -// MethodElement equalsOperatorMethodElement =
|
| -// classElement.getMethod(sc.TokenType.EQ_EQ.lexeme);
|
| -// if (equalsOperatorMethodElement != null) {
|
| -// PropertyAccessorElement hashCodeElement =
|
| -// classElement.getGetter(_HASHCODE_GETTER_NAME);
|
| -// if (hashCodeElement == null) {
|
| -// _errorReporter.reportErrorForNode(
|
| -// HintCode.OVERRIDE_EQUALS_BUT_NOT_HASH_CODE,
|
| -// node.name,
|
| -// [classElement.displayName]);
|
| -// return true;
|
| -// }
|
| -// }
|
| -// return false;
|
| -// }
|
| -
|
| - /**
|
| - * Check for the passed as expression for the [HintCode.UNNECESSARY_CAST] hint code.
|
| - *
|
| - * @param node the as expression to check
|
| - * @return `true` if and only if a hint code is generated on the passed node
|
| - * See [HintCode.UNNECESSARY_CAST].
|
| - */
|
| - bool _checkForUnnecessaryCast(AsExpression node) {
|
| - // TODO(jwren) After dartbug.com/13732, revisit this, we should be able to
|
| - // remove the (x is! TypeParameterType) checks.
|
| - AstNode parent = node.parent;
|
| - if (parent is ConditionalExpression &&
|
| - (node == parent.thenExpression || node == parent.elseExpression)) {
|
| - Expression thenExpression = parent.thenExpression;
|
| - DartType thenType;
|
| - if (thenExpression is AsExpression) {
|
| - thenType = thenExpression.expression.staticType;
|
| - } else {
|
| - thenType = thenExpression.staticType;
|
| - }
|
| - Expression elseExpression = parent.elseExpression;
|
| - DartType elseType;
|
| - if (elseExpression is AsExpression) {
|
| - elseType = elseExpression.expression.staticType;
|
| - } else {
|
| - elseType = elseExpression.staticType;
|
| - }
|
| - if (thenType != null &&
|
| - elseType != null &&
|
| - !thenType.isDynamic &&
|
| - !elseType.isDynamic &&
|
| - !thenType.isMoreSpecificThan(elseType) &&
|
| - !elseType.isMoreSpecificThan(thenType)) {
|
| - return false;
|
| - }
|
| - }
|
| - DartType lhsType = node.expression.staticType;
|
| - DartType rhsType = node.type.type;
|
| - if (lhsType != null &&
|
| - rhsType != null &&
|
| - !lhsType.isDynamic &&
|
| - !rhsType.isDynamic &&
|
| - lhsType.isMoreSpecificThan(rhsType)) {
|
| - _errorReporter.reportErrorForNode(HintCode.UNNECESSARY_CAST, node);
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * Check for situations where the result of a method or function is used, when it returns 'void'.
|
| - *
|
| - * TODO(jwren) Many other situations of use could be covered. We currently cover the cases var x =
|
| - * m() and x = m(), but we could also cover cases such as m().x, m()[k], a + m(), f(m()), return
|
| - * m().
|
| - *
|
| - * @param node expression on the RHS of some assignment
|
| - * @return `true` if and only if a hint code is generated on the passed node
|
| - * See [HintCode.USE_OF_VOID_RESULT].
|
| - */
|
| - bool _checkForUseOfVoidResult(Expression expression) {
|
| - if (expression == null || expression is! MethodInvocation) {
|
| - return false;
|
| - }
|
| - MethodInvocation methodInvocation = expression as MethodInvocation;
|
| - if (identical(methodInvocation.staticType, VoidTypeImpl.instance)) {
|
| - SimpleIdentifier methodName = methodInvocation.methodName;
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.USE_OF_VOID_RESULT, methodName, [methodName.name]);
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * Given a parenthesized expression, this returns the parent (or recursively grand-parent) of the
|
| - * expression that is a parenthesized expression, but whose parent is not a parenthesized
|
| - * expression.
|
| - *
|
| - * For example given the code `(((e)))`: `(e) -> (((e)))`.
|
| - *
|
| - * @param parenthesizedExpression some expression whose parent is a parenthesized expression
|
| - * @return the first parent or grand-parent that is a parenthesized expression, that does not have
|
| - * a parenthesized expression parent
|
| - */
|
| - static ParenthesizedExpression _wrapParenthesizedExpression(
|
| - ParenthesizedExpression parenthesizedExpression) {
|
| - if (parenthesizedExpression.parent is ParenthesizedExpression) {
|
| - return _wrapParenthesizedExpression(
|
| - parenthesizedExpression.parent as ParenthesizedExpression);
|
| - }
|
| - return parenthesizedExpression;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `ClassScope` implement the scope defined by a class.
|
| - */
|
| -class ClassScope extends EnclosedScope {
|
| - /**
|
| - * Initialize a newly created scope enclosed within another scope.
|
| - *
|
| - * @param enclosingScope the scope in which this scope is lexically enclosed
|
| - * @param typeElement the element representing the type represented by this scope
|
| - */
|
| - ClassScope(Scope enclosingScope, ClassElement typeElement)
|
| - : super(enclosingScope) {
|
| - if (typeElement == null) {
|
| - throw new IllegalArgumentException("class element cannot be null");
|
| - }
|
| - _defineMembers(typeElement);
|
| - }
|
| -
|
| - @override
|
| - AnalysisError getErrorForDuplicate(Element existing, Element duplicate) {
|
| - if (existing is PropertyAccessorElement && duplicate is MethodElement) {
|
| - if (existing.nameOffset < duplicate.nameOffset) {
|
| - return new AnalysisError(duplicate.source, duplicate.nameOffset,
|
| - duplicate.displayName.length,
|
| - CompileTimeErrorCode.METHOD_AND_GETTER_WITH_SAME_NAME,
|
| - [existing.displayName]);
|
| - } else {
|
| - return new AnalysisError(existing.source, existing.nameOffset,
|
| - existing.displayName.length,
|
| - CompileTimeErrorCode.GETTER_AND_METHOD_WITH_SAME_NAME,
|
| - [existing.displayName]);
|
| - }
|
| - }
|
| - return super.getErrorForDuplicate(existing, duplicate);
|
| - }
|
| -
|
| - /**
|
| - * Define the instance members defined by the class.
|
| - *
|
| - * @param typeElement the element representing the type represented by this scope
|
| - */
|
| - void _defineMembers(ClassElement typeElement) {
|
| - for (PropertyAccessorElement accessor in typeElement.accessors) {
|
| - define(accessor);
|
| - }
|
| - for (MethodElement method in typeElement.methods) {
|
| - define(method);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * A `CompilationUnitBuilder` builds an element model for a single compilation
|
| - * unit.
|
| - */
|
| -class CompilationUnitBuilder {
|
| - /**
|
| - * Build the compilation unit element for the given [source] based on the
|
| - * compilation [unit] associated with the source. Throw an AnalysisException
|
| - * if the element could not be built. [librarySource] is the source for the
|
| - * containing library.
|
| - */
|
| - CompilationUnitElementImpl buildCompilationUnit(
|
| - Source source, CompilationUnit unit, Source librarySource) {
|
| - return PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| - if (unit == null) {
|
| - return null;
|
| - }
|
| - ElementHolder holder = new ElementHolder();
|
| - ElementBuilder builder = new ElementBuilder(holder);
|
| - unit.accept(builder);
|
| - CompilationUnitElementImpl element =
|
| - new CompilationUnitElementImpl(source.shortName);
|
| - element.accessors = holder.accessors;
|
| - element.enums = holder.enums;
|
| - element.functions = holder.functions;
|
| - element.source = source;
|
| - element.librarySource = librarySource;
|
| - element.typeAliases = holder.typeAliases;
|
| - element.types = holder.types;
|
| - element.topLevelVariables = holder.topLevelVariables;
|
| - unit.element = element;
|
| - holder.validate();
|
| - return element;
|
| - });
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `ConstantVerifier` traverse an AST structure looking for additional
|
| - * errors and warnings not covered by the parser and resolver. In particular, it looks for errors
|
| - * and warnings related to constant expressions.
|
| - */
|
| -class ConstantVerifier extends RecursiveAstVisitor<Object> {
|
| - /**
|
| - * The error reporter by which errors will be reported.
|
| - */
|
| - final ErrorReporter _errorReporter;
|
| -
|
| - /**
|
| - * The type provider used to access the known types.
|
| - */
|
| - final TypeProvider _typeProvider;
|
| -
|
| - /**
|
| - * The set of variables declared using '-D' on the command line.
|
| - */
|
| - final DeclaredVariables declaredVariables;
|
| -
|
| - /**
|
| - * The type representing the type 'bool'.
|
| - */
|
| - InterfaceType _boolType;
|
| -
|
| - /**
|
| - * The type representing the type 'int'.
|
| - */
|
| - InterfaceType _intType;
|
| -
|
| - /**
|
| - * The type representing the type 'num'.
|
| - */
|
| - InterfaceType _numType;
|
| -
|
| - /**
|
| - * The type representing the type 'string'.
|
| - */
|
| - InterfaceType _stringType;
|
| -
|
| - /**
|
| - * The current library that is being analyzed.
|
| - */
|
| - final LibraryElement _currentLibrary;
|
| -
|
| - /**
|
| - * Initialize a newly created constant verifier.
|
| - *
|
| - * @param errorReporter the error reporter by which errors will be reported
|
| - */
|
| - ConstantVerifier(this._errorReporter, this._currentLibrary,
|
| - this._typeProvider, this.declaredVariables) {
|
| - this._boolType = _typeProvider.boolType;
|
| - this._intType = _typeProvider.intType;
|
| - this._numType = _typeProvider.numType;
|
| - this._stringType = _typeProvider.stringType;
|
| - }
|
| -
|
| - @override
|
| - Object visitAnnotation(Annotation node) {
|
| - super.visitAnnotation(node);
|
| - // check annotation creation
|
| - Element element = node.element;
|
| - if (element is ConstructorElement) {
|
| - ConstructorElement constructorElement = element;
|
| - // should 'const' constructor
|
| - if (!constructorElement.isConst) {
|
| - _errorReporter.reportErrorForNode(
|
| - CompileTimeErrorCode.NON_CONSTANT_ANNOTATION_CONSTRUCTOR, node);
|
| - return null;
|
| - }
|
| - // should have arguments
|
| - ArgumentList argumentList = node.arguments;
|
| - if (argumentList == null) {
|
| - _errorReporter.reportErrorForNode(
|
| - CompileTimeErrorCode.NO_ANNOTATION_CONSTRUCTOR_ARGUMENTS, node);
|
| - return null;
|
| - }
|
| - // arguments should be constants
|
| - _validateConstantArguments(argumentList);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| - if (node.constKeyword != null) {
|
| - _validateConstructorInitializers(node);
|
| - _validateFieldInitializers(node.parent as ClassDeclaration, node);
|
| - }
|
| - _validateDefaultValues(node.parameters);
|
| - return super.visitConstructorDeclaration(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionExpression(FunctionExpression node) {
|
| - super.visitFunctionExpression(node);
|
| - _validateDefaultValues(node.parameters);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitInstanceCreationExpression(InstanceCreationExpression node) {
|
| - if (node.isConst) {
|
| - // We need to evaluate the constant to see if any errors occur during its
|
| - // evaluation.
|
| - ConstructorElement constructor = node.staticElement;
|
| - if (constructor != null) {
|
| - ConstantEvaluationEngine evaluationEngine =
|
| - new ConstantEvaluationEngine(_typeProvider, declaredVariables);
|
| - ConstantVisitor constantVisitor =
|
| - new ConstantVisitor(evaluationEngine, _errorReporter);
|
| - evaluationEngine.evaluateConstructorCall(node,
|
| - node.argumentList.arguments, constructor, constantVisitor,
|
| - _errorReporter);
|
| - }
|
| - }
|
| - _validateInstanceCreationArguments(node);
|
| - return super.visitInstanceCreationExpression(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitListLiteral(ListLiteral node) {
|
| - super.visitListLiteral(node);
|
| - if (node.constKeyword != null) {
|
| - DartObjectImpl result;
|
| - for (Expression element in node.elements) {
|
| - result =
|
| - _validate(element, CompileTimeErrorCode.NON_CONSTANT_LIST_ELEMENT);
|
| - if (result != null) {
|
| - _reportErrorIfFromDeferredLibrary(element,
|
| - CompileTimeErrorCode.NON_CONSTANT_LIST_ELEMENT_FROM_DEFERRED_LIBRARY);
|
| - }
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitMapLiteral(MapLiteral node) {
|
| - super.visitMapLiteral(node);
|
| - bool isConst = node.constKeyword != null;
|
| - bool reportEqualKeys = true;
|
| - HashSet<DartObject> keys = new HashSet<DartObject>();
|
| - List<Expression> invalidKeys = new List<Expression>();
|
| - for (MapLiteralEntry entry in node.entries) {
|
| - Expression key = entry.key;
|
| - if (isConst) {
|
| - DartObjectImpl keyResult =
|
| - _validate(key, CompileTimeErrorCode.NON_CONSTANT_MAP_KEY);
|
| - Expression valueExpression = entry.value;
|
| - DartObjectImpl valueResult = _validate(
|
| - valueExpression, CompileTimeErrorCode.NON_CONSTANT_MAP_VALUE);
|
| - if (valueResult != null) {
|
| - _reportErrorIfFromDeferredLibrary(valueExpression,
|
| - CompileTimeErrorCode.NON_CONSTANT_MAP_VALUE_FROM_DEFERRED_LIBRARY);
|
| - }
|
| - if (keyResult != null) {
|
| - _reportErrorIfFromDeferredLibrary(key,
|
| - CompileTimeErrorCode.NON_CONSTANT_MAP_KEY_FROM_DEFERRED_LIBRARY);
|
| - if (keys.contains(keyResult)) {
|
| - invalidKeys.add(key);
|
| - } else {
|
| - keys.add(keyResult);
|
| - }
|
| - DartType type = keyResult.type;
|
| - if (_implementsEqualsWhenNotAllowed(type)) {
|
| - _errorReporter.reportErrorForNode(
|
| - CompileTimeErrorCode.CONST_MAP_KEY_EXPRESSION_TYPE_IMPLEMENTS_EQUALS,
|
| - key, [type.displayName]);
|
| - }
|
| - }
|
| - } else {
|
| - // Note: we throw the errors away because this isn't actually a const.
|
| - AnalysisErrorListener errorListener =
|
| - AnalysisErrorListener.NULL_LISTENER;
|
| - ErrorReporter subErrorReporter =
|
| - new ErrorReporter(errorListener, _errorReporter.source);
|
| - DartObjectImpl result = key.accept(new ConstantVisitor(
|
| - new ConstantEvaluationEngine(_typeProvider, declaredVariables),
|
| - subErrorReporter));
|
| - if (result != null) {
|
| - if (keys.contains(result)) {
|
| - invalidKeys.add(key);
|
| - } else {
|
| - keys.add(result);
|
| - }
|
| - } else {
|
| - reportEqualKeys = false;
|
| - }
|
| - }
|
| - }
|
| - if (reportEqualKeys) {
|
| - for (Expression key in invalidKeys) {
|
| - _errorReporter.reportErrorForNode(
|
| - StaticWarningCode.EQUAL_KEYS_IN_MAP, key);
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitMethodDeclaration(MethodDeclaration node) {
|
| - super.visitMethodDeclaration(node);
|
| - _validateDefaultValues(node.parameters);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitSwitchStatement(SwitchStatement node) {
|
| - // TODO(paulberry): to minimize error messages, it would be nice to
|
| - // compare all types with the most popular type rather than the first
|
| - // type.
|
| - NodeList<SwitchMember> switchMembers = node.members;
|
| - bool foundError = false;
|
| - DartType firstType = null;
|
| - for (SwitchMember switchMember in switchMembers) {
|
| - if (switchMember is SwitchCase) {
|
| - SwitchCase switchCase = switchMember;
|
| - Expression expression = switchCase.expression;
|
| - DartObjectImpl caseResult = _validate(
|
| - expression, CompileTimeErrorCode.NON_CONSTANT_CASE_EXPRESSION);
|
| - if (caseResult != null) {
|
| - _reportErrorIfFromDeferredLibrary(expression,
|
| - CompileTimeErrorCode.NON_CONSTANT_CASE_EXPRESSION_FROM_DEFERRED_LIBRARY);
|
| - DartObject value = caseResult;
|
| - if (firstType == null) {
|
| - firstType = value.type;
|
| - } else {
|
| - DartType nType = value.type;
|
| - if (firstType != nType) {
|
| - _errorReporter.reportErrorForNode(
|
| - CompileTimeErrorCode.INCONSISTENT_CASE_EXPRESSION_TYPES,
|
| - expression, [expression.toSource(), firstType.displayName]);
|
| - foundError = true;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - if (!foundError) {
|
| - _checkForCaseExpressionTypeImplementsEquals(node, firstType);
|
| - }
|
| - return super.visitSwitchStatement(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitVariableDeclaration(VariableDeclaration node) {
|
| - super.visitVariableDeclaration(node);
|
| - Expression initializer = node.initializer;
|
| - if (initializer != null && (node.isConst || node.isFinal)) {
|
| - VariableElementImpl element = node.element as VariableElementImpl;
|
| - EvaluationResultImpl result = element.evaluationResult;
|
| - if (result == null) {
|
| - // Variables marked "const" should have had their values computed by
|
| - // ConstantValueComputer. Other variables will only have had their
|
| - // values computed if the value was needed (e.g. final variables in a
|
| - // class containing const constructors).
|
| - assert(!node.isConst);
|
| - return null;
|
| - }
|
| - _reportErrors(result.errors,
|
| - CompileTimeErrorCode.CONST_INITIALIZED_WITH_NON_CONSTANT_VALUE);
|
| - _reportErrorIfFromDeferredLibrary(initializer,
|
| - CompileTimeErrorCode.CONST_INITIALIZED_WITH_NON_CONSTANT_VALUE_FROM_DEFERRED_LIBRARY);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * This verifies that the passed switch statement does not have a case expression with the
|
| - * operator '==' overridden.
|
| - *
|
| - * @param node the switch statement to evaluate
|
| - * @param type the common type of all 'case' expressions
|
| - * @return `true` if and only if an error code is generated on the passed node
|
| - * See [CompileTimeErrorCode.CASE_EXPRESSION_TYPE_IMPLEMENTS_EQUALS].
|
| - */
|
| - bool _checkForCaseExpressionTypeImplementsEquals(
|
| - SwitchStatement node, DartType type) {
|
| - if (!_implementsEqualsWhenNotAllowed(type)) {
|
| - return false;
|
| - }
|
| - // report error
|
| - _errorReporter.reportErrorForToken(
|
| - CompileTimeErrorCode.CASE_EXPRESSION_TYPE_IMPLEMENTS_EQUALS,
|
| - node.switchKeyword, [type.displayName]);
|
| - return true;
|
| - }
|
| -
|
| - /**
|
| - * @return `true` if given [Type] implements operator <i>==</i>, and it is not
|
| - * <i>int</i> or <i>String</i>.
|
| - */
|
| - bool _implementsEqualsWhenNotAllowed(DartType type) {
|
| - // ignore int or String
|
| - if (type == null || type == _intType || type == _typeProvider.stringType) {
|
| - return false;
|
| - } else if (type == _typeProvider.doubleType) {
|
| - return true;
|
| - }
|
| - // prepare ClassElement
|
| - Element element = type.element;
|
| - if (element is! ClassElement) {
|
| - return false;
|
| - }
|
| - ClassElement classElement = element as ClassElement;
|
| - // lookup for ==
|
| - MethodElement method =
|
| - classElement.lookUpConcreteMethod("==", _currentLibrary);
|
| - if (method == null || method.enclosingElement.type.isObject) {
|
| - return false;
|
| - }
|
| - // there is == that we don't like
|
| - return true;
|
| - }
|
| -
|
| - /**
|
| - * Given some computed [Expression], this method generates the passed [ErrorCode] on
|
| - * the node if its' value consists of information from a deferred library.
|
| - *
|
| - * @param expression the expression to be tested for a deferred library reference
|
| - * @param errorCode the error code to be used if the expression is or consists of a reference to a
|
| - * deferred library
|
| - */
|
| - void _reportErrorIfFromDeferredLibrary(
|
| - Expression expression, ErrorCode errorCode) {
|
| - DeferredLibraryReferenceDetector referenceDetector =
|
| - new DeferredLibraryReferenceDetector();
|
| - expression.accept(referenceDetector);
|
| - if (referenceDetector.result) {
|
| - _errorReporter.reportErrorForNode(errorCode, expression);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Report any errors in the given list. Except for special cases, use the given error code rather
|
| - * than the one reported in the error.
|
| - *
|
| - * @param errors the errors that need to be reported
|
| - * @param errorCode the error code to be used
|
| - */
|
| - void _reportErrors(List<AnalysisError> errors, ErrorCode errorCode) {
|
| - for (AnalysisError data in errors) {
|
| - ErrorCode dataErrorCode = data.errorCode;
|
| - if (identical(dataErrorCode,
|
| - CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION) ||
|
| - identical(
|
| - dataErrorCode, CompileTimeErrorCode.CONST_EVAL_THROWS_IDBZE) ||
|
| - identical(dataErrorCode,
|
| - CompileTimeErrorCode.CONST_EVAL_TYPE_BOOL_NUM_STRING) ||
|
| - identical(dataErrorCode, CompileTimeErrorCode.CONST_EVAL_TYPE_BOOL) ||
|
| - identical(dataErrorCode, CompileTimeErrorCode.CONST_EVAL_TYPE_INT) ||
|
| - identical(dataErrorCode, CompileTimeErrorCode.CONST_EVAL_TYPE_NUM) ||
|
| - identical(dataErrorCode,
|
| - CompileTimeErrorCode.RECURSIVE_COMPILE_TIME_CONSTANT) ||
|
| - identical(dataErrorCode,
|
| - CheckedModeCompileTimeErrorCode.CONST_CONSTRUCTOR_FIELD_TYPE_MISMATCH) ||
|
| - identical(dataErrorCode,
|
| - CheckedModeCompileTimeErrorCode.CONST_CONSTRUCTOR_PARAM_TYPE_MISMATCH) ||
|
| - identical(dataErrorCode,
|
| - CheckedModeCompileTimeErrorCode.VARIABLE_TYPE_MISMATCH)) {
|
| - _errorReporter.reportError(data);
|
| - } else if (errorCode != null) {
|
| - _errorReporter.reportError(new AnalysisError(
|
| - data.source, data.offset, data.length, errorCode));
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Validate that the given expression is a compile time constant. Return the value of the compile
|
| - * time constant, or `null` if the expression is not a compile time constant.
|
| - *
|
| - * @param expression the expression to be validated
|
| - * @param errorCode the error code to be used if the expression is not a compile time constant
|
| - * @return the value of the compile time constant
|
| - */
|
| - DartObjectImpl _validate(Expression expression, ErrorCode errorCode) {
|
| - RecordingErrorListener errorListener = new RecordingErrorListener();
|
| - ErrorReporter subErrorReporter =
|
| - new ErrorReporter(errorListener, _errorReporter.source);
|
| - DartObjectImpl result = expression.accept(new ConstantVisitor(
|
| - new ConstantEvaluationEngine(_typeProvider, declaredVariables),
|
| - subErrorReporter));
|
| - _reportErrors(errorListener.errors, errorCode);
|
| - return result;
|
| - }
|
| -
|
| - /**
|
| - * Validate that if the passed arguments are constant expressions.
|
| - *
|
| - * @param argumentList the argument list to evaluate
|
| - */
|
| - void _validateConstantArguments(ArgumentList argumentList) {
|
| - for (Expression argument in argumentList.arguments) {
|
| - if (argument is NamedExpression) {
|
| - argument = (argument as NamedExpression).expression;
|
| - }
|
| - _validate(
|
| - argument, CompileTimeErrorCode.CONST_WITH_NON_CONSTANT_ARGUMENT);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Validates that the expressions of the given initializers (of a constant constructor) are all
|
| - * compile time constants.
|
| - *
|
| - * @param constructor the constant constructor declaration to validate
|
| - */
|
| - void _validateConstructorInitializers(ConstructorDeclaration constructor) {
|
| - List<ParameterElement> parameterElements =
|
| - constructor.parameters.parameterElements;
|
| - NodeList<ConstructorInitializer> initializers = constructor.initializers;
|
| - for (ConstructorInitializer initializer in initializers) {
|
| - if (initializer is ConstructorFieldInitializer) {
|
| - ConstructorFieldInitializer fieldInitializer = initializer;
|
| - _validateInitializerExpression(
|
| - parameterElements, fieldInitializer.expression);
|
| - }
|
| - if (initializer is RedirectingConstructorInvocation) {
|
| - RedirectingConstructorInvocation invocation = initializer;
|
| - _validateInitializerInvocationArguments(
|
| - parameterElements, invocation.argumentList);
|
| - }
|
| - if (initializer is SuperConstructorInvocation) {
|
| - SuperConstructorInvocation invocation = initializer;
|
| - _validateInitializerInvocationArguments(
|
| - parameterElements, invocation.argumentList);
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Validate that the default value associated with each of the parameters in the given list is a
|
| - * compile time constant.
|
| - *
|
| - * @param parameters the list of parameters to be validated
|
| - */
|
| - void _validateDefaultValues(FormalParameterList parameters) {
|
| - if (parameters == null) {
|
| - return;
|
| - }
|
| - for (FormalParameter parameter in parameters.parameters) {
|
| - if (parameter is DefaultFormalParameter) {
|
| - DefaultFormalParameter defaultParameter = parameter;
|
| - Expression defaultValue = defaultParameter.defaultValue;
|
| - DartObjectImpl result;
|
| - if (defaultValue == null) {
|
| - result =
|
| - new DartObjectImpl(_typeProvider.nullType, NullState.NULL_STATE);
|
| - } else {
|
| - result = _validate(
|
| - defaultValue, CompileTimeErrorCode.NON_CONSTANT_DEFAULT_VALUE);
|
| - if (result != null) {
|
| - _reportErrorIfFromDeferredLibrary(defaultValue,
|
| - CompileTimeErrorCode.NON_CONSTANT_DEFAULT_VALUE_FROM_DEFERRED_LIBRARY);
|
| - }
|
| - }
|
| - VariableElementImpl element = parameter.element as VariableElementImpl;
|
| - element.evaluationResult = new EvaluationResultImpl(result);
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Validates that the expressions of any field initializers in the class declaration are all
|
| - * compile time constants. Since this is only required if the class has a constant constructor,
|
| - * the error is reported at the constructor site.
|
| - *
|
| - * @param classDeclaration the class which should be validated
|
| - * @param errorSite the site at which errors should be reported.
|
| - */
|
| - void _validateFieldInitializers(
|
| - ClassDeclaration classDeclaration, ConstructorDeclaration errorSite) {
|
| - NodeList<ClassMember> members = classDeclaration.members;
|
| - for (ClassMember member in members) {
|
| - if (member is FieldDeclaration) {
|
| - FieldDeclaration fieldDeclaration = member;
|
| - if (!fieldDeclaration.isStatic) {
|
| - for (VariableDeclaration variableDeclaration
|
| - in fieldDeclaration.fields.variables) {
|
| - Expression initializer = variableDeclaration.initializer;
|
| - if (initializer != null) {
|
| - // Ignore any errors produced during validation--if the constant
|
| - // can't be eavluated we'll just report a single error.
|
| - AnalysisErrorListener errorListener =
|
| - AnalysisErrorListener.NULL_LISTENER;
|
| - ErrorReporter subErrorReporter =
|
| - new ErrorReporter(errorListener, _errorReporter.source);
|
| - DartObjectImpl result = initializer.accept(new ConstantVisitor(
|
| - new ConstantEvaluationEngine(
|
| - _typeProvider, declaredVariables), subErrorReporter));
|
| - if (result == null) {
|
| - _errorReporter.reportErrorForNode(
|
| - CompileTimeErrorCode.CONST_CONSTRUCTOR_WITH_FIELD_INITIALIZED_BY_NON_CONST,
|
| - errorSite, [variableDeclaration.name.name]);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Validates that the given expression is a compile time constant.
|
| - *
|
| - * @param parameterElements the elements of parameters of constant constructor, they are
|
| - * considered as a valid potentially constant expressions
|
| - * @param expression the expression to validate
|
| - */
|
| - void _validateInitializerExpression(
|
| - List<ParameterElement> parameterElements, Expression expression) {
|
| - RecordingErrorListener errorListener = new RecordingErrorListener();
|
| - ErrorReporter subErrorReporter =
|
| - new ErrorReporter(errorListener, _errorReporter.source);
|
| - DartObjectImpl result = expression.accept(
|
| - new _ConstantVerifier_validateInitializerExpression(_typeProvider,
|
| - subErrorReporter, this, parameterElements, declaredVariables));
|
| - _reportErrors(errorListener.errors,
|
| - CompileTimeErrorCode.NON_CONSTANT_VALUE_IN_INITIALIZER);
|
| - if (result != null) {
|
| - _reportErrorIfFromDeferredLibrary(expression,
|
| - CompileTimeErrorCode.NON_CONSTANT_VALUE_IN_INITIALIZER_FROM_DEFERRED_LIBRARY);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Validates that all of the arguments of a constructor initializer are compile time constants.
|
| - *
|
| - * @param parameterElements the elements of parameters of constant constructor, they are
|
| - * considered as a valid potentially constant expressions
|
| - * @param argumentList the argument list to validate
|
| - */
|
| - void _validateInitializerInvocationArguments(
|
| - List<ParameterElement> parameterElements, ArgumentList argumentList) {
|
| - if (argumentList == null) {
|
| - return;
|
| - }
|
| - for (Expression argument in argumentList.arguments) {
|
| - _validateInitializerExpression(parameterElements, argument);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Validate that if the passed instance creation is 'const' then all its arguments are constant
|
| - * expressions.
|
| - *
|
| - * @param node the instance creation evaluate
|
| - */
|
| - void _validateInstanceCreationArguments(InstanceCreationExpression node) {
|
| - if (!node.isConst) {
|
| - return;
|
| - }
|
| - ArgumentList argumentList = node.argumentList;
|
| - if (argumentList == null) {
|
| - return;
|
| - }
|
| - _validateConstantArguments(argumentList);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `Dart2JSVerifier` traverse an AST structure looking for hints for
|
| - * code that will be compiled to JS, such as [HintCode.IS_DOUBLE].
|
| - */
|
| -class Dart2JSVerifier extends RecursiveAstVisitor<Object> {
|
| - /**
|
| - * The name of the `double` type.
|
| - */
|
| - static String _DOUBLE_TYPE_NAME = "double";
|
| -
|
| - /**
|
| - * The error reporter by which errors will be reported.
|
| - */
|
| - final ErrorReporter _errorReporter;
|
| -
|
| - /**
|
| - * Create a new instance of the [Dart2JSVerifier].
|
| - *
|
| - * @param errorReporter the error reporter
|
| - */
|
| - Dart2JSVerifier(this._errorReporter);
|
| -
|
| - @override
|
| - Object visitIsExpression(IsExpression node) {
|
| - _checkForIsDoubleHints(node);
|
| - return super.visitIsExpression(node);
|
| - }
|
| -
|
| - /**
|
| - * Check for instances of `x is double`, `x is int`, `x is! double` and
|
| - * `x is! int`.
|
| - *
|
| - * @param node the is expression to check
|
| - * @return `true` if and only if a hint code is generated on the passed node
|
| - * See [HintCode.IS_DOUBLE],
|
| - * [HintCode.IS_INT],
|
| - * [HintCode.IS_NOT_DOUBLE], and
|
| - * [HintCode.IS_NOT_INT].
|
| - */
|
| - bool _checkForIsDoubleHints(IsExpression node) {
|
| - TypeName typeName = node.type;
|
| - DartType type = typeName.type;
|
| - if (type != null && type.element != null) {
|
| - Element element = type.element;
|
| - String typeNameStr = element.name;
|
| - LibraryElement libraryElement = element.library;
|
| - // if (typeNameStr.equals(INT_TYPE_NAME) && libraryElement != null
|
| - // && libraryElement.isDartCore()) {
|
| - // if (node.getNotOperator() == null) {
|
| - // errorReporter.reportError(HintCode.IS_INT, node);
|
| - // } else {
|
| - // errorReporter.reportError(HintCode.IS_NOT_INT, node);
|
| - // }
|
| - // return true;
|
| - // } else
|
| - if (typeNameStr == _DOUBLE_TYPE_NAME &&
|
| - libraryElement != null &&
|
| - libraryElement.isDartCore) {
|
| - if (node.notOperator == null) {
|
| - _errorReporter.reportErrorForNode(HintCode.IS_DOUBLE, node);
|
| - } else {
|
| - _errorReporter.reportErrorForNode(HintCode.IS_NOT_DOUBLE, node);
|
| - }
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `DeadCodeVerifier` traverse an AST structure looking for cases of
|
| - * [HintCode.DEAD_CODE].
|
| - */
|
| -class DeadCodeVerifier extends RecursiveAstVisitor<Object> {
|
| - /**
|
| - * The error reporter by which errors will be reported.
|
| - */
|
| - final ErrorReporter _errorReporter;
|
| -
|
| - /**
|
| - * Create a new instance of the [DeadCodeVerifier].
|
| - *
|
| - * @param errorReporter the error reporter
|
| - */
|
| - DeadCodeVerifier(this._errorReporter);
|
| -
|
| - @override
|
| - Object visitBinaryExpression(BinaryExpression node) {
|
| - sc.Token operator = node.operator;
|
| - bool isAmpAmp = operator.type == sc.TokenType.AMPERSAND_AMPERSAND;
|
| - bool isBarBar = operator.type == sc.TokenType.BAR_BAR;
|
| - if (isAmpAmp || isBarBar) {
|
| - Expression lhsCondition = node.leftOperand;
|
| - if (!_isDebugConstant(lhsCondition)) {
|
| - EvaluationResultImpl lhsResult = _getConstantBooleanValue(lhsCondition);
|
| - if (lhsResult != null) {
|
| - if (lhsResult.value.isTrue && isBarBar) {
|
| - // report error on else block: true || !e!
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.DEAD_CODE, node.rightOperand);
|
| - // only visit the LHS:
|
| - _safelyVisit(lhsCondition);
|
| - return null;
|
| - } else if (lhsResult.value.isFalse && isAmpAmp) {
|
| - // report error on if block: false && !e!
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.DEAD_CODE, node.rightOperand);
|
| - // only visit the LHS:
|
| - _safelyVisit(lhsCondition);
|
| - return null;
|
| - }
|
| - }
|
| - }
|
| - // How do we want to handle the RHS? It isn't dead code, but "pointless"
|
| - // or "obscure"...
|
| -// Expression rhsCondition = node.getRightOperand();
|
| -// ValidResult rhsResult = getConstantBooleanValue(rhsCondition);
|
| -// if (rhsResult != null) {
|
| -// if (rhsResult == ValidResult.RESULT_TRUE && isBarBar) {
|
| -// // report error on else block: !e! || true
|
| -// errorReporter.reportError(HintCode.DEAD_CODE, node.getRightOperand());
|
| -// // only visit the RHS:
|
| -// safelyVisit(rhsCondition);
|
| -// return null;
|
| -// } else if (rhsResult == ValidResult.RESULT_FALSE && isAmpAmp) {
|
| -// // report error on if block: !e! && false
|
| -// errorReporter.reportError(HintCode.DEAD_CODE, node.getRightOperand());
|
| -// // only visit the RHS:
|
| -// safelyVisit(rhsCondition);
|
| -// return null;
|
| -// }
|
| -// }
|
| - }
|
| - return super.visitBinaryExpression(node);
|
| - }
|
| -
|
| - /**
|
| - * For each [Block], this method reports and error on all statements between the end of the
|
| - * block and the first return statement (assuming there it is not at the end of the block.)
|
| - *
|
| - * @param node the block to evaluate
|
| - */
|
| - @override
|
| - Object visitBlock(Block node) {
|
| - NodeList<Statement> statements = node.statements;
|
| - _checkForDeadStatementsInNodeList(statements);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitConditionalExpression(ConditionalExpression node) {
|
| - Expression conditionExpression = node.condition;
|
| - _safelyVisit(conditionExpression);
|
| - if (!_isDebugConstant(conditionExpression)) {
|
| - EvaluationResultImpl result =
|
| - _getConstantBooleanValue(conditionExpression);
|
| - if (result != null) {
|
| - if (result.value.isTrue) {
|
| - // report error on else block: true ? 1 : !2!
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.DEAD_CODE, node.elseExpression);
|
| - _safelyVisit(node.thenExpression);
|
| - return null;
|
| - } else {
|
| - // report error on if block: false ? !1! : 2
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.DEAD_CODE, node.thenExpression);
|
| - _safelyVisit(node.elseExpression);
|
| - return null;
|
| - }
|
| - }
|
| - }
|
| - return super.visitConditionalExpression(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitIfStatement(IfStatement node) {
|
| - Expression conditionExpression = node.condition;
|
| - _safelyVisit(conditionExpression);
|
| - if (!_isDebugConstant(conditionExpression)) {
|
| - EvaluationResultImpl result =
|
| - _getConstantBooleanValue(conditionExpression);
|
| - if (result != null) {
|
| - if (result.value.isTrue) {
|
| - // report error on else block: if(true) {} else {!}
|
| - Statement elseStatement = node.elseStatement;
|
| - if (elseStatement != null) {
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.DEAD_CODE, elseStatement);
|
| - _safelyVisit(node.thenStatement);
|
| - return null;
|
| - }
|
| - } else {
|
| - // report error on if block: if (false) {!} else {}
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.DEAD_CODE, node.thenStatement);
|
| - _safelyVisit(node.elseStatement);
|
| - return null;
|
| - }
|
| - }
|
| - }
|
| - return super.visitIfStatement(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitSwitchCase(SwitchCase node) {
|
| - _checkForDeadStatementsInNodeList(node.statements);
|
| - return super.visitSwitchCase(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitSwitchDefault(SwitchDefault node) {
|
| - _checkForDeadStatementsInNodeList(node.statements);
|
| - return super.visitSwitchDefault(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitTryStatement(TryStatement node) {
|
| - _safelyVisit(node.body);
|
| - _safelyVisit(node.finallyBlock);
|
| - NodeList<CatchClause> catchClauses = node.catchClauses;
|
| - int numOfCatchClauses = catchClauses.length;
|
| - List<DartType> visitedTypes = new List<DartType>();
|
| - for (int i = 0; i < numOfCatchClauses; i++) {
|
| - CatchClause catchClause = catchClauses[i];
|
| - if (catchClause.onKeyword != null) {
|
| - // on-catch clause found, verify that the exception type is not a
|
| - // subtype of a previous on-catch exception type
|
| - TypeName typeName = catchClause.exceptionType;
|
| - if (typeName != null && typeName.type != null) {
|
| - DartType currentType = typeName.type;
|
| - if (currentType.isObject) {
|
| - // Found catch clause clause that has Object as an exception type,
|
| - // this is equivalent to having a catch clause that doesn't have an
|
| - // exception type, visit the block, but generate an error on any
|
| - // following catch clauses (and don't visit them).
|
| - _safelyVisit(catchClause);
|
| - if (i + 1 != numOfCatchClauses) {
|
| - // this catch clause is not the last in the try statement
|
| - CatchClause nextCatchClause = catchClauses[i + 1];
|
| - CatchClause lastCatchClause = catchClauses[numOfCatchClauses - 1];
|
| - int offset = nextCatchClause.offset;
|
| - int length = lastCatchClause.end - offset;
|
| - _errorReporter.reportErrorForOffset(
|
| - HintCode.DEAD_CODE_CATCH_FOLLOWING_CATCH, offset, length);
|
| - return null;
|
| - }
|
| - }
|
| - for (DartType type in visitedTypes) {
|
| - if (currentType.isSubtypeOf(type)) {
|
| - CatchClause lastCatchClause = catchClauses[numOfCatchClauses - 1];
|
| - int offset = catchClause.offset;
|
| - int length = lastCatchClause.end - offset;
|
| - _errorReporter.reportErrorForOffset(
|
| - HintCode.DEAD_CODE_ON_CATCH_SUBTYPE, offset, length, [
|
| - currentType.displayName,
|
| - type.displayName
|
| - ]);
|
| - return null;
|
| - }
|
| - }
|
| - visitedTypes.add(currentType);
|
| - }
|
| - _safelyVisit(catchClause);
|
| - } else {
|
| - // Found catch clause clause that doesn't have an exception type,
|
| - // visit the block, but generate an error on any following catch clauses
|
| - // (and don't visit them).
|
| - _safelyVisit(catchClause);
|
| - if (i + 1 != numOfCatchClauses) {
|
| - // this catch clause is not the last in the try statement
|
| - CatchClause nextCatchClause = catchClauses[i + 1];
|
| - CatchClause lastCatchClause = catchClauses[numOfCatchClauses - 1];
|
| - int offset = nextCatchClause.offset;
|
| - int length = lastCatchClause.end - offset;
|
| - _errorReporter.reportErrorForOffset(
|
| - HintCode.DEAD_CODE_CATCH_FOLLOWING_CATCH, offset, length);
|
| - return null;
|
| - }
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitWhileStatement(WhileStatement node) {
|
| - Expression conditionExpression = node.condition;
|
| - _safelyVisit(conditionExpression);
|
| - if (!_isDebugConstant(conditionExpression)) {
|
| - EvaluationResultImpl result =
|
| - _getConstantBooleanValue(conditionExpression);
|
| - if (result != null) {
|
| - if (result.value.isFalse) {
|
| - // report error on if block: while (false) {!}
|
| - _errorReporter.reportErrorForNode(HintCode.DEAD_CODE, node.body);
|
| - return null;
|
| - }
|
| - }
|
| - }
|
| - _safelyVisit(node.body);
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Given some [NodeList] of [Statement]s, from either a [Block] or
|
| - * [SwitchMember], this loops through the list in reverse order searching for statements
|
| - * after a return, unlabeled break or unlabeled continue statement to mark them as dead code.
|
| - *
|
| - * @param statements some ordered list of statements in a [Block] or [SwitchMember]
|
| - */
|
| - void _checkForDeadStatementsInNodeList(NodeList<Statement> statements) {
|
| - int size = statements.length;
|
| - for (int i = 0; i < size; i++) {
|
| - Statement currentStatement = statements[i];
|
| - _safelyVisit(currentStatement);
|
| - bool returnOrBreakingStatement = currentStatement is ReturnStatement ||
|
| - (currentStatement is BreakStatement &&
|
| - currentStatement.label == null) ||
|
| - (currentStatement is ContinueStatement &&
|
| - currentStatement.label == null);
|
| - if (returnOrBreakingStatement && i != size - 1) {
|
| - Statement nextStatement = statements[i + 1];
|
| - Statement lastStatement = statements[size - 1];
|
| - int offset = nextStatement.offset;
|
| - int length = lastStatement.end - offset;
|
| - _errorReporter.reportErrorForOffset(HintCode.DEAD_CODE, offset, length);
|
| - return;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Given some [Expression], this method returns [ValidResult.RESULT_TRUE] if it is
|
| - * `true`, [ValidResult.RESULT_FALSE] if it is `false`, or `null` if the
|
| - * expression is not a constant boolean value.
|
| - *
|
| - * @param expression the expression to evaluate
|
| - * @return [ValidResult.RESULT_TRUE] if it is `true`, [ValidResult.RESULT_FALSE]
|
| - * if it is `false`, or `null` if the expression is not a constant boolean
|
| - * value
|
| - */
|
| - EvaluationResultImpl _getConstantBooleanValue(Expression expression) {
|
| - if (expression is BooleanLiteral) {
|
| - if (expression.value) {
|
| - return new EvaluationResultImpl(
|
| - new DartObjectImpl(null, BoolState.from(true)));
|
| - } else {
|
| - return new EvaluationResultImpl(
|
| - new DartObjectImpl(null, BoolState.from(false)));
|
| - }
|
| - }
|
| - // Don't consider situations where we could evaluate to a constant boolean
|
| - // expression with the ConstantVisitor
|
| - // else {
|
| - // EvaluationResultImpl result = expression.accept(new ConstantVisitor());
|
| - // if (result == ValidResult.RESULT_TRUE) {
|
| - // return ValidResult.RESULT_TRUE;
|
| - // } else if (result == ValidResult.RESULT_FALSE) {
|
| - // return ValidResult.RESULT_FALSE;
|
| - // }
|
| - // return null;
|
| - // }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Return `true` if and only if the passed expression is resolved to a constant variable.
|
| - *
|
| - * @param expression some conditional expression
|
| - * @return `true` if and only if the passed expression is resolved to a constant variable
|
| - */
|
| - bool _isDebugConstant(Expression expression) {
|
| - Element element = null;
|
| - if (expression is Identifier) {
|
| - Identifier identifier = expression;
|
| - element = identifier.staticElement;
|
| - } else if (expression is PropertyAccess) {
|
| - PropertyAccess propertyAccess = expression;
|
| - element = propertyAccess.propertyName.staticElement;
|
| - }
|
| - if (element is PropertyAccessorElement) {
|
| - PropertyInducingElement variable = element.variable;
|
| - return variable != null && variable.isConst;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * If the given node is not `null`, visit this instance of the dead code verifier.
|
| - *
|
| - * @param node the node to be visited
|
| - */
|
| - void _safelyVisit(AstNode node) {
|
| - if (node != null) {
|
| - node.accept(this);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `DeclarationResolver` are used to resolve declarations in an AST
|
| - * structure to already built elements.
|
| - */
|
| -class DeclarationResolver extends RecursiveAstVisitor<Object> {
|
| - /**
|
| - * The compilation unit containing the AST nodes being visited.
|
| - */
|
| - CompilationUnitElement _enclosingUnit;
|
| -
|
| - /**
|
| - * The function type alias containing the AST nodes being visited, or `null` if we are not
|
| - * in the scope of a function type alias.
|
| - */
|
| - FunctionTypeAliasElement _enclosingAlias;
|
| -
|
| - /**
|
| - * The class containing the AST nodes being visited, or `null` if we are not in the scope of
|
| - * a class.
|
| - */
|
| - ClassElement _enclosingClass;
|
| -
|
| - /**
|
| - * The method or function containing the AST nodes being visited, or `null` if we are not in
|
| - * the scope of a method or function.
|
| - */
|
| - ExecutableElement _enclosingExecutable;
|
| -
|
| - /**
|
| - * The parameter containing the AST nodes being visited, or `null` if we are not in the
|
| - * scope of a parameter.
|
| - */
|
| - ParameterElement _enclosingParameter;
|
| -
|
| - /**
|
| - * Resolve the declarations within the given compilation unit to the elements rooted at the given
|
| - * element.
|
| - *
|
| - * @param unit the compilation unit to be resolved
|
| - * @param element the root of the element model used to resolve the AST nodes
|
| - */
|
| - void resolve(CompilationUnit unit, CompilationUnitElement element) {
|
| - _enclosingUnit = element;
|
| - unit.element = element;
|
| - unit.accept(this);
|
| - }
|
| -
|
| - @override
|
| - Object visitCatchClause(CatchClause node) {
|
| - SimpleIdentifier exceptionParameter = node.exceptionParameter;
|
| - if (exceptionParameter != null) {
|
| - List<LocalVariableElement> localVariables =
|
| - _enclosingExecutable.localVariables;
|
| - _findIdentifier(localVariables, exceptionParameter);
|
| - SimpleIdentifier stackTraceParameter = node.stackTraceParameter;
|
| - if (stackTraceParameter != null) {
|
| - _findIdentifier(localVariables, stackTraceParameter);
|
| - }
|
| - }
|
| - return super.visitCatchClause(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitClassDeclaration(ClassDeclaration node) {
|
| - ClassElement outerClass = _enclosingClass;
|
| - try {
|
| - SimpleIdentifier className = node.name;
|
| - _enclosingClass = _findIdentifier(_enclosingUnit.types, className);
|
| - return super.visitClassDeclaration(node);
|
| - } finally {
|
| - _enclosingClass = outerClass;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitClassTypeAlias(ClassTypeAlias node) {
|
| - ClassElement outerClass = _enclosingClass;
|
| - try {
|
| - SimpleIdentifier className = node.name;
|
| - _enclosingClass = _findIdentifier(_enclosingUnit.types, className);
|
| - return super.visitClassTypeAlias(node);
|
| - } finally {
|
| - _enclosingClass = outerClass;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| - ExecutableElement outerExecutable = _enclosingExecutable;
|
| - try {
|
| - SimpleIdentifier constructorName = node.name;
|
| - if (constructorName == null) {
|
| - _enclosingExecutable = _enclosingClass.unnamedConstructor;
|
| - } else {
|
| - _enclosingExecutable =
|
| - _enclosingClass.getNamedConstructor(constructorName.name);
|
| - constructorName.staticElement = _enclosingExecutable;
|
| - }
|
| - node.element = _enclosingExecutable as ConstructorElement;
|
| - return super.visitConstructorDeclaration(node);
|
| - } finally {
|
| - _enclosingExecutable = outerExecutable;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitDeclaredIdentifier(DeclaredIdentifier node) {
|
| - SimpleIdentifier variableName = node.identifier;
|
| - _findIdentifier(_enclosingExecutable.localVariables, variableName);
|
| - return super.visitDeclaredIdentifier(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitDefaultFormalParameter(DefaultFormalParameter node) {
|
| - SimpleIdentifier parameterName = node.parameter.identifier;
|
| - ParameterElement element = _getElementForParameter(node, parameterName);
|
| - Expression defaultValue = node.defaultValue;
|
| - if (defaultValue != null) {
|
| - ExecutableElement outerExecutable = _enclosingExecutable;
|
| - try {
|
| - if (element == null) {
|
| - // TODO(brianwilkerson) Report this internal error.
|
| - } else {
|
| - _enclosingExecutable = element.initializer;
|
| - }
|
| - defaultValue.accept(this);
|
| - } finally {
|
| - _enclosingExecutable = outerExecutable;
|
| - }
|
| - }
|
| - ParameterElement outerParameter = _enclosingParameter;
|
| - try {
|
| - _enclosingParameter = element;
|
| - return super.visitDefaultFormalParameter(node);
|
| - } finally {
|
| - _enclosingParameter = outerParameter;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitEnumDeclaration(EnumDeclaration node) {
|
| - ClassElement enclosingEnum =
|
| - _findIdentifier(_enclosingUnit.enums, node.name);
|
| - List<FieldElement> constants = enclosingEnum.fields;
|
| - for (EnumConstantDeclaration constant in node.constants) {
|
| - _findIdentifier(constants, constant.name);
|
| - }
|
| - return super.visitEnumDeclaration(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitExportDirective(ExportDirective node) {
|
| - String uri = _getStringValue(node.uri);
|
| - if (uri != null) {
|
| - LibraryElement library = _enclosingUnit.library;
|
| - ExportElement exportElement = _findExport(library.exports,
|
| - _enclosingUnit.context.sourceFactory.resolveUri(
|
| - _enclosingUnit.source, uri));
|
| - node.element = exportElement;
|
| - }
|
| - return super.visitExportDirective(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitFieldFormalParameter(FieldFormalParameter node) {
|
| - if (node.parent is! DefaultFormalParameter) {
|
| - SimpleIdentifier parameterName = node.identifier;
|
| - ParameterElement element = _getElementForParameter(node, parameterName);
|
| - ParameterElement outerParameter = _enclosingParameter;
|
| - try {
|
| - _enclosingParameter = element;
|
| - return super.visitFieldFormalParameter(node);
|
| - } finally {
|
| - _enclosingParameter = outerParameter;
|
| - }
|
| - } else {
|
| - return super.visitFieldFormalParameter(node);
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| - ExecutableElement outerExecutable = _enclosingExecutable;
|
| - try {
|
| - SimpleIdentifier functionName = node.name;
|
| - sc.Token property = node.propertyKeyword;
|
| - if (property == null) {
|
| - if (_enclosingExecutable != null) {
|
| - _enclosingExecutable =
|
| - _findIdentifier(_enclosingExecutable.functions, functionName);
|
| - } else {
|
| - _enclosingExecutable =
|
| - _findIdentifier(_enclosingUnit.functions, functionName);
|
| - }
|
| - } else {
|
| - PropertyAccessorElement accessor =
|
| - _findIdentifier(_enclosingUnit.accessors, functionName);
|
| - if ((property as sc.KeywordToken).keyword == sc.Keyword.SET) {
|
| - accessor = accessor.variable.setter;
|
| - functionName.staticElement = accessor;
|
| - }
|
| - _enclosingExecutable = accessor;
|
| - }
|
| - node.functionExpression.element = _enclosingExecutable;
|
| - return super.visitFunctionDeclaration(node);
|
| - } finally {
|
| - _enclosingExecutable = outerExecutable;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionExpression(FunctionExpression node) {
|
| - if (node.parent is! FunctionDeclaration) {
|
| - FunctionElement element =
|
| - _findAtOffset(_enclosingExecutable.functions, node.beginToken.offset);
|
| - node.element = element;
|
| - }
|
| - ExecutableElement outerExecutable = _enclosingExecutable;
|
| - try {
|
| - _enclosingExecutable = node.element;
|
| - return super.visitFunctionExpression(node);
|
| - } finally {
|
| - _enclosingExecutable = outerExecutable;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionTypeAlias(FunctionTypeAlias node) {
|
| - FunctionTypeAliasElement outerAlias = _enclosingAlias;
|
| - try {
|
| - SimpleIdentifier aliasName = node.name;
|
| - _enclosingAlias =
|
| - _findIdentifier(_enclosingUnit.functionTypeAliases, aliasName);
|
| - return super.visitFunctionTypeAlias(node);
|
| - } finally {
|
| - _enclosingAlias = outerAlias;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
|
| - if (node.parent is! DefaultFormalParameter) {
|
| - SimpleIdentifier parameterName = node.identifier;
|
| - ParameterElement element = _getElementForParameter(node, parameterName);
|
| - ParameterElement outerParameter = _enclosingParameter;
|
| - try {
|
| - _enclosingParameter = element;
|
| - return super.visitFunctionTypedFormalParameter(node);
|
| - } finally {
|
| - _enclosingParameter = outerParameter;
|
| - }
|
| - } else {
|
| - return super.visitFunctionTypedFormalParameter(node);
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitImportDirective(ImportDirective node) {
|
| - String uri = _getStringValue(node.uri);
|
| - if (uri != null) {
|
| - LibraryElement library = _enclosingUnit.library;
|
| - ImportElement importElement = _findImport(library.imports,
|
| - _enclosingUnit.context.sourceFactory.resolveUri(
|
| - _enclosingUnit.source, uri), node.prefix);
|
| - node.element = importElement;
|
| - }
|
| - return super.visitImportDirective(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitLabeledStatement(LabeledStatement node) {
|
| - for (Label label in node.labels) {
|
| - SimpleIdentifier labelName = label.label;
|
| - _findIdentifier(_enclosingExecutable.labels, labelName);
|
| - }
|
| - return super.visitLabeledStatement(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitLibraryDirective(LibraryDirective node) {
|
| - node.element = _enclosingUnit.library;
|
| - return super.visitLibraryDirective(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitMethodDeclaration(MethodDeclaration node) {
|
| - ExecutableElement outerExecutable = _enclosingExecutable;
|
| - try {
|
| - sc.Token property = node.propertyKeyword;
|
| - SimpleIdentifier methodName = node.name;
|
| - String nameOfMethod = methodName.name;
|
| - if (property == null) {
|
| - _enclosingExecutable = _findWithNameAndOffset(
|
| - _enclosingClass.methods, nameOfMethod, methodName.offset);
|
| - methodName.staticElement = _enclosingExecutable;
|
| - } else {
|
| - PropertyAccessorElement accessor =
|
| - _findIdentifier(_enclosingClass.accessors, methodName);
|
| - if ((property as sc.KeywordToken).keyword == sc.Keyword.SET) {
|
| - accessor = accessor.variable.setter;
|
| - methodName.staticElement = accessor;
|
| - }
|
| - _enclosingExecutable = accessor;
|
| - }
|
| - return super.visitMethodDeclaration(node);
|
| - } finally {
|
| - _enclosingExecutable = outerExecutable;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitPartDirective(PartDirective node) {
|
| - String uri = _getStringValue(node.uri);
|
| - if (uri != null) {
|
| - Source partSource = _enclosingUnit.context.sourceFactory.resolveUri(
|
| - _enclosingUnit.source, uri);
|
| - node.element = _findPart(_enclosingUnit.library.parts, partSource);
|
| - }
|
| - return super.visitPartDirective(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitPartOfDirective(PartOfDirective node) {
|
| - node.element = _enclosingUnit.library;
|
| - return super.visitPartOfDirective(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitSimpleFormalParameter(SimpleFormalParameter node) {
|
| - if (node.parent is! DefaultFormalParameter) {
|
| - SimpleIdentifier parameterName = node.identifier;
|
| - ParameterElement element = _getElementForParameter(node, parameterName);
|
| - ParameterElement outerParameter = _enclosingParameter;
|
| - try {
|
| - _enclosingParameter = element;
|
| - return super.visitSimpleFormalParameter(node);
|
| - } finally {
|
| - _enclosingParameter = outerParameter;
|
| - }
|
| - } else {}
|
| - return super.visitSimpleFormalParameter(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitSwitchCase(SwitchCase node) {
|
| - for (Label label in node.labels) {
|
| - SimpleIdentifier labelName = label.label;
|
| - _findIdentifier(_enclosingExecutable.labels, labelName);
|
| - }
|
| - return super.visitSwitchCase(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitSwitchDefault(SwitchDefault node) {
|
| - for (Label label in node.labels) {
|
| - SimpleIdentifier labelName = label.label;
|
| - _findIdentifier(_enclosingExecutable.labels, labelName);
|
| - }
|
| - return super.visitSwitchDefault(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitTypeParameter(TypeParameter node) {
|
| - SimpleIdentifier parameterName = node.name;
|
| - if (_enclosingClass != null) {
|
| - _findIdentifier(_enclosingClass.typeParameters, parameterName);
|
| - } else if (_enclosingAlias != null) {
|
| - _findIdentifier(_enclosingAlias.typeParameters, parameterName);
|
| - }
|
| - return super.visitTypeParameter(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitVariableDeclaration(VariableDeclaration node) {
|
| - VariableElement element = null;
|
| - SimpleIdentifier variableName = node.name;
|
| - if (_enclosingExecutable != null) {
|
| - element =
|
| - _findIdentifier(_enclosingExecutable.localVariables, variableName);
|
| - }
|
| - if (element == null && _enclosingClass != null) {
|
| - element = _findIdentifier(_enclosingClass.fields, variableName);
|
| - }
|
| - if (element == null && _enclosingUnit != null) {
|
| - element = _findIdentifier(_enclosingUnit.topLevelVariables, variableName);
|
| - }
|
| - Expression initializer = node.initializer;
|
| - if (initializer != null) {
|
| - ExecutableElement outerExecutable = _enclosingExecutable;
|
| - try {
|
| - if (element == null) {
|
| - // TODO(brianwilkerson) Report this internal error.
|
| - } else {
|
| - _enclosingExecutable = element.initializer;
|
| - }
|
| - return super.visitVariableDeclaration(node);
|
| - } finally {
|
| - _enclosingExecutable = outerExecutable;
|
| - }
|
| - }
|
| - return super.visitVariableDeclaration(node);
|
| - }
|
| -
|
| - /**
|
| - * Return the element in the given array of elements that was created for the declaration at the
|
| - * given offset. This method should only be used when there is no name
|
| - *
|
| - * @param elements the elements of the appropriate kind that exist in the current context
|
| - * @param offset the offset of the name of the element to be returned
|
| - * @return the element at the given offset
|
| - */
|
| - Element _findAtOffset(List<Element> elements, int offset) =>
|
| - _findWithNameAndOffset(elements, "", offset);
|
| -
|
| - /**
|
| - * Return the export element from the given array whose library has the given source, or
|
| - * `null` if there is no such export.
|
| - *
|
| - * @param exports the export elements being searched
|
| - * @param source the source of the library associated with the export element to being searched
|
| - * for
|
| - * @return the export element whose library has the given source
|
| - */
|
| - ExportElement _findExport(List<ExportElement> exports, Source source) {
|
| - for (ExportElement export in exports) {
|
| - if (export.exportedLibrary.source == source) {
|
| - return export;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Return the element in the given array of elements that was created for the declaration with the
|
| - * given name.
|
| - *
|
| - * @param elements the elements of the appropriate kind that exist in the current context
|
| - * @param identifier the name node in the declaration of the element to be returned
|
| - * @return the element created for the declaration with the given name
|
| - */
|
| - Element _findIdentifier(List<Element> elements, SimpleIdentifier identifier) {
|
| - Element element =
|
| - _findWithNameAndOffset(elements, identifier.name, identifier.offset);
|
| - identifier.staticElement = element;
|
| - return element;
|
| - }
|
| -
|
| - /**
|
| - * Return the import element from the given array whose library has the given source and that has
|
| - * the given prefix, or `null` if there is no such import.
|
| - *
|
| - * @param imports the import elements being searched
|
| - * @param source the source of the library associated with the import element to being searched
|
| - * for
|
| - * @param prefix the prefix with which the library was imported
|
| - * @return the import element whose library has the given source and prefix
|
| - */
|
| - ImportElement _findImport(
|
| - List<ImportElement> imports, Source source, SimpleIdentifier prefix) {
|
| - for (ImportElement element in imports) {
|
| - if (element.importedLibrary.source == source) {
|
| - PrefixElement prefixElement = element.prefix;
|
| - if (prefix == null) {
|
| - if (prefixElement == null) {
|
| - return element;
|
| - }
|
| - } else {
|
| - if (prefixElement != null &&
|
| - prefix.name == prefixElement.displayName) {
|
| - return element;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Return the element for the part with the given source, or `null` if there is no element
|
| - * for the given source.
|
| - *
|
| - * @param parts the elements for the parts
|
| - * @param partSource the source for the part whose element is to be returned
|
| - * @return the element for the part with the given source
|
| - */
|
| - CompilationUnitElement _findPart(
|
| - List<CompilationUnitElement> parts, Source partSource) {
|
| - for (CompilationUnitElement part in parts) {
|
| - if (part.source == partSource) {
|
| - return part;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Return the element in the given array of elements that was created for the declaration with the
|
| - * given name at the given offset.
|
| - *
|
| - * @param elements the elements of the appropriate kind that exist in the current context
|
| - * @param name the name of the element to be returned
|
| - * @param offset the offset of the name of the element to be returned
|
| - * @return the element with the given name and offset
|
| - */
|
| - Element _findWithNameAndOffset(
|
| - List<Element> elements, String name, int offset) {
|
| - for (Element element in elements) {
|
| - if (element.nameOffset == offset && element.displayName == name) {
|
| - return element;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Search the most closely enclosing list of parameters for a parameter with the given name.
|
| - *
|
| - * @param node the node defining the parameter with the given name
|
| - * @param parameterName the name of the parameter being searched for
|
| - * @return the element representing the parameter with that name
|
| - */
|
| - ParameterElement _getElementForParameter(
|
| - FormalParameter node, SimpleIdentifier parameterName) {
|
| - List<ParameterElement> parameters = null;
|
| - if (_enclosingParameter != null) {
|
| - parameters = _enclosingParameter.parameters;
|
| - }
|
| - if (parameters == null && _enclosingExecutable != null) {
|
| - parameters = _enclosingExecutable.parameters;
|
| - }
|
| - if (parameters == null && _enclosingAlias != null) {
|
| - parameters = _enclosingAlias.parameters;
|
| - }
|
| - ParameterElement element =
|
| - parameters == null ? null : _findIdentifier(parameters, parameterName);
|
| - if (element == null) {
|
| - StringBuffer buffer = new StringBuffer();
|
| - buffer.writeln("Invalid state found in the Analysis Engine:");
|
| - buffer.writeln(
|
| - "DeclarationResolver.getElementForParameter() is visiting a parameter that does not appear to be in a method or function.");
|
| - buffer.writeln("Ancestors:");
|
| - AstNode parent = node.parent;
|
| - while (parent != null) {
|
| - buffer.writeln(parent.runtimeType.toString());
|
| - buffer.writeln("---------");
|
| - parent = parent.parent;
|
| - }
|
| - AnalysisEngine.instance.logger.logError(buffer.toString(),
|
| - new CaughtException(new AnalysisException(), null));
|
| - }
|
| - return element;
|
| - }
|
| -
|
| - /**
|
| - * Return the value of the given string literal, or `null` if the string is not a constant
|
| - * string without any string interpolation.
|
| - *
|
| - * @param literal the string literal whose value is to be returned
|
| - * @return the value of the given string literal
|
| - */
|
| - String _getStringValue(StringLiteral literal) {
|
| - if (literal is StringInterpolation) {
|
| - return null;
|
| - }
|
| - return literal.stringValue;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `ElementBuilder` traverse an AST structure and build the element
|
| - * model representing the AST structure.
|
| - */
|
| -class ElementBuilder extends RecursiveAstVisitor<Object> {
|
| - /**
|
| - * The element holder associated with the element that is currently being built.
|
| - */
|
| - ElementHolder _currentHolder;
|
| -
|
| - /**
|
| - * A flag indicating whether a variable declaration is in the context of a field declaration.
|
| - */
|
| - bool _inFieldContext = false;
|
| -
|
| - /**
|
| - * A flag indicating whether a variable declaration is within the body of a method or function.
|
| - */
|
| - bool _inFunction = false;
|
| -
|
| - /**
|
| - * A flag indicating whether the class currently being visited can be used as a mixin.
|
| - */
|
| - bool _isValidMixin = false;
|
| -
|
| - /**
|
| - * A collection holding the function types defined in a class that need to have their type
|
| - * arguments set to the types of the type parameters for the class, or `null` if we are not
|
| - * currently processing nodes within a class.
|
| - */
|
| - List<FunctionTypeImpl> _functionTypesToFix = null;
|
| -
|
| - /**
|
| - * A table mapping field names to field elements for the fields defined in the current class, or
|
| - * `null` if we are not in the scope of a class.
|
| - */
|
| - HashMap<String, FieldElement> _fieldMap;
|
| -
|
| - /**
|
| - * Initialize a newly created element builder to build the elements for a compilation unit.
|
| - *
|
| - * @param initialHolder the element holder associated with the compilation unit being built
|
| - */
|
| - ElementBuilder(ElementHolder initialHolder) {
|
| - _currentHolder = initialHolder;
|
| - }
|
| -
|
| - @override
|
| - Object visitBlock(Block node) {
|
| - bool wasInField = _inFieldContext;
|
| - _inFieldContext = false;
|
| - try {
|
| - node.visitChildren(this);
|
| - } finally {
|
| - _inFieldContext = wasInField;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitCatchClause(CatchClause node) {
|
| - SimpleIdentifier exceptionParameter = node.exceptionParameter;
|
| - if (exceptionParameter != null) {
|
| - // exception
|
| - LocalVariableElementImpl exception =
|
| - new LocalVariableElementImpl.forNode(exceptionParameter);
|
| - _currentHolder.addLocalVariable(exception);
|
| - exceptionParameter.staticElement = exception;
|
| - // stack trace
|
| - SimpleIdentifier stackTraceParameter = node.stackTraceParameter;
|
| - if (stackTraceParameter != null) {
|
| - LocalVariableElementImpl stackTrace =
|
| - new LocalVariableElementImpl.forNode(stackTraceParameter);
|
| - _currentHolder.addLocalVariable(stackTrace);
|
| - stackTraceParameter.staticElement = stackTrace;
|
| - }
|
| - }
|
| - return super.visitCatchClause(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitClassDeclaration(ClassDeclaration node) {
|
| - ElementHolder holder = new ElementHolder();
|
| - _isValidMixin = true;
|
| - _functionTypesToFix = new List<FunctionTypeImpl>();
|
| - //
|
| - // Process field declarations before constructors and methods so that field
|
| - // formal parameters can be correctly resolved to their fields.
|
| - //
|
| - ElementHolder previousHolder = _currentHolder;
|
| - _currentHolder = holder;
|
| - try {
|
| - List<ClassMember> nonFields = new List<ClassMember>();
|
| - node.visitChildren(
|
| - new _ElementBuilder_visitClassDeclaration(this, nonFields));
|
| - _buildFieldMap(holder.fieldsWithoutFlushing);
|
| - int count = nonFields.length;
|
| - for (int i = 0; i < count; i++) {
|
| - nonFields[i].accept(this);
|
| - }
|
| - } finally {
|
| - _currentHolder = previousHolder;
|
| - }
|
| - SimpleIdentifier className = node.name;
|
| - ClassElementImpl element = new ClassElementImpl.forNode(className);
|
| - List<TypeParameterElement> typeParameters = holder.typeParameters;
|
| - List<DartType> typeArguments = _createTypeParameterTypes(typeParameters);
|
| - InterfaceTypeImpl interfaceType = new InterfaceTypeImpl(element);
|
| - interfaceType.typeArguments = typeArguments;
|
| - element.type = interfaceType;
|
| - List<ConstructorElement> constructors = holder.constructors;
|
| - if (constructors.length == 0) {
|
| - //
|
| - // Create the default constructor.
|
| - //
|
| - constructors = _createDefaultConstructors(interfaceType);
|
| - }
|
| - element.abstract = node.isAbstract;
|
| - element.accessors = holder.accessors;
|
| - element.constructors = constructors;
|
| - element.fields = holder.fields;
|
| - element.methods = holder.methods;
|
| - element.typeParameters = typeParameters;
|
| - element.validMixin = _isValidMixin;
|
| - int functionTypeCount = _functionTypesToFix.length;
|
| - for (int i = 0; i < functionTypeCount; i++) {
|
| - _functionTypesToFix[i].typeArguments = typeArguments;
|
| - }
|
| - _functionTypesToFix = null;
|
| - _currentHolder.addType(element);
|
| - className.staticElement = element;
|
| - _fieldMap = null;
|
| - holder.validate();
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Implementation of this method should be synchronized with
|
| - * [visitClassDeclaration].
|
| - */
|
| - void visitClassDeclarationIncrementally(ClassDeclaration node) {
|
| - //
|
| - // Process field declarations before constructors and methods so that field
|
| - // formal parameters can be correctly resolved to their fields.
|
| - //
|
| - ClassElement classElement = node.element;
|
| - _buildFieldMap(classElement.fields);
|
| - }
|
| -
|
| - @override
|
| - Object visitClassTypeAlias(ClassTypeAlias node) {
|
| - ElementHolder holder = new ElementHolder();
|
| - _functionTypesToFix = new List<FunctionTypeImpl>();
|
| - _visitChildren(holder, node);
|
| - SimpleIdentifier className = node.name;
|
| - ClassElementImpl element = new ClassElementImpl.forNode(className);
|
| - element.abstract = node.abstractKeyword != null;
|
| - element.mixinApplication = true;
|
| - List<TypeParameterElement> typeParameters = holder.typeParameters;
|
| - element.typeParameters = typeParameters;
|
| - List<DartType> typeArguments = _createTypeParameterTypes(typeParameters);
|
| - InterfaceTypeImpl interfaceType = new InterfaceTypeImpl(element);
|
| - interfaceType.typeArguments = typeArguments;
|
| - element.type = interfaceType;
|
| - // set default constructor
|
| - for (FunctionTypeImpl functionType in _functionTypesToFix) {
|
| - functionType.typeArguments = typeArguments;
|
| - }
|
| - _functionTypesToFix = null;
|
| - _currentHolder.addType(element);
|
| - className.staticElement = element;
|
| - holder.validate();
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| - _isValidMixin = false;
|
| - ElementHolder holder = new ElementHolder();
|
| - bool wasInFunction = _inFunction;
|
| - _inFunction = true;
|
| - try {
|
| - _visitChildren(holder, node);
|
| - } finally {
|
| - _inFunction = wasInFunction;
|
| - }
|
| - FunctionBody body = node.body;
|
| - SimpleIdentifier constructorName = node.name;
|
| - ConstructorElementImpl element =
|
| - new ConstructorElementImpl.forNode(constructorName);
|
| - if (node.externalKeyword != null) {
|
| - element.external = true;
|
| - }
|
| - if (node.factoryKeyword != null) {
|
| - element.factory = true;
|
| - }
|
| - element.functions = holder.functions;
|
| - element.labels = holder.labels;
|
| - element.localVariables = holder.localVariables;
|
| - element.parameters = holder.parameters;
|
| - element.const2 = node.constKeyword != null;
|
| - if (body.isAsynchronous) {
|
| - element.asynchronous = true;
|
| - }
|
| - if (body.isGenerator) {
|
| - element.generator = true;
|
| - }
|
| - _currentHolder.addConstructor(element);
|
| - node.element = element;
|
| - if (constructorName == null) {
|
| - Identifier returnType = node.returnType;
|
| - if (returnType != null) {
|
| - element.nameOffset = returnType.offset;
|
| - element.nameEnd = returnType.end;
|
| - }
|
| - } else {
|
| - constructorName.staticElement = element;
|
| - element.periodOffset = node.period.offset;
|
| - element.nameEnd = constructorName.end;
|
| - }
|
| - holder.validate();
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitDeclaredIdentifier(DeclaredIdentifier node) {
|
| - SimpleIdentifier variableName = node.identifier;
|
| - LocalVariableElementImpl element =
|
| - new LocalVariableElementImpl.forNode(variableName);
|
| - ForEachStatement statement = node.parent as ForEachStatement;
|
| - int declarationEnd = node.offset + node.length;
|
| - int statementEnd = statement.offset + statement.length;
|
| - element.setVisibleRange(declarationEnd, statementEnd - declarationEnd - 1);
|
| - element.const3 = node.isConst;
|
| - element.final2 = node.isFinal;
|
| - _currentHolder.addLocalVariable(element);
|
| - variableName.staticElement = element;
|
| - return super.visitDeclaredIdentifier(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitDefaultFormalParameter(DefaultFormalParameter node) {
|
| - ElementHolder holder = new ElementHolder();
|
| - NormalFormalParameter normalParameter = node.parameter;
|
| - SimpleIdentifier parameterName = normalParameter.identifier;
|
| - ParameterElementImpl parameter;
|
| - if (normalParameter is FieldFormalParameter) {
|
| - parameter = new DefaultFieldFormalParameterElementImpl(parameterName);
|
| - FieldElement field =
|
| - _fieldMap == null ? null : _fieldMap[parameterName.name];
|
| - if (field != null) {
|
| - (parameter as DefaultFieldFormalParameterElementImpl).field = field;
|
| - }
|
| - } else {
|
| - parameter = new DefaultParameterElementImpl(parameterName);
|
| - }
|
| - parameter.const3 = node.isConst;
|
| - parameter.final2 = node.isFinal;
|
| - parameter.parameterKind = node.kind;
|
| - // set initializer, default value range
|
| - Expression defaultValue = node.defaultValue;
|
| - if (defaultValue != null) {
|
| - _visit(holder, defaultValue);
|
| - FunctionElementImpl initializer =
|
| - new FunctionElementImpl.forOffset(defaultValue.beginToken.offset);
|
| - initializer.functions = holder.functions;
|
| - initializer.labels = holder.labels;
|
| - initializer.localVariables = holder.localVariables;
|
| - initializer.parameters = holder.parameters;
|
| - initializer.synthetic = true;
|
| - parameter.initializer = initializer;
|
| - parameter.defaultValueCode = defaultValue.toSource();
|
| - }
|
| - // visible range
|
| - _setParameterVisibleRange(node, parameter);
|
| - _currentHolder.addParameter(parameter);
|
| - parameterName.staticElement = parameter;
|
| - normalParameter.accept(this);
|
| - holder.validate();
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitEnumDeclaration(EnumDeclaration node) {
|
| - SimpleIdentifier enumName = node.name;
|
| - ClassElementImpl enumElement = new ClassElementImpl.forNode(enumName);
|
| - enumElement.enum2 = true;
|
| - InterfaceTypeImpl enumType = new InterfaceTypeImpl(enumElement);
|
| - enumElement.type = enumType;
|
| - // The equivalent code for enums in the spec shows a single constructor,
|
| - // but that constructor is not callable (since it is a compile-time error
|
| - // to subclass, mix-in, implement, or explicitly instantiate an enum). So
|
| - // we represent this as having no constructors.
|
| - enumElement.constructors = ConstructorElement.EMPTY_LIST;
|
| - _currentHolder.addEnum(enumElement);
|
| - enumName.staticElement = enumElement;
|
| - return super.visitEnumDeclaration(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitFieldDeclaration(FieldDeclaration node) {
|
| - bool wasInField = _inFieldContext;
|
| - _inFieldContext = true;
|
| - try {
|
| - node.visitChildren(this);
|
| - } finally {
|
| - _inFieldContext = wasInField;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFieldFormalParameter(FieldFormalParameter node) {
|
| - if (node.parent is! DefaultFormalParameter) {
|
| - SimpleIdentifier parameterName = node.identifier;
|
| - FieldElement field =
|
| - _fieldMap == null ? null : _fieldMap[parameterName.name];
|
| - FieldFormalParameterElementImpl parameter =
|
| - new FieldFormalParameterElementImpl(parameterName);
|
| - parameter.const3 = node.isConst;
|
| - parameter.final2 = node.isFinal;
|
| - parameter.parameterKind = node.kind;
|
| - if (field != null) {
|
| - parameter.field = field;
|
| - }
|
| - _currentHolder.addParameter(parameter);
|
| - parameterName.staticElement = parameter;
|
| - }
|
| - //
|
| - // The children of this parameter include any parameters defined on the type
|
| - // of this parameter.
|
| - //
|
| - ElementHolder holder = new ElementHolder();
|
| - _visitChildren(holder, node);
|
| - ParameterElementImpl element = node.element;
|
| - element.parameters = holder.parameters;
|
| - element.typeParameters = holder.typeParameters;
|
| - holder.validate();
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| - FunctionExpression expression = node.functionExpression;
|
| - if (expression != null) {
|
| - ElementHolder holder = new ElementHolder();
|
| - bool wasInFunction = _inFunction;
|
| - _inFunction = true;
|
| - try {
|
| - _visitChildren(holder, node);
|
| - } finally {
|
| - _inFunction = wasInFunction;
|
| - }
|
| - FunctionBody body = expression.body;
|
| - sc.Token property = node.propertyKeyword;
|
| - if (property == null || _inFunction) {
|
| - SimpleIdentifier functionName = node.name;
|
| - FunctionElementImpl element =
|
| - new FunctionElementImpl.forNode(functionName);
|
| - if (node.externalKeyword != null) {
|
| - element.external = true;
|
| - }
|
| - element.functions = holder.functions;
|
| - element.labels = holder.labels;
|
| - element.localVariables = holder.localVariables;
|
| - element.parameters = holder.parameters;
|
| - element.typeParameters = holder.typeParameters;
|
| - if (body.isAsynchronous) {
|
| - element.asynchronous = true;
|
| - }
|
| - if (body.isGenerator) {
|
| - element.generator = true;
|
| - }
|
| - if (_inFunction) {
|
| - Block enclosingBlock = node.getAncestor((node) => node is Block);
|
| - if (enclosingBlock != null) {
|
| - int functionEnd = node.offset + node.length;
|
| - int blockEnd = enclosingBlock.offset + enclosingBlock.length;
|
| - element.setVisibleRange(functionEnd, blockEnd - functionEnd - 1);
|
| - }
|
| - }
|
| - _currentHolder.addFunction(element);
|
| - expression.element = element;
|
| - functionName.staticElement = element;
|
| - } else {
|
| - SimpleIdentifier propertyNameNode = node.name;
|
| - if (propertyNameNode == null) {
|
| - // TODO(brianwilkerson) Report this internal error.
|
| - return null;
|
| - }
|
| - String propertyName = propertyNameNode.name;
|
| - TopLevelVariableElementImpl variable = _currentHolder
|
| - .getTopLevelVariable(propertyName) as TopLevelVariableElementImpl;
|
| - if (variable == null) {
|
| - variable = new TopLevelVariableElementImpl(node.name.name, -1);
|
| - variable.final2 = true;
|
| - variable.synthetic = true;
|
| - _currentHolder.addTopLevelVariable(variable);
|
| - }
|
| - if (node.isGetter) {
|
| - PropertyAccessorElementImpl getter =
|
| - new PropertyAccessorElementImpl.forNode(propertyNameNode);
|
| - if (node.externalKeyword != null) {
|
| - getter.external = true;
|
| - }
|
| - getter.functions = holder.functions;
|
| - getter.labels = holder.labels;
|
| - getter.localVariables = holder.localVariables;
|
| - if (body.isAsynchronous) {
|
| - getter.asynchronous = true;
|
| - }
|
| - if (body.isGenerator) {
|
| - getter.generator = true;
|
| - }
|
| - getter.variable = variable;
|
| - getter.getter = true;
|
| - getter.static = true;
|
| - variable.getter = getter;
|
| - _currentHolder.addAccessor(getter);
|
| - expression.element = getter;
|
| - propertyNameNode.staticElement = getter;
|
| - } else {
|
| - PropertyAccessorElementImpl setter =
|
| - new PropertyAccessorElementImpl.forNode(propertyNameNode);
|
| - if (node.externalKeyword != null) {
|
| - setter.external = true;
|
| - }
|
| - setter.functions = holder.functions;
|
| - setter.labels = holder.labels;
|
| - setter.localVariables = holder.localVariables;
|
| - setter.parameters = holder.parameters;
|
| - if (body.isAsynchronous) {
|
| - setter.asynchronous = true;
|
| - }
|
| - if (body.isGenerator) {
|
| - setter.generator = true;
|
| - }
|
| - setter.variable = variable;
|
| - setter.setter = true;
|
| - setter.static = true;
|
| - variable.setter = setter;
|
| - variable.final2 = false;
|
| - _currentHolder.addAccessor(setter);
|
| - expression.element = setter;
|
| - propertyNameNode.staticElement = setter;
|
| - }
|
| - }
|
| - holder.validate();
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionExpression(FunctionExpression node) {
|
| - if (node.parent is FunctionDeclaration) {
|
| - // visitFunctionDeclaration has already created the element for the
|
| - // declaration. We just need to visit children.
|
| - return super.visitFunctionExpression(node);
|
| - }
|
| - ElementHolder holder = new ElementHolder();
|
| - bool wasInFunction = _inFunction;
|
| - _inFunction = true;
|
| - try {
|
| - _visitChildren(holder, node);
|
| - } finally {
|
| - _inFunction = wasInFunction;
|
| - }
|
| - FunctionBody body = node.body;
|
| - FunctionElementImpl element =
|
| - new FunctionElementImpl.forOffset(node.beginToken.offset);
|
| - element.functions = holder.functions;
|
| - element.labels = holder.labels;
|
| - element.localVariables = holder.localVariables;
|
| - element.parameters = holder.parameters;
|
| - element.typeParameters = holder.typeParameters;
|
| - if (body.isAsynchronous) {
|
| - element.asynchronous = true;
|
| - }
|
| - if (body.isGenerator) {
|
| - element.generator = true;
|
| - }
|
| - if (_inFunction) {
|
| - Block enclosingBlock = node.getAncestor((node) => node is Block);
|
| - if (enclosingBlock != null) {
|
| - int functionEnd = node.offset + node.length;
|
| - int blockEnd = enclosingBlock.offset + enclosingBlock.length;
|
| - element.setVisibleRange(functionEnd, blockEnd - functionEnd - 1);
|
| - }
|
| - }
|
| - FunctionTypeImpl type = new FunctionTypeImpl(element);
|
| - if (_functionTypesToFix != null) {
|
| - _functionTypesToFix.add(type);
|
| - }
|
| - element.type = type;
|
| - _currentHolder.addFunction(element);
|
| - node.element = element;
|
| - holder.validate();
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionTypeAlias(FunctionTypeAlias node) {
|
| - ElementHolder holder = new ElementHolder();
|
| - _visitChildren(holder, node);
|
| - SimpleIdentifier aliasName = node.name;
|
| - List<ParameterElement> parameters = holder.parameters;
|
| - List<TypeParameterElement> typeParameters = holder.typeParameters;
|
| - FunctionTypeAliasElementImpl element =
|
| - new FunctionTypeAliasElementImpl.forNode(aliasName);
|
| - element.parameters = parameters;
|
| - element.typeParameters = typeParameters;
|
| - FunctionTypeImpl type = new FunctionTypeImpl.forTypedef(element);
|
| - type.typeArguments = _createTypeParameterTypes(typeParameters);
|
| - element.type = type;
|
| - _currentHolder.addTypeAlias(element);
|
| - aliasName.staticElement = element;
|
| - holder.validate();
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
|
| - if (node.parent is! DefaultFormalParameter) {
|
| - SimpleIdentifier parameterName = node.identifier;
|
| - ParameterElementImpl parameter =
|
| - new ParameterElementImpl.forNode(parameterName);
|
| - parameter.parameterKind = node.kind;
|
| - _setParameterVisibleRange(node, parameter);
|
| - _currentHolder.addParameter(parameter);
|
| - parameterName.staticElement = parameter;
|
| - }
|
| - //
|
| - // The children of this parameter include any parameters defined on the type
|
| - //of this parameter.
|
| - //
|
| - ElementHolder holder = new ElementHolder();
|
| - _visitChildren(holder, node);
|
| - ParameterElementImpl element = node.element;
|
| - element.parameters = holder.parameters;
|
| - element.typeParameters = holder.typeParameters;
|
| - holder.validate();
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitLabeledStatement(LabeledStatement node) {
|
| - bool onSwitchStatement = node.statement is SwitchStatement;
|
| - for (Label label in node.labels) {
|
| - SimpleIdentifier labelName = label.label;
|
| - LabelElementImpl element =
|
| - new LabelElementImpl(labelName, onSwitchStatement, false);
|
| - _currentHolder.addLabel(element);
|
| - labelName.staticElement = element;
|
| - }
|
| - return super.visitLabeledStatement(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitMethodDeclaration(MethodDeclaration node) {
|
| - try {
|
| - ElementHolder holder = new ElementHolder();
|
| - bool wasInFunction = _inFunction;
|
| - _inFunction = true;
|
| - try {
|
| - _visitChildren(holder, node);
|
| - } finally {
|
| - _inFunction = wasInFunction;
|
| - }
|
| - bool isStatic = node.isStatic;
|
| - sc.Token property = node.propertyKeyword;
|
| - FunctionBody body = node.body;
|
| - if (property == null) {
|
| - SimpleIdentifier methodName = node.name;
|
| - String nameOfMethod = methodName.name;
|
| - if (nameOfMethod == sc.TokenType.MINUS.lexeme &&
|
| - node.parameters.parameters.length == 0) {
|
| - nameOfMethod = "unary-";
|
| - }
|
| - MethodElementImpl element =
|
| - new MethodElementImpl(nameOfMethod, methodName.offset);
|
| - element.abstract = node.isAbstract;
|
| - if (node.externalKeyword != null) {
|
| - element.external = true;
|
| - }
|
| - element.functions = holder.functions;
|
| - element.labels = holder.labels;
|
| - element.localVariables = holder.localVariables;
|
| - element.parameters = holder.parameters;
|
| - element.static = isStatic;
|
| - element.typeParameters = holder.typeParameters;
|
| - if (body.isAsynchronous) {
|
| - element.asynchronous = true;
|
| - }
|
| - if (body.isGenerator) {
|
| - element.generator = true;
|
| - }
|
| - _currentHolder.addMethod(element);
|
| - methodName.staticElement = element;
|
| - } else {
|
| - SimpleIdentifier propertyNameNode = node.name;
|
| - String propertyName = propertyNameNode.name;
|
| - FieldElementImpl field =
|
| - _currentHolder.getField(propertyName) as FieldElementImpl;
|
| - if (field == null) {
|
| - field = new FieldElementImpl(node.name.name, -1);
|
| - field.final2 = true;
|
| - field.static = isStatic;
|
| - field.synthetic = true;
|
| - _currentHolder.addField(field);
|
| - }
|
| - if (node.isGetter) {
|
| - PropertyAccessorElementImpl getter =
|
| - new PropertyAccessorElementImpl.forNode(propertyNameNode);
|
| - if (node.externalKeyword != null) {
|
| - getter.external = true;
|
| - }
|
| - getter.functions = holder.functions;
|
| - getter.labels = holder.labels;
|
| - getter.localVariables = holder.localVariables;
|
| - if (body.isAsynchronous) {
|
| - getter.asynchronous = true;
|
| - }
|
| - if (body.isGenerator) {
|
| - getter.generator = true;
|
| - }
|
| - getter.variable = field;
|
| - getter.abstract = node.isAbstract;
|
| - getter.getter = true;
|
| - getter.static = isStatic;
|
| - field.getter = getter;
|
| - _currentHolder.addAccessor(getter);
|
| - propertyNameNode.staticElement = getter;
|
| - } else {
|
| - PropertyAccessorElementImpl setter =
|
| - new PropertyAccessorElementImpl.forNode(propertyNameNode);
|
| - if (node.externalKeyword != null) {
|
| - setter.external = true;
|
| - }
|
| - setter.functions = holder.functions;
|
| - setter.labels = holder.labels;
|
| - setter.localVariables = holder.localVariables;
|
| - setter.parameters = holder.parameters;
|
| - if (body.isAsynchronous) {
|
| - setter.asynchronous = true;
|
| - }
|
| - if (body.isGenerator) {
|
| - setter.generator = true;
|
| - }
|
| - setter.variable = field;
|
| - setter.abstract = node.isAbstract;
|
| - setter.setter = true;
|
| - setter.static = isStatic;
|
| - field.setter = setter;
|
| - field.final2 = false;
|
| - _currentHolder.addAccessor(setter);
|
| - propertyNameNode.staticElement = setter;
|
| - }
|
| - }
|
| - holder.validate();
|
| - } catch (exception, stackTrace) {
|
| - if (node.name.staticElement == null) {
|
| - ClassDeclaration classNode =
|
| - node.getAncestor((node) => node is ClassDeclaration);
|
| - StringBuffer buffer = new StringBuffer();
|
| - buffer.write("The element for the method ");
|
| - buffer.write(node.name);
|
| - buffer.write(" in ");
|
| - buffer.write(classNode.name);
|
| - buffer.write(" was not set while trying to build the element model.");
|
| - AnalysisEngine.instance.logger.logError(
|
| - buffer.toString(), new CaughtException(exception, stackTrace));
|
| - } else {
|
| - String message =
|
| - "Exception caught in ElementBuilder.visitMethodDeclaration()";
|
| - AnalysisEngine.instance.logger.logError(
|
| - message, new CaughtException(exception, stackTrace));
|
| - }
|
| - } finally {
|
| - if (node.name.staticElement == null) {
|
| - ClassDeclaration classNode =
|
| - node.getAncestor((node) => node is ClassDeclaration);
|
| - StringBuffer buffer = new StringBuffer();
|
| - buffer.write("The element for the method ");
|
| - buffer.write(node.name);
|
| - buffer.write(" in ");
|
| - buffer.write(classNode.name);
|
| - buffer.write(" was not set while trying to resolve types.");
|
| - AnalysisEngine.instance.logger.logError(buffer.toString(),
|
| - new CaughtException(
|
| - new AnalysisException(buffer.toString()), null));
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitSimpleFormalParameter(SimpleFormalParameter node) {
|
| - if (node.parent is! DefaultFormalParameter) {
|
| - SimpleIdentifier parameterName = node.identifier;
|
| - ParameterElementImpl parameter =
|
| - new ParameterElementImpl.forNode(parameterName);
|
| - parameter.const3 = node.isConst;
|
| - parameter.final2 = node.isFinal;
|
| - parameter.parameterKind = node.kind;
|
| - _setParameterVisibleRange(node, parameter);
|
| - _currentHolder.addParameter(parameter);
|
| - parameterName.staticElement = parameter;
|
| - }
|
| - return super.visitSimpleFormalParameter(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitSuperExpression(SuperExpression node) {
|
| - _isValidMixin = false;
|
| - return super.visitSuperExpression(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitSwitchCase(SwitchCase node) {
|
| - for (Label label in node.labels) {
|
| - SimpleIdentifier labelName = label.label;
|
| - LabelElementImpl element = new LabelElementImpl(labelName, false, true);
|
| - _currentHolder.addLabel(element);
|
| - labelName.staticElement = element;
|
| - }
|
| - return super.visitSwitchCase(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitSwitchDefault(SwitchDefault node) {
|
| - for (Label label in node.labels) {
|
| - SimpleIdentifier labelName = label.label;
|
| - LabelElementImpl element = new LabelElementImpl(labelName, false, true);
|
| - _currentHolder.addLabel(element);
|
| - labelName.staticElement = element;
|
| - }
|
| - return super.visitSwitchDefault(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitTypeParameter(TypeParameter node) {
|
| - SimpleIdentifier parameterName = node.name;
|
| - TypeParameterElementImpl typeParameter =
|
| - new TypeParameterElementImpl.forNode(parameterName);
|
| - TypeParameterTypeImpl typeParameterType =
|
| - new TypeParameterTypeImpl(typeParameter);
|
| - typeParameter.type = typeParameterType;
|
| - _currentHolder.addTypeParameter(typeParameter);
|
| - parameterName.staticElement = typeParameter;
|
| - return super.visitTypeParameter(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitVariableDeclaration(VariableDeclaration node) {
|
| - bool isConst = node.isConst;
|
| - bool isFinal = node.isFinal;
|
| - bool hasInitializer = node.initializer != null;
|
| - VariableElementImpl element;
|
| - if (_inFieldContext) {
|
| - SimpleIdentifier fieldName = node.name;
|
| - FieldElementImpl field;
|
| - if ((isConst || isFinal) && hasInitializer) {
|
| - field = new ConstFieldElementImpl.forNode(fieldName);
|
| - } else {
|
| - field = new FieldElementImpl.forNode(fieldName);
|
| - }
|
| - element = field;
|
| - _currentHolder.addField(field);
|
| - fieldName.staticElement = field;
|
| - } else if (_inFunction) {
|
| - SimpleIdentifier variableName = node.name;
|
| - LocalVariableElementImpl variable;
|
| - if (isConst && hasInitializer) {
|
| - variable = new ConstLocalVariableElementImpl.forNode(variableName);
|
| - } else {
|
| - variable = new LocalVariableElementImpl.forNode(variableName);
|
| - }
|
| - element = variable;
|
| - Block enclosingBlock = node.getAncestor((node) => node is Block);
|
| - // TODO(brianwilkerson) This isn't right for variables declared in a for
|
| - // loop.
|
| - variable.setVisibleRange(enclosingBlock.offset, enclosingBlock.length);
|
| - _currentHolder.addLocalVariable(variable);
|
| - variableName.staticElement = element;
|
| - } else {
|
| - SimpleIdentifier variableName = node.name;
|
| - TopLevelVariableElementImpl variable;
|
| - if (isConst && hasInitializer) {
|
| - variable = new ConstTopLevelVariableElementImpl(variableName);
|
| - } else {
|
| - variable = new TopLevelVariableElementImpl.forNode(variableName);
|
| - }
|
| - element = variable;
|
| - _currentHolder.addTopLevelVariable(variable);
|
| - variableName.staticElement = element;
|
| - }
|
| - element.const3 = isConst;
|
| - element.final2 = isFinal;
|
| - if (hasInitializer) {
|
| - ElementHolder holder = new ElementHolder();
|
| - bool wasInFieldContext = _inFieldContext;
|
| - _inFieldContext = false;
|
| - try {
|
| - _visit(holder, node.initializer);
|
| - } finally {
|
| - _inFieldContext = wasInFieldContext;
|
| - }
|
| - FunctionElementImpl initializer =
|
| - new FunctionElementImpl.forOffset(node.initializer.beginToken.offset);
|
| - initializer.functions = holder.functions;
|
| - initializer.labels = holder.labels;
|
| - initializer.localVariables = holder.localVariables;
|
| - initializer.synthetic = true;
|
| - element.initializer = initializer;
|
| - holder.validate();
|
| - }
|
| - if (element is PropertyInducingElementImpl) {
|
| - if (_inFieldContext) {
|
| - (element as FieldElementImpl).static =
|
| - (node.parent.parent as FieldDeclaration).isStatic;
|
| - }
|
| - PropertyAccessorElementImpl getter =
|
| - new PropertyAccessorElementImpl.forVariable(element);
|
| - getter.getter = true;
|
| - _currentHolder.addAccessor(getter);
|
| - element.getter = getter;
|
| - if (!isConst && !isFinal) {
|
| - PropertyAccessorElementImpl setter =
|
| - new PropertyAccessorElementImpl.forVariable(element);
|
| - setter.setter = true;
|
| - ParameterElementImpl parameter =
|
| - new ParameterElementImpl("_${element.name}", element.nameOffset);
|
| - parameter.synthetic = true;
|
| - parameter.parameterKind = ParameterKind.REQUIRED;
|
| - setter.parameters = <ParameterElement>[parameter];
|
| - _currentHolder.addAccessor(setter);
|
| - element.setter = setter;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Build the table mapping field names to field elements for the fields defined in the current
|
| - * class.
|
| - *
|
| - * @param fields the field elements defined in the current class
|
| - */
|
| - void _buildFieldMap(List<FieldElement> fields) {
|
| - _fieldMap = new HashMap<String, FieldElement>();
|
| - int count = fields.length;
|
| - for (int i = 0; i < count; i++) {
|
| - FieldElement field = fields[i];
|
| - _fieldMap[field.name] = field;
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Creates the [ConstructorElement]s array with the single default constructor element.
|
| - *
|
| - * @param interfaceType the interface type for which to create a default constructor
|
| - * @return the [ConstructorElement]s array with the single default constructor element
|
| - */
|
| - List<ConstructorElement> _createDefaultConstructors(
|
| - InterfaceTypeImpl interfaceType) {
|
| - ConstructorElementImpl constructor =
|
| - new ConstructorElementImpl.forNode(null);
|
| - constructor.synthetic = true;
|
| - constructor.returnType = interfaceType;
|
| - FunctionTypeImpl type = new FunctionTypeImpl(constructor);
|
| - _functionTypesToFix.add(type);
|
| - constructor.type = type;
|
| - return <ConstructorElement>[constructor];
|
| - }
|
| -
|
| - /**
|
| - * Create the types associated with the given type parameters, setting the type of each type
|
| - * parameter, and return an array of types corresponding to the given parameters.
|
| - *
|
| - * @param typeParameters the type parameters for which types are to be created
|
| - * @return an array of types corresponding to the given parameters
|
| - */
|
| - List<DartType> _createTypeParameterTypes(
|
| - List<TypeParameterElement> typeParameters) {
|
| - int typeParameterCount = typeParameters.length;
|
| - List<DartType> typeArguments = new List<DartType>(typeParameterCount);
|
| - for (int i = 0; i < typeParameterCount; i++) {
|
| - TypeParameterElementImpl typeParameter =
|
| - typeParameters[i] as TypeParameterElementImpl;
|
| - TypeParameterTypeImpl typeParameterType =
|
| - new TypeParameterTypeImpl(typeParameter);
|
| - typeParameter.type = typeParameterType;
|
| - typeArguments[i] = typeParameterType;
|
| - }
|
| - return typeArguments;
|
| - }
|
| -
|
| - /**
|
| - * Return the body of the function that contains the given parameter, or `null` if no
|
| - * function body could be found.
|
| - *
|
| - * @param node the parameter contained in the function whose body is to be returned
|
| - * @return the body of the function that contains the given parameter
|
| - */
|
| - FunctionBody _getFunctionBody(FormalParameter node) {
|
| - AstNode parent = node.parent;
|
| - while (parent != null) {
|
| - if (parent is ConstructorDeclaration) {
|
| - return parent.body;
|
| - } else if (parent is FunctionExpression) {
|
| - return parent.body;
|
| - } else if (parent is MethodDeclaration) {
|
| - return parent.body;
|
| - }
|
| - parent = parent.parent;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Sets the visible source range for formal parameter.
|
| - */
|
| - void _setParameterVisibleRange(
|
| - FormalParameter node, ParameterElementImpl element) {
|
| - FunctionBody body = _getFunctionBody(node);
|
| - if (body != null) {
|
| - element.setVisibleRange(body.offset, body.length);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Make the given holder be the current holder while visiting the given node.
|
| - *
|
| - * @param holder the holder that will gather elements that are built while visiting the children
|
| - * @param node the node to be visited
|
| - */
|
| - void _visit(ElementHolder holder, AstNode node) {
|
| - if (node != null) {
|
| - ElementHolder previousHolder = _currentHolder;
|
| - _currentHolder = holder;
|
| - try {
|
| - node.accept(this);
|
| - } finally {
|
| - _currentHolder = previousHolder;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Make the given holder be the current holder while visiting the children of the given node.
|
| - *
|
| - * @param holder the holder that will gather elements that are built while visiting the children
|
| - * @param node the node whose children are to be visited
|
| - */
|
| - void _visitChildren(ElementHolder holder, AstNode node) {
|
| - if (node != null) {
|
| - ElementHolder previousHolder = _currentHolder;
|
| - _currentHolder = holder;
|
| - try {
|
| - node.visitChildren(this);
|
| - } finally {
|
| - _currentHolder = previousHolder;
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `ElementHolder` hold on to elements created while traversing an AST
|
| - * structure so that they can be accessed when creating their enclosing element.
|
| - */
|
| -class ElementHolder {
|
| - List<PropertyAccessorElement> _accessors;
|
| -
|
| - List<ConstructorElement> _constructors;
|
| -
|
| - List<ClassElement> _enums;
|
| -
|
| - List<FieldElement> _fields;
|
| -
|
| - List<FunctionElement> _functions;
|
| -
|
| - List<LabelElement> _labels;
|
| -
|
| - List<LocalVariableElement> _localVariables;
|
| -
|
| - List<MethodElement> _methods;
|
| -
|
| - List<ParameterElement> _parameters;
|
| -
|
| - List<TopLevelVariableElement> _topLevelVariables;
|
| -
|
| - List<ClassElement> _types;
|
| -
|
| - List<FunctionTypeAliasElement> _typeAliases;
|
| -
|
| - List<TypeParameterElement> _typeParameters;
|
| -
|
| - List<PropertyAccessorElement> get accessors {
|
| - if (_accessors == null) {
|
| - return PropertyAccessorElement.EMPTY_LIST;
|
| - }
|
| - List<PropertyAccessorElement> result = _accessors;
|
| - _accessors = null;
|
| - return result;
|
| - }
|
| -
|
| - List<ConstructorElement> get constructors {
|
| - if (_constructors == null) {
|
| - return ConstructorElement.EMPTY_LIST;
|
| - }
|
| - List<ConstructorElement> result = _constructors;
|
| - _constructors = null;
|
| - return result;
|
| - }
|
| -
|
| - List<ClassElement> get enums {
|
| - if (_enums == null) {
|
| - return ClassElement.EMPTY_LIST;
|
| - }
|
| - List<ClassElement> result = _enums;
|
| - _enums = null;
|
| - return result;
|
| - }
|
| -
|
| - List<FieldElement> get fields {
|
| - if (_fields == null) {
|
| - return FieldElement.EMPTY_LIST;
|
| - }
|
| - List<FieldElement> result = _fields;
|
| - _fields = null;
|
| - return result;
|
| - }
|
| -
|
| - List<FieldElement> get fieldsWithoutFlushing {
|
| - if (_fields == null) {
|
| - return FieldElement.EMPTY_LIST;
|
| - }
|
| - List<FieldElement> result = _fields;
|
| - return result;
|
| - }
|
| -
|
| - List<FunctionElement> get functions {
|
| - if (_functions == null) {
|
| - return FunctionElement.EMPTY_LIST;
|
| - }
|
| - List<FunctionElement> result = _functions;
|
| - _functions = null;
|
| - return result;
|
| - }
|
| -
|
| - List<LabelElement> get labels {
|
| - if (_labels == null) {
|
| - return LabelElement.EMPTY_LIST;
|
| - }
|
| - List<LabelElement> result = _labels;
|
| - _labels = null;
|
| - return result;
|
| - }
|
| -
|
| - List<LocalVariableElement> get localVariables {
|
| - if (_localVariables == null) {
|
| - return LocalVariableElement.EMPTY_LIST;
|
| - }
|
| - List<LocalVariableElement> result = _localVariables;
|
| - _localVariables = null;
|
| - return result;
|
| - }
|
| -
|
| - List<MethodElement> get methods {
|
| - if (_methods == null) {
|
| - return MethodElement.EMPTY_LIST;
|
| - }
|
| - List<MethodElement> result = _methods;
|
| - _methods = null;
|
| - return result;
|
| - }
|
| -
|
| - List<ParameterElement> get parameters {
|
| - if (_parameters == null) {
|
| - return ParameterElement.EMPTY_LIST;
|
| - }
|
| - List<ParameterElement> result = _parameters;
|
| - _parameters = null;
|
| - return result;
|
| - }
|
| -
|
| - List<TopLevelVariableElement> get topLevelVariables {
|
| - if (_topLevelVariables == null) {
|
| - return TopLevelVariableElement.EMPTY_LIST;
|
| - }
|
| - List<TopLevelVariableElement> result = _topLevelVariables;
|
| - _topLevelVariables = null;
|
| - return result;
|
| - }
|
| -
|
| - List<FunctionTypeAliasElement> get typeAliases {
|
| - if (_typeAliases == null) {
|
| - return FunctionTypeAliasElement.EMPTY_LIST;
|
| - }
|
| - List<FunctionTypeAliasElement> result = _typeAliases;
|
| - _typeAliases = null;
|
| - return result;
|
| - }
|
| -
|
| - List<TypeParameterElement> get typeParameters {
|
| - if (_typeParameters == null) {
|
| - return TypeParameterElement.EMPTY_LIST;
|
| - }
|
| - List<TypeParameterElement> result = _typeParameters;
|
| - _typeParameters = null;
|
| - return result;
|
| - }
|
| -
|
| - List<ClassElement> get types {
|
| - if (_types == null) {
|
| - return ClassElement.EMPTY_LIST;
|
| - }
|
| - List<ClassElement> result = _types;
|
| - _types = null;
|
| - return result;
|
| - }
|
| -
|
| - void addAccessor(PropertyAccessorElement element) {
|
| - if (_accessors == null) {
|
| - _accessors = new List<PropertyAccessorElement>();
|
| - }
|
| - _accessors.add(element);
|
| - }
|
| -
|
| - void addConstructor(ConstructorElement element) {
|
| - if (_constructors == null) {
|
| - _constructors = new List<ConstructorElement>();
|
| - }
|
| - _constructors.add(element);
|
| - }
|
| -
|
| - void addEnum(ClassElement element) {
|
| - if (_enums == null) {
|
| - _enums = new List<ClassElement>();
|
| - }
|
| - _enums.add(element);
|
| - }
|
| -
|
| - void addField(FieldElement element) {
|
| - if (_fields == null) {
|
| - _fields = new List<FieldElement>();
|
| - }
|
| - _fields.add(element);
|
| - }
|
| -
|
| - void addFunction(FunctionElement element) {
|
| - if (_functions == null) {
|
| - _functions = new List<FunctionElement>();
|
| - }
|
| - _functions.add(element);
|
| - }
|
| -
|
| - void addLabel(LabelElement element) {
|
| - if (_labels == null) {
|
| - _labels = new List<LabelElement>();
|
| - }
|
| - _labels.add(element);
|
| - }
|
| -
|
| - void addLocalVariable(LocalVariableElement element) {
|
| - if (_localVariables == null) {
|
| - _localVariables = new List<LocalVariableElement>();
|
| - }
|
| - _localVariables.add(element);
|
| - }
|
| -
|
| - void addMethod(MethodElement element) {
|
| - if (_methods == null) {
|
| - _methods = new List<MethodElement>();
|
| - }
|
| - _methods.add(element);
|
| - }
|
| -
|
| - void addParameter(ParameterElement element) {
|
| - if (_parameters == null) {
|
| - _parameters = new List<ParameterElement>();
|
| - }
|
| - _parameters.add(element);
|
| - }
|
| -
|
| - void addTopLevelVariable(TopLevelVariableElement element) {
|
| - if (_topLevelVariables == null) {
|
| - _topLevelVariables = new List<TopLevelVariableElement>();
|
| - }
|
| - _topLevelVariables.add(element);
|
| - }
|
| -
|
| - void addType(ClassElement element) {
|
| - if (_types == null) {
|
| - _types = new List<ClassElement>();
|
| - }
|
| - _types.add(element);
|
| - }
|
| -
|
| - void addTypeAlias(FunctionTypeAliasElement element) {
|
| - if (_typeAliases == null) {
|
| - _typeAliases = new List<FunctionTypeAliasElement>();
|
| - }
|
| - _typeAliases.add(element);
|
| - }
|
| -
|
| - void addTypeParameter(TypeParameterElement element) {
|
| - if (_typeParameters == null) {
|
| - _typeParameters = new List<TypeParameterElement>();
|
| - }
|
| - _typeParameters.add(element);
|
| - }
|
| -
|
| - FieldElement getField(String fieldName) {
|
| - if (_fields == null) {
|
| - return null;
|
| - }
|
| - for (FieldElement field in _fields) {
|
| - if (field.name == fieldName) {
|
| - return field;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - TopLevelVariableElement getTopLevelVariable(String variableName) {
|
| - if (_topLevelVariables == null) {
|
| - return null;
|
| - }
|
| - for (TopLevelVariableElement variable in _topLevelVariables) {
|
| - if (variable.name == variableName) {
|
| - return variable;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - void validate() {
|
| - StringBuffer buffer = new StringBuffer();
|
| - if (_accessors != null) {
|
| - buffer.write(_accessors.length);
|
| - buffer.write(" accessors");
|
| - }
|
| - if (_constructors != null) {
|
| - if (buffer.length > 0) {
|
| - buffer.write("; ");
|
| - }
|
| - buffer.write(_constructors.length);
|
| - buffer.write(" constructors");
|
| - }
|
| - if (_fields != null) {
|
| - if (buffer.length > 0) {
|
| - buffer.write("; ");
|
| - }
|
| - buffer.write(_fields.length);
|
| - buffer.write(" fields");
|
| - }
|
| - if (_functions != null) {
|
| - if (buffer.length > 0) {
|
| - buffer.write("; ");
|
| - }
|
| - buffer.write(_functions.length);
|
| - buffer.write(" functions");
|
| - }
|
| - if (_labels != null) {
|
| - if (buffer.length > 0) {
|
| - buffer.write("; ");
|
| - }
|
| - buffer.write(_labels.length);
|
| - buffer.write(" labels");
|
| - }
|
| - if (_localVariables != null) {
|
| - if (buffer.length > 0) {
|
| - buffer.write("; ");
|
| - }
|
| - buffer.write(_localVariables.length);
|
| - buffer.write(" local variables");
|
| - }
|
| - if (_methods != null) {
|
| - if (buffer.length > 0) {
|
| - buffer.write("; ");
|
| - }
|
| - buffer.write(_methods.length);
|
| - buffer.write(" methods");
|
| - }
|
| - if (_parameters != null) {
|
| - if (buffer.length > 0) {
|
| - buffer.write("; ");
|
| - }
|
| - buffer.write(_parameters.length);
|
| - buffer.write(" parameters");
|
| - }
|
| - if (_topLevelVariables != null) {
|
| - if (buffer.length > 0) {
|
| - buffer.write("; ");
|
| - }
|
| - buffer.write(_topLevelVariables.length);
|
| - buffer.write(" top-level variables");
|
| - }
|
| - if (_types != null) {
|
| - if (buffer.length > 0) {
|
| - buffer.write("; ");
|
| - }
|
| - buffer.write(_types.length);
|
| - buffer.write(" types");
|
| - }
|
| - if (_typeAliases != null) {
|
| - if (buffer.length > 0) {
|
| - buffer.write("; ");
|
| - }
|
| - buffer.write(_typeAliases.length);
|
| - buffer.write(" type aliases");
|
| - }
|
| - if (_typeParameters != null) {
|
| - if (buffer.length > 0) {
|
| - buffer.write("; ");
|
| - }
|
| - buffer.write(_typeParameters.length);
|
| - buffer.write(" type parameters");
|
| - }
|
| - if (buffer.length > 0) {
|
| - AnalysisEngine.instance.logger
|
| - .logError("Failed to capture elements: $buffer");
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `EnclosedScope` implement a scope that is lexically enclosed in
|
| - * another scope.
|
| - */
|
| -class EnclosedScope extends Scope {
|
| - /**
|
| - * The scope in which this scope is lexically enclosed.
|
| - */
|
| - final Scope enclosingScope;
|
| -
|
| - /**
|
| - * A table mapping names that will be defined in this scope, but right now are not initialized.
|
| - * According to the scoping rules these names are hidden, even if they were defined in an outer
|
| - * scope.
|
| - */
|
| - HashMap<String, Element> _hiddenElements = new HashMap<String, Element>();
|
| -
|
| - /**
|
| - * A flag indicating whether there are any names defined in this scope.
|
| - */
|
| - bool _hasHiddenName = false;
|
| -
|
| - /**
|
| - * Initialize a newly created scope enclosed within another scope.
|
| - *
|
| - * @param enclosingScope the scope in which this scope is lexically enclosed
|
| - */
|
| - EnclosedScope(this.enclosingScope);
|
| -
|
| - @override
|
| - AnalysisErrorListener get errorListener => enclosingScope.errorListener;
|
| -
|
| - /**
|
| - * Record that given element is declared in this scope, but hasn't been initialized yet, so it is
|
| - * error to use. If there is already an element with the given name defined in an outer scope,
|
| - * then it will become unavailable.
|
| - *
|
| - * @param element the element declared, but not initialized in this scope
|
| - */
|
| - void hide(Element element) {
|
| - if (element != null) {
|
| - String name = element.name;
|
| - if (name != null && !name.isEmpty) {
|
| - _hiddenElements[name] = element;
|
| - _hasHiddenName = true;
|
| - }
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Element internalLookup(
|
| - Identifier identifier, String name, LibraryElement referencingLibrary) {
|
| - Element element = localLookup(name, referencingLibrary);
|
| - if (element != null) {
|
| - return element;
|
| - }
|
| - // May be there is a hidden Element.
|
| - if (_hasHiddenName) {
|
| - Element hiddenElement = _hiddenElements[name];
|
| - if (hiddenElement != null) {
|
| - errorListener.onError(new AnalysisError(getSource(identifier),
|
| - identifier.offset, identifier.length,
|
| - CompileTimeErrorCode.REFERENCED_BEFORE_DECLARATION, []));
|
| - return hiddenElement;
|
| - }
|
| - }
|
| - // Check enclosing scope.
|
| - return enclosingScope.internalLookup(identifier, name, referencingLibrary);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `EnumMemberBuilder` build the members in enum declarations.
|
| - */
|
| -class EnumMemberBuilder extends RecursiveAstVisitor<Object> {
|
| - /**
|
| - * The type provider used to access the types needed to build an element model for enum
|
| - * declarations.
|
| - */
|
| - final TypeProvider _typeProvider;
|
| -
|
| - /**
|
| - * Initialize a newly created enum member builder.
|
| - *
|
| - * @param typeProvider the type provider used to access the types needed to build an element model
|
| - * for enum declarations
|
| - */
|
| - EnumMemberBuilder(this._typeProvider);
|
| -
|
| - @override
|
| - Object visitEnumDeclaration(EnumDeclaration node) {
|
| - //
|
| - // Finish building the enum.
|
| - //
|
| - ClassElementImpl enumElement = node.name.staticElement as ClassElementImpl;
|
| - InterfaceType enumType = enumElement.type;
|
| - enumElement.supertype = _typeProvider.objectType;
|
| - //
|
| - // Populate the fields.
|
| - //
|
| - List<FieldElement> fields = new List<FieldElement>();
|
| - List<PropertyAccessorElement> getters = new List<PropertyAccessorElement>();
|
| - InterfaceType intType = _typeProvider.intType;
|
| - String indexFieldName = "index";
|
| - FieldElementImpl indexField = new FieldElementImpl(indexFieldName, -1);
|
| - indexField.final2 = true;
|
| - indexField.synthetic = true;
|
| - indexField.type = intType;
|
| - fields.add(indexField);
|
| - getters.add(_createGetter(indexField));
|
| - ConstFieldElementImpl valuesField = new ConstFieldElementImpl("values", -1);
|
| - valuesField.static = true;
|
| - valuesField.const3 = true;
|
| - valuesField.synthetic = true;
|
| - valuesField.type = _typeProvider.listType.substitute4(<DartType>[enumType]);
|
| - fields.add(valuesField);
|
| - getters.add(_createGetter(valuesField));
|
| - //
|
| - // Build the enum constants.
|
| - //
|
| - NodeList<EnumConstantDeclaration> constants = node.constants;
|
| - List<DartObjectImpl> constantValues = new List<DartObjectImpl>();
|
| - int constantCount = constants.length;
|
| - for (int i = 0; i < constantCount; i++) {
|
| - SimpleIdentifier constantName = constants[i].name;
|
| - FieldElementImpl constantField =
|
| - new ConstFieldElementImpl.forNode(constantName);
|
| - constantField.static = true;
|
| - constantField.const3 = true;
|
| - constantField.type = enumType;
|
| - //
|
| - // Create a value for the constant.
|
| - //
|
| - HashMap<String, DartObjectImpl> fieldMap =
|
| - new HashMap<String, DartObjectImpl>();
|
| - fieldMap[indexFieldName] = new DartObjectImpl(intType, new IntState(i));
|
| - DartObjectImpl value =
|
| - new DartObjectImpl(enumType, new GenericState(fieldMap));
|
| - constantValues.add(value);
|
| - constantField.evaluationResult = new EvaluationResultImpl(value);
|
| - fields.add(constantField);
|
| - getters.add(_createGetter(constantField));
|
| - constantName.staticElement = constantField;
|
| - }
|
| - //
|
| - // Build the value of the 'values' field.
|
| - //
|
| - valuesField.evaluationResult = new EvaluationResultImpl(
|
| - new DartObjectImpl(valuesField.type, new ListState(constantValues)));
|
| - //
|
| - // Finish building the enum.
|
| - //
|
| - enumElement.fields = fields;
|
| - enumElement.accessors = getters;
|
| - // Client code isn't allowed to invoke the constructor, so we do not model
|
| - // it.
|
| - return super.visitEnumDeclaration(node);
|
| - }
|
| -
|
| - /**
|
| - * Create a getter that corresponds to the given field.
|
| - *
|
| - * @param field the field for which a getter is to be created
|
| - * @return the getter that was created
|
| - */
|
| - PropertyAccessorElement _createGetter(FieldElementImpl field) {
|
| - PropertyAccessorElementImpl getter =
|
| - new PropertyAccessorElementImpl.forVariable(field);
|
| - getter.getter = true;
|
| - getter.returnType = field.type;
|
| - getter.type = new FunctionTypeImpl(getter);
|
| - field.getter = getter;
|
| - return getter;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `ExitDetector` determine whether the visited AST node is guaranteed
|
| - * to terminate by executing a `return` statement, `throw` expression, `rethrow`
|
| - * expression, or simple infinite loop such as `while(true)`.
|
| - */
|
| -class ExitDetector extends GeneralizingAstVisitor<bool> {
|
| - /**
|
| - * Set to `true` when a `break` is encountered, and reset to `false` when a
|
| - * `do`, `while`, `for` or `switch` block is entered.
|
| - */
|
| - bool _enclosingBlockContainsBreak = false;
|
| -
|
| - @override
|
| - bool visitArgumentList(ArgumentList node) =>
|
| - _visitExpressions(node.arguments);
|
| -
|
| - @override
|
| - bool visitAsExpression(AsExpression node) => _nodeExits(node.expression);
|
| -
|
| - @override
|
| - bool visitAssertStatement(AssertStatement node) => _nodeExits(node.condition);
|
| -
|
| - @override
|
| - bool visitAssignmentExpression(AssignmentExpression node) =>
|
| - _nodeExits(node.leftHandSide) || _nodeExits(node.rightHandSide);
|
| -
|
| - @override
|
| - bool visitAwaitExpression(AwaitExpression node) =>
|
| - _nodeExits(node.expression);
|
| -
|
| - @override
|
| - bool visitBinaryExpression(BinaryExpression node) {
|
| - Expression lhsExpression = node.leftOperand;
|
| - sc.TokenType operatorType = node.operator.type;
|
| - // If the operator is || and the left hand side is false literal, don't
|
| - // consider the RHS of the binary expression.
|
| - // TODO(jwren) Do we want to take constant expressions into account,
|
| - // evaluate if(false) {} differently than if(<condition>), when <condition>
|
| - // evaluates to a constant false value?
|
| - if (operatorType == sc.TokenType.BAR_BAR) {
|
| - if (lhsExpression is BooleanLiteral) {
|
| - BooleanLiteral booleanLiteral = lhsExpression;
|
| - if (!booleanLiteral.value) {
|
| - return false;
|
| - }
|
| - }
|
| - }
|
| - // If the operator is && and the left hand side is true literal, don't
|
| - // consider the RHS of the binary expression.
|
| - if (operatorType == sc.TokenType.AMPERSAND_AMPERSAND) {
|
| - if (lhsExpression is BooleanLiteral) {
|
| - BooleanLiteral booleanLiteral = lhsExpression;
|
| - if (booleanLiteral.value) {
|
| - return false;
|
| - }
|
| - }
|
| - }
|
| - Expression rhsExpression = node.rightOperand;
|
| - return _nodeExits(lhsExpression) || _nodeExits(rhsExpression);
|
| - }
|
| -
|
| - @override
|
| - bool visitBlock(Block node) => _visitStatements(node.statements);
|
| -
|
| - @override
|
| - bool visitBlockFunctionBody(BlockFunctionBody node) => _nodeExits(node.block);
|
| -
|
| - @override
|
| - bool visitBreakStatement(BreakStatement node) {
|
| - _enclosingBlockContainsBreak = true;
|
| - return false;
|
| - }
|
| -
|
| - @override
|
| - bool visitCascadeExpression(CascadeExpression node) =>
|
| - _nodeExits(node.target) || _visitExpressions(node.cascadeSections);
|
| -
|
| - @override
|
| - bool visitConditionalExpression(ConditionalExpression node) {
|
| - Expression conditionExpression = node.condition;
|
| - Expression thenStatement = node.thenExpression;
|
| - Expression elseStatement = node.elseExpression;
|
| - // TODO(jwren) Do we want to take constant expressions into account,
|
| - // evaluate if(false) {} differently than if(<condition>), when <condition>
|
| - // evaluates to a constant false value?
|
| - if (_nodeExits(conditionExpression)) {
|
| - return true;
|
| - }
|
| - if (thenStatement == null || elseStatement == null) {
|
| - return false;
|
| - }
|
| - return thenStatement.accept(this) && elseStatement.accept(this);
|
| - }
|
| -
|
| - @override
|
| - bool visitContinueStatement(ContinueStatement node) => false;
|
| -
|
| - @override
|
| - bool visitDoStatement(DoStatement node) {
|
| - bool outerBreakValue = _enclosingBlockContainsBreak;
|
| - _enclosingBlockContainsBreak = false;
|
| - try {
|
| - Expression conditionExpression = node.condition;
|
| - if (_nodeExits(conditionExpression)) {
|
| - return true;
|
| - }
|
| - // TODO(jwren) Do we want to take all constant expressions into account?
|
| - if (conditionExpression is BooleanLiteral) {
|
| - BooleanLiteral booleanLiteral = conditionExpression;
|
| - // If do {} while (true), and the body doesn't return or the body
|
| - // doesn't have a break, then return true.
|
| - bool blockReturns = _nodeExits(node.body);
|
| - if (booleanLiteral.value &&
|
| - (blockReturns || !_enclosingBlockContainsBreak)) {
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| - } finally {
|
| - _enclosingBlockContainsBreak = outerBreakValue;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - bool visitEmptyStatement(EmptyStatement node) => false;
|
| -
|
| - @override
|
| - bool visitExpressionStatement(ExpressionStatement node) =>
|
| - _nodeExits(node.expression);
|
| -
|
| - @override
|
| - bool visitForEachStatement(ForEachStatement node) {
|
| - bool outerBreakValue = _enclosingBlockContainsBreak;
|
| - _enclosingBlockContainsBreak = false;
|
| - try {
|
| - return _nodeExits(node.iterable);
|
| - } finally {
|
| - _enclosingBlockContainsBreak = outerBreakValue;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - bool visitForStatement(ForStatement node) {
|
| - bool outerBreakValue = _enclosingBlockContainsBreak;
|
| - _enclosingBlockContainsBreak = false;
|
| - try {
|
| - if (node.variables != null &&
|
| - _visitVariableDeclarations(node.variables.variables)) {
|
| - return true;
|
| - }
|
| - if (node.initialization != null && _nodeExits(node.initialization)) {
|
| - return true;
|
| - }
|
| - Expression conditionExpression = node.condition;
|
| - if (conditionExpression != null && _nodeExits(conditionExpression)) {
|
| - return true;
|
| - }
|
| - if (_visitExpressions(node.updaters)) {
|
| - return true;
|
| - }
|
| - // TODO(jwren) Do we want to take all constant expressions into account?
|
| - // If for(; true; ) (or for(;;)), and the body doesn't return or the body
|
| - // doesn't have a break, then return true.
|
| - bool implicitOrExplictTrue = conditionExpression == null ||
|
| - (conditionExpression is BooleanLiteral && conditionExpression.value);
|
| - if (implicitOrExplictTrue) {
|
| - bool blockReturns = _nodeExits(node.body);
|
| - if (blockReturns || !_enclosingBlockContainsBreak) {
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| - } finally {
|
| - _enclosingBlockContainsBreak = outerBreakValue;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - bool visitFunctionDeclarationStatement(FunctionDeclarationStatement node) =>
|
| - false;
|
| -
|
| - @override
|
| - bool visitFunctionExpression(FunctionExpression node) => false;
|
| -
|
| - @override
|
| - bool visitFunctionExpressionInvocation(FunctionExpressionInvocation node) {
|
| - if (_nodeExits(node.function)) {
|
| - return true;
|
| - }
|
| - return node.argumentList.accept(this);
|
| - }
|
| -
|
| - @override
|
| - bool visitIdentifier(Identifier node) => false;
|
| -
|
| - @override
|
| - bool visitIfStatement(IfStatement node) {
|
| - Expression conditionExpression = node.condition;
|
| - Statement thenStatement = node.thenStatement;
|
| - Statement elseStatement = node.elseStatement;
|
| - if (_nodeExits(conditionExpression)) {
|
| - return true;
|
| - }
|
| - // TODO(jwren) Do we want to take all constant expressions into account?
|
| - if (conditionExpression is BooleanLiteral) {
|
| - BooleanLiteral booleanLiteral = conditionExpression;
|
| - if (booleanLiteral.value) {
|
| - // if(true) ...
|
| - return _nodeExits(thenStatement);
|
| - } else if (elseStatement != null) {
|
| - // if (false) ...
|
| - return _nodeExits(elseStatement);
|
| - }
|
| - }
|
| - if (thenStatement == null || elseStatement == null) {
|
| - return false;
|
| - }
|
| - return _nodeExits(thenStatement) && _nodeExits(elseStatement);
|
| - }
|
| -
|
| - @override
|
| - bool visitIndexExpression(IndexExpression node) {
|
| - Expression target = node.realTarget;
|
| - if (_nodeExits(target)) {
|
| - return true;
|
| - }
|
| - if (_nodeExits(node.index)) {
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - @override
|
| - bool visitInstanceCreationExpression(InstanceCreationExpression node) =>
|
| - _nodeExits(node.argumentList);
|
| -
|
| - @override
|
| - bool visitIsExpression(IsExpression node) => node.expression.accept(this);
|
| -
|
| - @override
|
| - bool visitLabel(Label node) => false;
|
| -
|
| - @override
|
| - bool visitLabeledStatement(LabeledStatement node) =>
|
| - node.statement.accept(this);
|
| -
|
| - @override
|
| - bool visitLiteral(Literal node) => false;
|
| -
|
| - @override
|
| - bool visitMethodInvocation(MethodInvocation node) {
|
| - Expression target = node.realTarget;
|
| - if (target != null && target.accept(this)) {
|
| - return true;
|
| - }
|
| - return _nodeExits(node.argumentList);
|
| - }
|
| -
|
| - @override
|
| - bool visitNamedExpression(NamedExpression node) =>
|
| - node.expression.accept(this);
|
| -
|
| - @override
|
| - bool visitParenthesizedExpression(ParenthesizedExpression node) =>
|
| - node.expression.accept(this);
|
| -
|
| - @override
|
| - bool visitPostfixExpression(PostfixExpression node) => false;
|
| -
|
| - @override
|
| - bool visitPrefixExpression(PrefixExpression node) => false;
|
| -
|
| - @override
|
| - bool visitPropertyAccess(PropertyAccess node) {
|
| - Expression target = node.realTarget;
|
| - if (target != null && target.accept(this)) {
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - @override
|
| - bool visitRethrowExpression(RethrowExpression node) => true;
|
| -
|
| - @override
|
| - bool visitReturnStatement(ReturnStatement node) => true;
|
| -
|
| - @override
|
| - bool visitSuperExpression(SuperExpression node) => false;
|
| -
|
| - @override
|
| - bool visitSwitchCase(SwitchCase node) => _visitStatements(node.statements);
|
| -
|
| - @override
|
| - bool visitSwitchDefault(SwitchDefault node) =>
|
| - _visitStatements(node.statements);
|
| -
|
| - @override
|
| - bool visitSwitchStatement(SwitchStatement node) {
|
| - bool outerBreakValue = _enclosingBlockContainsBreak;
|
| - _enclosingBlockContainsBreak = false;
|
| - try {
|
| - bool hasDefault = false;
|
| - List<SwitchMember> members = node.members;
|
| - for (int i = 0; i < members.length; i++) {
|
| - SwitchMember switchMember = members[i];
|
| - if (switchMember is SwitchDefault) {
|
| - hasDefault = true;
|
| - // If this is the last member and there are no statements, return
|
| - // false
|
| - if (switchMember.statements.isEmpty && i + 1 == members.length) {
|
| - return false;
|
| - }
|
| - }
|
| - // For switch members with no statements, don't visit the children,
|
| - // otherwise, return false if no return is found in the children
|
| - // statements.
|
| - if (!switchMember.statements.isEmpty && !switchMember.accept(this)) {
|
| - return false;
|
| - }
|
| - }
|
| - // All of the members exit, determine whether there are possible cases
|
| - // that are not caught by the members.
|
| - DartType type = node.expression == null ? null : node.expression.bestType;
|
| - if (type is InterfaceType) {
|
| - ClassElement element = type.element;
|
| - if (element != null && element.isEnum) {
|
| - // If some of the enum values are not covered, then a warning will
|
| - // have already been generated, so there's no point in generating a
|
| - // hint.
|
| - return true;
|
| - }
|
| - }
|
| - return hasDefault;
|
| - } finally {
|
| - _enclosingBlockContainsBreak = outerBreakValue;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - bool visitThisExpression(ThisExpression node) => false;
|
| -
|
| - @override
|
| - bool visitThrowExpression(ThrowExpression node) => true;
|
| -
|
| - @override
|
| - bool visitTryStatement(TryStatement node) {
|
| - if (_nodeExits(node.body)) {
|
| - return true;
|
| - }
|
| - Block finallyBlock = node.finallyBlock;
|
| - if (_nodeExits(finallyBlock)) {
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - @override
|
| - bool visitTypeName(TypeName node) => false;
|
| -
|
| - @override
|
| - bool visitVariableDeclaration(VariableDeclaration node) {
|
| - Expression initializer = node.initializer;
|
| - if (initializer != null) {
|
| - return initializer.accept(this);
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - @override
|
| - bool visitVariableDeclarationList(VariableDeclarationList node) =>
|
| - _visitVariableDeclarations(node.variables);
|
| -
|
| - @override
|
| - bool visitVariableDeclarationStatement(VariableDeclarationStatement node) {
|
| - NodeList<VariableDeclaration> variables = node.variables.variables;
|
| - for (int i = 0; i < variables.length; i++) {
|
| - if (variables[i].accept(this)) {
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - @override
|
| - bool visitWhileStatement(WhileStatement node) {
|
| - bool outerBreakValue = _enclosingBlockContainsBreak;
|
| - _enclosingBlockContainsBreak = false;
|
| - try {
|
| - Expression conditionExpression = node.condition;
|
| - if (conditionExpression.accept(this)) {
|
| - return true;
|
| - }
|
| - // TODO(jwren) Do we want to take all constant expressions into account?
|
| - if (conditionExpression is BooleanLiteral) {
|
| - BooleanLiteral booleanLiteral = conditionExpression;
|
| - // If while(true), and the body doesn't return or the body doesn't have
|
| - // a break, then return true.
|
| - bool blockReturns = node.body.accept(this);
|
| - if (booleanLiteral.value &&
|
| - (blockReturns || !_enclosingBlockContainsBreak)) {
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| - } finally {
|
| - _enclosingBlockContainsBreak = outerBreakValue;
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Return `true` if the given node exits.
|
| - *
|
| - * @param node the node being tested
|
| - * @return `true` if the given node exits
|
| - */
|
| - bool _nodeExits(AstNode node) {
|
| - if (node == null) {
|
| - return false;
|
| - }
|
| - return node.accept(this);
|
| - }
|
| -
|
| - bool _visitExpressions(NodeList<Expression> expressions) {
|
| - for (int i = expressions.length - 1; i >= 0; i--) {
|
| - if (expressions[i].accept(this)) {
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - bool _visitStatements(NodeList<Statement> statements) {
|
| - for (int i = statements.length - 1; i >= 0; i--) {
|
| - if (statements[i].accept(this)) {
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - bool _visitVariableDeclarations(
|
| - NodeList<VariableDeclaration> variableDeclarations) {
|
| - for (int i = variableDeclarations.length - 1; i >= 0; i--) {
|
| - if (variableDeclarations[i].accept(this)) {
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * Return `true` if the given [node] exits.
|
| - */
|
| - static bool exits(AstNode node) {
|
| - return new ExitDetector()._nodeExits(node);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * The scope defined by a function.
|
| - */
|
| -class FunctionScope extends EnclosedScope {
|
| - /**
|
| - * The element representing the function that defines this scope.
|
| - */
|
| - final ExecutableElement _functionElement;
|
| -
|
| - /**
|
| - * A flag indicating whether the parameters have already been defined, used to
|
| - * prevent the parameters from being defined multiple times.
|
| - */
|
| - bool _parametersDefined = false;
|
| -
|
| - /**
|
| - * Initialize a newly created scope enclosed within the [enclosingScope] that
|
| - * represents the given [_functionElement].
|
| - */
|
| - FunctionScope(Scope enclosingScope, this._functionElement)
|
| - : super(new EnclosedScope(new EnclosedScope(enclosingScope))) {
|
| - if (_functionElement == null) {
|
| - throw new IllegalArgumentException("function element cannot be null");
|
| - }
|
| - _defineTypeParameters();
|
| - }
|
| -
|
| - /**
|
| - * Define the parameters for the given function in the scope that encloses
|
| - * this function.
|
| - */
|
| - void defineParameters() {
|
| - if (_parametersDefined) {
|
| - return;
|
| - }
|
| - _parametersDefined = true;
|
| - Scope parameterScope = enclosingScope;
|
| - for (ParameterElement parameter in _functionElement.parameters) {
|
| - if (!parameter.isInitializingFormal) {
|
| - parameterScope.define(parameter);
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Define the type parameters for the function.
|
| - */
|
| - void _defineTypeParameters() {
|
| - Scope typeParameterScope = enclosingScope.enclosingScope;
|
| - for (TypeParameterElement typeParameter
|
| - in _functionElement.typeParameters) {
|
| - typeParameterScope.define(typeParameter);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * The scope defined by a function type alias.
|
| - */
|
| -class FunctionTypeScope extends EnclosedScope {
|
| - final FunctionTypeAliasElement _typeElement;
|
| -
|
| - bool _parametersDefined = false;
|
| -
|
| - /**
|
| - * Initialize a newly created scope enclosed within the [enclosingScope] that
|
| - * represents the given [_typeElement].
|
| - */
|
| - FunctionTypeScope(Scope enclosingScope, this._typeElement)
|
| - : super(new EnclosedScope(enclosingScope)) {
|
| - _defineTypeParameters();
|
| - }
|
| -
|
| - /**
|
| - * Define the parameters for the function type alias.
|
| - */
|
| - void defineParameters() {
|
| - if (_parametersDefined) {
|
| - return;
|
| - }
|
| - _parametersDefined = true;
|
| - for (ParameterElement parameter in _typeElement.parameters) {
|
| - define(parameter);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Define the type parameters for the function type alias.
|
| - */
|
| - void _defineTypeParameters() {
|
| - Scope typeParameterScope = enclosingScope;
|
| - for (TypeParameterElement typeParameter in _typeElement.typeParameters) {
|
| - typeParameterScope.define(typeParameter);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * A visitor that visits ASTs and fills [UsedImportedElements].
|
| - */
|
| -class GatherUsedImportedElementsVisitor extends RecursiveAstVisitor {
|
| - final LibraryElement library;
|
| - final UsedImportedElements usedElements = new UsedImportedElements();
|
| -
|
| - GatherUsedImportedElementsVisitor(this.library);
|
| -
|
| - @override
|
| - void visitExportDirective(ExportDirective node) {
|
| - _visitMetadata(node.metadata);
|
| - }
|
| -
|
| - @override
|
| - void visitImportDirective(ImportDirective node) {
|
| - _visitMetadata(node.metadata);
|
| - }
|
| -
|
| - @override
|
| - void visitLibraryDirective(LibraryDirective node) {
|
| - _visitMetadata(node.metadata);
|
| - }
|
| -
|
| - @override
|
| - void visitPrefixedIdentifier(PrefixedIdentifier node) {
|
| - // If the prefixed identifier references some A.B, where A is a library
|
| - // prefix, then we can lookup the associated ImportDirective in
|
| - // prefixElementMap and remove it from the unusedImports list.
|
| - SimpleIdentifier prefixIdentifier = node.prefix;
|
| - Element element = prefixIdentifier.staticElement;
|
| - if (element is PrefixElement) {
|
| - usedElements.prefixes.add(element);
|
| - return;
|
| - }
|
| - // Otherwise, pass the prefixed identifier element and name onto
|
| - // visitIdentifier.
|
| - _visitIdentifier(element, prefixIdentifier.name);
|
| - }
|
| -
|
| - @override
|
| - void visitSimpleIdentifier(SimpleIdentifier node) {
|
| - _visitIdentifier(node.staticElement, node.name);
|
| - }
|
| -
|
| - void _visitIdentifier(Element element, String name) {
|
| - if (element == null) {
|
| - return;
|
| - }
|
| - // If the element is multiply defined then call this method recursively for
|
| - // each of the conflicting elements.
|
| - if (element is MultiplyDefinedElement) {
|
| - MultiplyDefinedElement multiplyDefinedElement = element;
|
| - for (Element elt in multiplyDefinedElement.conflictingElements) {
|
| - _visitIdentifier(elt, name);
|
| - }
|
| - return;
|
| - } else if (element is PrefixElement) {
|
| - usedElements.prefixes.add(element);
|
| - return;
|
| - } else if (element.enclosingElement is! CompilationUnitElement) {
|
| - // Identifiers that aren't a prefix element and whose enclosing element
|
| - // isn't a CompilationUnit are ignored- this covers the case the
|
| - // identifier is a relative-reference, a reference to an identifier not
|
| - // imported by this library.
|
| - return;
|
| - }
|
| - // Ignore if an unknown library.
|
| - LibraryElement containingLibrary = element.library;
|
| - if (containingLibrary == null) {
|
| - return;
|
| - }
|
| - // Ignore if a local element.
|
| - if (library == containingLibrary) {
|
| - return;
|
| - }
|
| - // Remember the element.
|
| - usedElements.elements.add(element);
|
| - }
|
| -
|
| - /**
|
| - * Given some [NodeList] of [Annotation]s, ensure that the identifiers are visited by
|
| - * this visitor. Specifically, this covers the cases where AST nodes don't have their identifiers
|
| - * visited by this visitor, but still need their annotations visited.
|
| - *
|
| - * @param annotations the list of annotations to visit
|
| - */
|
| - void _visitMetadata(NodeList<Annotation> annotations) {
|
| - int count = annotations.length;
|
| - for (int i = 0; i < count; i++) {
|
| - annotations[i].accept(this);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * An [AstVisitor] that fills [UsedLocalElements].
|
| - */
|
| -class GatherUsedLocalElementsVisitor extends RecursiveAstVisitor {
|
| - final UsedLocalElements usedElements = new UsedLocalElements();
|
| -
|
| - final LibraryElement _enclosingLibrary;
|
| - ClassElement _enclosingClass;
|
| - ExecutableElement _enclosingExec;
|
| -
|
| - GatherUsedLocalElementsVisitor(this._enclosingLibrary);
|
| -
|
| - @override
|
| - visitCatchClause(CatchClause node) {
|
| - SimpleIdentifier exceptionParameter = node.exceptionParameter;
|
| - SimpleIdentifier stackTraceParameter = node.stackTraceParameter;
|
| - if (exceptionParameter != null) {
|
| - Element element = exceptionParameter.staticElement;
|
| - usedElements.addCatchException(element);
|
| - if (stackTraceParameter != null || node.onKeyword == null) {
|
| - usedElements.addElement(element);
|
| - }
|
| - }
|
| - if (stackTraceParameter != null) {
|
| - Element element = stackTraceParameter.staticElement;
|
| - usedElements.addCatchStackTrace(element);
|
| - }
|
| - super.visitCatchClause(node);
|
| - }
|
| -
|
| - @override
|
| - visitClassDeclaration(ClassDeclaration node) {
|
| - ClassElement enclosingClassOld = _enclosingClass;
|
| - try {
|
| - _enclosingClass = node.element;
|
| - super.visitClassDeclaration(node);
|
| - } finally {
|
| - _enclosingClass = enclosingClassOld;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - visitFunctionDeclaration(FunctionDeclaration node) {
|
| - ExecutableElement enclosingExecOld = _enclosingExec;
|
| - try {
|
| - _enclosingExec = node.element;
|
| - super.visitFunctionDeclaration(node);
|
| - } finally {
|
| - _enclosingExec = enclosingExecOld;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - visitFunctionExpression(FunctionExpression node) {
|
| - if (node.parent is! FunctionDeclaration) {
|
| - usedElements.addElement(node.element);
|
| - }
|
| - super.visitFunctionExpression(node);
|
| - }
|
| -
|
| - @override
|
| - visitMethodDeclaration(MethodDeclaration node) {
|
| - ExecutableElement enclosingExecOld = _enclosingExec;
|
| - try {
|
| - _enclosingExec = node.element;
|
| - super.visitMethodDeclaration(node);
|
| - } finally {
|
| - _enclosingExec = enclosingExecOld;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - visitSimpleIdentifier(SimpleIdentifier node) {
|
| - if (node.inDeclarationContext()) {
|
| - return;
|
| - }
|
| - Element element = node.staticElement;
|
| - bool isIdentifierRead = _isReadIdentifier(node);
|
| - if (element is LocalVariableElement) {
|
| - if (isIdentifierRead) {
|
| - usedElements.addElement(element);
|
| - }
|
| - } else {
|
| - _useIdentifierElement(node);
|
| - if (element == null ||
|
| - element.enclosingElement is ClassElement &&
|
| - !identical(element, _enclosingExec)) {
|
| - usedElements.members.add(node.name);
|
| - if (isIdentifierRead) {
|
| - usedElements.readMembers.add(node.name);
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Marks an [Element] of [node] as used in the library.
|
| - */
|
| - void _useIdentifierElement(Identifier node) {
|
| - Element element = node.staticElement;
|
| - if (element == null) {
|
| - return;
|
| - }
|
| - // check if a local element
|
| - if (!identical(element.library, _enclosingLibrary)) {
|
| - return;
|
| - }
|
| - // ignore references to an element from itself
|
| - if (identical(element, _enclosingClass)) {
|
| - return;
|
| - }
|
| - if (identical(element, _enclosingExec)) {
|
| - return;
|
| - }
|
| - // ignore places where the element is not actually used
|
| - if (node.parent is TypeName) {
|
| - if (element is ClassElement) {
|
| - AstNode parent2 = node.parent.parent;
|
| - if (parent2 is IsExpression) {
|
| - return;
|
| - }
|
| - if (parent2 is VariableDeclarationList) {
|
| - return;
|
| - }
|
| - }
|
| - }
|
| - // OK
|
| - usedElements.addElement(element);
|
| - }
|
| -
|
| - static bool _isReadIdentifier(SimpleIdentifier node) {
|
| - // not reading at all
|
| - if (!node.inGetterContext()) {
|
| - return false;
|
| - }
|
| - // check if useless reading
|
| - AstNode parent = node.parent;
|
| - if (parent.parent is ExpressionStatement &&
|
| - (parent is PrefixExpression ||
|
| - parent is PostfixExpression ||
|
| - parent is AssignmentExpression && parent.leftHandSide == node)) {
|
| - // v++;
|
| - // ++v;
|
| - // v += 2;
|
| - return false;
|
| - }
|
| - // OK
|
| - return true;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `HintGenerator` traverse a library's worth of dart code at a time to
|
| - * generate hints over the set of sources.
|
| - *
|
| - * See [HintCode].
|
| - */
|
| -class HintGenerator {
|
| - final List<CompilationUnit> _compilationUnits;
|
| -
|
| - final InternalAnalysisContext _context;
|
| -
|
| - final AnalysisErrorListener _errorListener;
|
| -
|
| - LibraryElement _library;
|
| -
|
| - GatherUsedImportedElementsVisitor _usedImportedElementsVisitor;
|
| -
|
| - bool _enableDart2JSHints = false;
|
| -
|
| - /**
|
| - * The inheritance manager used to find overridden methods.
|
| - */
|
| - InheritanceManager _manager;
|
| -
|
| - GatherUsedLocalElementsVisitor _usedLocalElementsVisitor;
|
| -
|
| - HintGenerator(this._compilationUnits, this._context, this._errorListener) {
|
| - _library = _compilationUnits[0].element.library;
|
| - _usedImportedElementsVisitor =
|
| - new GatherUsedImportedElementsVisitor(_library);
|
| - _enableDart2JSHints = _context.analysisOptions.dart2jsHint;
|
| - _manager = new InheritanceManager(_compilationUnits[0].element.library);
|
| - _usedLocalElementsVisitor = new GatherUsedLocalElementsVisitor(_library);
|
| - }
|
| -
|
| - void generateForLibrary() {
|
| - PerformanceStatistics.hints.makeCurrentWhile(() {
|
| - for (CompilationUnit unit in _compilationUnits) {
|
| - CompilationUnitElement element = unit.element;
|
| - if (element != null) {
|
| - _generateForCompilationUnit(unit, element.source);
|
| - }
|
| - }
|
| - CompilationUnit definingUnit = _compilationUnits[0];
|
| - ErrorReporter definingUnitErrorReporter =
|
| - new ErrorReporter(_errorListener, definingUnit.element.source);
|
| - {
|
| - ImportsVerifier importsVerifier = new ImportsVerifier();
|
| - importsVerifier.addImports(definingUnit);
|
| - importsVerifier
|
| - .removeUsedElements(_usedImportedElementsVisitor.usedElements);
|
| - importsVerifier.generateDuplicateImportHints(definingUnitErrorReporter);
|
| - importsVerifier.generateUnusedImportHints(definingUnitErrorReporter);
|
| - }
|
| - _library.accept(new UnusedLocalElementsVerifier(
|
| - _errorListener, _usedLocalElementsVisitor.usedElements));
|
| - });
|
| - }
|
| -
|
| - void _generateForCompilationUnit(CompilationUnit unit, Source source) {
|
| - ErrorReporter errorReporter = new ErrorReporter(_errorListener, source);
|
| - unit.accept(_usedImportedElementsVisitor);
|
| - // dead code analysis
|
| - unit.accept(new DeadCodeVerifier(errorReporter));
|
| - unit.accept(_usedLocalElementsVisitor);
|
| - // dart2js analysis
|
| - if (_enableDart2JSHints) {
|
| - unit.accept(new Dart2JSVerifier(errorReporter));
|
| - }
|
| - // Dart best practices
|
| - unit.accept(
|
| - new BestPracticesVerifier(errorReporter, _context.typeProvider));
|
| - unit.accept(new OverrideVerifier(errorReporter, _manager));
|
| - // Find to-do comments
|
| - new ToDoFinder(errorReporter).findIn(unit);
|
| - // pub analysis
|
| - // TODO(danrubel/jwren) Commented out until bugs in the pub verifier are
|
| - // fixed
|
| - // unit.accept(new PubVerifier(context, errorReporter));
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class {@code HtmlTagInfo} record information about the tags used in an HTML
|
| - * file.
|
| - */
|
| -class HtmlTagInfo {
|
| - /**
|
| - * An array containing all of the tags used in the HTML file.
|
| - */
|
| - List<String> allTags;
|
| -
|
| - /**
|
| - * A table mapping the id's defined in the HTML file to an array containing the names of tags with
|
| - * that identifier.
|
| - */
|
| - HashMap<String, String> idToTagMap;
|
| -
|
| - /**
|
| - * A table mapping the classes defined in the HTML file to an array containing the names of tags
|
| - * with that class.
|
| - */
|
| - HashMap<String, List<String>> classToTagsMap;
|
| -
|
| - /**
|
| - * Initialize a newly created information holder to hold the given information about the tags in
|
| - * an HTML file.
|
| - *
|
| - * @param allTags an array containing all of the tags used in the HTML file
|
| - * @param idToTagMap a table mapping the id's defined in the HTML file to an array containing the
|
| - * names of tags with that identifier
|
| - * @param classToTagsMap a table mapping the classes defined in the HTML file to an array
|
| - * containing the names of tags with that class
|
| - */
|
| - HtmlTagInfo(List<String> allTags, HashMap<String, String> idToTagMap,
|
| - HashMap<String, List<String>> classToTagsMap) {
|
| - this.allTags = allTags;
|
| - this.idToTagMap = idToTagMap;
|
| - this.classToTagsMap = classToTagsMap;
|
| - }
|
| -
|
| - /**
|
| - * Return an array containing the tags that have the given class, or {@code null} if there are no
|
| - * such tags.
|
| - *
|
| - * @return an array containing the tags that have the given class
|
| - */
|
| - List<String> getTagsWithClass(String identifier) {
|
| - return classToTagsMap[identifier];
|
| - }
|
| -
|
| - /**
|
| - * Return the tag that has the given identifier, or {@code null} if there is no such tag (the
|
| - * identifier is not defined).
|
| - *
|
| - * @return the tag that has the given identifier
|
| - */
|
| - String getTagWithId(String identifier) {
|
| - return idToTagMap[identifier];
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class {@code HtmlTagInfoBuilder} gather information about the tags used in one
|
| - * or more HTML structures.
|
| - */
|
| -class HtmlTagInfoBuilder implements ht.XmlVisitor {
|
| - /**
|
| - * The name of the 'id' attribute.
|
| - */
|
| - static final String ID_ATTRIBUTE = "id";
|
| -
|
| - /**
|
| - * The name of the 'class' attribute.
|
| - */
|
| - static final String ID_CLASS = "class";
|
| -
|
| - /**
|
| - * A set containing all of the tag names used in the HTML.
|
| - */
|
| - HashSet<String> tagSet = new HashSet<String>();
|
| -
|
| - /**
|
| - * A table mapping the id's that are defined to the tag name with that id.
|
| - */
|
| - HashMap<String, String> idMap = new HashMap<String, String>();
|
| -
|
| - /**
|
| - * A table mapping the classes that are defined to a set of the tag names with that class.
|
| - */
|
| - HashMap<String, HashSet<String>> classMap =
|
| - new HashMap<String, HashSet<String>>();
|
| -
|
| - /**
|
| - * Initialize a newly created HTML tag info builder.
|
| - */
|
| - HtmlTagInfoBuilder();
|
| -
|
| - /**
|
| - * Create a tag information holder holding all of the information gathered about the tags in the
|
| - * HTML structures that were visited.
|
| - *
|
| - * @return the information gathered about the tags in the visited HTML structures
|
| - */
|
| - HtmlTagInfo getTagInfo() {
|
| - List<String> allTags = tagSet.toList();
|
| - HashMap<String, List<String>> classToTagsMap =
|
| - new HashMap<String, List<String>>();
|
| - classMap.forEach((String key, Set<String> tags) {
|
| - classToTagsMap[key] = tags.toList();
|
| - });
|
| - return new HtmlTagInfo(allTags, idMap, classToTagsMap);
|
| - }
|
| -
|
| - @override
|
| - visitHtmlScriptTagNode(ht.HtmlScriptTagNode node) {
|
| - visitXmlTagNode(node);
|
| - }
|
| -
|
| - @override
|
| - visitHtmlUnit(ht.HtmlUnit node) {
|
| - node.visitChildren(this);
|
| - }
|
| -
|
| - @override
|
| - visitXmlAttributeNode(ht.XmlAttributeNode node) {}
|
| -
|
| - @override
|
| - visitXmlTagNode(ht.XmlTagNode node) {
|
| - node.visitChildren(this);
|
| - String tagName = node.tag;
|
| - tagSet.add(tagName);
|
| - for (ht.XmlAttributeNode attribute in node.attributes) {
|
| - String attributeName = attribute.name;
|
| - if (attributeName == ID_ATTRIBUTE) {
|
| - String attributeValue = attribute.text;
|
| - if (attributeValue != null) {
|
| - String tag = idMap[attributeValue];
|
| - if (tag == null) {
|
| - idMap[attributeValue] = tagName;
|
| - } else {
|
| -// reportError(HtmlWarningCode.MULTIPLY_DEFINED_ID, valueToken);
|
| - }
|
| - }
|
| - } else if (attributeName == ID_CLASS) {
|
| - String attributeValue = attribute.text;
|
| - if (attributeValue != null) {
|
| - HashSet<String> tagList = classMap[attributeValue];
|
| - if (tagList == null) {
|
| - tagList = new HashSet<String>();
|
| - classMap[attributeValue] = tagList;
|
| - } else {
|
| -// reportError(HtmlWarningCode.MULTIPLY_DEFINED_ID, valueToken);
|
| - }
|
| - tagList.add(tagName);
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| -// /**
|
| -// * Report an error with the given error code at the given location. Use the given arguments to
|
| -// * compose the error message.
|
| -// *
|
| -// * @param errorCode the error code of the error to be reported
|
| -// * @param offset the offset of the first character to be highlighted
|
| -// * @param length the number of characters to be highlighted
|
| -// * @param arguments the arguments used to compose the error message
|
| -// */
|
| -// private void reportError(ErrorCode errorCode, Token token, Object... arguments) {
|
| -// errorListener.onError(new AnalysisError(
|
| -// htmlElement.getSource(),
|
| -// token.getOffset(),
|
| -// token.getLength(),
|
| -// errorCode,
|
| -// arguments));
|
| -// }
|
| -//
|
| -// /**
|
| -// * Report an error with the given error code at the given location. Use the given arguments to
|
| -// * compose the error message.
|
| -// *
|
| -// * @param errorCode the error code of the error to be reported
|
| -// * @param offset the offset of the first character to be highlighted
|
| -// * @param length the number of characters to be highlighted
|
| -// * @param arguments the arguments used to compose the error message
|
| -// */
|
| -// private void reportError(ErrorCode errorCode, int offset, int length, Object... arguments) {
|
| -// errorListener.onError(new AnalysisError(
|
| -// htmlElement.getSource(),
|
| -// offset,
|
| -// length,
|
| -// errorCode,
|
| -// arguments));
|
| -// }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `HtmlUnitBuilder` build an element model for a single HTML unit.
|
| - */
|
| -class HtmlUnitBuilder implements ht.XmlVisitor<Object> {
|
| - static String _SRC = "src";
|
| -
|
| - /**
|
| - * The analysis context in which the element model will be built.
|
| - */
|
| - final InternalAnalysisContext _context;
|
| -
|
| - /**
|
| - * The error listener to which errors will be reported.
|
| - */
|
| - RecordingErrorListener _errorListener;
|
| -
|
| - /**
|
| - * The HTML element being built.
|
| - */
|
| - HtmlElementImpl _htmlElement;
|
| -
|
| - /**
|
| - * The elements in the path from the HTML unit to the current tag node.
|
| - */
|
| - List<ht.XmlTagNode> _parentNodes;
|
| -
|
| - /**
|
| - * The script elements being built.
|
| - */
|
| - List<HtmlScriptElement> _scripts;
|
| -
|
| - /**
|
| - * A set of the libraries that were resolved while resolving the HTML unit.
|
| - */
|
| - Set<Library> _resolvedLibraries = new HashSet<Library>();
|
| -
|
| - /**
|
| - * Initialize a newly created HTML unit builder.
|
| - *
|
| - * @param context the analysis context in which the element model will be built
|
| - */
|
| - HtmlUnitBuilder(this._context) {
|
| - this._errorListener = new RecordingErrorListener();
|
| - }
|
| -
|
| - /**
|
| - * Return the listener to which analysis errors will be reported.
|
| - *
|
| - * @return the listener to which analysis errors will be reported
|
| - */
|
| - RecordingErrorListener get errorListener => _errorListener;
|
| -
|
| - /**
|
| - * Return an array containing information about all of the libraries that were resolved.
|
| - *
|
| - * @return an array containing the libraries that were resolved
|
| - */
|
| - Set<Library> get resolvedLibraries => _resolvedLibraries;
|
| -
|
| - /**
|
| - * Build the HTML element for the given source.
|
| - *
|
| - * @param source the source describing the compilation unit
|
| - * @param unit the AST structure representing the HTML
|
| - * @throws AnalysisException if the analysis could not be performed
|
| - */
|
| - HtmlElementImpl buildHtmlElement(Source source, ht.HtmlUnit unit) {
|
| - HtmlElementImpl result = new HtmlElementImpl(_context, source.shortName);
|
| - result.source = source;
|
| - _htmlElement = result;
|
| - unit.accept(this);
|
| - _htmlElement = null;
|
| - unit.element = result;
|
| - return result;
|
| - }
|
| -
|
| - @override
|
| - Object visitHtmlScriptTagNode(ht.HtmlScriptTagNode node) {
|
| - if (_parentNodes.contains(node)) {
|
| - return _reportCircularity(node);
|
| - }
|
| - _parentNodes.add(node);
|
| - try {
|
| - Source htmlSource = _htmlElement.source;
|
| - ht.XmlAttributeNode scriptAttribute = _getScriptSourcePath(node);
|
| - String scriptSourcePath =
|
| - scriptAttribute == null ? null : scriptAttribute.text;
|
| - if (node.attributeEnd.type == ht.TokenType.GT &&
|
| - scriptSourcePath == null) {
|
| - EmbeddedHtmlScriptElementImpl script =
|
| - new EmbeddedHtmlScriptElementImpl(node);
|
| - try {
|
| - LibraryResolver resolver = new LibraryResolver(_context);
|
| - LibraryElementImpl library =
|
| - resolver.resolveEmbeddedLibrary(htmlSource, node.script, true);
|
| - script.scriptLibrary = library;
|
| - _resolvedLibraries.addAll(resolver.resolvedLibraries);
|
| - _errorListener.addAll(resolver.errorListener);
|
| - } on AnalysisException catch (exception, stackTrace) {
|
| - //TODO (danrubel): Handle or forward the exception
|
| - AnalysisEngine.instance.logger.logError(
|
| - "Could not resolve script tag",
|
| - new CaughtException(exception, stackTrace));
|
| - }
|
| - node.scriptElement = script;
|
| - _scripts.add(script);
|
| - } else {
|
| - ExternalHtmlScriptElementImpl script =
|
| - new ExternalHtmlScriptElementImpl(node);
|
| - if (scriptSourcePath != null) {
|
| - try {
|
| - scriptSourcePath = Uri.encodeFull(scriptSourcePath);
|
| - // Force an exception to be thrown if the URI is invalid so that we
|
| - // can report the problem.
|
| - parseUriWithException(scriptSourcePath);
|
| - Source scriptSource =
|
| - _context.sourceFactory.resolveUri(htmlSource, scriptSourcePath);
|
| - script.scriptSource = scriptSource;
|
| - if (!_context.exists(scriptSource)) {
|
| - _reportValueError(HtmlWarningCode.URI_DOES_NOT_EXIST,
|
| - scriptAttribute, [scriptSourcePath]);
|
| - }
|
| - } on URISyntaxException {
|
| - _reportValueError(HtmlWarningCode.INVALID_URI, scriptAttribute,
|
| - [scriptSourcePath]);
|
| - }
|
| - }
|
| - node.scriptElement = script;
|
| - _scripts.add(script);
|
| - }
|
| - } finally {
|
| - _parentNodes.remove(node);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitHtmlUnit(ht.HtmlUnit node) {
|
| - _parentNodes = new List<ht.XmlTagNode>();
|
| - _scripts = new List<HtmlScriptElement>();
|
| - try {
|
| - node.visitChildren(this);
|
| - _htmlElement.scripts = new List.from(_scripts);
|
| - } finally {
|
| - _scripts = null;
|
| - _parentNodes = null;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitXmlAttributeNode(ht.XmlAttributeNode node) => null;
|
| -
|
| - @override
|
| - Object visitXmlTagNode(ht.XmlTagNode node) {
|
| - if (_parentNodes.contains(node)) {
|
| - return _reportCircularity(node);
|
| - }
|
| - _parentNodes.add(node);
|
| - try {
|
| - node.visitChildren(this);
|
| - } finally {
|
| - _parentNodes.remove(node);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Return the first source attribute for the given tag node, or `null` if it does not exist.
|
| - *
|
| - * @param node the node containing attributes
|
| - * @return the source attribute contained in the given tag
|
| - */
|
| - ht.XmlAttributeNode _getScriptSourcePath(ht.XmlTagNode node) {
|
| - for (ht.XmlAttributeNode attribute in node.attributes) {
|
| - if (attribute.name == _SRC) {
|
| - return attribute;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - Object _reportCircularity(ht.XmlTagNode node) {
|
| - //
|
| - // This should not be possible, but we have an error report that suggests
|
| - // that it happened at least once. This code will guard against infinite
|
| - // recursion and might help us identify the cause of the issue.
|
| - //
|
| - StringBuffer buffer = new StringBuffer();
|
| - buffer.write("Found circularity in XML nodes: ");
|
| - bool first = true;
|
| - for (ht.XmlTagNode pathNode in _parentNodes) {
|
| - if (first) {
|
| - first = false;
|
| - } else {
|
| - buffer.write(", ");
|
| - }
|
| - String tagName = pathNode.tag;
|
| - if (identical(pathNode, node)) {
|
| - buffer.write("*");
|
| - buffer.write(tagName);
|
| - buffer.write("*");
|
| - } else {
|
| - buffer.write(tagName);
|
| - }
|
| - }
|
| - AnalysisEngine.instance.logger.logError(buffer.toString());
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Report an error with the given error code at the given location. Use the given arguments to
|
| - * compose the error message.
|
| - *
|
| - * @param errorCode the error code of the error to be reported
|
| - * @param offset the offset of the first character to be highlighted
|
| - * @param length the number of characters to be highlighted
|
| - * @param arguments the arguments used to compose the error message
|
| - */
|
| - void _reportErrorForOffset(
|
| - ErrorCode errorCode, int offset, int length, List<Object> arguments) {
|
| - _errorListener.onError(new AnalysisError(
|
| - _htmlElement.source, offset, length, errorCode, arguments));
|
| - }
|
| -
|
| - /**
|
| - * Report an error with the given error code at the location of the value of the given attribute.
|
| - * Use the given arguments to compose the error message.
|
| - *
|
| - * @param errorCode the error code of the error to be reported
|
| - * @param offset the offset of the first character to be highlighted
|
| - * @param length the number of characters to be highlighted
|
| - * @param arguments the arguments used to compose the error message
|
| - */
|
| - void _reportValueError(ErrorCode errorCode, ht.XmlAttributeNode attribute,
|
| - List<Object> arguments) {
|
| - int offset = attribute.valueToken.offset + 1;
|
| - int length = attribute.valueToken.length - 2;
|
| - _reportErrorForOffset(errorCode, offset, length, arguments);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `ImplicitLabelScope` represent the scope statements
|
| - * that can be the target of unlabeled break and continue statements.
|
| - */
|
| -class ImplicitLabelScope {
|
| - /**
|
| - * The implicit label scope associated with the top level of a function.
|
| - */
|
| - static const ImplicitLabelScope ROOT = const ImplicitLabelScope._(null, null);
|
| -
|
| - /**
|
| - * The implicit label scope enclosing this implicit label scope.
|
| - */
|
| - final ImplicitLabelScope outerScope;
|
| -
|
| - /**
|
| - * The statement that acts as a target for break and/or continue statements
|
| - * at this scoping level.
|
| - */
|
| - final Statement statement;
|
| -
|
| - /**
|
| - * Private constructor.
|
| - */
|
| - const ImplicitLabelScope._(this.outerScope, this.statement);
|
| -
|
| - /**
|
| - * Get the statement which should be the target of an unlabeled `break` or
|
| - * `continue` statement, or `null` if there is no appropriate target.
|
| - */
|
| - Statement getTarget(bool isContinue) {
|
| - if (outerScope == null) {
|
| - // This scope represents the toplevel of a function body, so it doesn't
|
| - // match either break or continue.
|
| - return null;
|
| - }
|
| - if (isContinue && statement is SwitchStatement) {
|
| - return outerScope.getTarget(isContinue);
|
| - }
|
| - return statement;
|
| - }
|
| -
|
| - /**
|
| - * Initialize a newly created scope to represent a switch statement or loop
|
| - * nested within the current scope. [statement] is the statement associated
|
| - * with the newly created scope.
|
| - */
|
| - ImplicitLabelScope nest(Statement statement) =>
|
| - new ImplicitLabelScope._(this, statement);
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `ImportsVerifier` visit all of the referenced libraries in the
|
| - * source code verifying that all of the imports are used, otherwise a
|
| - * [HintCode.UNUSED_IMPORT] is generated with
|
| - * [generateUnusedImportHints].
|
| - *
|
| - * While this class does not yet have support for an "Organize Imports" action, this logic built up
|
| - * in this class could be used for such an action in the future.
|
| - */
|
| -class ImportsVerifier /*extends RecursiveAstVisitor<Object>*/ {
|
| - /**
|
| - * A list of [ImportDirective]s that the current library imports, as identifiers are visited
|
| - * by this visitor and an import has been identified as being used by the library, the
|
| - * [ImportDirective] is removed from this list. After all the sources in the library have
|
| - * been evaluated, this list represents the set of unused imports.
|
| - *
|
| - * See [ImportsVerifier.generateUnusedImportErrors].
|
| - */
|
| - final List<ImportDirective> _unusedImports = <ImportDirective>[];
|
| -
|
| - /**
|
| - * After the list of [unusedImports] has been computed, this list is a proper subset of the
|
| - * unused imports that are listed more than once.
|
| - */
|
| - final List<ImportDirective> _duplicateImports = <ImportDirective>[];
|
| -
|
| - /**
|
| - * This is a map between the set of [LibraryElement]s that the current library imports, and
|
| - * a list of [ImportDirective]s that imports the library. In cases where the current library
|
| - * imports a library with a single directive (such as `import lib1.dart;`), the library
|
| - * element will map to a list of one [ImportDirective], which will then be removed from the
|
| - * [unusedImports] list. In cases where the current library imports a library with multiple
|
| - * directives (such as `import lib1.dart; import lib1.dart show C;`), the
|
| - * [LibraryElement] will be mapped to a list of the import directives, and the namespace
|
| - * will need to be used to compute the correct [ImportDirective] being used, see
|
| - * [namespaceMap].
|
| - */
|
| - final HashMap<LibraryElement, List<ImportDirective>> _libraryMap =
|
| - new HashMap<LibraryElement, List<ImportDirective>>();
|
| -
|
| - /**
|
| - * In cases where there is more than one import directive per library element, this mapping is
|
| - * used to determine which of the multiple import directives are used by generating a
|
| - * [Namespace] for each of the imports to do lookups in the same way that they are done from
|
| - * the [ElementResolver].
|
| - */
|
| - final HashMap<ImportDirective, Namespace> _namespaceMap =
|
| - new HashMap<ImportDirective, Namespace>();
|
| -
|
| - /**
|
| - * This is a map between prefix elements and the import directives from which they are derived. In
|
| - * cases where a type is referenced via a prefix element, the import directive can be marked as
|
| - * used (removed from the unusedImports) by looking at the resolved `lib` in `lib.X`,
|
| - * instead of looking at which library the `lib.X` resolves.
|
| - *
|
| - * TODO (jwren) Since multiple [ImportDirective]s can share the same [PrefixElement],
|
| - * it is possible to have an unreported unused import in situations where two imports use the same
|
| - * prefix and at least one import directive is used.
|
| - */
|
| - final HashMap<PrefixElement, List<ImportDirective>> _prefixElementMap =
|
| - new HashMap<PrefixElement, List<ImportDirective>>();
|
| -
|
| - void addImports(CompilationUnit node) {
|
| - for (Directive directive in node.directives) {
|
| - if (directive is ImportDirective) {
|
| - ImportDirective importDirective = directive;
|
| - LibraryElement libraryElement = importDirective.uriElement;
|
| - if (libraryElement != null) {
|
| - _unusedImports.add(importDirective);
|
| - //
|
| - // Initialize prefixElementMap
|
| - //
|
| - if (importDirective.asKeyword != null) {
|
| - SimpleIdentifier prefixIdentifier = importDirective.prefix;
|
| - if (prefixIdentifier != null) {
|
| - Element element = prefixIdentifier.staticElement;
|
| - if (element is PrefixElement) {
|
| - PrefixElement prefixElementKey = element;
|
| - List<ImportDirective> list =
|
| - _prefixElementMap[prefixElementKey];
|
| - if (list == null) {
|
| - list = new List<ImportDirective>();
|
| - _prefixElementMap[prefixElementKey] = list;
|
| - }
|
| - list.add(importDirective);
|
| - }
|
| - // TODO (jwren) Can the element ever not be a PrefixElement?
|
| - }
|
| - }
|
| - //
|
| - // Initialize libraryMap: libraryElement -> importDirective
|
| - //
|
| - _putIntoLibraryMap(libraryElement, importDirective);
|
| - //
|
| - // For this new addition to the libraryMap, also recursively add any
|
| - // exports from the libraryElement.
|
| - //
|
| - _addAdditionalLibrariesForExports(
|
| - libraryElement, importDirective, new List<LibraryElement>());
|
| - }
|
| - }
|
| - }
|
| - if (_unusedImports.length > 1) {
|
| - // order the list of unusedImports to find duplicates in faster than
|
| - // O(n^2) time
|
| - List<ImportDirective> importDirectiveArray =
|
| - new List<ImportDirective>.from(_unusedImports);
|
| - importDirectiveArray.sort(ImportDirective.COMPARATOR);
|
| - ImportDirective currentDirective = importDirectiveArray[0];
|
| - for (int i = 1; i < importDirectiveArray.length; i++) {
|
| - ImportDirective nextDirective = importDirectiveArray[i];
|
| - if (ImportDirective.COMPARATOR(currentDirective, nextDirective) == 0) {
|
| - // Add either the currentDirective or nextDirective depending on which
|
| - // comes second, this guarantees that the first of the duplicates
|
| - // won't be highlighted.
|
| - if (currentDirective.offset < nextDirective.offset) {
|
| - _duplicateImports.add(nextDirective);
|
| - } else {
|
| - _duplicateImports.add(currentDirective);
|
| - }
|
| - }
|
| - currentDirective = nextDirective;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Any time after the defining compilation unit has been visited by this visitor, this method can
|
| - * be called to report an [HintCode.DUPLICATE_IMPORT] hint for each of the import directives
|
| - * in the [duplicateImports] list.
|
| - *
|
| - * @param errorReporter the error reporter to report the set of [HintCode.DUPLICATE_IMPORT]
|
| - * hints to
|
| - */
|
| - void generateDuplicateImportHints(ErrorReporter errorReporter) {
|
| - for (ImportDirective duplicateImport in _duplicateImports) {
|
| - errorReporter.reportErrorForNode(
|
| - HintCode.DUPLICATE_IMPORT, duplicateImport.uri);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * After all of the compilation units have been visited by this visitor, this method can be called
|
| - * to report an [HintCode.UNUSED_IMPORT] hint for each of the import directives in the
|
| - * [unusedImports] list.
|
| - *
|
| - * @param errorReporter the error reporter to report the set of [HintCode.UNUSED_IMPORT]
|
| - * hints to
|
| - */
|
| - void generateUnusedImportHints(ErrorReporter errorReporter) {
|
| - for (ImportDirective unusedImport in _unusedImports) {
|
| - // Check that the import isn't dart:core
|
| - ImportElement importElement = unusedImport.element;
|
| - if (importElement != null) {
|
| - LibraryElement libraryElement = importElement.importedLibrary;
|
| - if (libraryElement != null && libraryElement.isDartCore) {
|
| - continue;
|
| - }
|
| - }
|
| - errorReporter.reportErrorForNode(
|
| - HintCode.UNUSED_IMPORT, unusedImport.uri);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Remove elements from [_unusedImports] using the given [usedElements].
|
| - */
|
| - void removeUsedElements(UsedImportedElements usedElements) {
|
| - // Stop if all the imports are known to be used.
|
| - if (_unusedImports.isEmpty) {
|
| - return;
|
| - }
|
| - // Process import prefixes.
|
| - for (PrefixElement prefix in usedElements.prefixes) {
|
| - List<ImportDirective> importDirectives = _prefixElementMap[prefix];
|
| - if (importDirectives != null) {
|
| - for (ImportDirective importDirective in importDirectives) {
|
| - _unusedImports.remove(importDirective);
|
| - }
|
| - }
|
| - }
|
| - // Process top-level elements.
|
| - for (Element element in usedElements.elements) {
|
| - // Stop if all the imports are known to be used.
|
| - if (_unusedImports.isEmpty) {
|
| - return;
|
| - }
|
| - // Prepare import directives for this library.
|
| - LibraryElement library = element.library;
|
| - List<ImportDirective> importsLibrary = _libraryMap[library];
|
| - if (importsLibrary == null) {
|
| - continue;
|
| - }
|
| - // If there is only one import directive for this library, then it must be
|
| - // the directive that this element is imported with, remove it from the
|
| - // unusedImports list.
|
| - if (importsLibrary.length == 1) {
|
| - ImportDirective usedImportDirective = importsLibrary[0];
|
| - _unusedImports.remove(usedImportDirective);
|
| - continue;
|
| - }
|
| - // Otherwise, find import directives using namespaces.
|
| - String name = element.displayName;
|
| - for (ImportDirective importDirective in importsLibrary) {
|
| - Namespace namespace = _computeNamespace(importDirective);
|
| - if (namespace != null && namespace.get(name) != null) {
|
| - _unusedImports.remove(importDirective);
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Recursively add any exported library elements into the [libraryMap].
|
| - */
|
| - void _addAdditionalLibrariesForExports(LibraryElement library,
|
| - ImportDirective importDirective, List<LibraryElement> exportPath) {
|
| - if (exportPath.contains(library)) {
|
| - return;
|
| - }
|
| - exportPath.add(library);
|
| - for (LibraryElement exportedLibraryElt in library.exportedLibraries) {
|
| - _putIntoLibraryMap(exportedLibraryElt, importDirective);
|
| - _addAdditionalLibrariesForExports(
|
| - exportedLibraryElt, importDirective, exportPath);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Lookup and return the [Namespace] from the [namespaceMap], if the map does not
|
| - * have the computed namespace, compute it and cache it in the map. If the import directive is not
|
| - * resolved or is not resolvable, `null` is returned.
|
| - *
|
| - * @param importDirective the import directive used to compute the returned namespace
|
| - * @return the computed or looked up [Namespace]
|
| - */
|
| - Namespace _computeNamespace(ImportDirective importDirective) {
|
| - Namespace namespace = _namespaceMap[importDirective];
|
| - if (namespace == null) {
|
| - // If the namespace isn't in the namespaceMap, then compute and put it in
|
| - // the map.
|
| - ImportElement importElement = importDirective.element;
|
| - if (importElement != null) {
|
| - NamespaceBuilder builder = new NamespaceBuilder();
|
| - namespace = builder.createImportNamespaceForDirective(importElement);
|
| - _namespaceMap[importDirective] = namespace;
|
| - }
|
| - }
|
| - return namespace;
|
| - }
|
| -
|
| - /**
|
| - * The [libraryMap] is a mapping between a library elements and a list of import
|
| - * directives, but when adding these mappings into the [libraryMap], this method can be
|
| - * used to simply add the mapping between the library element an an import directive without
|
| - * needing to check to see if a list needs to be created.
|
| - */
|
| - void _putIntoLibraryMap(
|
| - LibraryElement libraryElement, ImportDirective importDirective) {
|
| - List<ImportDirective> importList = _libraryMap[libraryElement];
|
| - if (importList == null) {
|
| - importList = new List<ImportDirective>();
|
| - _libraryMap[libraryElement] = importList;
|
| - }
|
| - importList.add(importDirective);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `InheritanceManager` manage the knowledge of where class members
|
| - * (methods, getters & setters) are inherited from.
|
| - */
|
| -class InheritanceManager {
|
| - /**
|
| - * The [LibraryElement] that is managed by this manager.
|
| - */
|
| - LibraryElement _library;
|
| -
|
| - /**
|
| - * This is a mapping between each [ClassElement] and a map between the [String] member
|
| - * names and the associated [ExecutableElement] in the mixin and superclass chain.
|
| - */
|
| - HashMap<ClassElement, MemberMap> _classLookup;
|
| -
|
| - /**
|
| - * This is a mapping between each [ClassElement] and a map between the [String] member
|
| - * names and the associated [ExecutableElement] in the interface set.
|
| - */
|
| - HashMap<ClassElement, MemberMap> _interfaceLookup;
|
| -
|
| - /**
|
| - * A map between each visited [ClassElement] and the set of [AnalysisError]s found on
|
| - * the class element.
|
| - */
|
| - HashMap<ClassElement, HashSet<AnalysisError>> _errorsInClassElement =
|
| - new HashMap<ClassElement, HashSet<AnalysisError>>();
|
| -
|
| - /**
|
| - * Initialize a newly created inheritance manager.
|
| - *
|
| - * @param library the library element context that the inheritance mappings are being generated
|
| - */
|
| - InheritanceManager(LibraryElement library) {
|
| - this._library = library;
|
| - _classLookup = new HashMap<ClassElement, MemberMap>();
|
| - _interfaceLookup = new HashMap<ClassElement, MemberMap>();
|
| - }
|
| -
|
| - /**
|
| - * Set the new library element context.
|
| - *
|
| - * @param library the new library element
|
| - */
|
| - void set libraryElement(LibraryElement library) {
|
| - this._library = library;
|
| - }
|
| -
|
| - /**
|
| - * Return the set of [AnalysisError]s found on the passed [ClassElement], or
|
| - * `null` if there are none.
|
| - *
|
| - * @param classElt the class element to query
|
| - * @return the set of [AnalysisError]s found on the passed [ClassElement], or
|
| - * `null` if there are none
|
| - */
|
| - HashSet<AnalysisError> getErrors(ClassElement classElt) =>
|
| - _errorsInClassElement[classElt];
|
| -
|
| - /**
|
| - * Get and return a mapping between the set of all string names of the members inherited from the
|
| - * passed [ClassElement] superclass hierarchy, and the associated [ExecutableElement].
|
| - *
|
| - * @param classElt the class element to query
|
| - * @return a mapping between the set of all members inherited from the passed [ClassElement]
|
| - * superclass hierarchy, and the associated [ExecutableElement]
|
| - */
|
| - MemberMap getMapOfMembersInheritedFromClasses(ClassElement classElt) =>
|
| - _computeClassChainLookupMap(classElt, new HashSet<ClassElement>());
|
| -
|
| - /**
|
| - * Get and return a mapping between the set of all string names of the members inherited from the
|
| - * passed [ClassElement] interface hierarchy, and the associated [ExecutableElement].
|
| - *
|
| - * @param classElt the class element to query
|
| - * @return a mapping between the set of all string names of the members inherited from the passed
|
| - * [ClassElement] interface hierarchy, and the associated [ExecutableElement].
|
| - */
|
| - MemberMap getMapOfMembersInheritedFromInterfaces(ClassElement classElt) =>
|
| - _computeInterfaceLookupMap(classElt, new HashSet<ClassElement>());
|
| -
|
| - /**
|
| - * Given some [ClassElement] and some member name, this returns the
|
| - * [ExecutableElement] that the class inherits from the mixins,
|
| - * superclasses or interfaces, that has the member name, if no member is inherited `null` is
|
| - * returned.
|
| - *
|
| - * @param classElt the class element to query
|
| - * @param memberName the name of the executable element to find and return
|
| - * @return the inherited executable element with the member name, or `null` if no such
|
| - * member exists
|
| - */
|
| - ExecutableElement lookupInheritance(
|
| - ClassElement classElt, String memberName) {
|
| - if (memberName == null || memberName.isEmpty) {
|
| - return null;
|
| - }
|
| - ExecutableElement executable = _computeClassChainLookupMap(
|
| - classElt, new HashSet<ClassElement>()).get(memberName);
|
| - if (executable == null) {
|
| - return _computeInterfaceLookupMap(classElt, new HashSet<ClassElement>())
|
| - .get(memberName);
|
| - }
|
| - return executable;
|
| - }
|
| -
|
| - /**
|
| - * Given some [ClassElement] and some member name, this returns the
|
| - * [ExecutableElement] that the class either declares itself, or
|
| - * inherits, that has the member name, if no member is inherited `null` is returned.
|
| - *
|
| - * @param classElt the class element to query
|
| - * @param memberName the name of the executable element to find and return
|
| - * @return the inherited executable element with the member name, or `null` if no such
|
| - * member exists
|
| - */
|
| - ExecutableElement lookupMember(ClassElement classElt, String memberName) {
|
| - ExecutableElement element = _lookupMemberInClass(classElt, memberName);
|
| - if (element != null) {
|
| - return element;
|
| - }
|
| - return lookupInheritance(classElt, memberName);
|
| - }
|
| -
|
| - /**
|
| - * Given some [InterfaceType] and some member name, this returns the
|
| - * [FunctionType] of the [ExecutableElement] that the
|
| - * class either declares itself, or inherits, that has the member name, if no member is inherited
|
| - * `null` is returned. The returned [FunctionType] has all type
|
| - * parameters substituted with corresponding type arguments from the given [InterfaceType].
|
| - *
|
| - * @param interfaceType the interface type to query
|
| - * @param memberName the name of the executable element to find and return
|
| - * @return the member's function type, or `null` if no such member exists
|
| - */
|
| - FunctionType lookupMemberType(
|
| - InterfaceType interfaceType, String memberName) {
|
| - ExecutableElement iteratorMember =
|
| - lookupMember(interfaceType.element, memberName);
|
| - if (iteratorMember == null) {
|
| - return null;
|
| - }
|
| - return substituteTypeArgumentsInMemberFromInheritance(
|
| - iteratorMember.type, memberName, interfaceType);
|
| - }
|
| -
|
| - /**
|
| - * Determine the set of methods which is overridden by the given class member. If no member is
|
| - * inherited, an empty list is returned. If one of the inherited members is a
|
| - * [MultiplyInheritedExecutableElement], then it is expanded into its constituent inherited
|
| - * elements.
|
| - *
|
| - * @param classElt the class to query
|
| - * @param memberName the name of the class member to query
|
| - * @return a list of overridden methods
|
| - */
|
| - List<ExecutableElement> lookupOverrides(
|
| - ClassElement classElt, String memberName) {
|
| - List<ExecutableElement> result = new List<ExecutableElement>();
|
| - if (memberName == null || memberName.isEmpty) {
|
| - return result;
|
| - }
|
| - List<MemberMap> interfaceMaps =
|
| - _gatherInterfaceLookupMaps(classElt, new HashSet<ClassElement>());
|
| - if (interfaceMaps != null) {
|
| - for (MemberMap interfaceMap in interfaceMaps) {
|
| - ExecutableElement overriddenElement = interfaceMap.get(memberName);
|
| - if (overriddenElement != null) {
|
| - if (overriddenElement is MultiplyInheritedExecutableElement) {
|
| - MultiplyInheritedExecutableElement multiplyInheritedElement =
|
| - overriddenElement;
|
| - for (ExecutableElement element
|
| - in multiplyInheritedElement.inheritedElements) {
|
| - result.add(element);
|
| - }
|
| - } else {
|
| - result.add(overriddenElement);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - return result;
|
| - }
|
| -
|
| - /**
|
| - * This method takes some inherited [FunctionType], and resolves all the parameterized types
|
| - * in the function type, dependent on the class in which it is being overridden.
|
| - *
|
| - * @param baseFunctionType the function type that is being overridden
|
| - * @param memberName the name of the member, this is used to lookup the inheritance path of the
|
| - * override
|
| - * @param definingType the type that is overriding the member
|
| - * @return the passed function type with any parameterized types substituted
|
| - */
|
| - FunctionType substituteTypeArgumentsInMemberFromInheritance(
|
| - FunctionType baseFunctionType, String memberName,
|
| - InterfaceType definingType) {
|
| - // if the baseFunctionType is null, or does not have any parameters,
|
| - // return it.
|
| - if (baseFunctionType == null ||
|
| - baseFunctionType.typeArguments.length == 0) {
|
| - return baseFunctionType;
|
| - }
|
| - // First, generate the path from the defining type to the overridden member
|
| - Queue<InterfaceType> inheritancePath = new Queue<InterfaceType>();
|
| - _computeInheritancePath(inheritancePath, definingType, memberName);
|
| - if (inheritancePath == null || inheritancePath.isEmpty) {
|
| - // TODO(jwren) log analysis engine error
|
| - return baseFunctionType;
|
| - }
|
| - FunctionType functionTypeToReturn = baseFunctionType;
|
| - // loop backward through the list substituting as we go:
|
| - while (!inheritancePath.isEmpty) {
|
| - InterfaceType lastType = inheritancePath.removeLast();
|
| - List<DartType> parameterTypes = lastType.element.type.typeArguments;
|
| - List<DartType> argumentTypes = lastType.typeArguments;
|
| - functionTypeToReturn =
|
| - functionTypeToReturn.substitute2(argumentTypes, parameterTypes);
|
| - }
|
| - return functionTypeToReturn;
|
| - }
|
| -
|
| - /**
|
| - * Compute and return a mapping between the set of all string names of the members inherited from
|
| - * the passed [ClassElement] superclass hierarchy, and the associated
|
| - * [ExecutableElement].
|
| - *
|
| - * @param classElt the class element to query
|
| - * @param visitedClasses a set of visited classes passed back into this method when it calls
|
| - * itself recursively
|
| - * @return a mapping between the set of all string names of the members inherited from the passed
|
| - * [ClassElement] superclass hierarchy, and the associated [ExecutableElement]
|
| - */
|
| - MemberMap _computeClassChainLookupMap(
|
| - ClassElement classElt, HashSet<ClassElement> visitedClasses) {
|
| - MemberMap resultMap = _classLookup[classElt];
|
| - if (resultMap != null) {
|
| - return resultMap;
|
| - } else {
|
| - resultMap = new MemberMap();
|
| - }
|
| - ClassElement superclassElt = null;
|
| - InterfaceType supertype = classElt.supertype;
|
| - if (supertype != null) {
|
| - superclassElt = supertype.element;
|
| - } else {
|
| - // classElt is Object
|
| - _classLookup[classElt] = resultMap;
|
| - return resultMap;
|
| - }
|
| - if (superclassElt != null) {
|
| - if (!visitedClasses.contains(superclassElt)) {
|
| - visitedClasses.add(superclassElt);
|
| - try {
|
| - resultMap = new MemberMap.from(
|
| - _computeClassChainLookupMap(superclassElt, visitedClasses));
|
| - //
|
| - // Substitute the super types down the hierarchy.
|
| - //
|
| - _substituteTypeParametersDownHierarchy(supertype, resultMap);
|
| - //
|
| - // Include the members from the superclass in the resultMap.
|
| - //
|
| - _recordMapWithClassMembers(resultMap, supertype, false);
|
| - } finally {
|
| - visitedClasses.remove(superclassElt);
|
| - }
|
| - } else {
|
| - // This case happens only when the superclass was previously visited and
|
| - // not in the lookup, meaning this is meant to shorten the compute for
|
| - // recursive cases.
|
| - _classLookup[superclassElt] = resultMap;
|
| - return resultMap;
|
| - }
|
| - }
|
| - //
|
| - // Include the members from the mixins in the resultMap. If there are
|
| - // multiple mixins, visit them in the order listed so that methods in later
|
| - // mixins will overwrite identically-named methods in earlier mixins.
|
| - //
|
| - List<InterfaceType> mixins = classElt.mixins;
|
| - for (InterfaceType mixin in mixins) {
|
| - ClassElement mixinElement = mixin.element;
|
| - if (mixinElement != null) {
|
| - if (!visitedClasses.contains(mixinElement)) {
|
| - visitedClasses.add(mixinElement);
|
| - try {
|
| - MemberMap map = new MemberMap.from(
|
| - _computeClassChainLookupMap(mixinElement, visitedClasses));
|
| - //
|
| - // Substitute the super types down the hierarchy.
|
| - //
|
| - _substituteTypeParametersDownHierarchy(mixin, map);
|
| - //
|
| - // Include the members from the superclass in the resultMap.
|
| - //
|
| - _recordMapWithClassMembers(map, mixin, false);
|
| - //
|
| - // Add the members from map into result map.
|
| - //
|
| - for (int j = 0; j < map.size; j++) {
|
| - String key = map.getKey(j);
|
| - ExecutableElement value = map.getValue(j);
|
| - if (key != null) {
|
| - ClassElement definingClass = value
|
| - .getAncestor((Element element) => element is ClassElement);
|
| - if (!definingClass.type.isObject) {
|
| - ExecutableElement existingValue = resultMap.get(key);
|
| - if (existingValue == null ||
|
| - (existingValue != null && !_isAbstract(value))) {
|
| - resultMap.put(key, value);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - } finally {
|
| - visitedClasses.remove(mixinElement);
|
| - }
|
| - } else {
|
| - // This case happens only when the superclass was previously visited
|
| - // and not in the lookup, meaning this is meant to shorten the compute
|
| - // for recursive cases.
|
| - _classLookup[mixinElement] = resultMap;
|
| - return resultMap;
|
| - }
|
| - }
|
| - }
|
| - _classLookup[classElt] = resultMap;
|
| - return resultMap;
|
| - }
|
| -
|
| - /**
|
| - * Compute and return the inheritance path given the context of a type and a member that is
|
| - * overridden in the inheritance path (for which the type is in the path).
|
| - *
|
| - * @param chain the inheritance path that is built up as this method calls itself recursively,
|
| - * when this method is called an empty [LinkedList] should be provided
|
| - * @param currentType the current type in the inheritance path
|
| - * @param memberName the name of the member that is being looked up the inheritance path
|
| - */
|
| - void _computeInheritancePath(Queue<InterfaceType> chain,
|
| - InterfaceType currentType, String memberName) {
|
| - // TODO (jwren) create a public version of this method which doesn't require
|
| - // the initial chain to be provided, then provided tests for this
|
| - // functionality in InheritanceManagerTest
|
| - chain.add(currentType);
|
| - ClassElement classElt = currentType.element;
|
| - InterfaceType supertype = classElt.supertype;
|
| - // Base case- reached Object
|
| - if (supertype == null) {
|
| - // Looked up the chain all the way to Object, return null.
|
| - // This should never happen.
|
| - return;
|
| - }
|
| - // If we are done, return the chain
|
| - // We are not done if this is the first recursive call on this method.
|
| - if (chain.length != 1) {
|
| - // We are done however if the member is in this classElt
|
| - if (_lookupMemberInClass(classElt, memberName) != null) {
|
| - return;
|
| - }
|
| - }
|
| - // Mixins- note that mixins call lookupMemberInClass, not lookupMember
|
| - List<InterfaceType> mixins = classElt.mixins;
|
| - for (int i = mixins.length - 1; i >= 0; i--) {
|
| - ClassElement mixinElement = mixins[i].element;
|
| - if (mixinElement != null) {
|
| - ExecutableElement elt = _lookupMemberInClass(mixinElement, memberName);
|
| - if (elt != null) {
|
| - // this is equivalent (but faster than) calling this method
|
| - // recursively
|
| - // (return computeInheritancePath(chain, mixins[i], memberName);)
|
| - chain.add(mixins[i]);
|
| - return;
|
| - }
|
| - }
|
| - }
|
| - // Superclass
|
| - ClassElement superclassElt = supertype.element;
|
| - if (lookupMember(superclassElt, memberName) != null) {
|
| - _computeInheritancePath(chain, supertype, memberName);
|
| - return;
|
| - }
|
| - // Interfaces
|
| - List<InterfaceType> interfaces = classElt.interfaces;
|
| - for (InterfaceType interfaceType in interfaces) {
|
| - ClassElement interfaceElement = interfaceType.element;
|
| - if (interfaceElement != null &&
|
| - lookupMember(interfaceElement, memberName) != null) {
|
| - _computeInheritancePath(chain, interfaceType, memberName);
|
| - return;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Compute and return a mapping between the set of all string names of the members inherited from
|
| - * the passed [ClassElement] interface hierarchy, and the associated
|
| - * [ExecutableElement].
|
| - *
|
| - * @param classElt the class element to query
|
| - * @param visitedInterfaces a set of visited classes passed back into this method when it calls
|
| - * itself recursively
|
| - * @return a mapping between the set of all string names of the members inherited from the passed
|
| - * [ClassElement] interface hierarchy, and the associated [ExecutableElement]
|
| - */
|
| - MemberMap _computeInterfaceLookupMap(
|
| - ClassElement classElt, HashSet<ClassElement> visitedInterfaces) {
|
| - MemberMap resultMap = _interfaceLookup[classElt];
|
| - if (resultMap != null) {
|
| - return resultMap;
|
| - }
|
| - List<MemberMap> lookupMaps =
|
| - _gatherInterfaceLookupMaps(classElt, visitedInterfaces);
|
| - if (lookupMaps == null) {
|
| - resultMap = new MemberMap();
|
| - } else {
|
| - HashMap<String, List<ExecutableElement>> unionMap =
|
| - _unionInterfaceLookupMaps(lookupMaps);
|
| - resultMap = _resolveInheritanceLookup(classElt, unionMap);
|
| - }
|
| - _interfaceLookup[classElt] = resultMap;
|
| - return resultMap;
|
| - }
|
| -
|
| - /**
|
| - * Collect a list of interface lookup maps whose elements correspond to all of the classes
|
| - * directly above [classElt] in the class hierarchy (the direct superclass if any, all
|
| - * mixins, and all direct superinterfaces). Each item in the list is the interface lookup map
|
| - * returned by [computeInterfaceLookupMap] for the corresponding super, except with type
|
| - * parameters appropriately substituted.
|
| - *
|
| - * @param classElt the class element to query
|
| - * @param visitedInterfaces a set of visited classes passed back into this method when it calls
|
| - * itself recursively
|
| - * @return `null` if there was a problem (such as a loop in the class hierarchy) or if there
|
| - * are no classes above this one in the class hierarchy. Otherwise, a list of interface
|
| - * lookup maps.
|
| - */
|
| - List<MemberMap> _gatherInterfaceLookupMaps(
|
| - ClassElement classElt, HashSet<ClassElement> visitedInterfaces) {
|
| - InterfaceType supertype = classElt.supertype;
|
| - ClassElement superclassElement =
|
| - supertype != null ? supertype.element : null;
|
| - List<InterfaceType> mixins = classElt.mixins;
|
| - List<InterfaceType> interfaces = classElt.interfaces;
|
| - // Recursively collect the list of mappings from all of the interface types
|
| - List<MemberMap> lookupMaps = new List<MemberMap>();
|
| - //
|
| - // Superclass element
|
| - //
|
| - if (superclassElement != null) {
|
| - if (!visitedInterfaces.contains(superclassElement)) {
|
| - try {
|
| - visitedInterfaces.add(superclassElement);
|
| - //
|
| - // Recursively compute the map for the super type.
|
| - //
|
| - MemberMap map =
|
| - _computeInterfaceLookupMap(superclassElement, visitedInterfaces);
|
| - map = new MemberMap.from(map);
|
| - //
|
| - // Substitute the super type down the hierarchy.
|
| - //
|
| - _substituteTypeParametersDownHierarchy(supertype, map);
|
| - //
|
| - // Add any members from the super type into the map as well.
|
| - //
|
| - _recordMapWithClassMembers(map, supertype, true);
|
| - lookupMaps.add(map);
|
| - } finally {
|
| - visitedInterfaces.remove(superclassElement);
|
| - }
|
| - } else {
|
| - return null;
|
| - }
|
| - }
|
| - //
|
| - // Mixin elements
|
| - //
|
| - for (int i = mixins.length - 1; i >= 0; i--) {
|
| - InterfaceType mixinType = mixins[i];
|
| - ClassElement mixinElement = mixinType.element;
|
| - if (mixinElement != null) {
|
| - if (!visitedInterfaces.contains(mixinElement)) {
|
| - try {
|
| - visitedInterfaces.add(mixinElement);
|
| - //
|
| - // Recursively compute the map for the mixin.
|
| - //
|
| - MemberMap map =
|
| - _computeInterfaceLookupMap(mixinElement, visitedInterfaces);
|
| - map = new MemberMap.from(map);
|
| - //
|
| - // Substitute the mixin type down the hierarchy.
|
| - //
|
| - _substituteTypeParametersDownHierarchy(mixinType, map);
|
| - //
|
| - // Add any members from the mixin type into the map as well.
|
| - //
|
| - _recordMapWithClassMembers(map, mixinType, true);
|
| - lookupMaps.add(map);
|
| - } finally {
|
| - visitedInterfaces.remove(mixinElement);
|
| - }
|
| - } else {
|
| - return null;
|
| - }
|
| - }
|
| - }
|
| - //
|
| - // Interface elements
|
| - //
|
| - for (InterfaceType interfaceType in interfaces) {
|
| - ClassElement interfaceElement = interfaceType.element;
|
| - if (interfaceElement != null) {
|
| - if (!visitedInterfaces.contains(interfaceElement)) {
|
| - try {
|
| - visitedInterfaces.add(interfaceElement);
|
| - //
|
| - // Recursively compute the map for the interfaces.
|
| - //
|
| - MemberMap map =
|
| - _computeInterfaceLookupMap(interfaceElement, visitedInterfaces);
|
| - map = new MemberMap.from(map);
|
| - //
|
| - // Substitute the supertypes down the hierarchy
|
| - //
|
| - _substituteTypeParametersDownHierarchy(interfaceType, map);
|
| - //
|
| - // And add any members from the interface into the map as well.
|
| - //
|
| - _recordMapWithClassMembers(map, interfaceType, true);
|
| - lookupMaps.add(map);
|
| - } finally {
|
| - visitedInterfaces.remove(interfaceElement);
|
| - }
|
| - } else {
|
| - return null;
|
| - }
|
| - }
|
| - }
|
| - if (lookupMaps.length == 0) {
|
| - return null;
|
| - }
|
| - return lookupMaps;
|
| - }
|
| -
|
| - /**
|
| - * Given some [ClassElement], this method finds and returns the [ExecutableElement] of
|
| - * the passed name in the class element. Static members, members in super types and members not
|
| - * accessible from the current library are not considered.
|
| - *
|
| - * @param classElt the class element to query
|
| - * @param memberName the name of the member to lookup in the class
|
| - * @return the found [ExecutableElement], or `null` if no such member was found
|
| - */
|
| - ExecutableElement _lookupMemberInClass(
|
| - ClassElement classElt, String memberName) {
|
| - List<MethodElement> methods = classElt.methods;
|
| - for (MethodElement method in methods) {
|
| - if (memberName == method.name &&
|
| - method.isAccessibleIn(_library) &&
|
| - !method.isStatic) {
|
| - return method;
|
| - }
|
| - }
|
| - List<PropertyAccessorElement> accessors = classElt.accessors;
|
| - for (PropertyAccessorElement accessor in accessors) {
|
| - if (memberName == accessor.name &&
|
| - accessor.isAccessibleIn(_library) &&
|
| - !accessor.isStatic) {
|
| - return accessor;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Record the passed map with the set of all members (methods, getters and setters) in the type
|
| - * into the passed map.
|
| - *
|
| - * @param map some non-`null` map to put the methods and accessors from the passed
|
| - * [ClassElement] into
|
| - * @param type the type that will be recorded into the passed map
|
| - * @param doIncludeAbstract `true` if abstract members will be put into the map
|
| - */
|
| - void _recordMapWithClassMembers(
|
| - MemberMap map, InterfaceType type, bool doIncludeAbstract) {
|
| - List<MethodElement> methods = type.methods;
|
| - for (MethodElement method in methods) {
|
| - if (method.isAccessibleIn(_library) &&
|
| - !method.isStatic &&
|
| - (doIncludeAbstract || !method.isAbstract)) {
|
| - map.put(method.name, method);
|
| - }
|
| - }
|
| - List<PropertyAccessorElement> accessors = type.accessors;
|
| - for (PropertyAccessorElement accessor in accessors) {
|
| - if (accessor.isAccessibleIn(_library) &&
|
| - !accessor.isStatic &&
|
| - (doIncludeAbstract || !accessor.isAbstract)) {
|
| - map.put(accessor.name, accessor);
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * This method is used to report errors on when they are found computing inheritance information.
|
| - * See [ErrorVerifier.checkForInconsistentMethodInheritance] to see where these generated
|
| - * error codes are reported back into the analysis engine.
|
| - *
|
| - * @param classElt the location of the source for which the exception occurred
|
| - * @param offset the offset of the location of the error
|
| - * @param length the length of the location of the error
|
| - * @param errorCode the error code to be associated with this error
|
| - * @param arguments the arguments used to build the error message
|
| - */
|
| - void _reportError(ClassElement classElt, int offset, int length,
|
| - ErrorCode errorCode, List<Object> arguments) {
|
| - HashSet<AnalysisError> errorSet = _errorsInClassElement[classElt];
|
| - if (errorSet == null) {
|
| - errorSet = new HashSet<AnalysisError>();
|
| - _errorsInClassElement[classElt] = errorSet;
|
| - }
|
| - errorSet.add(new AnalysisError(
|
| - classElt.source, offset, length, errorCode, arguments));
|
| - }
|
| -
|
| - /**
|
| - * Given the set of methods defined by classes above [classElt] in the class hierarchy,
|
| - * apply the appropriate inheritance rules to determine those methods inherited by or overridden
|
| - * by [classElt]. Also report static warnings
|
| - * [StaticTypeWarningCode.INCONSISTENT_METHOD_INHERITANCE] and
|
| - * [StaticWarningCode.INCONSISTENT_METHOD_INHERITANCE_GETTER_AND_METHOD] if appropriate.
|
| - *
|
| - * @param classElt the class element to query.
|
| - * @param unionMap a mapping from method name to the set of unique (in terms of signature) methods
|
| - * defined in superclasses of [classElt].
|
| - * @return the inheritance lookup map for [classElt].
|
| - */
|
| - MemberMap _resolveInheritanceLookup(ClassElement classElt,
|
| - HashMap<String, List<ExecutableElement>> unionMap) {
|
| - MemberMap resultMap = new MemberMap();
|
| - unionMap.forEach((String key, List<ExecutableElement> list) {
|
| - int numOfEltsWithMatchingNames = list.length;
|
| - if (numOfEltsWithMatchingNames == 1) {
|
| - //
|
| - // Example: class A inherits only 1 method named 'm'.
|
| - // Since it is the only such method, it is inherited.
|
| - // Another example: class A inherits 2 methods named 'm' from 2
|
| - // different interfaces, but they both have the same signature, so it is
|
| - // the method inherited.
|
| - //
|
| - resultMap.put(key, list[0]);
|
| - } else {
|
| - //
|
| - // Then numOfEltsWithMatchingNames > 1, check for the warning cases.
|
| - //
|
| - bool allMethods = true;
|
| - bool allSetters = true;
|
| - bool allGetters = true;
|
| - for (ExecutableElement executableElement in list) {
|
| - if (executableElement is PropertyAccessorElement) {
|
| - allMethods = false;
|
| - if (executableElement.isSetter) {
|
| - allGetters = false;
|
| - } else {
|
| - allSetters = false;
|
| - }
|
| - } else {
|
| - allGetters = false;
|
| - allSetters = false;
|
| - }
|
| - }
|
| - //
|
| - // If there isn't a mixture of methods with getters, then continue,
|
| - // otherwise create a warning.
|
| - //
|
| - if (allMethods || allGetters || allSetters) {
|
| - //
|
| - // Compute the element whose type is the subtype of all of the other
|
| - // types.
|
| - //
|
| - List<ExecutableElement> elements = new List.from(list);
|
| - List<FunctionType> executableElementTypes =
|
| - new List<FunctionType>(numOfEltsWithMatchingNames);
|
| - for (int i = 0; i < numOfEltsWithMatchingNames; i++) {
|
| - executableElementTypes[i] = elements[i].type;
|
| - }
|
| - List<int> subtypesOfAllOtherTypesIndexes = new List<int>();
|
| - for (int i = 0; i < numOfEltsWithMatchingNames; i++) {
|
| - FunctionType subtype = executableElementTypes[i];
|
| - if (subtype == null) {
|
| - continue;
|
| - }
|
| - bool subtypeOfAllTypes = true;
|
| - for (int j = 0;
|
| - j < numOfEltsWithMatchingNames && subtypeOfAllTypes;
|
| - j++) {
|
| - if (i != j) {
|
| - if (!subtype.isSubtypeOf(executableElementTypes[j])) {
|
| - subtypeOfAllTypes = false;
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - if (subtypeOfAllTypes) {
|
| - subtypesOfAllOtherTypesIndexes.add(i);
|
| - }
|
| - }
|
| - //
|
| - // The following is split into three cases determined by the number of
|
| - // elements in subtypesOfAllOtherTypes
|
| - //
|
| - if (subtypesOfAllOtherTypesIndexes.length == 1) {
|
| - //
|
| - // Example: class A inherited only 2 method named 'm'.
|
| - // One has the function type '() -> dynamic' and one has the
|
| - // function type '([int]) -> dynamic'. Since the second method is a
|
| - // subtype of all the others, it is the inherited method.
|
| - // Tests: InheritanceManagerTest.
|
| - // test_getMapOfMembersInheritedFromInterfaces_union_oneSubtype_*
|
| - //
|
| - resultMap.put(key, elements[subtypesOfAllOtherTypesIndexes[0]]);
|
| - } else {
|
| - if (subtypesOfAllOtherTypesIndexes.isEmpty) {
|
| - //
|
| - // Determine if the current class has a method or accessor with
|
| - // the member name, if it does then then this class does not
|
| - // "inherit" from any of the supertypes. See issue 16134.
|
| - //
|
| - bool classHasMember = false;
|
| - if (allMethods) {
|
| - classHasMember = classElt.getMethod(key) != null;
|
| - } else {
|
| - List<PropertyAccessorElement> accessors = classElt.accessors;
|
| - for (int i = 0; i < accessors.length; i++) {
|
| - if (accessors[i].name == key) {
|
| - classHasMember = true;
|
| - }
|
| - }
|
| - }
|
| - //
|
| - // Example: class A inherited only 2 method named 'm'.
|
| - // One has the function type '() -> int' and one has the function
|
| - // type '() -> String'. Since neither is a subtype of the other,
|
| - // we create a warning, and have this class inherit nothing.
|
| - //
|
| - if (!classHasMember) {
|
| - String firstTwoFuntionTypesStr =
|
| - "${executableElementTypes[0]}, ${executableElementTypes[1]}";
|
| - _reportError(classElt, classElt.nameOffset,
|
| - classElt.displayName.length,
|
| - StaticTypeWarningCode.INCONSISTENT_METHOD_INHERITANCE, [
|
| - key,
|
| - firstTwoFuntionTypesStr
|
| - ]);
|
| - }
|
| - } else {
|
| - //
|
| - // Example: class A inherits 2 methods named 'm'.
|
| - // One has the function type '(int) -> dynamic' and one has the
|
| - // function type '(num) -> dynamic'. Since they are both a subtype
|
| - // of the other, a synthetic function '(dynamic) -> dynamic' is
|
| - // inherited.
|
| - // Tests: test_getMapOfMembersInheritedFromInterfaces_
|
| - // union_multipleSubtypes_*
|
| - //
|
| - List<ExecutableElement> elementArrayToMerge =
|
| - new List<ExecutableElement>(
|
| - subtypesOfAllOtherTypesIndexes.length);
|
| - for (int i = 0; i < elementArrayToMerge.length; i++) {
|
| - elementArrayToMerge[i] =
|
| - elements[subtypesOfAllOtherTypesIndexes[i]];
|
| - }
|
| - ExecutableElement mergedExecutableElement =
|
| - _computeMergedExecutableElement(elementArrayToMerge);
|
| - resultMap.put(key, mergedExecutableElement);
|
| - }
|
| - }
|
| - } else {
|
| - _reportError(classElt, classElt.nameOffset,
|
| - classElt.displayName.length,
|
| - StaticWarningCode.INCONSISTENT_METHOD_INHERITANCE_GETTER_AND_METHOD,
|
| - [key]);
|
| - }
|
| - }
|
| - });
|
| - return resultMap;
|
| - }
|
| -
|
| - /**
|
| - * Loop through all of the members in some [MemberMap], performing type parameter
|
| - * substitutions using a passed supertype.
|
| - *
|
| - * @param superType the supertype to substitute into the members of the [MemberMap]
|
| - * @param map the MemberMap to perform the substitutions on
|
| - */
|
| - void _substituteTypeParametersDownHierarchy(
|
| - InterfaceType superType, MemberMap map) {
|
| - for (int i = 0; i < map.size; i++) {
|
| - ExecutableElement executableElement = map.getValue(i);
|
| - if (executableElement is MethodMember) {
|
| - executableElement =
|
| - MethodMember.from(executableElement as MethodMember, superType);
|
| - map.setValue(i, executableElement);
|
| - } else if (executableElement is PropertyAccessorMember) {
|
| - executableElement = PropertyAccessorMember.from(
|
| - executableElement as PropertyAccessorMember, superType);
|
| - map.setValue(i, executableElement);
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Union all of the [lookupMaps] together into a single map, grouping the ExecutableElements
|
| - * into a list where none of the elements are equal where equality is determined by having equal
|
| - * function types. (We also take note too of the kind of the element: ()->int and () -> int may
|
| - * not be equal if one is a getter and the other is a method.)
|
| - *
|
| - * @param lookupMaps the maps to be unioned together.
|
| - * @return the resulting union map.
|
| - */
|
| - HashMap<String, List<ExecutableElement>> _unionInterfaceLookupMaps(
|
| - List<MemberMap> lookupMaps) {
|
| - HashMap<String, List<ExecutableElement>> unionMap =
|
| - new HashMap<String, List<ExecutableElement>>();
|
| - for (MemberMap lookupMap in lookupMaps) {
|
| - int lookupMapSize = lookupMap.size;
|
| - for (int i = 0; i < lookupMapSize; i++) {
|
| - // Get the string key, if null, break.
|
| - String key = lookupMap.getKey(i);
|
| - if (key == null) {
|
| - break;
|
| - }
|
| - // Get the list value out of the unionMap
|
| - List<ExecutableElement> list = unionMap[key];
|
| - // If we haven't created such a map for this key yet, do create it and
|
| - // put the list entry into the unionMap.
|
| - if (list == null) {
|
| - list = new List<ExecutableElement>();
|
| - unionMap[key] = list;
|
| - }
|
| - // Fetch the entry out of this lookupMap
|
| - ExecutableElement newExecutableElementEntry = lookupMap.getValue(i);
|
| - if (list.isEmpty) {
|
| - // If the list is empty, just the new value
|
| - list.add(newExecutableElementEntry);
|
| - } else {
|
| - // Otherwise, only add the newExecutableElementEntry if it isn't
|
| - // already in the list, this covers situation where a class inherits
|
| - // two methods (or two getters) that are identical.
|
| - bool alreadyInList = false;
|
| - bool isMethod1 = newExecutableElementEntry is MethodElement;
|
| - for (ExecutableElement executableElementInList in list) {
|
| - bool isMethod2 = executableElementInList is MethodElement;
|
| - if (isMethod1 == isMethod2 &&
|
| - executableElementInList.type ==
|
| - newExecutableElementEntry.type) {
|
| - alreadyInList = true;
|
| - break;
|
| - }
|
| - }
|
| - if (!alreadyInList) {
|
| - list.add(newExecutableElementEntry);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - return unionMap;
|
| - }
|
| -
|
| - /**
|
| - * Given some array of [ExecutableElement]s, this method creates a synthetic element as
|
| - * described in 8.1.1:
|
| - *
|
| - * Let <i>numberOfPositionals</i>(<i>f</i>) denote the number of positional parameters of a
|
| - * function <i>f</i>, and let <i>numberOfRequiredParams</i>(<i>f</i>) denote the number of
|
| - * required parameters of a function <i>f</i>. Furthermore, let <i>s</i> denote the set of all
|
| - * named parameters of the <i>m<sub>1</sub>, …, m<sub>k</sub></i>. Then let
|
| - * * <i>h = max(numberOfPositionals(m<sub>i</sub>)),</i>
|
| - * * <i>r = min(numberOfRequiredParams(m<sub>i</sub>)), for all <i>i</i>, 1 <= i <= k.</i>
|
| - * Then <i>I</i> has a method named <i>n</i>, with <i>r</i> required parameters of type
|
| - * <b>dynamic</b>, <i>h</i> positional parameters of type <b>dynamic</b>, named parameters
|
| - * <i>s</i> of type <b>dynamic</b> and return type <b>dynamic</b>.
|
| - *
|
| - */
|
| - static ExecutableElement _computeMergedExecutableElement(
|
| - List<ExecutableElement> elementArrayToMerge) {
|
| - int h = _getNumOfPositionalParameters(elementArrayToMerge[0]);
|
| - int r = _getNumOfRequiredParameters(elementArrayToMerge[0]);
|
| - Set<String> namedParametersList = new HashSet<String>();
|
| - for (int i = 1; i < elementArrayToMerge.length; i++) {
|
| - ExecutableElement element = elementArrayToMerge[i];
|
| - int numOfPositionalParams = _getNumOfPositionalParameters(element);
|
| - if (h < numOfPositionalParams) {
|
| - h = numOfPositionalParams;
|
| - }
|
| - int numOfRequiredParams = _getNumOfRequiredParameters(element);
|
| - if (r > numOfRequiredParams) {
|
| - r = numOfRequiredParams;
|
| - }
|
| - namedParametersList.addAll(_getNamedParameterNames(element));
|
| - }
|
| - return _createSyntheticExecutableElement(elementArrayToMerge,
|
| - elementArrayToMerge[0].displayName, r, h - r,
|
| - new List.from(namedParametersList));
|
| - }
|
| -
|
| - /**
|
| - * Used by [computeMergedExecutableElement] to actually create the
|
| - * synthetic element.
|
| - *
|
| - * @param elementArrayToMerge the array used to create the synthetic element
|
| - * @param name the name of the method, getter or setter
|
| - * @param numOfRequiredParameters the number of required parameters
|
| - * @param numOfPositionalParameters the number of positional parameters
|
| - * @param namedParameters the list of [String]s that are the named parameters
|
| - * @return the created synthetic element
|
| - */
|
| - static ExecutableElement _createSyntheticExecutableElement(
|
| - List<ExecutableElement> elementArrayToMerge, String name,
|
| - int numOfRequiredParameters, int numOfPositionalParameters,
|
| - List<String> namedParameters) {
|
| - DynamicTypeImpl dynamicType = DynamicTypeImpl.instance;
|
| - SimpleIdentifier nameIdentifier = new SimpleIdentifier(
|
| - new sc.StringToken(sc.TokenType.IDENTIFIER, name, 0));
|
| - ExecutableElementImpl executable;
|
| - if (elementArrayToMerge[0] is MethodElement) {
|
| - MultiplyInheritedMethodElementImpl unionedMethod =
|
| - new MultiplyInheritedMethodElementImpl(nameIdentifier);
|
| - unionedMethod.inheritedElements = elementArrayToMerge;
|
| - executable = unionedMethod;
|
| - } else {
|
| - MultiplyInheritedPropertyAccessorElementImpl unionedPropertyAccessor =
|
| - new MultiplyInheritedPropertyAccessorElementImpl(nameIdentifier);
|
| - unionedPropertyAccessor.getter =
|
| - (elementArrayToMerge[0] as PropertyAccessorElement).isGetter;
|
| - unionedPropertyAccessor.setter =
|
| - (elementArrayToMerge[0] as PropertyAccessorElement).isSetter;
|
| - unionedPropertyAccessor.inheritedElements = elementArrayToMerge;
|
| - executable = unionedPropertyAccessor;
|
| - }
|
| - int numOfParameters = numOfRequiredParameters +
|
| - numOfPositionalParameters +
|
| - namedParameters.length;
|
| - List<ParameterElement> parameters =
|
| - new List<ParameterElement>(numOfParameters);
|
| - int i = 0;
|
| - for (int j = 0; j < numOfRequiredParameters; j++, i++) {
|
| - ParameterElementImpl parameter = new ParameterElementImpl("", 0);
|
| - parameter.type = dynamicType;
|
| - parameter.parameterKind = ParameterKind.REQUIRED;
|
| - parameters[i] = parameter;
|
| - }
|
| - for (int k = 0; k < numOfPositionalParameters; k++, i++) {
|
| - ParameterElementImpl parameter = new ParameterElementImpl("", 0);
|
| - parameter.type = dynamicType;
|
| - parameter.parameterKind = ParameterKind.POSITIONAL;
|
| - parameters[i] = parameter;
|
| - }
|
| - for (int m = 0; m < namedParameters.length; m++, i++) {
|
| - ParameterElementImpl parameter =
|
| - new ParameterElementImpl(namedParameters[m], 0);
|
| - parameter.type = dynamicType;
|
| - parameter.parameterKind = ParameterKind.NAMED;
|
| - parameters[i] = parameter;
|
| - }
|
| - executable.returnType = dynamicType;
|
| - executable.parameters = parameters;
|
| - FunctionTypeImpl methodType = new FunctionTypeImpl(executable);
|
| - executable.type = methodType;
|
| - return executable;
|
| - }
|
| -
|
| - /**
|
| - * Given some [ExecutableElement], return the list of named parameters.
|
| - */
|
| - static List<String> _getNamedParameterNames(
|
| - ExecutableElement executableElement) {
|
| - List<String> namedParameterNames = new List<String>();
|
| - List<ParameterElement> parameters = executableElement.parameters;
|
| - for (int i = 0; i < parameters.length; i++) {
|
| - ParameterElement parameterElement = parameters[i];
|
| - if (parameterElement.parameterKind == ParameterKind.NAMED) {
|
| - namedParameterNames.add(parameterElement.name);
|
| - }
|
| - }
|
| - return namedParameterNames;
|
| - }
|
| -
|
| - /**
|
| - * Given some [ExecutableElement] return the number of parameters of the specified kind.
|
| - */
|
| - static int _getNumOfParameters(
|
| - ExecutableElement executableElement, ParameterKind parameterKind) {
|
| - int parameterCount = 0;
|
| - List<ParameterElement> parameters = executableElement.parameters;
|
| - for (int i = 0; i < parameters.length; i++) {
|
| - ParameterElement parameterElement = parameters[i];
|
| - if (parameterElement.parameterKind == parameterKind) {
|
| - parameterCount++;
|
| - }
|
| - }
|
| - return parameterCount;
|
| - }
|
| -
|
| - /**
|
| - * Given some [ExecutableElement] return the number of positional parameters.
|
| - *
|
| - * Note: by positional we mean [ParameterKind.REQUIRED] or [ParameterKind.POSITIONAL].
|
| - */
|
| - static int _getNumOfPositionalParameters(
|
| - ExecutableElement executableElement) =>
|
| - _getNumOfParameters(executableElement, ParameterKind.REQUIRED) +
|
| - _getNumOfParameters(executableElement, ParameterKind.POSITIONAL);
|
| -
|
| - /**
|
| - * Given some [ExecutableElement] return the number of required parameters.
|
| - */
|
| - static int _getNumOfRequiredParameters(ExecutableElement executableElement) =>
|
| - _getNumOfParameters(executableElement, ParameterKind.REQUIRED);
|
| -
|
| - /**
|
| - * Given some [ExecutableElement] returns `true` if it is an abstract member of a
|
| - * class.
|
| - *
|
| - * @param executableElement some [ExecutableElement] to evaluate
|
| - * @return `true` if the given element is an abstract member of a class
|
| - */
|
| - static bool _isAbstract(ExecutableElement executableElement) {
|
| - if (executableElement is MethodElement) {
|
| - return executableElement.isAbstract;
|
| - } else if (executableElement is PropertyAccessorElement) {
|
| - return executableElement.isAbstract;
|
| - }
|
| - return false;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * This enum holds one of four states of a field initialization state through a constructor
|
| - * signature, not initialized, initialized in the field declaration, initialized in the field
|
| - * formal, and finally, initialized in the initializers list.
|
| - */
|
| -class INIT_STATE extends Enum<INIT_STATE> {
|
| - static const INIT_STATE NOT_INIT = const INIT_STATE('NOT_INIT', 0);
|
| -
|
| - static const INIT_STATE INIT_IN_DECLARATION =
|
| - const INIT_STATE('INIT_IN_DECLARATION', 1);
|
| -
|
| - static const INIT_STATE INIT_IN_FIELD_FORMAL =
|
| - const INIT_STATE('INIT_IN_FIELD_FORMAL', 2);
|
| -
|
| - static const INIT_STATE INIT_IN_INITIALIZERS =
|
| - const INIT_STATE('INIT_IN_INITIALIZERS', 3);
|
| -
|
| - static const List<INIT_STATE> values = const [
|
| - NOT_INIT,
|
| - INIT_IN_DECLARATION,
|
| - INIT_IN_FIELD_FORMAL,
|
| - INIT_IN_INITIALIZERS
|
| - ];
|
| -
|
| - const INIT_STATE(String name, int ordinal) : super(name, ordinal);
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `LabelScope` represent a scope in which a single label is defined.
|
| - */
|
| -class LabelScope {
|
| - /**
|
| - * The label scope enclosing this label scope.
|
| - */
|
| - final LabelScope _outerScope;
|
| -
|
| - /**
|
| - * The label defined in this scope.
|
| - */
|
| - final String _label;
|
| -
|
| - /**
|
| - * The element to which the label resolves.
|
| - */
|
| - final LabelElement element;
|
| -
|
| - /**
|
| - * The AST node to which the label resolves.
|
| - */
|
| - final AstNode node;
|
| -
|
| - /**
|
| - * Initialize a newly created scope to represent the label [_label].
|
| - * [_outerScope] is the scope enclosing the new label scope. [node] is the
|
| - * AST node the label resolves to. [element] is the element the label
|
| - * resolves to.
|
| - */
|
| - LabelScope(this._outerScope, this._label, this.node, this.element);
|
| -
|
| - /**
|
| - * Return the LabelScope which defines [targetLabel], or `null` if it is not
|
| - * defined in this scope.
|
| - */
|
| - LabelScope lookup(String targetLabel) {
|
| - if (_label == targetLabel) {
|
| - return this;
|
| - } else if (_outerScope != null) {
|
| - return _outerScope.lookup(targetLabel);
|
| - } else {
|
| - return null;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `Library` represent the data about a single library during the
|
| - * resolution of some (possibly different) library. They are not intended to be used except during
|
| - * the resolution process.
|
| - */
|
| -class Library {
|
| - /**
|
| - * An empty list that can be used to initialize lists of libraries.
|
| - */
|
| - static const List<Library> _EMPTY_ARRAY = const <Library>[];
|
| -
|
| - /**
|
| - * The prefix of a URI using the dart-ext scheme to reference a native code library.
|
| - */
|
| - static String _DART_EXT_SCHEME = "dart-ext:";
|
| -
|
| - /**
|
| - * The analysis context in which this library is being analyzed.
|
| - */
|
| - final InternalAnalysisContext _analysisContext;
|
| -
|
| - /**
|
| - * The inheritance manager which is used for this member lookups in this library.
|
| - */
|
| - InheritanceManager _inheritanceManager;
|
| -
|
| - /**
|
| - * The listener to which analysis errors will be reported.
|
| - */
|
| - final AnalysisErrorListener errorListener;
|
| -
|
| - /**
|
| - * The source specifying the defining compilation unit of this library.
|
| - */
|
| - final Source librarySource;
|
| -
|
| - /**
|
| - * The library element representing this library.
|
| - */
|
| - LibraryElementImpl _libraryElement;
|
| -
|
| - /**
|
| - * A list containing all of the libraries that are imported into this library.
|
| - */
|
| - List<Library> _importedLibraries = _EMPTY_ARRAY;
|
| -
|
| - /**
|
| - * A table mapping URI-based directive to the actual URI value.
|
| - */
|
| - HashMap<UriBasedDirective, String> _directiveUris =
|
| - new HashMap<UriBasedDirective, String>();
|
| -
|
| - /**
|
| - * A flag indicating whether this library explicitly imports core.
|
| - */
|
| - bool explicitlyImportsCore = false;
|
| -
|
| - /**
|
| - * A list containing all of the libraries that are exported from this library.
|
| - */
|
| - List<Library> _exportedLibraries = _EMPTY_ARRAY;
|
| -
|
| - /**
|
| - * A table mapping the sources for the compilation units in this library to their corresponding
|
| - * AST structures.
|
| - */
|
| - HashMap<Source, CompilationUnit> _astMap =
|
| - new HashMap<Source, CompilationUnit>();
|
| -
|
| - /**
|
| - * The library scope used when resolving elements within this library's compilation units.
|
| - */
|
| - LibraryScope _libraryScope;
|
| -
|
| - /**
|
| - * Initialize a newly created data holder that can maintain the data associated with a library.
|
| - *
|
| - * @param analysisContext the analysis context in which this library is being analyzed
|
| - * @param errorListener the listener to which analysis errors will be reported
|
| - * @param librarySource the source specifying the defining compilation unit of this library
|
| - */
|
| - Library(this._analysisContext, this.errorListener, this.librarySource) {
|
| - this._libraryElement =
|
| - _analysisContext.getLibraryElement(librarySource) as LibraryElementImpl;
|
| - }
|
| -
|
| - /**
|
| - * Return an array of the [CompilationUnit]s that make up the library. The first unit is
|
| - * always the defining unit.
|
| - *
|
| - * @return an array of the [CompilationUnit]s that make up the library. The first unit is
|
| - * always the defining unit
|
| - */
|
| - List<CompilationUnit> get compilationUnits {
|
| - List<CompilationUnit> unitArrayList = new List<CompilationUnit>();
|
| - unitArrayList.add(definingCompilationUnit);
|
| - for (Source source in _astMap.keys.toSet()) {
|
| - if (librarySource != source) {
|
| - unitArrayList.add(getAST(source));
|
| - }
|
| - }
|
| - return unitArrayList;
|
| - }
|
| -
|
| - /**
|
| - * Return a collection containing the sources for the compilation units in this library, including
|
| - * the defining compilation unit.
|
| - *
|
| - * @return the sources for the compilation units in this library
|
| - */
|
| - Set<Source> get compilationUnitSources => _astMap.keys.toSet();
|
| -
|
| - /**
|
| - * Return the AST structure associated with the defining compilation unit for this library.
|
| - *
|
| - * @return the AST structure associated with the defining compilation unit for this library
|
| - * @throws AnalysisException if an AST structure could not be created for the defining compilation
|
| - * unit
|
| - */
|
| - CompilationUnit get definingCompilationUnit => getAST(librarySource);
|
| -
|
| - /**
|
| - * Set the libraries that are exported by this library to be those in the given array.
|
| - *
|
| - * @param exportedLibraries the libraries that are exported by this library
|
| - */
|
| - void set exportedLibraries(List<Library> exportedLibraries) {
|
| - this._exportedLibraries = exportedLibraries;
|
| - }
|
| -
|
| - /**
|
| - * Return an array containing the libraries that are exported from this library.
|
| - *
|
| - * @return an array containing the libraries that are exported from this library
|
| - */
|
| - List<Library> get exports => _exportedLibraries;
|
| -
|
| - /**
|
| - * Set the libraries that are imported into this library to be those in the given array.
|
| - *
|
| - * @param importedLibraries the libraries that are imported into this library
|
| - */
|
| - void set importedLibraries(List<Library> importedLibraries) {
|
| - this._importedLibraries = importedLibraries;
|
| - }
|
| -
|
| - /**
|
| - * Return an array containing the libraries that are imported into this library.
|
| - *
|
| - * @return an array containing the libraries that are imported into this library
|
| - */
|
| - List<Library> get imports => _importedLibraries;
|
| -
|
| - /**
|
| - * Return an array containing the libraries that are either imported or exported from this
|
| - * library.
|
| - *
|
| - * @return the libraries that are either imported or exported from this library
|
| - */
|
| - List<Library> get importsAndExports {
|
| - HashSet<Library> libraries = new HashSet<Library>();
|
| - for (Library library in _importedLibraries) {
|
| - libraries.add(library);
|
| - }
|
| - for (Library library in _exportedLibraries) {
|
| - libraries.add(library);
|
| - }
|
| - return new List.from(libraries);
|
| - }
|
| -
|
| - /**
|
| - * Return the inheritance manager for this library.
|
| - *
|
| - * @return the inheritance manager for this library
|
| - */
|
| - InheritanceManager get inheritanceManager {
|
| - if (_inheritanceManager == null) {
|
| - return _inheritanceManager = new InheritanceManager(_libraryElement);
|
| - }
|
| - return _inheritanceManager;
|
| - }
|
| -
|
| - /**
|
| - * Return the library element representing this library, creating it if necessary.
|
| - *
|
| - * @return the library element representing this library
|
| - */
|
| - LibraryElementImpl get libraryElement {
|
| - if (_libraryElement == null) {
|
| - try {
|
| - _libraryElement = _analysisContext
|
| - .computeLibraryElement(librarySource) as LibraryElementImpl;
|
| - } on AnalysisException catch (exception, stackTrace) {
|
| - AnalysisEngine.instance.logger.logError(
|
| - "Could not compute library element for ${librarySource.fullName}",
|
| - new CaughtException(exception, stackTrace));
|
| - }
|
| - }
|
| - return _libraryElement;
|
| - }
|
| -
|
| - /**
|
| - * Set the library element representing this library to the given library element.
|
| - *
|
| - * @param libraryElement the library element representing this library
|
| - */
|
| - void set libraryElement(LibraryElementImpl libraryElement) {
|
| - this._libraryElement = libraryElement;
|
| - if (_inheritanceManager != null) {
|
| - _inheritanceManager.libraryElement = libraryElement;
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Return the library scope used when resolving elements within this library's compilation units.
|
| - *
|
| - * @return the library scope used when resolving elements within this library's compilation units
|
| - */
|
| - LibraryScope get libraryScope {
|
| - if (_libraryScope == null) {
|
| - _libraryScope = new LibraryScope(_libraryElement, errorListener);
|
| - }
|
| - return _libraryScope;
|
| - }
|
| -
|
| - /**
|
| - * Return the AST structure associated with the given source.
|
| - *
|
| - * @param source the source representing the compilation unit whose AST is to be returned
|
| - * @return the AST structure associated with the given source
|
| - * @throws AnalysisException if an AST structure could not be created for the compilation unit
|
| - */
|
| - CompilationUnit getAST(Source source) {
|
| - CompilationUnit unit = _astMap[source];
|
| - if (unit == null) {
|
| - unit = _analysisContext.computeResolvableCompilationUnit(source);
|
| - _astMap[source] = unit;
|
| - }
|
| - return unit;
|
| - }
|
| -
|
| - /**
|
| - * Return the result of resolving the URI of the given URI-based directive against the URI of the
|
| - * library, or `null` if the URI is not valid. If the URI is not valid, report the error.
|
| - *
|
| - * @param directive the directive which URI should be resolved
|
| - * @return the result of resolving the URI against the URI of the library
|
| - */
|
| - Source getSource(UriBasedDirective directive) {
|
| - StringLiteral uriLiteral = directive.uri;
|
| - if (uriLiteral is StringInterpolation) {
|
| - errorListener.onError(new AnalysisError(librarySource, uriLiteral.offset,
|
| - uriLiteral.length, CompileTimeErrorCode.URI_WITH_INTERPOLATION));
|
| - return null;
|
| - }
|
| - String uriContent = uriLiteral.stringValue.trim();
|
| - _directiveUris[directive] = uriContent;
|
| - uriContent = Uri.encodeFull(uriContent);
|
| - if (directive is ImportDirective &&
|
| - uriContent.startsWith(_DART_EXT_SCHEME)) {
|
| - _libraryElement.hasExtUri = true;
|
| - return null;
|
| - }
|
| - try {
|
| - parseUriWithException(uriContent);
|
| - Source source =
|
| - _analysisContext.sourceFactory.resolveUri(librarySource, uriContent);
|
| - if (!_analysisContext.exists(source)) {
|
| - errorListener.onError(new AnalysisError(librarySource,
|
| - uriLiteral.offset, uriLiteral.length,
|
| - CompileTimeErrorCode.URI_DOES_NOT_EXIST, [uriContent]));
|
| - }
|
| - return source;
|
| - } on URISyntaxException {
|
| - errorListener.onError(new AnalysisError(librarySource, uriLiteral.offset,
|
| - uriLiteral.length, CompileTimeErrorCode.INVALID_URI, [uriContent]));
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Returns the URI value of the given directive.
|
| - */
|
| - String getUri(UriBasedDirective directive) => _directiveUris[directive];
|
| -
|
| - /**
|
| - * Set the AST structure associated with the defining compilation unit for this library to the
|
| - * given AST structure.
|
| - *
|
| - * @param unit the AST structure associated with the defining compilation unit for this library
|
| - */
|
| - void setDefiningCompilationUnit(CompilationUnit unit) {
|
| - _astMap[librarySource] = unit;
|
| - }
|
| -
|
| - @override
|
| - String toString() => librarySource.shortName;
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `LibraryElementBuilder` build an element model for a single library.
|
| - */
|
| -class LibraryElementBuilder {
|
| - /**
|
| - * The analysis context in which the element model will be built.
|
| - */
|
| - final InternalAnalysisContext _analysisContext;
|
| -
|
| - /**
|
| - * The listener to which errors will be reported.
|
| - */
|
| - final AnalysisErrorListener _errorListener;
|
| -
|
| - /**
|
| - * Initialize a newly created library element builder.
|
| - *
|
| - * @param analysisContext the analysis context in which the element model will be built
|
| - * @param errorListener the listener to which errors will be reported
|
| - */
|
| - LibraryElementBuilder(this._analysisContext, this._errorListener);
|
| -
|
| - /**
|
| - * Build the library element for the given library.
|
| - *
|
| - * @param library the library for which an element model is to be built
|
| - * @return the library element that was built
|
| - * @throws AnalysisException if the analysis could not be performed
|
| - */
|
| - LibraryElementImpl buildLibrary(Library library) {
|
| - CompilationUnitBuilder builder = new CompilationUnitBuilder();
|
| - Source librarySource = library.librarySource;
|
| - CompilationUnit definingCompilationUnit = library.definingCompilationUnit;
|
| - CompilationUnitElementImpl definingCompilationUnitElement = builder
|
| - .buildCompilationUnit(
|
| - librarySource, definingCompilationUnit, librarySource);
|
| - NodeList<Directive> directives = definingCompilationUnit.directives;
|
| - LibraryIdentifier libraryNameNode = null;
|
| - bool hasPartDirective = false;
|
| - FunctionElement entryPoint =
|
| - _findEntryPoint(definingCompilationUnitElement);
|
| - List<Directive> directivesToResolve = new List<Directive>();
|
| - List<CompilationUnitElementImpl> sourcedCompilationUnits =
|
| - new List<CompilationUnitElementImpl>();
|
| - for (Directive directive in directives) {
|
| - //
|
| - // We do not build the elements representing the import and export
|
| - // directives at this point. That is not done until we get to
|
| - // LibraryResolver.buildDirectiveModels() because we need the
|
| - // LibraryElements for the referenced libraries, which might not exist at
|
| - // this point (due to the possibility of circular references).
|
| - //
|
| - if (directive is LibraryDirective) {
|
| - if (libraryNameNode == null) {
|
| - libraryNameNode = directive.name;
|
| - directivesToResolve.add(directive);
|
| - }
|
| - } else if (directive is PartDirective) {
|
| - PartDirective partDirective = directive;
|
| - StringLiteral partUri = partDirective.uri;
|
| - Source partSource = partDirective.source;
|
| - if (_analysisContext.exists(partSource)) {
|
| - hasPartDirective = true;
|
| - CompilationUnit partUnit = library.getAST(partSource);
|
| - CompilationUnitElementImpl part =
|
| - builder.buildCompilationUnit(partSource, partUnit, librarySource);
|
| - part.uriOffset = partUri.offset;
|
| - part.uriEnd = partUri.end;
|
| - part.uri = partDirective.uriContent;
|
| - //
|
| - // Validate that the part contains a part-of directive with the same
|
| - // name as the library.
|
| - //
|
| - String partLibraryName =
|
| - _getPartLibraryName(partSource, partUnit, directivesToResolve);
|
| - if (partLibraryName == null) {
|
| - _errorListener.onError(new AnalysisError(librarySource,
|
| - partUri.offset, partUri.length,
|
| - CompileTimeErrorCode.PART_OF_NON_PART, [partUri.toSource()]));
|
| - } else if (libraryNameNode == null) {
|
| - // TODO(brianwilkerson) Collect the names declared by the part.
|
| - // If they are all the same then we can use that name as the
|
| - // inferred name of the library and present it in a quick-fix.
|
| - // partLibraryNames.add(partLibraryName);
|
| - } else if (libraryNameNode.name != partLibraryName) {
|
| - _errorListener.onError(new AnalysisError(librarySource,
|
| - partUri.offset, partUri.length,
|
| - StaticWarningCode.PART_OF_DIFFERENT_LIBRARY, [
|
| - libraryNameNode.name,
|
| - partLibraryName
|
| - ]));
|
| - }
|
| - if (entryPoint == null) {
|
| - entryPoint = _findEntryPoint(part);
|
| - }
|
| - directive.element = part;
|
| - sourcedCompilationUnits.add(part);
|
| - }
|
| - }
|
| - }
|
| - if (hasPartDirective && libraryNameNode == null) {
|
| - _errorListener.onError(new AnalysisError(librarySource, 0, 0,
|
| - ResolverErrorCode.MISSING_LIBRARY_DIRECTIVE_WITH_PART));
|
| - }
|
| - //
|
| - // Create and populate the library element.
|
| - //
|
| - LibraryElementImpl libraryElement = new LibraryElementImpl.forNode(
|
| - _analysisContext.getContextFor(librarySource), libraryNameNode);
|
| - libraryElement.definingCompilationUnit = definingCompilationUnitElement;
|
| - if (entryPoint != null) {
|
| - libraryElement.entryPoint = entryPoint;
|
| - }
|
| - int sourcedUnitCount = sourcedCompilationUnits.length;
|
| - libraryElement.parts = sourcedCompilationUnits;
|
| - for (Directive directive in directivesToResolve) {
|
| - directive.element = libraryElement;
|
| - }
|
| - library.libraryElement = libraryElement;
|
| - if (sourcedUnitCount > 0) {
|
| - _patchTopLevelAccessors(libraryElement);
|
| - }
|
| - return libraryElement;
|
| - }
|
| -
|
| - /**
|
| - * Build the library element for the given library. The resulting element is
|
| - * stored in the [ResolvableLibrary] structure.
|
| - *
|
| - * @param library the library for which an element model is to be built
|
| - * @throws AnalysisException if the analysis could not be performed
|
| - */
|
| - void buildLibrary2(ResolvableLibrary library) {
|
| - CompilationUnitBuilder builder = new CompilationUnitBuilder();
|
| - Source librarySource = library.librarySource;
|
| - CompilationUnit definingCompilationUnit = library.definingCompilationUnit;
|
| - CompilationUnitElementImpl definingCompilationUnitElement = builder
|
| - .buildCompilationUnit(
|
| - librarySource, definingCompilationUnit, librarySource);
|
| - NodeList<Directive> directives = definingCompilationUnit.directives;
|
| - LibraryIdentifier libraryNameNode = null;
|
| - bool hasPartDirective = false;
|
| - FunctionElement entryPoint =
|
| - _findEntryPoint(definingCompilationUnitElement);
|
| - List<Directive> directivesToResolve = new List<Directive>();
|
| - List<CompilationUnitElementImpl> sourcedCompilationUnits =
|
| - new List<CompilationUnitElementImpl>();
|
| - for (Directive directive in directives) {
|
| - //
|
| - // We do not build the elements representing the import and export
|
| - // directives at this point. That is not done until we get to
|
| - // LibraryResolver.buildDirectiveModels() because we need the
|
| - // LibraryElements for the referenced libraries, which might not exist at
|
| - // this point (due to the possibility of circular references).
|
| - //
|
| - if (directive is LibraryDirective) {
|
| - if (libraryNameNode == null) {
|
| - libraryNameNode = directive.name;
|
| - directivesToResolve.add(directive);
|
| - }
|
| - } else if (directive is PartDirective) {
|
| - PartDirective partDirective = directive;
|
| - StringLiteral partUri = partDirective.uri;
|
| - Source partSource = partDirective.source;
|
| - if (_analysisContext.exists(partSource)) {
|
| - hasPartDirective = true;
|
| - CompilationUnit partUnit = library.getAST(partSource);
|
| - if (partUnit != null) {
|
| - CompilationUnitElementImpl part = builder.buildCompilationUnit(
|
| - partSource, partUnit, librarySource);
|
| - part.uriOffset = partUri.offset;
|
| - part.uriEnd = partUri.end;
|
| - part.uri = partDirective.uriContent;
|
| - //
|
| - // Validate that the part contains a part-of directive with the same
|
| - // name as the library.
|
| - //
|
| - String partLibraryName =
|
| - _getPartLibraryName(partSource, partUnit, directivesToResolve);
|
| - if (partLibraryName == null) {
|
| - _errorListener.onError(new AnalysisError(librarySource,
|
| - partUri.offset, partUri.length,
|
| - CompileTimeErrorCode.PART_OF_NON_PART, [partUri.toSource()]));
|
| - } else if (libraryNameNode == null) {
|
| - // TODO(brianwilkerson) Collect the names declared by the part.
|
| - // If they are all the same then we can use that name as the
|
| - // inferred name of the library and present it in a quick-fix.
|
| - // partLibraryNames.add(partLibraryName);
|
| - } else if (libraryNameNode.name != partLibraryName) {
|
| - _errorListener.onError(new AnalysisError(librarySource,
|
| - partUri.offset, partUri.length,
|
| - StaticWarningCode.PART_OF_DIFFERENT_LIBRARY, [
|
| - libraryNameNode.name,
|
| - partLibraryName
|
| - ]));
|
| - }
|
| - if (entryPoint == null) {
|
| - entryPoint = _findEntryPoint(part);
|
| - }
|
| - directive.element = part;
|
| - sourcedCompilationUnits.add(part);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - if (hasPartDirective && libraryNameNode == null) {
|
| - _errorListener.onError(new AnalysisError(librarySource, 0, 0,
|
| - ResolverErrorCode.MISSING_LIBRARY_DIRECTIVE_WITH_PART));
|
| - }
|
| - //
|
| - // Create and populate the library element.
|
| - //
|
| - LibraryElementImpl libraryElement = new LibraryElementImpl.forNode(
|
| - _analysisContext.getContextFor(librarySource), libraryNameNode);
|
| - libraryElement.definingCompilationUnit = definingCompilationUnitElement;
|
| - if (entryPoint != null) {
|
| - libraryElement.entryPoint = entryPoint;
|
| - }
|
| - int sourcedUnitCount = sourcedCompilationUnits.length;
|
| - libraryElement.parts = sourcedCompilationUnits;
|
| - for (Directive directive in directivesToResolve) {
|
| - directive.element = libraryElement;
|
| - }
|
| - library.libraryElement = libraryElement;
|
| - if (sourcedUnitCount > 0) {
|
| - _patchTopLevelAccessors(libraryElement);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Add all of the non-synthetic getters and setters defined in the given compilation unit that
|
| - * have no corresponding accessor to one of the given collections.
|
| - *
|
| - * @param getters the map to which getters are to be added
|
| - * @param setters the list to which setters are to be added
|
| - * @param unit the compilation unit defining the accessors that are potentially being added
|
| - */
|
| - void _collectAccessors(HashMap<String, PropertyAccessorElement> getters,
|
| - List<PropertyAccessorElement> setters, CompilationUnitElement unit) {
|
| - for (PropertyAccessorElement accessor in unit.accessors) {
|
| - if (accessor.isGetter) {
|
| - if (!accessor.isSynthetic && accessor.correspondingSetter == null) {
|
| - getters[accessor.displayName] = accessor;
|
| - }
|
| - } else {
|
| - if (!accessor.isSynthetic && accessor.correspondingGetter == null) {
|
| - setters.add(accessor);
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Search the top-level functions defined in the given compilation unit for the entry point.
|
| - *
|
| - * @param element the compilation unit to be searched
|
| - * @return the entry point that was found, or `null` if the compilation unit does not define
|
| - * an entry point
|
| - */
|
| - FunctionElement _findEntryPoint(CompilationUnitElementImpl element) {
|
| - for (FunctionElement function in element.functions) {
|
| - if (function.isEntryPoint) {
|
| - return function;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Return the name of the library that the given part is declared to be a part of, or `null`
|
| - * if the part does not contain a part-of directive.
|
| - *
|
| - * @param partSource the source representing the part
|
| - * @param partUnit the AST structure of the part
|
| - * @param directivesToResolve a list of directives that should be resolved to the library being
|
| - * built
|
| - * @return the name of the library that the given part is declared to be a part of
|
| - */
|
| - String _getPartLibraryName(Source partSource, CompilationUnit partUnit,
|
| - List<Directive> directivesToResolve) {
|
| - for (Directive directive in partUnit.directives) {
|
| - if (directive is PartOfDirective) {
|
| - directivesToResolve.add(directive);
|
| - LibraryIdentifier libraryName = directive.libraryName;
|
| - if (libraryName != null) {
|
| - return libraryName.name;
|
| - }
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Look through all of the compilation units defined for the given library, looking for getters
|
| - * and setters that are defined in different compilation units but that have the same names. If
|
| - * any are found, make sure that they have the same variable element.
|
| - *
|
| - * @param libraryElement the library defining the compilation units to be processed
|
| - */
|
| - void _patchTopLevelAccessors(LibraryElementImpl libraryElement) {
|
| - HashMap<String, PropertyAccessorElement> getters =
|
| - new HashMap<String, PropertyAccessorElement>();
|
| - List<PropertyAccessorElement> setters = new List<PropertyAccessorElement>();
|
| - _collectAccessors(getters, setters, libraryElement.definingCompilationUnit);
|
| - for (CompilationUnitElement unit in libraryElement.parts) {
|
| - _collectAccessors(getters, setters, unit);
|
| - }
|
| - for (PropertyAccessorElement setter in setters) {
|
| - PropertyAccessorElement getter = getters[setter.displayName];
|
| - if (getter != null) {
|
| - PropertyInducingElementImpl variable =
|
| - getter.variable as PropertyInducingElementImpl;
|
| - variable.setter = setter;
|
| - (setter as PropertyAccessorElementImpl).variable = variable;
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `LibraryImportScope` represent the scope containing all of the names
|
| - * available from imported libraries.
|
| - */
|
| -class LibraryImportScope extends Scope {
|
| - /**
|
| - * The element representing the library in which this scope is enclosed.
|
| - */
|
| - final LibraryElement _definingLibrary;
|
| -
|
| - /**
|
| - * The listener that is to be informed when an error is encountered.
|
| - */
|
| - final AnalysisErrorListener errorListener;
|
| -
|
| - /**
|
| - * A list of the namespaces representing the names that are available in this scope from imported
|
| - * libraries.
|
| - */
|
| - List<Namespace> _importedNamespaces;
|
| -
|
| - /**
|
| - * Initialize a newly created scope representing the names imported into the given library.
|
| - *
|
| - * @param definingLibrary the element representing the library that imports the names defined in
|
| - * this scope
|
| - * @param errorListener the listener that is to be informed when an error is encountered
|
| - */
|
| - LibraryImportScope(this._definingLibrary, this.errorListener) {
|
| - _createImportedNamespaces();
|
| - }
|
| -
|
| - @override
|
| - void define(Element element) {
|
| - if (!Scope.isPrivateName(element.displayName)) {
|
| - super.define(element);
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Source getSource(AstNode node) {
|
| - Source source = super.getSource(node);
|
| - if (source == null) {
|
| - source = _definingLibrary.definingCompilationUnit.source;
|
| - }
|
| - return source;
|
| - }
|
| -
|
| - @override
|
| - Element internalLookup(
|
| - Identifier identifier, String name, LibraryElement referencingLibrary) {
|
| - Element foundElement = localLookup(name, referencingLibrary);
|
| - if (foundElement != null) {
|
| - return foundElement;
|
| - }
|
| - for (int i = 0; i < _importedNamespaces.length; i++) {
|
| - Namespace nameSpace = _importedNamespaces[i];
|
| - Element element = nameSpace.get(name);
|
| - if (element != null) {
|
| - if (foundElement == null) {
|
| - foundElement = element;
|
| - } else if (!identical(foundElement, element)) {
|
| - foundElement = MultiplyDefinedElementImpl.fromElements(
|
| - _definingLibrary.context, foundElement, element);
|
| - }
|
| - }
|
| - }
|
| - if (foundElement is MultiplyDefinedElementImpl) {
|
| - foundElement = _removeSdkElements(
|
| - identifier, name, foundElement as MultiplyDefinedElementImpl);
|
| - }
|
| - if (foundElement is MultiplyDefinedElementImpl) {
|
| - String foundEltName = foundElement.displayName;
|
| - List<Element> conflictingMembers = foundElement.conflictingElements;
|
| - int count = conflictingMembers.length;
|
| - List<String> libraryNames = new List<String>(count);
|
| - for (int i = 0; i < count; i++) {
|
| - libraryNames[i] = _getLibraryName(conflictingMembers[i]);
|
| - }
|
| - libraryNames.sort();
|
| - errorListener.onError(new AnalysisError(getSource(identifier),
|
| - identifier.offset, identifier.length,
|
| - StaticWarningCode.AMBIGUOUS_IMPORT, [
|
| - foundEltName,
|
| - StringUtilities.printListOfQuotedNames(libraryNames)
|
| - ]));
|
| - return foundElement;
|
| - }
|
| - if (foundElement != null) {
|
| - defineNameWithoutChecking(name, foundElement);
|
| - }
|
| - return foundElement;
|
| - }
|
| -
|
| - /**
|
| - * Create all of the namespaces associated with the libraries imported into this library. The
|
| - * names are not added to this scope, but are stored for later reference.
|
| - *
|
| - * @param definingLibrary the element representing the library that imports the libraries for
|
| - * which namespaces will be created
|
| - */
|
| - void _createImportedNamespaces() {
|
| - NamespaceBuilder builder = new NamespaceBuilder();
|
| - List<ImportElement> imports = _definingLibrary.imports;
|
| - int count = imports.length;
|
| - _importedNamespaces = new List<Namespace>(count);
|
| - for (int i = 0; i < count; i++) {
|
| - _importedNamespaces[i] =
|
| - builder.createImportNamespaceForDirective(imports[i]);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Returns the name of the library that defines given element.
|
| - *
|
| - * @param element the element to get library name
|
| - * @return the name of the library that defines given element
|
| - */
|
| - String _getLibraryName(Element element) {
|
| - if (element == null) {
|
| - return StringUtilities.EMPTY;
|
| - }
|
| - LibraryElement library = element.library;
|
| - if (library == null) {
|
| - return StringUtilities.EMPTY;
|
| - }
|
| - List<ImportElement> imports = _definingLibrary.imports;
|
| - int count = imports.length;
|
| - for (int i = 0; i < count; i++) {
|
| - if (identical(imports[i].importedLibrary, library)) {
|
| - return library.definingCompilationUnit.displayName;
|
| - }
|
| - }
|
| - List<String> indirectSources = new List<String>();
|
| - for (int i = 0; i < count; i++) {
|
| - LibraryElement importedLibrary = imports[i].importedLibrary;
|
| - if (importedLibrary != null) {
|
| - for (LibraryElement exportedLibrary
|
| - in importedLibrary.exportedLibraries) {
|
| - if (identical(exportedLibrary, library)) {
|
| - indirectSources
|
| - .add(importedLibrary.definingCompilationUnit.displayName);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - int indirectCount = indirectSources.length;
|
| - StringBuffer buffer = new StringBuffer();
|
| - buffer.write(library.definingCompilationUnit.displayName);
|
| - if (indirectCount > 0) {
|
| - buffer.write(" (via ");
|
| - if (indirectCount > 1) {
|
| - indirectSources.sort();
|
| - buffer.write(StringUtilities.printListOfQuotedNames(indirectSources));
|
| - } else {
|
| - buffer.write(indirectSources[0]);
|
| - }
|
| - buffer.write(")");
|
| - }
|
| - return buffer.toString();
|
| - }
|
| -
|
| - /**
|
| - * Given a collection of elements (captured by the [foundElement]) that the
|
| - * [identifier] (with the given [name]) resolved to, remove from the list all
|
| - * of the names defined in the SDK and return the element(s) that remain.
|
| - */
|
| - Element _removeSdkElements(Identifier identifier, String name,
|
| - MultiplyDefinedElementImpl foundElement) {
|
| - List<Element> conflictingElements = foundElement.conflictingElements;
|
| - List<Element> nonSdkElements = new List<Element>();
|
| - Element sdkElement = null;
|
| - for (Element member in conflictingElements) {
|
| - if (member.library.isInSdk) {
|
| - sdkElement = member;
|
| - } else {
|
| - nonSdkElements.add(member);
|
| - }
|
| - }
|
| - if (sdkElement != null && nonSdkElements.length > 0) {
|
| - String sdkLibName = _getLibraryName(sdkElement);
|
| - String otherLibName = _getLibraryName(nonSdkElements[0]);
|
| - errorListener.onError(new AnalysisError(getSource(identifier),
|
| - identifier.offset, identifier.length,
|
| - StaticWarningCode.CONFLICTING_DART_IMPORT, [
|
| - name,
|
| - sdkLibName,
|
| - otherLibName
|
| - ]));
|
| - }
|
| - if (nonSdkElements.length == conflictingElements.length) {
|
| - // None of the members were removed
|
| - return foundElement;
|
| - } else if (nonSdkElements.length == 1) {
|
| - // All but one member was removed
|
| - return nonSdkElements[0];
|
| - } else if (nonSdkElements.length == 0) {
|
| - // All members were removed
|
| - AnalysisEngine.instance.logger
|
| - .logInformation("Multiply defined SDK element: $foundElement");
|
| - return foundElement;
|
| - }
|
| - return new MultiplyDefinedElementImpl(
|
| - _definingLibrary.context, nonSdkElements);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `LibraryResolver` are used to resolve one or more mutually dependent
|
| - * libraries within a single context.
|
| - */
|
| -class LibraryResolver {
|
| - /**
|
| - * The analysis context in which the libraries are being analyzed.
|
| - */
|
| - final InternalAnalysisContext analysisContext;
|
| -
|
| - /**
|
| - * The listener to which analysis errors will be reported, this error listener is either
|
| - * references [recordingErrorListener], or it unions the passed
|
| - * [AnalysisErrorListener] with the [recordingErrorListener].
|
| - */
|
| - RecordingErrorListener _errorListener;
|
| -
|
| - /**
|
| - * A source object representing the core library (dart:core).
|
| - */
|
| - Source _coreLibrarySource;
|
| -
|
| - /**
|
| - * A Source object representing the async library (dart:async).
|
| - */
|
| - Source _asyncLibrarySource;
|
| -
|
| - /**
|
| - * The object representing the core library.
|
| - */
|
| - Library _coreLibrary;
|
| -
|
| - /**
|
| - * The object representing the async library.
|
| - */
|
| - Library _asyncLibrary;
|
| -
|
| - /**
|
| - * The object used to access the types from the core library.
|
| - */
|
| - TypeProvider _typeProvider;
|
| -
|
| - /**
|
| - * A table mapping library sources to the information being maintained for those libraries.
|
| - */
|
| - HashMap<Source, Library> _libraryMap = new HashMap<Source, Library>();
|
| -
|
| - /**
|
| - * A collection containing the libraries that are being resolved together.
|
| - */
|
| - Set<Library> _librariesInCycles;
|
| -
|
| - /**
|
| - * Initialize a newly created library resolver to resolve libraries within the given context.
|
| - *
|
| - * @param analysisContext the analysis context in which the library is being analyzed
|
| - */
|
| - LibraryResolver(this.analysisContext) {
|
| - this._errorListener = new RecordingErrorListener();
|
| - _coreLibrarySource =
|
| - analysisContext.sourceFactory.forUri(DartSdk.DART_CORE);
|
| - _asyncLibrarySource =
|
| - analysisContext.sourceFactory.forUri(DartSdk.DART_ASYNC);
|
| - }
|
| -
|
| - /**
|
| - * Return the listener to which analysis errors will be reported.
|
| - *
|
| - * @return the listener to which analysis errors will be reported
|
| - */
|
| - RecordingErrorListener get errorListener => _errorListener;
|
| -
|
| - /**
|
| - * Return an array containing information about all of the libraries that were resolved.
|
| - *
|
| - * @return an array containing the libraries that were resolved
|
| - */
|
| - Set<Library> get resolvedLibraries => _librariesInCycles;
|
| -
|
| - /**
|
| - * The object used to access the types from the core library.
|
| - */
|
| - TypeProvider get typeProvider => _typeProvider;
|
| -
|
| - /**
|
| - * Create an object to represent the information about the library defined by the compilation unit
|
| - * with the given source.
|
| - *
|
| - * @param librarySource the source of the library's defining compilation unit
|
| - * @return the library object that was created
|
| - * @throws AnalysisException if the library source is not valid
|
| - */
|
| - Library createLibrary(Source librarySource) {
|
| - Library library =
|
| - new Library(analysisContext, _errorListener, librarySource);
|
| - _libraryMap[librarySource] = library;
|
| - return library;
|
| - }
|
| -
|
| - /**
|
| - * Resolve the library specified by the given source in the given context. The library is assumed
|
| - * to be embedded in the given source.
|
| - *
|
| - * @param librarySource the source specifying the defining compilation unit of the library to be
|
| - * resolved
|
| - * @param unit the compilation unit representing the embedded library
|
| - * @param fullAnalysis `true` if a full analysis should be performed
|
| - * @return the element representing the resolved library
|
| - * @throws AnalysisException if the library could not be resolved for some reason
|
| - */
|
| - LibraryElement resolveEmbeddedLibrary(
|
| - Source librarySource, CompilationUnit unit, bool fullAnalysis) {
|
| - //
|
| - // Create the objects representing the library being resolved and the core
|
| - // library.
|
| - //
|
| - Library targetLibrary = _createLibraryWithUnit(librarySource, unit);
|
| - _coreLibrary = _libraryMap[_coreLibrarySource];
|
| - if (_coreLibrary == null) {
|
| - // This will only happen if the library being analyzed is the core
|
| - // library.
|
| - _coreLibrary = createLibrary(_coreLibrarySource);
|
| - if (_coreLibrary == null) {
|
| - LibraryResolver2.missingCoreLibrary(
|
| - analysisContext, _coreLibrarySource);
|
| - }
|
| - }
|
| - _asyncLibrary = _libraryMap[_asyncLibrarySource];
|
| - if (_asyncLibrary == null) {
|
| - // This will only happen if the library being analyzed is the async
|
| - // library.
|
| - _asyncLibrary = createLibrary(_asyncLibrarySource);
|
| - if (_asyncLibrary == null) {
|
| - LibraryResolver2.missingAsyncLibrary(
|
| - analysisContext, _asyncLibrarySource);
|
| - }
|
| - }
|
| - //
|
| - // Compute the set of libraries that need to be resolved together.
|
| - //
|
| - _computeEmbeddedLibraryDependencies(targetLibrary, unit);
|
| - _librariesInCycles = _computeLibrariesInCycles(targetLibrary);
|
| - //
|
| - // Build the element models representing the libraries being resolved.
|
| - // This is done in three steps:
|
| - //
|
| - // 1. Build the basic element models without making any connections
|
| - // between elements other than the basic parent/child relationships.
|
| - // This includes building the elements representing the libraries.
|
| - // 2. Build the elements for the import and export directives. This
|
| - // requires that we have the elements built for the referenced
|
| - // libraries, but because of the possibility of circular references
|
| - // needs to happen after all of the library elements have been created.
|
| - // 3. Build the rest of the type model by connecting superclasses, mixins,
|
| - // and interfaces. This requires that we be able to compute the names
|
| - // visible in the libraries being resolved, which in turn requires that
|
| - // we have resolved the import directives.
|
| - //
|
| - _buildElementModels();
|
| - LibraryElement coreElement = _coreLibrary.libraryElement;
|
| - if (coreElement == null) {
|
| - throw new AnalysisException("Could not resolve dart:core");
|
| - }
|
| - LibraryElement asyncElement = _asyncLibrary.libraryElement;
|
| - if (asyncElement == null) {
|
| - throw new AnalysisException("Could not resolve dart:async");
|
| - }
|
| - _buildDirectiveModels();
|
| - _typeProvider = new TypeProviderImpl(coreElement, asyncElement);
|
| - _buildTypeHierarchies();
|
| - //
|
| - // Perform resolution and type analysis.
|
| - //
|
| - // TODO(brianwilkerson) Decide whether we want to resolve all of the
|
| - // libraries or whether we want to only resolve the target library.
|
| - // The advantage to resolving everything is that we have already done part
|
| - // of the work so we'll avoid duplicated effort. The disadvantage of
|
| - // resolving everything is that we might do extra work that we don't
|
| - // really care about. Another possibility is to add a parameter to this
|
| - // method and punt the decision to the clients.
|
| - //
|
| - //if (analyzeAll) {
|
| - resolveReferencesAndTypes();
|
| - //} else {
|
| - // resolveReferencesAndTypes(targetLibrary);
|
| - //}
|
| - _performConstantEvaluation();
|
| - return targetLibrary.libraryElement;
|
| - }
|
| -
|
| - /**
|
| - * Resolve the library specified by the given source in the given context.
|
| - *
|
| - * Note that because Dart allows circular imports between libraries, it is possible that more than
|
| - * one library will need to be resolved. In such cases the error listener can receive errors from
|
| - * multiple libraries.
|
| - *
|
| - * @param librarySource the source specifying the defining compilation unit of the library to be
|
| - * resolved
|
| - * @param fullAnalysis `true` if a full analysis should be performed
|
| - * @return the element representing the resolved library
|
| - * @throws AnalysisException if the library could not be resolved for some reason
|
| - */
|
| - LibraryElement resolveLibrary(Source librarySource, bool fullAnalysis) {
|
| - //
|
| - // Create the object representing the library being resolved and compute
|
| - // the dependency relationship. Note that all libraries depend implicitly
|
| - // on core, and we inject an ersatz dependency on async, so once this is
|
| - // done the core and async library elements will have been created.
|
| - //
|
| - Library targetLibrary = createLibrary(librarySource);
|
| - _computeLibraryDependencies(targetLibrary);
|
| - _coreLibrary = _libraryMap[_coreLibrarySource];
|
| - _asyncLibrary = _libraryMap[_asyncLibrarySource];
|
| - //
|
| - // Compute the set of libraries that need to be resolved together.
|
| - //
|
| - _librariesInCycles = _computeLibrariesInCycles(targetLibrary);
|
| - //
|
| - // Build the element models representing the libraries being resolved.
|
| - // This is done in three steps:
|
| - //
|
| - // 1. Build the basic element models without making any connections
|
| - // between elements other than the basic parent/child relationships.
|
| - // This includes building the elements representing the libraries, but
|
| - // excludes members defined in enums.
|
| - // 2. Build the elements for the import and export directives. This
|
| - // requires that we have the elements built for the referenced
|
| - // libraries, but because of the possibility of circular references
|
| - // needs to happen after all of the library elements have been created.
|
| - // 3. Build the members in enum declarations.
|
| - // 4. Build the rest of the type model by connecting superclasses, mixins,
|
| - // and interfaces. This requires that we be able to compute the names
|
| - // visible in the libraries being resolved, which in turn requires that
|
| - // we have resolved the import directives.
|
| - //
|
| - _buildElementModels();
|
| - LibraryElement coreElement = _coreLibrary.libraryElement;
|
| - if (coreElement == null) {
|
| - throw new AnalysisException("Could not resolve dart:core");
|
| - }
|
| - LibraryElement asyncElement = _asyncLibrary.libraryElement;
|
| - if (asyncElement == null) {
|
| - throw new AnalysisException("Could not resolve dart:async");
|
| - }
|
| - _buildDirectiveModels();
|
| - _typeProvider = new TypeProviderImpl(coreElement, asyncElement);
|
| - _buildEnumMembers();
|
| - _buildTypeHierarchies();
|
| - //
|
| - // Perform resolution and type analysis.
|
| - //
|
| - // TODO(brianwilkerson) Decide whether we want to resolve all of the
|
| - // libraries or whether we want to only resolve the target library. The
|
| - // advantage to resolving everything is that we have already done part of
|
| - // the work so we'll avoid duplicated effort. The disadvantage of
|
| - // resolving everything is that we might do extra work that we don't
|
| - // really care about. Another possibility is to add a parameter to this
|
| - // method and punt the decision to the clients.
|
| - //
|
| - //if (analyzeAll) {
|
| - resolveReferencesAndTypes();
|
| - //} else {
|
| - // resolveReferencesAndTypes(targetLibrary);
|
| - //}
|
| - _performConstantEvaluation();
|
| - return targetLibrary.libraryElement;
|
| - }
|
| -
|
| - /**
|
| - * Resolve the identifiers and perform type analysis in the libraries in the current cycle.
|
| - *
|
| - * @throws AnalysisException if any of the identifiers could not be resolved or if any of the
|
| - * libraries could not have their types analyzed
|
| - */
|
| - void resolveReferencesAndTypes() {
|
| - for (Library library in _librariesInCycles) {
|
| - _resolveReferencesAndTypesInLibrary(library);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Add a dependency to the given map from the referencing library to the referenced library.
|
| - *
|
| - * @param dependencyMap the map to which the dependency is to be added
|
| - * @param referencingLibrary the library that references the referenced library
|
| - * @param referencedLibrary the library referenced by the referencing library
|
| - */
|
| - void _addDependencyToMap(HashMap<Library, List<Library>> dependencyMap,
|
| - Library referencingLibrary, Library referencedLibrary) {
|
| - List<Library> dependentLibraries = dependencyMap[referencedLibrary];
|
| - if (dependentLibraries == null) {
|
| - dependentLibraries = new List<Library>();
|
| - dependencyMap[referencedLibrary] = dependentLibraries;
|
| - }
|
| - dependentLibraries.add(referencingLibrary);
|
| - }
|
| -
|
| - /**
|
| - * Given a library that is part of a cycle that includes the root library, add to the given set of
|
| - * libraries all of the libraries reachable from the root library that are also included in the
|
| - * cycle.
|
| - *
|
| - * @param library the library to be added to the collection of libraries in cycles
|
| - * @param librariesInCycle a collection of the libraries that are in the cycle
|
| - * @param dependencyMap a table mapping libraries to the collection of libraries from which those
|
| - * libraries are referenced
|
| - */
|
| - void _addLibrariesInCycle(Library library, Set<Library> librariesInCycle,
|
| - HashMap<Library, List<Library>> dependencyMap) {
|
| - if (librariesInCycle.add(library)) {
|
| - List<Library> dependentLibraries = dependencyMap[library];
|
| - if (dependentLibraries != null) {
|
| - for (Library dependentLibrary in dependentLibraries) {
|
| - _addLibrariesInCycle(
|
| - dependentLibrary, librariesInCycle, dependencyMap);
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Add the given library, and all libraries reachable from it that have not already been visited,
|
| - * to the given dependency map.
|
| - *
|
| - * @param library the library currently being added to the dependency map
|
| - * @param dependencyMap the dependency map being computed
|
| - * @param visitedLibraries the libraries that have already been visited, used to prevent infinite
|
| - * recursion
|
| - */
|
| - void _addToDependencyMap(Library library,
|
| - HashMap<Library, List<Library>> dependencyMap,
|
| - Set<Library> visitedLibraries) {
|
| - if (visitedLibraries.add(library)) {
|
| - bool asyncFound = false;
|
| - for (Library referencedLibrary in library.importsAndExports) {
|
| - _addDependencyToMap(dependencyMap, library, referencedLibrary);
|
| - _addToDependencyMap(referencedLibrary, dependencyMap, visitedLibraries);
|
| - if (identical(referencedLibrary, _asyncLibrary)) {
|
| - asyncFound = true;
|
| - }
|
| - }
|
| - if (!library.explicitlyImportsCore && !identical(library, _coreLibrary)) {
|
| - _addDependencyToMap(dependencyMap, library, _coreLibrary);
|
| - }
|
| - if (!asyncFound && !identical(library, _asyncLibrary)) {
|
| - _addDependencyToMap(dependencyMap, library, _asyncLibrary);
|
| - _addToDependencyMap(_asyncLibrary, dependencyMap, visitedLibraries);
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Build the element model representing the combinators declared by the given directive.
|
| - *
|
| - * @param directive the directive that declares the combinators
|
| - * @return an array containing the import combinators that were built
|
| - */
|
| - List<NamespaceCombinator> _buildCombinators(NamespaceDirective directive) {
|
| - List<NamespaceCombinator> combinators = new List<NamespaceCombinator>();
|
| - for (Combinator combinator in directive.combinators) {
|
| - if (combinator is HideCombinator) {
|
| - HideElementCombinatorImpl hide = new HideElementCombinatorImpl();
|
| - hide.hiddenNames = _getIdentifiers(combinator.hiddenNames);
|
| - combinators.add(hide);
|
| - } else {
|
| - ShowElementCombinatorImpl show = new ShowElementCombinatorImpl();
|
| - show.offset = combinator.offset;
|
| - show.end = combinator.end;
|
| - show.shownNames =
|
| - _getIdentifiers((combinator as ShowCombinator).shownNames);
|
| - combinators.add(show);
|
| - }
|
| - }
|
| - return combinators;
|
| - }
|
| -
|
| - /**
|
| - * Every library now has a corresponding [LibraryElement], so it is now possible to resolve
|
| - * the import and export directives.
|
| - *
|
| - * @throws AnalysisException if the defining compilation unit for any of the libraries could not
|
| - * be accessed
|
| - */
|
| - void _buildDirectiveModels() {
|
| - for (Library library in _librariesInCycles) {
|
| - HashMap<String, PrefixElementImpl> nameToPrefixMap =
|
| - new HashMap<String, PrefixElementImpl>();
|
| - List<ImportElement> imports = new List<ImportElement>();
|
| - List<ExportElement> exports = new List<ExportElement>();
|
| - for (Directive directive in library.definingCompilationUnit.directives) {
|
| - if (directive is ImportDirective) {
|
| - ImportDirective importDirective = directive;
|
| - String uriContent = importDirective.uriContent;
|
| - if (DartUriResolver.isDartExtUri(uriContent)) {
|
| - library.libraryElement.hasExtUri = true;
|
| - }
|
| - Source importedSource = importDirective.source;
|
| - if (importedSource != null) {
|
| - // The imported source will be null if the URI in the import
|
| - // directive was invalid.
|
| - Library importedLibrary = _libraryMap[importedSource];
|
| - if (importedLibrary != null) {
|
| - ImportElementImpl importElement =
|
| - new ImportElementImpl(directive.offset);
|
| - StringLiteral uriLiteral = importDirective.uri;
|
| - importElement.uriOffset = uriLiteral.offset;
|
| - importElement.uriEnd = uriLiteral.end;
|
| - importElement.uri = uriContent;
|
| - importElement.deferred = importDirective.deferredKeyword != null;
|
| - importElement.combinators = _buildCombinators(importDirective);
|
| - LibraryElement importedLibraryElement =
|
| - importedLibrary.libraryElement;
|
| - if (importedLibraryElement != null) {
|
| - importElement.importedLibrary = importedLibraryElement;
|
| - }
|
| - SimpleIdentifier prefixNode = directive.prefix;
|
| - if (prefixNode != null) {
|
| - importElement.prefixOffset = prefixNode.offset;
|
| - String prefixName = prefixNode.name;
|
| - PrefixElementImpl prefix = nameToPrefixMap[prefixName];
|
| - if (prefix == null) {
|
| - prefix = new PrefixElementImpl.forNode(prefixNode);
|
| - nameToPrefixMap[prefixName] = prefix;
|
| - }
|
| - importElement.prefix = prefix;
|
| - prefixNode.staticElement = prefix;
|
| - }
|
| - directive.element = importElement;
|
| - imports.add(importElement);
|
| - if (analysisContext.computeKindOf(importedSource) !=
|
| - SourceKind.LIBRARY) {
|
| - ErrorCode errorCode = (importElement.isDeferred
|
| - ? StaticWarningCode.IMPORT_OF_NON_LIBRARY
|
| - : CompileTimeErrorCode.IMPORT_OF_NON_LIBRARY);
|
| - _errorListener.onError(new AnalysisError(library.librarySource,
|
| - uriLiteral.offset, uriLiteral.length, errorCode,
|
| - [uriLiteral.toSource()]));
|
| - }
|
| - }
|
| - }
|
| - } else if (directive is ExportDirective) {
|
| - ExportDirective exportDirective = directive;
|
| - Source exportedSource = exportDirective.source;
|
| - if (exportedSource != null) {
|
| - // The exported source will be null if the URI in the export
|
| - // directive was invalid.
|
| - Library exportedLibrary = _libraryMap[exportedSource];
|
| - if (exportedLibrary != null) {
|
| - ExportElementImpl exportElement =
|
| - new ExportElementImpl(directive.offset);
|
| - StringLiteral uriLiteral = exportDirective.uri;
|
| - exportElement.uriOffset = uriLiteral.offset;
|
| - exportElement.uriEnd = uriLiteral.end;
|
| - exportElement.uri = exportDirective.uriContent;
|
| - exportElement.combinators = _buildCombinators(exportDirective);
|
| - LibraryElement exportedLibraryElement =
|
| - exportedLibrary.libraryElement;
|
| - if (exportedLibraryElement != null) {
|
| - exportElement.exportedLibrary = exportedLibraryElement;
|
| - }
|
| - directive.element = exportElement;
|
| - exports.add(exportElement);
|
| - if (analysisContext.computeKindOf(exportedSource) !=
|
| - SourceKind.LIBRARY) {
|
| - _errorListener.onError(new AnalysisError(library.librarySource,
|
| - uriLiteral.offset, uriLiteral.length,
|
| - CompileTimeErrorCode.EXPORT_OF_NON_LIBRARY,
|
| - [uriLiteral.toSource()]));
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - Source librarySource = library.librarySource;
|
| - if (!library.explicitlyImportsCore &&
|
| - _coreLibrarySource != librarySource) {
|
| - ImportElementImpl importElement = new ImportElementImpl(-1);
|
| - importElement.importedLibrary = _coreLibrary.libraryElement;
|
| - importElement.synthetic = true;
|
| - imports.add(importElement);
|
| - }
|
| - LibraryElementImpl libraryElement = library.libraryElement;
|
| - libraryElement.imports = imports;
|
| - libraryElement.exports = exports;
|
| - if (libraryElement.entryPoint == null) {
|
| - Namespace namespace = new NamespaceBuilder()
|
| - .createExportNamespaceForLibrary(libraryElement);
|
| - Element element = namespace.get(FunctionElement.MAIN_FUNCTION_NAME);
|
| - if (element is FunctionElement) {
|
| - libraryElement.entryPoint = element;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Build element models for all of the libraries in the current cycle.
|
| - *
|
| - * @throws AnalysisException if any of the element models cannot be built
|
| - */
|
| - void _buildElementModels() {
|
| - for (Library library in _librariesInCycles) {
|
| - LibraryElementBuilder builder =
|
| - new LibraryElementBuilder(analysisContext, errorListener);
|
| - LibraryElementImpl libraryElement = builder.buildLibrary(library);
|
| - library.libraryElement = libraryElement;
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Build the members in enum declarations. This cannot be done while building the rest of the
|
| - * element model because it depends on being able to access core types, which cannot happen until
|
| - * the rest of the element model has been built (when resolving the core library).
|
| - *
|
| - * @throws AnalysisException if any of the enum members could not be built
|
| - */
|
| - void _buildEnumMembers() {
|
| - PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| - for (Library library in _librariesInCycles) {
|
| - for (Source source in library.compilationUnitSources) {
|
| - EnumMemberBuilder builder = new EnumMemberBuilder(_typeProvider);
|
| - library.getAST(source).accept(builder);
|
| - }
|
| - }
|
| - });
|
| - }
|
| -
|
| - /**
|
| - * Resolve the type hierarchy across all of the types declared in the libraries in the current
|
| - * cycle.
|
| - *
|
| - * @throws AnalysisException if any of the type hierarchies could not be resolved
|
| - */
|
| - void _buildTypeHierarchies() {
|
| - PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| - for (Library library in _librariesInCycles) {
|
| - for (Source source in library.compilationUnitSources) {
|
| - TypeResolverVisitorFactory typeResolverVisitorFactory =
|
| - analysisContext.typeResolverVisitorFactory;
|
| - TypeResolverVisitor visitor = (typeResolverVisitorFactory == null)
|
| - ? new TypeResolverVisitor(library.libraryElement, source,
|
| - _typeProvider, library.errorListener,
|
| - nameScope: library.libraryScope)
|
| - : typeResolverVisitorFactory(library, source, _typeProvider);
|
| - library.getAST(source).accept(visitor);
|
| - }
|
| - }
|
| - });
|
| - }
|
| -
|
| - /**
|
| - * Compute a dependency map of libraries reachable from the given library. A dependency map is a
|
| - * table that maps individual libraries to a list of the libraries that either import or export
|
| - * those libraries.
|
| - *
|
| - * This map is used to compute all of the libraries involved in a cycle that include the root
|
| - * library. Given that we only add libraries that are reachable from the root library, when we
|
| - * work backward we are guaranteed to only get libraries in the cycle.
|
| - *
|
| - * @param library the library currently being added to the dependency map
|
| - */
|
| - HashMap<Library, List<Library>> _computeDependencyMap(Library library) {
|
| - HashMap<Library, List<Library>> dependencyMap =
|
| - new HashMap<Library, List<Library>>();
|
| - _addToDependencyMap(library, dependencyMap, new HashSet<Library>());
|
| - return dependencyMap;
|
| - }
|
| -
|
| - /**
|
| - * Recursively traverse the libraries reachable from the given library, creating instances of the
|
| - * class [Library] to represent them, and record the references in the library objects.
|
| - *
|
| - * @param library the library to be processed to find libraries that have not yet been traversed
|
| - * @throws AnalysisException if some portion of the library graph could not be traversed
|
| - */
|
| - void _computeEmbeddedLibraryDependencies(
|
| - Library library, CompilationUnit unit) {
|
| - Source librarySource = library.librarySource;
|
| - HashSet<Source> exportedSources = new HashSet<Source>();
|
| - HashSet<Source> importedSources = new HashSet<Source>();
|
| - for (Directive directive in unit.directives) {
|
| - if (directive is ExportDirective) {
|
| - Source exportSource = _resolveSource(librarySource, directive);
|
| - if (exportSource != null) {
|
| - exportedSources.add(exportSource);
|
| - }
|
| - } else if (directive is ImportDirective) {
|
| - Source importSource = _resolveSource(librarySource, directive);
|
| - if (importSource != null) {
|
| - importedSources.add(importSource);
|
| - }
|
| - }
|
| - }
|
| - _computeLibraryDependenciesFromDirectives(library,
|
| - new List.from(importedSources), new List.from(exportedSources));
|
| - }
|
| -
|
| - /**
|
| - * Return a collection containing all of the libraries reachable from the given library that are
|
| - * contained in a cycle that includes the given library.
|
| - *
|
| - * @param library the library that must be included in any cycles whose members are to be returned
|
| - * @return all of the libraries referenced by the given library that have a circular reference
|
| - * back to the given library
|
| - */
|
| - Set<Library> _computeLibrariesInCycles(Library library) {
|
| - HashMap<Library, List<Library>> dependencyMap =
|
| - _computeDependencyMap(library);
|
| - Set<Library> librariesInCycle = new HashSet<Library>();
|
| - _addLibrariesInCycle(library, librariesInCycle, dependencyMap);
|
| - return librariesInCycle;
|
| - }
|
| -
|
| - /**
|
| - * Recursively traverse the libraries reachable from the given library, creating instances of the
|
| - * class [Library] to represent them, and record the references in the library objects.
|
| - *
|
| - * @param library the library to be processed to find libraries that have not yet been traversed
|
| - * @throws AnalysisException if some portion of the library graph could not be traversed
|
| - */
|
| - void _computeLibraryDependencies(Library library) {
|
| - Source librarySource = library.librarySource;
|
| - _computeLibraryDependenciesFromDirectives(library,
|
| - analysisContext.computeImportedLibraries(librarySource),
|
| - analysisContext.computeExportedLibraries(librarySource));
|
| - }
|
| -
|
| - /**
|
| - * Recursively traverse the libraries reachable from the given library, creating instances of the
|
| - * class [Library] to represent them, and record the references in the library objects.
|
| - *
|
| - * @param library the library to be processed to find libraries that have not yet been traversed
|
| - * @param importedSources an array containing the sources that are imported into the given library
|
| - * @param exportedSources an array containing the sources that are exported from the given library
|
| - * @throws AnalysisException if some portion of the library graph could not be traversed
|
| - */
|
| - void _computeLibraryDependenciesFromDirectives(Library library,
|
| - List<Source> importedSources, List<Source> exportedSources) {
|
| - List<Library> importedLibraries = new List<Library>();
|
| - bool explicitlyImportsCore = false;
|
| - bool importsAsync = false;
|
| - for (Source importedSource in importedSources) {
|
| - if (importedSource == _coreLibrarySource) {
|
| - explicitlyImportsCore = true;
|
| - }
|
| - if (importedSource == _asyncLibrarySource) {
|
| - importsAsync = true;
|
| - }
|
| - Library importedLibrary = _libraryMap[importedSource];
|
| - if (importedLibrary == null) {
|
| - importedLibrary = _createLibraryOrNull(importedSource);
|
| - if (importedLibrary != null) {
|
| - _computeLibraryDependencies(importedLibrary);
|
| - }
|
| - }
|
| - if (importedLibrary != null) {
|
| - importedLibraries.add(importedLibrary);
|
| - }
|
| - }
|
| - library.importedLibraries = importedLibraries;
|
| - List<Library> exportedLibraries = new List<Library>();
|
| - for (Source exportedSource in exportedSources) {
|
| - Library exportedLibrary = _libraryMap[exportedSource];
|
| - if (exportedLibrary == null) {
|
| - exportedLibrary = _createLibraryOrNull(exportedSource);
|
| - if (exportedLibrary != null) {
|
| - _computeLibraryDependencies(exportedLibrary);
|
| - }
|
| - }
|
| - if (exportedLibrary != null) {
|
| - exportedLibraries.add(exportedLibrary);
|
| - }
|
| - }
|
| - library.exportedLibraries = exportedLibraries;
|
| - library.explicitlyImportsCore = explicitlyImportsCore;
|
| - if (!explicitlyImportsCore && _coreLibrarySource != library.librarySource) {
|
| - Library importedLibrary = _libraryMap[_coreLibrarySource];
|
| - if (importedLibrary == null) {
|
| - importedLibrary = _createLibraryOrNull(_coreLibrarySource);
|
| - if (importedLibrary != null) {
|
| - _computeLibraryDependencies(importedLibrary);
|
| - }
|
| - }
|
| - }
|
| - if (!importsAsync && _asyncLibrarySource != library.librarySource) {
|
| - Library importedLibrary = _libraryMap[_asyncLibrarySource];
|
| - if (importedLibrary == null) {
|
| - importedLibrary = _createLibraryOrNull(_asyncLibrarySource);
|
| - if (importedLibrary != null) {
|
| - _computeLibraryDependencies(importedLibrary);
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Create an object to represent the information about the library defined by the compilation unit
|
| - * with the given source. Return the library object that was created, or `null` if the
|
| - * source is not valid.
|
| - *
|
| - * @param librarySource the source of the library's defining compilation unit
|
| - * @return the library object that was created
|
| - */
|
| - Library _createLibraryOrNull(Source librarySource) {
|
| - if (!analysisContext.exists(librarySource)) {
|
| - return null;
|
| - }
|
| - Library library =
|
| - new Library(analysisContext, _errorListener, librarySource);
|
| - _libraryMap[librarySource] = library;
|
| - return library;
|
| - }
|
| -
|
| - /**
|
| - * Create an object to represent the information about the library defined by the compilation unit
|
| - * with the given source.
|
| - *
|
| - * @param librarySource the source of the library's defining compilation unit
|
| - * @param unit the compilation unit that defines the library
|
| - * @return the library object that was created
|
| - * @throws AnalysisException if the library source is not valid
|
| - */
|
| - Library _createLibraryWithUnit(Source librarySource, CompilationUnit unit) {
|
| - Library library =
|
| - new Library(analysisContext, _errorListener, librarySource);
|
| - library.setDefiningCompilationUnit(unit);
|
| - _libraryMap[librarySource] = library;
|
| - return library;
|
| - }
|
| -
|
| - /**
|
| - * Return an array containing the lexical identifiers associated with the nodes in the given list.
|
| - *
|
| - * @param names the AST nodes representing the identifiers
|
| - * @return the lexical identifiers associated with the nodes in the list
|
| - */
|
| - List<String> _getIdentifiers(NodeList<SimpleIdentifier> names) {
|
| - int count = names.length;
|
| - List<String> identifiers = new List<String>(count);
|
| - for (int i = 0; i < count; i++) {
|
| - identifiers[i] = names[i].name;
|
| - }
|
| - return identifiers;
|
| - }
|
| -
|
| - /**
|
| - * Compute a value for all of the constants in the libraries being analyzed.
|
| - */
|
| - void _performConstantEvaluation() {
|
| - PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| - ConstantValueComputer computer = new ConstantValueComputer(
|
| - analysisContext, _typeProvider, analysisContext.declaredVariables);
|
| - for (Library library in _librariesInCycles) {
|
| - for (Source source in library.compilationUnitSources) {
|
| - try {
|
| - CompilationUnit unit = library.getAST(source);
|
| - if (unit != null) {
|
| - computer.add(unit, source, library.librarySource);
|
| - }
|
| - } on AnalysisException catch (exception, stackTrace) {
|
| - AnalysisEngine.instance.logger.logError(
|
| - "Internal Error: Could not access AST for ${source.fullName} during constant evaluation",
|
| - new CaughtException(exception, stackTrace));
|
| - }
|
| - }
|
| - }
|
| - computer.computeValues();
|
| - // As a temporary workaround for issue 21572, run ConstantVerifier now.
|
| - // TODO(paulberry): remove this workaround once issue 21572 is fixed.
|
| - for (Library library in _librariesInCycles) {
|
| - for (Source source in library.compilationUnitSources) {
|
| - try {
|
| - CompilationUnit unit = library.getAST(source);
|
| - ErrorReporter errorReporter =
|
| - new ErrorReporter(_errorListener, source);
|
| - ConstantVerifier constantVerifier = new ConstantVerifier(
|
| - errorReporter, library.libraryElement, _typeProvider,
|
| - analysisContext.declaredVariables);
|
| - unit.accept(constantVerifier);
|
| - } on AnalysisException catch (exception, stackTrace) {
|
| - AnalysisEngine.instance.logger.logError(
|
| - "Internal Error: Could not access AST for ${source.fullName} "
|
| - "during constant verification",
|
| - new CaughtException(exception, stackTrace));
|
| - }
|
| - }
|
| - }
|
| - });
|
| - }
|
| -
|
| - /**
|
| - * Resolve the identifiers and perform type analysis in the given library.
|
| - *
|
| - * @param library the library to be resolved
|
| - * @throws AnalysisException if any of the identifiers could not be resolved or if the types in
|
| - * the library cannot be analyzed
|
| - */
|
| - void _resolveReferencesAndTypesInLibrary(Library library) {
|
| - PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| - for (Source source in library.compilationUnitSources) {
|
| - CompilationUnit ast = library.getAST(source);
|
| - ast.accept(new VariableResolverVisitor(library.libraryElement, source,
|
| - _typeProvider, library.errorListener,
|
| - nameScope: library.libraryScope));
|
| - ResolverVisitorFactory visitorFactory =
|
| - analysisContext.resolverVisitorFactory;
|
| - ResolverVisitor visitor = visitorFactory != null
|
| - ? visitorFactory(library, source, _typeProvider)
|
| - : new ResolverVisitor(library.libraryElement, source, _typeProvider,
|
| - library.errorListener,
|
| - nameScope: library.libraryScope,
|
| - inheritanceManager: library.inheritanceManager);
|
| - ast.accept(visitor);
|
| - }
|
| - });
|
| - }
|
| -
|
| - /**
|
| - * Return the result of resolving the URI of the given URI-based directive against the URI of the
|
| - * given library, or `null` if the URI is not valid.
|
| - *
|
| - * @param librarySource the source representing the library containing the directive
|
| - * @param directive the directive which URI should be resolved
|
| - * @return the result of resolving the URI against the URI of the library
|
| - */
|
| - Source _resolveSource(Source librarySource, UriBasedDirective directive) {
|
| - StringLiteral uriLiteral = directive.uri;
|
| - if (uriLiteral is StringInterpolation) {
|
| - return null;
|
| - }
|
| - String uriContent = uriLiteral.stringValue.trim();
|
| - if (uriContent == null || uriContent.isEmpty) {
|
| - return null;
|
| - }
|
| - uriContent = Uri.encodeFull(uriContent);
|
| - return analysisContext.sourceFactory.resolveUri(librarySource, uriContent);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `LibraryResolver` are used to resolve one or more mutually dependent
|
| - * libraries within a single context.
|
| - */
|
| -class LibraryResolver2 {
|
| - /**
|
| - * The analysis context in which the libraries are being analyzed.
|
| - */
|
| - final InternalAnalysisContext analysisContext;
|
| -
|
| - /**
|
| - * The listener to which analysis errors will be reported, this error listener is either
|
| - * references [recordingErrorListener], or it unions the passed
|
| - * [AnalysisErrorListener] with the [recordingErrorListener].
|
| - */
|
| - RecordingErrorListener _errorListener;
|
| -
|
| - /**
|
| - * A source object representing the core library (dart:core).
|
| - */
|
| - Source _coreLibrarySource;
|
| -
|
| - /**
|
| - * A source object representing the async library (dart:async).
|
| - */
|
| - Source _asyncLibrarySource;
|
| -
|
| - /**
|
| - * The object representing the core library.
|
| - */
|
| - ResolvableLibrary _coreLibrary;
|
| -
|
| - /**
|
| - * The object representing the async library.
|
| - */
|
| - ResolvableLibrary _asyncLibrary;
|
| -
|
| - /**
|
| - * The object used to access the types from the core library.
|
| - */
|
| - TypeProvider _typeProvider;
|
| -
|
| - /**
|
| - * A table mapping library sources to the information being maintained for those libraries.
|
| - */
|
| - HashMap<Source, ResolvableLibrary> _libraryMap =
|
| - new HashMap<Source, ResolvableLibrary>();
|
| -
|
| - /**
|
| - * A collection containing the libraries that are being resolved together.
|
| - */
|
| - List<ResolvableLibrary> _librariesInCycle;
|
| -
|
| - /**
|
| - * Initialize a newly created library resolver to resolve libraries within the given context.
|
| - *
|
| - * @param analysisContext the analysis context in which the library is being analyzed
|
| - */
|
| - LibraryResolver2(this.analysisContext) {
|
| - this._errorListener = new RecordingErrorListener();
|
| - _coreLibrarySource =
|
| - analysisContext.sourceFactory.forUri(DartSdk.DART_CORE);
|
| - _asyncLibrarySource =
|
| - analysisContext.sourceFactory.forUri(DartSdk.DART_ASYNC);
|
| - }
|
| -
|
| - /**
|
| - * Return the listener to which analysis errors will be reported.
|
| - *
|
| - * @return the listener to which analysis errors will be reported
|
| - */
|
| - RecordingErrorListener get errorListener => _errorListener;
|
| -
|
| - /**
|
| - * Return an array containing information about all of the libraries that were resolved.
|
| - *
|
| - * @return an array containing the libraries that were resolved
|
| - */
|
| - List<ResolvableLibrary> get resolvedLibraries => _librariesInCycle;
|
| -
|
| - /**
|
| - * Resolve the library specified by the given source in the given context.
|
| - *
|
| - * Note that because Dart allows circular imports between libraries, it is possible that more than
|
| - * one library will need to be resolved. In such cases the error listener can receive errors from
|
| - * multiple libraries.
|
| - *
|
| - * @param librarySource the source specifying the defining compilation unit of the library to be
|
| - * resolved
|
| - * @param fullAnalysis `true` if a full analysis should be performed
|
| - * @return the element representing the resolved library
|
| - * @throws AnalysisException if the library could not be resolved for some reason
|
| - */
|
| - LibraryElement resolveLibrary(
|
| - Source librarySource, List<ResolvableLibrary> librariesInCycle) {
|
| - //
|
| - // Build the map of libraries that are known.
|
| - //
|
| - this._librariesInCycle = librariesInCycle;
|
| - _libraryMap = _buildLibraryMap();
|
| - ResolvableLibrary targetLibrary = _libraryMap[librarySource];
|
| - _coreLibrary = _libraryMap[_coreLibrarySource];
|
| - _asyncLibrary = _libraryMap[_asyncLibrarySource];
|
| - //
|
| - // Build the element models representing the libraries being resolved.
|
| - // This is done in three steps:
|
| - //
|
| - // 1. Build the basic element models without making any connections
|
| - // between elements other than the basic parent/child relationships.
|
| - // This includes building the elements representing the libraries, but
|
| - // excludes members defined in enums.
|
| - // 2. Build the elements for the import and export directives. This
|
| - // requires that we have the elements built for the referenced
|
| - // libraries, but because of the possibility of circular references
|
| - // needs to happen after all of the library elements have been created.
|
| - // 3. Build the members in enum declarations.
|
| - // 4. Build the rest of the type model by connecting superclasses, mixins,
|
| - // and interfaces. This requires that we be able to compute the names
|
| - // visible in the libraries being resolved, which in turn requires that
|
| - // we have resolved the import directives.
|
| - //
|
| - _buildElementModels();
|
| - LibraryElement coreElement = _coreLibrary.libraryElement;
|
| - if (coreElement == null) {
|
| - missingCoreLibrary(analysisContext, _coreLibrarySource);
|
| - }
|
| - LibraryElement asyncElement = _asyncLibrary.libraryElement;
|
| - if (asyncElement == null) {
|
| - missingAsyncLibrary(analysisContext, _asyncLibrarySource);
|
| - }
|
| - _buildDirectiveModels();
|
| - _typeProvider = new TypeProviderImpl(coreElement, asyncElement);
|
| - _buildEnumMembers();
|
| - _buildTypeHierarchies();
|
| - //
|
| - // Perform resolution and type analysis.
|
| - //
|
| - // TODO(brianwilkerson) Decide whether we want to resolve all of the
|
| - // libraries or whether we want to only resolve the target library. The
|
| - // advantage to resolving everything is that we have already done part of
|
| - // the work so we'll avoid duplicated effort. The disadvantage of
|
| - // resolving everything is that we might do extra work that we don't
|
| - // really care about. Another possibility is to add a parameter to this
|
| - // method and punt the decision to the clients.
|
| - //
|
| - //if (analyzeAll) {
|
| - _resolveReferencesAndTypes();
|
| - //} else {
|
| - // resolveReferencesAndTypes(targetLibrary);
|
| - //}
|
| - _performConstantEvaluation();
|
| - return targetLibrary.libraryElement;
|
| - }
|
| -
|
| - /**
|
| - * Build the element model representing the combinators declared by the given directive.
|
| - *
|
| - * @param directive the directive that declares the combinators
|
| - * @return an array containing the import combinators that were built
|
| - */
|
| - List<NamespaceCombinator> _buildCombinators(NamespaceDirective directive) {
|
| - List<NamespaceCombinator> combinators = new List<NamespaceCombinator>();
|
| - for (Combinator combinator in directive.combinators) {
|
| - if (combinator is HideCombinator) {
|
| - HideElementCombinatorImpl hide = new HideElementCombinatorImpl();
|
| - hide.hiddenNames = _getIdentifiers(combinator.hiddenNames);
|
| - combinators.add(hide);
|
| - } else {
|
| - ShowElementCombinatorImpl show = new ShowElementCombinatorImpl();
|
| - show.offset = combinator.offset;
|
| - show.end = combinator.end;
|
| - show.shownNames =
|
| - _getIdentifiers((combinator as ShowCombinator).shownNames);
|
| - combinators.add(show);
|
| - }
|
| - }
|
| - return combinators;
|
| - }
|
| -
|
| - /**
|
| - * Every library now has a corresponding [LibraryElement], so it is now possible to resolve
|
| - * the import and export directives.
|
| - *
|
| - * @throws AnalysisException if the defining compilation unit for any of the libraries could not
|
| - * be accessed
|
| - */
|
| - void _buildDirectiveModels() {
|
| - for (ResolvableLibrary library in _librariesInCycle) {
|
| - HashMap<String, PrefixElementImpl> nameToPrefixMap =
|
| - new HashMap<String, PrefixElementImpl>();
|
| - List<ImportElement> imports = new List<ImportElement>();
|
| - List<ExportElement> exports = new List<ExportElement>();
|
| - for (Directive directive in library.definingCompilationUnit.directives) {
|
| - if (directive is ImportDirective) {
|
| - ImportDirective importDirective = directive;
|
| - String uriContent = importDirective.uriContent;
|
| - if (DartUriResolver.isDartExtUri(uriContent)) {
|
| - library.libraryElement.hasExtUri = true;
|
| - }
|
| - Source importedSource = importDirective.source;
|
| - if (importedSource != null &&
|
| - analysisContext.exists(importedSource)) {
|
| - // The imported source will be null if the URI in the import
|
| - // directive was invalid.
|
| - ResolvableLibrary importedLibrary = _libraryMap[importedSource];
|
| - if (importedLibrary != null) {
|
| - ImportElementImpl importElement =
|
| - new ImportElementImpl(directive.offset);
|
| - StringLiteral uriLiteral = importDirective.uri;
|
| - if (uriLiteral != null) {
|
| - importElement.uriOffset = uriLiteral.offset;
|
| - importElement.uriEnd = uriLiteral.end;
|
| - }
|
| - importElement.uri = uriContent;
|
| - importElement.deferred = importDirective.deferredKeyword != null;
|
| - importElement.combinators = _buildCombinators(importDirective);
|
| - LibraryElement importedLibraryElement =
|
| - importedLibrary.libraryElement;
|
| - if (importedLibraryElement != null) {
|
| - importElement.importedLibrary = importedLibraryElement;
|
| - }
|
| - SimpleIdentifier prefixNode = directive.prefix;
|
| - if (prefixNode != null) {
|
| - importElement.prefixOffset = prefixNode.offset;
|
| - String prefixName = prefixNode.name;
|
| - PrefixElementImpl prefix = nameToPrefixMap[prefixName];
|
| - if (prefix == null) {
|
| - prefix = new PrefixElementImpl.forNode(prefixNode);
|
| - nameToPrefixMap[prefixName] = prefix;
|
| - }
|
| - importElement.prefix = prefix;
|
| - prefixNode.staticElement = prefix;
|
| - }
|
| - directive.element = importElement;
|
| - imports.add(importElement);
|
| - if (analysisContext.computeKindOf(importedSource) !=
|
| - SourceKind.LIBRARY) {
|
| - ErrorCode errorCode = (importElement.isDeferred
|
| - ? StaticWarningCode.IMPORT_OF_NON_LIBRARY
|
| - : CompileTimeErrorCode.IMPORT_OF_NON_LIBRARY);
|
| - _errorListener.onError(new AnalysisError(library.librarySource,
|
| - uriLiteral.offset, uriLiteral.length, errorCode,
|
| - [uriLiteral.toSource()]));
|
| - }
|
| - }
|
| - }
|
| - } else if (directive is ExportDirective) {
|
| - ExportDirective exportDirective = directive;
|
| - Source exportedSource = exportDirective.source;
|
| - if (exportedSource != null &&
|
| - analysisContext.exists(exportedSource)) {
|
| - // The exported source will be null if the URI in the export
|
| - // directive was invalid.
|
| - ResolvableLibrary exportedLibrary = _libraryMap[exportedSource];
|
| - if (exportedLibrary != null) {
|
| - ExportElementImpl exportElement =
|
| - new ExportElementImpl(directive.offset);
|
| - StringLiteral uriLiteral = exportDirective.uri;
|
| - if (uriLiteral != null) {
|
| - exportElement.uriOffset = uriLiteral.offset;
|
| - exportElement.uriEnd = uriLiteral.end;
|
| - }
|
| - exportElement.uri = exportDirective.uriContent;
|
| - exportElement.combinators = _buildCombinators(exportDirective);
|
| - LibraryElement exportedLibraryElement =
|
| - exportedLibrary.libraryElement;
|
| - if (exportedLibraryElement != null) {
|
| - exportElement.exportedLibrary = exportedLibraryElement;
|
| - }
|
| - directive.element = exportElement;
|
| - exports.add(exportElement);
|
| - if (analysisContext.computeKindOf(exportedSource) !=
|
| - SourceKind.LIBRARY) {
|
| - _errorListener.onError(new AnalysisError(library.librarySource,
|
| - uriLiteral.offset, uriLiteral.length,
|
| - CompileTimeErrorCode.EXPORT_OF_NON_LIBRARY,
|
| - [uriLiteral.toSource()]));
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - Source librarySource = library.librarySource;
|
| - if (!library.explicitlyImportsCore &&
|
| - _coreLibrarySource != librarySource) {
|
| - ImportElementImpl importElement = new ImportElementImpl(-1);
|
| - importElement.importedLibrary = _coreLibrary.libraryElement;
|
| - importElement.synthetic = true;
|
| - imports.add(importElement);
|
| - }
|
| - LibraryElementImpl libraryElement = library.libraryElement;
|
| - libraryElement.imports = imports;
|
| - libraryElement.exports = exports;
|
| - if (libraryElement.entryPoint == null) {
|
| - Namespace namespace = new NamespaceBuilder()
|
| - .createExportNamespaceForLibrary(libraryElement);
|
| - Element element = namespace.get(FunctionElement.MAIN_FUNCTION_NAME);
|
| - if (element is FunctionElement) {
|
| - libraryElement.entryPoint = element;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Build element models for all of the libraries in the current cycle.
|
| - *
|
| - * @throws AnalysisException if any of the element models cannot be built
|
| - */
|
| - void _buildElementModels() {
|
| - for (ResolvableLibrary library in _librariesInCycle) {
|
| - LibraryElementBuilder builder =
|
| - new LibraryElementBuilder(analysisContext, errorListener);
|
| - builder.buildLibrary2(library);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Build the members in enum declarations. This cannot be done while building the rest of the
|
| - * element model because it depends on being able to access core types, which cannot happen until
|
| - * the rest of the element model has been built (when resolving the core library).
|
| - *
|
| - * @throws AnalysisException if any of the enum members could not be built
|
| - */
|
| - void _buildEnumMembers() {
|
| - PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| - for (ResolvableLibrary library in _librariesInCycle) {
|
| - for (Source source in library.compilationUnitSources) {
|
| - EnumMemberBuilder builder = new EnumMemberBuilder(_typeProvider);
|
| - library.getAST(source).accept(builder);
|
| - }
|
| - }
|
| - });
|
| - }
|
| -
|
| - HashMap<Source, ResolvableLibrary> _buildLibraryMap() {
|
| - HashMap<Source, ResolvableLibrary> libraryMap =
|
| - new HashMap<Source, ResolvableLibrary>();
|
| - int libraryCount = _librariesInCycle.length;
|
| - for (int i = 0; i < libraryCount; i++) {
|
| - ResolvableLibrary library = _librariesInCycle[i];
|
| - library.errorListener = _errorListener;
|
| - libraryMap[library.librarySource] = library;
|
| - List<ResolvableLibrary> dependencies = library.importsAndExports;
|
| - int dependencyCount = dependencies.length;
|
| - for (int j = 0; j < dependencyCount; j++) {
|
| - ResolvableLibrary dependency = dependencies[j];
|
| - //dependency.setErrorListener(errorListener);
|
| - libraryMap[dependency.librarySource] = dependency;
|
| - }
|
| - }
|
| - return libraryMap;
|
| - }
|
| -
|
| - /**
|
| - * Resolve the type hierarchy across all of the types declared in the libraries in the current
|
| - * cycle.
|
| - *
|
| - * @throws AnalysisException if any of the type hierarchies could not be resolved
|
| - */
|
| - void _buildTypeHierarchies() {
|
| - PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| - for (ResolvableLibrary library in _librariesInCycle) {
|
| - for (ResolvableCompilationUnit unit
|
| - in library.resolvableCompilationUnits) {
|
| - Source source = unit.source;
|
| - CompilationUnit ast = unit.compilationUnit;
|
| - TypeResolverVisitor visitor = new TypeResolverVisitor(
|
| - library.libraryElement, source, _typeProvider,
|
| - library.libraryScope.errorListener,
|
| - nameScope: library.libraryScope);
|
| - ast.accept(visitor);
|
| - }
|
| - }
|
| - });
|
| - }
|
| -
|
| - /**
|
| - * Return an array containing the lexical identifiers associated with the nodes in the given list.
|
| - *
|
| - * @param names the AST nodes representing the identifiers
|
| - * @return the lexical identifiers associated with the nodes in the list
|
| - */
|
| - List<String> _getIdentifiers(NodeList<SimpleIdentifier> names) {
|
| - int count = names.length;
|
| - List<String> identifiers = new List<String>(count);
|
| - for (int i = 0; i < count; i++) {
|
| - identifiers[i] = names[i].name;
|
| - }
|
| - return identifiers;
|
| - }
|
| -
|
| - /**
|
| - * Compute a value for all of the constants in the libraries being analyzed.
|
| - */
|
| - void _performConstantEvaluation() {
|
| - PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| - ConstantValueComputer computer = new ConstantValueComputer(
|
| - analysisContext, _typeProvider, analysisContext.declaredVariables);
|
| - for (ResolvableLibrary library in _librariesInCycle) {
|
| - for (ResolvableCompilationUnit unit
|
| - in library.resolvableCompilationUnits) {
|
| - CompilationUnit ast = unit.compilationUnit;
|
| - if (ast != null) {
|
| - computer.add(ast, unit.source, library.librarySource);
|
| - }
|
| - }
|
| - }
|
| - computer.computeValues();
|
| - // As a temporary workaround for issue 21572, run ConstantVerifier now.
|
| - // TODO(paulberry): remove this workaround once issue 21572 is fixed.
|
| - for (ResolvableLibrary library in _librariesInCycle) {
|
| - for (ResolvableCompilationUnit unit
|
| - in library.resolvableCompilationUnits) {
|
| - CompilationUnit ast = unit.compilationUnit;
|
| - ErrorReporter errorReporter =
|
| - new ErrorReporter(_errorListener, unit.source);
|
| - ConstantVerifier constantVerifier = new ConstantVerifier(
|
| - errorReporter, library.libraryElement, _typeProvider,
|
| - analysisContext.declaredVariables);
|
| - ast.accept(constantVerifier);
|
| - }
|
| - }
|
| - });
|
| - }
|
| -
|
| - /**
|
| - * Resolve the identifiers and perform type analysis in the libraries in the current cycle.
|
| - *
|
| - * @throws AnalysisException if any of the identifiers could not be resolved or if any of the
|
| - * libraries could not have their types analyzed
|
| - */
|
| - void _resolveReferencesAndTypes() {
|
| - for (ResolvableLibrary library in _librariesInCycle) {
|
| - _resolveReferencesAndTypesInLibrary(library);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Resolve the identifiers and perform type analysis in the given library.
|
| - *
|
| - * @param library the library to be resolved
|
| - * @throws AnalysisException if any of the identifiers could not be resolved or if the types in
|
| - * the library cannot be analyzed
|
| - */
|
| - void _resolveReferencesAndTypesInLibrary(ResolvableLibrary library) {
|
| - PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| - for (ResolvableCompilationUnit unit
|
| - in library.resolvableCompilationUnits) {
|
| - Source source = unit.source;
|
| - CompilationUnit ast = unit.compilationUnit;
|
| - ast.accept(new VariableResolverVisitor(library.libraryElement, source,
|
| - _typeProvider, library.libraryScope.errorListener,
|
| - nameScope: library.libraryScope));
|
| - ResolverVisitor visitor = new ResolverVisitor(library.libraryElement,
|
| - source, _typeProvider, library._libraryScope.errorListener,
|
| - nameScope: library._libraryScope,
|
| - inheritanceManager: library.inheritanceManager);
|
| - ast.accept(visitor);
|
| - }
|
| - });
|
| - }
|
| -
|
| - /**
|
| - * Report that the async library could not be resolved in the given
|
| - * [analysisContext] and throw an exception. [asyncLibrarySource] is the source
|
| - * representing the async library.
|
| - */
|
| - static void missingAsyncLibrary(
|
| - AnalysisContext analysisContext, Source asyncLibrarySource) {
|
| - throw new AnalysisException("Could not resolve dart:async");
|
| - }
|
| -
|
| - /**
|
| - * Report that the core library could not be resolved in the given analysis context and throw an
|
| - * exception.
|
| - *
|
| - * @param analysisContext the analysis context in which the failure occurred
|
| - * @param coreLibrarySource the source representing the core library
|
| - * @throws AnalysisException always
|
| - */
|
| - static void missingCoreLibrary(
|
| - AnalysisContext analysisContext, Source coreLibrarySource) {
|
| - throw new AnalysisException("Could not resolve dart:core");
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `TypeAliasInfo` hold information about a [TypeAlias].
|
| - */
|
| -class LibraryResolver2_TypeAliasInfo {
|
| - final ResolvableLibrary _library;
|
| -
|
| - final Source _source;
|
| -
|
| - final FunctionTypeAlias _typeAlias;
|
| -
|
| - /**
|
| - * Initialize a newly created information holder with the given information.
|
| - *
|
| - * @param library the library containing the type alias
|
| - * @param source the source of the file containing the type alias
|
| - * @param typeAlias the type alias being remembered
|
| - */
|
| - LibraryResolver2_TypeAliasInfo(this._library, this._source, this._typeAlias);
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `TypeAliasInfo` hold information about a [TypeAlias].
|
| - */
|
| -class LibraryResolver_TypeAliasInfo {
|
| - final Library _library;
|
| -
|
| - final Source _source;
|
| -
|
| - final FunctionTypeAlias _typeAlias;
|
| -
|
| - /**
|
| - * Initialize a newly created information holder with the given information.
|
| - *
|
| - * @param library the library containing the type alias
|
| - * @param source the source of the file containing the type alias
|
| - * @param typeAlias the type alias being remembered
|
| - */
|
| - LibraryResolver_TypeAliasInfo(this._library, this._source, this._typeAlias);
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `LibraryScope` implement a scope containing all of the names defined
|
| - * in a given library.
|
| - */
|
| -class LibraryScope extends EnclosedScope {
|
| - /**
|
| - * Initialize a newly created scope representing the names defined in the given library.
|
| - *
|
| - * @param definingLibrary the element representing the library represented by this scope
|
| - * @param errorListener the listener that is to be informed when an error is encountered
|
| - */
|
| - LibraryScope(
|
| - LibraryElement definingLibrary, AnalysisErrorListener errorListener)
|
| - : super(new LibraryImportScope(definingLibrary, errorListener)) {
|
| - _defineTopLevelNames(definingLibrary);
|
| - }
|
| -
|
| - @override
|
| - AnalysisError getErrorForDuplicate(Element existing, Element duplicate) {
|
| - if (existing is PrefixElement) {
|
| - // TODO(scheglov) consider providing actual 'nameOffset' from the
|
| - // synthetic accessor
|
| - int offset = duplicate.nameOffset;
|
| - if (duplicate is PropertyAccessorElement) {
|
| - PropertyAccessorElement accessor = duplicate;
|
| - if (accessor.isSynthetic) {
|
| - offset = accessor.variable.nameOffset;
|
| - }
|
| - }
|
| - return new AnalysisError(duplicate.source, offset,
|
| - duplicate.displayName.length,
|
| - CompileTimeErrorCode.PREFIX_COLLIDES_WITH_TOP_LEVEL_MEMBER,
|
| - [existing.displayName]);
|
| - }
|
| - return super.getErrorForDuplicate(existing, duplicate);
|
| - }
|
| -
|
| - /**
|
| - * Add to this scope all of the public top-level names that are defined in the given compilation
|
| - * unit.
|
| - *
|
| - * @param compilationUnit the compilation unit defining the top-level names to be added to this
|
| - * scope
|
| - */
|
| - void _defineLocalNames(CompilationUnitElement compilationUnit) {
|
| - for (PropertyAccessorElement element in compilationUnit.accessors) {
|
| - define(element);
|
| - }
|
| - for (ClassElement element in compilationUnit.enums) {
|
| - define(element);
|
| - }
|
| - for (FunctionElement element in compilationUnit.functions) {
|
| - define(element);
|
| - }
|
| - for (FunctionTypeAliasElement element
|
| - in compilationUnit.functionTypeAliases) {
|
| - define(element);
|
| - }
|
| - for (ClassElement element in compilationUnit.types) {
|
| - define(element);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Add to this scope all of the names that are explicitly defined in the given library.
|
| - *
|
| - * @param definingLibrary the element representing the library that defines the names in this
|
| - * scope
|
| - */
|
| - void _defineTopLevelNames(LibraryElement definingLibrary) {
|
| - for (PrefixElement prefix in definingLibrary.prefixes) {
|
| - define(prefix);
|
| - }
|
| - _defineLocalNames(definingLibrary.definingCompilationUnit);
|
| - for (CompilationUnitElement compilationUnit in definingLibrary.parts) {
|
| - _defineLocalNames(compilationUnit);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * This class is used to replace uses of `HashMap<String, ExecutableElement>`
|
| - * which are not as performant as this class.
|
| - */
|
| -class MemberMap {
|
| - /**
|
| - * The current size of this map.
|
| - */
|
| - int _size = 0;
|
| -
|
| - /**
|
| - * The array of keys.
|
| - */
|
| - List<String> _keys;
|
| -
|
| - /**
|
| - * The array of ExecutableElement values.
|
| - */
|
| - List<ExecutableElement> _values;
|
| -
|
| - /**
|
| - * Initialize a newly created member map to have the given [initialCapacity].
|
| - * The map will grow if needed.
|
| - */
|
| - MemberMap([int initialCapacity = 10]) {
|
| - _initArrays(initialCapacity);
|
| - }
|
| -
|
| - /**
|
| - * This constructor takes an initial capacity of the map.
|
| - *
|
| - * @param initialCapacity the initial capacity
|
| - */
|
| - @deprecated // Use new MemberMap(initialCapacity)
|
| - MemberMap.con1(int initialCapacity) {
|
| - _initArrays(initialCapacity);
|
| - }
|
| -
|
| - /**
|
| - * Copy constructor.
|
| - */
|
| - @deprecated // Use new MemberMap.from(memberMap)
|
| - MemberMap.con2(MemberMap memberMap) {
|
| - _initArrays(memberMap._size + 5);
|
| - for (int i = 0; i < memberMap._size; i++) {
|
| - _keys[i] = memberMap._keys[i];
|
| - _values[i] = memberMap._values[i];
|
| - }
|
| - _size = memberMap._size;
|
| - }
|
| -
|
| - /**
|
| - * Initialize a newly created member map to contain the same members as the
|
| - * given [memberMap].
|
| - */
|
| - MemberMap.from(MemberMap memberMap) {
|
| - _initArrays(memberMap._size + 5);
|
| - for (int i = 0; i < memberMap._size; i++) {
|
| - _keys[i] = memberMap._keys[i];
|
| - _values[i] = memberMap._values[i];
|
| - }
|
| - _size = memberMap._size;
|
| - }
|
| -
|
| - /**
|
| - * The size of the map.
|
| - *
|
| - * @return the size of the map.
|
| - */
|
| - int get size => _size;
|
| -
|
| - /**
|
| - * Given some key, return the ExecutableElement value from the map, if the key does not exist in
|
| - * the map, `null` is returned.
|
| - *
|
| - * @param key some key to look up in the map
|
| - * @return the associated ExecutableElement value from the map, if the key does not exist in the
|
| - * map, `null` is returned
|
| - */
|
| - ExecutableElement get(String key) {
|
| - for (int i = 0; i < _size; i++) {
|
| - if (_keys[i] != null && _keys[i] == key) {
|
| - return _values[i];
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Get and return the key at the specified location. If the key/value pair has been removed from
|
| - * the set, then `null` is returned.
|
| - *
|
| - * @param i some non-zero value less than size
|
| - * @return the key at the passed index
|
| - * @throw ArrayIndexOutOfBoundsException this exception is thrown if the passed index is less than
|
| - * zero or greater than or equal to the capacity of the arrays
|
| - */
|
| - String getKey(int i) => _keys[i];
|
| -
|
| - /**
|
| - * Get and return the ExecutableElement at the specified location. If the key/value pair has been
|
| - * removed from the set, then then `null` is returned.
|
| - *
|
| - * @param i some non-zero value less than size
|
| - * @return the key at the passed index
|
| - * @throw ArrayIndexOutOfBoundsException this exception is thrown if the passed index is less than
|
| - * zero or greater than or equal to the capacity of the arrays
|
| - */
|
| - ExecutableElement getValue(int i) => _values[i];
|
| -
|
| - /**
|
| - * Given some key/value pair, store the pair in the map. If the key exists already, then the new
|
| - * value overrides the old value.
|
| - *
|
| - * @param key the key to store in the map
|
| - * @param value the ExecutableElement value to store in the map
|
| - */
|
| - void put(String key, ExecutableElement value) {
|
| - // If we already have a value with this key, override the value
|
| - for (int i = 0; i < _size; i++) {
|
| - if (_keys[i] != null && _keys[i] == key) {
|
| - _values[i] = value;
|
| - return;
|
| - }
|
| - }
|
| - // If needed, double the size of our arrays and copy values over in both
|
| - // arrays
|
| - if (_size == _keys.length) {
|
| - int newArrayLength = _size * 2;
|
| - List<String> keys_new_array = new List<String>(newArrayLength);
|
| - List<ExecutableElement> values_new_array =
|
| - new List<ExecutableElement>(newArrayLength);
|
| - for (int i = 0; i < _size; i++) {
|
| - keys_new_array[i] = _keys[i];
|
| - }
|
| - for (int i = 0; i < _size; i++) {
|
| - values_new_array[i] = _values[i];
|
| - }
|
| - _keys = keys_new_array;
|
| - _values = values_new_array;
|
| - }
|
| - // Put new value at end of array
|
| - _keys[_size] = key;
|
| - _values[_size] = value;
|
| - _size++;
|
| - }
|
| -
|
| - /**
|
| - * Given some [String] key, this method replaces the associated key and value pair with
|
| - * `null`. The size is not decremented with this call, instead it is expected that the users
|
| - * check for `null`.
|
| - *
|
| - * @param key the key of the key/value pair to remove from the map
|
| - */
|
| - void remove(String key) {
|
| - for (int i = 0; i < _size; i++) {
|
| - if (_keys[i] == key) {
|
| - _keys[i] = null;
|
| - _values[i] = null;
|
| - return;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Sets the ExecutableElement at the specified location.
|
| - *
|
| - * @param i some non-zero value less than size
|
| - * @param value the ExecutableElement value to store in the map
|
| - */
|
| - void setValue(int i, ExecutableElement value) {
|
| - _values[i] = value;
|
| - }
|
| -
|
| - /**
|
| - * Initializes [keys] and [values].
|
| - */
|
| - void _initArrays(int initialCapacity) {
|
| - _keys = new List<String>(initialCapacity);
|
| - _values = new List<ExecutableElement>(initialCapacity);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `Namespace` implement a mapping of identifiers to the elements
|
| - * represented by those identifiers. Namespaces are the building blocks for scopes.
|
| - */
|
| -class Namespace {
|
| - /**
|
| - * An empty namespace.
|
| - */
|
| - static Namespace EMPTY = new Namespace(new HashMap<String, Element>());
|
| -
|
| - /**
|
| - * A table mapping names that are defined in this namespace to the element representing the thing
|
| - * declared with that name.
|
| - */
|
| - final HashMap<String, Element> _definedNames;
|
| -
|
| - /**
|
| - * Initialize a newly created namespace to have the given defined names.
|
| - *
|
| - * @param definedNames the mapping from names that are defined in this namespace to the
|
| - * corresponding elements
|
| - */
|
| - Namespace(this._definedNames);
|
| -
|
| - /**
|
| - * Return a table containing the same mappings as those defined by this namespace.
|
| - *
|
| - * @return a table containing the same mappings as those defined by this namespace
|
| - */
|
| - Map<String, Element> get definedNames =>
|
| - new HashMap<String, Element>.from(_definedNames);
|
| -
|
| - /**
|
| - * Return the element in this namespace that is available to the containing scope using the given
|
| - * name.
|
| - *
|
| - * @param name the name used to reference the
|
| - * @return the element represented by the given identifier
|
| - */
|
| - Element get(String name) => _definedNames[name];
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `NamespaceBuilder` are used to build a `Namespace`. Namespace
|
| - * builders are thread-safe and re-usable.
|
| - */
|
| -class NamespaceBuilder {
|
| - /**
|
| - * Create a namespace representing the export namespace of the given [ExportElement].
|
| - *
|
| - * @param element the export element whose export namespace is to be created
|
| - * @return the export namespace that was created
|
| - */
|
| - Namespace createExportNamespaceForDirective(ExportElement element) {
|
| - LibraryElement exportedLibrary = element.exportedLibrary;
|
| - if (exportedLibrary == null) {
|
| - //
|
| - // The exported library will be null if the URI does not reference a valid
|
| - // library.
|
| - //
|
| - return Namespace.EMPTY;
|
| - }
|
| - HashMap<String, Element> definedNames =
|
| - _createExportMapping(exportedLibrary, new HashSet<LibraryElement>());
|
| - definedNames = _applyCombinators(definedNames, element.combinators);
|
| - return new Namespace(definedNames);
|
| - }
|
| -
|
| - /**
|
| - * Create a namespace representing the export namespace of the given library.
|
| - *
|
| - * @param library the library whose export namespace is to be created
|
| - * @return the export namespace that was created
|
| - */
|
| - Namespace createExportNamespaceForLibrary(LibraryElement library) =>
|
| - new Namespace(
|
| - _createExportMapping(library, new HashSet<LibraryElement>()));
|
| -
|
| - /**
|
| - * Create a namespace representing the import namespace of the given library.
|
| - *
|
| - * @param library the library whose import namespace is to be created
|
| - * @return the import namespace that was created
|
| - */
|
| - Namespace createImportNamespaceForDirective(ImportElement element) {
|
| - LibraryElement importedLibrary = element.importedLibrary;
|
| - if (importedLibrary == null) {
|
| - //
|
| - // The imported library will be null if the URI does not reference a valid
|
| - // library.
|
| - //
|
| - return Namespace.EMPTY;
|
| - }
|
| - HashMap<String, Element> definedNames =
|
| - _createExportMapping(importedLibrary, new HashSet<LibraryElement>());
|
| - definedNames = _applyCombinators(definedNames, element.combinators);
|
| - definedNames = _applyPrefix(definedNames, element.prefix);
|
| - return new Namespace(definedNames);
|
| - }
|
| -
|
| - /**
|
| - * Create a namespace representing the public namespace of the given library.
|
| - *
|
| - * @param library the library whose public namespace is to be created
|
| - * @return the public namespace that was created
|
| - */
|
| - Namespace createPublicNamespaceForLibrary(LibraryElement library) {
|
| - HashMap<String, Element> definedNames = new HashMap<String, Element>();
|
| - _addPublicNames(definedNames, library.definingCompilationUnit);
|
| - for (CompilationUnitElement compilationUnit in library.parts) {
|
| - _addPublicNames(definedNames, compilationUnit);
|
| - }
|
| - return new Namespace(definedNames);
|
| - }
|
| -
|
| - /**
|
| - * Add all of the names in the given namespace to the given mapping table.
|
| - *
|
| - * @param definedNames the mapping table to which the names in the given namespace are to be added
|
| - * @param namespace the namespace containing the names to be added to this namespace
|
| - */
|
| - void _addAllFromNamespace(
|
| - Map<String, Element> definedNames, Namespace namespace) {
|
| - if (namespace != null) {
|
| - definedNames.addAll(namespace.definedNames);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Add the given element to the given mapping table if it has a publicly visible name.
|
| - *
|
| - * @param definedNames the mapping table to which the public name is to be added
|
| - * @param element the element to be added
|
| - */
|
| - void _addIfPublic(Map<String, Element> definedNames, Element element) {
|
| - String name = element.name;
|
| - if (name != null && !Scope.isPrivateName(name)) {
|
| - definedNames[name] = element;
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Add to the given mapping table all of the public top-level names that are defined in the given
|
| - * compilation unit.
|
| - *
|
| - * @param definedNames the mapping table to which the public names are to be added
|
| - * @param compilationUnit the compilation unit defining the top-level names to be added to this
|
| - * namespace
|
| - */
|
| - void _addPublicNames(Map<String, Element> definedNames,
|
| - CompilationUnitElement compilationUnit) {
|
| - for (PropertyAccessorElement element in compilationUnit.accessors) {
|
| - _addIfPublic(definedNames, element);
|
| - }
|
| - for (ClassElement element in compilationUnit.enums) {
|
| - _addIfPublic(definedNames, element);
|
| - }
|
| - for (FunctionElement element in compilationUnit.functions) {
|
| - _addIfPublic(definedNames, element);
|
| - }
|
| - for (FunctionTypeAliasElement element
|
| - in compilationUnit.functionTypeAliases) {
|
| - _addIfPublic(definedNames, element);
|
| - }
|
| - for (ClassElement element in compilationUnit.types) {
|
| - _addIfPublic(definedNames, element);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Apply the given combinators to all of the names in the given mapping table.
|
| - *
|
| - * @param definedNames the mapping table to which the namespace operations are to be applied
|
| - * @param combinators the combinators to be applied
|
| - */
|
| - HashMap<String, Element> _applyCombinators(
|
| - HashMap<String, Element> definedNames,
|
| - List<NamespaceCombinator> combinators) {
|
| - for (NamespaceCombinator combinator in combinators) {
|
| - if (combinator is HideElementCombinator) {
|
| - _hide(definedNames, combinator.hiddenNames);
|
| - } else if (combinator is ShowElementCombinator) {
|
| - definedNames = _show(definedNames, combinator.shownNames);
|
| - } else {
|
| - // Internal error.
|
| - AnalysisEngine.instance.logger
|
| - .logError("Unknown type of combinator: ${combinator.runtimeType}");
|
| - }
|
| - }
|
| - return definedNames;
|
| - }
|
| -
|
| - /**
|
| - * Apply the given prefix to all of the names in the table of defined names.
|
| - *
|
| - * @param definedNames the names that were defined before this operation
|
| - * @param prefixElement the element defining the prefix to be added to the names
|
| - */
|
| - HashMap<String, Element> _applyPrefix(
|
| - HashMap<String, Element> definedNames, PrefixElement prefixElement) {
|
| - if (prefixElement != null) {
|
| - String prefix = prefixElement.name;
|
| - HashMap<String, Element> newNames = new HashMap<String, Element>();
|
| - definedNames.forEach((String name, Element element) {
|
| - newNames["$prefix.$name"] = element;
|
| - });
|
| - return newNames;
|
| - } else {
|
| - return definedNames;
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Create a mapping table representing the export namespace of the given library.
|
| - *
|
| - * @param library the library whose public namespace is to be created
|
| - * @param visitedElements a set of libraries that do not need to be visited when processing the
|
| - * export directives of the given library because all of the names defined by them will
|
| - * be added by another library
|
| - * @return the mapping table that was created
|
| - */
|
| - HashMap<String, Element> _createExportMapping(
|
| - LibraryElement library, HashSet<LibraryElement> visitedElements) {
|
| - // Check if the export namespace has been already computed.
|
| - {
|
| - Namespace exportNamespace = library.exportNamespace;
|
| - if (exportNamespace != null) {
|
| - return exportNamespace.definedNames;
|
| - }
|
| - }
|
| - // TODO(scheglov) Remove this after switching to the new task model.
|
| - visitedElements.add(library);
|
| - try {
|
| - HashMap<String, Element> definedNames = new HashMap<String, Element>();
|
| - for (ExportElement element in library.exports) {
|
| - LibraryElement exportedLibrary = element.exportedLibrary;
|
| - if (exportedLibrary != null &&
|
| - !visitedElements.contains(exportedLibrary)) {
|
| - //
|
| - // The exported library will be null if the URI does not reference a
|
| - // valid library.
|
| - //
|
| - HashMap<String, Element> exportedNames =
|
| - _createExportMapping(exportedLibrary, visitedElements);
|
| - exportedNames = _applyCombinators(exportedNames, element.combinators);
|
| - definedNames.addAll(exportedNames);
|
| - }
|
| - }
|
| - _addAllFromNamespace(definedNames,
|
| - (library.context as InternalAnalysisContext)
|
| - .getPublicNamespace(library));
|
| - return definedNames;
|
| - } finally {
|
| - visitedElements.remove(library);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Hide all of the given names by removing them from the given collection of defined names.
|
| - *
|
| - * @param definedNames the names that were defined before this operation
|
| - * @param hiddenNames the names to be hidden
|
| - */
|
| - void _hide(HashMap<String, Element> definedNames, List<String> hiddenNames) {
|
| - for (String name in hiddenNames) {
|
| - definedNames.remove(name);
|
| - definedNames.remove("$name=");
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Show only the given names by removing all other names from the given collection of defined
|
| - * names.
|
| - *
|
| - * @param definedNames the names that were defined before this operation
|
| - * @param shownNames the names to be shown
|
| - */
|
| - HashMap<String, Element> _show(
|
| - HashMap<String, Element> definedNames, List<String> shownNames) {
|
| - HashMap<String, Element> newNames = new HashMap<String, Element>();
|
| - for (String name in shownNames) {
|
| - Element element = definedNames[name];
|
| - if (element != null) {
|
| - newNames[name] = element;
|
| - }
|
| - String setterName = "$name=";
|
| - element = definedNames[setterName];
|
| - if (element != null) {
|
| - newNames[setterName] = element;
|
| - }
|
| - }
|
| - return newNames;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `OverrideVerifier` visit all of the declarations in a compilation
|
| - * unit to verify that if they have an override annotation it is being used correctly.
|
| - */
|
| -class OverrideVerifier extends RecursiveAstVisitor<Object> {
|
| - /**
|
| - * The error reporter used to report errors.
|
| - */
|
| - final ErrorReporter _errorReporter;
|
| -
|
| - /**
|
| - * The inheritance manager used to find overridden methods.
|
| - */
|
| - final InheritanceManager _manager;
|
| -
|
| - /**
|
| - * Initialize a newly created verifier to look for inappropriate uses of the override annotation.
|
| - *
|
| - * @param errorReporter the error reporter used to report errors
|
| - * @param manager the inheritance manager used to find overridden methods
|
| - */
|
| - OverrideVerifier(this._errorReporter, this._manager);
|
| -
|
| - @override
|
| - Object visitMethodDeclaration(MethodDeclaration node) {
|
| - ExecutableElement element = node.element;
|
| - if (_isOverride(element)) {
|
| - if (_getOverriddenMember(element) == null) {
|
| - if (element is MethodElement) {
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.OVERRIDE_ON_NON_OVERRIDING_METHOD, node.name);
|
| - } else if (element is PropertyAccessorElement) {
|
| - if (element.isGetter) {
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.OVERRIDE_ON_NON_OVERRIDING_GETTER, node.name);
|
| - } else {
|
| - _errorReporter.reportErrorForNode(
|
| - HintCode.OVERRIDE_ON_NON_OVERRIDING_SETTER, node.name);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - return super.visitMethodDeclaration(node);
|
| - }
|
| -
|
| - /**
|
| - * Return the member that overrides the given member.
|
| - *
|
| - * @param member the member that overrides the returned member
|
| - * @return the member that overrides the given member
|
| - */
|
| - ExecutableElement _getOverriddenMember(ExecutableElement member) {
|
| - LibraryElement library = member.library;
|
| - if (library == null) {
|
| - return null;
|
| - }
|
| - ClassElement classElement =
|
| - member.getAncestor((element) => element is ClassElement);
|
| - if (classElement == null) {
|
| - return null;
|
| - }
|
| - return _manager.lookupInheritance(classElement, member.name);
|
| - }
|
| -
|
| - /**
|
| - * Return `true` if the given element has an override annotation associated with it.
|
| - *
|
| - * @param element the element being tested
|
| - * @return `true` if the element has an override annotation associated with it
|
| - */
|
| - bool _isOverride(Element element) => element != null && element.isOverride;
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `PubVerifier` traverse an AST structure looking for deviations from
|
| - * pub best practices.
|
| - */
|
| -class PubVerifier extends RecursiveAstVisitor<Object> {
|
| -// static String _PUBSPEC_YAML = "pubspec.yaml";
|
| -
|
| - /**
|
| - * The analysis context containing the sources to be analyzed
|
| - */
|
| - final AnalysisContext _context;
|
| -
|
| - /**
|
| - * The error reporter by which errors will be reported.
|
| - */
|
| - final ErrorReporter _errorReporter;
|
| -
|
| - PubVerifier(this._context, this._errorReporter);
|
| -
|
| - @override
|
| - Object visitImportDirective(ImportDirective directive) {
|
| - return null;
|
| - }
|
| -
|
| -// /**
|
| -// * This verifies that the passed file import directive is not contained in a source inside a
|
| -// * package "lib" directory hierarchy referencing a source outside that package "lib" directory
|
| -// * hierarchy.
|
| -// *
|
| -// * @param uriLiteral the import URL (not `null`)
|
| -// * @param path the file path being verified (not `null`)
|
| -// * @return `true` if and only if an error code is generated on the passed node
|
| -// * See [PubSuggestionCode.FILE_IMPORT_INSIDE_LIB_REFERENCES_FILE_OUTSIDE].
|
| -// */
|
| -// bool
|
| -// _checkForFileImportInsideLibReferencesFileOutside(StringLiteral uriLiteral,
|
| -// String path) {
|
| -// Source source = _getSource(uriLiteral);
|
| -// String fullName = _getSourceFullName(source);
|
| -// if (fullName != null) {
|
| -// int pathIndex = 0;
|
| -// int fullNameIndex = fullName.length;
|
| -// while (pathIndex < path.length &&
|
| -// StringUtilities.startsWith3(path, pathIndex, 0x2E, 0x2E, 0x2F)) {
|
| -// fullNameIndex = JavaString.lastIndexOf(fullName, '/', fullNameIndex);
|
| -// if (fullNameIndex < 4) {
|
| -// return false;
|
| -// }
|
| -// // Check for "/lib" at a specified place in the fullName
|
| -// if (StringUtilities.startsWith4(
|
| -// fullName,
|
| -// fullNameIndex - 4,
|
| -// 0x2F,
|
| -// 0x6C,
|
| -// 0x69,
|
| -// 0x62)) {
|
| -// String relativePubspecPath =
|
| -// path.substring(0, pathIndex + 3) +
|
| -// _PUBSPEC_YAML;
|
| -// Source pubspecSource =
|
| -// _context.sourceFactory.resolveUri(source, relativePubspecPath);
|
| -// if (_context.exists(pubspecSource)) {
|
| -// // Files inside the lib directory hierarchy should not reference
|
| -// // files outside
|
| -// _errorReporter.reportErrorForNode(
|
| -// HintCode.FILE_IMPORT_INSIDE_LIB_REFERENCES_FILE_OUTSIDE,
|
| -// uriLiteral);
|
| -// }
|
| -// return true;
|
| -// }
|
| -// pathIndex += 3;
|
| -// }
|
| -// }
|
| -// return false;
|
| -// }
|
| -
|
| -// /**
|
| -// * This verifies that the passed file import directive is not contained in a source outside a
|
| -// * package "lib" directory hierarchy referencing a source inside that package "lib" directory
|
| -// * hierarchy.
|
| -// *
|
| -// * @param uriLiteral the import URL (not `null`)
|
| -// * @param path the file path being verified (not `null`)
|
| -// * @return `true` if and only if an error code is generated on the passed node
|
| -// * See [PubSuggestionCode.FILE_IMPORT_OUTSIDE_LIB_REFERENCES_FILE_INSIDE].
|
| -// */
|
| -// bool
|
| -// _checkForFileImportOutsideLibReferencesFileInside(StringLiteral uriLiteral,
|
| -// String path) {
|
| -// if (StringUtilities.startsWith4(path, 0, 0x6C, 0x69, 0x62, 0x2F)) {
|
| -// if (_checkForFileImportOutsideLibReferencesFileInsideAtIndex(
|
| -// uriLiteral,
|
| -// path,
|
| -// 0)) {
|
| -// return true;
|
| -// }
|
| -// }
|
| -// int pathIndex =
|
| -// StringUtilities.indexOf5(path, 0, 0x2F, 0x6C, 0x69, 0x62, 0x2F);
|
| -// while (pathIndex != -1) {
|
| -// if (_checkForFileImportOutsideLibReferencesFileInsideAtIndex(
|
| -// uriLiteral,
|
| -// path,
|
| -// pathIndex + 1)) {
|
| -// return true;
|
| -// }
|
| -// pathIndex =
|
| -// StringUtilities.indexOf5(path, pathIndex + 4, 0x2F, 0x6C, 0x69, 0x62, 0x2F);
|
| -// }
|
| -// return false;
|
| -// }
|
| -
|
| -// bool
|
| -// _checkForFileImportOutsideLibReferencesFileInsideAtIndex(StringLiteral uriLiteral,
|
| -// String path, int pathIndex) {
|
| -// Source source = _getSource(uriLiteral);
|
| -// String relativePubspecPath = path.substring(0, pathIndex) + _PUBSPEC_YAML;
|
| -// Source pubspecSource =
|
| -// _context.sourceFactory.resolveUri(source, relativePubspecPath);
|
| -// if (!_context.exists(pubspecSource)) {
|
| -// return false;
|
| -// }
|
| -// String fullName = _getSourceFullName(source);
|
| -// if (fullName != null) {
|
| -// if (StringUtilities.indexOf5(fullName, 0, 0x2F, 0x6C, 0x69, 0x62, 0x2F) <
|
| -// 0) {
|
| -// // Files outside the lib directory hierarchy should not reference files
|
| -// // inside ... use package: url instead
|
| -// _errorReporter.reportErrorForNode(
|
| -// HintCode.FILE_IMPORT_OUTSIDE_LIB_REFERENCES_FILE_INSIDE,
|
| -// uriLiteral);
|
| -// return true;
|
| -// }
|
| -// }
|
| -// return false;
|
| -// }
|
| -
|
| -// /**
|
| -// * This verifies that the passed package import directive does not contain ".."
|
| -// *
|
| -// * @param uriLiteral the import URL (not `null`)
|
| -// * @param path the path to be validated (not `null`)
|
| -// * @return `true` if and only if an error code is generated on the passed node
|
| -// * See [PubSuggestionCode.PACKAGE_IMPORT_CONTAINS_DOT_DOT].
|
| -// */
|
| -// bool _checkForPackageImportContainsDotDot(StringLiteral uriLiteral,
|
| -// String path) {
|
| -// if (StringUtilities.startsWith3(path, 0, 0x2E, 0x2E, 0x2F) ||
|
| -// StringUtilities.indexOf4(path, 0, 0x2F, 0x2E, 0x2E, 0x2F) >= 0) {
|
| -// // Package import should not to contain ".."
|
| -// _errorReporter.reportErrorForNode(
|
| -// HintCode.PACKAGE_IMPORT_CONTAINS_DOT_DOT,
|
| -// uriLiteral);
|
| -// return true;
|
| -// }
|
| -// return false;
|
| -// }
|
| -
|
| -// /**
|
| -// * Answer the source associated with the compilation unit containing the given AST node.
|
| -// *
|
| -// * @param node the node (not `null`)
|
| -// * @return the source or `null` if it could not be determined
|
| -// */
|
| -// Source _getSource(AstNode node) {
|
| -// Source source = null;
|
| -// CompilationUnit unit = node.getAncestor((node) => node is CompilationUnit);
|
| -// if (unit != null) {
|
| -// CompilationUnitElement element = unit.element;
|
| -// if (element != null) {
|
| -// source = element.source;
|
| -// }
|
| -// }
|
| -// return source;
|
| -// }
|
| -
|
| -// /**
|
| -// * Answer the full name of the given source. The returned value will have all
|
| -// * [File.separatorChar] replace by '/'.
|
| -// *
|
| -// * @param source the source
|
| -// * @return the full name or `null` if it could not be determined
|
| -// */
|
| -// String _getSourceFullName(Source source) {
|
| -// if (source != null) {
|
| -// String fullName = source.fullName;
|
| -// if (fullName != null) {
|
| -// return fullName.replaceAll(r'\', '/');
|
| -// }
|
| -// }
|
| -// return null;
|
| -// }
|
| -}
|
| -
|
| -/**
|
| - * Kind of the redirecting constructor.
|
| - */
|
| -class RedirectingConstructorKind extends Enum<RedirectingConstructorKind> {
|
| - static const RedirectingConstructorKind CONST =
|
| - const RedirectingConstructorKind('CONST', 0);
|
| -
|
| - static const RedirectingConstructorKind NORMAL =
|
| - const RedirectingConstructorKind('NORMAL', 1);
|
| -
|
| - static const List<RedirectingConstructorKind> values = const [CONST, NORMAL];
|
| -
|
| - const RedirectingConstructorKind(String name, int ordinal)
|
| - : super(name, ordinal);
|
| -}
|
| -
|
| -/**
|
| - * A `ResolvableLibrary` represents a single library during the resolution of
|
| - * some (possibly different) library. They are not intended to be used except
|
| - * during the resolution process.
|
| - */
|
| -class ResolvableLibrary {
|
| - /**
|
| - * An empty array that can be used to initialize lists of libraries.
|
| - */
|
| - static List<ResolvableLibrary> _EMPTY_ARRAY = new List<ResolvableLibrary>(0);
|
| -
|
| - /**
|
| - * The next artificial hash code.
|
| - */
|
| - static int _NEXT_HASH_CODE = 0;
|
| -
|
| - /**
|
| - * The artifitial hash code for this object.
|
| - */
|
| - final int _hashCode = _nextHashCode();
|
| -
|
| - /**
|
| - * The source specifying the defining compilation unit of this library.
|
| - */
|
| - final Source librarySource;
|
| -
|
| - /**
|
| - * A list containing all of the libraries that are imported into this library.
|
| - */
|
| - List<ResolvableLibrary> _importedLibraries = _EMPTY_ARRAY;
|
| -
|
| - /**
|
| - * A flag indicating whether this library explicitly imports core.
|
| - */
|
| - bool explicitlyImportsCore = false;
|
| -
|
| - /**
|
| - * An array containing all of the libraries that are exported from this library.
|
| - */
|
| - List<ResolvableLibrary> _exportedLibraries = _EMPTY_ARRAY;
|
| -
|
| - /**
|
| - * An array containing the compilation units that comprise this library. The
|
| - * defining compilation unit is always first.
|
| - */
|
| - List<ResolvableCompilationUnit> _compilationUnits;
|
| -
|
| - /**
|
| - * The library element representing this library.
|
| - */
|
| - LibraryElementImpl _libraryElement;
|
| -
|
| - /**
|
| - * The listener to which analysis errors will be reported.
|
| - */
|
| - AnalysisErrorListener _errorListener;
|
| -
|
| - /**
|
| - * The inheritance manager which is used for member lookups in this library.
|
| - */
|
| - InheritanceManager _inheritanceManager;
|
| -
|
| - /**
|
| - * The library scope used when resolving elements within this library's compilation units.
|
| - */
|
| - LibraryScope _libraryScope;
|
| -
|
| - /**
|
| - * Initialize a newly created data holder that can maintain the data associated with a library.
|
| - *
|
| - * @param librarySource the source specifying the defining compilation unit of this library
|
| - * @param errorListener the listener to which analysis errors will be reported
|
| - */
|
| - ResolvableLibrary(this.librarySource);
|
| -
|
| - /**
|
| - * Return an array of the [CompilationUnit]s that make up the library. The first unit is
|
| - * always the defining unit.
|
| - *
|
| - * @return an array of the [CompilationUnit]s that make up the library. The first unit is
|
| - * always the defining unit
|
| - */
|
| - List<CompilationUnit> get compilationUnits {
|
| - int count = _compilationUnits.length;
|
| - List<CompilationUnit> units = new List<CompilationUnit>(count);
|
| - for (int i = 0; i < count; i++) {
|
| - units[i] = _compilationUnits[i].compilationUnit;
|
| - }
|
| - return units;
|
| - }
|
| -
|
| - /**
|
| - * Return an array containing the sources for the compilation units in this library, including the
|
| - * defining compilation unit.
|
| - *
|
| - * @return the sources for the compilation units in this library
|
| - */
|
| - List<Source> get compilationUnitSources {
|
| - int count = _compilationUnits.length;
|
| - List<Source> sources = new List<Source>(count);
|
| - for (int i = 0; i < count; i++) {
|
| - sources[i] = _compilationUnits[i].source;
|
| - }
|
| - return sources;
|
| - }
|
| -
|
| - /**
|
| - * Return the AST structure associated with the defining compilation unit for this library.
|
| - *
|
| - * @return the AST structure associated with the defining compilation unit for this library
|
| - * @throws AnalysisException if an AST structure could not be created for the defining compilation
|
| - * unit
|
| - */
|
| - CompilationUnit get definingCompilationUnit =>
|
| - _compilationUnits[0].compilationUnit;
|
| -
|
| - /**
|
| - * Set the listener to which analysis errors will be reported to be the given listener.
|
| - *
|
| - * @param errorListener the listener to which analysis errors will be reported
|
| - */
|
| - void set errorListener(AnalysisErrorListener errorListener) {
|
| - this._errorListener = errorListener;
|
| - }
|
| -
|
| - /**
|
| - * Set the libraries that are exported by this library to be those in the given array.
|
| - *
|
| - * @param exportedLibraries the libraries that are exported by this library
|
| - */
|
| - void set exportedLibraries(List<ResolvableLibrary> exportedLibraries) {
|
| - this._exportedLibraries = exportedLibraries;
|
| - }
|
| -
|
| - /**
|
| - * Return an array containing the libraries that are exported from this library.
|
| - *
|
| - * @return an array containing the libraries that are exported from this library
|
| - */
|
| - List<ResolvableLibrary> get exports => _exportedLibraries;
|
| -
|
| - @override
|
| - int get hashCode => _hashCode;
|
| -
|
| - /**
|
| - * Set the libraries that are imported into this library to be those in the given array.
|
| - *
|
| - * @param importedLibraries the libraries that are imported into this library
|
| - */
|
| - void set importedLibraries(List<ResolvableLibrary> importedLibraries) {
|
| - this._importedLibraries = importedLibraries;
|
| - }
|
| -
|
| - /**
|
| - * Return an array containing the libraries that are imported into this library.
|
| - *
|
| - * @return an array containing the libraries that are imported into this library
|
| - */
|
| - List<ResolvableLibrary> get imports => _importedLibraries;
|
| -
|
| - /**
|
| - * Return an array containing the libraries that are either imported or exported from this
|
| - * library.
|
| - *
|
| - * @return the libraries that are either imported or exported from this library
|
| - */
|
| - List<ResolvableLibrary> get importsAndExports {
|
| - HashSet<ResolvableLibrary> libraries = new HashSet<ResolvableLibrary>();
|
| - for (ResolvableLibrary library in _importedLibraries) {
|
| - libraries.add(library);
|
| - }
|
| - for (ResolvableLibrary library in _exportedLibraries) {
|
| - libraries.add(library);
|
| - }
|
| - return new List.from(libraries);
|
| - }
|
| -
|
| - /**
|
| - * Return the inheritance manager for this library.
|
| - *
|
| - * @return the inheritance manager for this library
|
| - */
|
| - InheritanceManager get inheritanceManager {
|
| - if (_inheritanceManager == null) {
|
| - return _inheritanceManager = new InheritanceManager(_libraryElement);
|
| - }
|
| - return _inheritanceManager;
|
| - }
|
| -
|
| - /**
|
| - * Return the library element representing this library, creating it if necessary.
|
| - *
|
| - * @return the library element representing this library
|
| - */
|
| - LibraryElementImpl get libraryElement => _libraryElement;
|
| -
|
| - /**
|
| - * Set the library element representing this library to the given library element.
|
| - *
|
| - * @param libraryElement the library element representing this library
|
| - */
|
| - void set libraryElement(LibraryElementImpl libraryElement) {
|
| - this._libraryElement = libraryElement;
|
| - if (_inheritanceManager != null) {
|
| - _inheritanceManager.libraryElement = libraryElement;
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Return the library scope used when resolving elements within this library's compilation units.
|
| - *
|
| - * @return the library scope used when resolving elements within this library's compilation units
|
| - */
|
| - LibraryScope get libraryScope {
|
| - if (_libraryScope == null) {
|
| - _libraryScope = new LibraryScope(_libraryElement, _errorListener);
|
| - }
|
| - return _libraryScope;
|
| - }
|
| -
|
| - /**
|
| - * Return an array containing the compilation units that comprise this library. The defining
|
| - * compilation unit is always first.
|
| - *
|
| - * @return the compilation units that comprise this library
|
| - */
|
| - List<ResolvableCompilationUnit> get resolvableCompilationUnits =>
|
| - _compilationUnits;
|
| -
|
| - /**
|
| - * Set the compilation unit in this library to the given compilation units. The defining
|
| - * compilation unit must be the first element of the array.
|
| - *
|
| - * @param units the compilation units in this library
|
| - */
|
| - void set resolvableCompilationUnits(List<ResolvableCompilationUnit> units) {
|
| - _compilationUnits = units;
|
| - }
|
| -
|
| - /**
|
| - * Return the AST structure associated with the given source, or `null` if the source does
|
| - * not represent a compilation unit that is included in this library.
|
| - *
|
| - * @param source the source representing the compilation unit whose AST is to be returned
|
| - * @return the AST structure associated with the given source
|
| - * @throws AnalysisException if an AST structure could not be created for the compilation unit
|
| - */
|
| - CompilationUnit getAST(Source source) {
|
| - int count = _compilationUnits.length;
|
| - for (int i = 0; i < count; i++) {
|
| - if (_compilationUnits[i].source == source) {
|
| - return _compilationUnits[i].compilationUnit;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - String toString() => librarySource.shortName;
|
| -
|
| - static int _nextHashCode() {
|
| - int next = (_NEXT_HASH_CODE + 1) & 0xFFFFFF;
|
| - _NEXT_HASH_CODE = next;
|
| - return next;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * The enumeration `ResolverErrorCode` defines the error codes used for errors
|
| - * detected by the resolver. The convention for this class is for the name of
|
| - * the error code to indicate the problem that caused the error to be generated
|
| - * and for the error message to explain what is wrong and, when appropriate, how
|
| - * the problem can be corrected.
|
| - */
|
| -class ResolverErrorCode extends ErrorCode {
|
| - static const ResolverErrorCode BREAK_LABEL_ON_SWITCH_MEMBER =
|
| - const ResolverErrorCode('BREAK_LABEL_ON_SWITCH_MEMBER',
|
| - "Break label resolves to case or default statement");
|
| -
|
| - static const ResolverErrorCode CONTINUE_LABEL_ON_SWITCH =
|
| - const ResolverErrorCode('CONTINUE_LABEL_ON_SWITCH',
|
| - "A continue label resolves to switch, must be loop or switch member");
|
| -
|
| - static const ResolverErrorCode MISSING_LIBRARY_DIRECTIVE_WITH_PART =
|
| - const ResolverErrorCode('MISSING_LIBRARY_DIRECTIVE_WITH_PART',
|
| - "Libraries that have parts must have a library directive");
|
| -
|
| - /**
|
| - * Initialize a newly created error code to have the given [name]. The message
|
| - * associated with the error will be created from the given [message]
|
| - * template. The correction associated with the error will be created from the
|
| - * given [correction] template.
|
| - */
|
| - const ResolverErrorCode(String name, String message, [String correction])
|
| - : super(name, message, correction);
|
| -
|
| - @override
|
| - ErrorSeverity get errorSeverity => type.severity;
|
| -
|
| - @override
|
| - ErrorType get type => ErrorType.COMPILE_TIME_ERROR;
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `ResolverVisitor` are used to resolve the nodes within a single
|
| - * compilation unit.
|
| - */
|
| -class ResolverVisitor extends ScopedVisitor {
|
| - /**
|
| - * The manager for the inheritance mappings.
|
| - */
|
| - InheritanceManager _inheritanceManager;
|
| -
|
| - /**
|
| - * The object used to resolve the element associated with the current node.
|
| - */
|
| - ElementResolver elementResolver;
|
| -
|
| - /**
|
| - * The object used to compute the type associated with the current node.
|
| - */
|
| - StaticTypeAnalyzer typeAnalyzer;
|
| -
|
| - /**
|
| - * The class element representing the class containing the current node,
|
| - * or `null` if the current node is not contained in a class.
|
| - */
|
| - ClassElement enclosingClass = null;
|
| -
|
| - /**
|
| - * The class declaration representing the class containing the current node, or `null` if
|
| - * the current node is not contained in a class.
|
| - */
|
| - ClassDeclaration _enclosingClassDeclaration = null;
|
| -
|
| - /**
|
| - * The function type alias representing the function type containing the current node, or
|
| - * `null` if the current node is not contained in a function type alias.
|
| - */
|
| - FunctionTypeAlias _enclosingFunctionTypeAlias = null;
|
| -
|
| - /**
|
| - * The element representing the function containing the current node, or `null` if the
|
| - * current node is not contained in a function.
|
| - */
|
| - ExecutableElement _enclosingFunction = null;
|
| -
|
| - /**
|
| - * The [Comment] before a [FunctionDeclaration] or a [MethodDeclaration] that
|
| - * cannot be resolved where we visited it, because it should be resolved in the scope of the body.
|
| - */
|
| - Comment _commentBeforeFunction = null;
|
| -
|
| - /**
|
| - * The object keeping track of which elements have had their types overridden.
|
| - */
|
| - TypeOverrideManager _overrideManager = new TypeOverrideManager();
|
| -
|
| - /**
|
| - * The object keeping track of which elements have had their types promoted.
|
| - */
|
| - TypePromotionManager _promoteManager = new TypePromotionManager();
|
| -
|
| - /**
|
| - * A comment before a function should be resolved in the context of the
|
| - * function. But when we incrementally resolve a comment, we don't want to
|
| - * resolve the whole function.
|
| - *
|
| - * So, this flag is set to `true`, when just context of the function should
|
| - * be built and the comment resolved.
|
| - */
|
| - bool resolveOnlyCommentInFunctionBody = false;
|
| -
|
| - /**
|
| - * Initialize a newly created visitor to resolve the nodes in an AST node.
|
| - *
|
| - * [definingLibrary] is the element for the library containing the node being
|
| - * visited.
|
| - * [source] is the source representing the compilation unit containing the
|
| - * node being visited.
|
| - * [typeProvider] the object used to access the types from the core library.
|
| - * [errorListener] the error listener that will be informed of any errors
|
| - * that are found during resolution.
|
| - * [nameScope] is the scope used to resolve identifiers in the node that will
|
| - * first be visited. If `null` or unspecified, a new [LibraryScope] will be
|
| - * created based on [definingLibrary] and [typeProvider].
|
| - * [inheritanceManager] is used to perform inheritance lookups. If `null` or
|
| - * unspecified, a new [InheritanceManager] will be created based on
|
| - * [definingLibrary].
|
| - * [typeAnalyzerFactory] is used to create the type analyzer. If `null` or
|
| - * unspecified, a type analyzer of type [StaticTypeAnalyzer] will be created.
|
| - */
|
| - ResolverVisitor(LibraryElement definingLibrary, Source source,
|
| - TypeProvider typeProvider, AnalysisErrorListener errorListener,
|
| - {Scope nameScope, InheritanceManager inheritanceManager,
|
| - StaticTypeAnalyzerFactory typeAnalyzerFactory})
|
| - : super(definingLibrary, source, typeProvider, errorListener,
|
| - nameScope: nameScope) {
|
| - if (inheritanceManager == null) {
|
| - this._inheritanceManager = new InheritanceManager(definingLibrary);
|
| - } else {
|
| - this._inheritanceManager = inheritanceManager;
|
| - }
|
| - this.elementResolver = new ElementResolver(this);
|
| - if (typeAnalyzerFactory == null) {
|
| - this.typeAnalyzer = new StaticTypeAnalyzer(this);
|
| - } else {
|
| - this.typeAnalyzer = typeAnalyzerFactory(this);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Initialize a newly created visitor to resolve the nodes in a compilation unit.
|
| - *
|
| - * @param library the library containing the compilation unit being resolved
|
| - * @param source the source representing the compilation unit being visited
|
| - * @param typeProvider the object used to access the types from the core library
|
| - *
|
| - * Deprecated. Please use unnamed constructor instead.
|
| - */
|
| - @deprecated
|
| - ResolverVisitor.con1(
|
| - Library library, Source source, TypeProvider typeProvider,
|
| - {StaticTypeAnalyzerFactory typeAnalyzerFactory})
|
| - : this(
|
| - library.libraryElement, source, typeProvider, library.errorListener,
|
| - nameScope: library.libraryScope,
|
| - inheritanceManager: library.inheritanceManager,
|
| - typeAnalyzerFactory: typeAnalyzerFactory);
|
| -
|
| - /**
|
| - * Return the element representing the function containing the current node, or `null` if
|
| - * the current node is not contained in a function.
|
| - *
|
| - * @return the element representing the function containing the current node
|
| - */
|
| - ExecutableElement get enclosingFunction => _enclosingFunction;
|
| -
|
| - /**
|
| - * Return the object keeping track of which elements have had their types overridden.
|
| - *
|
| - * @return the object keeping track of which elements have had their types overridden
|
| - */
|
| - TypeOverrideManager get overrideManager => _overrideManager;
|
| -
|
| - /**
|
| - * Return the object keeping track of which elements have had their types promoted.
|
| - *
|
| - * @return the object keeping track of which elements have had their types promoted
|
| - */
|
| - TypePromotionManager get promoteManager => _promoteManager;
|
| -
|
| - /**
|
| - * Return the propagated element associated with the given expression whose type can be
|
| - * overridden, or `null` if there is no element whose type can be overridden.
|
| - *
|
| - * @param expression the expression with which the element is associated
|
| - * @return the element associated with the given expression
|
| - */
|
| - VariableElement getOverridablePropagatedElement(Expression expression) {
|
| - Element element = null;
|
| - if (expression is SimpleIdentifier) {
|
| - element = expression.propagatedElement;
|
| - } else if (expression is PrefixedIdentifier) {
|
| - element = expression.propagatedElement;
|
| - } else if (expression is PropertyAccess) {
|
| - element = expression.propertyName.propagatedElement;
|
| - }
|
| - if (element is VariableElement) {
|
| - return element;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Return the static element associated with the given expression whose type can be overridden, or
|
| - * `null` if there is no element whose type can be overridden.
|
| - *
|
| - * @param expression the expression with which the element is associated
|
| - * @return the element associated with the given expression
|
| - */
|
| - VariableElement getOverridableStaticElement(Expression expression) {
|
| - Element element = null;
|
| - if (expression is SimpleIdentifier) {
|
| - element = expression.staticElement;
|
| - } else if (expression is PrefixedIdentifier) {
|
| - element = expression.staticElement;
|
| - } else if (expression is PropertyAccess) {
|
| - element = expression.propertyName.staticElement;
|
| - }
|
| - if (element is VariableElement) {
|
| - return element;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Return the static element associated with the given expression whose type can be promoted, or
|
| - * `null` if there is no element whose type can be promoted.
|
| - *
|
| - * @param expression the expression with which the element is associated
|
| - * @return the element associated with the given expression
|
| - */
|
| - VariableElement getPromotionStaticElement(Expression expression) {
|
| - while (expression is ParenthesizedExpression) {
|
| - expression = (expression as ParenthesizedExpression).expression;
|
| - }
|
| - if (expression is! SimpleIdentifier) {
|
| - return null;
|
| - }
|
| - SimpleIdentifier identifier = expression as SimpleIdentifier;
|
| - Element element = identifier.staticElement;
|
| - if (element is! VariableElement) {
|
| - return null;
|
| - }
|
| - ElementKind kind = element.kind;
|
| - if (kind == ElementKind.LOCAL_VARIABLE) {
|
| - return element as VariableElement;
|
| - }
|
| - if (kind == ElementKind.PARAMETER) {
|
| - return element as VariableElement;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Prepares this [ResolverVisitor] to using it for incremental resolution.
|
| - */
|
| - void initForIncrementalResolution() {
|
| - _overrideManager.enterScope();
|
| - }
|
| -
|
| - /**
|
| - * If it is appropriate to do so, override the current type of the static and propagated elements
|
| - * associated with the given expression with the given type. Generally speaking, it is appropriate
|
| - * if the given type is more specific than the current type.
|
| - *
|
| - * @param expression the expression used to access the static and propagated elements whose types
|
| - * might be overridden
|
| - * @param potentialType the potential type of the elements
|
| - * @param allowPrecisionLoss see @{code overrideVariable} docs
|
| - */
|
| - void overrideExpression(Expression expression, DartType potentialType,
|
| - bool allowPrecisionLoss, bool setExpressionType) {
|
| - VariableElement element = getOverridableStaticElement(expression);
|
| - if (element != null) {
|
| - DartType newBestType =
|
| - overrideVariable(element, potentialType, allowPrecisionLoss);
|
| - if (setExpressionType) {
|
| - recordPropagatedTypeIfBetter(expression, newBestType);
|
| - }
|
| - }
|
| - element = getOverridablePropagatedElement(expression);
|
| - if (element != null) {
|
| - overrideVariable(element, potentialType, allowPrecisionLoss);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * If it is appropriate to do so, override the current type of the given element with the given
|
| - * type.
|
| - *
|
| - * @param element the element whose type might be overridden
|
| - * @param potentialType the potential type of the element
|
| - * @param allowPrecisionLoss true if `potentialType` is allowed to be less precise than the
|
| - * current best type
|
| - *
|
| - * Return a new better [DartType], or `null` if [potentialType] is not better
|
| - * than the current [element] type.
|
| - */
|
| - DartType overrideVariable(VariableElement element, DartType potentialType,
|
| - bool allowPrecisionLoss) {
|
| - if (potentialType == null || potentialType.isBottom) {
|
| - return null;
|
| - }
|
| - DartType currentType = _overrideManager.getBestType(element);
|
| -
|
| - if (potentialType == currentType) {
|
| - return null;
|
| - }
|
| -
|
| - // If we aren't allowing precision loss then the third and fourth conditions
|
| - // check that we aren't losing precision.
|
| - //
|
| - // Let [C] be the current type and [P] be the potential type. When we
|
| - // aren't allowing precision loss -- which is the case for is-checks -- we
|
| - // check that [! (C << P)] or [P << C]. The second check, that [P << C], is
|
| - // analogous to part of the Dart Language Spec rule for type promotion under
|
| - // is-checks (in the analogy [T] is [P] and [S] is [C]):
|
| - //
|
| - // An is-expression of the form [v is T] shows that [v] has type [T] iff
|
| - // [T] is more specific than the type [S] of the expression [v] and both
|
| - // [T != dynamic] and [S != dynamic].
|
| - //
|
| - // It also covers an important case that is not applicable in the spec:
|
| - // for union types, we want an is-check to promote from an union type to
|
| - // (a subtype of) any of its members.
|
| - //
|
| - // The first check, that [! (C << P)], covers the case where [P] and [C] are
|
| - // unrelated types; This case is not addressed in the spec for static types.
|
| - if (currentType == null ||
|
| - allowPrecisionLoss ||
|
| - !currentType.isMoreSpecificThan(potentialType) ||
|
| - potentialType.isMoreSpecificThan(currentType)) {
|
| - // TODO(scheglov) type propagation for instance/top-level fields
|
| - // was disabled because it depends on the order or visiting.
|
| - // If both field and its client are in the same unit, and we visit
|
| - // the client before the field, then propagated type is not set yet.
|
| -// if (element is PropertyInducingElement) {
|
| -// PropertyInducingElement variable = element;
|
| -// if (!variable.isConst && !variable.isFinal) {
|
| -// return;
|
| -// }
|
| -// (variable as PropertyInducingElementImpl).propagatedType =
|
| -// potentialType;
|
| -// }
|
| - _overrideManager.setType(element, potentialType);
|
| - return potentialType;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * If the given [type] is valid, strongly more specific than the
|
| - * existing static type of the given [expression], record it as a propagated
|
| - * type of the given [expression]. Otherwise, reset it to `null`.
|
| - *
|
| - * If [hasOldPropagatedType] is `true` then the existing propagated type
|
| - * should also is checked.
|
| - */
|
| - void recordPropagatedTypeIfBetter(Expression expression, DartType type,
|
| - [bool hasOldPropagatedType = false]) {
|
| - // Ensure that propagated type invalid.
|
| - if (type == null || type.isDynamic || type.isBottom) {
|
| - if (!hasOldPropagatedType) {
|
| - expression.propagatedType = null;
|
| - }
|
| - return;
|
| - }
|
| - // Ensure that propagated type is more specific than the static type.
|
| - DartType staticType = expression.staticType;
|
| - if (type == staticType || !type.isMoreSpecificThan(staticType)) {
|
| - expression.propagatedType = null;
|
| - return;
|
| - }
|
| - // Ensure that the new propagated type is more specific than the old one.
|
| - if (hasOldPropagatedType) {
|
| - DartType oldPropagatedType = expression.propagatedType;
|
| - if (oldPropagatedType != null &&
|
| - !type.isMoreSpecificThan(oldPropagatedType)) {
|
| - return;
|
| - }
|
| - }
|
| - // OK
|
| - expression.propagatedType = type;
|
| - }
|
| -
|
| - @override
|
| - Object visitAnnotation(Annotation node) {
|
| - AstNode parent = node.parent;
|
| - if (identical(parent, _enclosingClassDeclaration) ||
|
| - identical(parent, _enclosingFunctionTypeAlias)) {
|
| - return null;
|
| - }
|
| - return super.visitAnnotation(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitAsExpression(AsExpression node) {
|
| - super.visitAsExpression(node);
|
| - // Since an as-statement doesn't actually change the type, we don't
|
| - // let it affect the propagated type when it would result in a loss
|
| - // of precision.
|
| - overrideExpression(node.expression, node.type.type, false, false);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitAssertStatement(AssertStatement node) {
|
| - super.visitAssertStatement(node);
|
| - _propagateTrueState(node.condition);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitBinaryExpression(BinaryExpression node) {
|
| - sc.TokenType operatorType = node.operator.type;
|
| - Expression leftOperand = node.leftOperand;
|
| - Expression rightOperand = node.rightOperand;
|
| - if (operatorType == sc.TokenType.AMPERSAND_AMPERSAND) {
|
| - safelyVisit(leftOperand);
|
| - if (rightOperand != null) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - _promoteManager.enterScope();
|
| - try {
|
| - _propagateTrueState(leftOperand);
|
| - // Type promotion.
|
| - _promoteTypes(leftOperand);
|
| - _clearTypePromotionsIfPotentiallyMutatedIn(leftOperand);
|
| - _clearTypePromotionsIfPotentiallyMutatedIn(rightOperand);
|
| - _clearTypePromotionsIfAccessedInClosureAndProtentiallyMutated(
|
| - rightOperand);
|
| - // Visit right operand.
|
| - rightOperand.accept(this);
|
| - } finally {
|
| - _promoteManager.exitScope();
|
| - }
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - }
|
| - } else if (operatorType == sc.TokenType.BAR_BAR) {
|
| - safelyVisit(leftOperand);
|
| - if (rightOperand != null) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - _propagateFalseState(leftOperand);
|
| - rightOperand.accept(this);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - }
|
| - } else {
|
| - safelyVisit(leftOperand);
|
| - safelyVisit(rightOperand);
|
| - }
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitBlockFunctionBody(BlockFunctionBody node) {
|
| - safelyVisit(_commentBeforeFunction);
|
| - _overrideManager.enterScope();
|
| - try {
|
| - super.visitBlockFunctionBody(node);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitBreakStatement(BreakStatement node) {
|
| - //
|
| - // We do not visit the label because it needs to be visited in the context
|
| - // of the statement.
|
| - //
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitClassDeclaration(ClassDeclaration node) {
|
| - //
|
| - // Resolve the metadata in the library scope.
|
| - //
|
| - if (node.metadata != null) {
|
| - node.metadata.accept(this);
|
| - }
|
| - _enclosingClassDeclaration = node;
|
| - //
|
| - // Continue the class resolution.
|
| - //
|
| - ClassElement outerType = enclosingClass;
|
| - try {
|
| - enclosingClass = node.element;
|
| - typeAnalyzer.thisType =
|
| - enclosingClass == null ? null : enclosingClass.type;
|
| - super.visitClassDeclaration(node);
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - } finally {
|
| - typeAnalyzer.thisType = outerType == null ? null : outerType.type;
|
| - enclosingClass = outerType;
|
| - _enclosingClassDeclaration = null;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Implementation of this method should be synchronized with
|
| - * [visitClassDeclaration].
|
| - */
|
| - visitClassDeclarationIncrementally(ClassDeclaration node) {
|
| - //
|
| - // Resolve the metadata in the library scope.
|
| - //
|
| - if (node.metadata != null) {
|
| - node.metadata.accept(this);
|
| - }
|
| - _enclosingClassDeclaration = node;
|
| - //
|
| - // Continue the class resolution.
|
| - //
|
| - enclosingClass = node.element;
|
| - typeAnalyzer.thisType = enclosingClass == null ? null : enclosingClass.type;
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - }
|
| -
|
| - @override
|
| - Object visitComment(Comment node) {
|
| - if (node.parent is FunctionDeclaration ||
|
| - node.parent is ConstructorDeclaration ||
|
| - node.parent is MethodDeclaration) {
|
| - if (!identical(node, _commentBeforeFunction)) {
|
| - _commentBeforeFunction = node;
|
| - return null;
|
| - }
|
| - }
|
| - super.visitComment(node);
|
| - _commentBeforeFunction = null;
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitCommentReference(CommentReference node) {
|
| - //
|
| - // We do not visit the identifier because it needs to be visited in the
|
| - // context of the reference.
|
| - //
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitCompilationUnit(CompilationUnit node) {
|
| - //
|
| - // TODO(brianwilkerson) The goal of the code below is to visit the
|
| - // declarations in such an order that we can infer type information for
|
| - // top-level variables before we visit references to them. This is better
|
| - // than making no effort, but still doesn't completely satisfy that goal
|
| - // (consider for example "final var a = b; final var b = 0;"; we'll infer a
|
| - // type of 'int' for 'b', but not for 'a' because of the order of the
|
| - // visits). Ideally we would create a dependency graph, but that would
|
| - // require references to be resolved, which they are not.
|
| - //
|
| - _overrideManager.enterScope();
|
| - try {
|
| - NodeList<Directive> directives = node.directives;
|
| - int directiveCount = directives.length;
|
| - for (int i = 0; i < directiveCount; i++) {
|
| - directives[i].accept(this);
|
| - }
|
| - NodeList<CompilationUnitMember> declarations = node.declarations;
|
| - int declarationCount = declarations.length;
|
| - for (int i = 0; i < declarationCount; i++) {
|
| - CompilationUnitMember declaration = declarations[i];
|
| - if (declaration is! ClassDeclaration) {
|
| - declaration.accept(this);
|
| - }
|
| - }
|
| - for (int i = 0; i < declarationCount; i++) {
|
| - CompilationUnitMember declaration = declarations[i];
|
| - if (declaration is ClassDeclaration) {
|
| - declaration.accept(this);
|
| - }
|
| - }
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitConditionalExpression(ConditionalExpression node) {
|
| - Expression condition = node.condition;
|
| - safelyVisit(condition);
|
| - Expression thenExpression = node.thenExpression;
|
| - if (thenExpression != null) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - _promoteManager.enterScope();
|
| - try {
|
| - _propagateTrueState(condition);
|
| - // Type promotion.
|
| - _promoteTypes(condition);
|
| - _clearTypePromotionsIfPotentiallyMutatedIn(thenExpression);
|
| - _clearTypePromotionsIfAccessedInClosureAndProtentiallyMutated(
|
| - thenExpression);
|
| - // Visit "then" expression.
|
| - thenExpression.accept(this);
|
| - } finally {
|
| - _promoteManager.exitScope();
|
| - }
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - }
|
| - Expression elseExpression = node.elseExpression;
|
| - if (elseExpression != null) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - _propagateFalseState(condition);
|
| - elseExpression.accept(this);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - }
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - bool thenIsAbrupt = _isAbruptTerminationExpression(thenExpression);
|
| - bool elseIsAbrupt = _isAbruptTerminationExpression(elseExpression);
|
| - if (elseIsAbrupt && !thenIsAbrupt) {
|
| - _propagateTrueState(condition);
|
| - _propagateState(thenExpression);
|
| - } else if (thenIsAbrupt && !elseIsAbrupt) {
|
| - _propagateFalseState(condition);
|
| - _propagateState(elseExpression);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| - ExecutableElement outerFunction = _enclosingFunction;
|
| - try {
|
| - _enclosingFunction = node.element;
|
| - super.visitConstructorDeclaration(node);
|
| - } finally {
|
| - _enclosingFunction = outerFunction;
|
| - }
|
| - ConstructorElementImpl constructor = node.element;
|
| - constructor.constantInitializers =
|
| - new ConstantAstCloner().cloneNodeList(node.initializers);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitConstructorFieldInitializer(ConstructorFieldInitializer node) {
|
| - //
|
| - // We visit the expression, but do not visit the field name because it needs
|
| - // to be visited in the context of the constructor field initializer node.
|
| - //
|
| - safelyVisit(node.expression);
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitConstructorName(ConstructorName node) {
|
| - //
|
| - // We do not visit either the type name, because it won't be visited anyway,
|
| - // or the name, because it needs to be visited in the context of the
|
| - // constructor name.
|
| - //
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitContinueStatement(ContinueStatement node) {
|
| - //
|
| - // We do not visit the label because it needs to be visited in the context
|
| - // of the statement.
|
| - //
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitDefaultFormalParameter(DefaultFormalParameter node) {
|
| - super.visitDefaultFormalParameter(node);
|
| - FormalParameterList parent = node.parent;
|
| - AstNode grandparent = parent.parent;
|
| - if (grandparent is ConstructorDeclaration &&
|
| - grandparent.constKeyword != null) {
|
| - // For const constructors, we need to clone the ASTs for default formal
|
| - // parameters, so that we can use them during constant evaluation.
|
| - ParameterElement element = node.element;
|
| - (element as ConstVariableElement).constantInitializer =
|
| - new ConstantAstCloner().cloneNode(node.defaultValue);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitDoStatement(DoStatement node) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - super.visitDoStatement(node);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - // TODO(brianwilkerson) If the loop can only be exited because the condition
|
| - // is false, then propagateFalseState(node.getCondition());
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitEmptyFunctionBody(EmptyFunctionBody node) {
|
| - safelyVisit(_commentBeforeFunction);
|
| - if (resolveOnlyCommentInFunctionBody) {
|
| - return null;
|
| - }
|
| - return super.visitEmptyFunctionBody(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitEnumDeclaration(EnumDeclaration node) {
|
| - //
|
| - // Resolve the metadata in the library scope
|
| - // and associate the annotations with the element.
|
| - //
|
| - if (node.metadata != null) {
|
| - node.metadata.accept(this);
|
| - ElementResolver.setMetadata(node.element, node);
|
| - }
|
| - //
|
| - // There is nothing else to do because everything else was resolved by the
|
| - // element builder.
|
| - //
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitExpressionFunctionBody(ExpressionFunctionBody node) {
|
| - safelyVisit(_commentBeforeFunction);
|
| - if (resolveOnlyCommentInFunctionBody) {
|
| - return null;
|
| - }
|
| - _overrideManager.enterScope();
|
| - try {
|
| - super.visitExpressionFunctionBody(node);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFieldDeclaration(FieldDeclaration node) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - super.visitFieldDeclaration(node);
|
| - } finally {
|
| - Map<VariableElement, DartType> overrides =
|
| - _overrideManager.captureOverrides(node.fields);
|
| - _overrideManager.exitScope();
|
| - _overrideManager.applyOverrides(overrides);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitForEachStatement(ForEachStatement node) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - super.visitForEachStatement(node);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - void visitForEachStatementInScope(ForEachStatement node) {
|
| - //
|
| - // We visit the iterator before the loop variable because the loop variable
|
| - // cannot be in scope while visiting the iterator.
|
| - //
|
| - Expression iterable = node.iterable;
|
| - safelyVisit(iterable);
|
| - DeclaredIdentifier loopVariable = node.loopVariable;
|
| - SimpleIdentifier identifier = node.identifier;
|
| - safelyVisit(loopVariable);
|
| - safelyVisit(identifier);
|
| - Statement body = node.body;
|
| - if (body != null) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - if (loopVariable != null && iterable != null) {
|
| - LocalVariableElement loopElement = loopVariable.element;
|
| - if (loopElement != null) {
|
| - DartType iteratorElementType = _getIteratorElementType(iterable);
|
| - overrideVariable(loopElement, iteratorElementType, true);
|
| - _recordPropagatedType(loopVariable.identifier, iteratorElementType);
|
| - }
|
| - } else if (identifier != null && iterable != null) {
|
| - Element identifierElement = identifier.staticElement;
|
| - if (identifierElement is VariableElement) {
|
| - DartType iteratorElementType = _getIteratorElementType(iterable);
|
| - overrideVariable(identifierElement, iteratorElementType, true);
|
| - _recordPropagatedType(identifier, iteratorElementType);
|
| - }
|
| - }
|
| - visitStatementInScope(body);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - }
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - }
|
| -
|
| - @override
|
| - Object visitForStatement(ForStatement node) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - super.visitForStatement(node);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - void visitForStatementInScope(ForStatement node) {
|
| - safelyVisit(node.variables);
|
| - safelyVisit(node.initialization);
|
| - safelyVisit(node.condition);
|
| - _overrideManager.enterScope();
|
| - try {
|
| - _propagateTrueState(node.condition);
|
| - visitStatementInScope(node.body);
|
| - node.updaters.accept(this);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - // TODO(brianwilkerson) If the loop can only be exited because the condition
|
| - // is false, then propagateFalseState(condition);
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| - ExecutableElement outerFunction = _enclosingFunction;
|
| - try {
|
| - SimpleIdentifier functionName = node.name;
|
| - _enclosingFunction = functionName.staticElement as ExecutableElement;
|
| - super.visitFunctionDeclaration(node);
|
| - } finally {
|
| - _enclosingFunction = outerFunction;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionExpression(FunctionExpression node) {
|
| - ExecutableElement outerFunction = _enclosingFunction;
|
| - try {
|
| - _enclosingFunction = node.element;
|
| - _overrideManager.enterScope();
|
| - try {
|
| - super.visitFunctionExpression(node);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - } finally {
|
| - _enclosingFunction = outerFunction;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionExpressionInvocation(FunctionExpressionInvocation node) {
|
| - safelyVisit(node.function);
|
| - node.accept(elementResolver);
|
| - _inferFunctionExpressionsParametersTypes(node.argumentList);
|
| - safelyVisit(node.argumentList);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionTypeAlias(FunctionTypeAlias node) {
|
| - // Resolve the metadata in the library scope.
|
| - if (node.metadata != null) {
|
| - node.metadata.accept(this);
|
| - }
|
| - FunctionTypeAlias outerAlias = _enclosingFunctionTypeAlias;
|
| - _enclosingFunctionTypeAlias = node;
|
| - try {
|
| - super.visitFunctionTypeAlias(node);
|
| - } finally {
|
| - _enclosingFunctionTypeAlias = outerAlias;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitHideCombinator(HideCombinator node) => null;
|
| -
|
| - @override
|
| - Object visitIfStatement(IfStatement node) {
|
| - Expression condition = node.condition;
|
| - safelyVisit(condition);
|
| - Map<VariableElement, DartType> thenOverrides =
|
| - new HashMap<VariableElement, DartType>();
|
| - Statement thenStatement = node.thenStatement;
|
| - if (thenStatement != null) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - _promoteManager.enterScope();
|
| - try {
|
| - _propagateTrueState(condition);
|
| - // Type promotion.
|
| - _promoteTypes(condition);
|
| - _clearTypePromotionsIfPotentiallyMutatedIn(thenStatement);
|
| - _clearTypePromotionsIfAccessedInClosureAndProtentiallyMutated(
|
| - thenStatement);
|
| - // Visit "then".
|
| - visitStatementInScope(thenStatement);
|
| - } finally {
|
| - _promoteManager.exitScope();
|
| - }
|
| - } finally {
|
| - thenOverrides = _overrideManager.captureLocalOverrides();
|
| - _overrideManager.exitScope();
|
| - }
|
| - }
|
| - Map<VariableElement, DartType> elseOverrides =
|
| - new HashMap<VariableElement, DartType>();
|
| - Statement elseStatement = node.elseStatement;
|
| - if (elseStatement != null) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - _propagateFalseState(condition);
|
| - visitStatementInScope(elseStatement);
|
| - } finally {
|
| - elseOverrides = _overrideManager.captureLocalOverrides();
|
| - _overrideManager.exitScope();
|
| - }
|
| - }
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - // Join overrides.
|
| - bool thenIsAbrupt = _isAbruptTerminationStatement(thenStatement);
|
| - bool elseIsAbrupt = _isAbruptTerminationStatement(elseStatement);
|
| - if (elseIsAbrupt && !thenIsAbrupt) {
|
| - _propagateTrueState(condition);
|
| - _overrideManager.applyOverrides(thenOverrides);
|
| - } else if (thenIsAbrupt && !elseIsAbrupt) {
|
| - _propagateFalseState(condition);
|
| - _overrideManager.applyOverrides(elseOverrides);
|
| - } else if (!thenIsAbrupt && !elseIsAbrupt) {
|
| - List<Map<VariableElement, DartType>> perBranchOverrides =
|
| - new List<Map<VariableElement, DartType>>();
|
| - perBranchOverrides.add(thenOverrides);
|
| - perBranchOverrides.add(elseOverrides);
|
| - _overrideManager.mergeOverrides(perBranchOverrides);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitLabel(Label node) => null;
|
| -
|
| - @override
|
| - Object visitLibraryIdentifier(LibraryIdentifier node) => null;
|
| -
|
| - @override
|
| - Object visitMethodDeclaration(MethodDeclaration node) {
|
| - ExecutableElement outerFunction = _enclosingFunction;
|
| - try {
|
| - _enclosingFunction = node.element;
|
| - super.visitMethodDeclaration(node);
|
| - } finally {
|
| - _enclosingFunction = outerFunction;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitMethodInvocation(MethodInvocation node) {
|
| - //
|
| - // We visit the target and argument list, but do not visit the method name
|
| - // because it needs to be visited in the context of the invocation.
|
| - //
|
| - safelyVisit(node.target);
|
| - node.accept(elementResolver);
|
| - _inferFunctionExpressionsParametersTypes(node.argumentList);
|
| - safelyVisit(node.argumentList);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitNode(AstNode node) {
|
| - node.visitChildren(this);
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitPrefixedIdentifier(PrefixedIdentifier node) {
|
| - //
|
| - // We visit the prefix, but do not visit the identifier because it needs to
|
| - // be visited in the context of the prefix.
|
| - //
|
| - safelyVisit(node.prefix);
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitPropertyAccess(PropertyAccess node) {
|
| - //
|
| - // We visit the target, but do not visit the property name because it needs
|
| - // to be visited in the context of the property access node.
|
| - //
|
| - safelyVisit(node.target);
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitRedirectingConstructorInvocation(
|
| - RedirectingConstructorInvocation node) {
|
| - //
|
| - // We visit the argument list, but do not visit the optional identifier
|
| - // because it needs to be visited in the context of the constructor
|
| - // invocation.
|
| - //
|
| - safelyVisit(node.argumentList);
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitShowCombinator(ShowCombinator node) => null;
|
| -
|
| - @override
|
| - Object visitSuperConstructorInvocation(SuperConstructorInvocation node) {
|
| - //
|
| - // We visit the argument list, but do not visit the optional identifier
|
| - // because it needs to be visited in the context of the constructor
|
| - // invocation.
|
| - //
|
| - safelyVisit(node.argumentList);
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitSwitchCase(SwitchCase node) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - super.visitSwitchCase(node);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitSwitchDefault(SwitchDefault node) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - super.visitSwitchDefault(node);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitTopLevelVariableDeclaration(TopLevelVariableDeclaration node) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - super.visitTopLevelVariableDeclaration(node);
|
| - } finally {
|
| - Map<VariableElement, DartType> overrides =
|
| - _overrideManager.captureOverrides(node.variables);
|
| - _overrideManager.exitScope();
|
| - _overrideManager.applyOverrides(overrides);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitTypeName(TypeName node) => null;
|
| -
|
| - @override
|
| - Object visitVariableDeclaration(VariableDeclaration node) {
|
| - super.visitVariableDeclaration(node);
|
| - VariableElement element = node.element;
|
| - // Note: in addition to cloning the initializers for const variables, we
|
| - // have to clone the initializers for non-static final fields (because if
|
| - // they occur in a class with a const constructor, they will be needed to
|
| - // evaluate the const constructor).
|
| - if ((element.isConst ||
|
| - (element is FieldElement &&
|
| - element.isFinal &&
|
| - !element.isStatic)) &&
|
| - node.initializer != null) {
|
| - (element as ConstVariableElement).constantInitializer =
|
| - new ConstantAstCloner().cloneNode(node.initializer);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitWhileStatement(WhileStatement node) {
|
| - // Note: since we don't call the base class, we have to maintain
|
| - // _implicitLabelScope ourselves.
|
| - ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
|
| - try {
|
| - _implicitLabelScope = _implicitLabelScope.nest(node);
|
| - Expression condition = node.condition;
|
| - safelyVisit(condition);
|
| - Statement body = node.body;
|
| - if (body != null) {
|
| - _overrideManager.enterScope();
|
| - try {
|
| - _propagateTrueState(condition);
|
| - visitStatementInScope(body);
|
| - } finally {
|
| - _overrideManager.exitScope();
|
| - }
|
| - }
|
| - } finally {
|
| - _implicitLabelScope = outerImplicitScope;
|
| - }
|
| - // TODO(brianwilkerson) If the loop can only be exited because the condition
|
| - // is false, then propagateFalseState(condition);
|
| - node.accept(elementResolver);
|
| - node.accept(typeAnalyzer);
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Checks each promoted variable in the current scope for compliance with the following
|
| - * specification statement:
|
| - *
|
| - * If the variable <i>v</i> is accessed by a closure in <i>s<sub>1</sub></i> then the variable
|
| - * <i>v</i> is not potentially mutated anywhere in the scope of <i>v</i>.
|
| - */
|
| - void _clearTypePromotionsIfAccessedInClosureAndProtentiallyMutated(
|
| - AstNode target) {
|
| - for (Element element in _promoteManager.promotedElements) {
|
| - if ((element as VariableElementImpl).isPotentiallyMutatedInScope) {
|
| - if (_isVariableAccessedInClosure(element, target)) {
|
| - _promoteManager.setType(element, null);
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Checks each promoted variable in the current scope for compliance with the following
|
| - * specification statement:
|
| - *
|
| - * <i>v</i> is not potentially mutated in <i>s<sub>1</sub></i> or within a closure.
|
| - */
|
| - void _clearTypePromotionsIfPotentiallyMutatedIn(AstNode target) {
|
| - for (Element element in _promoteManager.promotedElements) {
|
| - if (_isVariablePotentiallyMutatedIn(element, target)) {
|
| - _promoteManager.setType(element, null);
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * The given expression is the expression used to compute the iterator for a for-each statement.
|
| - * Attempt to compute the type of objects that will be assigned to the loop variable and return
|
| - * that type. Return `null` if the type could not be determined.
|
| - *
|
| - * @param iterator the iterator for a for-each statement
|
| - * @return the type of objects that will be assigned to the loop variable
|
| - */
|
| - DartType _getIteratorElementType(Expression iteratorExpression) {
|
| - DartType expressionType = iteratorExpression.bestType;
|
| - if (expressionType is InterfaceType) {
|
| - InterfaceType interfaceType = expressionType;
|
| - FunctionType iteratorFunction =
|
| - _inheritanceManager.lookupMemberType(interfaceType, "iterator");
|
| - if (iteratorFunction == null) {
|
| - // TODO(brianwilkerson) Should we report this error?
|
| - return null;
|
| - }
|
| - DartType iteratorType = iteratorFunction.returnType;
|
| - if (iteratorType is InterfaceType) {
|
| - InterfaceType iteratorInterfaceType = iteratorType;
|
| - FunctionType currentFunction = _inheritanceManager.lookupMemberType(
|
| - iteratorInterfaceType, "current");
|
| - if (currentFunction == null) {
|
| - // TODO(brianwilkerson) Should we report this error?
|
| - return null;
|
| - }
|
| - return currentFunction.returnType;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * If given "mayBeClosure" is [FunctionExpression] without explicit parameters types and its
|
| - * required type is [FunctionType], then infer parameters types from [FunctionType].
|
| - */
|
| - void _inferFunctionExpressionParametersTypes(
|
| - Expression mayBeClosure, DartType mayByFunctionType) {
|
| - // prepare closure
|
| - if (mayBeClosure is! FunctionExpression) {
|
| - return;
|
| - }
|
| - FunctionExpression closure = mayBeClosure as FunctionExpression;
|
| - // prepare expected closure type
|
| - if (mayByFunctionType is! FunctionType) {
|
| - return;
|
| - }
|
| - FunctionType expectedClosureType = mayByFunctionType as FunctionType;
|
| - // If the expectedClosureType is not more specific than the static type,
|
| - // return.
|
| - DartType staticClosureType =
|
| - (closure.element != null ? closure.element.type : null) as DartType;
|
| - if (staticClosureType != null &&
|
| - !expectedClosureType.isMoreSpecificThan(staticClosureType)) {
|
| - return;
|
| - }
|
| - // set propagated type for the closure
|
| - closure.propagatedType = expectedClosureType;
|
| - // set inferred types for parameters
|
| - NodeList<FormalParameter> parameters = closure.parameters.parameters;
|
| - List<ParameterElement> expectedParameters = expectedClosureType.parameters;
|
| - for (int i = 0;
|
| - i < parameters.length && i < expectedParameters.length;
|
| - i++) {
|
| - FormalParameter parameter = parameters[i];
|
| - ParameterElement element = parameter.element;
|
| - DartType currentType = _overrideManager.getBestType(element);
|
| - // may be override the type
|
| - DartType expectedType = expectedParameters[i].type;
|
| - if (currentType == null || expectedType.isMoreSpecificThan(currentType)) {
|
| - _overrideManager.setType(element, expectedType);
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Try to infer types of parameters of the [FunctionExpression] arguments.
|
| - */
|
| - void _inferFunctionExpressionsParametersTypes(ArgumentList argumentList) {
|
| - for (Expression argument in argumentList.arguments) {
|
| - ParameterElement parameter = argument.propagatedParameterElement;
|
| - if (parameter == null) {
|
| - parameter = argument.staticParameterElement;
|
| - }
|
| - if (parameter != null) {
|
| - _inferFunctionExpressionParametersTypes(argument, parameter.type);
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Return `true` if the given expression terminates abruptly (that is, if any expression
|
| - * following the given expression will not be reached).
|
| - *
|
| - * @param expression the expression being tested
|
| - * @return `true` if the given expression terminates abruptly
|
| - */
|
| - bool _isAbruptTerminationExpression(Expression expression) {
|
| - // TODO(brianwilkerson) This needs to be significantly improved. Ideally we
|
| - // would eventually turn this into a method on Expression that returns a
|
| - // termination indication (normal, abrupt with no exception, abrupt with an
|
| - // exception).
|
| - while (expression is ParenthesizedExpression) {
|
| - expression = (expression as ParenthesizedExpression).expression;
|
| - }
|
| - return expression is ThrowExpression || expression is RethrowExpression;
|
| - }
|
| -
|
| - /**
|
| - * Return `true` if the given statement terminates abruptly (that is, if any statement
|
| - * following the given statement will not be reached).
|
| - *
|
| - * @param statement the statement being tested
|
| - * @return `true` if the given statement terminates abruptly
|
| - */
|
| - bool _isAbruptTerminationStatement(Statement statement) {
|
| - // TODO(brianwilkerson) This needs to be significantly improved. Ideally we
|
| - // would eventually turn this into a method on Statement that returns a
|
| - // termination indication (normal, abrupt with no exception, abrupt with an
|
| - // exception).
|
| - //
|
| - // collinsn: it is unsound to assume that [break] and [continue] are
|
| - // "abrupt". See: https://code.google.com/p/dart/issues/detail?id=19929#c4
|
| - // (tests are included in TypePropagationTest.java).
|
| - // In general, the difficulty is loopy control flow.
|
| - //
|
| - // In the presence of exceptions things become much more complicated, but
|
| - // while we only use this to propagate at [if]-statement join points,
|
| - // checking for [return] may work well enough in the common case.
|
| - if (statement is ReturnStatement) {
|
| - return true;
|
| - } else if (statement is ExpressionStatement) {
|
| - return _isAbruptTerminationExpression(statement.expression);
|
| - } else if (statement is Block) {
|
| - NodeList<Statement> statements = statement.statements;
|
| - int size = statements.length;
|
| - if (size == 0) {
|
| - return false;
|
| - }
|
| -
|
| - // This last-statement-is-return heuristic is unsound for adversarial
|
| - // code, but probably works well in the common case:
|
| - //
|
| - // var x = 123;
|
| - // var c = true;
|
| - // L: if (c) {
|
| - // x = "hello";
|
| - // c = false;
|
| - // break L;
|
| - // return;
|
| - // }
|
| - // print(x);
|
| - //
|
| - // Unsound to assume that [x = "hello";] never executed after the
|
| - // if-statement. Of course, a dead-code analysis could point out that
|
| - // [return] here is dead.
|
| - return _isAbruptTerminationStatement(statements[size - 1]);
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * Return `true` if the given variable is accessed within a closure in the given
|
| - * [AstNode] and also mutated somewhere in variable scope. This information is only
|
| - * available for local variables (including parameters).
|
| - *
|
| - * @param variable the variable to check
|
| - * @param target the [AstNode] to check within
|
| - * @return `true` if this variable is potentially mutated somewhere in the given ASTNode
|
| - */
|
| - bool _isVariableAccessedInClosure(Element variable, AstNode target) {
|
| - _ResolverVisitor_isVariableAccessedInClosure visitor =
|
| - new _ResolverVisitor_isVariableAccessedInClosure(variable);
|
| - target.accept(visitor);
|
| - return visitor.result;
|
| - }
|
| -
|
| - /**
|
| - * Return `true` if the given variable is potentially mutated somewhere in the given
|
| - * [AstNode]. This information is only available for local variables (including parameters).
|
| - *
|
| - * @param variable the variable to check
|
| - * @param target the [AstNode] to check within
|
| - * @return `true` if this variable is potentially mutated somewhere in the given ASTNode
|
| - */
|
| - bool _isVariablePotentiallyMutatedIn(Element variable, AstNode target) {
|
| - _ResolverVisitor_isVariablePotentiallyMutatedIn visitor =
|
| - new _ResolverVisitor_isVariablePotentiallyMutatedIn(variable);
|
| - target.accept(visitor);
|
| - return visitor.result;
|
| - }
|
| -
|
| - /**
|
| - * If it is appropriate to do so, promotes the current type of the static element associated with
|
| - * the given expression with the given type. Generally speaking, it is appropriate if the given
|
| - * type is more specific than the current type.
|
| - *
|
| - * @param expression the expression used to access the static element whose types might be
|
| - * promoted
|
| - * @param potentialType the potential type of the elements
|
| - */
|
| - void _promote(Expression expression, DartType potentialType) {
|
| - VariableElement element = getPromotionStaticElement(expression);
|
| - if (element != null) {
|
| - // may be mutated somewhere in closure
|
| - if (element.isPotentiallyMutatedInClosure) {
|
| - return;
|
| - }
|
| - // prepare current variable type
|
| - DartType type = _promoteManager.getType(element);
|
| - if (type == null) {
|
| - type = expression.staticType;
|
| - }
|
| - // Declared type should not be "dynamic".
|
| - if (type == null || type.isDynamic) {
|
| - return;
|
| - }
|
| - // Promoted type should not be "dynamic".
|
| - if (potentialType == null || potentialType.isDynamic) {
|
| - return;
|
| - }
|
| - // Promoted type should be more specific than declared.
|
| - if (!potentialType.isMoreSpecificThan(type)) {
|
| - return;
|
| - }
|
| - // Do promote type of variable.
|
| - _promoteManager.setType(element, potentialType);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Promotes type information using given condition.
|
| - */
|
| - void _promoteTypes(Expression condition) {
|
| - if (condition is BinaryExpression) {
|
| - BinaryExpression binary = condition;
|
| - if (binary.operator.type == sc.TokenType.AMPERSAND_AMPERSAND) {
|
| - Expression left = binary.leftOperand;
|
| - Expression right = binary.rightOperand;
|
| - _promoteTypes(left);
|
| - _promoteTypes(right);
|
| - _clearTypePromotionsIfPotentiallyMutatedIn(right);
|
| - }
|
| - } else if (condition is IsExpression) {
|
| - IsExpression is2 = condition;
|
| - if (is2.notOperator == null) {
|
| - _promote(is2.expression, is2.type.type);
|
| - }
|
| - } else if (condition is ParenthesizedExpression) {
|
| - _promoteTypes(condition.expression);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Propagate any type information that results from knowing that the given condition will have
|
| - * been evaluated to 'false'.
|
| - *
|
| - * @param condition the condition that will have evaluated to 'false'
|
| - */
|
| - void _propagateFalseState(Expression condition) {
|
| - if (condition is BinaryExpression) {
|
| - BinaryExpression binary = condition;
|
| - if (binary.operator.type == sc.TokenType.BAR_BAR) {
|
| - _propagateFalseState(binary.leftOperand);
|
| - _propagateFalseState(binary.rightOperand);
|
| - }
|
| - } else if (condition is IsExpression) {
|
| - IsExpression is2 = condition;
|
| - if (is2.notOperator != null) {
|
| - // Since an is-statement doesn't actually change the type, we don't
|
| - // let it affect the propagated type when it would result in a loss
|
| - // of precision.
|
| - overrideExpression(is2.expression, is2.type.type, false, false);
|
| - }
|
| - } else if (condition is PrefixExpression) {
|
| - PrefixExpression prefix = condition;
|
| - if (prefix.operator.type == sc.TokenType.BANG) {
|
| - _propagateTrueState(prefix.operand);
|
| - }
|
| - } else if (condition is ParenthesizedExpression) {
|
| - _propagateFalseState(condition.expression);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Propagate any type information that results from knowing that the given expression will have
|
| - * been evaluated without altering the flow of execution.
|
| - *
|
| - * @param expression the expression that will have been evaluated
|
| - */
|
| - void _propagateState(Expression expression) {
|
| - // TODO(brianwilkerson) Implement this.
|
| - }
|
| -
|
| - /**
|
| - * Propagate any type information that results from knowing that the given condition will have
|
| - * been evaluated to 'true'.
|
| - *
|
| - * @param condition the condition that will have evaluated to 'true'
|
| - */
|
| - void _propagateTrueState(Expression condition) {
|
| - if (condition is BinaryExpression) {
|
| - BinaryExpression binary = condition;
|
| - if (binary.operator.type == sc.TokenType.AMPERSAND_AMPERSAND) {
|
| - _propagateTrueState(binary.leftOperand);
|
| - _propagateTrueState(binary.rightOperand);
|
| - }
|
| - } else if (condition is IsExpression) {
|
| - IsExpression is2 = condition;
|
| - if (is2.notOperator == null) {
|
| - // Since an is-statement doesn't actually change the type, we don't
|
| - // let it affect the propagated type when it would result in a loss
|
| - // of precision.
|
| - overrideExpression(is2.expression, is2.type.type, false, false);
|
| - }
|
| - } else if (condition is PrefixExpression) {
|
| - PrefixExpression prefix = condition;
|
| - if (prefix.operator.type == sc.TokenType.BANG) {
|
| - _propagateFalseState(prefix.operand);
|
| - }
|
| - } else if (condition is ParenthesizedExpression) {
|
| - _propagateTrueState(condition.expression);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Record that the propagated type of the given node is the given type.
|
| - *
|
| - * @param expression the node whose type is to be recorded
|
| - * @param type the propagated type of the node
|
| - */
|
| - void _recordPropagatedType(Expression expression, DartType type) {
|
| - if (type != null && !type.isDynamic) {
|
| - expression.propagatedType = type;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * The abstract class `Scope` defines the behavior common to name scopes used by the resolver
|
| - * to determine which names are visible at any given point in the code.
|
| - */
|
| -abstract class Scope {
|
| - /**
|
| - * The prefix used to mark an identifier as being private to its library.
|
| - */
|
| - static int PRIVATE_NAME_PREFIX = 0x5F;
|
| -
|
| - /**
|
| - * The suffix added to the declared name of a setter when looking up the setter. Used to
|
| - * disambiguate between a getter and a setter that have the same name.
|
| - */
|
| - static String SETTER_SUFFIX = "=";
|
| -
|
| - /**
|
| - * The name used to look up the method used to implement the unary minus operator. Used to
|
| - * disambiguate between the unary and binary operators.
|
| - */
|
| - static String UNARY_MINUS = "unary-";
|
| -
|
| - /**
|
| - * A table mapping names that are defined in this scope to the element representing the thing
|
| - * declared with that name.
|
| - */
|
| - HashMap<String, Element> _definedNames = new HashMap<String, Element>();
|
| -
|
| - /**
|
| - * A flag indicating whether there are any names defined in this scope.
|
| - */
|
| - bool _hasName = false;
|
| -
|
| - /**
|
| - * Return the scope in which this scope is lexically enclosed.
|
| - *
|
| - * @return the scope in which this scope is lexically enclosed
|
| - */
|
| - Scope get enclosingScope => null;
|
| -
|
| - /**
|
| - * Return the listener that is to be informed when an error is encountered.
|
| - *
|
| - * @return the listener that is to be informed when an error is encountered
|
| - */
|
| - AnalysisErrorListener get errorListener;
|
| -
|
| - /**
|
| - * Add the given element to this scope. If there is already an element with the given name defined
|
| - * in this scope, then an error will be generated and the original element will continue to be
|
| - * mapped to the name. If there is an element with the given name in an enclosing scope, then a
|
| - * warning will be generated but the given element will hide the inherited element.
|
| - *
|
| - * @param element the element to be added to this scope
|
| - */
|
| - void define(Element element) {
|
| - String name = _getName(element);
|
| - if (name != null && !name.isEmpty) {
|
| - if (_definedNames.containsKey(name)) {
|
| - errorListener
|
| - .onError(getErrorForDuplicate(_definedNames[name], element));
|
| - } else {
|
| - _definedNames[name] = element;
|
| - _hasName = true;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Add the given element to this scope without checking for duplication or hiding.
|
| - *
|
| - * @param name the name of the element to be added
|
| - * @param element the element to be added to this scope
|
| - */
|
| - void defineNameWithoutChecking(String name, Element element) {
|
| - _definedNames[name] = element;
|
| - _hasName = true;
|
| - }
|
| -
|
| - /**
|
| - * Add the given element to this scope without checking for duplication or hiding.
|
| - *
|
| - * @param element the element to be added to this scope
|
| - */
|
| - void defineWithoutChecking(Element element) {
|
| - _definedNames[_getName(element)] = element;
|
| - _hasName = true;
|
| - }
|
| -
|
| - /**
|
| - * Return the error code to be used when reporting that a name being defined locally conflicts
|
| - * with another element of the same name in the local scope.
|
| - *
|
| - * @param existing the first element to be declared with the conflicting name
|
| - * @param duplicate another element declared with the conflicting name
|
| - * @return the error code used to report duplicate names within a scope
|
| - */
|
| - AnalysisError getErrorForDuplicate(Element existing, Element duplicate) {
|
| - // TODO(brianwilkerson) Customize the error message based on the types of
|
| - // elements that share the same name.
|
| - // TODO(jwren) There are 4 error codes for duplicate, but only 1 is being
|
| - // generated.
|
| - Source source = duplicate.source;
|
| - return new AnalysisError(source, duplicate.nameOffset,
|
| - duplicate.displayName.length, CompileTimeErrorCode.DUPLICATE_DEFINITION,
|
| - [existing.displayName]);
|
| - }
|
| -
|
| - /**
|
| - * Return the source that contains the given identifier, or the source associated with this scope
|
| - * if the source containing the identifier could not be determined.
|
| - *
|
| - * @param identifier the identifier whose source is to be returned
|
| - * @return the source that contains the given identifier
|
| - */
|
| - Source getSource(AstNode node) {
|
| - CompilationUnit unit = node.getAncestor((node) => node is CompilationUnit);
|
| - if (unit != null) {
|
| - CompilationUnitElement unitElement = unit.element;
|
| - if (unitElement != null) {
|
| - return unitElement.source;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Return the element with which the given name is associated, or `null` if the name is not
|
| - * defined within this scope.
|
| - *
|
| - * @param identifier the identifier node to lookup element for, used to report correct kind of a
|
| - * problem and associate problem with
|
| - * @param name the name associated with the element to be returned
|
| - * @param referencingLibrary the library that contains the reference to the name, used to
|
| - * implement library-level privacy
|
| - * @return the element with which the given name is associated
|
| - */
|
| - Element internalLookup(
|
| - Identifier identifier, String name, LibraryElement referencingLibrary);
|
| -
|
| - /**
|
| - * Return the element with which the given name is associated, or `null` if the name is not
|
| - * defined within this scope. This method only returns elements that are directly defined within
|
| - * this scope, not elements that are defined in an enclosing scope.
|
| - *
|
| - * @param name the name associated with the element to be returned
|
| - * @param referencingLibrary the library that contains the reference to the name, used to
|
| - * implement library-level privacy
|
| - * @return the element with which the given name is associated
|
| - */
|
| - Element localLookup(String name, LibraryElement referencingLibrary) {
|
| - if (_hasName) {
|
| - return _definedNames[name];
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Return the element with which the given identifier is associated, or `null` if the name
|
| - * is not defined within this scope.
|
| - *
|
| - * @param identifier the identifier associated with the element to be returned
|
| - * @param referencingLibrary the library that contains the reference to the name, used to
|
| - * implement library-level privacy
|
| - * @return the element with which the given identifier is associated
|
| - */
|
| - Element lookup(Identifier identifier, LibraryElement referencingLibrary) =>
|
| - internalLookup(identifier, identifier.name, referencingLibrary);
|
| -
|
| - /**
|
| - * Return the name that will be used to look up the given element.
|
| - *
|
| - * @param element the element whose look-up name is to be returned
|
| - * @return the name that will be used to look up the given element
|
| - */
|
| - String _getName(Element element) {
|
| - if (element is MethodElement) {
|
| - MethodElement method = element;
|
| - if (method.name == "-" && method.parameters.length == 0) {
|
| - return UNARY_MINUS;
|
| - }
|
| - }
|
| - return element.name;
|
| - }
|
| -
|
| - /**
|
| - * Return `true` if the given name is a library-private name.
|
| - *
|
| - * @param name the name being tested
|
| - * @return `true` if the given name is a library-private name
|
| - */
|
| - static bool isPrivateName(String name) =>
|
| - name != null && StringUtilities.startsWithChar(name, PRIVATE_NAME_PREFIX);
|
| -}
|
| -
|
| -/**
|
| - * The abstract class `ScopedVisitor` maintains name and label scopes as an AST structure is
|
| - * being visited.
|
| - */
|
| -abstract class ScopedVisitor extends UnifyingAstVisitor<Object> {
|
| - /**
|
| - * The element for the library containing the compilation unit being visited.
|
| - */
|
| - LibraryElement _definingLibrary;
|
| -
|
| - /**
|
| - * The source representing the compilation unit being visited.
|
| - */
|
| - final Source source;
|
| -
|
| - /**
|
| - * The error listener that will be informed of any errors that are found during resolution.
|
| - */
|
| - AnalysisErrorListener _errorListener;
|
| -
|
| - /**
|
| - * The scope used to resolve identifiers.
|
| - */
|
| - Scope nameScope;
|
| -
|
| - /**
|
| - * The object used to access the types from the core library.
|
| - */
|
| - final TypeProvider typeProvider;
|
| -
|
| - /**
|
| - * The scope used to resolve unlabeled `break` and `continue` statements.
|
| - */
|
| - ImplicitLabelScope _implicitLabelScope = ImplicitLabelScope.ROOT;
|
| -
|
| - /**
|
| - * The scope used to resolve labels for `break` and `continue` statements, or
|
| - * `null` if no labels have been defined in the current context.
|
| - */
|
| - LabelScope labelScope;
|
| -
|
| - /**
|
| - * The class containing the AST nodes being visited,
|
| - * or `null` if we are not in the scope of a class.
|
| - */
|
| - ClassElement enclosingClass;
|
| -
|
| - /**
|
| - * Initialize a newly created visitor to resolve the nodes in a compilation
|
| - * unit.
|
| - *
|
| - * [definingLibrary] is the element for the library containing the
|
| - * compilation unit being visited.
|
| - * [source] is the source representing the compilation unit being visited.
|
| - * [typeProvider] is the object used to access the types from the core
|
| - * library.
|
| - * [errorListener] is the error listener that will be informed of any errors
|
| - * that are found during resolution.
|
| - * [nameScope] is the scope used to resolve identifiers in the node that will
|
| - * first be visited. If `null` or unspecified, a new [LibraryScope] will be
|
| - * created based on [definingLibrary] and [typeProvider].
|
| - */
|
| - ScopedVisitor(LibraryElement definingLibrary, this.source, this.typeProvider,
|
| - AnalysisErrorListener errorListener, {Scope nameScope}) {
|
| - this._definingLibrary = definingLibrary;
|
| - this._errorListener = errorListener;
|
| - if (nameScope == null) {
|
| - this.nameScope = new LibraryScope(definingLibrary, errorListener);
|
| - } else {
|
| - this.nameScope = nameScope;
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Return the library element for the library containing the compilation unit being resolved.
|
| - *
|
| - * @return the library element for the library containing the compilation unit being resolved
|
| - */
|
| - LibraryElement get definingLibrary => _definingLibrary;
|
| -
|
| - /**
|
| - * Return the implicit label scope in which the current node is being
|
| - * resolved.
|
| - */
|
| - ImplicitLabelScope get implicitLabelScope => _implicitLabelScope;
|
| -
|
| - /**
|
| - * Replaces the current [Scope] with the enclosing [Scope].
|
| - *
|
| - * @return the enclosing [Scope].
|
| - */
|
| - Scope popNameScope() {
|
| - nameScope = nameScope.enclosingScope;
|
| - return nameScope;
|
| - }
|
| -
|
| - /**
|
| - * Pushes a new [Scope] into the visitor.
|
| - *
|
| - * @return the new [Scope].
|
| - */
|
| - Scope pushNameScope() {
|
| - Scope newScope = new EnclosedScope(nameScope);
|
| - nameScope = newScope;
|
| - return nameScope;
|
| - }
|
| -
|
| - /**
|
| - * Report an error with the given error code and arguments.
|
| - *
|
| - * @param errorCode the error code of the error to be reported
|
| - * @param node the node specifying the location of the error
|
| - * @param arguments the arguments to the error, used to compose the error message
|
| - */
|
| - void reportErrorForNode(ErrorCode errorCode, AstNode node,
|
| - [List<Object> arguments]) {
|
| - _errorListener.onError(new AnalysisError(
|
| - source, node.offset, node.length, errorCode, arguments));
|
| - }
|
| -
|
| - /**
|
| - * Report an error with the given error code and arguments.
|
| - *
|
| - * @param errorCode the error code of the error to be reported
|
| - * @param offset the offset of the location of the error
|
| - * @param length the length of the location of the error
|
| - * @param arguments the arguments to the error, used to compose the error message
|
| - */
|
| - void reportErrorForOffset(ErrorCode errorCode, int offset, int length,
|
| - [List<Object> arguments]) {
|
| - _errorListener.onError(
|
| - new AnalysisError(source, offset, length, errorCode, arguments));
|
| - }
|
| -
|
| - /**
|
| - * Report an error with the given error code and arguments.
|
| - *
|
| - * @param errorCode the error code of the error to be reported
|
| - * @param token the token specifying the location of the error
|
| - * @param arguments the arguments to the error, used to compose the error message
|
| - */
|
| - void reportErrorForToken(ErrorCode errorCode, sc.Token token,
|
| - [List<Object> arguments]) {
|
| - _errorListener.onError(new AnalysisError(
|
| - source, token.offset, token.length, errorCode, arguments));
|
| - }
|
| -
|
| - /**
|
| - * Visit the given AST node if it is not null.
|
| - *
|
| - * @param node the node to be visited
|
| - */
|
| - void safelyVisit(AstNode node) {
|
| - if (node != null) {
|
| - node.accept(this);
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitBlock(Block node) {
|
| - Scope outerScope = nameScope;
|
| - try {
|
| - EnclosedScope enclosedScope = new EnclosedScope(nameScope);
|
| - _hideNamesDefinedInBlock(enclosedScope, node);
|
| - nameScope = enclosedScope;
|
| - super.visitBlock(node);
|
| - } finally {
|
| - nameScope = outerScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitBlockFunctionBody(BlockFunctionBody node) {
|
| - ImplicitLabelScope implicitOuterScope = _implicitLabelScope;
|
| - try {
|
| - _implicitLabelScope = ImplicitLabelScope.ROOT;
|
| - super.visitBlockFunctionBody(node);
|
| - } finally {
|
| - _implicitLabelScope = implicitOuterScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitCatchClause(CatchClause node) {
|
| - SimpleIdentifier exception = node.exceptionParameter;
|
| - if (exception != null) {
|
| - Scope outerScope = nameScope;
|
| - try {
|
| - nameScope = new EnclosedScope(nameScope);
|
| - nameScope.define(exception.staticElement);
|
| - SimpleIdentifier stackTrace = node.stackTraceParameter;
|
| - if (stackTrace != null) {
|
| - nameScope.define(stackTrace.staticElement);
|
| - }
|
| - super.visitCatchClause(node);
|
| - } finally {
|
| - nameScope = outerScope;
|
| - }
|
| - } else {
|
| - super.visitCatchClause(node);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitClassDeclaration(ClassDeclaration node) {
|
| - ClassElement classElement = node.element;
|
| - Scope outerScope = nameScope;
|
| - try {
|
| - if (classElement == null) {
|
| - AnalysisEngine.instance.logger.logInformation(
|
| - "Missing element for class declaration ${node.name.name} in ${definingLibrary.source.fullName}",
|
| - new CaughtException(new AnalysisException(), null));
|
| - super.visitClassDeclaration(node);
|
| - } else {
|
| - ClassElement outerClass = enclosingClass;
|
| - try {
|
| - enclosingClass = node.element;
|
| - nameScope = new TypeParameterScope(nameScope, classElement);
|
| - visitClassDeclarationInScope(node);
|
| - nameScope = new ClassScope(nameScope, classElement);
|
| - visitClassMembersInScope(node);
|
| - } finally {
|
| - enclosingClass = outerClass;
|
| - }
|
| - }
|
| - } finally {
|
| - nameScope = outerScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - void visitClassDeclarationInScope(ClassDeclaration node) {
|
| - safelyVisit(node.name);
|
| - safelyVisit(node.typeParameters);
|
| - safelyVisit(node.extendsClause);
|
| - safelyVisit(node.withClause);
|
| - safelyVisit(node.implementsClause);
|
| - safelyVisit(node.nativeClause);
|
| - }
|
| -
|
| - void visitClassMembersInScope(ClassDeclaration node) {
|
| - safelyVisit(node.documentationComment);
|
| - node.metadata.accept(this);
|
| - node.members.accept(this);
|
| - }
|
| -
|
| - @override
|
| - Object visitClassTypeAlias(ClassTypeAlias node) {
|
| - Scope outerScope = nameScope;
|
| - try {
|
| - ClassElement element = node.element;
|
| - nameScope =
|
| - new ClassScope(new TypeParameterScope(nameScope, element), element);
|
| - super.visitClassTypeAlias(node);
|
| - } finally {
|
| - nameScope = outerScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| - ConstructorElement constructorElement = node.element;
|
| - Scope outerScope = nameScope;
|
| - try {
|
| - if (constructorElement == null) {
|
| - StringBuffer buffer = new StringBuffer();
|
| - buffer.write("Missing element for constructor ");
|
| - buffer.write(node.returnType.name);
|
| - if (node.name != null) {
|
| - buffer.write(".");
|
| - buffer.write(node.name.name);
|
| - }
|
| - buffer.write(" in ");
|
| - buffer.write(definingLibrary.source.fullName);
|
| - AnalysisEngine.instance.logger.logInformation(buffer.toString(),
|
| - new CaughtException(new AnalysisException(), null));
|
| - } else {
|
| - nameScope = new FunctionScope(nameScope, constructorElement);
|
| - }
|
| - super.visitConstructorDeclaration(node);
|
| - } finally {
|
| - nameScope = outerScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitDeclaredIdentifier(DeclaredIdentifier node) {
|
| - VariableElement element = node.element;
|
| - if (element != null) {
|
| - nameScope.define(element);
|
| - }
|
| - super.visitDeclaredIdentifier(node);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitDoStatement(DoStatement node) {
|
| - ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
|
| - try {
|
| - _implicitLabelScope = _implicitLabelScope.nest(node);
|
| - visitStatementInScope(node.body);
|
| - safelyVisit(node.condition);
|
| - } finally {
|
| - _implicitLabelScope = outerImplicitScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitForEachStatement(ForEachStatement node) {
|
| - Scope outerNameScope = nameScope;
|
| - ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
|
| - try {
|
| - nameScope = new EnclosedScope(nameScope);
|
| - _implicitLabelScope = _implicitLabelScope.nest(node);
|
| - visitForEachStatementInScope(node);
|
| - } finally {
|
| - nameScope = outerNameScope;
|
| - _implicitLabelScope = outerImplicitScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Visit the given statement after it's scope has been created. This replaces the normal call to
|
| - * the inherited visit method so that ResolverVisitor can intervene when type propagation is
|
| - * enabled.
|
| - *
|
| - * @param node the statement to be visited
|
| - */
|
| - void visitForEachStatementInScope(ForEachStatement node) {
|
| - //
|
| - // We visit the iterator before the loop variable because the loop variable
|
| - // cannot be in scope while visiting the iterator.
|
| - //
|
| - safelyVisit(node.identifier);
|
| - safelyVisit(node.iterable);
|
| - safelyVisit(node.loopVariable);
|
| - visitStatementInScope(node.body);
|
| - }
|
| -
|
| - @override
|
| - Object visitFormalParameterList(FormalParameterList node) {
|
| - super.visitFormalParameterList(node);
|
| - // We finished resolving function signature, now include formal parameters
|
| - // scope. Note: we must not do this if the parent is a
|
| - // FunctionTypedFormalParameter, because in that case we aren't finished
|
| - // resolving the full function signature, just a part of it.
|
| - if (nameScope is FunctionScope &&
|
| - node.parent is! FunctionTypedFormalParameter) {
|
| - (nameScope as FunctionScope).defineParameters();
|
| - }
|
| - if (nameScope is FunctionTypeScope) {
|
| - (nameScope as FunctionTypeScope).defineParameters();
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitForStatement(ForStatement node) {
|
| - Scope outerNameScope = nameScope;
|
| - ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
|
| - try {
|
| - nameScope = new EnclosedScope(nameScope);
|
| - _implicitLabelScope = _implicitLabelScope.nest(node);
|
| - visitForStatementInScope(node);
|
| - } finally {
|
| - nameScope = outerNameScope;
|
| - _implicitLabelScope = outerImplicitScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Visit the given statement after it's scope has been created. This replaces the normal call to
|
| - * the inherited visit method so that ResolverVisitor can intervene when type propagation is
|
| - * enabled.
|
| - *
|
| - * @param node the statement to be visited
|
| - */
|
| - void visitForStatementInScope(ForStatement node) {
|
| - safelyVisit(node.variables);
|
| - safelyVisit(node.initialization);
|
| - safelyVisit(node.condition);
|
| - node.updaters.accept(this);
|
| - visitStatementInScope(node.body);
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| - ExecutableElement functionElement = node.element;
|
| - if (functionElement != null &&
|
| - functionElement.enclosingElement is! CompilationUnitElement) {
|
| - nameScope.define(functionElement);
|
| - }
|
| - Scope outerScope = nameScope;
|
| - try {
|
| - if (functionElement == null) {
|
| - AnalysisEngine.instance.logger.logInformation(
|
| - "Missing element for top-level function ${node.name.name} in ${definingLibrary.source.fullName}",
|
| - new CaughtException(new AnalysisException(), null));
|
| - } else {
|
| - nameScope = new FunctionScope(nameScope, functionElement);
|
| - }
|
| - super.visitFunctionDeclaration(node);
|
| - } finally {
|
| - nameScope = outerScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionExpression(FunctionExpression node) {
|
| - if (node.parent is FunctionDeclaration) {
|
| - // We have already created a function scope and don't need to do so again.
|
| - super.visitFunctionExpression(node);
|
| - } else {
|
| - Scope outerScope = nameScope;
|
| - try {
|
| - ExecutableElement functionElement = node.element;
|
| - if (functionElement == null) {
|
| - StringBuffer buffer = new StringBuffer();
|
| - buffer.write("Missing element for function ");
|
| - AstNode parent = node.parent;
|
| - while (parent != null) {
|
| - if (parent is Declaration) {
|
| - Element parentElement = parent.element;
|
| - buffer.write(parentElement == null
|
| - ? "<unknown> "
|
| - : "${parentElement.name} ");
|
| - }
|
| - parent = parent.parent;
|
| - }
|
| - buffer.write("in ");
|
| - buffer.write(definingLibrary.source.fullName);
|
| - AnalysisEngine.instance.logger.logInformation(buffer.toString(),
|
| - new CaughtException(new AnalysisException(), null));
|
| - } else {
|
| - nameScope = new FunctionScope(nameScope, functionElement);
|
| - }
|
| - super.visitFunctionExpression(node);
|
| - } finally {
|
| - nameScope = outerScope;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionTypeAlias(FunctionTypeAlias node) {
|
| - Scope outerScope = nameScope;
|
| - try {
|
| - nameScope = new FunctionTypeScope(nameScope, node.element);
|
| - super.visitFunctionTypeAlias(node);
|
| - } finally {
|
| - nameScope = outerScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
|
| - Scope outerScope = nameScope;
|
| - try {
|
| - ParameterElement parameterElement = node.element;
|
| - if (parameterElement == null) {
|
| - AnalysisEngine.instance.logger.logInformation(
|
| - "Missing element for function typed formal parameter ${node.identifier.name} in ${definingLibrary.source.fullName}",
|
| - new CaughtException(new AnalysisException(), null));
|
| - } else {
|
| - nameScope = new EnclosedScope(nameScope);
|
| - for (TypeParameterElement typeParameter
|
| - in parameterElement.typeParameters) {
|
| - nameScope.define(typeParameter);
|
| - }
|
| - }
|
| - super.visitFunctionTypedFormalParameter(node);
|
| - } finally {
|
| - nameScope = outerScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitIfStatement(IfStatement node) {
|
| - safelyVisit(node.condition);
|
| - visitStatementInScope(node.thenStatement);
|
| - visitStatementInScope(node.elseStatement);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitLabeledStatement(LabeledStatement node) {
|
| - LabelScope outerScope = _addScopesFor(node.labels, node.unlabeled);
|
| - try {
|
| - super.visitLabeledStatement(node);
|
| - } finally {
|
| - labelScope = outerScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitMethodDeclaration(MethodDeclaration node) {
|
| - Scope outerScope = nameScope;
|
| - try {
|
| - ExecutableElement methodElement = node.element;
|
| - if (methodElement == null) {
|
| - AnalysisEngine.instance.logger.logInformation(
|
| - "Missing element for method ${node.name.name} in ${definingLibrary.source.fullName}",
|
| - new CaughtException(new AnalysisException(), null));
|
| - } else {
|
| - nameScope = new FunctionScope(nameScope, methodElement);
|
| - }
|
| - super.visitMethodDeclaration(node);
|
| - } finally {
|
| - nameScope = outerScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Visit the given statement after it's scope has been created. This is used by ResolverVisitor to
|
| - * correctly visit the 'then' and 'else' statements of an 'if' statement.
|
| - *
|
| - * @param node the statement to be visited
|
| - */
|
| - void visitStatementInScope(Statement node) {
|
| - if (node is Block) {
|
| - // Don't create a scope around a block because the block will create it's
|
| - // own scope.
|
| - visitBlock(node);
|
| - } else if (node != null) {
|
| - Scope outerNameScope = nameScope;
|
| - try {
|
| - nameScope = new EnclosedScope(nameScope);
|
| - node.accept(this);
|
| - } finally {
|
| - nameScope = outerNameScope;
|
| - }
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitSwitchCase(SwitchCase node) {
|
| - node.expression.accept(this);
|
| - Scope outerNameScope = nameScope;
|
| - try {
|
| - nameScope = new EnclosedScope(nameScope);
|
| - node.statements.accept(this);
|
| - } finally {
|
| - nameScope = outerNameScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitSwitchDefault(SwitchDefault node) {
|
| - Scope outerNameScope = nameScope;
|
| - try {
|
| - nameScope = new EnclosedScope(nameScope);
|
| - node.statements.accept(this);
|
| - } finally {
|
| - nameScope = outerNameScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitSwitchStatement(SwitchStatement node) {
|
| - LabelScope outerScope = labelScope;
|
| - ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
|
| - try {
|
| - _implicitLabelScope = _implicitLabelScope.nest(node);
|
| - for (SwitchMember member in node.members) {
|
| - for (Label label in member.labels) {
|
| - SimpleIdentifier labelName = label.label;
|
| - LabelElement labelElement = labelName.staticElement as LabelElement;
|
| - labelScope =
|
| - new LabelScope(labelScope, labelName.name, member, labelElement);
|
| - }
|
| - }
|
| - super.visitSwitchStatement(node);
|
| - } finally {
|
| - labelScope = outerScope;
|
| - _implicitLabelScope = outerImplicitScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitVariableDeclaration(VariableDeclaration node) {
|
| - super.visitVariableDeclaration(node);
|
| - if (node.parent.parent is! TopLevelVariableDeclaration &&
|
| - node.parent.parent is! FieldDeclaration) {
|
| - VariableElement element = node.element;
|
| - if (element != null) {
|
| - nameScope.define(element);
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitWhileStatement(WhileStatement node) {
|
| - safelyVisit(node.condition);
|
| - ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
|
| - try {
|
| - _implicitLabelScope = _implicitLabelScope.nest(node);
|
| - visitStatementInScope(node.body);
|
| - } finally {
|
| - _implicitLabelScope = outerImplicitScope;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Add scopes for each of the given labels.
|
| - *
|
| - * @param labels the labels for which new scopes are to be added
|
| - * @return the scope that was in effect before the new scopes were added
|
| - */
|
| - LabelScope _addScopesFor(NodeList<Label> labels, AstNode node) {
|
| - LabelScope outerScope = labelScope;
|
| - for (Label label in labels) {
|
| - SimpleIdentifier labelNameNode = label.label;
|
| - String labelName = labelNameNode.name;
|
| - LabelElement labelElement = labelNameNode.staticElement as LabelElement;
|
| - labelScope = new LabelScope(labelScope, labelName, node, labelElement);
|
| - }
|
| - return outerScope;
|
| - }
|
| -
|
| - /**
|
| - * Marks the local declarations of the given [Block] hidden in the enclosing scope.
|
| - * According to the scoping rules name is hidden if block defines it, but name is defined after
|
| - * its declaration statement.
|
| - */
|
| - void _hideNamesDefinedInBlock(EnclosedScope scope, Block block) {
|
| - NodeList<Statement> statements = block.statements;
|
| - int statementCount = statements.length;
|
| - for (int i = 0; i < statementCount; i++) {
|
| - Statement statement = statements[i];
|
| - if (statement is VariableDeclarationStatement) {
|
| - VariableDeclarationStatement vds = statement;
|
| - NodeList<VariableDeclaration> variables = vds.variables.variables;
|
| - int variableCount = variables.length;
|
| - for (int j = 0; j < variableCount; j++) {
|
| - scope.hide(variables[j].element);
|
| - }
|
| - } else if (statement is FunctionDeclarationStatement) {
|
| - FunctionDeclarationStatement fds = statement;
|
| - scope.hide(fds.functionDeclaration.element);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of this class manage the knowledge of what the set of subtypes are for a given type.
|
| - */
|
| -class SubtypeManager {
|
| - /**
|
| - * A map between [ClassElement]s and a set of [ClassElement]s that are subtypes of the
|
| - * key.
|
| - */
|
| - HashMap<ClassElement, HashSet<ClassElement>> _subtypeMap =
|
| - new HashMap<ClassElement, HashSet<ClassElement>>();
|
| -
|
| - /**
|
| - * The set of all [LibraryElement]s that have been visited by the manager. This is used both
|
| - * to prevent infinite loops in the recursive methods, and also as a marker for the scope of the
|
| - * libraries visited by this manager.
|
| - */
|
| - HashSet<LibraryElement> _visitedLibraries = new HashSet<LibraryElement>();
|
| -
|
| - /**
|
| - * Given some [ClassElement], return the set of all subtypes, and subtypes of subtypes.
|
| - *
|
| - * @param classElement the class to recursively return the set of subtypes of
|
| - */
|
| - HashSet<ClassElement> computeAllSubtypes(ClassElement classElement) {
|
| - // Ensure that we have generated the subtype map for the library
|
| - _computeSubtypesInLibrary(classElement.library);
|
| - // use the subtypeMap to compute the set of all subtypes and subtype's
|
| - // subtypes
|
| - HashSet<ClassElement> allSubtypes = new HashSet<ClassElement>();
|
| - _safelyComputeAllSubtypes(
|
| - classElement, new HashSet<ClassElement>(), allSubtypes);
|
| - return allSubtypes;
|
| - }
|
| -
|
| - /**
|
| - * Given some [LibraryElement], visit all of the types in the library, the passed library,
|
| - * and any imported libraries, will be in the [visitedLibraries] set.
|
| - *
|
| - * @param libraryElement the library to visit, it it hasn't been visited already
|
| - */
|
| - void ensureLibraryVisited(LibraryElement libraryElement) {
|
| - _computeSubtypesInLibrary(libraryElement);
|
| - }
|
| -
|
| - /**
|
| - * Given some [ClassElement], this method adds all of the pairs combinations of itself and
|
| - * all of its supertypes to the [subtypeMap] map.
|
| - *
|
| - * @param classElement the class element
|
| - */
|
| - void _computeSubtypesInClass(ClassElement classElement) {
|
| - InterfaceType supertypeType = classElement.supertype;
|
| - if (supertypeType != null) {
|
| - ClassElement supertypeElement = supertypeType.element;
|
| - if (supertypeElement != null) {
|
| - _putInSubtypeMap(supertypeElement, classElement);
|
| - }
|
| - }
|
| - List<InterfaceType> interfaceTypes = classElement.interfaces;
|
| - for (InterfaceType interfaceType in interfaceTypes) {
|
| - ClassElement interfaceElement = interfaceType.element;
|
| - if (interfaceElement != null) {
|
| - _putInSubtypeMap(interfaceElement, classElement);
|
| - }
|
| - }
|
| - List<InterfaceType> mixinTypes = classElement.mixins;
|
| - for (InterfaceType mixinType in mixinTypes) {
|
| - ClassElement mixinElement = mixinType.element;
|
| - if (mixinElement != null) {
|
| - _putInSubtypeMap(mixinElement, classElement);
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Given some [CompilationUnitElement], this method calls
|
| - * [computeAllSubtypes] on all of the [ClassElement]s in the
|
| - * compilation unit.
|
| - *
|
| - * @param unitElement the compilation unit element
|
| - */
|
| - void _computeSubtypesInCompilationUnit(CompilationUnitElement unitElement) {
|
| - List<ClassElement> classElements = unitElement.types;
|
| - for (ClassElement classElement in classElements) {
|
| - _computeSubtypesInClass(classElement);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Given some [LibraryElement], this method calls
|
| - * [computeAllSubtypes] on all of the [ClassElement]s in the
|
| - * compilation unit, and itself for all imported and exported libraries. All visited libraries are
|
| - * added to the [visitedLibraries] set.
|
| - *
|
| - * @param libraryElement the library element
|
| - */
|
| - void _computeSubtypesInLibrary(LibraryElement libraryElement) {
|
| - if (libraryElement == null || _visitedLibraries.contains(libraryElement)) {
|
| - return;
|
| - }
|
| - _visitedLibraries.add(libraryElement);
|
| - _computeSubtypesInCompilationUnit(libraryElement.definingCompilationUnit);
|
| - List<CompilationUnitElement> parts = libraryElement.parts;
|
| - for (CompilationUnitElement part in parts) {
|
| - _computeSubtypesInCompilationUnit(part);
|
| - }
|
| - List<LibraryElement> imports = libraryElement.importedLibraries;
|
| - for (LibraryElement importElt in imports) {
|
| - _computeSubtypesInLibrary(importElt.library);
|
| - }
|
| - List<LibraryElement> exports = libraryElement.exportedLibraries;
|
| - for (LibraryElement exportElt in exports) {
|
| - _computeSubtypesInLibrary(exportElt.library);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Add some key/ value pair into the [subtypeMap] map.
|
| - *
|
| - * @param supertypeElement the key for the [subtypeMap] map
|
| - * @param subtypeElement the value for the [subtypeMap] map
|
| - */
|
| - void _putInSubtypeMap(
|
| - ClassElement supertypeElement, ClassElement subtypeElement) {
|
| - HashSet<ClassElement> subtypes = _subtypeMap[supertypeElement];
|
| - if (subtypes == null) {
|
| - subtypes = new HashSet<ClassElement>();
|
| - _subtypeMap[supertypeElement] = subtypes;
|
| - }
|
| - subtypes.add(subtypeElement);
|
| - }
|
| -
|
| - /**
|
| - * Given some [ClassElement] and a [HashSet<ClassElement>], this method recursively
|
| - * adds all of the subtypes of the [ClassElement] to the passed array.
|
| - *
|
| - * @param classElement the type to compute the set of subtypes of
|
| - * @param visitedClasses the set of class elements that this method has already recursively seen
|
| - * @param allSubtypes the computed set of subtypes of the passed class element
|
| - */
|
| - void _safelyComputeAllSubtypes(ClassElement classElement,
|
| - HashSet<ClassElement> visitedClasses, HashSet<ClassElement> allSubtypes) {
|
| - if (!visitedClasses.add(classElement)) {
|
| - // if this class has already been called on this class element
|
| - return;
|
| - }
|
| - HashSet<ClassElement> subtypes = _subtypeMap[classElement];
|
| - if (subtypes == null) {
|
| - return;
|
| - }
|
| - for (ClassElement subtype in subtypes) {
|
| - _safelyComputeAllSubtypes(subtype, visitedClasses, allSubtypes);
|
| - }
|
| - allSubtypes.addAll(subtypes);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `ToDoFinder` find to-do comments in Dart code.
|
| - */
|
| -class ToDoFinder {
|
| - /**
|
| - * The error reporter by which to-do comments will be reported.
|
| - */
|
| - final ErrorReporter _errorReporter;
|
| -
|
| - /**
|
| - * Initialize a newly created to-do finder to report to-do comments to the given reporter.
|
| - *
|
| - * @param errorReporter the error reporter by which to-do comments will be reported
|
| - */
|
| - ToDoFinder(this._errorReporter);
|
| -
|
| - /**
|
| - * Search the comments in the given compilation unit for to-do comments and report an error for
|
| - * each.
|
| - *
|
| - * @param unit the compilation unit containing the to-do comments
|
| - */
|
| - void findIn(CompilationUnit unit) {
|
| - _gatherTodoComments(unit.beginToken);
|
| - }
|
| -
|
| - /**
|
| - * Search the comment tokens reachable from the given token and create errors for each to-do
|
| - * comment.
|
| - *
|
| - * @param token the head of the list of tokens being searched
|
| - */
|
| - void _gatherTodoComments(sc.Token token) {
|
| - while (token != null && token.type != sc.TokenType.EOF) {
|
| - sc.Token commentToken = token.precedingComments;
|
| - while (commentToken != null) {
|
| - if (commentToken.type == sc.TokenType.SINGLE_LINE_COMMENT ||
|
| - commentToken.type == sc.TokenType.MULTI_LINE_COMMENT) {
|
| - _scrapeTodoComment(commentToken);
|
| - }
|
| - commentToken = commentToken.next;
|
| - }
|
| - token = token.next;
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Look for user defined tasks in comments and convert them into info level analysis issues.
|
| - *
|
| - * @param commentToken the comment token to analyze
|
| - */
|
| - void _scrapeTodoComment(sc.Token commentToken) {
|
| - JavaPatternMatcher matcher =
|
| - new JavaPatternMatcher(TodoCode.TODO_REGEX, commentToken.lexeme);
|
| - if (matcher.find()) {
|
| - int offset =
|
| - commentToken.offset + matcher.start() + matcher.group(1).length;
|
| - int length = matcher.group(2).length;
|
| - _errorReporter.reportErrorForOffset(
|
| - TodoCode.TODO, offset, length, [matcher.group(2)]);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `TypeOverrideManager` manage the ability to override the type of an
|
| - * element within a given context.
|
| - */
|
| -class TypeOverrideManager {
|
| - /**
|
| - * The current override scope, or `null` if no scope has been entered.
|
| - */
|
| - TypeOverrideManager_TypeOverrideScope currentScope;
|
| -
|
| - /**
|
| - * Apply a set of overrides that were previously captured.
|
| - *
|
| - * @param overrides the overrides to be applied
|
| - */
|
| - void applyOverrides(Map<VariableElement, DartType> overrides) {
|
| - if (currentScope == null) {
|
| - throw new IllegalStateException("Cannot apply overrides without a scope");
|
| - }
|
| - currentScope.applyOverrides(overrides);
|
| - }
|
| -
|
| - /**
|
| - * Return a table mapping the elements whose type is overridden in the current scope to the
|
| - * overriding type.
|
| - *
|
| - * @return the overrides in the current scope
|
| - */
|
| - Map<VariableElement, DartType> captureLocalOverrides() {
|
| - if (currentScope == null) {
|
| - throw new IllegalStateException(
|
| - "Cannot capture local overrides without a scope");
|
| - }
|
| - return currentScope.captureLocalOverrides();
|
| - }
|
| -
|
| - /**
|
| - * Return a map from the elements for the variables in the given list that have their types
|
| - * overridden to the overriding type.
|
| - *
|
| - * @param variableList the list of variables whose overriding types are to be captured
|
| - * @return a table mapping elements to their overriding types
|
| - */
|
| - Map<VariableElement, DartType> captureOverrides(
|
| - VariableDeclarationList variableList) {
|
| - if (currentScope == null) {
|
| - throw new IllegalStateException(
|
| - "Cannot capture overrides without a scope");
|
| - }
|
| - return currentScope.captureOverrides(variableList);
|
| - }
|
| -
|
| - /**
|
| - * Enter a new override scope.
|
| - */
|
| - void enterScope() {
|
| - currentScope = new TypeOverrideManager_TypeOverrideScope(currentScope);
|
| - }
|
| -
|
| - /**
|
| - * Exit the current override scope.
|
| - */
|
| - void exitScope() {
|
| - if (currentScope == null) {
|
| - throw new IllegalStateException("No scope to exit");
|
| - }
|
| - currentScope = currentScope._outerScope;
|
| - }
|
| -
|
| - /**
|
| - * Return the best type information available for the given element. If the type of the element
|
| - * has been overridden, then return the overriding type. Otherwise, return the static type.
|
| - *
|
| - * @param element the element for which type information is to be returned
|
| - * @return the best type information available for the given element
|
| - */
|
| - DartType getBestType(VariableElement element) {
|
| - DartType bestType = getType(element);
|
| - return bestType == null ? element.type : bestType;
|
| - }
|
| -
|
| - /**
|
| - * Return the overridden type of the given element, or `null` if the type of the element has
|
| - * not been overridden.
|
| - *
|
| - * @param element the element whose type might have been overridden
|
| - * @return the overridden type of the given element
|
| - */
|
| - DartType getType(Element element) {
|
| - if (currentScope == null) {
|
| - return null;
|
| - }
|
| - return currentScope.getType(element);
|
| - }
|
| -
|
| - /**
|
| - * Update overrides assuming [perBranchOverrides] is the collection of
|
| - * per-branch overrides for *all* branches flowing into a join point.
|
| - *
|
| - * If a variable type in any of branches is not the same as its type before
|
| - * the branching, then its propagated type is reset to `null`.
|
| - */
|
| - void mergeOverrides(List<Map<VariableElement, DartType>> perBranchOverrides) {
|
| - for (Map<VariableElement, DartType> branch in perBranchOverrides) {
|
| - branch.forEach((VariableElement variable, DartType branchType) {
|
| - DartType currentType = currentScope.getType(variable);
|
| - if (currentType != branchType) {
|
| - currentScope.resetType(variable);
|
| - }
|
| - });
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Set the overridden type of the given element to the given type
|
| - *
|
| - * @param element the element whose type might have been overridden
|
| - * @param type the overridden type of the given element
|
| - */
|
| - void setType(VariableElement element, DartType type) {
|
| - if (currentScope == null) {
|
| - throw new IllegalStateException("Cannot override without a scope");
|
| - }
|
| - currentScope.setType(element, type);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `TypeOverrideScope` represent a scope in which the types of
|
| - * elements can be overridden.
|
| - */
|
| -class TypeOverrideManager_TypeOverrideScope {
|
| - /**
|
| - * The outer scope in which types might be overridden.
|
| - */
|
| - final TypeOverrideManager_TypeOverrideScope _outerScope;
|
| -
|
| - /**
|
| - * A table mapping elements to the overridden type of that element.
|
| - */
|
| - Map<VariableElement, DartType> _overridenTypes =
|
| - new HashMap<VariableElement, DartType>();
|
| -
|
| - /**
|
| - * Initialize a newly created scope to be an empty child of the given scope.
|
| - *
|
| - * @param outerScope the outer scope in which types might be overridden
|
| - */
|
| - TypeOverrideManager_TypeOverrideScope(this._outerScope);
|
| -
|
| - /**
|
| - * Apply a set of overrides that were previously captured.
|
| - *
|
| - * @param overrides the overrides to be applied
|
| - */
|
| - void applyOverrides(Map<VariableElement, DartType> overrides) {
|
| - _overridenTypes.addAll(overrides);
|
| - }
|
| -
|
| - /**
|
| - * Return a table mapping the elements whose type is overridden in the current scope to the
|
| - * overriding type.
|
| - *
|
| - * @return the overrides in the current scope
|
| - */
|
| - Map<VariableElement, DartType> captureLocalOverrides() => _overridenTypes;
|
| -
|
| - /**
|
| - * Return a map from the elements for the variables in the given list that have their types
|
| - * overridden to the overriding type.
|
| - *
|
| - * @param variableList the list of variables whose overriding types are to be captured
|
| - * @return a table mapping elements to their overriding types
|
| - */
|
| - Map<VariableElement, DartType> captureOverrides(
|
| - VariableDeclarationList variableList) {
|
| - Map<VariableElement, DartType> overrides =
|
| - new HashMap<VariableElement, DartType>();
|
| - if (variableList.isConst || variableList.isFinal) {
|
| - for (VariableDeclaration variable in variableList.variables) {
|
| - VariableElement element = variable.element;
|
| - if (element != null) {
|
| - DartType type = _overridenTypes[element];
|
| - if (type != null) {
|
| - overrides[element] = type;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - return overrides;
|
| - }
|
| -
|
| - /**
|
| - * Return the overridden type of the given element, or `null` if the type of the element
|
| - * has not been overridden.
|
| - *
|
| - * @param element the element whose type might have been overridden
|
| - * @return the overridden type of the given element
|
| - */
|
| - DartType getType(Element element) {
|
| - if (element is PropertyAccessorElement) {
|
| - element = (element as PropertyAccessorElement).variable;
|
| - }
|
| - DartType type = _overridenTypes[element];
|
| - if (_overridenTypes.containsKey(element)) {
|
| - return type;
|
| - }
|
| - if (type != null) {
|
| - return type;
|
| - } else if (_outerScope != null) {
|
| - return _outerScope.getType(element);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Clears the overridden type of the given [element].
|
| - */
|
| - void resetType(VariableElement element) {
|
| - _overridenTypes[element] = null;
|
| - }
|
| -
|
| - /**
|
| - * Set the overridden type of the given element to the given type
|
| - *
|
| - * @param element the element whose type might have been overridden
|
| - * @param type the overridden type of the given element
|
| - */
|
| - void setType(VariableElement element, DartType type) {
|
| - _overridenTypes[element] = type;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `TypeParameterScope` implement the scope defined by the type
|
| - * parameters in a class.
|
| - */
|
| -class TypeParameterScope extends EnclosedScope {
|
| - /**
|
| - * Initialize a newly created scope enclosed within another scope.
|
| - *
|
| - * @param enclosingScope the scope in which this scope is lexically enclosed
|
| - * @param typeElement the element representing the type represented by this scope
|
| - */
|
| - TypeParameterScope(Scope enclosingScope, ClassElement typeElement)
|
| - : super(enclosingScope) {
|
| - if (typeElement == null) {
|
| - throw new IllegalArgumentException("class element cannot be null");
|
| - }
|
| - _defineTypeParameters(typeElement);
|
| - }
|
| -
|
| - /**
|
| - * Define the type parameters for the class.
|
| - *
|
| - * @param typeElement the element representing the type represented by this scope
|
| - */
|
| - void _defineTypeParameters(ClassElement typeElement) {
|
| - for (TypeParameterElement typeParameter in typeElement.typeParameters) {
|
| - define(typeParameter);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `TypePromotionManager` manage the ability to promote types of local
|
| - * variables and formal parameters from their declared types based on control flow.
|
| - */
|
| -class TypePromotionManager {
|
| - /**
|
| - * The current promotion scope, or `null` if no scope has been entered.
|
| - */
|
| - TypePromotionManager_TypePromoteScope currentScope;
|
| -
|
| - /**
|
| - * Returns the elements with promoted types.
|
| - */
|
| - Iterable<Element> get promotedElements => currentScope.promotedElements;
|
| -
|
| - /**
|
| - * Enter a new promotions scope.
|
| - */
|
| - void enterScope() {
|
| - currentScope = new TypePromotionManager_TypePromoteScope(currentScope);
|
| - }
|
| -
|
| - /**
|
| - * Exit the current promotion scope.
|
| - */
|
| - void exitScope() {
|
| - if (currentScope == null) {
|
| - throw new IllegalStateException("No scope to exit");
|
| - }
|
| - currentScope = currentScope._outerScope;
|
| - }
|
| -
|
| - /**
|
| - * Returns static type of the given variable - declared or promoted.
|
| - *
|
| - * @return the static type of the given variable - declared or promoted
|
| - */
|
| - DartType getStaticType(VariableElement variable) {
|
| - DartType staticType = getType(variable);
|
| - if (staticType == null) {
|
| - staticType = variable.type;
|
| - }
|
| - return staticType;
|
| - }
|
| -
|
| - /**
|
| - * Return the promoted type of the given element, or `null` if the type of the element has
|
| - * not been promoted.
|
| - *
|
| - * @param element the element whose type might have been promoted
|
| - * @return the promoted type of the given element
|
| - */
|
| - DartType getType(Element element) {
|
| - if (currentScope == null) {
|
| - return null;
|
| - }
|
| - return currentScope.getType(element);
|
| - }
|
| -
|
| - /**
|
| - * Set the promoted type of the given element to the given type.
|
| - *
|
| - * @param element the element whose type might have been promoted
|
| - * @param type the promoted type of the given element
|
| - */
|
| - void setType(Element element, DartType type) {
|
| - if (currentScope == null) {
|
| - throw new IllegalStateException("Cannot promote without a scope");
|
| - }
|
| - currentScope.setType(element, type);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `TypePromoteScope` represent a scope in which the types of
|
| - * elements can be promoted.
|
| - */
|
| -class TypePromotionManager_TypePromoteScope {
|
| - /**
|
| - * The outer scope in which types might be promoter.
|
| - */
|
| - final TypePromotionManager_TypePromoteScope _outerScope;
|
| -
|
| - /**
|
| - * A table mapping elements to the promoted type of that element.
|
| - */
|
| - HashMap<Element, DartType> _promotedTypes = new HashMap<Element, DartType>();
|
| -
|
| - /**
|
| - * Initialize a newly created scope to be an empty child of the given scope.
|
| - *
|
| - * @param outerScope the outer scope in which types might be promoted
|
| - */
|
| - TypePromotionManager_TypePromoteScope(this._outerScope);
|
| -
|
| - /**
|
| - * Returns the elements with promoted types.
|
| - */
|
| - Iterable<Element> get promotedElements => _promotedTypes.keys.toSet();
|
| -
|
| - /**
|
| - * Return the promoted type of the given element, or `null` if the type of the element has
|
| - * not been promoted.
|
| - *
|
| - * @param element the element whose type might have been promoted
|
| - * @return the promoted type of the given element
|
| - */
|
| - DartType getType(Element element) {
|
| - DartType type = _promotedTypes[element];
|
| - if (type == null && element is PropertyAccessorElement) {
|
| - type = _promotedTypes[element.variable];
|
| - }
|
| - if (type != null) {
|
| - return type;
|
| - } else if (_outerScope != null) {
|
| - return _outerScope.getType(element);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Set the promoted type of the given element to the given type.
|
| - *
|
| - * @param element the element whose type might have been promoted
|
| - * @param type the promoted type of the given element
|
| - */
|
| - void setType(Element element, DartType type) {
|
| - _promotedTypes[element] = type;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * The interface `TypeProvider` defines the behavior of objects that provide access to types
|
| - * defined by the language.
|
| - */
|
| -abstract class TypeProvider {
|
| - /**
|
| - * Return the type representing the built-in type 'bool'.
|
| - */
|
| - InterfaceType get boolType;
|
| -
|
| - /**
|
| - * Return the type representing the type 'bottom'.
|
| - */
|
| - DartType get bottomType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'Deprecated'.
|
| - */
|
| - InterfaceType get deprecatedType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'double'.
|
| - */
|
| - InterfaceType get doubleType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'dynamic'.
|
| - */
|
| - DartType get dynamicType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'Function'.
|
| - */
|
| - InterfaceType get functionType;
|
| -
|
| - /**
|
| - * Return the type representing 'Future<dynamic>'.
|
| - */
|
| - InterfaceType get futureDynamicType;
|
| -
|
| - /**
|
| - * Return the type representing 'Future<Null>'.
|
| - */
|
| - InterfaceType get futureNullType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'Future'.
|
| - */
|
| - InterfaceType get futureType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'int'.
|
| - */
|
| - InterfaceType get intType;
|
| -
|
| - /**
|
| - * Return the type representing the type 'Iterable<dynamic>'.
|
| - */
|
| - InterfaceType get iterableDynamicType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'Iterable'.
|
| - */
|
| - InterfaceType get iterableType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'List'.
|
| - */
|
| - InterfaceType get listType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'Map'.
|
| - */
|
| - InterfaceType get mapType;
|
| -
|
| - /**
|
| - * Return a list containing all of the types that cannot be either extended or
|
| - * implemented.
|
| - */
|
| - List<InterfaceType> get nonSubtypableTypes;
|
| -
|
| - /**
|
| - * Return a [DartObjectImpl] representing the `null` object.
|
| - */
|
| - DartObjectImpl get nullObject;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'Null'.
|
| - */
|
| - InterfaceType get nullType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'num'.
|
| - */
|
| - InterfaceType get numType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'Object'.
|
| - */
|
| - InterfaceType get objectType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'StackTrace'.
|
| - */
|
| - InterfaceType get stackTraceType;
|
| -
|
| - /**
|
| - * Return the type representing 'Stream<dynamic>'.
|
| - */
|
| - InterfaceType get streamDynamicType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'Stream'.
|
| - */
|
| - InterfaceType get streamType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'String'.
|
| - */
|
| - InterfaceType get stringType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'Symbol'.
|
| - */
|
| - InterfaceType get symbolType;
|
| -
|
| - /**
|
| - * Return the type representing the built-in type 'Type'.
|
| - */
|
| - InterfaceType get typeType;
|
| -
|
| - /**
|
| - * Return the type representing typenames that can't be resolved.
|
| - */
|
| - DartType get undefinedType;
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `TypeProviderImpl` provide access to types defined by the language
|
| - * by looking for those types in the element model for the core library.
|
| - */
|
| -class TypeProviderImpl implements TypeProvider {
|
| - /**
|
| - * The type representing the built-in type 'bool'.
|
| - */
|
| - InterfaceType _boolType;
|
| -
|
| - /**
|
| - * The type representing the type 'bottom'.
|
| - */
|
| - DartType _bottomType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'double'.
|
| - */
|
| - InterfaceType _doubleType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'Deprecated'.
|
| - */
|
| - InterfaceType _deprecatedType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'dynamic'.
|
| - */
|
| - DartType _dynamicType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'Function'.
|
| - */
|
| - InterfaceType _functionType;
|
| -
|
| - /**
|
| - * The type representing 'Future<dynamic>'.
|
| - */
|
| - InterfaceType _futureDynamicType;
|
| -
|
| - /**
|
| - * The type representing 'Future<Null>'.
|
| - */
|
| - InterfaceType _futureNullType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'Future'.
|
| - */
|
| - InterfaceType _futureType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'int'.
|
| - */
|
| - InterfaceType _intType;
|
| -
|
| - /**
|
| - * The type representing 'Iterable<dynamic>'.
|
| - */
|
| - InterfaceType _iterableDynamicType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'Iterable'.
|
| - */
|
| - InterfaceType _iterableType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'List'.
|
| - */
|
| - InterfaceType _listType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'Map'.
|
| - */
|
| - InterfaceType _mapType;
|
| -
|
| - /**
|
| - * An shared object representing the value 'null'.
|
| - */
|
| - DartObjectImpl _nullObject;
|
| -
|
| - /**
|
| - * The type representing the type 'Null'.
|
| - */
|
| - InterfaceType _nullType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'num'.
|
| - */
|
| - InterfaceType _numType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'Object'.
|
| - */
|
| - InterfaceType _objectType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'StackTrace'.
|
| - */
|
| - InterfaceType _stackTraceType;
|
| -
|
| - /**
|
| - * The type representing 'Stream<dynamic>'.
|
| - */
|
| - InterfaceType _streamDynamicType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'Stream'.
|
| - */
|
| - InterfaceType _streamType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'String'.
|
| - */
|
| - InterfaceType _stringType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'Symbol'.
|
| - */
|
| - InterfaceType _symbolType;
|
| -
|
| - /**
|
| - * The type representing the built-in type 'Type'.
|
| - */
|
| - InterfaceType _typeType;
|
| -
|
| - /**
|
| - * The type representing typenames that can't be resolved.
|
| - */
|
| - DartType _undefinedType;
|
| -
|
| - /**
|
| - * Initialize a newly created type provider to provide the types defined in
|
| - * the given [coreLibrary] and [asyncLibrary].
|
| - */
|
| - TypeProviderImpl(LibraryElement coreLibrary, LibraryElement asyncLibrary) {
|
| - Namespace coreNamespace =
|
| - new NamespaceBuilder().createPublicNamespaceForLibrary(coreLibrary);
|
| - Namespace asyncNamespace =
|
| - new NamespaceBuilder().createPublicNamespaceForLibrary(asyncLibrary);
|
| - _initializeFrom(coreNamespace, asyncNamespace);
|
| - }
|
| -
|
| - /**
|
| - * Initialize a newly created type provider to provide the types defined in
|
| - * the given [Namespace]s.
|
| - */
|
| - TypeProviderImpl.forNamespaces(
|
| - Namespace coreNamespace, Namespace asyncNamespace) {
|
| - _initializeFrom(coreNamespace, asyncNamespace);
|
| - }
|
| -
|
| - @override
|
| - InterfaceType get boolType => _boolType;
|
| -
|
| - @override
|
| - DartType get bottomType => _bottomType;
|
| -
|
| - @override
|
| - InterfaceType get deprecatedType => _deprecatedType;
|
| -
|
| - @override
|
| - InterfaceType get doubleType => _doubleType;
|
| -
|
| - @override
|
| - DartType get dynamicType => _dynamicType;
|
| -
|
| - @override
|
| - InterfaceType get functionType => _functionType;
|
| -
|
| - @override
|
| - InterfaceType get futureDynamicType => _futureDynamicType;
|
| -
|
| - @override
|
| - InterfaceType get futureNullType => _futureNullType;
|
| -
|
| - @override
|
| - InterfaceType get futureType => _futureType;
|
| -
|
| - @override
|
| - InterfaceType get intType => _intType;
|
| -
|
| - @override
|
| - InterfaceType get iterableDynamicType => _iterableDynamicType;
|
| -
|
| - @override
|
| - InterfaceType get iterableType => _iterableType;
|
| -
|
| - @override
|
| - InterfaceType get listType => _listType;
|
| -
|
| - @override
|
| - InterfaceType get mapType => _mapType;
|
| -
|
| - @override
|
| - List<InterfaceType> get nonSubtypableTypes => <InterfaceType>[
|
| - nullType,
|
| - numType,
|
| - intType,
|
| - doubleType,
|
| - boolType,
|
| - stringType
|
| - ];
|
| -
|
| - @override
|
| - DartObjectImpl get nullObject {
|
| - if (_nullObject == null) {
|
| - _nullObject = new DartObjectImpl(nullType, NullState.NULL_STATE);
|
| - }
|
| - return _nullObject;
|
| - }
|
| -
|
| - @override
|
| - InterfaceType get nullType => _nullType;
|
| -
|
| - @override
|
| - InterfaceType get numType => _numType;
|
| -
|
| - @override
|
| - InterfaceType get objectType => _objectType;
|
| -
|
| - @override
|
| - InterfaceType get stackTraceType => _stackTraceType;
|
| -
|
| - @override
|
| - InterfaceType get streamDynamicType => _streamDynamicType;
|
| -
|
| - @override
|
| - InterfaceType get streamType => _streamType;
|
| -
|
| - @override
|
| - InterfaceType get stringType => _stringType;
|
| -
|
| - @override
|
| - InterfaceType get symbolType => _symbolType;
|
| -
|
| - @override
|
| - InterfaceType get typeType => _typeType;
|
| -
|
| - @override
|
| - DartType get undefinedType => _undefinedType;
|
| -
|
| - /**
|
| - * Return the type with the given name from the given namespace, or `null` if there is no
|
| - * class with the given name.
|
| - *
|
| - * @param namespace the namespace in which to search for the given name
|
| - * @param typeName the name of the type being searched for
|
| - * @return the type that was found
|
| - */
|
| - InterfaceType _getType(Namespace namespace, String typeName) {
|
| - Element element = namespace.get(typeName);
|
| - if (element == null) {
|
| - AnalysisEngine.instance.logger
|
| - .logInformation("No definition of type $typeName");
|
| - return null;
|
| - }
|
| - return (element as ClassElement).type;
|
| - }
|
| -
|
| - /**
|
| - * Initialize the types provided by this type provider from the given
|
| - * [Namespace]s.
|
| - */
|
| - void _initializeFrom(Namespace coreNamespace, Namespace asyncNamespace) {
|
| - _boolType = _getType(coreNamespace, "bool");
|
| - _bottomType = BottomTypeImpl.instance;
|
| - _deprecatedType = _getType(coreNamespace, "Deprecated");
|
| - _doubleType = _getType(coreNamespace, "double");
|
| - _dynamicType = DynamicTypeImpl.instance;
|
| - _functionType = _getType(coreNamespace, "Function");
|
| - _futureType = _getType(asyncNamespace, "Future");
|
| - _intType = _getType(coreNamespace, "int");
|
| - _iterableType = _getType(coreNamespace, "Iterable");
|
| - _listType = _getType(coreNamespace, "List");
|
| - _mapType = _getType(coreNamespace, "Map");
|
| - _nullType = _getType(coreNamespace, "Null");
|
| - _numType = _getType(coreNamespace, "num");
|
| - _objectType = _getType(coreNamespace, "Object");
|
| - _stackTraceType = _getType(coreNamespace, "StackTrace");
|
| - _streamType = _getType(asyncNamespace, "Stream");
|
| - _stringType = _getType(coreNamespace, "String");
|
| - _symbolType = _getType(coreNamespace, "Symbol");
|
| - _typeType = _getType(coreNamespace, "Type");
|
| - _undefinedType = UndefinedTypeImpl.instance;
|
| - _futureDynamicType = _futureType.substitute4(<DartType>[_dynamicType]);
|
| - _futureNullType = _futureType.substitute4(<DartType>[_nullType]);
|
| - _iterableDynamicType = _iterableType.substitute4(<DartType>[_dynamicType]);
|
| - _streamDynamicType = _streamType.substitute4(<DartType>[_dynamicType]);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `TypeResolverVisitor` are used to resolve the types associated with
|
| - * the elements in the element model. This includes the types of superclasses, mixins, interfaces,
|
| - * fields, methods, parameters, and local variables. As a side-effect, this also finishes building
|
| - * the type hierarchy.
|
| - */
|
| -class TypeResolverVisitor extends ScopedVisitor {
|
| - /**
|
| - * The type representing the type 'dynamic'.
|
| - */
|
| - DartType _dynamicType;
|
| -
|
| - /**
|
| - * The type representing typenames that can't be resolved.
|
| - */
|
| - DartType _undefinedType;
|
| -
|
| - /**
|
| - * The flag specifying if currently visited class references 'super' expression.
|
| - */
|
| - bool _hasReferenceToSuper = false;
|
| -
|
| - /**
|
| - * Initialize a newly created visitor to resolve the nodes in an AST node.
|
| - *
|
| - * [definingLibrary] is the element for the library containing the node being
|
| - * visited.
|
| - * [source] is the source representing the compilation unit containing the
|
| - * node being visited.
|
| - * [typeProvider] is the object used to access the types from the core
|
| - * library.
|
| - * [errorListener] is the error listener that will be informed of any errors
|
| - * that are found during resolution.
|
| - * [nameScope] is the scope used to resolve identifiers in the node that will
|
| - * first be visited. If `null` or unspecified, a new [LibraryScope] will be
|
| - * created based on [definingLibrary] and [typeProvider].
|
| - */
|
| - TypeResolverVisitor(LibraryElement definingLibrary, Source source,
|
| - TypeProvider typeProvider, AnalysisErrorListener errorListener,
|
| - {Scope nameScope})
|
| - : super(definingLibrary, source, typeProvider, errorListener,
|
| - nameScope: nameScope) {
|
| - _dynamicType = typeProvider.dynamicType;
|
| - _undefinedType = typeProvider.undefinedType;
|
| - }
|
| -
|
| - @override
|
| - Object visitAnnotation(Annotation node) {
|
| - //
|
| - // Visit annotations, if the annotation is @proxy, on a class, and "proxy"
|
| - // resolves to the proxy annotation in dart.core, then create create the
|
| - // ElementAnnotationImpl and set it as the metadata on the enclosing class.
|
| - //
|
| - // Element resolution is done in the ElementResolver, and this work will be
|
| - // done in the general case for all annotations in the ElementResolver.
|
| - // The reason we resolve this particular element early is so that
|
| - // ClassElement.isProxy() returns the correct information during all
|
| - // phases of the ElementResolver.
|
| - //
|
| - super.visitAnnotation(node);
|
| - Identifier identifier = node.name;
|
| - if (identifier.name.endsWith(ElementAnnotationImpl.PROXY_VARIABLE_NAME) &&
|
| - node.parent is ClassDeclaration) {
|
| - Element element = nameScope.lookup(identifier, definingLibrary);
|
| - if (element != null &&
|
| - element.library.isDartCore &&
|
| - element is PropertyAccessorElement) {
|
| - // This is the @proxy from dart.core
|
| - ClassDeclaration classDeclaration = node.parent as ClassDeclaration;
|
| - ElementAnnotationImpl elementAnnotation =
|
| - new ElementAnnotationImpl(element);
|
| - node.elementAnnotation = elementAnnotation;
|
| - (classDeclaration.element as ClassElementImpl).metadata =
|
| - <ElementAnnotationImpl>[elementAnnotation];
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitCatchClause(CatchClause node) {
|
| - super.visitCatchClause(node);
|
| - SimpleIdentifier exception = node.exceptionParameter;
|
| - if (exception != null) {
|
| - // If an 'on' clause is provided the type of the exception parameter is
|
| - // the type in the 'on' clause. Otherwise, the type of the exception
|
| - // parameter is 'Object'.
|
| - TypeName exceptionTypeName = node.exceptionType;
|
| - DartType exceptionType;
|
| - if (exceptionTypeName == null) {
|
| - exceptionType = typeProvider.dynamicType;
|
| - } else {
|
| - exceptionType = _getType(exceptionTypeName);
|
| - }
|
| - _recordType(exception, exceptionType);
|
| - Element element = exception.staticElement;
|
| - if (element is VariableElementImpl) {
|
| - element.type = exceptionType;
|
| - } else {
|
| - // TODO(brianwilkerson) Report the internal error
|
| - }
|
| - }
|
| - SimpleIdentifier stackTrace = node.stackTraceParameter;
|
| - if (stackTrace != null) {
|
| - _recordType(stackTrace, typeProvider.stackTraceType);
|
| - Element element = stackTrace.staticElement;
|
| - if (element is VariableElementImpl) {
|
| - element.type = typeProvider.stackTraceType;
|
| - } else {
|
| - // TODO(brianwilkerson) Report the internal error
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitClassDeclaration(ClassDeclaration node) {
|
| - _hasReferenceToSuper = false;
|
| - super.visitClassDeclaration(node);
|
| - ClassElementImpl classElement = _getClassElement(node.name);
|
| - if (classElement != null) {
|
| - classElement.hasReferenceToSuper = _hasReferenceToSuper;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - void visitClassDeclarationInScope(ClassDeclaration node) {
|
| - super.visitClassDeclarationInScope(node);
|
| - ExtendsClause extendsClause = node.extendsClause;
|
| - WithClause withClause = node.withClause;
|
| - ImplementsClause implementsClause = node.implementsClause;
|
| - ClassElementImpl classElement = _getClassElement(node.name);
|
| - InterfaceType superclassType = null;
|
| - if (extendsClause != null) {
|
| - ErrorCode errorCode = (withClause == null
|
| - ? CompileTimeErrorCode.EXTENDS_NON_CLASS
|
| - : CompileTimeErrorCode.MIXIN_WITH_NON_CLASS_SUPERCLASS);
|
| - superclassType = _resolveType(extendsClause.superclass, errorCode,
|
| - CompileTimeErrorCode.EXTENDS_ENUM, errorCode);
|
| - if (!identical(superclassType, typeProvider.objectType)) {
|
| - classElement.validMixin = false;
|
| - }
|
| - }
|
| - if (classElement != null) {
|
| - if (superclassType == null) {
|
| - InterfaceType objectType = typeProvider.objectType;
|
| - if (!identical(classElement.type, objectType)) {
|
| - superclassType = objectType;
|
| - }
|
| - }
|
| - classElement.supertype = superclassType;
|
| - }
|
| - _resolve(classElement, withClause, implementsClause);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - void visitClassMembersInScope(ClassDeclaration node) {
|
| - //
|
| - // Process field declarations before constructors and methods so that the
|
| - // types of field formal parameters can be correctly resolved.
|
| - //
|
| - List<ClassMember> nonFields = new List<ClassMember>();
|
| - node.visitChildren(
|
| - new _TypeResolverVisitor_visitClassMembersInScope(this, nonFields));
|
| - int count = nonFields.length;
|
| - for (int i = 0; i < count; i++) {
|
| - nonFields[i].accept(this);
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitClassTypeAlias(ClassTypeAlias node) {
|
| - super.visitClassTypeAlias(node);
|
| - ErrorCode errorCode = CompileTimeErrorCode.MIXIN_WITH_NON_CLASS_SUPERCLASS;
|
| - InterfaceType superclassType = _resolveType(node.superclass, errorCode,
|
| - CompileTimeErrorCode.EXTENDS_ENUM, errorCode);
|
| - if (superclassType == null) {
|
| - superclassType = typeProvider.objectType;
|
| - }
|
| - ClassElementImpl classElement = _getClassElement(node.name);
|
| - if (classElement != null) {
|
| - classElement.supertype = superclassType;
|
| - }
|
| - _resolve(classElement, node.withClause, node.implementsClause);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| - super.visitConstructorDeclaration(node);
|
| - ExecutableElementImpl element = node.element as ExecutableElementImpl;
|
| - if (element == null) {
|
| - ClassDeclaration classNode =
|
| - node.getAncestor((node) => node is ClassDeclaration);
|
| - StringBuffer buffer = new StringBuffer();
|
| - buffer.write("The element for the constructor ");
|
| - buffer.write(node.name == null ? "<unnamed>" : node.name.name);
|
| - buffer.write(" in ");
|
| - if (classNode == null) {
|
| - buffer.write("<unknown class>");
|
| - } else {
|
| - buffer.write(classNode.name.name);
|
| - }
|
| - buffer.write(" in ");
|
| - buffer.write(source.fullName);
|
| - buffer.write(" was not set while trying to resolve types.");
|
| - AnalysisEngine.instance.logger.logError(buffer.toString(),
|
| - new CaughtException(new AnalysisException(), null));
|
| - } else {
|
| - ClassElement definingClass = element.enclosingElement as ClassElement;
|
| - element.returnType = definingClass.type;
|
| - FunctionTypeImpl type = new FunctionTypeImpl(element);
|
| - type.typeArguments = definingClass.type.typeArguments;
|
| - element.type = type;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitDeclaredIdentifier(DeclaredIdentifier node) {
|
| - super.visitDeclaredIdentifier(node);
|
| - DartType declaredType;
|
| - TypeName typeName = node.type;
|
| - if (typeName == null) {
|
| - declaredType = _dynamicType;
|
| - } else {
|
| - declaredType = _getType(typeName);
|
| - }
|
| - LocalVariableElementImpl element = node.element as LocalVariableElementImpl;
|
| - element.type = declaredType;
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFieldFormalParameter(FieldFormalParameter node) {
|
| - super.visitFieldFormalParameter(node);
|
| - Element element = node.identifier.staticElement;
|
| - if (element is ParameterElementImpl) {
|
| - ParameterElementImpl parameter = element;
|
| - FormalParameterList parameterList = node.parameters;
|
| - if (parameterList == null) {
|
| - DartType type;
|
| - TypeName typeName = node.type;
|
| - if (typeName == null) {
|
| - type = _dynamicType;
|
| - if (parameter is FieldFormalParameterElement) {
|
| - FieldElement fieldElement =
|
| - (parameter as FieldFormalParameterElement).field;
|
| - if (fieldElement != null) {
|
| - type = fieldElement.type;
|
| - }
|
| - }
|
| - } else {
|
| - type = _getType(typeName);
|
| - }
|
| - parameter.type = type;
|
| - } else {
|
| - _setFunctionTypedParameterType(parameter, node.type, node.parameters);
|
| - }
|
| - } else {
|
| - // TODO(brianwilkerson) Report this internal error
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| - super.visitFunctionDeclaration(node);
|
| - ExecutableElementImpl element = node.element as ExecutableElementImpl;
|
| - if (element == null) {
|
| - StringBuffer buffer = new StringBuffer();
|
| - buffer.write("The element for the top-level function ");
|
| - buffer.write(node.name);
|
| - buffer.write(" in ");
|
| - buffer.write(source.fullName);
|
| - buffer.write(" was not set while trying to resolve types.");
|
| - AnalysisEngine.instance.logger.logError(buffer.toString(),
|
| - new CaughtException(new AnalysisException(), null));
|
| - }
|
| - element.returnType = _computeReturnType(node.returnType);
|
| - FunctionTypeImpl type = new FunctionTypeImpl(element);
|
| - ClassElement definingClass =
|
| - element.getAncestor((element) => element is ClassElement);
|
| - if (definingClass != null) {
|
| - type.typeArguments = definingClass.type.typeArguments;
|
| - }
|
| - element.type = type;
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionTypeAlias(FunctionTypeAlias node) {
|
| - FunctionTypeAliasElementImpl element =
|
| - node.element as FunctionTypeAliasElementImpl;
|
| - super.visitFunctionTypeAlias(node);
|
| - element.returnType = _computeReturnType(node.returnType);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
|
| - super.visitFunctionTypedFormalParameter(node);
|
| - Element element = node.identifier.staticElement;
|
| - if (element is ParameterElementImpl) {
|
| - _setFunctionTypedParameterType(element, node.returnType, node.parameters);
|
| - } else {
|
| - // TODO(brianwilkerson) Report this internal error
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitMethodDeclaration(MethodDeclaration node) {
|
| - super.visitMethodDeclaration(node);
|
| - ExecutableElementImpl element = node.element as ExecutableElementImpl;
|
| - if (element == null) {
|
| - ClassDeclaration classNode =
|
| - node.getAncestor((node) => node is ClassDeclaration);
|
| - StringBuffer buffer = new StringBuffer();
|
| - buffer.write("The element for the method ");
|
| - buffer.write(node.name.name);
|
| - buffer.write(" in ");
|
| - if (classNode == null) {
|
| - buffer.write("<unknown class>");
|
| - } else {
|
| - buffer.write(classNode.name.name);
|
| - }
|
| - buffer.write(" in ");
|
| - buffer.write(source.fullName);
|
| - buffer.write(" was not set while trying to resolve types.");
|
| - AnalysisEngine.instance.logger.logError(buffer.toString(),
|
| - new CaughtException(new AnalysisException(), null));
|
| - }
|
| - element.returnType = _computeReturnType(node.returnType);
|
| - FunctionTypeImpl type = new FunctionTypeImpl(element);
|
| - ClassElement definingClass =
|
| - element.getAncestor((element) => element is ClassElement);
|
| - if (definingClass != null) {
|
| - type.typeArguments = definingClass.type.typeArguments;
|
| - }
|
| - element.type = type;
|
| - if (element is PropertyAccessorElement) {
|
| - PropertyAccessorElement accessor = element as PropertyAccessorElement;
|
| - PropertyInducingElementImpl variable =
|
| - accessor.variable as PropertyInducingElementImpl;
|
| - if (accessor.isGetter) {
|
| - variable.type = type.returnType;
|
| - } else if (variable.type == null) {
|
| - List<DartType> parameterTypes = type.normalParameterTypes;
|
| - if (parameterTypes != null && parameterTypes.length > 0) {
|
| - variable.type = parameterTypes[0];
|
| - }
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitSimpleFormalParameter(SimpleFormalParameter node) {
|
| - super.visitSimpleFormalParameter(node);
|
| - DartType declaredType;
|
| - TypeName typeName = node.type;
|
| - if (typeName == null) {
|
| - declaredType = _dynamicType;
|
| - } else {
|
| - declaredType = _getType(typeName);
|
| - }
|
| - Element element = node.identifier.staticElement;
|
| - if (element is ParameterElement) {
|
| - (element as ParameterElementImpl).type = declaredType;
|
| - } else {
|
| - // TODO(brianwilkerson) Report the internal error.
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitSuperExpression(SuperExpression node) {
|
| - _hasReferenceToSuper = true;
|
| - return super.visitSuperExpression(node);
|
| - }
|
| -
|
| - @override
|
| - Object visitTypeName(TypeName node) {
|
| - super.visitTypeName(node);
|
| - Identifier typeName = node.name;
|
| - TypeArgumentList argumentList = node.typeArguments;
|
| - Element element = nameScope.lookup(typeName, definingLibrary);
|
| - if (element == null) {
|
| - //
|
| - // Check to see whether the type name is either 'dynamic' or 'void',
|
| - // neither of which are in the name scope and hence will not be found by
|
| - // normal means.
|
| - //
|
| - if (typeName.name == _dynamicType.name) {
|
| - _setElement(typeName, _dynamicType.element);
|
| - if (argumentList != null) {
|
| - // TODO(brianwilkerson) Report this error
|
| -// reporter.reportError(StaticTypeWarningCode.WRONG_NUMBER_OF_TYPE_ARGUMENTS, node, dynamicType.getName(), 0, argumentList.getArguments().size());
|
| - }
|
| - typeName.staticType = _dynamicType;
|
| - node.type = _dynamicType;
|
| - return null;
|
| - }
|
| - VoidTypeImpl voidType = VoidTypeImpl.instance;
|
| - if (typeName.name == voidType.name) {
|
| - // There is no element for 'void'.
|
| - if (argumentList != null) {
|
| - // TODO(brianwilkerson) Report this error
|
| -// reporter.reportError(StaticTypeWarningCode.WRONG_NUMBER_OF_TYPE_ARGUMENTS, node, voidType.getName(), 0, argumentList.getArguments().size());
|
| - }
|
| - typeName.staticType = voidType;
|
| - node.type = voidType;
|
| - return null;
|
| - }
|
| - //
|
| - // If not, the look to see whether we might have created the wrong AST
|
| - // structure for a constructor name. If so, fix the AST structure and then
|
| - // proceed.
|
| - //
|
| - AstNode parent = node.parent;
|
| - if (typeName is PrefixedIdentifier &&
|
| - parent is ConstructorName &&
|
| - argumentList == null) {
|
| - ConstructorName name = parent;
|
| - if (name.name == null) {
|
| - PrefixedIdentifier prefixedIdentifier =
|
| - typeName as PrefixedIdentifier;
|
| - SimpleIdentifier prefix = prefixedIdentifier.prefix;
|
| - element = nameScope.lookup(prefix, definingLibrary);
|
| - if (element is PrefixElement) {
|
| - if (parent.parent is InstanceCreationExpression &&
|
| - (parent.parent as InstanceCreationExpression).isConst) {
|
| - // If, if this is a const expression, then generate a
|
| - // CompileTimeErrorCode.CONST_WITH_NON_TYPE error.
|
| - reportErrorForNode(CompileTimeErrorCode.CONST_WITH_NON_TYPE,
|
| - prefixedIdentifier.identifier,
|
| - [prefixedIdentifier.identifier.name]);
|
| - } else {
|
| - // Else, if this expression is a new expression, report a
|
| - // NEW_WITH_NON_TYPE warning.
|
| - reportErrorForNode(StaticWarningCode.NEW_WITH_NON_TYPE,
|
| - prefixedIdentifier.identifier,
|
| - [prefixedIdentifier.identifier.name]);
|
| - }
|
| - _setElement(prefix, element);
|
| - return null;
|
| - } else if (element != null) {
|
| - //
|
| - // Rewrite the constructor name. The parser, when it sees a
|
| - // constructor named "a.b", cannot tell whether "a" is a prefix and
|
| - // "b" is a class name, or whether "a" is a class name and "b" is a
|
| - // constructor name. It arbitrarily chooses the former, but in this
|
| - // case was wrong.
|
| - //
|
| - name.name = prefixedIdentifier.identifier;
|
| - name.period = prefixedIdentifier.period;
|
| - node.name = prefix;
|
| - typeName = prefix;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - // check element
|
| - bool elementValid = element is! MultiplyDefinedElement;
|
| - if (elementValid &&
|
| - element is! ClassElement &&
|
| - _isTypeNameInInstanceCreationExpression(node)) {
|
| - SimpleIdentifier typeNameSimple = _getTypeSimpleIdentifier(typeName);
|
| - InstanceCreationExpression creation =
|
| - node.parent.parent as InstanceCreationExpression;
|
| - if (creation.isConst) {
|
| - if (element == null) {
|
| - reportErrorForNode(
|
| - CompileTimeErrorCode.UNDEFINED_CLASS, typeNameSimple, [typeName]);
|
| - } else {
|
| - reportErrorForNode(CompileTimeErrorCode.CONST_WITH_NON_TYPE,
|
| - typeNameSimple, [typeName]);
|
| - }
|
| - elementValid = false;
|
| - } else {
|
| - if (element != null) {
|
| - reportErrorForNode(
|
| - StaticWarningCode.NEW_WITH_NON_TYPE, typeNameSimple, [typeName]);
|
| - elementValid = false;
|
| - }
|
| - }
|
| - }
|
| - if (elementValid && element == null) {
|
| - // We couldn't resolve the type name.
|
| - // TODO(jwren) Consider moving the check for
|
| - // CompileTimeErrorCode.BUILT_IN_IDENTIFIER_AS_TYPE from the
|
| - // ErrorVerifier, so that we don't have two errors on a built in
|
| - // identifier being used as a class name.
|
| - // See CompileTimeErrorCodeTest.test_builtInIdentifierAsType().
|
| - SimpleIdentifier typeNameSimple = _getTypeSimpleIdentifier(typeName);
|
| - RedirectingConstructorKind redirectingConstructorKind;
|
| - if (_isBuiltInIdentifier(node) && _isTypeAnnotation(node)) {
|
| - reportErrorForNode(CompileTimeErrorCode.BUILT_IN_IDENTIFIER_AS_TYPE,
|
| - typeName, [typeName.name]);
|
| - } else if (typeNameSimple.name == "boolean") {
|
| - reportErrorForNode(
|
| - StaticWarningCode.UNDEFINED_CLASS_BOOLEAN, typeNameSimple, []);
|
| - } else if (_isTypeNameInCatchClause(node)) {
|
| - reportErrorForNode(StaticWarningCode.NON_TYPE_IN_CATCH_CLAUSE, typeName,
|
| - [typeName.name]);
|
| - } else if (_isTypeNameInAsExpression(node)) {
|
| - reportErrorForNode(
|
| - StaticWarningCode.CAST_TO_NON_TYPE, typeName, [typeName.name]);
|
| - } else if (_isTypeNameInIsExpression(node)) {
|
| - reportErrorForNode(StaticWarningCode.TYPE_TEST_WITH_UNDEFINED_NAME,
|
| - typeName, [typeName.name]);
|
| - } else if ((redirectingConstructorKind =
|
| - _getRedirectingConstructorKind(node)) !=
|
| - null) {
|
| - ErrorCode errorCode = (redirectingConstructorKind ==
|
| - RedirectingConstructorKind.CONST
|
| - ? CompileTimeErrorCode.REDIRECT_TO_NON_CLASS
|
| - : StaticWarningCode.REDIRECT_TO_NON_CLASS);
|
| - reportErrorForNode(errorCode, typeName, [typeName.name]);
|
| - } else if (_isTypeNameInTypeArgumentList(node)) {
|
| - reportErrorForNode(StaticTypeWarningCode.NON_TYPE_AS_TYPE_ARGUMENT,
|
| - typeName, [typeName.name]);
|
| - } else {
|
| - reportErrorForNode(
|
| - StaticWarningCode.UNDEFINED_CLASS, typeName, [typeName.name]);
|
| - }
|
| - elementValid = false;
|
| - }
|
| - if (!elementValid) {
|
| - if (element is MultiplyDefinedElement) {
|
| - _setElement(typeName, element);
|
| - } else {
|
| - _setElement(typeName, _dynamicType.element);
|
| - }
|
| - typeName.staticType = _undefinedType;
|
| - node.type = _undefinedType;
|
| - return null;
|
| - }
|
| - DartType type = null;
|
| - if (element is ClassElement) {
|
| - _setElement(typeName, element);
|
| - type = element.type;
|
| - } else if (element is FunctionTypeAliasElement) {
|
| - _setElement(typeName, element);
|
| - type = element.type;
|
| - } else if (element is TypeParameterElement) {
|
| - _setElement(typeName, element);
|
| - type = element.type;
|
| - if (argumentList != null) {
|
| - // Type parameters cannot have type arguments.
|
| - // TODO(brianwilkerson) Report this error.
|
| - // resolver.reportError(ResolverErrorCode.?, keyType);
|
| - }
|
| - } else if (element is MultiplyDefinedElement) {
|
| - List<Element> elements = element.conflictingElements;
|
| - type = _getTypeWhenMultiplyDefined(elements);
|
| - if (type != null) {
|
| - node.type = type;
|
| - }
|
| - } else {
|
| - // The name does not represent a type.
|
| - RedirectingConstructorKind redirectingConstructorKind;
|
| - if (_isTypeNameInCatchClause(node)) {
|
| - reportErrorForNode(StaticWarningCode.NON_TYPE_IN_CATCH_CLAUSE, typeName,
|
| - [typeName.name]);
|
| - } else if (_isTypeNameInAsExpression(node)) {
|
| - reportErrorForNode(
|
| - StaticWarningCode.CAST_TO_NON_TYPE, typeName, [typeName.name]);
|
| - } else if (_isTypeNameInIsExpression(node)) {
|
| - reportErrorForNode(StaticWarningCode.TYPE_TEST_WITH_NON_TYPE, typeName,
|
| - [typeName.name]);
|
| - } else if ((redirectingConstructorKind =
|
| - _getRedirectingConstructorKind(node)) !=
|
| - null) {
|
| - ErrorCode errorCode = (redirectingConstructorKind ==
|
| - RedirectingConstructorKind.CONST
|
| - ? CompileTimeErrorCode.REDIRECT_TO_NON_CLASS
|
| - : StaticWarningCode.REDIRECT_TO_NON_CLASS);
|
| - reportErrorForNode(errorCode, typeName, [typeName.name]);
|
| - } else if (_isTypeNameInTypeArgumentList(node)) {
|
| - reportErrorForNode(StaticTypeWarningCode.NON_TYPE_AS_TYPE_ARGUMENT,
|
| - typeName, [typeName.name]);
|
| - } else {
|
| - AstNode parent = typeName.parent;
|
| - while (parent is TypeName) {
|
| - parent = parent.parent;
|
| - }
|
| - if (parent is ExtendsClause ||
|
| - parent is ImplementsClause ||
|
| - parent is WithClause ||
|
| - parent is ClassTypeAlias) {
|
| - // Ignored. The error will be reported elsewhere.
|
| - } else {
|
| - reportErrorForNode(
|
| - StaticWarningCode.NOT_A_TYPE, typeName, [typeName.name]);
|
| - }
|
| - }
|
| - _setElement(typeName, _dynamicType.element);
|
| - typeName.staticType = _dynamicType;
|
| - node.type = _dynamicType;
|
| - return null;
|
| - }
|
| - if (argumentList != null) {
|
| - NodeList<TypeName> arguments = argumentList.arguments;
|
| - int argumentCount = arguments.length;
|
| - List<DartType> parameters = _getTypeArguments(type);
|
| - int parameterCount = parameters.length;
|
| - List<DartType> typeArguments = new List<DartType>(parameterCount);
|
| - if (argumentCount == parameterCount) {
|
| - for (int i = 0; i < parameterCount; i++) {
|
| - TypeName argumentTypeName = arguments[i];
|
| - DartType argumentType = _getType(argumentTypeName);
|
| - if (argumentType == null) {
|
| - argumentType = _dynamicType;
|
| - }
|
| - typeArguments[i] = argumentType;
|
| - }
|
| - } else {
|
| - reportErrorForNode(_getInvalidTypeParametersErrorCode(node), node, [
|
| - typeName.name,
|
| - parameterCount,
|
| - argumentCount
|
| - ]);
|
| - for (int i = 0; i < parameterCount; i++) {
|
| - typeArguments[i] = _dynamicType;
|
| - }
|
| - }
|
| - if (type is InterfaceTypeImpl) {
|
| - InterfaceTypeImpl interfaceType = type as InterfaceTypeImpl;
|
| - type = interfaceType.substitute4(typeArguments);
|
| - } else if (type is FunctionTypeImpl) {
|
| - FunctionTypeImpl functionType = type as FunctionTypeImpl;
|
| - type = functionType.substitute3(typeArguments);
|
| - } else {
|
| - // TODO(brianwilkerson) Report this internal error.
|
| - }
|
| - } else {
|
| - //
|
| - // Check for the case where there are no type arguments given for a
|
| - // parameterized type.
|
| - //
|
| - List<DartType> parameters = _getTypeArguments(type);
|
| - int parameterCount = parameters.length;
|
| - if (parameterCount > 0) {
|
| - DynamicTypeImpl dynamicType = DynamicTypeImpl.instance;
|
| - List<DartType> arguments = new List<DartType>(parameterCount);
|
| - for (int i = 0; i < parameterCount; i++) {
|
| - arguments[i] = dynamicType;
|
| - }
|
| - type = type.substitute2(arguments, parameters);
|
| - }
|
| - }
|
| - typeName.staticType = type;
|
| - node.type = type;
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitTypeParameter(TypeParameter node) {
|
| - super.visitTypeParameter(node);
|
| - TypeName bound = node.bound;
|
| - if (bound != null) {
|
| - TypeParameterElementImpl typeParameter =
|
| - node.name.staticElement as TypeParameterElementImpl;
|
| - if (typeParameter != null) {
|
| - typeParameter.bound = bound.type;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitVariableDeclaration(VariableDeclaration node) {
|
| - super.visitVariableDeclaration(node);
|
| - DartType declaredType;
|
| - TypeName typeName = (node.parent as VariableDeclarationList).type;
|
| - if (typeName == null) {
|
| - declaredType = _dynamicType;
|
| - } else {
|
| - declaredType = _getType(typeName);
|
| - }
|
| - Element element = node.name.staticElement;
|
| - if (element is VariableElement) {
|
| - (element as VariableElementImpl).type = declaredType;
|
| - if (element is PropertyInducingElement) {
|
| - PropertyInducingElement variableElement = element;
|
| - PropertyAccessorElementImpl getter =
|
| - variableElement.getter as PropertyAccessorElementImpl;
|
| - getter.returnType = declaredType;
|
| - FunctionTypeImpl getterType = new FunctionTypeImpl(getter);
|
| - ClassElement definingClass =
|
| - element.getAncestor((element) => element is ClassElement);
|
| - if (definingClass != null) {
|
| - getterType.typeArguments = definingClass.type.typeArguments;
|
| - }
|
| - getter.type = getterType;
|
| - PropertyAccessorElementImpl setter =
|
| - variableElement.setter as PropertyAccessorElementImpl;
|
| - if (setter != null) {
|
| - List<ParameterElement> parameters = setter.parameters;
|
| - if (parameters.length > 0) {
|
| - (parameters[0] as ParameterElementImpl).type = declaredType;
|
| - }
|
| - setter.returnType = VoidTypeImpl.instance;
|
| - FunctionTypeImpl setterType = new FunctionTypeImpl(setter);
|
| - if (definingClass != null) {
|
| - setterType.typeArguments = definingClass.type.typeArguments;
|
| - }
|
| - setter.type = setterType;
|
| - }
|
| - }
|
| - } else {
|
| - // TODO(brianwilkerson) Report the internal error.
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Given a type name representing the return type of a function, compute the return type of the
|
| - * function.
|
| - *
|
| - * @param returnType the type name representing the return type of the function
|
| - * @return the return type that was computed
|
| - */
|
| - DartType _computeReturnType(TypeName returnType) {
|
| - if (returnType == null) {
|
| - return _dynamicType;
|
| - } else {
|
| - return returnType.type;
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Return the class element that represents the class whose name was provided.
|
| - *
|
| - * @param identifier the name from the declaration of a class
|
| - * @return the class element that represents the class
|
| - */
|
| - ClassElementImpl _getClassElement(SimpleIdentifier identifier) {
|
| - // TODO(brianwilkerson) Seems like we should be using
|
| - // ClassDeclaration.getElement().
|
| - if (identifier == null) {
|
| - // TODO(brianwilkerson) Report this
|
| - // Internal error: We should never build a class declaration without a
|
| - // name.
|
| - return null;
|
| - }
|
| - Element element = identifier.staticElement;
|
| - if (element is! ClassElementImpl) {
|
| - // TODO(brianwilkerson) Report this
|
| - // Internal error: Failed to create an element for a class declaration.
|
| - return null;
|
| - }
|
| - return element as ClassElementImpl;
|
| - }
|
| -
|
| - /**
|
| - * Return an array containing all of the elements associated with the parameters in the given
|
| - * list.
|
| - *
|
| - * @param parameterList the list of parameters whose elements are to be returned
|
| - * @return the elements associated with the parameters
|
| - */
|
| - List<ParameterElement> _getElements(FormalParameterList parameterList) {
|
| - List<ParameterElement> elements = new List<ParameterElement>();
|
| - for (FormalParameter parameter in parameterList.parameters) {
|
| - ParameterElement element =
|
| - parameter.identifier.staticElement as ParameterElement;
|
| - // TODO(brianwilkerson) Understand why the element would be null.
|
| - if (element != null) {
|
| - elements.add(element);
|
| - }
|
| - }
|
| - return elements;
|
| - }
|
| -
|
| - /**
|
| - * The number of type arguments in the given type name does not match the number of parameters in
|
| - * the corresponding class element. Return the error code that should be used to report this
|
| - * error.
|
| - *
|
| - * @param node the type name with the wrong number of type arguments
|
| - * @return the error code that should be used to report that the wrong number of type arguments
|
| - * were provided
|
| - */
|
| - ErrorCode _getInvalidTypeParametersErrorCode(TypeName node) {
|
| - AstNode parent = node.parent;
|
| - if (parent is ConstructorName) {
|
| - parent = parent.parent;
|
| - if (parent is InstanceCreationExpression) {
|
| - if (parent.isConst) {
|
| - return CompileTimeErrorCode.CONST_WITH_INVALID_TYPE_PARAMETERS;
|
| - } else {
|
| - return StaticWarningCode.NEW_WITH_INVALID_TYPE_PARAMETERS;
|
| - }
|
| - }
|
| - }
|
| - return StaticTypeWarningCode.WRONG_NUMBER_OF_TYPE_ARGUMENTS;
|
| - }
|
| -
|
| - /**
|
| - * Checks if the given type name is the target in a redirected constructor.
|
| - *
|
| - * @param typeName the type name to analyze
|
| - * @return some [RedirectingConstructorKind] if the given type name is used as the type in a
|
| - * redirected constructor, or `null` otherwise
|
| - */
|
| - RedirectingConstructorKind _getRedirectingConstructorKind(TypeName typeName) {
|
| - AstNode parent = typeName.parent;
|
| - if (parent is ConstructorName) {
|
| - ConstructorName constructorName = parent as ConstructorName;
|
| - parent = constructorName.parent;
|
| - if (parent is ConstructorDeclaration) {
|
| - if (identical(parent.redirectedConstructor, constructorName)) {
|
| - if (parent.constKeyword != null) {
|
| - return RedirectingConstructorKind.CONST;
|
| - }
|
| - return RedirectingConstructorKind.NORMAL;
|
| - }
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Return the type represented by the given type name.
|
| - *
|
| - * @param typeName the type name representing the type to be returned
|
| - * @return the type represented by the type name
|
| - */
|
| - DartType _getType(TypeName typeName) {
|
| - DartType type = typeName.type;
|
| - if (type == null) {
|
| - return _undefinedType;
|
| - }
|
| - return type;
|
| - }
|
| -
|
| - /**
|
| - * Return the type arguments associated with the given type.
|
| - *
|
| - * @param type the type whole type arguments are to be returned
|
| - * @return the type arguments associated with the given type
|
| - */
|
| - List<DartType> _getTypeArguments(DartType type) {
|
| - if (type is InterfaceType) {
|
| - return type.typeArguments;
|
| - } else if (type is FunctionType) {
|
| - return type.typeArguments;
|
| - }
|
| - return DartType.EMPTY_LIST;
|
| - }
|
| -
|
| - /**
|
| - * Returns the simple identifier of the given (may be qualified) type name.
|
| - *
|
| - * @param typeName the (may be qualified) qualified type name
|
| - * @return the simple identifier of the given (may be qualified) type name.
|
| - */
|
| - SimpleIdentifier _getTypeSimpleIdentifier(Identifier typeName) {
|
| - if (typeName is SimpleIdentifier) {
|
| - return typeName;
|
| - } else {
|
| - return (typeName as PrefixedIdentifier).identifier;
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Given the multiple elements to which a single name could potentially be resolved, return the
|
| - * single interface type that should be used, or `null` if there is no clear choice.
|
| - *
|
| - * @param elements the elements to which a single name could potentially be resolved
|
| - * @return the single interface type that should be used for the type name
|
| - */
|
| - InterfaceType _getTypeWhenMultiplyDefined(List<Element> elements) {
|
| - InterfaceType type = null;
|
| - for (Element element in elements) {
|
| - if (element is ClassElement) {
|
| - if (type != null) {
|
| - return null;
|
| - }
|
| - type = element.type;
|
| - }
|
| - }
|
| - return type;
|
| - }
|
| -
|
| - /**
|
| - * Checks if the given type name is used as the type in an as expression.
|
| - *
|
| - * @param typeName the type name to analyzer
|
| - * @return `true` if the given type name is used as the type in an as expression
|
| - */
|
| - bool _isTypeNameInAsExpression(TypeName typeName) {
|
| - AstNode parent = typeName.parent;
|
| - if (parent is AsExpression) {
|
| - AsExpression asExpression = parent;
|
| - return identical(asExpression.type, typeName);
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * Checks if the given type name is used as the exception type in a catch clause.
|
| - *
|
| - * @param typeName the type name to analyzer
|
| - * @return `true` if the given type name is used as the exception type in a catch clause
|
| - */
|
| - bool _isTypeNameInCatchClause(TypeName typeName) {
|
| - AstNode parent = typeName.parent;
|
| - if (parent is CatchClause) {
|
| - CatchClause catchClause = parent;
|
| - return identical(catchClause.exceptionType, typeName);
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * Checks if the given type name is used as the type in an instance creation expression.
|
| - *
|
| - * @param typeName the type name to analyzer
|
| - * @return `true` if the given type name is used as the type in an instance creation
|
| - * expression
|
| - */
|
| - bool _isTypeNameInInstanceCreationExpression(TypeName typeName) {
|
| - AstNode parent = typeName.parent;
|
| - if (parent is ConstructorName &&
|
| - parent.parent is InstanceCreationExpression) {
|
| - ConstructorName constructorName = parent;
|
| - return constructorName != null &&
|
| - identical(constructorName.type, typeName);
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * Checks if the given type name is used as the type in an is expression.
|
| - *
|
| - * @param typeName the type name to analyzer
|
| - * @return `true` if the given type name is used as the type in an is expression
|
| - */
|
| - bool _isTypeNameInIsExpression(TypeName typeName) {
|
| - AstNode parent = typeName.parent;
|
| - if (parent is IsExpression) {
|
| - IsExpression isExpression = parent;
|
| - return identical(isExpression.type, typeName);
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| - * Checks if the given type name used in a type argument list.
|
| - *
|
| - * @param typeName the type name to analyzer
|
| - * @return `true` if the given type name is in a type argument list
|
| - */
|
| - bool _isTypeNameInTypeArgumentList(TypeName typeName) =>
|
| - typeName.parent is TypeArgumentList;
|
| -
|
| - /**
|
| - * Record that the static type of the given node is the given type.
|
| - *
|
| - * @param expression the node whose type is to be recorded
|
| - * @param type the static type of the node
|
| - */
|
| - Object _recordType(Expression expression, DartType type) {
|
| - if (type == null) {
|
| - expression.staticType = _dynamicType;
|
| - } else {
|
| - expression.staticType = type;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Resolve the types in the given with and implements clauses and associate those types with the
|
| - * given class element.
|
| - *
|
| - * @param classElement the class element with which the mixin and interface types are to be
|
| - * associated
|
| - * @param withClause the with clause to be resolved
|
| - * @param implementsClause the implements clause to be resolved
|
| - */
|
| - void _resolve(ClassElementImpl classElement, WithClause withClause,
|
| - ImplementsClause implementsClause) {
|
| - if (withClause != null) {
|
| - List<InterfaceType> mixinTypes = _resolveTypes(withClause.mixinTypes,
|
| - CompileTimeErrorCode.MIXIN_OF_NON_CLASS,
|
| - CompileTimeErrorCode.MIXIN_OF_ENUM,
|
| - CompileTimeErrorCode.MIXIN_OF_NON_CLASS);
|
| - if (classElement != null) {
|
| - classElement.mixins = mixinTypes;
|
| - classElement.withClauseRange =
|
| - new SourceRange(withClause.offset, withClause.length);
|
| - }
|
| - }
|
| - if (implementsClause != null) {
|
| - NodeList<TypeName> interfaces = implementsClause.interfaces;
|
| - List<InterfaceType> interfaceTypes = _resolveTypes(interfaces,
|
| - CompileTimeErrorCode.IMPLEMENTS_NON_CLASS,
|
| - CompileTimeErrorCode.IMPLEMENTS_ENUM,
|
| - CompileTimeErrorCode.IMPLEMENTS_DYNAMIC);
|
| - if (classElement != null) {
|
| - classElement.interfaces = interfaceTypes;
|
| - }
|
| - // TODO(brianwilkerson) Move the following checks to ErrorVerifier.
|
| - int count = interfaces.length;
|
| - List<bool> detectedRepeatOnIndex = new List<bool>.filled(count, false);
|
| - for (int i = 0; i < detectedRepeatOnIndex.length; i++) {
|
| - detectedRepeatOnIndex[i] = false;
|
| - }
|
| - for (int i = 0; i < count; i++) {
|
| - TypeName typeName = interfaces[i];
|
| - if (!detectedRepeatOnIndex[i]) {
|
| - Element element = typeName.name.staticElement;
|
| - for (int j = i + 1; j < count; j++) {
|
| - TypeName typeName2 = interfaces[j];
|
| - Identifier identifier2 = typeName2.name;
|
| - String name2 = identifier2.name;
|
| - Element element2 = identifier2.staticElement;
|
| - if (element != null && element == element2) {
|
| - detectedRepeatOnIndex[j] = true;
|
| - reportErrorForNode(
|
| - CompileTimeErrorCode.IMPLEMENTS_REPEATED, typeName2, [name2]);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Return the type specified by the given name.
|
| - *
|
| - * @param typeName the type name specifying the type to be returned
|
| - * @param nonTypeError the error to produce if the type name is defined to be something other than
|
| - * a type
|
| - * @param enumTypeError the error to produce if the type name is defined to be an enum
|
| - * @param dynamicTypeError the error to produce if the type name is "dynamic"
|
| - * @return the type specified by the type name
|
| - */
|
| - InterfaceType _resolveType(TypeName typeName, ErrorCode nonTypeError,
|
| - ErrorCode enumTypeError, ErrorCode dynamicTypeError) {
|
| - DartType type = typeName.type;
|
| - if (type is InterfaceType) {
|
| - ClassElement element = type.element;
|
| - if (element != null && element.isEnum) {
|
| - reportErrorForNode(enumTypeError, typeName);
|
| - return null;
|
| - }
|
| - return type;
|
| - }
|
| - // If the type is not an InterfaceType, then visitTypeName() sets the type
|
| - // to be a DynamicTypeImpl
|
| - Identifier name = typeName.name;
|
| - if (name.name == sc.Keyword.DYNAMIC.syntax) {
|
| - reportErrorForNode(dynamicTypeError, name, [name.name]);
|
| - } else {
|
| - reportErrorForNode(nonTypeError, name, [name.name]);
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /**
|
| - * Resolve the types in the given list of type names.
|
| - *
|
| - * @param typeNames the type names to be resolved
|
| - * @param nonTypeError the error to produce if the type name is defined to be something other than
|
| - * a type
|
| - * @param enumTypeError the error to produce if the type name is defined to be an enum
|
| - * @param dynamicTypeError the error to produce if the type name is "dynamic"
|
| - * @return an array containing all of the types that were resolved.
|
| - */
|
| - List<InterfaceType> _resolveTypes(NodeList<TypeName> typeNames,
|
| - ErrorCode nonTypeError, ErrorCode enumTypeError,
|
| - ErrorCode dynamicTypeError) {
|
| - List<InterfaceType> types = new List<InterfaceType>();
|
| - for (TypeName typeName in typeNames) {
|
| - InterfaceType type =
|
| - _resolveType(typeName, nonTypeError, enumTypeError, dynamicTypeError);
|
| - if (type != null) {
|
| - types.add(type);
|
| - }
|
| - }
|
| - return types;
|
| - }
|
| -
|
| - void _setElement(Identifier typeName, Element element) {
|
| - if (element != null) {
|
| - if (typeName is SimpleIdentifier) {
|
| - typeName.staticElement = element;
|
| - } else if (typeName is PrefixedIdentifier) {
|
| - PrefixedIdentifier identifier = typeName;
|
| - identifier.identifier.staticElement = element;
|
| - SimpleIdentifier prefix = identifier.prefix;
|
| - Element prefixElement = nameScope.lookup(prefix, definingLibrary);
|
| - if (prefixElement != null) {
|
| - prefix.staticElement = prefixElement;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Given a parameter element, create a function type based on the given return type and parameter
|
| - * list and associate the created type with the element.
|
| - *
|
| - * @param element the parameter element whose type is to be set
|
| - * @param returnType the (possibly `null`) return type of the function
|
| - * @param parameterList the list of parameters to the function
|
| - */
|
| - void _setFunctionTypedParameterType(ParameterElementImpl element,
|
| - TypeName returnType, FormalParameterList parameterList) {
|
| - List<ParameterElement> parameters = _getElements(parameterList);
|
| - FunctionTypeAliasElementImpl aliasElement =
|
| - new FunctionTypeAliasElementImpl.forNode(null);
|
| - aliasElement.synthetic = true;
|
| - aliasElement.shareParameters(parameters);
|
| - aliasElement.returnType = _computeReturnType(returnType);
|
| - // FunctionTypeAliasElementImpl assumes the enclosing element is a
|
| - // CompilationUnitElement (because non-synthetic function types can only be
|
| - // declared at top level), so to avoid breaking things, go find the
|
| - // compilation unit element.
|
| - aliasElement.enclosingElement =
|
| - element.getAncestor((element) => element is CompilationUnitElement);
|
| - FunctionTypeImpl type = new FunctionTypeImpl.forTypedef(aliasElement);
|
| - ClassElement definingClass =
|
| - element.getAncestor((element) => element is ClassElement);
|
| - if (definingClass != null) {
|
| - aliasElement.shareTypeParameters(definingClass.typeParameters);
|
| - type.typeArguments = definingClass.type.typeArguments;
|
| - } else {
|
| - FunctionTypeAliasElement alias =
|
| - element.getAncestor((element) => element is FunctionTypeAliasElement);
|
| - while (alias != null && alias.isSynthetic) {
|
| - alias =
|
| - alias.getAncestor((element) => element is FunctionTypeAliasElement);
|
| - }
|
| - if (alias != null) {
|
| - aliasElement.typeParameters = alias.typeParameters;
|
| - type.typeArguments = alias.type.typeArguments;
|
| - } else {
|
| - type.typeArguments = DartType.EMPTY_LIST;
|
| - }
|
| - }
|
| - element.type = type;
|
| - }
|
| -
|
| - /**
|
| - * @return `true` if the name of the given [TypeName] is an built-in identifier.
|
| - */
|
| - static bool _isBuiltInIdentifier(TypeName node) {
|
| - sc.Token token = node.name.beginToken;
|
| - return token.type == sc.TokenType.KEYWORD;
|
| - }
|
| -
|
| - /**
|
| - * @return `true` if given [TypeName] is used as a type annotation.
|
| - */
|
| - static bool _isTypeAnnotation(TypeName node) {
|
| - AstNode parent = node.parent;
|
| - if (parent is VariableDeclarationList) {
|
| - return identical(parent.type, node);
|
| - }
|
| - if (parent is FieldFormalParameter) {
|
| - return identical(parent.type, node);
|
| - }
|
| - if (parent is SimpleFormalParameter) {
|
| - return identical(parent.type, node);
|
| - }
|
| - return false;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * The interface `TypeSystem` defines the behavior of an object representing
|
| - * the type system. This provides a common location to put methods that act on
|
| - * types but may need access to more global data structures, and it paves the
|
| - * way for a possible future where we may wish to make the type system
|
| - * pluggable.
|
| - */
|
| -abstract class TypeSystem {
|
| - /**
|
| - * Return the [TypeProvider] associated with this [TypeSystem].
|
| - */
|
| - TypeProvider get typeProvider;
|
| -
|
| - /**
|
| - * Compute the least upper bound of two types.
|
| - */
|
| - DartType getLeastUpperBound(DartType type1, DartType type2);
|
| -}
|
| -
|
| -/**
|
| - * Implementation of [TypeSystem] using the rules in the Dart specification.
|
| - */
|
| -class TypeSystemImpl implements TypeSystem {
|
| - @override
|
| - final TypeProvider typeProvider;
|
| -
|
| - TypeSystemImpl(this.typeProvider);
|
| -
|
| - @override
|
| - DartType getLeastUpperBound(DartType type1, DartType type2) {
|
| - // The least upper bound relation is reflexive.
|
| - if (identical(type1, type2)) {
|
| - return type1;
|
| - }
|
| - // The least upper bound of dynamic and any type T is dynamic.
|
| - if (type1.isDynamic) {
|
| - return type1;
|
| - }
|
| - if (type2.isDynamic) {
|
| - return type2;
|
| - }
|
| - // The least upper bound of void and any type T != dynamic is void.
|
| - if (type1.isVoid) {
|
| - return type1;
|
| - }
|
| - if (type2.isVoid) {
|
| - return type2;
|
| - }
|
| - // The least upper bound of bottom and any type T is T.
|
| - if (type1.isBottom) {
|
| - return type2;
|
| - }
|
| - if (type2.isBottom) {
|
| - return type1;
|
| - }
|
| - // Let U be a type variable with upper bound B. The least upper bound of U
|
| - // and a type T is the least upper bound of B and T.
|
| - while (type1 is TypeParameterType) {
|
| - // TODO(paulberry): is this correct in the complex of F-bounded
|
| - // polymorphism?
|
| - DartType bound = (type1 as TypeParameterType).element.bound;
|
| - if (bound == null) {
|
| - bound = typeProvider.objectType;
|
| - }
|
| - type1 = bound;
|
| - }
|
| - while (type2 is TypeParameterType) {
|
| - // TODO(paulberry): is this correct in the context of F-bounded
|
| - // polymorphism?
|
| - DartType bound = (type2 as TypeParameterType).element.bound;
|
| - if (bound == null) {
|
| - bound = typeProvider.objectType;
|
| - }
|
| - type2 = bound;
|
| - }
|
| - // The least upper bound of a function type and an interface type T is the
|
| - // least upper bound of Function and T.
|
| - if (type1 is FunctionType && type2 is InterfaceType) {
|
| - type1 = typeProvider.functionType;
|
| - }
|
| - if (type2 is FunctionType && type1 is InterfaceType) {
|
| - type2 = typeProvider.functionType;
|
| - }
|
| -
|
| - // At this point type1 and type2 should both either be interface types or
|
| - // function types.
|
| - if (type1 is InterfaceType && type2 is InterfaceType) {
|
| - InterfaceType result =
|
| - InterfaceTypeImpl.computeLeastUpperBound(type1, type2);
|
| - if (result == null) {
|
| - return typeProvider.dynamicType;
|
| - }
|
| - return result;
|
| - } else if (type1 is FunctionType && type2 is FunctionType) {
|
| - FunctionType result =
|
| - FunctionTypeImpl.computeLeastUpperBound(type1, type2);
|
| - if (result == null) {
|
| - return typeProvider.functionType;
|
| - }
|
| - return result;
|
| - } else {
|
| - // Should never happen. As a defensive measure, return the dynamic type.
|
| - assert(false);
|
| - return typeProvider.dynamicType;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class [UnusedLocalElementsVerifier] traverse an element
|
| - * structure looking for cases of [HintCode.UNUSED_ELEMENT],
|
| - * [HintCode.UNUSED_FIELD], [HintCode.UNUSED_LOCAL_VARIABLE], etc.
|
| - */
|
| -class UnusedLocalElementsVerifier extends RecursiveElementVisitor {
|
| - /**
|
| - * The error listener to which errors will be reported.
|
| - */
|
| - final AnalysisErrorListener _errorListener;
|
| -
|
| - /**
|
| - * The elements know to be used.
|
| - */
|
| - final UsedLocalElements _usedElements;
|
| -
|
| - /**
|
| - * Create a new instance of the [UnusedLocalElementsVerifier].
|
| - */
|
| - UnusedLocalElementsVerifier(this._errorListener, this._usedElements);
|
| -
|
| - @override
|
| - visitClassElement(ClassElement element) {
|
| - if (!_isUsedElement(element)) {
|
| - _reportErrorForElement(HintCode.UNUSED_ELEMENT, element, [
|
| - element.kind.displayName,
|
| - element.displayName
|
| - ]);
|
| - }
|
| - super.visitClassElement(element);
|
| - }
|
| -
|
| - @override
|
| - visitFieldElement(FieldElement element) {
|
| - if (!_isReadMember(element)) {
|
| - _reportErrorForElement(
|
| - HintCode.UNUSED_FIELD, element, [element.displayName]);
|
| - }
|
| - super.visitFieldElement(element);
|
| - }
|
| -
|
| - @override
|
| - visitFunctionElement(FunctionElement element) {
|
| - if (!_isUsedElement(element)) {
|
| - _reportErrorForElement(HintCode.UNUSED_ELEMENT, element, [
|
| - element.kind.displayName,
|
| - element.displayName
|
| - ]);
|
| - }
|
| - super.visitFunctionElement(element);
|
| - }
|
| -
|
| - @override
|
| - visitFunctionTypeAliasElement(FunctionTypeAliasElement element) {
|
| - if (!_isUsedElement(element)) {
|
| - _reportErrorForElement(HintCode.UNUSED_ELEMENT, element, [
|
| - element.kind.displayName,
|
| - element.displayName
|
| - ]);
|
| - }
|
| - super.visitFunctionTypeAliasElement(element);
|
| - }
|
| -
|
| - @override
|
| - visitLocalVariableElement(LocalVariableElement element) {
|
| - if (!_isUsedElement(element) && !_isNamedUnderscore(element)) {
|
| - HintCode errorCode;
|
| - if (_usedElements.isCatchException(element)) {
|
| - errorCode = HintCode.UNUSED_CATCH_CLAUSE;
|
| - } else if (_usedElements.isCatchStackTrace(element)) {
|
| - errorCode = HintCode.UNUSED_CATCH_STACK;
|
| - } else {
|
| - errorCode = HintCode.UNUSED_LOCAL_VARIABLE;
|
| - }
|
| - _reportErrorForElement(errorCode, element, [element.displayName]);
|
| - }
|
| - }
|
| -
|
| - @override
|
| - visitMethodElement(MethodElement element) {
|
| - if (!_isUsedMember(element)) {
|
| - _reportErrorForElement(HintCode.UNUSED_ELEMENT, element, [
|
| - element.kind.displayName,
|
| - element.displayName
|
| - ]);
|
| - }
|
| - super.visitMethodElement(element);
|
| - }
|
| -
|
| - @override
|
| - visitPropertyAccessorElement(PropertyAccessorElement element) {
|
| - if (!_isUsedMember(element)) {
|
| - _reportErrorForElement(HintCode.UNUSED_ELEMENT, element, [
|
| - element.kind.displayName,
|
| - element.displayName
|
| - ]);
|
| - }
|
| - super.visitPropertyAccessorElement(element);
|
| - }
|
| -
|
| - bool _isNamedUnderscore(LocalVariableElement element) {
|
| - String name = element.name;
|
| - if (name != null) {
|
| - for (int index = name.length - 1; index >= 0; --index) {
|
| - if (name.codeUnitAt(index) != 0x5F) {
|
| - // 0x5F => '_'
|
| - return false;
|
| - }
|
| - }
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - bool _isReadMember(Element element) {
|
| - if (element.isPublic) {
|
| - return true;
|
| - }
|
| - if (element.isSynthetic) {
|
| - return true;
|
| - }
|
| - return _usedElements.readMembers.contains(element.displayName);
|
| - }
|
| -
|
| - bool _isUsedElement(Element element) {
|
| - if (element.isSynthetic) {
|
| - return true;
|
| - }
|
| - if (element is LocalVariableElement ||
|
| - element is FunctionElement && !element.isStatic) {
|
| - // local variable or function
|
| - } else {
|
| - if (element.isPublic) {
|
| - return true;
|
| - }
|
| - }
|
| - return _usedElements.elements.contains(element);
|
| - }
|
| -
|
| - bool _isUsedMember(Element element) {
|
| - if (element.isPublic) {
|
| - return true;
|
| - }
|
| - if (element.isSynthetic) {
|
| - return true;
|
| - }
|
| - if (_usedElements.members.contains(element.displayName)) {
|
| - return true;
|
| - }
|
| - return _usedElements.elements.contains(element);
|
| - }
|
| -
|
| - void _reportErrorForElement(
|
| - ErrorCode errorCode, Element element, List<Object> arguments) {
|
| - if (element != null) {
|
| - _errorListener.onError(new AnalysisError(element.source,
|
| - element.nameOffset, element.displayName.length, errorCode,
|
| - arguments));
|
| - }
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * A container with information about used imports prefixes and used imported
|
| - * elements.
|
| - */
|
| -class UsedImportedElements {
|
| - /**
|
| - * The set of referenced [PrefixElement]s.
|
| - */
|
| - final Set<PrefixElement> prefixes = new HashSet<PrefixElement>();
|
| -
|
| - /**
|
| - * The set of referenced top-level [Element]s.
|
| - */
|
| - final Set<Element> elements = new HashSet<Element>();
|
| -}
|
| -
|
| -/**
|
| - * A container with sets of used [Element]s.
|
| - * All these elements are defined in a single compilation unit or a library.
|
| - */
|
| -class UsedLocalElements {
|
| - /**
|
| - * Resolved, locally defined elements that are used or potentially can be
|
| - * used.
|
| - */
|
| - final HashSet<Element> elements = new HashSet<Element>();
|
| -
|
| - /**
|
| - * [LocalVariableElement]s that represent exceptions in [CatchClause]s.
|
| - */
|
| - final HashSet<LocalVariableElement> catchExceptionElements =
|
| - new HashSet<LocalVariableElement>();
|
| -
|
| - /**
|
| - * [LocalVariableElement]s that represent stack traces in [CatchClause]s.
|
| - */
|
| - final HashSet<LocalVariableElement> catchStackTraceElements =
|
| - new HashSet<LocalVariableElement>();
|
| -
|
| - /**
|
| - * Names of resolved or unresolved class members that are referenced in the
|
| - * library.
|
| - */
|
| - final HashSet<String> members = new HashSet<String>();
|
| -
|
| - /**
|
| - * Names of resolved or unresolved class members that are read in the
|
| - * library.
|
| - */
|
| - final HashSet<String> readMembers = new HashSet<String>();
|
| -
|
| - UsedLocalElements();
|
| -
|
| - factory UsedLocalElements.merge(List<UsedLocalElements> parts) {
|
| - UsedLocalElements result = new UsedLocalElements();
|
| - for (UsedLocalElements part in parts) {
|
| - result.elements.addAll(part.elements);
|
| - result.catchExceptionElements.addAll(part.catchExceptionElements);
|
| - result.catchStackTraceElements.addAll(part.catchStackTraceElements);
|
| - result.members.addAll(part.members);
|
| - result.readMembers.addAll(part.readMembers);
|
| - }
|
| - return result;
|
| - }
|
| -
|
| - void addCatchException(LocalVariableElement element) {
|
| - if (element != null) {
|
| - catchExceptionElements.add(element);
|
| - }
|
| - }
|
| -
|
| - void addCatchStackTrace(LocalVariableElement element) {
|
| - if (element != null) {
|
| - catchStackTraceElements.add(element);
|
| - }
|
| - }
|
| -
|
| - void addElement(Element element) {
|
| - if (element != null) {
|
| - elements.add(element);
|
| - }
|
| - }
|
| -
|
| - bool isCatchException(LocalVariableElement element) {
|
| - return catchExceptionElements.contains(element);
|
| - }
|
| -
|
| - bool isCatchStackTrace(LocalVariableElement element) {
|
| - return catchStackTraceElements.contains(element);
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Instances of the class `VariableResolverVisitor` are used to resolve
|
| - * [SimpleIdentifier]s to local variables and formal parameters.
|
| - */
|
| -class VariableResolverVisitor extends ScopedVisitor {
|
| - /**
|
| - * The method or function that we are currently visiting, or `null` if we are not inside a
|
| - * method or function.
|
| - */
|
| - ExecutableElement _enclosingFunction;
|
| -
|
| - /**
|
| - * Initialize a newly created visitor to resolve the nodes in an AST node.
|
| - *
|
| - * [definingLibrary] is the element for the library containing the node being
|
| - * visited.
|
| - * [source] is the source representing the compilation unit containing the
|
| - * node being visited
|
| - * [typeProvider] is the object used to access the types from the core
|
| - * library.
|
| - * [errorListener] is the error listener that will be informed of any errors
|
| - * that are found during resolution.
|
| - * [nameScope] is the scope used to resolve identifiers in the node that will
|
| - * first be visited. If `null` or unspecified, a new [LibraryScope] will be
|
| - * created based on [definingLibrary] and [typeProvider].
|
| - */
|
| - VariableResolverVisitor(LibraryElement definingLibrary, Source source,
|
| - TypeProvider typeProvider, AnalysisErrorListener errorListener,
|
| - {Scope nameScope})
|
| - : super(definingLibrary, source, typeProvider, errorListener,
|
| - nameScope: nameScope);
|
| -
|
| - /**
|
| - * Initialize a newly created visitor to resolve the nodes in a compilation unit.
|
| - *
|
| - * @param library the library containing the compilation unit being resolved
|
| - * @param source the source representing the compilation unit being visited
|
| - * @param typeProvider the object used to access the types from the core library
|
| - *
|
| - * Deprecated. Please use unnamed constructor instead.
|
| - */
|
| - @deprecated
|
| - VariableResolverVisitor.con1(
|
| - Library library, Source source, TypeProvider typeProvider)
|
| - : this(
|
| - library.libraryElement, source, typeProvider, library.errorListener,
|
| - nameScope: library.libraryScope);
|
| -
|
| - @override
|
| - Object visitExportDirective(ExportDirective node) => null;
|
| -
|
| - @override
|
| - Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| - ExecutableElement outerFunction = _enclosingFunction;
|
| - try {
|
| - _enclosingFunction = node.element;
|
| - return super.visitFunctionDeclaration(node);
|
| - } finally {
|
| - _enclosingFunction = outerFunction;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitFunctionExpression(FunctionExpression node) {
|
| - if (node.parent is! FunctionDeclaration) {
|
| - ExecutableElement outerFunction = _enclosingFunction;
|
| - try {
|
| - _enclosingFunction = node.element;
|
| - return super.visitFunctionExpression(node);
|
| - } finally {
|
| - _enclosingFunction = outerFunction;
|
| - }
|
| - } else {
|
| - return super.visitFunctionExpression(node);
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitImportDirective(ImportDirective node) => null;
|
| -
|
| - @override
|
| - Object visitMethodDeclaration(MethodDeclaration node) {
|
| - ExecutableElement outerFunction = _enclosingFunction;
|
| - try {
|
| - _enclosingFunction = node.element;
|
| - return super.visitMethodDeclaration(node);
|
| - } finally {
|
| - _enclosingFunction = outerFunction;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitSimpleIdentifier(SimpleIdentifier node) {
|
| - // Ignore if already resolved - declaration or type.
|
| - if (node.staticElement != null) {
|
| - return null;
|
| - }
|
| - // Ignore if qualified.
|
| - AstNode parent = node.parent;
|
| - if (parent is PrefixedIdentifier && identical(parent.identifier, node)) {
|
| - return null;
|
| - }
|
| - if (parent is PropertyAccess && identical(parent.propertyName, node)) {
|
| - return null;
|
| - }
|
| - if (parent is MethodInvocation &&
|
| - identical(parent.methodName, node) &&
|
| - parent.realTarget != null) {
|
| - return null;
|
| - }
|
| - if (parent is ConstructorName) {
|
| - return null;
|
| - }
|
| - if (parent is Label) {
|
| - return null;
|
| - }
|
| - // Prepare VariableElement.
|
| - Element element = nameScope.lookup(node, definingLibrary);
|
| - if (element is! VariableElement) {
|
| - return null;
|
| - }
|
| - // Must be local or parameter.
|
| - ElementKind kind = element.kind;
|
| - if (kind == ElementKind.LOCAL_VARIABLE) {
|
| - node.staticElement = element;
|
| - LocalVariableElementImpl variableImpl =
|
| - element as LocalVariableElementImpl;
|
| - if (node.inSetterContext()) {
|
| - variableImpl.markPotentiallyMutatedInScope();
|
| - if (element.enclosingElement != _enclosingFunction) {
|
| - variableImpl.markPotentiallyMutatedInClosure();
|
| - }
|
| - }
|
| - } else if (kind == ElementKind.PARAMETER) {
|
| - node.staticElement = element;
|
| - if (node.inSetterContext()) {
|
| - ParameterElementImpl parameterImpl = element as ParameterElementImpl;
|
| - parameterImpl.markPotentiallyMutatedInScope();
|
| - // If we are in some closure, check if it is not the same as where
|
| - // variable is declared.
|
| - if (_enclosingFunction != null &&
|
| - (element.enclosingElement != _enclosingFunction)) {
|
| - parameterImpl.markPotentiallyMutatedInClosure();
|
| - }
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -}
|
| -
|
| -class _ConstantVerifier_validateInitializerExpression extends ConstantVisitor {
|
| - final ConstantVerifier verifier;
|
| -
|
| - List<ParameterElement> parameterElements;
|
| -
|
| - _ConstantVerifier_validateInitializerExpression(TypeProvider typeProvider,
|
| - ErrorReporter errorReporter, this.verifier, this.parameterElements,
|
| - DeclaredVariables declaredVariables)
|
| - : super(new ConstantEvaluationEngine(typeProvider, declaredVariables),
|
| - errorReporter);
|
| -
|
| - @override
|
| - DartObjectImpl visitSimpleIdentifier(SimpleIdentifier node) {
|
| - Element element = node.staticElement;
|
| - for (ParameterElement parameterElement in parameterElements) {
|
| - if (identical(parameterElement, element) && parameterElement != null) {
|
| - DartType type = parameterElement.type;
|
| - if (type != null) {
|
| - if (type.isDynamic) {
|
| - return new DartObjectImpl(
|
| - verifier._typeProvider.objectType, DynamicState.DYNAMIC_STATE);
|
| - } else if (type.isSubtypeOf(verifier._boolType)) {
|
| - return new DartObjectImpl(
|
| - verifier._typeProvider.boolType, BoolState.UNKNOWN_VALUE);
|
| - } else if (type.isSubtypeOf(verifier._typeProvider.doubleType)) {
|
| - return new DartObjectImpl(
|
| - verifier._typeProvider.doubleType, DoubleState.UNKNOWN_VALUE);
|
| - } else if (type.isSubtypeOf(verifier._intType)) {
|
| - return new DartObjectImpl(
|
| - verifier._typeProvider.intType, IntState.UNKNOWN_VALUE);
|
| - } else if (type.isSubtypeOf(verifier._numType)) {
|
| - return new DartObjectImpl(
|
| - verifier._typeProvider.numType, NumState.UNKNOWN_VALUE);
|
| - } else if (type.isSubtypeOf(verifier._stringType)) {
|
| - return new DartObjectImpl(
|
| - verifier._typeProvider.stringType, StringState.UNKNOWN_VALUE);
|
| - }
|
| - //
|
| - // We don't test for other types of objects (such as List, Map,
|
| - // Function or Type) because there are no operations allowed on such
|
| - // types other than '==' and '!=', which means that we don't need to
|
| - // know the type when there is no specific data about the state of
|
| - // such objects.
|
| - //
|
| - }
|
| - return new DartObjectImpl(
|
| - type is InterfaceType ? type : verifier._typeProvider.objectType,
|
| - GenericState.UNKNOWN_VALUE);
|
| - }
|
| - }
|
| - return super.visitSimpleIdentifier(node);
|
| - }
|
| -}
|
| -
|
| -class _ElementBuilder_visitClassDeclaration extends UnifyingAstVisitor<Object> {
|
| - final ElementBuilder builder;
|
| -
|
| - List<ClassMember> nonFields;
|
| -
|
| - _ElementBuilder_visitClassDeclaration(this.builder, this.nonFields) : super();
|
| -
|
| - @override
|
| - Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| - nonFields.add(node);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitMethodDeclaration(MethodDeclaration node) {
|
| - nonFields.add(node);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitNode(AstNode node) => node.accept(builder);
|
| -}
|
| -
|
| -class _ResolverVisitor_isVariableAccessedInClosure
|
| - extends RecursiveAstVisitor<Object> {
|
| - final Element variable;
|
| -
|
| - bool result = false;
|
| -
|
| - bool _inClosure = false;
|
| -
|
| - _ResolverVisitor_isVariableAccessedInClosure(this.variable);
|
| -
|
| - @override
|
| - Object visitFunctionExpression(FunctionExpression node) {
|
| - bool inClosure = this._inClosure;
|
| - try {
|
| - this._inClosure = true;
|
| - return super.visitFunctionExpression(node);
|
| - } finally {
|
| - this._inClosure = inClosure;
|
| - }
|
| - }
|
| -
|
| - @override
|
| - Object visitSimpleIdentifier(SimpleIdentifier node) {
|
| - if (result) {
|
| - return null;
|
| - }
|
| - if (_inClosure && identical(node.staticElement, variable)) {
|
| - result = true;
|
| - }
|
| - return null;
|
| - }
|
| -}
|
| -
|
| -class _ResolverVisitor_isVariablePotentiallyMutatedIn
|
| - extends RecursiveAstVisitor<Object> {
|
| - final Element variable;
|
| -
|
| - bool result = false;
|
| -
|
| - _ResolverVisitor_isVariablePotentiallyMutatedIn(this.variable);
|
| -
|
| - @override
|
| - Object visitSimpleIdentifier(SimpleIdentifier node) {
|
| - if (result) {
|
| - return null;
|
| - }
|
| - if (identical(node.staticElement, variable)) {
|
| - if (node.inSetterContext()) {
|
| - result = true;
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -}
|
| -
|
| -class _TypeResolverVisitor_visitClassMembersInScope
|
| - extends UnifyingAstVisitor<Object> {
|
| - final TypeResolverVisitor TypeResolverVisitor_this;
|
| -
|
| - List<ClassMember> nonFields;
|
| -
|
| - _TypeResolverVisitor_visitClassMembersInScope(
|
| - this.TypeResolverVisitor_this, this.nonFields)
|
| - : super();
|
| -
|
| - @override
|
| - Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| - nonFields.add(node);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitExtendsClause(ExtendsClause node) => null;
|
| -
|
| - @override
|
| - Object visitImplementsClause(ImplementsClause node) => null;
|
| -
|
| - @override
|
| - Object visitMethodDeclaration(MethodDeclaration node) {
|
| - nonFields.add(node);
|
| - return null;
|
| - }
|
| -
|
| - @override
|
| - Object visitNode(AstNode node) => node.accept(TypeResolverVisitor_this);
|
| -
|
| - @override
|
| - Object visitWithClause(WithClause node) => null;
|
| -}
|
|
|