Index: packages/petitparser/lib/src/petitparser/parser.dart |
diff --git a/packages/petitparser/lib/src/petitparser/parser.dart b/packages/petitparser/lib/src/petitparser/parser.dart |
new file mode 100644 |
index 0000000000000000000000000000000000000000..34266be6bd5741d2164f3300eb501d60842f0198 |
--- /dev/null |
+++ b/packages/petitparser/lib/src/petitparser/parser.dart |
@@ -0,0 +1,399 @@ |
+part of petitparser; |
+ |
+/// Abstract base class of all parsers. |
+abstract class Parser { |
+ |
+ /// Primitive method doing the actual parsing. |
+ /// |
+ /// The method is overridden in concrete subclasses to implement the |
+ /// parser specific logic. The methods takes a parse [context] and |
+ /// returns the resulting context, which is either a [Success] or |
+ /// [Failure] context. |
+ Result parseOn(Context context); |
+ |
+ /// Returns the parse result of the [input]. |
+ /// |
+ /// The implementation creates a default parse context on the input and calls |
+ /// the internal parsing logic of the receiving parser. |
+ /// |
+ /// For example, `letter().plus().parse('abc')` results in an instance of |
+ /// [Success], where [Result.position] is `3` and [Success.value] is |
+ /// `[a, b, c]`. |
+ /// |
+ /// Similarly, `letter().plus().parse('123')` results in an instance of |
+ /// [Failure], where [Result.position] is `0` and [Failure.message] is |
+ /// ['letter expected']. |
+ Result parse(input) { |
+ return parseOn(new Context(input, 0)); |
+ } |
+ |
+ /// Tests if the [input] can be successfully parsed. |
+ /// |
+ /// For example, `letter().plus().accept('abc')` returns `true`, and |
+ /// `letter().plus().accept('123')` returns `false`. |
+ bool accept(input) { |
+ return parse(input).isSuccess; |
+ } |
+ |
+ /// Returns a list of all successful overlapping parses of the [input]. |
+ /// |
+ /// For example, `letter().plus().matches('abc de')` results in the list |
+ /// `[['a', 'b', 'c'], ['b', 'c'], ['c'], ['d', 'e'], ['e']]`. See |
+ /// [Parser.matchesSkipping] to retrieve non-overlapping parse results. |
+ Iterable matches(input) { |
+ var list = new List(); |
+ and() |
+ .map((each) => list.add(each)) |
+ .seq(any()) |
+ .or(any()) |
+ .star() |
+ .parse(input); |
+ return list; |
+ } |
+ |
+ /// Returns a list of all successful non-overlapping parses of the input. |
+ /// |
+ /// For example, `letter().plus().matchesSkipping('abc de')` results in the |
+ /// list `[['a', 'b', 'c'], ['d', 'e']]`. See [Parser.matches] to retrieve |
+ /// overlapping parse results. |
+ Iterable matchesSkipping(input) { |
+ var list = new List(); |
+ map((each) => list.add(each)).or(any()).star().parse(input); |
+ return list; |
+ } |
+ |
+ /// Returns new parser that accepts the receiver, if possible. The resulting |
+ /// parser returns the result of the receiver, or `null` if not applicable. |
+ /// The returned value can be provided as an optional argument [otherwise]. |
+ /// |
+ /// For example, the parser `letter().optional()` accepts a letter as input |
+ /// and returns that letter. When given something else the parser succeeds as |
+ /// well, does not consume anything and returns `null`. |
+ Parser optional([otherwise]) => new OptionalParser(this, otherwise); |
+ |
+ /// Returns a parser that accepts the receiver zero or more times. The |
+ /// resulting parser returns a list of the parse results of the receiver. |
+ /// |
+ /// This is a greedy and blind implementation that tries to consume as much |
+ /// input as possible and that does not consider what comes afterwards. |
+ /// |
+ /// For example, the parser `letter().star()` accepts the empty string or |
+ /// any sequence of letters and returns a possibly empty list of the parsed |
+ /// letters. |
+ Parser star() => repeat(0, unbounded); |
+ |
+ /// Returns a parser that parses the receiver zero or more times until it |
+ /// reaches a [limit]. This is a greedy non-blind implementation of the |
+ /// [Parser.star] operator. The [limit] is not consumed. |
+ Parser starGreedy(Parser limit) => repeatGreedy(limit, 0, unbounded); |
+ |
+ /// Returns a parser that parses the receiver zero or more times until it |
+ /// reaches a [limit]. This is a lazy non-blind implementation of the |
+ /// [Parser.star] operator. The [limit] is not consumed. |
+ Parser starLazy(Parser limit) => repeatLazy(limit, 0, unbounded); |
+ |
+ /// Returns a parser that accepts the receiver one or more times. The |
+ /// resulting parser returns a list of the parse results of the receiver. |
+ /// |
+ /// This is a greedy and blind implementation that tries to consume as much |
+ /// input as possible and that does not consider what comes afterwards. |
+ /// |
+ /// For example, the parser `letter().plus()` accepts any sequence of |
+ /// letters and returns a list of the parsed letters. |
+ Parser plus() => repeat(1, unbounded); |
+ |
+ /// Returns a parser that parses the receiver one or more times until it |
+ /// reaches [limit]. This is a greedy non-blind implementation of the |
+ /// [Parser.plus] operator. The [limit] is not consumed. |
+ Parser plusGreedy(Parser limit) => repeatGreedy(limit, 1, unbounded); |
+ |
+ /// Returns a parser that parses the receiver one or more times until it |
+ /// reaches a [limit]. This is a lazy non-blind implementation of the |
+ /// [Parser.plus] operator. The [limit] is not consumed. |
+ Parser plusLazy(Parser limit) => repeatLazy(limit, 1, unbounded); |
+ |
+ /// Returns a parser that accepts the receiver between [min] and [max] times. |
+ /// The resulting parser returns a list of the parse results of the receiver. |
+ /// |
+ /// This is a greedy and blind implementation that tries to consume as much |
+ /// input as possible and that does not consider what comes afterwards. |
+ /// |
+ /// For example, the parser `letter().repeat(2, 4)` accepts a sequence of |
+ /// two, three, or four letters and returns the accepted letters as a list. |
+ Parser repeat(int min, int max) { |
+ return new PossessiveRepeatingParser(this, min, max); |
+ } |
+ |
+ /// Returns a parser that parses the receiver at least [min] and at most [max] |
+ /// times until it reaches a [limit]. This is a greedy non-blind implementation of |
+ /// the [Parser.repeat] operator. The [limit] is not consumed. |
+ Parser repeatGreedy(Parser limit, int min, int max) { |
+ return new GreedyRepeatingParser(this, limit, min, max); |
+ } |
+ |
+ /// Returns a parser that parses the receiver at least [min] and at most [max] |
+ /// times until it reaches a [limit]. This is a lazy non-blind implementation of |
+ /// the [Parser.repeat] operator. The [limit] is not consumed. |
+ Parser repeatLazy(Parser limit, int min, int max) { |
+ return new LazyRepeatingParser(this, limit, min, max); |
+ } |
+ |
+ /// Returns a parser that accepts the receiver exactly [count] times. The |
+ /// resulting parser returns a list of the parse results of the receiver. |
+ /// |
+ /// For example, the parser `letter().times(2)` accepts two letters and |
+ /// returns a list of the two parsed letters. |
+ Parser times(int count) => repeat(count, count); |
+ |
+ /// Returns a parser that accepts the receiver followed by [other]. The |
+ /// resulting parser returns a list of the parse result of the receiver |
+ /// followed by the parse result of [other]. Calling this method on an |
+ /// existing sequence code not nest this sequence into a new one, but |
+ /// instead augments the existing sequence with [other]. |
+ /// |
+ /// For example, the parser `letter().seq(digit()).seq(letter())` accepts a |
+ /// letter followed by a digit and another letter. The parse result of the |
+ /// input string `'a1b'` is the list `['a', '1', 'b']`. |
+ Parser seq(Parser other) => new SequenceParser([this, other]); |
+ |
+ /// Convenience operator returning a parser that accepts the receiver followed |
+ /// by [other]. See [Parser.seq] for details. |
+ Parser operator &(Parser other) => this.seq(other); |
+ |
+ /// Returns a parser that accepts the receiver or [other]. The resulting |
+ /// parser returns the parse result of the receiver, if the receiver fails |
+ /// it returns the parse result of [other] (exclusive ordered choice). |
+ /// |
+ /// For example, the parser `letter().or(digit())` accepts a letter or a |
+ /// digit. An example where the order matters is the following choice between |
+ /// overlapping parsers: `letter().or(char('a'))`. In the example the parser |
+ /// `char('a')` will never be activated, because the input is always consumed |
+ /// `letter()`. This can be problematic if the author intended to attach a |
+ /// production action to `char('a')`. |
+ Parser or(Parser other) => new ChoiceParser([this, other]); |
+ |
+ /// Convenience operator returning a parser that accepts the receiver or |
+ /// [other]. See [Parser.or] for details. |
+ Parser operator |(Parser other) => this.or(other); |
+ |
+ /// Returns a parser (logical and-predicate) that succeeds whenever the |
+ /// receiver does, but never consumes input. |
+ /// |
+ /// For example, the parser `char('_').and().seq(identifier)` accepts |
+ /// identifiers that start with an underscore character. Since the predicate |
+ /// does not consume accepted input, the parser `identifier` is given the |
+ /// ability to process the complete identifier. |
+ Parser and() => new AndParser(this); |
+ |
+ /// Returns a parser (logical not-predicate) that succeeds whenever the |
+ /// receiver fails, but never consumes input. |
+ /// |
+ /// For example, the parser `char('_').not().seq(identifier)` accepts |
+ /// identifiers that do not start with an underscore character. If the parser |
+ /// `char('_')` accepts the input, the negation and subsequently the |
+ /// complete parser fails. Otherwise the parser `identifier` is given the |
+ /// ability to process the complete identifier. |
+ Parser not([String message]) => new NotParser(this, message); |
+ |
+ /// Returns a parser that consumes any input token (character), but the |
+ /// receiver. |
+ /// |
+ /// For example, the parser `letter().neg()` accepts any input but a letter. |
+ /// The parser fails for inputs like `'a'` or `'Z'`, but succeeds for |
+ /// input like `'1'`, `'_'` or `'$'`. |
+ Parser neg([String message]) => not(message).seq(any()).pick(1); |
+ |
+ /// Returns a parser that discards the result of the receiver, and returns |
+ /// a sub-string of the consumed range in the string/list being parsed. |
+ /// |
+ /// For example, the parser `letter().plus().flatten()` returns `'abc'` |
+ /// for the input `'abc'`. In contrast, the parser `letter().plus()` would |
+ /// return `['a', 'b', 'c']` for the same input instead. |
+ Parser flatten() => new FlattenParser(this); |
+ |
+ /// Returns a parser that returns a [Token]. The token carries the parsed |
+ /// value of the receiver [Token.value], as well as the consumed input |
+ /// [Token.input] from [Token.start] to [Token.stop] of the input being |
+ /// parsed. |
+ /// |
+ /// For example, the parser `letter().plus().token()` returns the token |
+ /// `Token[start: 0, stop: 3, value: abc]` for the input `'abc'`. |
+ Parser token() => new TokenParser(this); |
+ |
+ /// Returns a parser that consumes input before and after the receiver. The |
+ /// optional argument is a parser that consumes the excess input. By default |
+ /// `whitespace()` is used. Two arguments can be provided to have different |
+ /// parsers on the [left] and [right] side. |
+ /// |
+ /// For example, the parser `letter().plus().trim()` returns `['a', 'b']` |
+ /// for the input `' ab\n'` and consumes the complete input string. |
+ Parser trim([Parser left, Parser right]) { |
+ if (left == null) left = whitespace(); |
+ if (right == null) right = left; |
+ return new TrimmingParser(this, left, right); |
+ } |
+ |
+ /// Returns a parser that succeeds only if the receiver consumes the complete |
+ /// input, otherwise return a failure with the optional [message]. |
+ /// |
+ /// For example, the parser `letter().end()` succeeds on the input `'a'` |
+ /// and fails on `'ab'`. In contrast the parser `letter()` alone would |
+ /// succeed on both inputs, but not consume everything for the second input. |
+ Parser end([String message = 'end of input expected']) { |
+ return new EndOfInputParser(this, message); |
+ } |
+ |
+ /// Returns a parser that points to the receiver, but can be changed to point |
+ /// to something else at a later point in time. |
+ /// |
+ /// For example, the parser `letter().settable()` behaves exactly the same |
+ /// as `letter()`, but it can be replaced with another parser using |
+ /// [SettableParser.set]. |
+ SettableParser settable() => new SettableParser(this); |
+ |
+ /// Returns a parser that evaluates a [function] as the production action |
+ /// on success of the receiver. |
+ /// |
+ /// For example, the parser `digit().map((char) => int.parse(char))` returns |
+ /// the number `1` for the input string `'1'`. If the delegate fail, the |
+ /// production action is not executed and the failure is passed on. |
+ Parser map(Function function) => new ActionParser(this, function); |
+ |
+ /// Returns a parser that transform a successful parse result by returning |
+ /// the element at [index] of a list. A negative index can be used to access |
+ /// the elements from the back of the list. |
+ /// |
+ /// For example, the parser `letter().star().pick(-1)` returns the last |
+ /// letter parsed. For the input `'abc'` it returns `'c'`. |
+ Parser pick(int index) { |
+ return this.map((List list) { |
+ return list[index < 0 ? list.length + index : index]; |
+ }); |
+ } |
+ |
+ /// Returns a parser that transforms a successful parse result by returning |
+ /// the permuted elements at [indexes] of a list. Negative indexes can be |
+ /// used to access the elements from the back of the list. |
+ /// |
+ /// For example, the parser `letter().star().permute([0, -1])` returns the |
+ /// first and last letter parsed. For the input `'abc'` it returns |
+ /// `['a', 'c']`. |
+ Parser permute(List<int> indexes) { |
+ return this.map((List list) { |
+ return indexes.map((index) { |
+ return list[index < 0 ? list.length + index : index]; |
+ }).toList(); |
+ }); |
+ } |
+ |
+ /// Returns a parser that consumes the receiver one or more times separated |
+ /// by the [separator] parser. The resulting parser returns a flat list of |
+ /// the parse results of the receiver interleaved with the parse result of the |
+ /// separator parser. |
+ /// |
+ /// If the optional argument [includeSeparators] is set to `false`, then the |
+ /// separators are not included in the parse result. If the optional argument |
+ /// [optionalSeparatorAtEnd] is set to `true` the parser also accepts an |
+ /// optional separator at the end. |
+ /// |
+ /// For example, the parser `digit().separatedBy(char('-'))` returns a parser |
+ /// that consumes input like `'1-2-3'` and returns a list of the elements and |
+ /// separators: `['1', '-', '2', '-', '3']`. |
+ Parser separatedBy(Parser separator, |
+ {bool includeSeparators: true, bool optionalSeparatorAtEnd: false}) { |
+ var repeater = new SequenceParser([separator, this]).star(); |
+ var parser = new SequenceParser(optionalSeparatorAtEnd |
+ ? [this, repeater, separator.optional(separator)] |
+ : [this, repeater]); |
+ return parser.map((List list) { |
+ var result = new List(); |
+ result.add(list[0]); |
+ for (var tuple in list[1]) { |
+ if (includeSeparators) { |
+ result.add(tuple[0]); |
+ } |
+ result.add(tuple[1]); |
+ } |
+ if (includeSeparators && |
+ optionalSeparatorAtEnd && |
+ !identical(list[2], separator)) { |
+ result.add(list[2]); |
+ } |
+ return result; |
+ }); |
+ } |
+ |
+ /// Returns a shallow copy of the receiver. |
+ /// |
+ /// Override this method in all subclasses. |
+ Parser copy(); |
+ |
+ /// Recursively tests for structural equality of two parsers. |
+ /// |
+ /// The code can automatically deals with recursive parsers and parsers that |
+ /// refer to other parsers. This code is supposed to be overridden by parsers |
+ /// that add other state. |
+ bool isEqualTo(Parser other, [Set<Parser> seen]) { |
+ if (seen == null) { |
+ seen = new Set(); |
+ } |
+ if (this == other || seen.contains(this)) { |
+ return true; |
+ } |
+ seen.add(this); |
+ return runtimeType == other.runtimeType && |
+ hasEqualProperties(other) && |
+ hasEqualChildren(other, seen); |
+ } |
+ |
+ /// Compare the properties of two parsers. Normally this method should not be |
+ /// called directly, instead use [Parser#equals]. |
+ /// |
+ /// Override this method in all subclasses that add new state. |
+ bool hasEqualProperties(Parser other) => true; |
+ |
+ /// Compare the children of two parsers. Normally this method should not be |
+ /// called directly, instead use [Parser#equals]. |
+ /// |
+ /// Normally this method does not need to be overridden, as this method works |
+ /// generically on the returned [Parser#children]. |
+ bool hasEqualChildren(Parser other, Set<Parser> seen) { |
+ var thisChildren = children, |
+ otherChildren = other.children; |
+ if (thisChildren.length != otherChildren.length) { |
+ return false; |
+ } |
+ for (var i = 0; i < thisChildren.length; i++) { |
+ if (!thisChildren[i].isEqualTo(otherChildren[i], seen)) { |
+ return false; |
+ } |
+ } |
+ return true; |
+ } |
+ |
+ /// Returns a list of directly referenced parsers. |
+ /// |
+ /// For example, `letter().children` returns the empty collection `[]`, |
+ /// because the letter parser is a primitive or leaf parser that does not |
+ /// depend or call any other parser. |
+ /// |
+ /// In contrast, `letter().or(digit()).children` returns a collection |
+ /// containing both the `letter()` and `digit()` parser. |
+ List<Parser> get children => const []; |
+ |
+ /// Changes the receiver by replacing [source] with [target]. Does nothing |
+ /// if [source] does not exist in [Parser.children]. |
+ /// |
+ /// The following example creates a letter parser and then defines a parser |
+ /// called `example` that accepts one or more letters. Eventually the parser |
+ /// `example` is modified by replacing the `letter` parser with a new |
+ /// parser that accepts a digit. The resulting `example` parser accepts one |
+ /// or more digits. |
+ /// |
+ /// var letter = letter(); |
+ /// var example = letter.plus(); |
+ /// example.replace(letter, digit()); |
+ void replace(Parser source, Parser target) { |
+ // no children, nothing to do |
+ } |
+} |