Index: collection/lib/priority_queue.dart |
diff --git a/collection/lib/priority_queue.dart b/collection/lib/priority_queue.dart |
deleted file mode 100644 |
index efb3239027b38ff953a0b6356d9c5da806902fcf..0000000000000000000000000000000000000000 |
--- a/collection/lib/priority_queue.dart |
+++ /dev/null |
@@ -1,396 +0,0 @@ |
-// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
-// for details. All rights reserved. Use of this source code is governed by a |
-// BSD-style license that can be found in the LICENSE file. |
- |
-library dart.pkg.collection.priority_queue; |
- |
-import "dart:collection" show SplayTreeSet; |
- |
-/** |
- * A priority queue is a priority based work-list of elements. |
- * |
- * The queue allows adding elements, and removing them again in priority order. |
- */ |
-abstract class PriorityQueue<E> { |
- /** |
- * Number of elements in the queue. |
- */ |
- int get length; |
- |
- /** |
- * Whether the queue is empty. |
- */ |
- bool get isEmpty; |
- |
- /** |
- * Whether the queue has any elements. |
- */ |
- bool get isNotEmpty; |
- |
- /** |
- * Checks if [object] is in the queue. |
- * |
- * Returns true if the element is found. |
- */ |
- bool contains(E object); |
- |
- /** |
- * Adds element to the queue. |
- * |
- * The element will become the next to be removed by [removeFirst] |
- * when all elements with higher priority have been removed. |
- */ |
- void add(E element); |
- |
- /** |
- * Adds all [elements] to the queue. |
- */ |
- void addAll(Iterable<E> elements); |
- |
- /** |
- * Returns the next element that will be returned by [removeFirst]. |
- * |
- * The element is not removed from the queue. |
- * |
- * The queue must not be empty when this method is called. |
- */ |
- E get first; |
- |
- /** |
- * Removes and returns the element with the highest priority. |
- * |
- * Repeatedly calling this method, without adding element in between, |
- * is guaranteed to return elements in non-decreasing order as, specified by |
- * [comparison]. |
- * |
- * The queue must not be empty when this method is called. |
- */ |
- E removeFirst(); |
- |
- /** |
- * Removes an element that compares equal to [element] in the queue. |
- * |
- * Returns true if an element is found and removed, |
- * and false if no equal element is found. |
- */ |
- bool remove(E element); |
- |
- /** |
- * Removes all the elements from this queue and returns them. |
- * |
- * The returned iterable has no specified order. |
- */ |
- Iterable<E> removeAll(); |
- |
- /** |
- * Removes all the elements from this queue. |
- */ |
- void clear(); |
- |
- /** |
- * Returns a list of the elements of this queue in priority order. |
- * |
- * The queue is not modified. |
- * |
- * The order is the order that the elements would be in if they were |
- * removed from this queue using [removeFirst]. |
- */ |
- List<E> toList(); |
- |
- /** |
- * Return a comparator based set using the comparator of this queue. |
- * |
- * The queue is not modified. |
- * |
- * The returned [Set] is currently a [SplayTreeSet], |
- * but this may change as other ordered sets are implemented. |
- * |
- * The set contains all the elements of this queue. |
- * If an element occurs more than once in the queue, |
- * the set will contain it only once. |
- */ |
- Set<E> toSet(); |
-} |
- |
-/** |
- * Heap based priority queue. |
- * |
- * The elements are kept in a heap structure, |
- * where the element with the highest priority is immediately accessible, |
- * and modifying a single element takes |
- * logarithmic time in the number of elements on average. |
- * |
- * * The [add] and [removeFirst] operations take amortized logarithmic time, |
- * O(log(n)), but may occasionally take linear time when growing the capacity |
- * of the heap. |
- * * The [addAll] operation works as doing repeated [add] operations. |
- * * The [first] getter takes constant time, O(1). |
- * * The [clear] and [removeAll] methods also take constant time, O(1). |
- * * The [contains] and [remove] operations may need to search the entire |
- * queue for the elements, taking O(n) time. |
- * * The [toList] operation effectively sorts the elements, taking O(n*log(n)) |
- * time. |
- * * The [toSet] operation effectively adds each element to the new set, taking |
- * an expected O(n*log(n)) time. |
- */ |
-class HeapPriorityQueue<E> implements PriorityQueue<E> { |
- /** |
- * Initial capacity of a queue when created, or when added to after a [clear]. |
- * |
- * Number can be any positive value. Picking a size that gives a whole |
- * number of "tree levels" in the heap is only done for aesthetic reasons. |
- */ |
- static const int _INITIAL_CAPACITY = 7; |
- |
- /** |
- * The comparison being used to compare the priority of elements. |
- */ |
- final Comparator comparison; |
- |
- /** |
- * List implementation of a heap. |
- */ |
- List<E> _queue = new List<E>(_INITIAL_CAPACITY); |
- |
- /** |
- * Number of elements in queue. |
- * |
- * The heap is implemented in the first [_length] entries of [_queue]. |
- */ |
- int _length = 0; |
- |
- /** |
- * Create a new priority queue. |
- * |
- * The [comparison] is a [Comparator] used to compare the priority of |
- * elements. An element that compares as less than another element has |
- * a higher priority. |
- * |
- * If [comparison] is omitted, it defaults to [Comparable.compare]. |
- */ |
- HeapPriorityQueue([int comparison(E e1, E e2)]) |
- : comparison = (comparison != null) ? comparison : Comparable.compare; |
- |
- void add(E element) { |
- _add(element); |
- } |
- |
- void addAll(Iterable<E> elements) { |
- for (E element in elements) { |
- _add(element); |
- } |
- } |
- |
- void clear() { |
- _queue = const []; |
- _length = 0; |
- } |
- |
- bool contains(E object) { |
- return _locate(object) >= 0; |
- } |
- |
- E get first { |
- if (_length == 0) throw new StateError("No such element"); |
- return _queue[0]; |
- } |
- |
- bool get isEmpty => _length == 0; |
- |
- bool get isNotEmpty => _length != 0; |
- |
- int get length => _length; |
- |
- bool remove(E element) { |
- int index = _locate(element); |
- if (index < 0) return false; |
- E last = _removeLast(); |
- if (index < _length) { |
- int comp = comparison(last, element); |
- if (comp <= 0) { |
- _bubbleUp(last, index); |
- } else { |
- _bubbleDown(last, index); |
- } |
- } |
- return true; |
- } |
- |
- Iterable<E> removeAll() { |
- List<E> result = _queue; |
- int length = _length; |
- _queue = const []; |
- _length = 0; |
- return result.take(length); |
- } |
- |
- E removeFirst() { |
- if (_length == 0) throw new StateError("No such element"); |
- E result = _queue[0]; |
- E last = _removeLast(); |
- if (_length > 0) { |
- _bubbleDown(last, 0); |
- } |
- return result; |
- } |
- |
- List<E> toList() { |
- List<E> list = new List<E>()..length = _length; |
- list.setRange(0, _length, _queue); |
- list.sort(comparison); |
- return list; |
- } |
- |
- Set<E> toSet() { |
- Set<E> set = new SplayTreeSet<E>(comparison); |
- for (int i = 0; i < _length; i++) { |
- set.add(_queue[i]); |
- } |
- return set; |
- } |
- |
- /** |
- * Returns some representation of the queue. |
- * |
- * The format isn't significant, and may change in the future. |
- */ |
- String toString() { |
- return _queue.take(_length).toString(); |
- } |
- |
- /** |
- * Add element to the queue. |
- * |
- * Grows the capacity if the backing list is full. |
- */ |
- void _add(E element) { |
- if (_length == _queue.length) _grow(); |
- _bubbleUp(element, _length++); |
- } |
- |
- /** |
- * Find the index of an object in the heap. |
- * |
- * Returns -1 if the object is not found. |
- */ |
- int _locate(E object) { |
- if (_length == 0) return -1; |
- // Count positions from one instad of zero. This gives the numbers |
- // some nice properties. For example, all right children are odd, |
- // their left sibling is even, and the parent is found by shifting |
- // right by one. |
- // Valid range for position is [1.._length], inclusive. |
- int position = 1; |
- // Pre-order depth first search, omit child nodes if the current |
- // node has lower priority than [object], because all nodes lower |
- // in the heap will also have lower priority. |
- do { |
- int index = position - 1; |
- E element = _queue[index]; |
- int comp = comparison(element, object); |
- if (comp == 0) return index; |
- if (comp < 0) { |
- // Element may be in subtree. |
- // Continue with the left child, if it is there. |
- int leftChildPosition = position * 2; |
- if (leftChildPosition <= _length) { |
- position = leftChildPosition; |
- continue; |
- } |
- } |
- // Find the next right sibling or right ancestor sibling. |
- do { |
- while (position.isOdd) { |
- // While position is a right child, go to the parent. |
- position >>= 1; |
- } |
- // Then go to the right sibling of the left-child. |
- position += 1; |
- } while (position > _length); // Happens if last element is a left child. |
- } while (position != 1); // At root again. Happens for right-most element. |
- return -1; |
- } |
- |
- E _removeLast() { |
- int newLength = _length - 1; |
- E last = _queue[newLength]; |
- _queue[newLength] = null; |
- _length = newLength; |
- return last; |
- } |
- |
- /** |
- * Place [element] in heap at [index] or above. |
- * |
- * Put element into the empty cell at `index`. |
- * While the `element` has higher priority than the |
- * parent, swap it with the parent. |
- */ |
- void _bubbleUp(E element, int index) { |
- while (index > 0) { |
- int parentIndex = (index - 1) ~/ 2; |
- E parent = _queue[parentIndex]; |
- if (comparison(element, parent) > 0) break; |
- _queue[index] = parent; |
- index = parentIndex; |
- } |
- _queue[index] = element; |
- } |
- |
- /** |
- * Place [element] in heap at [index] or above. |
- * |
- * Put element into the empty cell at `index`. |
- * While the `element` has lower priority than either child, |
- * swap it with the highest priority child. |
- */ |
- void _bubbleDown(E element, int index) { |
- int rightChildIndex = index * 2 + 2; |
- while (rightChildIndex < _length) { |
- int leftChildIndex = rightChildIndex - 1; |
- E leftChild = _queue[leftChildIndex]; |
- E rightChild = _queue[rightChildIndex]; |
- int comp = comparison(leftChild, rightChild); |
- int minChildIndex; |
- E minChild; |
- if (comp < 0) { |
- minChild = leftChild; |
- minChildIndex = leftChildIndex; |
- } else { |
- minChild = rightChild; |
- minChildIndex = rightChildIndex; |
- } |
- comp = comparison(element, minChild); |
- if (comp <= 0) { |
- _queue[index] = element; |
- return; |
- } |
- _queue[index] = minChild; |
- index = minChildIndex; |
- rightChildIndex = index * 2 + 2; |
- } |
- int leftChildIndex = rightChildIndex - 1; |
- if (leftChildIndex < _length) { |
- E child = _queue[leftChildIndex]; |
- int comp = comparison(element, child); |
- if (comp > 0) { |
- _queue[index] = child; |
- index = leftChildIndex; |
- } |
- } |
- _queue[index] = element; |
- } |
- |
- /** |
- * Grows the capacity of the list holding the heap. |
- * |
- * Called when the list is full. |
- */ |
- void _grow() { |
- int newCapacity = _queue.length * 2 + 1; |
- if (newCapacity < _INITIAL_CAPACITY) newCapacity = _INITIAL_CAPACITY; |
- List<E> newQueue = new List<E>(newCapacity); |
- newQueue.setRange(0, _length, _queue); |
- _queue = newQueue; |
- } |
-} |