Chromium Code Reviews| Index: skia/ext/convolver_unittest.cc |
| diff --git a/skia/ext/convolver_unittest.cc b/skia/ext/convolver_unittest.cc |
| index 377ed8ed3051c20f491ad0336d8bed80a3041b17..567f5df7fc1de5e681edd4ee46ba9951ac1beef8 100644 |
| --- a/skia/ext/convolver_unittest.cc |
| +++ b/skia/ext/convolver_unittest.cc |
| @@ -324,4 +324,164 @@ TEST(Convolver, SIMDVerification) { |
| } |
| } |
| +TEST(Convolver, SeparableSingleConvolution) { |
| + static const int kSize = 1024; |
| + static const int kChannelCount = 3; |
| + static const int kStrideSlack = 22; |
| + ConvolutionFilter1D filter; |
| + const float box[5] = { 0.2, 0.2, 0.2, 0.2, 0.2 }; |
| + filter.AddFilter(0, box, 5); |
| + |
| + // Allocate a source image and set to 0. |
| + int img_width = kSize; |
|
Alexei Svitkine (slow)
2013/04/11 18:25:37
Do you need all these temp variables?
e.g. can yo
motek.
2013/04/12 10:50:59
Nah, I don't need them. Copied as such from a rout
|
| + int img_height = kSize; |
| + int src_row_stride = img_width * kChannelCount + kStrideSlack; |
| + int src_byte_count = src_row_stride * img_height; |
| + std::vector<unsigned char> input; |
| + int signal_x = img_width / 2; |
| + int signal_y = img_height / 2; |
| + input.resize(src_byte_count, 0); |
| + // The image has a single impulse pixel in channel 1, smack in the middle. |
| + int non_zero_pixel_index = |
| + signal_y * src_row_stride + signal_x * kChannelCount + 1; |
| + input[non_zero_pixel_index] = 255; |
| + |
| + // Destination will be a single channel image with stide matching width. |
| + int dest_row_stride = img_width; |
| + int dest_byte_count = dest_row_stride * img_height; |
| + std::vector<unsigned char> output; |
| + output.resize(dest_byte_count); |
| + |
| + // Apply convolution in X. |
| + SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount, |
| + filter, SkISize::Make(img_width, img_height), |
| + &output[0], dest_row_stride, 0, 1, false); |
| + for (int x = signal_x - 2; x <= signal_x + 2; ++x) { |
|
Alexei Svitkine (slow)
2013/04/11 18:25:37
Nit: No need for {}'s.
motek.
2013/04/12 10:50:59
Done.
|
| + EXPECT_GT(output[signal_y * dest_row_stride + x], 0); |
| + } |
| + EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 3], 0); |
| + EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 3], 0); |
| + |
| + // Apply convolution in Y. |
| + SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount, |
| + filter, SkISize::Make(img_width, img_height), |
| + &output[0], dest_row_stride, 0, 1, false); |
| + for (int y = signal_y - 2; y <= signal_y + 2; ++y) { |
|
Alexei Svitkine (slow)
2013/04/11 18:25:37
Nit: No need for {}'s.
motek.
2013/04/12 10:50:59
Done.
|
| + EXPECT_GT(output[y * dest_row_stride + signal_x], 0); |
| + } |
| + |
| + EXPECT_EQ(output[(signal_y - 3) * dest_row_stride + signal_x], 0); |
| + EXPECT_EQ(output[(signal_y + 3) * dest_row_stride + signal_x], 0); |
| + |
| + EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 1], 0); |
| + EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 1], 0); |
| + |
| + // The main point of calling this is to invoke the routine on input without |
| + // padding. |
| + std::vector<unsigned char> output2; |
| + output2.resize(dest_byte_count); |
| + SingleChannelConvolveX1D(&output[0], dest_row_stride, 0, 1, |
| + filter, SkISize::Make(img_width, img_height), |
| + &output2[0], dest_row_stride, 0, 1, false); |
| + // This should be a result of 2D convolution. |
| + for (int x = signal_x - 2; x <= signal_x + 2; ++x) { |
| + for (int y = signal_y - 2; y <= signal_y + 2; ++y) { |
| + EXPECT_GT(output2[y * dest_row_stride + x], 0); |
| + } |
| + } |
| + EXPECT_EQ(output2[0], 0); |
| + EXPECT_EQ(output2[dest_row_stride - 1], 0); |
| + EXPECT_EQ(output2[dest_byte_count - 1], 0); |
| +} |
| + |
| +TEST(Convolver, SeparableSingleConvolutionEdges) { |
| + // The purpose of this test is to check if the implementation treats correctly |
| + // edges of the image. |
| + static const int kImgWidth = 600; |
| + static const int kImgHeight = 800; |
| + static const int kChannelCount = 3; |
| + static const int kStrideSlack = 22; |
| + static const int kChannel = 1; |
| + ConvolutionFilter1D filter; |
| + const float box[5] = { 0.2, 0.2, 0.2, 0.2, 0.2 }; |
| + filter.AddFilter(0, box, 5); |
| + |
| + // Allocate a source image and set to 0. |
| + int src_row_stride = kImgWidth * kChannelCount + kStrideSlack; |
| + int src_byte_count = src_row_stride * kImgHeight; |
| + std::vector<unsigned char> input(src_byte_count); |
| + |
| + // Draw a frame around the image. |
| + for (int i = 0; i < src_byte_count; ++i) { |
| + int row = i / src_row_stride; |
| + int col = i % src_row_stride / kChannelCount; |
| + int channel = i % src_row_stride % kChannelCount; |
| + if (channel != kChannel || col > kImgWidth) { |
| + input[i] = 255; |
| + } else if (row == 0 || col == 0 || |
| + col == kImgWidth - 1 || row == kImgHeight - 1) { |
| + input[i] = 100; |
| + } else if (row == 1 || col == 1 || |
| + col == kImgWidth - 2 || row == kImgHeight - 2) { |
| + input[i] = 200; |
| + } else { |
| + input[i] = 0; |
| + } |
| + } |
| + |
| + // Destination will be a single channel image with stide matching width. |
| + int dest_row_stride = kImgWidth; |
| + int dest_byte_count = dest_row_stride * kImgHeight; |
| + std::vector<unsigned char> output; |
| + output.resize(dest_byte_count); |
| + |
| + // Apply convolution in X. |
| + SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount, |
| + filter, SkISize::Make(kImgWidth, kImgHeight), |
| + &output[0], dest_row_stride, 0, 1, false); |
| + |
| + // Sadly, comparison is not as simple as retaining all values. |
| + int invalid_values = 0; |
| + const unsigned char first_value = output[0]; |
| + EXPECT_TRUE(std::abs(100 - first_value) <= 1); |
| + for (int i = 0; i < dest_row_stride; ++i) { |
| + if (output[i] != first_value) |
| + ++invalid_values; |
| + } |
| + EXPECT_EQ(0, invalid_values); |
| + |
| + int test_row = 22; |
| + EXPECT_TRUE(std::abs(output[test_row * dest_row_stride] - 100) <= 1); |
| + EXPECT_TRUE(std::abs(output[test_row * dest_row_stride + 1] - 80) <= 1); |
| + EXPECT_TRUE(std::abs(output[test_row * dest_row_stride + 2] - 60) <= 1); |
| + EXPECT_TRUE(std::abs(output[test_row * dest_row_stride + 3] - 40) <= 1); |
| + EXPECT_TRUE( |
|
Alexei Svitkine (slow)
2013/04/11 18:25:37
Can you use EXPECT_NEAR() for these?
motek.
2013/04/12 10:50:59
Done.
|
| + std::abs(output[(test_row + 1) * dest_row_stride - 1] - 100) <= 1); |
| + EXPECT_TRUE( |
| + std::abs(output[(test_row + 1) * dest_row_stride - 2] - 80) <= 1); |
| + EXPECT_TRUE( |
| + std::abs(output[(test_row + 1) * dest_row_stride - 3] - 60) <= 1); |
| + EXPECT_TRUE( |
| + std::abs(output[(test_row + 1) * dest_row_stride - 4] - 40) <= 1); |
| + |
| + SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount, |
| + filter, SkISize::Make(kImgWidth, kImgHeight), |
| + &output[0], dest_row_stride, 0, 1, false); |
| + |
| + int test_column = 42; |
| + EXPECT_TRUE(std::abs(output[test_column] - 100) <= 1); |
| + EXPECT_TRUE(std::abs(output[test_column + dest_row_stride] - 80) <= 1); |
| + EXPECT_TRUE(std::abs(output[test_column + dest_row_stride * 2] - 60) <= 1); |
| + EXPECT_TRUE(std::abs(output[test_column + dest_row_stride * 3] - 40) <= 1); |
| + |
| + EXPECT_TRUE(std::abs( |
| + output[test_column + dest_row_stride * (kImgHeight - 1)] - 100) <= 1); |
| + EXPECT_TRUE(std::abs( |
| + output[test_column + dest_row_stride * (kImgHeight - 2)] - 80) <= 1); |
| + EXPECT_TRUE(std::abs( |
| + output[test_column + dest_row_stride * (kImgHeight - 3)] - 60) <= 1); |
| + EXPECT_TRUE(std::abs( |
| + output[test_column + dest_row_stride * (kImgHeight - 4)] - 40) <= 1); |
| +} |
| + |
| } // namespace skia |