| Index: skia/ext/convolver_unittest.cc
|
| diff --git a/skia/ext/convolver_unittest.cc b/skia/ext/convolver_unittest.cc
|
| index 377ed8ed3051c20f491ad0336d8bed80a3041b17..b8776558220b7c86f8bab41e9f3e2afd37912f54 100644
|
| --- a/skia/ext/convolver_unittest.cc
|
| +++ b/skia/ext/convolver_unittest.cc
|
| @@ -324,4 +324,153 @@ TEST(Convolver, SIMDVerification) {
|
| }
|
| }
|
|
|
| +TEST(Convolver, SeparableSingleConvolution) {
|
| + static const int kImgWidth = 1024;
|
| + static const int kImgHeight = 1024;
|
| + static const int kChannelCount = 3;
|
| + static const int kStrideSlack = 22;
|
| + ConvolutionFilter1D filter;
|
| + const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f };
|
| + filter.AddFilter(0, box, 5);
|
| +
|
| + // Allocate a source image and set to 0.
|
| + const int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
|
| + int src_byte_count = src_row_stride * kImgHeight;
|
| + std::vector<unsigned char> input;
|
| + const int signal_x = kImgWidth / 2;
|
| + const int signal_y = kImgHeight / 2;
|
| + input.resize(src_byte_count, 0);
|
| + // The image has a single impulse pixel in channel 1, smack in the middle.
|
| + const int non_zero_pixel_index =
|
| + signal_y * src_row_stride + signal_x * kChannelCount + 1;
|
| + input[non_zero_pixel_index] = 255;
|
| +
|
| + // Destination will be a single channel image with stide matching width.
|
| + const int dest_row_stride = kImgWidth;
|
| + const int dest_byte_count = dest_row_stride * kImgHeight;
|
| + std::vector<unsigned char> output;
|
| + output.resize(dest_byte_count);
|
| +
|
| + // Apply convolution in X.
|
| + SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount,
|
| + filter, SkISize::Make(kImgWidth, kImgHeight),
|
| + &output[0], dest_row_stride, 0, 1, false);
|
| + for (int x = signal_x - 2; x <= signal_x + 2; ++x)
|
| + EXPECT_GT(output[signal_y * dest_row_stride + x], 0);
|
| +
|
| + EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 3], 0);
|
| + EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 3], 0);
|
| +
|
| + // Apply convolution in Y.
|
| + SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount,
|
| + filter, SkISize::Make(kImgWidth, kImgHeight),
|
| + &output[0], dest_row_stride, 0, 1, false);
|
| + for (int y = signal_y - 2; y <= signal_y + 2; ++y)
|
| + EXPECT_GT(output[y * dest_row_stride + signal_x], 0);
|
| +
|
| + EXPECT_EQ(output[(signal_y - 3) * dest_row_stride + signal_x], 0);
|
| + EXPECT_EQ(output[(signal_y + 3) * dest_row_stride + signal_x], 0);
|
| +
|
| + EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 1], 0);
|
| + EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 1], 0);
|
| +
|
| + // The main point of calling this is to invoke the routine on input without
|
| + // padding.
|
| + std::vector<unsigned char> output2;
|
| + output2.resize(dest_byte_count);
|
| + SingleChannelConvolveX1D(&output[0], dest_row_stride, 0, 1,
|
| + filter, SkISize::Make(kImgWidth, kImgHeight),
|
| + &output2[0], dest_row_stride, 0, 1, false);
|
| + // This should be a result of 2D convolution.
|
| + for (int x = signal_x - 2; x <= signal_x + 2; ++x) {
|
| + for (int y = signal_y - 2; y <= signal_y + 2; ++y)
|
| + EXPECT_GT(output2[y * dest_row_stride + x], 0);
|
| + }
|
| + EXPECT_EQ(output2[0], 0);
|
| + EXPECT_EQ(output2[dest_row_stride - 1], 0);
|
| + EXPECT_EQ(output2[dest_byte_count - 1], 0);
|
| +}
|
| +
|
| +TEST(Convolver, SeparableSingleConvolutionEdges) {
|
| + // The purpose of this test is to check if the implementation treats correctly
|
| + // edges of the image.
|
| + static const int kImgWidth = 600;
|
| + static const int kImgHeight = 800;
|
| + static const int kChannelCount = 3;
|
| + static const int kStrideSlack = 22;
|
| + static const int kChannel = 1;
|
| + ConvolutionFilter1D filter;
|
| + const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f };
|
| + filter.AddFilter(0, box, 5);
|
| +
|
| + // Allocate a source image and set to 0.
|
| + int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
|
| + int src_byte_count = src_row_stride * kImgHeight;
|
| + std::vector<unsigned char> input(src_byte_count);
|
| +
|
| + // Draw a frame around the image.
|
| + for (int i = 0; i < src_byte_count; ++i) {
|
| + int row = i / src_row_stride;
|
| + int col = i % src_row_stride / kChannelCount;
|
| + int channel = i % src_row_stride % kChannelCount;
|
| + if (channel != kChannel || col > kImgWidth) {
|
| + input[i] = 255;
|
| + } else if (row == 0 || col == 0 ||
|
| + col == kImgWidth - 1 || row == kImgHeight - 1) {
|
| + input[i] = 100;
|
| + } else if (row == 1 || col == 1 ||
|
| + col == kImgWidth - 2 || row == kImgHeight - 2) {
|
| + input[i] = 200;
|
| + } else {
|
| + input[i] = 0;
|
| + }
|
| + }
|
| +
|
| + // Destination will be a single channel image with stide matching width.
|
| + int dest_row_stride = kImgWidth;
|
| + int dest_byte_count = dest_row_stride * kImgHeight;
|
| + std::vector<unsigned char> output;
|
| + output.resize(dest_byte_count);
|
| +
|
| + // Apply convolution in X.
|
| + SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount,
|
| + filter, SkISize::Make(kImgWidth, kImgHeight),
|
| + &output[0], dest_row_stride, 0, 1, false);
|
| +
|
| + // Sadly, comparison is not as simple as retaining all values.
|
| + int invalid_values = 0;
|
| + const unsigned char first_value = output[0];
|
| + EXPECT_TRUE(std::abs(100 - first_value) <= 1);
|
| + for (int i = 0; i < dest_row_stride; ++i) {
|
| + if (output[i] != first_value)
|
| + ++invalid_values;
|
| + }
|
| + EXPECT_EQ(0, invalid_values);
|
| +
|
| + int test_row = 22;
|
| + EXPECT_NEAR(output[test_row * dest_row_stride], 100, 1);
|
| + EXPECT_NEAR(output[test_row * dest_row_stride + 1], 80, 1);
|
| + EXPECT_NEAR(output[test_row * dest_row_stride + 2], 60, 1);
|
| + EXPECT_NEAR(output[test_row * dest_row_stride + 3], 40, 1);
|
| + EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 1], 100, 1);
|
| + EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 2], 80, 1);
|
| + EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 3], 60, 1);
|
| + EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 4], 40, 1);
|
| +
|
| + SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount,
|
| + filter, SkISize::Make(kImgWidth, kImgHeight),
|
| + &output[0], dest_row_stride, 0, 1, false);
|
| +
|
| + int test_column = 42;
|
| + EXPECT_NEAR(output[test_column], 100, 1);
|
| + EXPECT_NEAR(output[test_column + dest_row_stride], 80, 1);
|
| + EXPECT_NEAR(output[test_column + dest_row_stride * 2], 60, 1);
|
| + EXPECT_NEAR(output[test_column + dest_row_stride * 3], 40, 1);
|
| +
|
| + EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 1)], 100, 1);
|
| + EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 2)], 80, 1);
|
| + EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 3)], 60, 1);
|
| + EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 4)], 40, 1);
|
| +}
|
| +
|
| } // namespace skia
|
|
|