Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(348)

Unified Diff: src/DartARM32/assembler_arm.cc

Issue 1394613002: Create local copy of Dart assembler code. (Closed) Base URL: https://chromium.googlesource.com/native_client/pnacl-subzero.git@master
Patch Set: Blacklist ARM32 Dart files. Created 5 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/DartARM32/assembler_arm.h ('k') | no next file » | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/DartARM32/assembler_arm.cc
diff --git a/src/DartARM32/assembler_arm.cc b/src/DartARM32/assembler_arm.cc
new file mode 100644
index 0000000000000000000000000000000000000000..5c0a90ed3376e58cc44dc4b3b9f922bdb87974b6
--- /dev/null
+++ b/src/DartARM32/assembler_arm.cc
@@ -0,0 +1,3653 @@
+// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
+// for details. All rights reserved. Use of this source code is governed by a
+// BSD-style license that can be found in the LICENSE file.
+//
+// This is forked from Dart revision df52deea9f25690eb8b66c5995da92b70f7ac1fe
+// Please update the (git) revision if we merge changes from Dart.
+// https://code.google.com/p/dart/wiki/GettingTheSource
+
+#include "vm/globals.h" // NOLINT
+#if defined(TARGET_ARCH_ARM)
+
+#include "vm/assembler.h"
+#include "vm/cpu.h"
+#include "vm/longjump.h"
+#include "vm/runtime_entry.h"
+#include "vm/simulator.h"
+#include "vm/stack_frame.h"
+#include "vm/stub_code.h"
+
+// An extra check since we are assuming the existence of /proc/cpuinfo below.
+#if !defined(USING_SIMULATOR) && !defined(__linux__) && !defined(ANDROID)
+#error ARM cross-compile only supported on Linux
+#endif
+
+namespace dart {
+
+DECLARE_FLAG(bool, allow_absolute_addresses);
+DEFINE_FLAG(bool, print_stop_message, true, "Print stop message.");
+DECLARE_FLAG(bool, inline_alloc);
+
+uint32_t Address::encoding3() const {
+ if (kind_ == Immediate) {
+ uint32_t offset = encoding_ & kOffset12Mask;
+ ASSERT(offset < 256);
+ return (encoding_ & ~kOffset12Mask) | B22 |
+ ((offset & 0xf0) << 4) | (offset & 0xf);
+ }
+ ASSERT(kind_ == IndexRegister);
+ return encoding_;
+}
+
+
+uint32_t Address::vencoding() const {
+ ASSERT(kind_ == Immediate);
+ uint32_t offset = encoding_ & kOffset12Mask;
+ ASSERT(offset < (1 << 10)); // In the range 0 to +1020.
+ ASSERT(Utils::IsAligned(offset, 4)); // Multiple of 4.
+ int mode = encoding_ & ((8|4|1) << 21);
+ ASSERT((mode == Offset) || (mode == NegOffset));
+ uint32_t vencoding = (encoding_ & (0xf << kRnShift)) | (offset >> 2);
+ if (mode == Offset) {
+ vencoding |= 1 << 23;
+ }
+ return vencoding;
+}
+
+
+void Assembler::InitializeMemoryWithBreakpoints(uword data, intptr_t length) {
+ ASSERT(Utils::IsAligned(data, 4));
+ ASSERT(Utils::IsAligned(length, 4));
+ const uword end = data + length;
+ while (data < end) {
+ *reinterpret_cast<int32_t*>(data) = Instr::kBreakPointInstruction;
+ data += 4;
+ }
+}
+
+
+void Assembler::Emit(int32_t value) {
+ AssemblerBuffer::EnsureCapacity ensured(&buffer_);
+ buffer_.Emit<int32_t>(value);
+}
+
+
+void Assembler::EmitType01(Condition cond,
+ int type,
+ Opcode opcode,
+ int set_cc,
+ Register rn,
+ Register rd,
+ Operand o) {
+ ASSERT(rd != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
+ type << kTypeShift |
+ static_cast<int32_t>(opcode) << kOpcodeShift |
+ set_cc << kSShift |
+ static_cast<int32_t>(rn) << kRnShift |
+ static_cast<int32_t>(rd) << kRdShift |
+ o.encoding();
+ Emit(encoding);
+}
+
+
+void Assembler::EmitType5(Condition cond, int32_t offset, bool link) {
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
+ 5 << kTypeShift |
+ (link ? 1 : 0) << kLinkShift;
+ Emit(Assembler::EncodeBranchOffset(offset, encoding));
+}
+
+
+void Assembler::EmitMemOp(Condition cond,
+ bool load,
+ bool byte,
+ Register rd,
+ Address ad) {
+ ASSERT(rd != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B26 | (ad.kind() == Address::Immediate ? 0 : B25) |
+ (load ? L : 0) |
+ (byte ? B : 0) |
+ (static_cast<int32_t>(rd) << kRdShift) |
+ ad.encoding();
+ Emit(encoding);
+}
+
+
+void Assembler::EmitMemOpAddressMode3(Condition cond,
+ int32_t mode,
+ Register rd,
+ Address ad) {
+ ASSERT(rd != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ mode |
+ (static_cast<int32_t>(rd) << kRdShift) |
+ ad.encoding3();
+ Emit(encoding);
+}
+
+
+void Assembler::EmitMultiMemOp(Condition cond,
+ BlockAddressMode am,
+ bool load,
+ Register base,
+ RegList regs) {
+ ASSERT(base != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 |
+ am |
+ (load ? L : 0) |
+ (static_cast<int32_t>(base) << kRnShift) |
+ regs;
+ Emit(encoding);
+}
+
+
+void Assembler::EmitShiftImmediate(Condition cond,
+ Shift opcode,
+ Register rd,
+ Register rm,
+ Operand o) {
+ ASSERT(cond != kNoCondition);
+ ASSERT(o.type() == 1);
+ int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
+ static_cast<int32_t>(MOV) << kOpcodeShift |
+ static_cast<int32_t>(rd) << kRdShift |
+ o.encoding() << kShiftImmShift |
+ static_cast<int32_t>(opcode) << kShiftShift |
+ static_cast<int32_t>(rm);
+ Emit(encoding);
+}
+
+
+void Assembler::EmitShiftRegister(Condition cond,
+ Shift opcode,
+ Register rd,
+ Register rm,
+ Operand o) {
+ ASSERT(cond != kNoCondition);
+ ASSERT(o.type() == 0);
+ int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
+ static_cast<int32_t>(MOV) << kOpcodeShift |
+ static_cast<int32_t>(rd) << kRdShift |
+ o.encoding() << kShiftRegisterShift |
+ static_cast<int32_t>(opcode) << kShiftShift |
+ B4 |
+ static_cast<int32_t>(rm);
+ Emit(encoding);
+}
+
+
+void Assembler::and_(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), AND, 0, rn, rd, o);
+}
+
+
+void Assembler::eor(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), EOR, 0, rn, rd, o);
+}
+
+
+void Assembler::sub(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), SUB, 0, rn, rd, o);
+}
+
+void Assembler::rsb(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), RSB, 0, rn, rd, o);
+}
+
+void Assembler::rsbs(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), RSB, 1, rn, rd, o);
+}
+
+
+void Assembler::add(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), ADD, 0, rn, rd, o);
+}
+
+
+void Assembler::adds(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), ADD, 1, rn, rd, o);
+}
+
+
+void Assembler::subs(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), SUB, 1, rn, rd, o);
+}
+
+
+void Assembler::adc(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), ADC, 0, rn, rd, o);
+}
+
+
+void Assembler::adcs(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), ADC, 1, rn, rd, o);
+}
+
+
+void Assembler::sbc(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), SBC, 0, rn, rd, o);
+}
+
+
+void Assembler::sbcs(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), SBC, 1, rn, rd, o);
+}
+
+
+void Assembler::rsc(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), RSC, 0, rn, rd, o);
+}
+
+
+void Assembler::tst(Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), TST, 1, rn, R0, o);
+}
+
+
+void Assembler::teq(Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), TEQ, 1, rn, R0, o);
+}
+
+
+void Assembler::cmp(Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), CMP, 1, rn, R0, o);
+}
+
+
+void Assembler::cmn(Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), CMN, 1, rn, R0, o);
+}
+
+
+void Assembler::orr(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), ORR, 0, rn, rd, o);
+}
+
+
+void Assembler::orrs(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), ORR, 1, rn, rd, o);
+}
+
+
+void Assembler::mov(Register rd, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), MOV, 0, R0, rd, o);
+}
+
+
+void Assembler::movs(Register rd, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), MOV, 1, R0, rd, o);
+}
+
+
+void Assembler::bic(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), BIC, 0, rn, rd, o);
+}
+
+
+void Assembler::bics(Register rd, Register rn, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), BIC, 1, rn, rd, o);
+}
+
+
+void Assembler::mvn(Register rd, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), MVN, 0, R0, rd, o);
+}
+
+
+void Assembler::mvns(Register rd, Operand o, Condition cond) {
+ EmitType01(cond, o.type(), MVN, 1, R0, rd, o);
+}
+
+
+void Assembler::clz(Register rd, Register rm, Condition cond) {
+ ASSERT(rd != kNoRegister);
+ ASSERT(rm != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ ASSERT(rd != PC);
+ ASSERT(rm != PC);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B24 | B22 | B21 | (0xf << 16) |
+ (static_cast<int32_t>(rd) << kRdShift) |
+ (0xf << 8) | B4 | static_cast<int32_t>(rm);
+ Emit(encoding);
+}
+
+
+void Assembler::movw(Register rd, uint16_t imm16, Condition cond) {
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
+ B25 | B24 | ((imm16 >> 12) << 16) |
+ static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff);
+ Emit(encoding);
+}
+
+
+void Assembler::movt(Register rd, uint16_t imm16, Condition cond) {
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
+ B25 | B24 | B22 | ((imm16 >> 12) << 16) |
+ static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff);
+ Emit(encoding);
+}
+
+
+void Assembler::EmitMulOp(Condition cond, int32_t opcode,
+ Register rd, Register rn,
+ Register rm, Register rs) {
+ ASSERT(rd != kNoRegister);
+ ASSERT(rn != kNoRegister);
+ ASSERT(rm != kNoRegister);
+ ASSERT(rs != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = opcode |
+ (static_cast<int32_t>(cond) << kConditionShift) |
+ (static_cast<int32_t>(rn) << kRnShift) |
+ (static_cast<int32_t>(rd) << kRdShift) |
+ (static_cast<int32_t>(rs) << kRsShift) |
+ B7 | B4 |
+ (static_cast<int32_t>(rm) << kRmShift);
+ Emit(encoding);
+}
+
+
+void Assembler::mul(Register rd, Register rn, Register rm, Condition cond) {
+ // Assembler registers rd, rn, rm are encoded as rn, rm, rs.
+ EmitMulOp(cond, 0, R0, rd, rn, rm);
+}
+
+
+// Like mul, but sets condition flags.
+void Assembler::muls(Register rd, Register rn, Register rm, Condition cond) {
+ EmitMulOp(cond, B20, R0, rd, rn, rm);
+}
+
+
+void Assembler::mla(Register rd, Register rn,
+ Register rm, Register ra, Condition cond) {
+ // rd <- ra + rn * rm.
+ // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
+ EmitMulOp(cond, B21, ra, rd, rn, rm);
+}
+
+
+void Assembler::mls(Register rd, Register rn,
+ Register rm, Register ra, Condition cond) {
+ // rd <- ra - rn * rm.
+ if (TargetCPUFeatures::arm_version() == ARMv7) {
+ // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
+ EmitMulOp(cond, B22 | B21, ra, rd, rn, rm);
+ } else {
+ mul(IP, rn, rm, cond);
+ sub(rd, ra, Operand(IP), cond);
+ }
+}
+
+
+void Assembler::smull(Register rd_lo, Register rd_hi,
+ Register rn, Register rm, Condition cond) {
+ // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
+ EmitMulOp(cond, B23 | B22, rd_lo, rd_hi, rn, rm);
+}
+
+
+void Assembler::umull(Register rd_lo, Register rd_hi,
+ Register rn, Register rm, Condition cond) {
+ // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
+ EmitMulOp(cond, B23, rd_lo, rd_hi, rn, rm);
+}
+
+
+void Assembler::umlal(Register rd_lo, Register rd_hi,
+ Register rn, Register rm, Condition cond) {
+ // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
+ EmitMulOp(cond, B23 | B21, rd_lo, rd_hi, rn, rm);
+}
+
+
+void Assembler::umaal(Register rd_lo, Register rd_hi,
+ Register rn, Register rm) {
+ ASSERT(rd_lo != IP);
+ ASSERT(rd_hi != IP);
+ ASSERT(rn != IP);
+ ASSERT(rm != IP);
+ if (TargetCPUFeatures::arm_version() != ARMv5TE) {
+ // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
+ EmitMulOp(AL, B22, rd_lo, rd_hi, rn, rm);
+ } else {
+ mov(IP, Operand(0));
+ umlal(rd_lo, IP, rn, rm);
+ adds(rd_lo, rd_lo, Operand(rd_hi));
+ adc(rd_hi, IP, Operand(0));
+ }
+}
+
+
+void Assembler::EmitDivOp(Condition cond, int32_t opcode,
+ Register rd, Register rn, Register rm) {
+ ASSERT(TargetCPUFeatures::integer_division_supported());
+ ASSERT(rd != kNoRegister);
+ ASSERT(rn != kNoRegister);
+ ASSERT(rm != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = opcode |
+ (static_cast<int32_t>(cond) << kConditionShift) |
+ (static_cast<int32_t>(rn) << kDivRnShift) |
+ (static_cast<int32_t>(rd) << kDivRdShift) |
+ B26 | B25 | B24 | B20 | B4 |
+ (static_cast<int32_t>(rm) << kDivRmShift);
+ Emit(encoding);
+}
+
+
+void Assembler::sdiv(Register rd, Register rn, Register rm, Condition cond) {
+ EmitDivOp(cond, 0, rd, rn, rm);
+}
+
+
+void Assembler::udiv(Register rd, Register rn, Register rm, Condition cond) {
+ EmitDivOp(cond, B21 , rd, rn, rm);
+}
+
+
+void Assembler::ldr(Register rd, Address ad, Condition cond) {
+ EmitMemOp(cond, true, false, rd, ad);
+}
+
+
+void Assembler::str(Register rd, Address ad, Condition cond) {
+ EmitMemOp(cond, false, false, rd, ad);
+}
+
+
+void Assembler::ldrb(Register rd, Address ad, Condition cond) {
+ EmitMemOp(cond, true, true, rd, ad);
+}
+
+
+void Assembler::strb(Register rd, Address ad, Condition cond) {
+ EmitMemOp(cond, false, true, rd, ad);
+}
+
+
+void Assembler::ldrh(Register rd, Address ad, Condition cond) {
+ EmitMemOpAddressMode3(cond, L | B7 | H | B4, rd, ad);
+}
+
+
+void Assembler::strh(Register rd, Address ad, Condition cond) {
+ EmitMemOpAddressMode3(cond, B7 | H | B4, rd, ad);
+}
+
+
+void Assembler::ldrsb(Register rd, Address ad, Condition cond) {
+ EmitMemOpAddressMode3(cond, L | B7 | B6 | B4, rd, ad);
+}
+
+
+void Assembler::ldrsh(Register rd, Address ad, Condition cond) {
+ EmitMemOpAddressMode3(cond, L | B7 | B6 | H | B4, rd, ad);
+}
+
+
+void Assembler::ldrd(Register rd, Register rn, int32_t offset, Condition cond) {
+ ASSERT((rd % 2) == 0);
+ if (TargetCPUFeatures::arm_version() == ARMv5TE) {
+ const Register rd2 = static_cast<Register>(static_cast<int32_t>(rd) + 1);
+ ldr(rd, Address(rn, offset), cond);
+ ldr(rd2, Address(rn, offset + kWordSize), cond);
+ } else {
+ EmitMemOpAddressMode3(cond, B7 | B6 | B4, rd, Address(rn, offset));
+ }
+}
+
+
+void Assembler::strd(Register rd, Register rn, int32_t offset, Condition cond) {
+ ASSERT((rd % 2) == 0);
+ if (TargetCPUFeatures::arm_version() == ARMv5TE) {
+ const Register rd2 = static_cast<Register>(static_cast<int32_t>(rd) + 1);
+ str(rd, Address(rn, offset), cond);
+ str(rd2, Address(rn, offset + kWordSize), cond);
+ } else {
+ EmitMemOpAddressMode3(cond, B7 | B6 | B5 | B4, rd, Address(rn, offset));
+ }
+}
+
+
+void Assembler::ldm(BlockAddressMode am, Register base, RegList regs,
+ Condition cond) {
+ ASSERT(regs != 0);
+ EmitMultiMemOp(cond, am, true, base, regs);
+}
+
+
+void Assembler::stm(BlockAddressMode am, Register base, RegList regs,
+ Condition cond) {
+ ASSERT(regs != 0);
+ EmitMultiMemOp(cond, am, false, base, regs);
+}
+
+
+void Assembler::ldrex(Register rt, Register rn, Condition cond) {
+ ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE);
+ ASSERT(rn != kNoRegister);
+ ASSERT(rt != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B24 |
+ B23 |
+ L |
+ (static_cast<int32_t>(rn) << kLdExRnShift) |
+ (static_cast<int32_t>(rt) << kLdExRtShift) |
+ B11 | B10 | B9 | B8 | B7 | B4 | B3 | B2 | B1 | B0;
+ Emit(encoding);
+}
+
+
+void Assembler::strex(Register rd, Register rt, Register rn, Condition cond) {
+ ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE);
+ ASSERT(rn != kNoRegister);
+ ASSERT(rd != kNoRegister);
+ ASSERT(rt != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B24 |
+ B23 |
+ (static_cast<int32_t>(rn) << kStrExRnShift) |
+ (static_cast<int32_t>(rd) << kStrExRdShift) |
+ B11 | B10 | B9 | B8 | B7 | B4 |
+ (static_cast<int32_t>(rt) << kStrExRtShift);
+ Emit(encoding);
+}
+
+
+void Assembler::clrex() {
+ ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE);
+ int32_t encoding = (kSpecialCondition << kConditionShift) |
+ B26 | B24 | B22 | B21 | B20 | (0xff << 12) | B4 | 0xf;
+ Emit(encoding);
+}
+
+
+void Assembler::nop(Condition cond) {
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B25 | B24 | B21 | (0xf << 12);
+ Emit(encoding);
+}
+
+
+void Assembler::vmovsr(SRegister sn, Register rt, Condition cond) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(sn != kNoSRegister);
+ ASSERT(rt != kNoRegister);
+ ASSERT(rt != SP);
+ ASSERT(rt != PC);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B25 |
+ ((static_cast<int32_t>(sn) >> 1)*B16) |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 |
+ ((static_cast<int32_t>(sn) & 1)*B7) | B4;
+ Emit(encoding);
+}
+
+
+void Assembler::vmovrs(Register rt, SRegister sn, Condition cond) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(sn != kNoSRegister);
+ ASSERT(rt != kNoRegister);
+ ASSERT(rt != SP);
+ ASSERT(rt != PC);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B25 | B20 |
+ ((static_cast<int32_t>(sn) >> 1)*B16) |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 |
+ ((static_cast<int32_t>(sn) & 1)*B7) | B4;
+ Emit(encoding);
+}
+
+
+void Assembler::vmovsrr(SRegister sm, Register rt, Register rt2,
+ Condition cond) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(sm != kNoSRegister);
+ ASSERT(sm != S31);
+ ASSERT(rt != kNoRegister);
+ ASSERT(rt != SP);
+ ASSERT(rt != PC);
+ ASSERT(rt2 != kNoRegister);
+ ASSERT(rt2 != SP);
+ ASSERT(rt2 != PC);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B22 |
+ (static_cast<int32_t>(rt2)*B16) |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 |
+ ((static_cast<int32_t>(sm) & 1)*B5) | B4 |
+ (static_cast<int32_t>(sm) >> 1);
+ Emit(encoding);
+}
+
+
+void Assembler::vmovrrs(Register rt, Register rt2, SRegister sm,
+ Condition cond) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(sm != kNoSRegister);
+ ASSERT(sm != S31);
+ ASSERT(rt != kNoRegister);
+ ASSERT(rt != SP);
+ ASSERT(rt != PC);
+ ASSERT(rt2 != kNoRegister);
+ ASSERT(rt2 != SP);
+ ASSERT(rt2 != PC);
+ ASSERT(rt != rt2);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B22 | B20 |
+ (static_cast<int32_t>(rt2)*B16) |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 |
+ ((static_cast<int32_t>(sm) & 1)*B5) | B4 |
+ (static_cast<int32_t>(sm) >> 1);
+ Emit(encoding);
+}
+
+
+void Assembler::vmovdr(DRegister dn, int i, Register rt, Condition cond) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT((i == 0) || (i == 1));
+ ASSERT(rt != kNoRegister);
+ ASSERT(rt != SP);
+ ASSERT(rt != PC);
+ ASSERT(dn != kNoDRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B25 |
+ (i*B21) |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 |
+ ((static_cast<int32_t>(dn) >> 4)*B7) |
+ ((static_cast<int32_t>(dn) & 0xf)*B16) | B4;
+ Emit(encoding);
+}
+
+
+void Assembler::vmovdrr(DRegister dm, Register rt, Register rt2,
+ Condition cond) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(dm != kNoDRegister);
+ ASSERT(rt != kNoRegister);
+ ASSERT(rt != SP);
+ ASSERT(rt != PC);
+ ASSERT(rt2 != kNoRegister);
+ ASSERT(rt2 != SP);
+ ASSERT(rt2 != PC);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B22 |
+ (static_cast<int32_t>(rt2)*B16) |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 |
+ ((static_cast<int32_t>(dm) >> 4)*B5) | B4 |
+ (static_cast<int32_t>(dm) & 0xf);
+ Emit(encoding);
+}
+
+
+void Assembler::vmovrrd(Register rt, Register rt2, DRegister dm,
+ Condition cond) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(dm != kNoDRegister);
+ ASSERT(rt != kNoRegister);
+ ASSERT(rt != SP);
+ ASSERT(rt != PC);
+ ASSERT(rt2 != kNoRegister);
+ ASSERT(rt2 != SP);
+ ASSERT(rt2 != PC);
+ ASSERT(rt != rt2);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B22 | B20 |
+ (static_cast<int32_t>(rt2)*B16) |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 |
+ ((static_cast<int32_t>(dm) >> 4)*B5) | B4 |
+ (static_cast<int32_t>(dm) & 0xf);
+ Emit(encoding);
+}
+
+
+void Assembler::vldrs(SRegister sd, Address ad, Condition cond) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(sd != kNoSRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B24 | B20 |
+ ((static_cast<int32_t>(sd) & 1)*B22) |
+ ((static_cast<int32_t>(sd) >> 1)*B12) |
+ B11 | B9 | ad.vencoding();
+ Emit(encoding);
+}
+
+
+void Assembler::vstrs(SRegister sd, Address ad, Condition cond) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC);
+ ASSERT(sd != kNoSRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B24 |
+ ((static_cast<int32_t>(sd) & 1)*B22) |
+ ((static_cast<int32_t>(sd) >> 1)*B12) |
+ B11 | B9 | ad.vencoding();
+ Emit(encoding);
+}
+
+
+void Assembler::vldrd(DRegister dd, Address ad, Condition cond) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(dd != kNoDRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B24 | B20 |
+ ((static_cast<int32_t>(dd) >> 4)*B22) |
+ ((static_cast<int32_t>(dd) & 0xf)*B12) |
+ B11 | B9 | B8 | ad.vencoding();
+ Emit(encoding);
+}
+
+
+void Assembler::vstrd(DRegister dd, Address ad, Condition cond) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC);
+ ASSERT(dd != kNoDRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B24 |
+ ((static_cast<int32_t>(dd) >> 4)*B22) |
+ ((static_cast<int32_t>(dd) & 0xf)*B12) |
+ B11 | B9 | B8 | ad.vencoding();
+ Emit(encoding);
+}
+
+void Assembler::EmitMultiVSMemOp(Condition cond,
+ BlockAddressMode am,
+ bool load,
+ Register base,
+ SRegister start,
+ uint32_t count) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(base != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ ASSERT(start != kNoSRegister);
+ ASSERT(static_cast<int32_t>(start) + count <= kNumberOfSRegisters);
+
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B11 | B9 |
+ am |
+ (load ? L : 0) |
+ (static_cast<int32_t>(base) << kRnShift) |
+ ((static_cast<int32_t>(start) & 0x1) ? D : 0) |
+ ((static_cast<int32_t>(start) >> 1) << 12) |
+ count;
+ Emit(encoding);
+}
+
+
+void Assembler::EmitMultiVDMemOp(Condition cond,
+ BlockAddressMode am,
+ bool load,
+ Register base,
+ DRegister start,
+ int32_t count) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(base != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ ASSERT(start != kNoDRegister);
+ ASSERT(static_cast<int32_t>(start) + count <= kNumberOfDRegisters);
+ const int armv5te = TargetCPUFeatures::arm_version() == ARMv5TE ? 1 : 0;
+
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B11 | B9 | B8 |
+ am |
+ (load ? L : 0) |
+ (static_cast<int32_t>(base) << kRnShift) |
+ ((static_cast<int32_t>(start) & 0x10) ? D : 0) |
+ ((static_cast<int32_t>(start) & 0xf) << 12) |
+ (count << 1) | armv5te;
+ Emit(encoding);
+}
+
+
+void Assembler::vldms(BlockAddressMode am, Register base,
+ SRegister first, SRegister last, Condition cond) {
+ ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
+ ASSERT(last > first);
+ EmitMultiVSMemOp(cond, am, true, base, first, last - first + 1);
+}
+
+
+void Assembler::vstms(BlockAddressMode am, Register base,
+ SRegister first, SRegister last, Condition cond) {
+ ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
+ ASSERT(last > first);
+ EmitMultiVSMemOp(cond, am, false, base, first, last - first + 1);
+}
+
+
+void Assembler::vldmd(BlockAddressMode am, Register base,
+ DRegister first, intptr_t count, Condition cond) {
+ ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
+ ASSERT(count <= 16);
+ ASSERT(first + count <= kNumberOfDRegisters);
+ EmitMultiVDMemOp(cond, am, true, base, first, count);
+}
+
+
+void Assembler::vstmd(BlockAddressMode am, Register base,
+ DRegister first, intptr_t count, Condition cond) {
+ ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
+ ASSERT(count <= 16);
+ ASSERT(first + count <= kNumberOfDRegisters);
+ EmitMultiVDMemOp(cond, am, false, base, first, count);
+}
+
+
+void Assembler::EmitVFPsss(Condition cond, int32_t opcode,
+ SRegister sd, SRegister sn, SRegister sm) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(sd != kNoSRegister);
+ ASSERT(sn != kNoSRegister);
+ ASSERT(sm != kNoSRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B25 | B11 | B9 | opcode |
+ ((static_cast<int32_t>(sd) & 1)*B22) |
+ ((static_cast<int32_t>(sn) >> 1)*B16) |
+ ((static_cast<int32_t>(sd) >> 1)*B12) |
+ ((static_cast<int32_t>(sn) & 1)*B7) |
+ ((static_cast<int32_t>(sm) & 1)*B5) |
+ (static_cast<int32_t>(sm) >> 1);
+ Emit(encoding);
+}
+
+
+void Assembler::EmitVFPddd(Condition cond, int32_t opcode,
+ DRegister dd, DRegister dn, DRegister dm) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(dd != kNoDRegister);
+ ASSERT(dn != kNoDRegister);
+ ASSERT(dm != kNoDRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B25 | B11 | B9 | B8 | opcode |
+ ((static_cast<int32_t>(dd) >> 4)*B22) |
+ ((static_cast<int32_t>(dn) & 0xf)*B16) |
+ ((static_cast<int32_t>(dd) & 0xf)*B12) |
+ ((static_cast<int32_t>(dn) >> 4)*B7) |
+ ((static_cast<int32_t>(dm) >> 4)*B5) |
+ (static_cast<int32_t>(dm) & 0xf);
+ Emit(encoding);
+}
+
+
+void Assembler::vmovs(SRegister sd, SRegister sm, Condition cond) {
+ EmitVFPsss(cond, B23 | B21 | B20 | B6, sd, S0, sm);
+}
+
+
+void Assembler::vmovd(DRegister dd, DRegister dm, Condition cond) {
+ EmitVFPddd(cond, B23 | B21 | B20 | B6, dd, D0, dm);
+}
+
+
+bool Assembler::vmovs(SRegister sd, float s_imm, Condition cond) {
+ if (TargetCPUFeatures::arm_version() != ARMv7) {
+ return false;
+ }
+ uint32_t imm32 = bit_cast<uint32_t, float>(s_imm);
+ if (((imm32 & ((1 << 19) - 1)) == 0) &&
+ ((((imm32 >> 25) & ((1 << 6) - 1)) == (1 << 5)) ||
+ (((imm32 >> 25) & ((1 << 6) - 1)) == ((1 << 5) -1)))) {
+ uint8_t imm8 = ((imm32 >> 31) << 7) | (((imm32 >> 29) & 1) << 6) |
+ ((imm32 >> 19) & ((1 << 6) -1));
+ EmitVFPsss(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | (imm8 & 0xf),
+ sd, S0, S0);
+ return true;
+ }
+ return false;
+}
+
+
+bool Assembler::vmovd(DRegister dd, double d_imm, Condition cond) {
+ if (TargetCPUFeatures::arm_version() != ARMv7) {
+ return false;
+ }
+ uint64_t imm64 = bit_cast<uint64_t, double>(d_imm);
+ if (((imm64 & ((1LL << 48) - 1)) == 0) &&
+ ((((imm64 >> 54) & ((1 << 9) - 1)) == (1 << 8)) ||
+ (((imm64 >> 54) & ((1 << 9) - 1)) == ((1 << 8) -1)))) {
+ uint8_t imm8 = ((imm64 >> 63) << 7) | (((imm64 >> 61) & 1) << 6) |
+ ((imm64 >> 48) & ((1 << 6) -1));
+ EmitVFPddd(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | B8 | (imm8 & 0xf),
+ dd, D0, D0);
+ return true;
+ }
+ return false;
+}
+
+
+void Assembler::vadds(SRegister sd, SRegister sn, SRegister sm,
+ Condition cond) {
+ EmitVFPsss(cond, B21 | B20, sd, sn, sm);
+}
+
+
+void Assembler::vaddd(DRegister dd, DRegister dn, DRegister dm,
+ Condition cond) {
+ EmitVFPddd(cond, B21 | B20, dd, dn, dm);
+}
+
+
+void Assembler::vsubs(SRegister sd, SRegister sn, SRegister sm,
+ Condition cond) {
+ EmitVFPsss(cond, B21 | B20 | B6, sd, sn, sm);
+}
+
+
+void Assembler::vsubd(DRegister dd, DRegister dn, DRegister dm,
+ Condition cond) {
+ EmitVFPddd(cond, B21 | B20 | B6, dd, dn, dm);
+}
+
+
+void Assembler::vmuls(SRegister sd, SRegister sn, SRegister sm,
+ Condition cond) {
+ EmitVFPsss(cond, B21, sd, sn, sm);
+}
+
+
+void Assembler::vmuld(DRegister dd, DRegister dn, DRegister dm,
+ Condition cond) {
+ EmitVFPddd(cond, B21, dd, dn, dm);
+}
+
+
+void Assembler::vmlas(SRegister sd, SRegister sn, SRegister sm,
+ Condition cond) {
+ EmitVFPsss(cond, 0, sd, sn, sm);
+}
+
+
+void Assembler::vmlad(DRegister dd, DRegister dn, DRegister dm,
+ Condition cond) {
+ EmitVFPddd(cond, 0, dd, dn, dm);
+}
+
+
+void Assembler::vmlss(SRegister sd, SRegister sn, SRegister sm,
+ Condition cond) {
+ EmitVFPsss(cond, B6, sd, sn, sm);
+}
+
+
+void Assembler::vmlsd(DRegister dd, DRegister dn, DRegister dm,
+ Condition cond) {
+ EmitVFPddd(cond, B6, dd, dn, dm);
+}
+
+
+void Assembler::vdivs(SRegister sd, SRegister sn, SRegister sm,
+ Condition cond) {
+ EmitVFPsss(cond, B23, sd, sn, sm);
+}
+
+
+void Assembler::vdivd(DRegister dd, DRegister dn, DRegister dm,
+ Condition cond) {
+ EmitVFPddd(cond, B23, dd, dn, dm);
+}
+
+
+void Assembler::vabss(SRegister sd, SRegister sm, Condition cond) {
+ EmitVFPsss(cond, B23 | B21 | B20 | B7 | B6, sd, S0, sm);
+}
+
+
+void Assembler::vabsd(DRegister dd, DRegister dm, Condition cond) {
+ EmitVFPddd(cond, B23 | B21 | B20 | B7 | B6, dd, D0, dm);
+}
+
+
+void Assembler::vnegs(SRegister sd, SRegister sm, Condition cond) {
+ EmitVFPsss(cond, B23 | B21 | B20 | B16 | B6, sd, S0, sm);
+}
+
+
+void Assembler::vnegd(DRegister dd, DRegister dm, Condition cond) {
+ EmitVFPddd(cond, B23 | B21 | B20 | B16 | B6, dd, D0, dm);
+}
+
+
+void Assembler::vsqrts(SRegister sd, SRegister sm, Condition cond) {
+ EmitVFPsss(cond, B23 | B21 | B20 | B16 | B7 | B6, sd, S0, sm);
+}
+
+void Assembler::vsqrtd(DRegister dd, DRegister dm, Condition cond) {
+ EmitVFPddd(cond, B23 | B21 | B20 | B16 | B7 | B6, dd, D0, dm);
+}
+
+
+void Assembler::EmitVFPsd(Condition cond, int32_t opcode,
+ SRegister sd, DRegister dm) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(sd != kNoSRegister);
+ ASSERT(dm != kNoDRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B25 | B11 | B9 | opcode |
+ ((static_cast<int32_t>(sd) & 1)*B22) |
+ ((static_cast<int32_t>(sd) >> 1)*B12) |
+ ((static_cast<int32_t>(dm) >> 4)*B5) |
+ (static_cast<int32_t>(dm) & 0xf);
+ Emit(encoding);
+}
+
+
+void Assembler::EmitVFPds(Condition cond, int32_t opcode,
+ DRegister dd, SRegister sm) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(dd != kNoDRegister);
+ ASSERT(sm != kNoSRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B25 | B11 | B9 | opcode |
+ ((static_cast<int32_t>(dd) >> 4)*B22) |
+ ((static_cast<int32_t>(dd) & 0xf)*B12) |
+ ((static_cast<int32_t>(sm) & 1)*B5) |
+ (static_cast<int32_t>(sm) >> 1);
+ Emit(encoding);
+}
+
+
+void Assembler::vcvtsd(SRegister sd, DRegister dm, Condition cond) {
+ EmitVFPsd(cond, B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6, sd, dm);
+}
+
+
+void Assembler::vcvtds(DRegister dd, SRegister sm, Condition cond) {
+ EmitVFPds(cond, B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6, dd, sm);
+}
+
+
+void Assembler::vcvtis(SRegister sd, SRegister sm, Condition cond) {
+ EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6, sd, S0, sm);
+}
+
+
+void Assembler::vcvtid(SRegister sd, DRegister dm, Condition cond) {
+ EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6, sd, dm);
+}
+
+
+void Assembler::vcvtsi(SRegister sd, SRegister sm, Condition cond) {
+ EmitVFPsss(cond, B23 | B21 | B20 | B19 | B7 | B6, sd, S0, sm);
+}
+
+
+void Assembler::vcvtdi(DRegister dd, SRegister sm, Condition cond) {
+ EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B7 | B6, dd, sm);
+}
+
+
+void Assembler::vcvtus(SRegister sd, SRegister sm, Condition cond) {
+ EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B7 | B6, sd, S0, sm);
+}
+
+
+void Assembler::vcvtud(SRegister sd, DRegister dm, Condition cond) {
+ EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6, sd, dm);
+}
+
+
+void Assembler::vcvtsu(SRegister sd, SRegister sm, Condition cond) {
+ EmitVFPsss(cond, B23 | B21 | B20 | B19 | B6, sd, S0, sm);
+}
+
+
+void Assembler::vcvtdu(DRegister dd, SRegister sm, Condition cond) {
+ EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B6, dd, sm);
+}
+
+
+void Assembler::vcmps(SRegister sd, SRegister sm, Condition cond) {
+ EmitVFPsss(cond, B23 | B21 | B20 | B18 | B6, sd, S0, sm);
+}
+
+
+void Assembler::vcmpd(DRegister dd, DRegister dm, Condition cond) {
+ EmitVFPddd(cond, B23 | B21 | B20 | B18 | B6, dd, D0, dm);
+}
+
+
+void Assembler::vcmpsz(SRegister sd, Condition cond) {
+ EmitVFPsss(cond, B23 | B21 | B20 | B18 | B16 | B6, sd, S0, S0);
+}
+
+
+void Assembler::vcmpdz(DRegister dd, Condition cond) {
+ EmitVFPddd(cond, B23 | B21 | B20 | B18 | B16 | B6, dd, D0, D0);
+}
+
+
+void Assembler::vmrs(Register rd, Condition cond) {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B27 | B26 | B25 | B23 | B22 | B21 | B20 | B16 |
+ (static_cast<int32_t>(rd)*B12) |
+ B11 | B9 | B4;
+ Emit(encoding);
+}
+
+
+void Assembler::vmstat(Condition cond) {
+ vmrs(APSR, cond);
+}
+
+
+static inline int ShiftOfOperandSize(OperandSize size) {
+ switch (size) {
+ case kByte:
+ case kUnsignedByte:
+ return 0;
+ case kHalfword:
+ case kUnsignedHalfword:
+ return 1;
+ case kWord:
+ case kUnsignedWord:
+ return 2;
+ case kWordPair:
+ return 3;
+ case kSWord:
+ case kDWord:
+ return 0;
+ default:
+ UNREACHABLE();
+ break;
+ }
+
+ UNREACHABLE();
+ return -1;
+}
+
+
+void Assembler::EmitSIMDqqq(int32_t opcode, OperandSize size,
+ QRegister qd, QRegister qn, QRegister qm) {
+ ASSERT(TargetCPUFeatures::neon_supported());
+ int sz = ShiftOfOperandSize(size);
+ int32_t encoding =
+ (static_cast<int32_t>(kSpecialCondition) << kConditionShift) |
+ B25 | B6 |
+ opcode | ((sz & 0x3) * B20) |
+ ((static_cast<int32_t>(qd * 2) >> 4)*B22) |
+ ((static_cast<int32_t>(qn * 2) & 0xf)*B16) |
+ ((static_cast<int32_t>(qd * 2) & 0xf)*B12) |
+ ((static_cast<int32_t>(qn * 2) >> 4)*B7) |
+ ((static_cast<int32_t>(qm * 2) >> 4)*B5) |
+ (static_cast<int32_t>(qm * 2) & 0xf);
+ Emit(encoding);
+}
+
+
+void Assembler::EmitSIMDddd(int32_t opcode, OperandSize size,
+ DRegister dd, DRegister dn, DRegister dm) {
+ ASSERT(TargetCPUFeatures::neon_supported());
+ int sz = ShiftOfOperandSize(size);
+ int32_t encoding =
+ (static_cast<int32_t>(kSpecialCondition) << kConditionShift) |
+ B25 |
+ opcode | ((sz & 0x3) * B20) |
+ ((static_cast<int32_t>(dd) >> 4)*B22) |
+ ((static_cast<int32_t>(dn) & 0xf)*B16) |
+ ((static_cast<int32_t>(dd) & 0xf)*B12) |
+ ((static_cast<int32_t>(dn) >> 4)*B7) |
+ ((static_cast<int32_t>(dm) >> 4)*B5) |
+ (static_cast<int32_t>(dm) & 0xf);
+ Emit(encoding);
+}
+
+
+void Assembler::vmovq(QRegister qd, QRegister qm) {
+ EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qm, qm);
+}
+
+
+void Assembler::vaddqi(OperandSize sz,
+ QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B11, sz, qd, qn, qm);
+}
+
+
+void Assembler::vaddqs(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B11 | B10 | B8, kSWord, qd, qn, qm);
+}
+
+
+void Assembler::vsubqi(OperandSize sz,
+ QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B24 | B11, sz, qd, qn, qm);
+}
+
+
+void Assembler::vsubqs(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B21 | B11 | B10 | B8, kSWord, qd, qn, qm);
+}
+
+
+void Assembler::vmulqi(OperandSize sz,
+ QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B11 | B8 | B4, sz, qd, qn, qm);
+}
+
+
+void Assembler::vmulqs(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B24 | B11 | B10 | B8 | B4, kSWord, qd, qn, qm);
+}
+
+
+void Assembler::vshlqi(OperandSize sz,
+ QRegister qd, QRegister qm, QRegister qn) {
+ EmitSIMDqqq(B25 | B10, sz, qd, qn, qm);
+}
+
+
+void Assembler::vshlqu(OperandSize sz,
+ QRegister qd, QRegister qm, QRegister qn) {
+ EmitSIMDqqq(B25 | B24 | B10, sz, qd, qn, qm);
+}
+
+
+void Assembler::veorq(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B24 | B8 | B4, kByte, qd, qn, qm);
+}
+
+
+void Assembler::vorrq(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qn, qm);
+}
+
+
+void Assembler::vornq(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B21 | B20 | B8 | B4, kByte, qd, qn, qm);
+}
+
+
+void Assembler::vandq(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B8 | B4, kByte, qd, qn, qm);
+}
+
+
+void Assembler::vmvnq(QRegister qd, QRegister qm) {
+ EmitSIMDqqq(B25 | B24 | B23 | B10 | B8 | B7, kWordPair, qd, Q0, qm);
+}
+
+
+void Assembler::vminqs(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B21 | B11 | B10 | B9 | B8, kSWord, qd, qn, qm);
+}
+
+
+void Assembler::vmaxqs(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B11 | B10 | B9 | B8, kSWord, qd, qn, qm);
+}
+
+
+void Assembler::vabsqs(QRegister qd, QRegister qm) {
+ EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8, kSWord,
+ qd, Q0, qm);
+}
+
+
+void Assembler::vnegqs(QRegister qd, QRegister qm) {
+ EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8 | B7, kSWord,
+ qd, Q0, qm);
+}
+
+
+void Assembler::vrecpeqs(QRegister qd, QRegister qm) {
+ EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8, kSWord,
+ qd, Q0, qm);
+}
+
+
+void Assembler::vrecpsqs(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm);
+}
+
+
+void Assembler::vrsqrteqs(QRegister qd, QRegister qm) {
+ EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8 | B7,
+ kSWord, qd, Q0, qm);
+}
+
+
+void Assembler::vrsqrtsqs(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B21 | B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm);
+}
+
+
+void Assembler::vdup(OperandSize sz, QRegister qd, DRegister dm, int idx) {
+ ASSERT((sz != kDWord) && (sz != kSWord) && (sz != kWordPair));
+ int code = 0;
+
+ switch (sz) {
+ case kByte:
+ case kUnsignedByte: {
+ ASSERT((idx >= 0) && (idx < 8));
+ code = 1 | (idx << 1);
+ break;
+ }
+ case kHalfword:
+ case kUnsignedHalfword: {
+ ASSERT((idx >= 0) && (idx < 4));
+ code = 2 | (idx << 2);
+ break;
+ }
+ case kWord:
+ case kUnsignedWord: {
+ ASSERT((idx >= 0) && (idx < 2));
+ code = 4 | (idx << 3);
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+
+ EmitSIMDddd(B24 | B23 | B11 | B10 | B6, kWordPair,
+ static_cast<DRegister>(qd * 2),
+ static_cast<DRegister>(code & 0xf),
+ dm);
+}
+
+
+void Assembler::vtbl(DRegister dd, DRegister dn, int len, DRegister dm) {
+ ASSERT((len >= 1) && (len <= 4));
+ EmitSIMDddd(B24 | B23 | B11 | ((len - 1) * B8), kWordPair, dd, dn, dm);
+}
+
+
+void Assembler::vzipqw(QRegister qd, QRegister qm) {
+ EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B8 | B7, kByte, qd, Q0, qm);
+}
+
+
+void Assembler::vceqqi(OperandSize sz,
+ QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B24 | B11 | B4, sz, qd, qn, qm);
+}
+
+
+void Assembler::vceqqs(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B11 | B10 | B9, kSWord, qd, qn, qm);
+}
+
+
+void Assembler::vcgeqi(OperandSize sz,
+ QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B9 | B8 | B4, sz, qd, qn, qm);
+}
+
+
+void Assembler::vcugeqi(OperandSize sz,
+ QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B24 | B9 | B8 | B4, sz, qd, qn, qm);
+}
+
+
+void Assembler::vcgeqs(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B24 | B11 | B10 | B9, kSWord, qd, qn, qm);
+}
+
+
+void Assembler::vcgtqi(OperandSize sz,
+ QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B9 | B8, sz, qd, qn, qm);
+}
+
+
+void Assembler::vcugtqi(OperandSize sz,
+ QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B24 | B9 | B8, sz, qd, qn, qm);
+}
+
+
+void Assembler::vcgtqs(QRegister qd, QRegister qn, QRegister qm) {
+ EmitSIMDqqq(B24 | B21 | B11 | B10 | B9, kSWord, qd, qn, qm);
+}
+
+
+void Assembler::bkpt(uint16_t imm16) {
+ Emit(BkptEncoding(imm16));
+}
+
+
+void Assembler::b(Label* label, Condition cond) {
+ EmitBranch(cond, label, false);
+}
+
+
+void Assembler::bl(Label* label, Condition cond) {
+ EmitBranch(cond, label, true);
+}
+
+
+void Assembler::bx(Register rm, Condition cond) {
+ ASSERT(rm != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B24 | B21 | (0xfff << 8) | B4 |
+ (static_cast<int32_t>(rm) << kRmShift);
+ Emit(encoding);
+}
+
+
+void Assembler::blx(Register rm, Condition cond) {
+ ASSERT(rm != kNoRegister);
+ ASSERT(cond != kNoCondition);
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
+ B24 | B21 | (0xfff << 8) | B5 | B4 |
+ (static_cast<int32_t>(rm) << kRmShift);
+ Emit(encoding);
+}
+
+
+void Assembler::MarkExceptionHandler(Label* label) {
+ EmitType01(AL, 1, TST, 1, PC, R0, Operand(0));
+ Label l;
+ b(&l);
+ EmitBranch(AL, label, false);
+ Bind(&l);
+}
+
+
+void Assembler::Drop(intptr_t stack_elements) {
+ ASSERT(stack_elements >= 0);
+ if (stack_elements > 0) {
+ AddImmediate(SP, SP, stack_elements * kWordSize);
+ }
+}
+
+
+intptr_t Assembler::FindImmediate(int32_t imm) {
+ return object_pool_wrapper_.FindImmediate(imm);
+}
+
+
+// Uses a code sequence that can easily be decoded.
+void Assembler::LoadWordFromPoolOffset(Register rd,
+ int32_t offset,
+ Register pp,
+ Condition cond) {
+ ASSERT((pp != PP) || constant_pool_allowed());
+ ASSERT(rd != pp);
+ int32_t offset_mask = 0;
+ if (Address::CanHoldLoadOffset(kWord, offset, &offset_mask)) {
+ ldr(rd, Address(pp, offset), cond);
+ } else {
+ int32_t offset_hi = offset & ~offset_mask; // signed
+ uint32_t offset_lo = offset & offset_mask; // unsigned
+ // Inline a simplified version of AddImmediate(rd, pp, offset_hi).
+ Operand o;
+ if (Operand::CanHold(offset_hi, &o)) {
+ add(rd, pp, o, cond);
+ } else {
+ LoadImmediate(rd, offset_hi, cond);
+ add(rd, pp, Operand(rd), cond);
+ }
+ ldr(rd, Address(rd, offset_lo), cond);
+ }
+}
+
+void Assembler::CheckCodePointer() {
+#ifdef DEBUG
+ Label cid_ok, instructions_ok;
+ Push(R0);
+ Push(IP);
+ CompareClassId(CODE_REG, kCodeCid, R0);
+ b(&cid_ok, EQ);
+ bkpt(0);
+ Bind(&cid_ok);
+
+ const intptr_t offset = CodeSize() + Instr::kPCReadOffset +
+ Instructions::HeaderSize() - kHeapObjectTag;
+ mov(R0, Operand(PC));
+ AddImmediate(R0, R0, -offset);
+ ldr(IP, FieldAddress(CODE_REG, Code::saved_instructions_offset()));
+ cmp(R0, Operand(IP));
+ b(&instructions_ok, EQ);
+ bkpt(1);
+ Bind(&instructions_ok);
+ Pop(IP);
+ Pop(R0);
+#endif
+}
+
+
+void Assembler::RestoreCodePointer() {
+ ldr(CODE_REG, Address(FP, kPcMarkerSlotFromFp * kWordSize));
+ CheckCodePointer();
+}
+
+
+void Assembler::LoadPoolPointer(Register reg) {
+ // Load new pool pointer.
+ CheckCodePointer();
+ ldr(reg, FieldAddress(CODE_REG, Code::object_pool_offset()));
+ set_constant_pool_allowed(reg == PP);
+}
+
+
+void Assembler::LoadIsolate(Register rd) {
+ ldr(rd, Address(THR, Thread::isolate_offset()));
+}
+
+
+bool Assembler::CanLoadFromObjectPool(const Object& object) const {
+ ASSERT(!Thread::CanLoadFromThread(object));
+ if (!constant_pool_allowed()) {
+ return false;
+ }
+
+ ASSERT(object.IsNotTemporaryScopedHandle());
+ ASSERT(object.IsOld());
+ return true;
+}
+
+
+void Assembler::LoadObjectHelper(Register rd,
+ const Object& object,
+ Condition cond,
+ bool is_unique,
+ Register pp) {
+ // Load common VM constants from the thread. This works also in places where
+ // no constant pool is set up (e.g. intrinsic code).
+ if (Thread::CanLoadFromThread(object)) {
+ // Load common VM constants from the thread. This works also in places where
+ // no constant pool is set up (e.g. intrinsic code).
+ ldr(rd, Address(THR, Thread::OffsetFromThread(object)), cond);
+ } else if (object.IsSmi()) {
+ // Relocation doesn't apply to Smis.
+ LoadImmediate(rd, reinterpret_cast<int32_t>(object.raw()), cond);
+ } else if (CanLoadFromObjectPool(object)) {
+ // Make sure that class CallPattern is able to decode this load from the
+ // object pool.
+ const int32_t offset = ObjectPool::element_offset(
+ is_unique ? object_pool_wrapper_.AddObject(object)
+ : object_pool_wrapper_.FindObject(object));
+ LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, pp, cond);
+ } else {
+ ASSERT(FLAG_allow_absolute_addresses);
+ ASSERT(object.IsOld());
+ // Make sure that class CallPattern is able to decode this load immediate.
+ const int32_t object_raw = reinterpret_cast<int32_t>(object.raw());
+ LoadImmediate(rd, object_raw, cond);
+ }
+}
+
+
+void Assembler::LoadObject(Register rd, const Object& object, Condition cond) {
+ LoadObjectHelper(rd, object, cond, /* is_unique = */ false, PP);
+}
+
+
+void Assembler::LoadUniqueObject(Register rd,
+ const Object& object,
+ Condition cond) {
+ LoadObjectHelper(rd, object, cond, /* is_unique = */ true, PP);
+}
+
+
+void Assembler::LoadFunctionFromCalleePool(Register dst,
+ const Function& function,
+ Register new_pp) {
+ const int32_t offset =
+ ObjectPool::element_offset(object_pool_wrapper_.FindObject(function));
+ LoadWordFromPoolOffset(dst, offset - kHeapObjectTag, new_pp, AL);
+}
+
+
+void Assembler::LoadNativeEntry(Register rd,
+ const ExternalLabel* label,
+ Patchability patchable,
+ Condition cond) {
+ const int32_t offset = ObjectPool::element_offset(
+ object_pool_wrapper_.FindNativeEntry(label, patchable));
+ LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, PP, cond);
+}
+
+
+void Assembler::PushObject(const Object& object) {
+ LoadObject(IP, object);
+ Push(IP);
+}
+
+
+void Assembler::CompareObject(Register rn, const Object& object) {
+ ASSERT(rn != IP);
+ if (object.IsSmi()) {
+ CompareImmediate(rn, reinterpret_cast<int32_t>(object.raw()));
+ } else {
+ LoadObject(IP, object);
+ cmp(rn, Operand(IP));
+ }
+}
+
+
+// Preserves object and value registers.
+void Assembler::StoreIntoObjectFilterNoSmi(Register object,
+ Register value,
+ Label* no_update) {
+ COMPILE_ASSERT((kNewObjectAlignmentOffset == kWordSize) &&
+ (kOldObjectAlignmentOffset == 0));
+
+ // Write-barrier triggers if the value is in the new space (has bit set) and
+ // the object is in the old space (has bit cleared).
+ // To check that, we compute value & ~object and skip the write barrier
+ // if the bit is not set. We can't destroy the object.
+ bic(IP, value, Operand(object));
+ tst(IP, Operand(kNewObjectAlignmentOffset));
+ b(no_update, EQ);
+}
+
+
+// Preserves object and value registers.
+void Assembler::StoreIntoObjectFilter(Register object,
+ Register value,
+ Label* no_update) {
+ // For the value we are only interested in the new/old bit and the tag bit.
+ // And the new bit with the tag bit. The resulting bit will be 0 for a Smi.
+ and_(IP, value, Operand(value, LSL, kObjectAlignmentLog2 - 1));
+ // And the result with the negated space bit of the object.
+ bic(IP, IP, Operand(object));
+ tst(IP, Operand(kNewObjectAlignmentOffset));
+ b(no_update, EQ);
+}
+
+
+Operand Assembler::GetVerifiedMemoryShadow() {
+ Operand offset;
+ if (!Operand::CanHold(VerifiedMemory::offset(), &offset)) {
+ FATAL1("Offset 0x%" Px " not representable", VerifiedMemory::offset());
+ }
+ return offset;
+}
+
+
+void Assembler::WriteShadowedField(Register base,
+ intptr_t offset,
+ Register value,
+ Condition cond) {
+ if (VerifiedMemory::enabled()) {
+ ASSERT(base != value);
+ Operand shadow(GetVerifiedMemoryShadow());
+ add(base, base, shadow, cond);
+ str(value, Address(base, offset), cond);
+ sub(base, base, shadow, cond);
+ }
+ str(value, Address(base, offset), cond);
+}
+
+
+void Assembler::WriteShadowedFieldPair(Register base,
+ intptr_t offset,
+ Register value_even,
+ Register value_odd,
+ Condition cond) {
+ ASSERT(value_odd == value_even + 1);
+ if (VerifiedMemory::enabled()) {
+ ASSERT(base != value_even);
+ ASSERT(base != value_odd);
+ Operand shadow(GetVerifiedMemoryShadow());
+ add(base, base, shadow, cond);
+ strd(value_even, base, offset, cond);
+ sub(base, base, shadow, cond);
+ }
+ strd(value_even, base, offset, cond);
+}
+
+
+Register UseRegister(Register reg, RegList* used) {
+ ASSERT(reg != SP);
+ ASSERT(reg != PC);
+ ASSERT((*used & (1 << reg)) == 0);
+ *used |= (1 << reg);
+ return reg;
+}
+
+
+Register AllocateRegister(RegList* used) {
+ const RegList free = ~*used;
+ return (free == 0) ?
+ kNoRegister :
+ UseRegister(static_cast<Register>(Utils::CountTrailingZeros(free)), used);
+}
+
+
+void Assembler::VerifiedWrite(const Address& address,
+ Register new_value,
+ FieldContent old_content) {
+#if defined(DEBUG)
+ ASSERT(address.mode() == Address::Offset ||
+ address.mode() == Address::NegOffset);
+ // Allocate temporary registers (and check for register collisions).
+ RegList used = 0;
+ UseRegister(new_value, &used);
+ Register base = UseRegister(address.rn(), &used);
+ if (address.rm() != kNoRegister) {
+ UseRegister(address.rm(), &used);
+ }
+ Register old_value = AllocateRegister(&used);
+ Register temp = AllocateRegister(&used);
+ PushList(used);
+ ldr(old_value, address);
+ // First check that 'old_value' contains 'old_content'.
+ // Smi test.
+ tst(old_value, Operand(kHeapObjectTag));
+ Label ok;
+ switch (old_content) {
+ case kOnlySmi:
+ b(&ok, EQ); // Smi is OK.
+ Stop("Expected smi.");
+ break;
+ case kHeapObjectOrSmi:
+ b(&ok, EQ); // Smi is OK.
+ // Non-smi case: Verify object pointer is word-aligned when untagged.
+ COMPILE_ASSERT(kHeapObjectTag == 1);
+ tst(old_value, Operand((kWordSize - 1) - kHeapObjectTag));
+ b(&ok, EQ);
+ Stop("Expected heap object or Smi");
+ break;
+ case kEmptyOrSmiOrNull:
+ b(&ok, EQ); // Smi is OK.
+ // Non-smi case: Check for the special zap word or null.
+ // Note: Cannot use CompareImmediate, since IP may be in use.
+ LoadImmediate(temp, Heap::kZap32Bits);
+ cmp(old_value, Operand(temp));
+ b(&ok, EQ);
+ LoadObject(temp, Object::null_object());
+ cmp(old_value, Operand(temp));
+ b(&ok, EQ);
+ Stop("Expected zapped, Smi or null");
+ break;
+ default:
+ UNREACHABLE();
+ }
+ Bind(&ok);
+ if (VerifiedMemory::enabled()) {
+ Operand shadow_offset(GetVerifiedMemoryShadow());
+ // Adjust the address to shadow.
+ add(base, base, shadow_offset);
+ ldr(temp, address);
+ cmp(old_value, Operand(temp));
+ Label match;
+ b(&match, EQ);
+ Stop("Write barrier verification failed");
+ Bind(&match);
+ // Write new value in shadow.
+ str(new_value, address);
+ // Restore original address.
+ sub(base, base, shadow_offset);
+ }
+ str(new_value, address);
+ PopList(used);
+#else
+ str(new_value, address);
+#endif // DEBUG
+}
+
+
+void Assembler::StoreIntoObject(Register object,
+ const Address& dest,
+ Register value,
+ bool can_value_be_smi) {
+ ASSERT(object != value);
+ VerifiedWrite(dest, value, kHeapObjectOrSmi);
+ Label done;
+ if (can_value_be_smi) {
+ StoreIntoObjectFilter(object, value, &done);
+ } else {
+ StoreIntoObjectFilterNoSmi(object, value, &done);
+ }
+ // A store buffer update is required.
+ RegList regs = (1 << CODE_REG) | (1 << LR);
+ if (value != R0) {
+ regs |= (1 << R0); // Preserve R0.
+ }
+ PushList(regs);
+ if (object != R0) {
+ mov(R0, Operand(object));
+ }
+ ldr(CODE_REG, Address(THR, Thread::update_store_buffer_code_offset()));
+ ldr(LR, Address(THR, Thread::update_store_buffer_entry_point_offset()));
+ blx(LR);
+ PopList(regs);
+ Bind(&done);
+}
+
+
+void Assembler::StoreIntoObjectOffset(Register object,
+ int32_t offset,
+ Register value,
+ bool can_value_be_smi) {
+ int32_t ignored = 0;
+ if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) {
+ StoreIntoObject(
+ object, FieldAddress(object, offset), value, can_value_be_smi);
+ } else {
+ AddImmediate(IP, object, offset - kHeapObjectTag);
+ StoreIntoObject(object, Address(IP), value, can_value_be_smi);
+ }
+}
+
+
+void Assembler::StoreIntoObjectNoBarrier(Register object,
+ const Address& dest,
+ Register value,
+ FieldContent old_content) {
+ VerifiedWrite(dest, value, old_content);
+#if defined(DEBUG)
+ Label done;
+ StoreIntoObjectFilter(object, value, &done);
+ Stop("Store buffer update is required");
+ Bind(&done);
+#endif // defined(DEBUG)
+ // No store buffer update.
+}
+
+
+void Assembler::StoreIntoObjectNoBarrierOffset(Register object,
+ int32_t offset,
+ Register value,
+ FieldContent old_content) {
+ int32_t ignored = 0;
+ if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) {
+ StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value,
+ old_content);
+ } else {
+ AddImmediate(IP, object, offset - kHeapObjectTag);
+ StoreIntoObjectNoBarrier(object, Address(IP), value, old_content);
+ }
+}
+
+
+void Assembler::StoreIntoObjectNoBarrier(Register object,
+ const Address& dest,
+ const Object& value,
+ FieldContent old_content) {
+ ASSERT(value.IsSmi() || value.InVMHeap() ||
+ (value.IsOld() && value.IsNotTemporaryScopedHandle()));
+ // No store buffer update.
+ LoadObject(IP, value);
+ VerifiedWrite(dest, IP, old_content);
+}
+
+
+void Assembler::StoreIntoObjectNoBarrierOffset(Register object,
+ int32_t offset,
+ const Object& value,
+ FieldContent old_content) {
+ int32_t ignored = 0;
+ if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) {
+ StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value,
+ old_content);
+ } else {
+ AddImmediate(IP, object, offset - kHeapObjectTag);
+ StoreIntoObjectNoBarrier(object, Address(IP), value, old_content);
+ }
+}
+
+
+void Assembler::InitializeFieldsNoBarrier(Register object,
+ Register begin,
+ Register end,
+ Register value_even,
+ Register value_odd) {
+ ASSERT(value_odd == value_even + 1);
+ Label init_loop;
+ Bind(&init_loop);
+ AddImmediate(begin, 2 * kWordSize);
+ cmp(begin, Operand(end));
+ WriteShadowedFieldPair(begin, -2 * kWordSize, value_even, value_odd, LS);
+ b(&init_loop, CC);
+ WriteShadowedField(begin, -2 * kWordSize, value_even, HI);
+#if defined(DEBUG)
+ Label done;
+ StoreIntoObjectFilter(object, value_even, &done);
+ StoreIntoObjectFilter(object, value_odd, &done);
+ Stop("Store buffer update is required");
+ Bind(&done);
+#endif // defined(DEBUG)
+ // No store buffer update.
+}
+
+
+void Assembler::InitializeFieldsNoBarrierUnrolled(Register object,
+ Register base,
+ intptr_t begin_offset,
+ intptr_t end_offset,
+ Register value_even,
+ Register value_odd) {
+ ASSERT(value_odd == value_even + 1);
+ intptr_t current_offset = begin_offset;
+ while (current_offset + kWordSize < end_offset) {
+ WriteShadowedFieldPair(base, current_offset, value_even, value_odd);
+ current_offset += 2*kWordSize;
+ }
+ while (current_offset < end_offset) {
+ WriteShadowedField(base, current_offset, value_even);
+ current_offset += kWordSize;
+ }
+#if defined(DEBUG)
+ Label done;
+ StoreIntoObjectFilter(object, value_even, &done);
+ StoreIntoObjectFilter(object, value_odd, &done);
+ Stop("Store buffer update is required");
+ Bind(&done);
+#endif // defined(DEBUG)
+ // No store buffer update.
+}
+
+
+void Assembler::StoreIntoSmiField(const Address& dest, Register value) {
+#if defined(DEBUG)
+ Label done;
+ tst(value, Operand(kHeapObjectTag));
+ b(&done, EQ);
+ Stop("New value must be Smi.");
+ Bind(&done);
+#endif // defined(DEBUG)
+ VerifiedWrite(dest, value, kOnlySmi);
+}
+
+
+void Assembler::LoadClassId(Register result, Register object, Condition cond) {
+ ASSERT(RawObject::kClassIdTagPos == 16);
+ ASSERT(RawObject::kClassIdTagSize == 16);
+ const intptr_t class_id_offset = Object::tags_offset() +
+ RawObject::kClassIdTagPos / kBitsPerByte;
+ ldrh(result, FieldAddress(object, class_id_offset), cond);
+}
+
+
+void Assembler::LoadClassById(Register result, Register class_id) {
+ ASSERT(result != class_id);
+ LoadIsolate(result);
+ const intptr_t offset =
+ Isolate::class_table_offset() + ClassTable::table_offset();
+ LoadFromOffset(kWord, result, result, offset);
+ ldr(result, Address(result, class_id, LSL, 2));
+}
+
+
+void Assembler::LoadClass(Register result, Register object, Register scratch) {
+ ASSERT(scratch != result);
+ LoadClassId(scratch, object);
+ LoadClassById(result, scratch);
+}
+
+
+void Assembler::CompareClassId(Register object,
+ intptr_t class_id,
+ Register scratch) {
+ LoadClassId(scratch, object);
+ CompareImmediate(scratch, class_id);
+}
+
+
+void Assembler::LoadClassIdMayBeSmi(Register result, Register object) {
+ tst(object, Operand(kSmiTagMask));
+ LoadClassId(result, object, NE);
+ LoadImmediate(result, kSmiCid, EQ);
+}
+
+
+void Assembler::LoadTaggedClassIdMayBeSmi(Register result, Register object) {
+ LoadClassIdMayBeSmi(result, object);
+ SmiTag(result);
+}
+
+
+void Assembler::ComputeRange(Register result,
+ Register value,
+ Register scratch,
+ Label* not_mint) {
+ const Register hi = TMP;
+ const Register lo = scratch;
+
+ Label done;
+ mov(result, Operand(value, LSR, kBitsPerWord - 1));
+ tst(value, Operand(kSmiTagMask));
+ b(&done, EQ);
+ CompareClassId(value, kMintCid, result);
+ b(not_mint, NE);
+ ldr(hi, FieldAddress(value, Mint::value_offset() + kWordSize));
+ ldr(lo, FieldAddress(value, Mint::value_offset()));
+ rsb(result, hi, Operand(ICData::kInt32RangeBit));
+ cmp(hi, Operand(lo, ASR, kBitsPerWord - 1));
+ b(&done, EQ);
+ LoadImmediate(result, ICData::kUint32RangeBit); // Uint32
+ tst(hi, Operand(hi));
+ LoadImmediate(result, ICData::kInt64RangeBit, NE); // Int64
+ Bind(&done);
+}
+
+
+void Assembler::UpdateRangeFeedback(Register value,
+ intptr_t index,
+ Register ic_data,
+ Register scratch1,
+ Register scratch2,
+ Label* miss) {
+ ASSERT(ICData::IsValidRangeFeedbackIndex(index));
+ ComputeRange(scratch1, value, scratch2, miss);
+ ldr(scratch2, FieldAddress(ic_data, ICData::state_bits_offset()));
+ orr(scratch2,
+ scratch2,
+ Operand(scratch1, LSL, ICData::RangeFeedbackShift(index)));
+ str(scratch2, FieldAddress(ic_data, ICData::state_bits_offset()));
+}
+
+
+static bool CanEncodeBranchOffset(int32_t offset) {
+ ASSERT(Utils::IsAligned(offset, 4));
+ return Utils::IsInt(Utils::CountOneBits(kBranchOffsetMask), offset);
+}
+
+
+int32_t Assembler::EncodeBranchOffset(int32_t offset, int32_t inst) {
+ // The offset is off by 8 due to the way the ARM CPUs read PC.
+ offset -= Instr::kPCReadOffset;
+
+ if (!CanEncodeBranchOffset(offset)) {
+ ASSERT(!use_far_branches());
+ Thread::Current()->long_jump_base()->Jump(
+ 1, Object::branch_offset_error());
+ }
+
+ // Properly preserve only the bits supported in the instruction.
+ offset >>= 2;
+ offset &= kBranchOffsetMask;
+ return (inst & ~kBranchOffsetMask) | offset;
+}
+
+
+int Assembler::DecodeBranchOffset(int32_t inst) {
+ // Sign-extend, left-shift by 2, then add 8.
+ return ((((inst & kBranchOffsetMask) << 8) >> 6) + Instr::kPCReadOffset);
+}
+
+
+static int32_t DecodeARMv7LoadImmediate(int32_t movt, int32_t movw) {
+ int32_t offset = 0;
+ offset |= (movt & 0xf0000) << 12;
+ offset |= (movt & 0xfff) << 16;
+ offset |= (movw & 0xf0000) >> 4;
+ offset |= movw & 0xfff;
+ return offset;
+}
+
+
+static int32_t DecodeARMv6LoadImmediate(int32_t mov, int32_t or1,
+ int32_t or2, int32_t or3) {
+ int32_t offset = 0;
+ offset |= (mov & 0xff) << 24;
+ offset |= (or1 & 0xff) << 16;
+ offset |= (or2 & 0xff) << 8;
+ offset |= (or3 & 0xff);
+ return offset;
+}
+
+
+class PatchFarBranch : public AssemblerFixup {
+ public:
+ PatchFarBranch() {}
+
+ void Process(const MemoryRegion& region, intptr_t position) {
+ const ARMVersion version = TargetCPUFeatures::arm_version();
+ if ((version == ARMv5TE) || (version == ARMv6)) {
+ ProcessARMv6(region, position);
+ } else {
+ ASSERT(version == ARMv7);
+ ProcessARMv7(region, position);
+ }
+ }
+
+ private:
+ void ProcessARMv6(const MemoryRegion& region, intptr_t position) {
+ const int32_t mov = region.Load<int32_t>(position);
+ const int32_t or1 = region.Load<int32_t>(position + 1*Instr::kInstrSize);
+ const int32_t or2 = region.Load<int32_t>(position + 2*Instr::kInstrSize);
+ const int32_t or3 = region.Load<int32_t>(position + 3*Instr::kInstrSize);
+ const int32_t bx = region.Load<int32_t>(position + 4*Instr::kInstrSize);
+
+ if (((mov & 0xffffff00) == 0xe3a0c400) && // mov IP, (byte3 rot 4)
+ ((or1 & 0xffffff00) == 0xe38cc800) && // orr IP, IP, (byte2 rot 8)
+ ((or2 & 0xffffff00) == 0xe38ccc00) && // orr IP, IP, (byte1 rot 12)
+ ((or3 & 0xffffff00) == 0xe38cc000)) { // orr IP, IP, byte0
+ const int32_t offset = DecodeARMv6LoadImmediate(mov, or1, or2, or3);
+ const int32_t dest = region.start() + offset;
+ const int32_t dest0 = (dest & 0x000000ff);
+ const int32_t dest1 = (dest & 0x0000ff00) >> 8;
+ const int32_t dest2 = (dest & 0x00ff0000) >> 16;
+ const int32_t dest3 = (dest & 0xff000000) >> 24;
+ const int32_t patched_mov = 0xe3a0c400 | dest3;
+ const int32_t patched_or1 = 0xe38cc800 | dest2;
+ const int32_t patched_or2 = 0xe38ccc00 | dest1;
+ const int32_t patched_or3 = 0xe38cc000 | dest0;
+
+ region.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_mov);
+ region.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_or1);
+ region.Store<int32_t>(position + 2 * Instr::kInstrSize, patched_or2);
+ region.Store<int32_t>(position + 3 * Instr::kInstrSize, patched_or3);
+ return;
+ }
+
+ // If the offset loading instructions aren't there, we must have replaced
+ // the far branch with a near one, and so these instructions
+ // should be NOPs.
+ ASSERT((or1 == Instr::kNopInstruction) &&
+ (or2 == Instr::kNopInstruction) &&
+ (or3 == Instr::kNopInstruction) &&
+ (bx == Instr::kNopInstruction));
+ }
+
+
+ void ProcessARMv7(const MemoryRegion& region, intptr_t position) {
+ const int32_t movw = region.Load<int32_t>(position);
+ const int32_t movt = region.Load<int32_t>(position + Instr::kInstrSize);
+ const int32_t bx = region.Load<int32_t>(position + 2 * Instr::kInstrSize);
+
+ if (((movt & 0xfff0f000) == 0xe340c000) && // movt IP, high
+ ((movw & 0xfff0f000) == 0xe300c000)) { // movw IP, low
+ const int32_t offset = DecodeARMv7LoadImmediate(movt, movw);
+ const int32_t dest = region.start() + offset;
+ const uint16_t dest_high = Utils::High16Bits(dest);
+ const uint16_t dest_low = Utils::Low16Bits(dest);
+ const int32_t patched_movt =
+ 0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff);
+ const int32_t patched_movw =
+ 0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff);
+
+ region.Store<int32_t>(position, patched_movw);
+ region.Store<int32_t>(position + Instr::kInstrSize, patched_movt);
+ return;
+ }
+
+ // If the offset loading instructions aren't there, we must have replaced
+ // the far branch with a near one, and so these instructions
+ // should be NOPs.
+ ASSERT((movt == Instr::kNopInstruction) &&
+ (bx == Instr::kNopInstruction));
+ }
+
+ virtual bool IsPointerOffset() const { return false; }
+};
+
+
+void Assembler::EmitFarBranch(Condition cond, int32_t offset, bool link) {
+ buffer_.EmitFixup(new PatchFarBranch());
+ LoadPatchableImmediate(IP, offset);
+ if (link) {
+ blx(IP, cond);
+ } else {
+ bx(IP, cond);
+ }
+}
+
+
+void Assembler::EmitBranch(Condition cond, Label* label, bool link) {
+ if (label->IsBound()) {
+ const int32_t dest = label->Position() - buffer_.Size();
+ if (use_far_branches() && !CanEncodeBranchOffset(dest)) {
+ EmitFarBranch(cond, label->Position(), link);
+ } else {
+ EmitType5(cond, dest, link);
+ }
+ } else {
+ const intptr_t position = buffer_.Size();
+ if (use_far_branches()) {
+ const int32_t dest = label->position_;
+ EmitFarBranch(cond, dest, link);
+ } else {
+ // Use the offset field of the branch instruction for linking the sites.
+ EmitType5(cond, label->position_, link);
+ }
+ label->LinkTo(position);
+ }
+}
+
+
+void Assembler::BindARMv6(Label* label) {
+ ASSERT(!label->IsBound());
+ intptr_t bound_pc = buffer_.Size();
+ while (label->IsLinked()) {
+ const int32_t position = label->Position();
+ int32_t dest = bound_pc - position;
+ if (use_far_branches() && !CanEncodeBranchOffset(dest)) {
+ // Far branches are enabled and we can't encode the branch offset.
+
+ // Grab instructions that load the offset.
+ const int32_t mov =
+ buffer_.Load<int32_t>(position);
+ const int32_t or1 =
+ buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
+ const int32_t or2 =
+ buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize);
+ const int32_t or3 =
+ buffer_.Load<int32_t>(position + 3 * Instr::kInstrSize);
+
+ // Change from relative to the branch to relative to the assembler
+ // buffer.
+ dest = buffer_.Size();
+ const int32_t dest0 = (dest & 0x000000ff);
+ const int32_t dest1 = (dest & 0x0000ff00) >> 8;
+ const int32_t dest2 = (dest & 0x00ff0000) >> 16;
+ const int32_t dest3 = (dest & 0xff000000) >> 24;
+ const int32_t patched_mov = 0xe3a0c400 | dest3;
+ const int32_t patched_or1 = 0xe38cc800 | dest2;
+ const int32_t patched_or2 = 0xe38ccc00 | dest1;
+ const int32_t patched_or3 = 0xe38cc000 | dest0;
+
+ // Rewrite the instructions.
+ buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_mov);
+ buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_or1);
+ buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize, patched_or2);
+ buffer_.Store<int32_t>(position + 3 * Instr::kInstrSize, patched_or3);
+ label->position_ = DecodeARMv6LoadImmediate(mov, or1, or2, or3);
+ } else if (use_far_branches() && CanEncodeBranchOffset(dest)) {
+ // Grab instructions that load the offset, and the branch.
+ const int32_t mov =
+ buffer_.Load<int32_t>(position);
+ const int32_t or1 =
+ buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
+ const int32_t or2 =
+ buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize);
+ const int32_t or3 =
+ buffer_.Load<int32_t>(position + 3 * Instr::kInstrSize);
+ const int32_t branch =
+ buffer_.Load<int32_t>(position + 4 * Instr::kInstrSize);
+
+ // Grab the branch condition, and encode the link bit.
+ const int32_t cond = branch & 0xf0000000;
+ const int32_t link = (branch & 0x20) << 19;
+
+ // Encode the branch and the offset.
+ const int32_t new_branch = cond | link | 0x0a000000;
+ const int32_t encoded = EncodeBranchOffset(dest, new_branch);
+
+ // Write the encoded branch instruction followed by two nops.
+ buffer_.Store<int32_t>(position, encoded);
+ buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize,
+ Instr::kNopInstruction);
+ buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize,
+ Instr::kNopInstruction);
+ buffer_.Store<int32_t>(position + 3 * Instr::kInstrSize,
+ Instr::kNopInstruction);
+ buffer_.Store<int32_t>(position + 4 * Instr::kInstrSize,
+ Instr::kNopInstruction);
+
+ label->position_ = DecodeARMv6LoadImmediate(mov, or1, or2, or3);
+ } else {
+ int32_t next = buffer_.Load<int32_t>(position);
+ int32_t encoded = Assembler::EncodeBranchOffset(dest, next);
+ buffer_.Store<int32_t>(position, encoded);
+ label->position_ = Assembler::DecodeBranchOffset(next);
+ }
+ }
+ label->BindTo(bound_pc);
+}
+
+
+void Assembler::BindARMv7(Label* label) {
+ ASSERT(!label->IsBound());
+ intptr_t bound_pc = buffer_.Size();
+ while (label->IsLinked()) {
+ const int32_t position = label->Position();
+ int32_t dest = bound_pc - position;
+ if (use_far_branches() && !CanEncodeBranchOffset(dest)) {
+ // Far branches are enabled and we can't encode the branch offset.
+
+ // Grab instructions that load the offset.
+ const int32_t movw =
+ buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize);
+ const int32_t movt =
+ buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
+
+ // Change from relative to the branch to relative to the assembler
+ // buffer.
+ dest = buffer_.Size();
+ const uint16_t dest_high = Utils::High16Bits(dest);
+ const uint16_t dest_low = Utils::Low16Bits(dest);
+ const int32_t patched_movt =
+ 0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff);
+ const int32_t patched_movw =
+ 0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff);
+
+ // Rewrite the instructions.
+ buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_movw);
+ buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_movt);
+ label->position_ = DecodeARMv7LoadImmediate(movt, movw);
+ } else if (use_far_branches() && CanEncodeBranchOffset(dest)) {
+ // Far branches are enabled, but we can encode the branch offset.
+
+ // Grab instructions that load the offset, and the branch.
+ const int32_t movw =
+ buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize);
+ const int32_t movt =
+ buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
+ const int32_t branch =
+ buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize);
+
+ // Grab the branch condition, and encode the link bit.
+ const int32_t cond = branch & 0xf0000000;
+ const int32_t link = (branch & 0x20) << 19;
+
+ // Encode the branch and the offset.
+ const int32_t new_branch = cond | link | 0x0a000000;
+ const int32_t encoded = EncodeBranchOffset(dest, new_branch);
+
+ // Write the encoded branch instruction followed by two nops.
+ buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize,
+ encoded);
+ buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize,
+ Instr::kNopInstruction);
+ buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize,
+ Instr::kNopInstruction);
+
+ label->position_ = DecodeARMv7LoadImmediate(movt, movw);
+ } else {
+ int32_t next = buffer_.Load<int32_t>(position);
+ int32_t encoded = Assembler::EncodeBranchOffset(dest, next);
+ buffer_.Store<int32_t>(position, encoded);
+ label->position_ = Assembler::DecodeBranchOffset(next);
+ }
+ }
+ label->BindTo(bound_pc);
+}
+
+
+void Assembler::Bind(Label* label) {
+ const ARMVersion version = TargetCPUFeatures::arm_version();
+ if ((version == ARMv5TE) || (version == ARMv6)) {
+ BindARMv6(label);
+ } else {
+ ASSERT(version == ARMv7);
+ BindARMv7(label);
+ }
+}
+
+
+OperandSize Address::OperandSizeFor(intptr_t cid) {
+ switch (cid) {
+ case kArrayCid:
+ case kImmutableArrayCid:
+ return kWord;
+ case kOneByteStringCid:
+ case kExternalOneByteStringCid:
+ return kByte;
+ case kTwoByteStringCid:
+ case kExternalTwoByteStringCid:
+ return kHalfword;
+ case kTypedDataInt8ArrayCid:
+ return kByte;
+ case kTypedDataUint8ArrayCid:
+ case kTypedDataUint8ClampedArrayCid:
+ case kExternalTypedDataUint8ArrayCid:
+ case kExternalTypedDataUint8ClampedArrayCid:
+ return kUnsignedByte;
+ case kTypedDataInt16ArrayCid:
+ return kHalfword;
+ case kTypedDataUint16ArrayCid:
+ return kUnsignedHalfword;
+ case kTypedDataInt32ArrayCid:
+ return kWord;
+ case kTypedDataUint32ArrayCid:
+ return kUnsignedWord;
+ case kTypedDataInt64ArrayCid:
+ case kTypedDataUint64ArrayCid:
+ UNREACHABLE();
+ return kByte;
+ case kTypedDataFloat32ArrayCid:
+ return kSWord;
+ case kTypedDataFloat64ArrayCid:
+ return kDWord;
+ case kTypedDataFloat32x4ArrayCid:
+ case kTypedDataInt32x4ArrayCid:
+ case kTypedDataFloat64x2ArrayCid:
+ return kRegList;
+ case kTypedDataInt8ArrayViewCid:
+ UNREACHABLE();
+ return kByte;
+ default:
+ UNREACHABLE();
+ return kByte;
+ }
+}
+
+
+bool Address::CanHoldLoadOffset(OperandSize size,
+ int32_t offset,
+ int32_t* offset_mask) {
+ switch (size) {
+ case kByte:
+ case kHalfword:
+ case kUnsignedHalfword:
+ case kWordPair: {
+ *offset_mask = 0xff;
+ return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3.
+ }
+ case kUnsignedByte:
+ case kWord:
+ case kUnsignedWord: {
+ *offset_mask = 0xfff;
+ return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2.
+ }
+ case kSWord:
+ case kDWord: {
+ *offset_mask = 0x3fc; // Multiple of 4.
+ // VFP addressing mode.
+ return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4));
+ }
+ case kRegList: {
+ *offset_mask = 0x0;
+ return offset == 0;
+ }
+ default: {
+ UNREACHABLE();
+ return false;
+ }
+ }
+}
+
+
+bool Address::CanHoldStoreOffset(OperandSize size,
+ int32_t offset,
+ int32_t* offset_mask) {
+ switch (size) {
+ case kHalfword:
+ case kUnsignedHalfword:
+ case kWordPair: {
+ *offset_mask = 0xff;
+ return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3.
+ }
+ case kByte:
+ case kUnsignedByte:
+ case kWord:
+ case kUnsignedWord: {
+ *offset_mask = 0xfff;
+ return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2.
+ }
+ case kSWord:
+ case kDWord: {
+ *offset_mask = 0x3fc; // Multiple of 4.
+ // VFP addressing mode.
+ return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4));
+ }
+ case kRegList: {
+ *offset_mask = 0x0;
+ return offset == 0;
+ }
+ default: {
+ UNREACHABLE();
+ return false;
+ }
+ }
+}
+
+
+bool Address::CanHoldImmediateOffset(
+ bool is_load, intptr_t cid, int64_t offset) {
+ int32_t offset_mask = 0;
+ if (is_load) {
+ return CanHoldLoadOffset(OperandSizeFor(cid), offset, &offset_mask);
+ } else {
+ return CanHoldStoreOffset(OperandSizeFor(cid), offset, &offset_mask);
+ }
+}
+
+
+void Assembler::Push(Register rd, Condition cond) {
+ str(rd, Address(SP, -kWordSize, Address::PreIndex), cond);
+}
+
+
+void Assembler::Pop(Register rd, Condition cond) {
+ ldr(rd, Address(SP, kWordSize, Address::PostIndex), cond);
+}
+
+
+void Assembler::PushList(RegList regs, Condition cond) {
+ stm(DB_W, SP, regs, cond);
+}
+
+
+void Assembler::PopList(RegList regs, Condition cond) {
+ ldm(IA_W, SP, regs, cond);
+}
+
+
+void Assembler::MoveRegister(Register rd, Register rm, Condition cond) {
+ if (rd != rm) {
+ mov(rd, Operand(rm), cond);
+ }
+}
+
+
+void Assembler::Lsl(Register rd, Register rm, const Operand& shift_imm,
+ Condition cond) {
+ ASSERT(shift_imm.type() == 1);
+ ASSERT(shift_imm.encoding() != 0); // Do not use Lsl if no shift is wanted.
+ mov(rd, Operand(rm, LSL, shift_imm.encoding()), cond);
+}
+
+
+void Assembler::Lsl(Register rd, Register rm, Register rs, Condition cond) {
+ mov(rd, Operand(rm, LSL, rs), cond);
+}
+
+
+void Assembler::Lsr(Register rd, Register rm, const Operand& shift_imm,
+ Condition cond) {
+ ASSERT(shift_imm.type() == 1);
+ uint32_t shift = shift_imm.encoding();
+ ASSERT(shift != 0); // Do not use Lsr if no shift is wanted.
+ if (shift == 32) {
+ shift = 0; // Comply to UAL syntax.
+ }
+ mov(rd, Operand(rm, LSR, shift), cond);
+}
+
+
+void Assembler::Lsr(Register rd, Register rm, Register rs, Condition cond) {
+ mov(rd, Operand(rm, LSR, rs), cond);
+}
+
+
+void Assembler::Asr(Register rd, Register rm, const Operand& shift_imm,
+ Condition cond) {
+ ASSERT(shift_imm.type() == 1);
+ uint32_t shift = shift_imm.encoding();
+ ASSERT(shift != 0); // Do not use Asr if no shift is wanted.
+ if (shift == 32) {
+ shift = 0; // Comply to UAL syntax.
+ }
+ mov(rd, Operand(rm, ASR, shift), cond);
+}
+
+
+void Assembler::Asrs(Register rd, Register rm, const Operand& shift_imm,
+ Condition cond) {
+ ASSERT(shift_imm.type() == 1);
+ uint32_t shift = shift_imm.encoding();
+ ASSERT(shift != 0); // Do not use Asr if no shift is wanted.
+ if (shift == 32) {
+ shift = 0; // Comply to UAL syntax.
+ }
+ movs(rd, Operand(rm, ASR, shift), cond);
+}
+
+
+void Assembler::Asr(Register rd, Register rm, Register rs, Condition cond) {
+ mov(rd, Operand(rm, ASR, rs), cond);
+}
+
+
+void Assembler::Ror(Register rd, Register rm, const Operand& shift_imm,
+ Condition cond) {
+ ASSERT(shift_imm.type() == 1);
+ ASSERT(shift_imm.encoding() != 0); // Use Rrx instruction.
+ mov(rd, Operand(rm, ROR, shift_imm.encoding()), cond);
+}
+
+
+void Assembler::Ror(Register rd, Register rm, Register rs, Condition cond) {
+ mov(rd, Operand(rm, ROR, rs), cond);
+}
+
+
+void Assembler::Rrx(Register rd, Register rm, Condition cond) {
+ mov(rd, Operand(rm, ROR, 0), cond);
+}
+
+
+void Assembler::SignFill(Register rd, Register rm, Condition cond) {
+ Asr(rd, rm, Operand(31), cond);
+}
+
+
+void Assembler::Vreciprocalqs(QRegister qd, QRegister qm) {
+ ASSERT(qm != QTMP);
+ ASSERT(qd != QTMP);
+
+ // Reciprocal estimate.
+ vrecpeqs(qd, qm);
+ // 2 Newton-Raphson steps.
+ vrecpsqs(QTMP, qm, qd);
+ vmulqs(qd, qd, QTMP);
+ vrecpsqs(QTMP, qm, qd);
+ vmulqs(qd, qd, QTMP);
+}
+
+
+void Assembler::VreciprocalSqrtqs(QRegister qd, QRegister qm) {
+ ASSERT(qm != QTMP);
+ ASSERT(qd != QTMP);
+
+ // Reciprocal square root estimate.
+ vrsqrteqs(qd, qm);
+ // 2 Newton-Raphson steps. xn+1 = xn * (3 - Q1*xn^2) / 2.
+ // First step.
+ vmulqs(QTMP, qd, qd); // QTMP <- xn^2
+ vrsqrtsqs(QTMP, qm, QTMP); // QTMP <- (3 - Q1*QTMP) / 2.
+ vmulqs(qd, qd, QTMP); // xn+1 <- xn * QTMP
+ // Second step.
+ vmulqs(QTMP, qd, qd);
+ vrsqrtsqs(QTMP, qm, QTMP);
+ vmulqs(qd, qd, QTMP);
+}
+
+
+void Assembler::Vsqrtqs(QRegister qd, QRegister qm, QRegister temp) {
+ ASSERT(temp != QTMP);
+ ASSERT(qm != QTMP);
+ ASSERT(qd != QTMP);
+
+ if (temp != kNoQRegister) {
+ vmovq(temp, qm);
+ qm = temp;
+ }
+
+ VreciprocalSqrtqs(qd, qm);
+ vmovq(qm, qd);
+ Vreciprocalqs(qd, qm);
+}
+
+
+void Assembler::Vdivqs(QRegister qd, QRegister qn, QRegister qm) {
+ ASSERT(qd != QTMP);
+ ASSERT(qn != QTMP);
+ ASSERT(qm != QTMP);
+
+ Vreciprocalqs(qd, qm);
+ vmulqs(qd, qn, qd);
+}
+
+
+void Assembler::Branch(const StubEntry& stub_entry,
+ Patchability patchable,
+ Register pp,
+ Condition cond) {
+ const Code& target_code = Code::Handle(stub_entry.code());
+ const int32_t offset = ObjectPool::element_offset(
+ object_pool_wrapper_.FindObject(target_code, patchable));
+ LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag, pp, cond);
+ ldr(IP, FieldAddress(CODE_REG, Code::entry_point_offset()), cond);
+ bx(IP, cond);
+}
+
+
+void Assembler::BranchLink(const Code& target, Patchability patchable) {
+ // Make sure that class CallPattern is able to patch the label referred
+ // to by this code sequence.
+ // For added code robustness, use 'blx lr' in a patchable sequence and
+ // use 'blx ip' in a non-patchable sequence (see other BranchLink flavors).
+ const int32_t offset = ObjectPool::element_offset(
+ object_pool_wrapper_.FindObject(target, patchable));
+ LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag, PP, AL);
+ ldr(LR, FieldAddress(CODE_REG, Code::entry_point_offset()));
+ blx(LR); // Use blx instruction so that the return branch prediction works.
+}
+
+
+void Assembler::BranchLink(const StubEntry& stub_entry,
+ Patchability patchable) {
+ const Code& code = Code::Handle(stub_entry.code());
+ BranchLink(code, patchable);
+}
+
+
+void Assembler::BranchLinkPatchable(const Code& target) {
+ BranchLink(target, kPatchable);
+}
+
+
+void Assembler::BranchLink(const ExternalLabel* label) {
+ LoadImmediate(LR, label->address()); // Target address is never patched.
+ blx(LR); // Use blx instruction so that the return branch prediction works.
+}
+
+
+void Assembler::BranchLinkPatchable(const StubEntry& stub_entry) {
+ BranchLinkPatchable(Code::Handle(stub_entry.code()));
+}
+
+
+void Assembler::BranchLinkOffset(Register base, int32_t offset) {
+ ASSERT(base != PC);
+ ASSERT(base != IP);
+ LoadFromOffset(kWord, IP, base, offset);
+ blx(IP); // Use blx instruction so that the return branch prediction works.
+}
+
+
+void Assembler::LoadPatchableImmediate(
+ Register rd, int32_t value, Condition cond) {
+ const ARMVersion version = TargetCPUFeatures::arm_version();
+ if ((version == ARMv5TE) || (version == ARMv6)) {
+ // This sequence is patched in a few places, and should remain fixed.
+ const uint32_t byte0 = (value & 0x000000ff);
+ const uint32_t byte1 = (value & 0x0000ff00) >> 8;
+ const uint32_t byte2 = (value & 0x00ff0000) >> 16;
+ const uint32_t byte3 = (value & 0xff000000) >> 24;
+ mov(rd, Operand(4, byte3), cond);
+ orr(rd, rd, Operand(8, byte2), cond);
+ orr(rd, rd, Operand(12, byte1), cond);
+ orr(rd, rd, Operand(byte0), cond);
+ } else {
+ ASSERT(version == ARMv7);
+ const uint16_t value_low = Utils::Low16Bits(value);
+ const uint16_t value_high = Utils::High16Bits(value);
+ movw(rd, value_low, cond);
+ movt(rd, value_high, cond);
+ }
+}
+
+
+void Assembler::LoadDecodableImmediate(
+ Register rd, int32_t value, Condition cond) {
+ const ARMVersion version = TargetCPUFeatures::arm_version();
+ if ((version == ARMv5TE) || (version == ARMv6)) {
+ if (constant_pool_allowed()) {
+ const int32_t offset = Array::element_offset(FindImmediate(value));
+ LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, PP, cond);
+ } else {
+ LoadPatchableImmediate(rd, value, cond);
+ }
+ } else {
+ ASSERT(version == ARMv7);
+ movw(rd, Utils::Low16Bits(value), cond);
+ const uint16_t value_high = Utils::High16Bits(value);
+ if (value_high != 0) {
+ movt(rd, value_high, cond);
+ }
+ }
+}
+
+
+void Assembler::LoadImmediate(Register rd, int32_t value, Condition cond) {
+ Operand o;
+ if (Operand::CanHold(value, &o)) {
+ mov(rd, o, cond);
+ } else if (Operand::CanHold(~value, &o)) {
+ mvn(rd, o, cond);
+ } else {
+ LoadDecodableImmediate(rd, value, cond);
+ }
+}
+
+
+void Assembler::LoadSImmediate(SRegister sd, float value, Condition cond) {
+ if (!vmovs(sd, value, cond)) {
+ const DRegister dd = static_cast<DRegister>(sd >> 1);
+ const int index = sd & 1;
+ LoadImmediate(IP, bit_cast<int32_t, float>(value), cond);
+ vmovdr(dd, index, IP, cond);
+ }
+}
+
+
+void Assembler::LoadDImmediate(DRegister dd,
+ double value,
+ Register scratch,
+ Condition cond) {
+ ASSERT(scratch != PC);
+ ASSERT(scratch != IP);
+ if (!vmovd(dd, value, cond)) {
+ // A scratch register and IP are needed to load an arbitrary double.
+ ASSERT(scratch != kNoRegister);
+ int64_t imm64 = bit_cast<int64_t, double>(value);
+ LoadImmediate(IP, Utils::Low32Bits(imm64), cond);
+ LoadImmediate(scratch, Utils::High32Bits(imm64), cond);
+ vmovdrr(dd, IP, scratch, cond);
+ }
+}
+
+
+void Assembler::LoadFromOffset(OperandSize size,
+ Register reg,
+ Register base,
+ int32_t offset,
+ Condition cond) {
+ int32_t offset_mask = 0;
+ if (!Address::CanHoldLoadOffset(size, offset, &offset_mask)) {
+ ASSERT(base != IP);
+ AddImmediate(IP, base, offset & ~offset_mask, cond);
+ base = IP;
+ offset = offset & offset_mask;
+ }
+ switch (size) {
+ case kByte:
+ ldrsb(reg, Address(base, offset), cond);
+ break;
+ case kUnsignedByte:
+ ldrb(reg, Address(base, offset), cond);
+ break;
+ case kHalfword:
+ ldrsh(reg, Address(base, offset), cond);
+ break;
+ case kUnsignedHalfword:
+ ldrh(reg, Address(base, offset), cond);
+ break;
+ case kWord:
+ ldr(reg, Address(base, offset), cond);
+ break;
+ case kWordPair:
+ ldrd(reg, base, offset, cond);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void Assembler::StoreToOffset(OperandSize size,
+ Register reg,
+ Register base,
+ int32_t offset,
+ Condition cond) {
+ int32_t offset_mask = 0;
+ if (!Address::CanHoldStoreOffset(size, offset, &offset_mask)) {
+ ASSERT(reg != IP);
+ ASSERT(base != IP);
+ AddImmediate(IP, base, offset & ~offset_mask, cond);
+ base = IP;
+ offset = offset & offset_mask;
+ }
+ switch (size) {
+ case kByte:
+ strb(reg, Address(base, offset), cond);
+ break;
+ case kHalfword:
+ strh(reg, Address(base, offset), cond);
+ break;
+ case kWord:
+ str(reg, Address(base, offset), cond);
+ break;
+ case kWordPair:
+ strd(reg, base, offset, cond);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void Assembler::LoadSFromOffset(SRegister reg,
+ Register base,
+ int32_t offset,
+ Condition cond) {
+ int32_t offset_mask = 0;
+ if (!Address::CanHoldLoadOffset(kSWord, offset, &offset_mask)) {
+ ASSERT(base != IP);
+ AddImmediate(IP, base, offset & ~offset_mask, cond);
+ base = IP;
+ offset = offset & offset_mask;
+ }
+ vldrs(reg, Address(base, offset), cond);
+}
+
+
+void Assembler::StoreSToOffset(SRegister reg,
+ Register base,
+ int32_t offset,
+ Condition cond) {
+ int32_t offset_mask = 0;
+ if (!Address::CanHoldStoreOffset(kSWord, offset, &offset_mask)) {
+ ASSERT(base != IP);
+ AddImmediate(IP, base, offset & ~offset_mask, cond);
+ base = IP;
+ offset = offset & offset_mask;
+ }
+ vstrs(reg, Address(base, offset), cond);
+}
+
+
+void Assembler::LoadDFromOffset(DRegister reg,
+ Register base,
+ int32_t offset,
+ Condition cond) {
+ int32_t offset_mask = 0;
+ if (!Address::CanHoldLoadOffset(kDWord, offset, &offset_mask)) {
+ ASSERT(base != IP);
+ AddImmediate(IP, base, offset & ~offset_mask, cond);
+ base = IP;
+ offset = offset & offset_mask;
+ }
+ vldrd(reg, Address(base, offset), cond);
+}
+
+
+void Assembler::StoreDToOffset(DRegister reg,
+ Register base,
+ int32_t offset,
+ Condition cond) {
+ int32_t offset_mask = 0;
+ if (!Address::CanHoldStoreOffset(kDWord, offset, &offset_mask)) {
+ ASSERT(base != IP);
+ AddImmediate(IP, base, offset & ~offset_mask, cond);
+ base = IP;
+ offset = offset & offset_mask;
+ }
+ vstrd(reg, Address(base, offset), cond);
+}
+
+
+void Assembler::LoadMultipleDFromOffset(DRegister first,
+ intptr_t count,
+ Register base,
+ int32_t offset) {
+ ASSERT(base != IP);
+ AddImmediate(IP, base, offset);
+ vldmd(IA, IP, first, count);
+}
+
+void Assembler::StoreMultipleDToOffset(DRegister first,
+ intptr_t count,
+ Register base,
+ int32_t offset) {
+ ASSERT(base != IP);
+ AddImmediate(IP, base, offset);
+ vstmd(IA, IP, first, count);
+}
+
+
+void Assembler::CopyDoubleField(
+ Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) {
+ if (TargetCPUFeatures::vfp_supported()) {
+ LoadDFromOffset(dtmp, src, Double::value_offset() - kHeapObjectTag);
+ StoreDToOffset(dtmp, dst, Double::value_offset() - kHeapObjectTag);
+ } else {
+ LoadFromOffset(kWord, tmp1, src,
+ Double::value_offset() - kHeapObjectTag);
+ LoadFromOffset(kWord, tmp2, src,
+ Double::value_offset() + kWordSize - kHeapObjectTag);
+ StoreToOffset(kWord, tmp1, dst,
+ Double::value_offset() - kHeapObjectTag);
+ StoreToOffset(kWord, tmp2, dst,
+ Double::value_offset() + kWordSize - kHeapObjectTag);
+ }
+}
+
+
+void Assembler::CopyFloat32x4Field(
+ Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) {
+ if (TargetCPUFeatures::neon_supported()) {
+ LoadMultipleDFromOffset(dtmp, 2, src,
+ Float32x4::value_offset() - kHeapObjectTag);
+ StoreMultipleDToOffset(dtmp, 2, dst,
+ Float32x4::value_offset() - kHeapObjectTag);
+ } else {
+ LoadFromOffset(kWord, tmp1, src,
+ (Float32x4::value_offset() + 0 * kWordSize) - kHeapObjectTag);
+ LoadFromOffset(kWord, tmp2, src,
+ (Float32x4::value_offset() + 1 * kWordSize) - kHeapObjectTag);
+ StoreToOffset(kWord, tmp1, dst,
+ (Float32x4::value_offset() + 0 * kWordSize) - kHeapObjectTag);
+ StoreToOffset(kWord, tmp2, dst,
+ (Float32x4::value_offset() + 1 * kWordSize) - kHeapObjectTag);
+
+ LoadFromOffset(kWord, tmp1, src,
+ (Float32x4::value_offset() + 2 * kWordSize) - kHeapObjectTag);
+ LoadFromOffset(kWord, tmp2, src,
+ (Float32x4::value_offset() + 3 * kWordSize) - kHeapObjectTag);
+ StoreToOffset(kWord, tmp1, dst,
+ (Float32x4::value_offset() + 2 * kWordSize) - kHeapObjectTag);
+ StoreToOffset(kWord, tmp2, dst,
+ (Float32x4::value_offset() + 3 * kWordSize) - kHeapObjectTag);
+ }
+}
+
+
+void Assembler::CopyFloat64x2Field(
+ Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) {
+ if (TargetCPUFeatures::neon_supported()) {
+ LoadMultipleDFromOffset(dtmp, 2, src,
+ Float64x2::value_offset() - kHeapObjectTag);
+ StoreMultipleDToOffset(dtmp, 2, dst,
+ Float64x2::value_offset() - kHeapObjectTag);
+ } else {
+ LoadFromOffset(kWord, tmp1, src,
+ (Float64x2::value_offset() + 0 * kWordSize) - kHeapObjectTag);
+ LoadFromOffset(kWord, tmp2, src,
+ (Float64x2::value_offset() + 1 * kWordSize) - kHeapObjectTag);
+ StoreToOffset(kWord, tmp1, dst,
+ (Float64x2::value_offset() + 0 * kWordSize) - kHeapObjectTag);
+ StoreToOffset(kWord, tmp2, dst,
+ (Float64x2::value_offset() + 1 * kWordSize) - kHeapObjectTag);
+
+ LoadFromOffset(kWord, tmp1, src,
+ (Float64x2::value_offset() + 2 * kWordSize) - kHeapObjectTag);
+ LoadFromOffset(kWord, tmp2, src,
+ (Float64x2::value_offset() + 3 * kWordSize) - kHeapObjectTag);
+ StoreToOffset(kWord, tmp1, dst,
+ (Float64x2::value_offset() + 2 * kWordSize) - kHeapObjectTag);
+ StoreToOffset(kWord, tmp2, dst,
+ (Float64x2::value_offset() + 3 * kWordSize) - kHeapObjectTag);
+ }
+}
+
+
+void Assembler::AddImmediate(Register rd, int32_t value, Condition cond) {
+ AddImmediate(rd, rd, value, cond);
+}
+
+
+void Assembler::AddImmediate(Register rd, Register rn, int32_t value,
+ Condition cond) {
+ if (value == 0) {
+ if (rd != rn) {
+ mov(rd, Operand(rn), cond);
+ }
+ return;
+ }
+ // We prefer to select the shorter code sequence rather than selecting add for
+ // positive values and sub for negatives ones, which would slightly improve
+ // the readability of generated code for some constants.
+ Operand o;
+ if (Operand::CanHold(value, &o)) {
+ add(rd, rn, o, cond);
+ } else if (Operand::CanHold(-value, &o)) {
+ sub(rd, rn, o, cond);
+ } else {
+ ASSERT(rn != IP);
+ if (Operand::CanHold(~value, &o)) {
+ mvn(IP, o, cond);
+ add(rd, rn, Operand(IP), cond);
+ } else if (Operand::CanHold(~(-value), &o)) {
+ mvn(IP, o, cond);
+ sub(rd, rn, Operand(IP), cond);
+ } else {
+ LoadDecodableImmediate(IP, value, cond);
+ add(rd, rn, Operand(IP), cond);
+ }
+ }
+}
+
+
+void Assembler::AddImmediateSetFlags(Register rd, Register rn, int32_t value,
+ Condition cond) {
+ Operand o;
+ if (Operand::CanHold(value, &o)) {
+ // Handles value == kMinInt32.
+ adds(rd, rn, o, cond);
+ } else if (Operand::CanHold(-value, &o)) {
+ ASSERT(value != kMinInt32); // Would cause erroneous overflow detection.
+ subs(rd, rn, o, cond);
+ } else {
+ ASSERT(rn != IP);
+ if (Operand::CanHold(~value, &o)) {
+ mvn(IP, o, cond);
+ adds(rd, rn, Operand(IP), cond);
+ } else if (Operand::CanHold(~(-value), &o)) {
+ ASSERT(value != kMinInt32); // Would cause erroneous overflow detection.
+ mvn(IP, o, cond);
+ subs(rd, rn, Operand(IP), cond);
+ } else {
+ LoadDecodableImmediate(IP, value, cond);
+ adds(rd, rn, Operand(IP), cond);
+ }
+ }
+}
+
+
+void Assembler::SubImmediateSetFlags(Register rd, Register rn, int32_t value,
+ Condition cond) {
+ Operand o;
+ if (Operand::CanHold(value, &o)) {
+ // Handles value == kMinInt32.
+ subs(rd, rn, o, cond);
+ } else if (Operand::CanHold(-value, &o)) {
+ ASSERT(value != kMinInt32); // Would cause erroneous overflow detection.
+ adds(rd, rn, o, cond);
+ } else {
+ ASSERT(rn != IP);
+ if (Operand::CanHold(~value, &o)) {
+ mvn(IP, o, cond);
+ subs(rd, rn, Operand(IP), cond);
+ } else if (Operand::CanHold(~(-value), &o)) {
+ ASSERT(value != kMinInt32); // Would cause erroneous overflow detection.
+ mvn(IP, o, cond);
+ adds(rd, rn, Operand(IP), cond);
+ } else {
+ LoadDecodableImmediate(IP, value, cond);
+ subs(rd, rn, Operand(IP), cond);
+ }
+ }
+}
+
+
+void Assembler::AndImmediate(Register rd, Register rs, int32_t imm,
+ Condition cond) {
+ Operand o;
+ if (Operand::CanHold(imm, &o)) {
+ and_(rd, rs, Operand(o), cond);
+ } else {
+ LoadImmediate(TMP, imm, cond);
+ and_(rd, rs, Operand(TMP), cond);
+ }
+}
+
+
+void Assembler::CompareImmediate(Register rn, int32_t value, Condition cond) {
+ Operand o;
+ if (Operand::CanHold(value, &o)) {
+ cmp(rn, o, cond);
+ } else {
+ ASSERT(rn != IP);
+ LoadImmediate(IP, value, cond);
+ cmp(rn, Operand(IP), cond);
+ }
+}
+
+
+void Assembler::TestImmediate(Register rn, int32_t imm, Condition cond) {
+ Operand o;
+ if (Operand::CanHold(imm, &o)) {
+ tst(rn, o, cond);
+ } else {
+ LoadImmediate(IP, imm);
+ tst(rn, Operand(IP), cond);
+ }
+}
+
+void Assembler::IntegerDivide(Register result, Register left, Register right,
+ DRegister tmpl, DRegister tmpr) {
+ ASSERT(tmpl != tmpr);
+ if (TargetCPUFeatures::integer_division_supported()) {
+ sdiv(result, left, right);
+ } else {
+ ASSERT(TargetCPUFeatures::vfp_supported());
+ SRegister stmpl = static_cast<SRegister>(2 * tmpl);
+ SRegister stmpr = static_cast<SRegister>(2 * tmpr);
+ vmovsr(stmpl, left);
+ vcvtdi(tmpl, stmpl); // left is in tmpl.
+ vmovsr(stmpr, right);
+ vcvtdi(tmpr, stmpr); // right is in tmpr.
+ vdivd(tmpr, tmpl, tmpr);
+ vcvtid(stmpr, tmpr);
+ vmovrs(result, stmpr);
+ }
+}
+
+
+static int NumRegsBelowFP(RegList regs) {
+ int count = 0;
+ for (int i = 0; i < FP; i++) {
+ if ((regs & (1 << i)) != 0) {
+ count++;
+ }
+ }
+ return count;
+}
+
+
+void Assembler::EnterFrame(RegList regs, intptr_t frame_size) {
+ if (prologue_offset_ == -1) {
+ prologue_offset_ = CodeSize();
+ }
+ PushList(regs);
+ if ((regs & (1 << FP)) != 0) {
+ // Set FP to the saved previous FP.
+ add(FP, SP, Operand(4 * NumRegsBelowFP(regs)));
+ }
+ AddImmediate(SP, -frame_size);
+}
+
+
+void Assembler::LeaveFrame(RegList regs) {
+ ASSERT((regs & (1 << PC)) == 0); // Must not pop PC.
+ if ((regs & (1 << FP)) != 0) {
+ // Use FP to set SP.
+ sub(SP, FP, Operand(4 * NumRegsBelowFP(regs)));
+ }
+ PopList(regs);
+}
+
+
+void Assembler::Ret() {
+ bx(LR);
+}
+
+
+void Assembler::ReserveAlignedFrameSpace(intptr_t frame_space) {
+ // Reserve space for arguments and align frame before entering
+ // the C++ world.
+ AddImmediate(SP, -frame_space);
+ if (OS::ActivationFrameAlignment() > 1) {
+ bic(SP, SP, Operand(OS::ActivationFrameAlignment() - 1));
+ }
+}
+
+
+void Assembler::EnterCallRuntimeFrame(intptr_t frame_space) {
+ // Preserve volatile CPU registers and PP.
+ EnterFrame(kDartVolatileCpuRegs | (1 << PP) | (1 << FP), 0);
+ COMPILE_ASSERT((kDartVolatileCpuRegs & (1 << PP)) == 0);
+
+ // Preserve all volatile FPU registers.
+ if (TargetCPUFeatures::vfp_supported()) {
+ DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg);
+ DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg);
+ if ((lastv - firstv + 1) >= 16) {
+ DRegister mid = static_cast<DRegister>(firstv + 16);
+ vstmd(DB_W, SP, mid, lastv - mid + 1);
+ vstmd(DB_W, SP, firstv, 16);
+ } else {
+ vstmd(DB_W, SP, firstv, lastv - firstv + 1);
+ }
+ }
+
+ LoadPoolPointer();
+
+ ReserveAlignedFrameSpace(frame_space);
+}
+
+
+void Assembler::LeaveCallRuntimeFrame() {
+ // SP might have been modified to reserve space for arguments
+ // and ensure proper alignment of the stack frame.
+ // We need to restore it before restoring registers.
+ const intptr_t kPushedFpuRegisterSize =
+ TargetCPUFeatures::vfp_supported() ?
+ kDartVolatileFpuRegCount * kFpuRegisterSize : 0;
+
+ COMPILE_ASSERT(PP < FP);
+ COMPILE_ASSERT((kDartVolatileCpuRegs & (1 << PP)) == 0);
+ // kVolatileCpuRegCount +1 for PP, -1 because even though LR is volatile,
+ // it is pushed ahead of FP.
+ const intptr_t kPushedRegistersSize =
+ kDartVolatileCpuRegCount * kWordSize + kPushedFpuRegisterSize;
+ AddImmediate(SP, FP, -kPushedRegistersSize);
+
+ // Restore all volatile FPU registers.
+ if (TargetCPUFeatures::vfp_supported()) {
+ DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg);
+ DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg);
+ if ((lastv - firstv + 1) >= 16) {
+ DRegister mid = static_cast<DRegister>(firstv + 16);
+ vldmd(IA_W, SP, firstv, 16);
+ vldmd(IA_W, SP, mid, lastv - mid + 1);
+ } else {
+ vldmd(IA_W, SP, firstv, lastv - firstv + 1);
+ }
+ }
+
+ // Restore volatile CPU registers.
+ LeaveFrame(kDartVolatileCpuRegs | (1 << PP) | (1 << FP));
+}
+
+
+void Assembler::CallRuntime(const RuntimeEntry& entry,
+ intptr_t argument_count) {
+ entry.Call(this, argument_count);
+}
+
+
+void Assembler::EnterDartFrame(intptr_t frame_size) {
+ ASSERT(!constant_pool_allowed());
+
+ // Registers are pushed in descending order: R9 | R10 | R11 | R14.
+ EnterFrame((1 << PP) | (1 << CODE_REG) | (1 << FP) | (1 << LR), 0);
+
+ // Setup pool pointer for this dart function.
+ LoadPoolPointer();
+
+ // Reserve space for locals.
+ AddImmediate(SP, -frame_size);
+}
+
+
+// On entry to a function compiled for OSR, the caller's frame pointer, the
+// stack locals, and any copied parameters are already in place. The frame
+// pointer is already set up. The PC marker is not correct for the
+// optimized function and there may be extra space for spill slots to
+// allocate. We must also set up the pool pointer for the function.
+void Assembler::EnterOsrFrame(intptr_t extra_size) {
+ ASSERT(!constant_pool_allowed());
+ Comment("EnterOsrFrame");
+ RestoreCodePointer();
+ LoadPoolPointer();
+
+ AddImmediate(SP, -extra_size);
+}
+
+
+void Assembler::LeaveDartFrame(RestorePP restore_pp) {
+ if (restore_pp == kRestoreCallerPP) {
+ ldr(PP, Address(FP, kSavedCallerPpSlotFromFp * kWordSize));
+ set_constant_pool_allowed(false);
+ }
+ Drop(2); // Drop saved PP, PC marker.
+ LeaveFrame((1 << FP) | (1 << LR));
+}
+
+
+void Assembler::EnterStubFrame() {
+ EnterDartFrame(0);
+}
+
+
+void Assembler::LeaveStubFrame() {
+ LeaveDartFrame();
+}
+
+
+void Assembler::LoadAllocationStatsAddress(Register dest,
+ intptr_t cid,
+ bool inline_isolate) {
+ ASSERT(dest != kNoRegister);
+ ASSERT(dest != TMP);
+ ASSERT(cid > 0);
+ const intptr_t class_offset = ClassTable::ClassOffsetFor(cid);
+ if (inline_isolate) {
+ ASSERT(FLAG_allow_absolute_addresses);
+ ClassTable* class_table = Isolate::Current()->class_table();
+ ClassHeapStats** table_ptr = class_table->TableAddressFor(cid);
+ if (cid < kNumPredefinedCids) {
+ LoadImmediate(dest, reinterpret_cast<uword>(*table_ptr) + class_offset);
+ } else {
+ LoadImmediate(dest, reinterpret_cast<uword>(table_ptr));
+ ldr(dest, Address(dest, 0));
+ AddImmediate(dest, class_offset);
+ }
+ } else {
+ LoadIsolate(dest);
+ intptr_t table_offset =
+ Isolate::class_table_offset() + ClassTable::TableOffsetFor(cid);
+ ldr(dest, Address(dest, table_offset));
+ AddImmediate(dest, class_offset);
+ }
+}
+
+
+void Assembler::MaybeTraceAllocation(intptr_t cid,
+ Register temp_reg,
+ Label* trace,
+ bool inline_isolate) {
+ LoadAllocationStatsAddress(temp_reg, cid, inline_isolate);
+ const uword state_offset = ClassHeapStats::state_offset();
+ ldr(temp_reg, Address(temp_reg, state_offset));
+ tst(temp_reg, Operand(ClassHeapStats::TraceAllocationMask()));
+ b(trace, NE);
+}
+
+
+void Assembler::IncrementAllocationStats(Register stats_addr_reg,
+ intptr_t cid,
+ Heap::Space space) {
+ ASSERT(stats_addr_reg != kNoRegister);
+ ASSERT(stats_addr_reg != TMP);
+ ASSERT(cid > 0);
+ const uword count_field_offset = (space == Heap::kNew) ?
+ ClassHeapStats::allocated_since_gc_new_space_offset() :
+ ClassHeapStats::allocated_since_gc_old_space_offset();
+ const Address& count_address = Address(stats_addr_reg, count_field_offset);
+ ldr(TMP, count_address);
+ AddImmediate(TMP, 1);
+ str(TMP, count_address);
+}
+
+
+void Assembler::IncrementAllocationStatsWithSize(Register stats_addr_reg,
+ Register size_reg,
+ Heap::Space space) {
+ ASSERT(stats_addr_reg != kNoRegister);
+ ASSERT(stats_addr_reg != TMP);
+ const uword count_field_offset = (space == Heap::kNew) ?
+ ClassHeapStats::allocated_since_gc_new_space_offset() :
+ ClassHeapStats::allocated_since_gc_old_space_offset();
+ const uword size_field_offset = (space == Heap::kNew) ?
+ ClassHeapStats::allocated_size_since_gc_new_space_offset() :
+ ClassHeapStats::allocated_size_since_gc_old_space_offset();
+ const Address& count_address = Address(stats_addr_reg, count_field_offset);
+ const Address& size_address = Address(stats_addr_reg, size_field_offset);
+ ldr(TMP, count_address);
+ AddImmediate(TMP, 1);
+ str(TMP, count_address);
+ ldr(TMP, size_address);
+ add(TMP, TMP, Operand(size_reg));
+ str(TMP, size_address);
+}
+
+
+void Assembler::TryAllocate(const Class& cls,
+ Label* failure,
+ Register instance_reg,
+ Register temp_reg) {
+ ASSERT(failure != NULL);
+ if (FLAG_inline_alloc) {
+ ASSERT(instance_reg != temp_reg);
+ ASSERT(temp_reg != IP);
+ const intptr_t instance_size = cls.instance_size();
+ ASSERT(instance_size != 0);
+ // If this allocation is traced, program will jump to failure path
+ // (i.e. the allocation stub) which will allocate the object and trace the
+ // allocation call site.
+ MaybeTraceAllocation(cls.id(), temp_reg, failure,
+ /* inline_isolate = */ false);
+ Heap::Space space = Heap::SpaceForAllocation(cls.id());
+ ldr(temp_reg, Address(THR, Thread::heap_offset()));
+ ldr(instance_reg, Address(temp_reg, Heap::TopOffset(space)));
+ // TODO(koda): Protect against unsigned overflow here.
+ AddImmediateSetFlags(instance_reg, instance_reg, instance_size);
+
+ // instance_reg: potential next object start.
+ ldr(IP, Address(temp_reg, Heap::EndOffset(space)));
+ cmp(IP, Operand(instance_reg));
+ // fail if heap end unsigned less than or equal to instance_reg.
+ b(failure, LS);
+
+ // Successfully allocated the object, now update top to point to
+ // next object start and store the class in the class field of object.
+ str(instance_reg, Address(temp_reg, Heap::TopOffset(space)));
+
+ LoadAllocationStatsAddress(temp_reg, cls.id(),
+ /* inline_isolate = */ false);
+
+ ASSERT(instance_size >= kHeapObjectTag);
+ AddImmediate(instance_reg, -instance_size + kHeapObjectTag);
+
+ uword tags = 0;
+ tags = RawObject::SizeTag::update(instance_size, tags);
+ ASSERT(cls.id() != kIllegalCid);
+ tags = RawObject::ClassIdTag::update(cls.id(), tags);
+ LoadImmediate(IP, tags);
+ str(IP, FieldAddress(instance_reg, Object::tags_offset()));
+
+ IncrementAllocationStats(temp_reg, cls.id(), space);
+ } else {
+ b(failure);
+ }
+}
+
+
+void Assembler::TryAllocateArray(intptr_t cid,
+ intptr_t instance_size,
+ Label* failure,
+ Register instance,
+ Register end_address,
+ Register temp1,
+ Register temp2) {
+ if (FLAG_inline_alloc) {
+ // If this allocation is traced, program will jump to failure path
+ // (i.e. the allocation stub) which will allocate the object and trace the
+ // allocation call site.
+ MaybeTraceAllocation(cid, temp1, failure, /* inline_isolate = */ false);
+ Heap::Space space = Heap::SpaceForAllocation(cid);
+ ldr(temp1, Address(THR, Thread::heap_offset()));
+ // Potential new object start.
+ ldr(instance, Address(temp1, Heap::TopOffset(space)));
+ AddImmediateSetFlags(end_address, instance, instance_size);
+ b(failure, CS); // Branch if unsigned overflow.
+
+ // Check if the allocation fits into the remaining space.
+ // instance: potential new object start.
+ // end_address: potential next object start.
+ ldr(temp2, Address(temp1, Heap::EndOffset(space)));
+ cmp(end_address, Operand(temp2));
+ b(failure, CS);
+
+ LoadAllocationStatsAddress(temp2, cid, /* inline_isolate = */ false);
+
+ // Successfully allocated the object(s), now update top to point to
+ // next object start and initialize the object.
+ str(end_address, Address(temp1, Heap::TopOffset(space)));
+ add(instance, instance, Operand(kHeapObjectTag));
+
+ // Initialize the tags.
+ // instance: new object start as a tagged pointer.
+ uword tags = 0;
+ tags = RawObject::ClassIdTag::update(cid, tags);
+ tags = RawObject::SizeTag::update(instance_size, tags);
+ LoadImmediate(temp1, tags);
+ str(temp1, FieldAddress(instance, Array::tags_offset())); // Store tags.
+
+ LoadImmediate(temp1, instance_size);
+ IncrementAllocationStatsWithSize(temp2, temp1, space);
+ } else {
+ b(failure);
+ }
+}
+
+
+void Assembler::Stop(const char* message) {
+ if (FLAG_print_stop_message) {
+ PushList((1 << R0) | (1 << IP) | (1 << LR)); // Preserve R0, IP, LR.
+ LoadImmediate(R0, reinterpret_cast<int32_t>(message));
+ // PrintStopMessage() preserves all registers.
+ BranchLink(&StubCode::PrintStopMessage_entry()->label());
+ PopList((1 << R0) | (1 << IP) | (1 << LR)); // Restore R0, IP, LR.
+ }
+ // Emit the message address before the svc instruction, so that we can
+ // 'unstop' and continue execution in the simulator or jump to the next
+ // instruction in gdb.
+ Label stop;
+ b(&stop);
+ Emit(reinterpret_cast<int32_t>(message));
+ Bind(&stop);
+ bkpt(Instr::kStopMessageCode);
+}
+
+
+Address Assembler::ElementAddressForIntIndex(bool is_load,
+ bool is_external,
+ intptr_t cid,
+ intptr_t index_scale,
+ Register array,
+ intptr_t index,
+ Register temp) {
+ const int64_t offset_base =
+ (is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag));
+ const int64_t offset = offset_base +
+ static_cast<int64_t>(index) * index_scale;
+ ASSERT(Utils::IsInt(32, offset));
+
+ if (Address::CanHoldImmediateOffset(is_load, cid, offset)) {
+ return Address(array, static_cast<int32_t>(offset));
+ } else {
+ ASSERT(Address::CanHoldImmediateOffset(is_load, cid, offset - offset_base));
+ AddImmediate(temp, array, static_cast<int32_t>(offset_base));
+ return Address(temp, static_cast<int32_t>(offset - offset_base));
+ }
+}
+
+
+Address Assembler::ElementAddressForRegIndex(bool is_load,
+ bool is_external,
+ intptr_t cid,
+ intptr_t index_scale,
+ Register array,
+ Register index) {
+ // Note that index is expected smi-tagged, (i.e, LSL 1) for all arrays.
+ const intptr_t shift = Utils::ShiftForPowerOfTwo(index_scale) - kSmiTagShift;
+ int32_t offset =
+ is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag);
+ const OperandSize size = Address::OperandSizeFor(cid);
+ ASSERT(array != IP);
+ ASSERT(index != IP);
+ const Register base = is_load ? IP : index;
+ if ((offset != 0) ||
+ (size == kSWord) || (size == kDWord) || (size == kRegList)) {
+ if (shift < 0) {
+ ASSERT(shift == -1);
+ add(base, array, Operand(index, ASR, 1));
+ } else {
+ add(base, array, Operand(index, LSL, shift));
+ }
+ } else {
+ if (shift < 0) {
+ ASSERT(shift == -1);
+ return Address(array, index, ASR, 1);
+ } else {
+ return Address(array, index, LSL, shift);
+ }
+ }
+ int32_t offset_mask = 0;
+ if ((is_load && !Address::CanHoldLoadOffset(size,
+ offset,
+ &offset_mask)) ||
+ (!is_load && !Address::CanHoldStoreOffset(size,
+ offset,
+ &offset_mask))) {
+ AddImmediate(base, offset & ~offset_mask);
+ offset = offset & offset_mask;
+ }
+ return Address(base, offset);
+}
+
+
+static const char* cpu_reg_names[kNumberOfCpuRegisters] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "ctx", "pp", "fp", "ip", "sp", "lr", "pc",
+};
+
+
+const char* Assembler::RegisterName(Register reg) {
+ ASSERT((0 <= reg) && (reg < kNumberOfCpuRegisters));
+ return cpu_reg_names[reg];
+}
+
+
+static const char* fpu_reg_names[kNumberOfFpuRegisters] = {
+ "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
+#if defined(VFPv3_D32)
+ "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
+#endif
+};
+
+
+const char* Assembler::FpuRegisterName(FpuRegister reg) {
+ ASSERT((0 <= reg) && (reg < kNumberOfFpuRegisters));
+ return fpu_reg_names[reg];
+}
+
+} // namespace dart
+
+#endif // defined TARGET_ARCH_ARM
« no previous file with comments | « src/DartARM32/assembler_arm.h ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698