Index: src/DartARM32/assembler_arm.cc |
diff --git a/src/DartARM32/assembler_arm.cc b/src/DartARM32/assembler_arm.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..5c0a90ed3376e58cc44dc4b3b9f922bdb87974b6 |
--- /dev/null |
+++ b/src/DartARM32/assembler_arm.cc |
@@ -0,0 +1,3653 @@ |
+// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
+// for details. All rights reserved. Use of this source code is governed by a |
+// BSD-style license that can be found in the LICENSE file. |
+// |
+// This is forked from Dart revision df52deea9f25690eb8b66c5995da92b70f7ac1fe |
+// Please update the (git) revision if we merge changes from Dart. |
+// https://code.google.com/p/dart/wiki/GettingTheSource |
+ |
+#include "vm/globals.h" // NOLINT |
+#if defined(TARGET_ARCH_ARM) |
+ |
+#include "vm/assembler.h" |
+#include "vm/cpu.h" |
+#include "vm/longjump.h" |
+#include "vm/runtime_entry.h" |
+#include "vm/simulator.h" |
+#include "vm/stack_frame.h" |
+#include "vm/stub_code.h" |
+ |
+// An extra check since we are assuming the existence of /proc/cpuinfo below. |
+#if !defined(USING_SIMULATOR) && !defined(__linux__) && !defined(ANDROID) |
+#error ARM cross-compile only supported on Linux |
+#endif |
+ |
+namespace dart { |
+ |
+DECLARE_FLAG(bool, allow_absolute_addresses); |
+DEFINE_FLAG(bool, print_stop_message, true, "Print stop message."); |
+DECLARE_FLAG(bool, inline_alloc); |
+ |
+uint32_t Address::encoding3() const { |
+ if (kind_ == Immediate) { |
+ uint32_t offset = encoding_ & kOffset12Mask; |
+ ASSERT(offset < 256); |
+ return (encoding_ & ~kOffset12Mask) | B22 | |
+ ((offset & 0xf0) << 4) | (offset & 0xf); |
+ } |
+ ASSERT(kind_ == IndexRegister); |
+ return encoding_; |
+} |
+ |
+ |
+uint32_t Address::vencoding() const { |
+ ASSERT(kind_ == Immediate); |
+ uint32_t offset = encoding_ & kOffset12Mask; |
+ ASSERT(offset < (1 << 10)); // In the range 0 to +1020. |
+ ASSERT(Utils::IsAligned(offset, 4)); // Multiple of 4. |
+ int mode = encoding_ & ((8|4|1) << 21); |
+ ASSERT((mode == Offset) || (mode == NegOffset)); |
+ uint32_t vencoding = (encoding_ & (0xf << kRnShift)) | (offset >> 2); |
+ if (mode == Offset) { |
+ vencoding |= 1 << 23; |
+ } |
+ return vencoding; |
+} |
+ |
+ |
+void Assembler::InitializeMemoryWithBreakpoints(uword data, intptr_t length) { |
+ ASSERT(Utils::IsAligned(data, 4)); |
+ ASSERT(Utils::IsAligned(length, 4)); |
+ const uword end = data + length; |
+ while (data < end) { |
+ *reinterpret_cast<int32_t*>(data) = Instr::kBreakPointInstruction; |
+ data += 4; |
+ } |
+} |
+ |
+ |
+void Assembler::Emit(int32_t value) { |
+ AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
+ buffer_.Emit<int32_t>(value); |
+} |
+ |
+ |
+void Assembler::EmitType01(Condition cond, |
+ int type, |
+ Opcode opcode, |
+ int set_cc, |
+ Register rn, |
+ Register rd, |
+ Operand o) { |
+ ASSERT(rd != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | |
+ type << kTypeShift | |
+ static_cast<int32_t>(opcode) << kOpcodeShift | |
+ set_cc << kSShift | |
+ static_cast<int32_t>(rn) << kRnShift | |
+ static_cast<int32_t>(rd) << kRdShift | |
+ o.encoding(); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::EmitType5(Condition cond, int32_t offset, bool link) { |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | |
+ 5 << kTypeShift | |
+ (link ? 1 : 0) << kLinkShift; |
+ Emit(Assembler::EncodeBranchOffset(offset, encoding)); |
+} |
+ |
+ |
+void Assembler::EmitMemOp(Condition cond, |
+ bool load, |
+ bool byte, |
+ Register rd, |
+ Address ad) { |
+ ASSERT(rd != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B26 | (ad.kind() == Address::Immediate ? 0 : B25) | |
+ (load ? L : 0) | |
+ (byte ? B : 0) | |
+ (static_cast<int32_t>(rd) << kRdShift) | |
+ ad.encoding(); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::EmitMemOpAddressMode3(Condition cond, |
+ int32_t mode, |
+ Register rd, |
+ Address ad) { |
+ ASSERT(rd != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ mode | |
+ (static_cast<int32_t>(rd) << kRdShift) | |
+ ad.encoding3(); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::EmitMultiMemOp(Condition cond, |
+ BlockAddressMode am, |
+ bool load, |
+ Register base, |
+ RegList regs) { |
+ ASSERT(base != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | |
+ am | |
+ (load ? L : 0) | |
+ (static_cast<int32_t>(base) << kRnShift) | |
+ regs; |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::EmitShiftImmediate(Condition cond, |
+ Shift opcode, |
+ Register rd, |
+ Register rm, |
+ Operand o) { |
+ ASSERT(cond != kNoCondition); |
+ ASSERT(o.type() == 1); |
+ int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | |
+ static_cast<int32_t>(MOV) << kOpcodeShift | |
+ static_cast<int32_t>(rd) << kRdShift | |
+ o.encoding() << kShiftImmShift | |
+ static_cast<int32_t>(opcode) << kShiftShift | |
+ static_cast<int32_t>(rm); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::EmitShiftRegister(Condition cond, |
+ Shift opcode, |
+ Register rd, |
+ Register rm, |
+ Operand o) { |
+ ASSERT(cond != kNoCondition); |
+ ASSERT(o.type() == 0); |
+ int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | |
+ static_cast<int32_t>(MOV) << kOpcodeShift | |
+ static_cast<int32_t>(rd) << kRdShift | |
+ o.encoding() << kShiftRegisterShift | |
+ static_cast<int32_t>(opcode) << kShiftShift | |
+ B4 | |
+ static_cast<int32_t>(rm); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::and_(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), AND, 0, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::eor(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), EOR, 0, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::sub(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), SUB, 0, rn, rd, o); |
+} |
+ |
+void Assembler::rsb(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), RSB, 0, rn, rd, o); |
+} |
+ |
+void Assembler::rsbs(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), RSB, 1, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::add(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), ADD, 0, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::adds(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), ADD, 1, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::subs(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), SUB, 1, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::adc(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), ADC, 0, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::adcs(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), ADC, 1, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::sbc(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), SBC, 0, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::sbcs(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), SBC, 1, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::rsc(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), RSC, 0, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::tst(Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), TST, 1, rn, R0, o); |
+} |
+ |
+ |
+void Assembler::teq(Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), TEQ, 1, rn, R0, o); |
+} |
+ |
+ |
+void Assembler::cmp(Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), CMP, 1, rn, R0, o); |
+} |
+ |
+ |
+void Assembler::cmn(Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), CMN, 1, rn, R0, o); |
+} |
+ |
+ |
+void Assembler::orr(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), ORR, 0, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::orrs(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), ORR, 1, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::mov(Register rd, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), MOV, 0, R0, rd, o); |
+} |
+ |
+ |
+void Assembler::movs(Register rd, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), MOV, 1, R0, rd, o); |
+} |
+ |
+ |
+void Assembler::bic(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), BIC, 0, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::bics(Register rd, Register rn, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), BIC, 1, rn, rd, o); |
+} |
+ |
+ |
+void Assembler::mvn(Register rd, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), MVN, 0, R0, rd, o); |
+} |
+ |
+ |
+void Assembler::mvns(Register rd, Operand o, Condition cond) { |
+ EmitType01(cond, o.type(), MVN, 1, R0, rd, o); |
+} |
+ |
+ |
+void Assembler::clz(Register rd, Register rm, Condition cond) { |
+ ASSERT(rd != kNoRegister); |
+ ASSERT(rm != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ ASSERT(rd != PC); |
+ ASSERT(rm != PC); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B24 | B22 | B21 | (0xf << 16) | |
+ (static_cast<int32_t>(rd) << kRdShift) | |
+ (0xf << 8) | B4 | static_cast<int32_t>(rm); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::movw(Register rd, uint16_t imm16, Condition cond) { |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | |
+ B25 | B24 | ((imm16 >> 12) << 16) | |
+ static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::movt(Register rd, uint16_t imm16, Condition cond) { |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | |
+ B25 | B24 | B22 | ((imm16 >> 12) << 16) | |
+ static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::EmitMulOp(Condition cond, int32_t opcode, |
+ Register rd, Register rn, |
+ Register rm, Register rs) { |
+ ASSERT(rd != kNoRegister); |
+ ASSERT(rn != kNoRegister); |
+ ASSERT(rm != kNoRegister); |
+ ASSERT(rs != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = opcode | |
+ (static_cast<int32_t>(cond) << kConditionShift) | |
+ (static_cast<int32_t>(rn) << kRnShift) | |
+ (static_cast<int32_t>(rd) << kRdShift) | |
+ (static_cast<int32_t>(rs) << kRsShift) | |
+ B7 | B4 | |
+ (static_cast<int32_t>(rm) << kRmShift); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::mul(Register rd, Register rn, Register rm, Condition cond) { |
+ // Assembler registers rd, rn, rm are encoded as rn, rm, rs. |
+ EmitMulOp(cond, 0, R0, rd, rn, rm); |
+} |
+ |
+ |
+// Like mul, but sets condition flags. |
+void Assembler::muls(Register rd, Register rn, Register rm, Condition cond) { |
+ EmitMulOp(cond, B20, R0, rd, rn, rm); |
+} |
+ |
+ |
+void Assembler::mla(Register rd, Register rn, |
+ Register rm, Register ra, Condition cond) { |
+ // rd <- ra + rn * rm. |
+ // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. |
+ EmitMulOp(cond, B21, ra, rd, rn, rm); |
+} |
+ |
+ |
+void Assembler::mls(Register rd, Register rn, |
+ Register rm, Register ra, Condition cond) { |
+ // rd <- ra - rn * rm. |
+ if (TargetCPUFeatures::arm_version() == ARMv7) { |
+ // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. |
+ EmitMulOp(cond, B22 | B21, ra, rd, rn, rm); |
+ } else { |
+ mul(IP, rn, rm, cond); |
+ sub(rd, ra, Operand(IP), cond); |
+ } |
+} |
+ |
+ |
+void Assembler::smull(Register rd_lo, Register rd_hi, |
+ Register rn, Register rm, Condition cond) { |
+ // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
+ EmitMulOp(cond, B23 | B22, rd_lo, rd_hi, rn, rm); |
+} |
+ |
+ |
+void Assembler::umull(Register rd_lo, Register rd_hi, |
+ Register rn, Register rm, Condition cond) { |
+ // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
+ EmitMulOp(cond, B23, rd_lo, rd_hi, rn, rm); |
+} |
+ |
+ |
+void Assembler::umlal(Register rd_lo, Register rd_hi, |
+ Register rn, Register rm, Condition cond) { |
+ // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
+ EmitMulOp(cond, B23 | B21, rd_lo, rd_hi, rn, rm); |
+} |
+ |
+ |
+void Assembler::umaal(Register rd_lo, Register rd_hi, |
+ Register rn, Register rm) { |
+ ASSERT(rd_lo != IP); |
+ ASSERT(rd_hi != IP); |
+ ASSERT(rn != IP); |
+ ASSERT(rm != IP); |
+ if (TargetCPUFeatures::arm_version() != ARMv5TE) { |
+ // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
+ EmitMulOp(AL, B22, rd_lo, rd_hi, rn, rm); |
+ } else { |
+ mov(IP, Operand(0)); |
+ umlal(rd_lo, IP, rn, rm); |
+ adds(rd_lo, rd_lo, Operand(rd_hi)); |
+ adc(rd_hi, IP, Operand(0)); |
+ } |
+} |
+ |
+ |
+void Assembler::EmitDivOp(Condition cond, int32_t opcode, |
+ Register rd, Register rn, Register rm) { |
+ ASSERT(TargetCPUFeatures::integer_division_supported()); |
+ ASSERT(rd != kNoRegister); |
+ ASSERT(rn != kNoRegister); |
+ ASSERT(rm != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = opcode | |
+ (static_cast<int32_t>(cond) << kConditionShift) | |
+ (static_cast<int32_t>(rn) << kDivRnShift) | |
+ (static_cast<int32_t>(rd) << kDivRdShift) | |
+ B26 | B25 | B24 | B20 | B4 | |
+ (static_cast<int32_t>(rm) << kDivRmShift); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::sdiv(Register rd, Register rn, Register rm, Condition cond) { |
+ EmitDivOp(cond, 0, rd, rn, rm); |
+} |
+ |
+ |
+void Assembler::udiv(Register rd, Register rn, Register rm, Condition cond) { |
+ EmitDivOp(cond, B21 , rd, rn, rm); |
+} |
+ |
+ |
+void Assembler::ldr(Register rd, Address ad, Condition cond) { |
+ EmitMemOp(cond, true, false, rd, ad); |
+} |
+ |
+ |
+void Assembler::str(Register rd, Address ad, Condition cond) { |
+ EmitMemOp(cond, false, false, rd, ad); |
+} |
+ |
+ |
+void Assembler::ldrb(Register rd, Address ad, Condition cond) { |
+ EmitMemOp(cond, true, true, rd, ad); |
+} |
+ |
+ |
+void Assembler::strb(Register rd, Address ad, Condition cond) { |
+ EmitMemOp(cond, false, true, rd, ad); |
+} |
+ |
+ |
+void Assembler::ldrh(Register rd, Address ad, Condition cond) { |
+ EmitMemOpAddressMode3(cond, L | B7 | H | B4, rd, ad); |
+} |
+ |
+ |
+void Assembler::strh(Register rd, Address ad, Condition cond) { |
+ EmitMemOpAddressMode3(cond, B7 | H | B4, rd, ad); |
+} |
+ |
+ |
+void Assembler::ldrsb(Register rd, Address ad, Condition cond) { |
+ EmitMemOpAddressMode3(cond, L | B7 | B6 | B4, rd, ad); |
+} |
+ |
+ |
+void Assembler::ldrsh(Register rd, Address ad, Condition cond) { |
+ EmitMemOpAddressMode3(cond, L | B7 | B6 | H | B4, rd, ad); |
+} |
+ |
+ |
+void Assembler::ldrd(Register rd, Register rn, int32_t offset, Condition cond) { |
+ ASSERT((rd % 2) == 0); |
+ if (TargetCPUFeatures::arm_version() == ARMv5TE) { |
+ const Register rd2 = static_cast<Register>(static_cast<int32_t>(rd) + 1); |
+ ldr(rd, Address(rn, offset), cond); |
+ ldr(rd2, Address(rn, offset + kWordSize), cond); |
+ } else { |
+ EmitMemOpAddressMode3(cond, B7 | B6 | B4, rd, Address(rn, offset)); |
+ } |
+} |
+ |
+ |
+void Assembler::strd(Register rd, Register rn, int32_t offset, Condition cond) { |
+ ASSERT((rd % 2) == 0); |
+ if (TargetCPUFeatures::arm_version() == ARMv5TE) { |
+ const Register rd2 = static_cast<Register>(static_cast<int32_t>(rd) + 1); |
+ str(rd, Address(rn, offset), cond); |
+ str(rd2, Address(rn, offset + kWordSize), cond); |
+ } else { |
+ EmitMemOpAddressMode3(cond, B7 | B6 | B5 | B4, rd, Address(rn, offset)); |
+ } |
+} |
+ |
+ |
+void Assembler::ldm(BlockAddressMode am, Register base, RegList regs, |
+ Condition cond) { |
+ ASSERT(regs != 0); |
+ EmitMultiMemOp(cond, am, true, base, regs); |
+} |
+ |
+ |
+void Assembler::stm(BlockAddressMode am, Register base, RegList regs, |
+ Condition cond) { |
+ ASSERT(regs != 0); |
+ EmitMultiMemOp(cond, am, false, base, regs); |
+} |
+ |
+ |
+void Assembler::ldrex(Register rt, Register rn, Condition cond) { |
+ ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE); |
+ ASSERT(rn != kNoRegister); |
+ ASSERT(rt != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B24 | |
+ B23 | |
+ L | |
+ (static_cast<int32_t>(rn) << kLdExRnShift) | |
+ (static_cast<int32_t>(rt) << kLdExRtShift) | |
+ B11 | B10 | B9 | B8 | B7 | B4 | B3 | B2 | B1 | B0; |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::strex(Register rd, Register rt, Register rn, Condition cond) { |
+ ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE); |
+ ASSERT(rn != kNoRegister); |
+ ASSERT(rd != kNoRegister); |
+ ASSERT(rt != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B24 | |
+ B23 | |
+ (static_cast<int32_t>(rn) << kStrExRnShift) | |
+ (static_cast<int32_t>(rd) << kStrExRdShift) | |
+ B11 | B10 | B9 | B8 | B7 | B4 | |
+ (static_cast<int32_t>(rt) << kStrExRtShift); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::clrex() { |
+ ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE); |
+ int32_t encoding = (kSpecialCondition << kConditionShift) | |
+ B26 | B24 | B22 | B21 | B20 | (0xff << 12) | B4 | 0xf; |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::nop(Condition cond) { |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B25 | B24 | B21 | (0xf << 12); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vmovsr(SRegister sn, Register rt, Condition cond) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(sn != kNoSRegister); |
+ ASSERT(rt != kNoRegister); |
+ ASSERT(rt != SP); |
+ ASSERT(rt != PC); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B25 | |
+ ((static_cast<int32_t>(sn) >> 1)*B16) | |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 | |
+ ((static_cast<int32_t>(sn) & 1)*B7) | B4; |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vmovrs(Register rt, SRegister sn, Condition cond) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(sn != kNoSRegister); |
+ ASSERT(rt != kNoRegister); |
+ ASSERT(rt != SP); |
+ ASSERT(rt != PC); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B25 | B20 | |
+ ((static_cast<int32_t>(sn) >> 1)*B16) | |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 | |
+ ((static_cast<int32_t>(sn) & 1)*B7) | B4; |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vmovsrr(SRegister sm, Register rt, Register rt2, |
+ Condition cond) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(sm != kNoSRegister); |
+ ASSERT(sm != S31); |
+ ASSERT(rt != kNoRegister); |
+ ASSERT(rt != SP); |
+ ASSERT(rt != PC); |
+ ASSERT(rt2 != kNoRegister); |
+ ASSERT(rt2 != SP); |
+ ASSERT(rt2 != PC); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B22 | |
+ (static_cast<int32_t>(rt2)*B16) | |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 | |
+ ((static_cast<int32_t>(sm) & 1)*B5) | B4 | |
+ (static_cast<int32_t>(sm) >> 1); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vmovrrs(Register rt, Register rt2, SRegister sm, |
+ Condition cond) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(sm != kNoSRegister); |
+ ASSERT(sm != S31); |
+ ASSERT(rt != kNoRegister); |
+ ASSERT(rt != SP); |
+ ASSERT(rt != PC); |
+ ASSERT(rt2 != kNoRegister); |
+ ASSERT(rt2 != SP); |
+ ASSERT(rt2 != PC); |
+ ASSERT(rt != rt2); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B22 | B20 | |
+ (static_cast<int32_t>(rt2)*B16) | |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 | |
+ ((static_cast<int32_t>(sm) & 1)*B5) | B4 | |
+ (static_cast<int32_t>(sm) >> 1); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vmovdr(DRegister dn, int i, Register rt, Condition cond) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT((i == 0) || (i == 1)); |
+ ASSERT(rt != kNoRegister); |
+ ASSERT(rt != SP); |
+ ASSERT(rt != PC); |
+ ASSERT(dn != kNoDRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B25 | |
+ (i*B21) | |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 | |
+ ((static_cast<int32_t>(dn) >> 4)*B7) | |
+ ((static_cast<int32_t>(dn) & 0xf)*B16) | B4; |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vmovdrr(DRegister dm, Register rt, Register rt2, |
+ Condition cond) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(dm != kNoDRegister); |
+ ASSERT(rt != kNoRegister); |
+ ASSERT(rt != SP); |
+ ASSERT(rt != PC); |
+ ASSERT(rt2 != kNoRegister); |
+ ASSERT(rt2 != SP); |
+ ASSERT(rt2 != PC); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B22 | |
+ (static_cast<int32_t>(rt2)*B16) | |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 | |
+ ((static_cast<int32_t>(dm) >> 4)*B5) | B4 | |
+ (static_cast<int32_t>(dm) & 0xf); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vmovrrd(Register rt, Register rt2, DRegister dm, |
+ Condition cond) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(dm != kNoDRegister); |
+ ASSERT(rt != kNoRegister); |
+ ASSERT(rt != SP); |
+ ASSERT(rt != PC); |
+ ASSERT(rt2 != kNoRegister); |
+ ASSERT(rt2 != SP); |
+ ASSERT(rt2 != PC); |
+ ASSERT(rt != rt2); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B22 | B20 | |
+ (static_cast<int32_t>(rt2)*B16) | |
+ (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 | |
+ ((static_cast<int32_t>(dm) >> 4)*B5) | B4 | |
+ (static_cast<int32_t>(dm) & 0xf); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vldrs(SRegister sd, Address ad, Condition cond) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(sd != kNoSRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B24 | B20 | |
+ ((static_cast<int32_t>(sd) & 1)*B22) | |
+ ((static_cast<int32_t>(sd) >> 1)*B12) | |
+ B11 | B9 | ad.vencoding(); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vstrs(SRegister sd, Address ad, Condition cond) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC); |
+ ASSERT(sd != kNoSRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B24 | |
+ ((static_cast<int32_t>(sd) & 1)*B22) | |
+ ((static_cast<int32_t>(sd) >> 1)*B12) | |
+ B11 | B9 | ad.vencoding(); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vldrd(DRegister dd, Address ad, Condition cond) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(dd != kNoDRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B24 | B20 | |
+ ((static_cast<int32_t>(dd) >> 4)*B22) | |
+ ((static_cast<int32_t>(dd) & 0xf)*B12) | |
+ B11 | B9 | B8 | ad.vencoding(); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vstrd(DRegister dd, Address ad, Condition cond) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC); |
+ ASSERT(dd != kNoDRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B24 | |
+ ((static_cast<int32_t>(dd) >> 4)*B22) | |
+ ((static_cast<int32_t>(dd) & 0xf)*B12) | |
+ B11 | B9 | B8 | ad.vencoding(); |
+ Emit(encoding); |
+} |
+ |
+void Assembler::EmitMultiVSMemOp(Condition cond, |
+ BlockAddressMode am, |
+ bool load, |
+ Register base, |
+ SRegister start, |
+ uint32_t count) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(base != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ ASSERT(start != kNoSRegister); |
+ ASSERT(static_cast<int32_t>(start) + count <= kNumberOfSRegisters); |
+ |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B11 | B9 | |
+ am | |
+ (load ? L : 0) | |
+ (static_cast<int32_t>(base) << kRnShift) | |
+ ((static_cast<int32_t>(start) & 0x1) ? D : 0) | |
+ ((static_cast<int32_t>(start) >> 1) << 12) | |
+ count; |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::EmitMultiVDMemOp(Condition cond, |
+ BlockAddressMode am, |
+ bool load, |
+ Register base, |
+ DRegister start, |
+ int32_t count) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(base != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ ASSERT(start != kNoDRegister); |
+ ASSERT(static_cast<int32_t>(start) + count <= kNumberOfDRegisters); |
+ const int armv5te = TargetCPUFeatures::arm_version() == ARMv5TE ? 1 : 0; |
+ |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B11 | B9 | B8 | |
+ am | |
+ (load ? L : 0) | |
+ (static_cast<int32_t>(base) << kRnShift) | |
+ ((static_cast<int32_t>(start) & 0x10) ? D : 0) | |
+ ((static_cast<int32_t>(start) & 0xf) << 12) | |
+ (count << 1) | armv5te; |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vldms(BlockAddressMode am, Register base, |
+ SRegister first, SRegister last, Condition cond) { |
+ ASSERT((am == IA) || (am == IA_W) || (am == DB_W)); |
+ ASSERT(last > first); |
+ EmitMultiVSMemOp(cond, am, true, base, first, last - first + 1); |
+} |
+ |
+ |
+void Assembler::vstms(BlockAddressMode am, Register base, |
+ SRegister first, SRegister last, Condition cond) { |
+ ASSERT((am == IA) || (am == IA_W) || (am == DB_W)); |
+ ASSERT(last > first); |
+ EmitMultiVSMemOp(cond, am, false, base, first, last - first + 1); |
+} |
+ |
+ |
+void Assembler::vldmd(BlockAddressMode am, Register base, |
+ DRegister first, intptr_t count, Condition cond) { |
+ ASSERT((am == IA) || (am == IA_W) || (am == DB_W)); |
+ ASSERT(count <= 16); |
+ ASSERT(first + count <= kNumberOfDRegisters); |
+ EmitMultiVDMemOp(cond, am, true, base, first, count); |
+} |
+ |
+ |
+void Assembler::vstmd(BlockAddressMode am, Register base, |
+ DRegister first, intptr_t count, Condition cond) { |
+ ASSERT((am == IA) || (am == IA_W) || (am == DB_W)); |
+ ASSERT(count <= 16); |
+ ASSERT(first + count <= kNumberOfDRegisters); |
+ EmitMultiVDMemOp(cond, am, false, base, first, count); |
+} |
+ |
+ |
+void Assembler::EmitVFPsss(Condition cond, int32_t opcode, |
+ SRegister sd, SRegister sn, SRegister sm) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(sd != kNoSRegister); |
+ ASSERT(sn != kNoSRegister); |
+ ASSERT(sm != kNoSRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B25 | B11 | B9 | opcode | |
+ ((static_cast<int32_t>(sd) & 1)*B22) | |
+ ((static_cast<int32_t>(sn) >> 1)*B16) | |
+ ((static_cast<int32_t>(sd) >> 1)*B12) | |
+ ((static_cast<int32_t>(sn) & 1)*B7) | |
+ ((static_cast<int32_t>(sm) & 1)*B5) | |
+ (static_cast<int32_t>(sm) >> 1); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::EmitVFPddd(Condition cond, int32_t opcode, |
+ DRegister dd, DRegister dn, DRegister dm) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(dd != kNoDRegister); |
+ ASSERT(dn != kNoDRegister); |
+ ASSERT(dm != kNoDRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B25 | B11 | B9 | B8 | opcode | |
+ ((static_cast<int32_t>(dd) >> 4)*B22) | |
+ ((static_cast<int32_t>(dn) & 0xf)*B16) | |
+ ((static_cast<int32_t>(dd) & 0xf)*B12) | |
+ ((static_cast<int32_t>(dn) >> 4)*B7) | |
+ ((static_cast<int32_t>(dm) >> 4)*B5) | |
+ (static_cast<int32_t>(dm) & 0xf); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vmovs(SRegister sd, SRegister sm, Condition cond) { |
+ EmitVFPsss(cond, B23 | B21 | B20 | B6, sd, S0, sm); |
+} |
+ |
+ |
+void Assembler::vmovd(DRegister dd, DRegister dm, Condition cond) { |
+ EmitVFPddd(cond, B23 | B21 | B20 | B6, dd, D0, dm); |
+} |
+ |
+ |
+bool Assembler::vmovs(SRegister sd, float s_imm, Condition cond) { |
+ if (TargetCPUFeatures::arm_version() != ARMv7) { |
+ return false; |
+ } |
+ uint32_t imm32 = bit_cast<uint32_t, float>(s_imm); |
+ if (((imm32 & ((1 << 19) - 1)) == 0) && |
+ ((((imm32 >> 25) & ((1 << 6) - 1)) == (1 << 5)) || |
+ (((imm32 >> 25) & ((1 << 6) - 1)) == ((1 << 5) -1)))) { |
+ uint8_t imm8 = ((imm32 >> 31) << 7) | (((imm32 >> 29) & 1) << 6) | |
+ ((imm32 >> 19) & ((1 << 6) -1)); |
+ EmitVFPsss(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | (imm8 & 0xf), |
+ sd, S0, S0); |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+ |
+bool Assembler::vmovd(DRegister dd, double d_imm, Condition cond) { |
+ if (TargetCPUFeatures::arm_version() != ARMv7) { |
+ return false; |
+ } |
+ uint64_t imm64 = bit_cast<uint64_t, double>(d_imm); |
+ if (((imm64 & ((1LL << 48) - 1)) == 0) && |
+ ((((imm64 >> 54) & ((1 << 9) - 1)) == (1 << 8)) || |
+ (((imm64 >> 54) & ((1 << 9) - 1)) == ((1 << 8) -1)))) { |
+ uint8_t imm8 = ((imm64 >> 63) << 7) | (((imm64 >> 61) & 1) << 6) | |
+ ((imm64 >> 48) & ((1 << 6) -1)); |
+ EmitVFPddd(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | B8 | (imm8 & 0xf), |
+ dd, D0, D0); |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+ |
+void Assembler::vadds(SRegister sd, SRegister sn, SRegister sm, |
+ Condition cond) { |
+ EmitVFPsss(cond, B21 | B20, sd, sn, sm); |
+} |
+ |
+ |
+void Assembler::vaddd(DRegister dd, DRegister dn, DRegister dm, |
+ Condition cond) { |
+ EmitVFPddd(cond, B21 | B20, dd, dn, dm); |
+} |
+ |
+ |
+void Assembler::vsubs(SRegister sd, SRegister sn, SRegister sm, |
+ Condition cond) { |
+ EmitVFPsss(cond, B21 | B20 | B6, sd, sn, sm); |
+} |
+ |
+ |
+void Assembler::vsubd(DRegister dd, DRegister dn, DRegister dm, |
+ Condition cond) { |
+ EmitVFPddd(cond, B21 | B20 | B6, dd, dn, dm); |
+} |
+ |
+ |
+void Assembler::vmuls(SRegister sd, SRegister sn, SRegister sm, |
+ Condition cond) { |
+ EmitVFPsss(cond, B21, sd, sn, sm); |
+} |
+ |
+ |
+void Assembler::vmuld(DRegister dd, DRegister dn, DRegister dm, |
+ Condition cond) { |
+ EmitVFPddd(cond, B21, dd, dn, dm); |
+} |
+ |
+ |
+void Assembler::vmlas(SRegister sd, SRegister sn, SRegister sm, |
+ Condition cond) { |
+ EmitVFPsss(cond, 0, sd, sn, sm); |
+} |
+ |
+ |
+void Assembler::vmlad(DRegister dd, DRegister dn, DRegister dm, |
+ Condition cond) { |
+ EmitVFPddd(cond, 0, dd, dn, dm); |
+} |
+ |
+ |
+void Assembler::vmlss(SRegister sd, SRegister sn, SRegister sm, |
+ Condition cond) { |
+ EmitVFPsss(cond, B6, sd, sn, sm); |
+} |
+ |
+ |
+void Assembler::vmlsd(DRegister dd, DRegister dn, DRegister dm, |
+ Condition cond) { |
+ EmitVFPddd(cond, B6, dd, dn, dm); |
+} |
+ |
+ |
+void Assembler::vdivs(SRegister sd, SRegister sn, SRegister sm, |
+ Condition cond) { |
+ EmitVFPsss(cond, B23, sd, sn, sm); |
+} |
+ |
+ |
+void Assembler::vdivd(DRegister dd, DRegister dn, DRegister dm, |
+ Condition cond) { |
+ EmitVFPddd(cond, B23, dd, dn, dm); |
+} |
+ |
+ |
+void Assembler::vabss(SRegister sd, SRegister sm, Condition cond) { |
+ EmitVFPsss(cond, B23 | B21 | B20 | B7 | B6, sd, S0, sm); |
+} |
+ |
+ |
+void Assembler::vabsd(DRegister dd, DRegister dm, Condition cond) { |
+ EmitVFPddd(cond, B23 | B21 | B20 | B7 | B6, dd, D0, dm); |
+} |
+ |
+ |
+void Assembler::vnegs(SRegister sd, SRegister sm, Condition cond) { |
+ EmitVFPsss(cond, B23 | B21 | B20 | B16 | B6, sd, S0, sm); |
+} |
+ |
+ |
+void Assembler::vnegd(DRegister dd, DRegister dm, Condition cond) { |
+ EmitVFPddd(cond, B23 | B21 | B20 | B16 | B6, dd, D0, dm); |
+} |
+ |
+ |
+void Assembler::vsqrts(SRegister sd, SRegister sm, Condition cond) { |
+ EmitVFPsss(cond, B23 | B21 | B20 | B16 | B7 | B6, sd, S0, sm); |
+} |
+ |
+void Assembler::vsqrtd(DRegister dd, DRegister dm, Condition cond) { |
+ EmitVFPddd(cond, B23 | B21 | B20 | B16 | B7 | B6, dd, D0, dm); |
+} |
+ |
+ |
+void Assembler::EmitVFPsd(Condition cond, int32_t opcode, |
+ SRegister sd, DRegister dm) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(sd != kNoSRegister); |
+ ASSERT(dm != kNoDRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B25 | B11 | B9 | opcode | |
+ ((static_cast<int32_t>(sd) & 1)*B22) | |
+ ((static_cast<int32_t>(sd) >> 1)*B12) | |
+ ((static_cast<int32_t>(dm) >> 4)*B5) | |
+ (static_cast<int32_t>(dm) & 0xf); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::EmitVFPds(Condition cond, int32_t opcode, |
+ DRegister dd, SRegister sm) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(dd != kNoDRegister); |
+ ASSERT(sm != kNoSRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B25 | B11 | B9 | opcode | |
+ ((static_cast<int32_t>(dd) >> 4)*B22) | |
+ ((static_cast<int32_t>(dd) & 0xf)*B12) | |
+ ((static_cast<int32_t>(sm) & 1)*B5) | |
+ (static_cast<int32_t>(sm) >> 1); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vcvtsd(SRegister sd, DRegister dm, Condition cond) { |
+ EmitVFPsd(cond, B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6, sd, dm); |
+} |
+ |
+ |
+void Assembler::vcvtds(DRegister dd, SRegister sm, Condition cond) { |
+ EmitVFPds(cond, B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6, dd, sm); |
+} |
+ |
+ |
+void Assembler::vcvtis(SRegister sd, SRegister sm, Condition cond) { |
+ EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6, sd, S0, sm); |
+} |
+ |
+ |
+void Assembler::vcvtid(SRegister sd, DRegister dm, Condition cond) { |
+ EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6, sd, dm); |
+} |
+ |
+ |
+void Assembler::vcvtsi(SRegister sd, SRegister sm, Condition cond) { |
+ EmitVFPsss(cond, B23 | B21 | B20 | B19 | B7 | B6, sd, S0, sm); |
+} |
+ |
+ |
+void Assembler::vcvtdi(DRegister dd, SRegister sm, Condition cond) { |
+ EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B7 | B6, dd, sm); |
+} |
+ |
+ |
+void Assembler::vcvtus(SRegister sd, SRegister sm, Condition cond) { |
+ EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B7 | B6, sd, S0, sm); |
+} |
+ |
+ |
+void Assembler::vcvtud(SRegister sd, DRegister dm, Condition cond) { |
+ EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6, sd, dm); |
+} |
+ |
+ |
+void Assembler::vcvtsu(SRegister sd, SRegister sm, Condition cond) { |
+ EmitVFPsss(cond, B23 | B21 | B20 | B19 | B6, sd, S0, sm); |
+} |
+ |
+ |
+void Assembler::vcvtdu(DRegister dd, SRegister sm, Condition cond) { |
+ EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B6, dd, sm); |
+} |
+ |
+ |
+void Assembler::vcmps(SRegister sd, SRegister sm, Condition cond) { |
+ EmitVFPsss(cond, B23 | B21 | B20 | B18 | B6, sd, S0, sm); |
+} |
+ |
+ |
+void Assembler::vcmpd(DRegister dd, DRegister dm, Condition cond) { |
+ EmitVFPddd(cond, B23 | B21 | B20 | B18 | B6, dd, D0, dm); |
+} |
+ |
+ |
+void Assembler::vcmpsz(SRegister sd, Condition cond) { |
+ EmitVFPsss(cond, B23 | B21 | B20 | B18 | B16 | B6, sd, S0, S0); |
+} |
+ |
+ |
+void Assembler::vcmpdz(DRegister dd, Condition cond) { |
+ EmitVFPddd(cond, B23 | B21 | B20 | B18 | B16 | B6, dd, D0, D0); |
+} |
+ |
+ |
+void Assembler::vmrs(Register rd, Condition cond) { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B27 | B26 | B25 | B23 | B22 | B21 | B20 | B16 | |
+ (static_cast<int32_t>(rd)*B12) | |
+ B11 | B9 | B4; |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vmstat(Condition cond) { |
+ vmrs(APSR, cond); |
+} |
+ |
+ |
+static inline int ShiftOfOperandSize(OperandSize size) { |
+ switch (size) { |
+ case kByte: |
+ case kUnsignedByte: |
+ return 0; |
+ case kHalfword: |
+ case kUnsignedHalfword: |
+ return 1; |
+ case kWord: |
+ case kUnsignedWord: |
+ return 2; |
+ case kWordPair: |
+ return 3; |
+ case kSWord: |
+ case kDWord: |
+ return 0; |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ |
+ UNREACHABLE(); |
+ return -1; |
+} |
+ |
+ |
+void Assembler::EmitSIMDqqq(int32_t opcode, OperandSize size, |
+ QRegister qd, QRegister qn, QRegister qm) { |
+ ASSERT(TargetCPUFeatures::neon_supported()); |
+ int sz = ShiftOfOperandSize(size); |
+ int32_t encoding = |
+ (static_cast<int32_t>(kSpecialCondition) << kConditionShift) | |
+ B25 | B6 | |
+ opcode | ((sz & 0x3) * B20) | |
+ ((static_cast<int32_t>(qd * 2) >> 4)*B22) | |
+ ((static_cast<int32_t>(qn * 2) & 0xf)*B16) | |
+ ((static_cast<int32_t>(qd * 2) & 0xf)*B12) | |
+ ((static_cast<int32_t>(qn * 2) >> 4)*B7) | |
+ ((static_cast<int32_t>(qm * 2) >> 4)*B5) | |
+ (static_cast<int32_t>(qm * 2) & 0xf); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::EmitSIMDddd(int32_t opcode, OperandSize size, |
+ DRegister dd, DRegister dn, DRegister dm) { |
+ ASSERT(TargetCPUFeatures::neon_supported()); |
+ int sz = ShiftOfOperandSize(size); |
+ int32_t encoding = |
+ (static_cast<int32_t>(kSpecialCondition) << kConditionShift) | |
+ B25 | |
+ opcode | ((sz & 0x3) * B20) | |
+ ((static_cast<int32_t>(dd) >> 4)*B22) | |
+ ((static_cast<int32_t>(dn) & 0xf)*B16) | |
+ ((static_cast<int32_t>(dd) & 0xf)*B12) | |
+ ((static_cast<int32_t>(dn) >> 4)*B7) | |
+ ((static_cast<int32_t>(dm) >> 4)*B5) | |
+ (static_cast<int32_t>(dm) & 0xf); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::vmovq(QRegister qd, QRegister qm) { |
+ EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qm, qm); |
+} |
+ |
+ |
+void Assembler::vaddqi(OperandSize sz, |
+ QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B11, sz, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vaddqs(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B11 | B10 | B8, kSWord, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vsubqi(OperandSize sz, |
+ QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B24 | B11, sz, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vsubqs(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B21 | B11 | B10 | B8, kSWord, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vmulqi(OperandSize sz, |
+ QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B11 | B8 | B4, sz, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vmulqs(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B24 | B11 | B10 | B8 | B4, kSWord, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vshlqi(OperandSize sz, |
+ QRegister qd, QRegister qm, QRegister qn) { |
+ EmitSIMDqqq(B25 | B10, sz, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vshlqu(OperandSize sz, |
+ QRegister qd, QRegister qm, QRegister qn) { |
+ EmitSIMDqqq(B25 | B24 | B10, sz, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::veorq(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B24 | B8 | B4, kByte, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vorrq(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vornq(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B21 | B20 | B8 | B4, kByte, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vandq(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B8 | B4, kByte, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vmvnq(QRegister qd, QRegister qm) { |
+ EmitSIMDqqq(B25 | B24 | B23 | B10 | B8 | B7, kWordPair, qd, Q0, qm); |
+} |
+ |
+ |
+void Assembler::vminqs(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B21 | B11 | B10 | B9 | B8, kSWord, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vmaxqs(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B11 | B10 | B9 | B8, kSWord, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vabsqs(QRegister qd, QRegister qm) { |
+ EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8, kSWord, |
+ qd, Q0, qm); |
+} |
+ |
+ |
+void Assembler::vnegqs(QRegister qd, QRegister qm) { |
+ EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8 | B7, kSWord, |
+ qd, Q0, qm); |
+} |
+ |
+ |
+void Assembler::vrecpeqs(QRegister qd, QRegister qm) { |
+ EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8, kSWord, |
+ qd, Q0, qm); |
+} |
+ |
+ |
+void Assembler::vrecpsqs(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vrsqrteqs(QRegister qd, QRegister qm) { |
+ EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8 | B7, |
+ kSWord, qd, Q0, qm); |
+} |
+ |
+ |
+void Assembler::vrsqrtsqs(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B21 | B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vdup(OperandSize sz, QRegister qd, DRegister dm, int idx) { |
+ ASSERT((sz != kDWord) && (sz != kSWord) && (sz != kWordPair)); |
+ int code = 0; |
+ |
+ switch (sz) { |
+ case kByte: |
+ case kUnsignedByte: { |
+ ASSERT((idx >= 0) && (idx < 8)); |
+ code = 1 | (idx << 1); |
+ break; |
+ } |
+ case kHalfword: |
+ case kUnsignedHalfword: { |
+ ASSERT((idx >= 0) && (idx < 4)); |
+ code = 2 | (idx << 2); |
+ break; |
+ } |
+ case kWord: |
+ case kUnsignedWord: { |
+ ASSERT((idx >= 0) && (idx < 2)); |
+ code = 4 | (idx << 3); |
+ break; |
+ } |
+ default: { |
+ break; |
+ } |
+ } |
+ |
+ EmitSIMDddd(B24 | B23 | B11 | B10 | B6, kWordPair, |
+ static_cast<DRegister>(qd * 2), |
+ static_cast<DRegister>(code & 0xf), |
+ dm); |
+} |
+ |
+ |
+void Assembler::vtbl(DRegister dd, DRegister dn, int len, DRegister dm) { |
+ ASSERT((len >= 1) && (len <= 4)); |
+ EmitSIMDddd(B24 | B23 | B11 | ((len - 1) * B8), kWordPair, dd, dn, dm); |
+} |
+ |
+ |
+void Assembler::vzipqw(QRegister qd, QRegister qm) { |
+ EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B8 | B7, kByte, qd, Q0, qm); |
+} |
+ |
+ |
+void Assembler::vceqqi(OperandSize sz, |
+ QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B24 | B11 | B4, sz, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vceqqs(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B11 | B10 | B9, kSWord, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vcgeqi(OperandSize sz, |
+ QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B9 | B8 | B4, sz, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vcugeqi(OperandSize sz, |
+ QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B24 | B9 | B8 | B4, sz, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vcgeqs(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B24 | B11 | B10 | B9, kSWord, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vcgtqi(OperandSize sz, |
+ QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B9 | B8, sz, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vcugtqi(OperandSize sz, |
+ QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B24 | B9 | B8, sz, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::vcgtqs(QRegister qd, QRegister qn, QRegister qm) { |
+ EmitSIMDqqq(B24 | B21 | B11 | B10 | B9, kSWord, qd, qn, qm); |
+} |
+ |
+ |
+void Assembler::bkpt(uint16_t imm16) { |
+ Emit(BkptEncoding(imm16)); |
+} |
+ |
+ |
+void Assembler::b(Label* label, Condition cond) { |
+ EmitBranch(cond, label, false); |
+} |
+ |
+ |
+void Assembler::bl(Label* label, Condition cond) { |
+ EmitBranch(cond, label, true); |
+} |
+ |
+ |
+void Assembler::bx(Register rm, Condition cond) { |
+ ASSERT(rm != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B24 | B21 | (0xfff << 8) | B4 | |
+ (static_cast<int32_t>(rm) << kRmShift); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::blx(Register rm, Condition cond) { |
+ ASSERT(rm != kNoRegister); |
+ ASSERT(cond != kNoCondition); |
+ int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
+ B24 | B21 | (0xfff << 8) | B5 | B4 | |
+ (static_cast<int32_t>(rm) << kRmShift); |
+ Emit(encoding); |
+} |
+ |
+ |
+void Assembler::MarkExceptionHandler(Label* label) { |
+ EmitType01(AL, 1, TST, 1, PC, R0, Operand(0)); |
+ Label l; |
+ b(&l); |
+ EmitBranch(AL, label, false); |
+ Bind(&l); |
+} |
+ |
+ |
+void Assembler::Drop(intptr_t stack_elements) { |
+ ASSERT(stack_elements >= 0); |
+ if (stack_elements > 0) { |
+ AddImmediate(SP, SP, stack_elements * kWordSize); |
+ } |
+} |
+ |
+ |
+intptr_t Assembler::FindImmediate(int32_t imm) { |
+ return object_pool_wrapper_.FindImmediate(imm); |
+} |
+ |
+ |
+// Uses a code sequence that can easily be decoded. |
+void Assembler::LoadWordFromPoolOffset(Register rd, |
+ int32_t offset, |
+ Register pp, |
+ Condition cond) { |
+ ASSERT((pp != PP) || constant_pool_allowed()); |
+ ASSERT(rd != pp); |
+ int32_t offset_mask = 0; |
+ if (Address::CanHoldLoadOffset(kWord, offset, &offset_mask)) { |
+ ldr(rd, Address(pp, offset), cond); |
+ } else { |
+ int32_t offset_hi = offset & ~offset_mask; // signed |
+ uint32_t offset_lo = offset & offset_mask; // unsigned |
+ // Inline a simplified version of AddImmediate(rd, pp, offset_hi). |
+ Operand o; |
+ if (Operand::CanHold(offset_hi, &o)) { |
+ add(rd, pp, o, cond); |
+ } else { |
+ LoadImmediate(rd, offset_hi, cond); |
+ add(rd, pp, Operand(rd), cond); |
+ } |
+ ldr(rd, Address(rd, offset_lo), cond); |
+ } |
+} |
+ |
+void Assembler::CheckCodePointer() { |
+#ifdef DEBUG |
+ Label cid_ok, instructions_ok; |
+ Push(R0); |
+ Push(IP); |
+ CompareClassId(CODE_REG, kCodeCid, R0); |
+ b(&cid_ok, EQ); |
+ bkpt(0); |
+ Bind(&cid_ok); |
+ |
+ const intptr_t offset = CodeSize() + Instr::kPCReadOffset + |
+ Instructions::HeaderSize() - kHeapObjectTag; |
+ mov(R0, Operand(PC)); |
+ AddImmediate(R0, R0, -offset); |
+ ldr(IP, FieldAddress(CODE_REG, Code::saved_instructions_offset())); |
+ cmp(R0, Operand(IP)); |
+ b(&instructions_ok, EQ); |
+ bkpt(1); |
+ Bind(&instructions_ok); |
+ Pop(IP); |
+ Pop(R0); |
+#endif |
+} |
+ |
+ |
+void Assembler::RestoreCodePointer() { |
+ ldr(CODE_REG, Address(FP, kPcMarkerSlotFromFp * kWordSize)); |
+ CheckCodePointer(); |
+} |
+ |
+ |
+void Assembler::LoadPoolPointer(Register reg) { |
+ // Load new pool pointer. |
+ CheckCodePointer(); |
+ ldr(reg, FieldAddress(CODE_REG, Code::object_pool_offset())); |
+ set_constant_pool_allowed(reg == PP); |
+} |
+ |
+ |
+void Assembler::LoadIsolate(Register rd) { |
+ ldr(rd, Address(THR, Thread::isolate_offset())); |
+} |
+ |
+ |
+bool Assembler::CanLoadFromObjectPool(const Object& object) const { |
+ ASSERT(!Thread::CanLoadFromThread(object)); |
+ if (!constant_pool_allowed()) { |
+ return false; |
+ } |
+ |
+ ASSERT(object.IsNotTemporaryScopedHandle()); |
+ ASSERT(object.IsOld()); |
+ return true; |
+} |
+ |
+ |
+void Assembler::LoadObjectHelper(Register rd, |
+ const Object& object, |
+ Condition cond, |
+ bool is_unique, |
+ Register pp) { |
+ // Load common VM constants from the thread. This works also in places where |
+ // no constant pool is set up (e.g. intrinsic code). |
+ if (Thread::CanLoadFromThread(object)) { |
+ // Load common VM constants from the thread. This works also in places where |
+ // no constant pool is set up (e.g. intrinsic code). |
+ ldr(rd, Address(THR, Thread::OffsetFromThread(object)), cond); |
+ } else if (object.IsSmi()) { |
+ // Relocation doesn't apply to Smis. |
+ LoadImmediate(rd, reinterpret_cast<int32_t>(object.raw()), cond); |
+ } else if (CanLoadFromObjectPool(object)) { |
+ // Make sure that class CallPattern is able to decode this load from the |
+ // object pool. |
+ const int32_t offset = ObjectPool::element_offset( |
+ is_unique ? object_pool_wrapper_.AddObject(object) |
+ : object_pool_wrapper_.FindObject(object)); |
+ LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, pp, cond); |
+ } else { |
+ ASSERT(FLAG_allow_absolute_addresses); |
+ ASSERT(object.IsOld()); |
+ // Make sure that class CallPattern is able to decode this load immediate. |
+ const int32_t object_raw = reinterpret_cast<int32_t>(object.raw()); |
+ LoadImmediate(rd, object_raw, cond); |
+ } |
+} |
+ |
+ |
+void Assembler::LoadObject(Register rd, const Object& object, Condition cond) { |
+ LoadObjectHelper(rd, object, cond, /* is_unique = */ false, PP); |
+} |
+ |
+ |
+void Assembler::LoadUniqueObject(Register rd, |
+ const Object& object, |
+ Condition cond) { |
+ LoadObjectHelper(rd, object, cond, /* is_unique = */ true, PP); |
+} |
+ |
+ |
+void Assembler::LoadFunctionFromCalleePool(Register dst, |
+ const Function& function, |
+ Register new_pp) { |
+ const int32_t offset = |
+ ObjectPool::element_offset(object_pool_wrapper_.FindObject(function)); |
+ LoadWordFromPoolOffset(dst, offset - kHeapObjectTag, new_pp, AL); |
+} |
+ |
+ |
+void Assembler::LoadNativeEntry(Register rd, |
+ const ExternalLabel* label, |
+ Patchability patchable, |
+ Condition cond) { |
+ const int32_t offset = ObjectPool::element_offset( |
+ object_pool_wrapper_.FindNativeEntry(label, patchable)); |
+ LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, PP, cond); |
+} |
+ |
+ |
+void Assembler::PushObject(const Object& object) { |
+ LoadObject(IP, object); |
+ Push(IP); |
+} |
+ |
+ |
+void Assembler::CompareObject(Register rn, const Object& object) { |
+ ASSERT(rn != IP); |
+ if (object.IsSmi()) { |
+ CompareImmediate(rn, reinterpret_cast<int32_t>(object.raw())); |
+ } else { |
+ LoadObject(IP, object); |
+ cmp(rn, Operand(IP)); |
+ } |
+} |
+ |
+ |
+// Preserves object and value registers. |
+void Assembler::StoreIntoObjectFilterNoSmi(Register object, |
+ Register value, |
+ Label* no_update) { |
+ COMPILE_ASSERT((kNewObjectAlignmentOffset == kWordSize) && |
+ (kOldObjectAlignmentOffset == 0)); |
+ |
+ // Write-barrier triggers if the value is in the new space (has bit set) and |
+ // the object is in the old space (has bit cleared). |
+ // To check that, we compute value & ~object and skip the write barrier |
+ // if the bit is not set. We can't destroy the object. |
+ bic(IP, value, Operand(object)); |
+ tst(IP, Operand(kNewObjectAlignmentOffset)); |
+ b(no_update, EQ); |
+} |
+ |
+ |
+// Preserves object and value registers. |
+void Assembler::StoreIntoObjectFilter(Register object, |
+ Register value, |
+ Label* no_update) { |
+ // For the value we are only interested in the new/old bit and the tag bit. |
+ // And the new bit with the tag bit. The resulting bit will be 0 for a Smi. |
+ and_(IP, value, Operand(value, LSL, kObjectAlignmentLog2 - 1)); |
+ // And the result with the negated space bit of the object. |
+ bic(IP, IP, Operand(object)); |
+ tst(IP, Operand(kNewObjectAlignmentOffset)); |
+ b(no_update, EQ); |
+} |
+ |
+ |
+Operand Assembler::GetVerifiedMemoryShadow() { |
+ Operand offset; |
+ if (!Operand::CanHold(VerifiedMemory::offset(), &offset)) { |
+ FATAL1("Offset 0x%" Px " not representable", VerifiedMemory::offset()); |
+ } |
+ return offset; |
+} |
+ |
+ |
+void Assembler::WriteShadowedField(Register base, |
+ intptr_t offset, |
+ Register value, |
+ Condition cond) { |
+ if (VerifiedMemory::enabled()) { |
+ ASSERT(base != value); |
+ Operand shadow(GetVerifiedMemoryShadow()); |
+ add(base, base, shadow, cond); |
+ str(value, Address(base, offset), cond); |
+ sub(base, base, shadow, cond); |
+ } |
+ str(value, Address(base, offset), cond); |
+} |
+ |
+ |
+void Assembler::WriteShadowedFieldPair(Register base, |
+ intptr_t offset, |
+ Register value_even, |
+ Register value_odd, |
+ Condition cond) { |
+ ASSERT(value_odd == value_even + 1); |
+ if (VerifiedMemory::enabled()) { |
+ ASSERT(base != value_even); |
+ ASSERT(base != value_odd); |
+ Operand shadow(GetVerifiedMemoryShadow()); |
+ add(base, base, shadow, cond); |
+ strd(value_even, base, offset, cond); |
+ sub(base, base, shadow, cond); |
+ } |
+ strd(value_even, base, offset, cond); |
+} |
+ |
+ |
+Register UseRegister(Register reg, RegList* used) { |
+ ASSERT(reg != SP); |
+ ASSERT(reg != PC); |
+ ASSERT((*used & (1 << reg)) == 0); |
+ *used |= (1 << reg); |
+ return reg; |
+} |
+ |
+ |
+Register AllocateRegister(RegList* used) { |
+ const RegList free = ~*used; |
+ return (free == 0) ? |
+ kNoRegister : |
+ UseRegister(static_cast<Register>(Utils::CountTrailingZeros(free)), used); |
+} |
+ |
+ |
+void Assembler::VerifiedWrite(const Address& address, |
+ Register new_value, |
+ FieldContent old_content) { |
+#if defined(DEBUG) |
+ ASSERT(address.mode() == Address::Offset || |
+ address.mode() == Address::NegOffset); |
+ // Allocate temporary registers (and check for register collisions). |
+ RegList used = 0; |
+ UseRegister(new_value, &used); |
+ Register base = UseRegister(address.rn(), &used); |
+ if (address.rm() != kNoRegister) { |
+ UseRegister(address.rm(), &used); |
+ } |
+ Register old_value = AllocateRegister(&used); |
+ Register temp = AllocateRegister(&used); |
+ PushList(used); |
+ ldr(old_value, address); |
+ // First check that 'old_value' contains 'old_content'. |
+ // Smi test. |
+ tst(old_value, Operand(kHeapObjectTag)); |
+ Label ok; |
+ switch (old_content) { |
+ case kOnlySmi: |
+ b(&ok, EQ); // Smi is OK. |
+ Stop("Expected smi."); |
+ break; |
+ case kHeapObjectOrSmi: |
+ b(&ok, EQ); // Smi is OK. |
+ // Non-smi case: Verify object pointer is word-aligned when untagged. |
+ COMPILE_ASSERT(kHeapObjectTag == 1); |
+ tst(old_value, Operand((kWordSize - 1) - kHeapObjectTag)); |
+ b(&ok, EQ); |
+ Stop("Expected heap object or Smi"); |
+ break; |
+ case kEmptyOrSmiOrNull: |
+ b(&ok, EQ); // Smi is OK. |
+ // Non-smi case: Check for the special zap word or null. |
+ // Note: Cannot use CompareImmediate, since IP may be in use. |
+ LoadImmediate(temp, Heap::kZap32Bits); |
+ cmp(old_value, Operand(temp)); |
+ b(&ok, EQ); |
+ LoadObject(temp, Object::null_object()); |
+ cmp(old_value, Operand(temp)); |
+ b(&ok, EQ); |
+ Stop("Expected zapped, Smi or null"); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ Bind(&ok); |
+ if (VerifiedMemory::enabled()) { |
+ Operand shadow_offset(GetVerifiedMemoryShadow()); |
+ // Adjust the address to shadow. |
+ add(base, base, shadow_offset); |
+ ldr(temp, address); |
+ cmp(old_value, Operand(temp)); |
+ Label match; |
+ b(&match, EQ); |
+ Stop("Write barrier verification failed"); |
+ Bind(&match); |
+ // Write new value in shadow. |
+ str(new_value, address); |
+ // Restore original address. |
+ sub(base, base, shadow_offset); |
+ } |
+ str(new_value, address); |
+ PopList(used); |
+#else |
+ str(new_value, address); |
+#endif // DEBUG |
+} |
+ |
+ |
+void Assembler::StoreIntoObject(Register object, |
+ const Address& dest, |
+ Register value, |
+ bool can_value_be_smi) { |
+ ASSERT(object != value); |
+ VerifiedWrite(dest, value, kHeapObjectOrSmi); |
+ Label done; |
+ if (can_value_be_smi) { |
+ StoreIntoObjectFilter(object, value, &done); |
+ } else { |
+ StoreIntoObjectFilterNoSmi(object, value, &done); |
+ } |
+ // A store buffer update is required. |
+ RegList regs = (1 << CODE_REG) | (1 << LR); |
+ if (value != R0) { |
+ regs |= (1 << R0); // Preserve R0. |
+ } |
+ PushList(regs); |
+ if (object != R0) { |
+ mov(R0, Operand(object)); |
+ } |
+ ldr(CODE_REG, Address(THR, Thread::update_store_buffer_code_offset())); |
+ ldr(LR, Address(THR, Thread::update_store_buffer_entry_point_offset())); |
+ blx(LR); |
+ PopList(regs); |
+ Bind(&done); |
+} |
+ |
+ |
+void Assembler::StoreIntoObjectOffset(Register object, |
+ int32_t offset, |
+ Register value, |
+ bool can_value_be_smi) { |
+ int32_t ignored = 0; |
+ if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) { |
+ StoreIntoObject( |
+ object, FieldAddress(object, offset), value, can_value_be_smi); |
+ } else { |
+ AddImmediate(IP, object, offset - kHeapObjectTag); |
+ StoreIntoObject(object, Address(IP), value, can_value_be_smi); |
+ } |
+} |
+ |
+ |
+void Assembler::StoreIntoObjectNoBarrier(Register object, |
+ const Address& dest, |
+ Register value, |
+ FieldContent old_content) { |
+ VerifiedWrite(dest, value, old_content); |
+#if defined(DEBUG) |
+ Label done; |
+ StoreIntoObjectFilter(object, value, &done); |
+ Stop("Store buffer update is required"); |
+ Bind(&done); |
+#endif // defined(DEBUG) |
+ // No store buffer update. |
+} |
+ |
+ |
+void Assembler::StoreIntoObjectNoBarrierOffset(Register object, |
+ int32_t offset, |
+ Register value, |
+ FieldContent old_content) { |
+ int32_t ignored = 0; |
+ if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) { |
+ StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value, |
+ old_content); |
+ } else { |
+ AddImmediate(IP, object, offset - kHeapObjectTag); |
+ StoreIntoObjectNoBarrier(object, Address(IP), value, old_content); |
+ } |
+} |
+ |
+ |
+void Assembler::StoreIntoObjectNoBarrier(Register object, |
+ const Address& dest, |
+ const Object& value, |
+ FieldContent old_content) { |
+ ASSERT(value.IsSmi() || value.InVMHeap() || |
+ (value.IsOld() && value.IsNotTemporaryScopedHandle())); |
+ // No store buffer update. |
+ LoadObject(IP, value); |
+ VerifiedWrite(dest, IP, old_content); |
+} |
+ |
+ |
+void Assembler::StoreIntoObjectNoBarrierOffset(Register object, |
+ int32_t offset, |
+ const Object& value, |
+ FieldContent old_content) { |
+ int32_t ignored = 0; |
+ if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) { |
+ StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value, |
+ old_content); |
+ } else { |
+ AddImmediate(IP, object, offset - kHeapObjectTag); |
+ StoreIntoObjectNoBarrier(object, Address(IP), value, old_content); |
+ } |
+} |
+ |
+ |
+void Assembler::InitializeFieldsNoBarrier(Register object, |
+ Register begin, |
+ Register end, |
+ Register value_even, |
+ Register value_odd) { |
+ ASSERT(value_odd == value_even + 1); |
+ Label init_loop; |
+ Bind(&init_loop); |
+ AddImmediate(begin, 2 * kWordSize); |
+ cmp(begin, Operand(end)); |
+ WriteShadowedFieldPair(begin, -2 * kWordSize, value_even, value_odd, LS); |
+ b(&init_loop, CC); |
+ WriteShadowedField(begin, -2 * kWordSize, value_even, HI); |
+#if defined(DEBUG) |
+ Label done; |
+ StoreIntoObjectFilter(object, value_even, &done); |
+ StoreIntoObjectFilter(object, value_odd, &done); |
+ Stop("Store buffer update is required"); |
+ Bind(&done); |
+#endif // defined(DEBUG) |
+ // No store buffer update. |
+} |
+ |
+ |
+void Assembler::InitializeFieldsNoBarrierUnrolled(Register object, |
+ Register base, |
+ intptr_t begin_offset, |
+ intptr_t end_offset, |
+ Register value_even, |
+ Register value_odd) { |
+ ASSERT(value_odd == value_even + 1); |
+ intptr_t current_offset = begin_offset; |
+ while (current_offset + kWordSize < end_offset) { |
+ WriteShadowedFieldPair(base, current_offset, value_even, value_odd); |
+ current_offset += 2*kWordSize; |
+ } |
+ while (current_offset < end_offset) { |
+ WriteShadowedField(base, current_offset, value_even); |
+ current_offset += kWordSize; |
+ } |
+#if defined(DEBUG) |
+ Label done; |
+ StoreIntoObjectFilter(object, value_even, &done); |
+ StoreIntoObjectFilter(object, value_odd, &done); |
+ Stop("Store buffer update is required"); |
+ Bind(&done); |
+#endif // defined(DEBUG) |
+ // No store buffer update. |
+} |
+ |
+ |
+void Assembler::StoreIntoSmiField(const Address& dest, Register value) { |
+#if defined(DEBUG) |
+ Label done; |
+ tst(value, Operand(kHeapObjectTag)); |
+ b(&done, EQ); |
+ Stop("New value must be Smi."); |
+ Bind(&done); |
+#endif // defined(DEBUG) |
+ VerifiedWrite(dest, value, kOnlySmi); |
+} |
+ |
+ |
+void Assembler::LoadClassId(Register result, Register object, Condition cond) { |
+ ASSERT(RawObject::kClassIdTagPos == 16); |
+ ASSERT(RawObject::kClassIdTagSize == 16); |
+ const intptr_t class_id_offset = Object::tags_offset() + |
+ RawObject::kClassIdTagPos / kBitsPerByte; |
+ ldrh(result, FieldAddress(object, class_id_offset), cond); |
+} |
+ |
+ |
+void Assembler::LoadClassById(Register result, Register class_id) { |
+ ASSERT(result != class_id); |
+ LoadIsolate(result); |
+ const intptr_t offset = |
+ Isolate::class_table_offset() + ClassTable::table_offset(); |
+ LoadFromOffset(kWord, result, result, offset); |
+ ldr(result, Address(result, class_id, LSL, 2)); |
+} |
+ |
+ |
+void Assembler::LoadClass(Register result, Register object, Register scratch) { |
+ ASSERT(scratch != result); |
+ LoadClassId(scratch, object); |
+ LoadClassById(result, scratch); |
+} |
+ |
+ |
+void Assembler::CompareClassId(Register object, |
+ intptr_t class_id, |
+ Register scratch) { |
+ LoadClassId(scratch, object); |
+ CompareImmediate(scratch, class_id); |
+} |
+ |
+ |
+void Assembler::LoadClassIdMayBeSmi(Register result, Register object) { |
+ tst(object, Operand(kSmiTagMask)); |
+ LoadClassId(result, object, NE); |
+ LoadImmediate(result, kSmiCid, EQ); |
+} |
+ |
+ |
+void Assembler::LoadTaggedClassIdMayBeSmi(Register result, Register object) { |
+ LoadClassIdMayBeSmi(result, object); |
+ SmiTag(result); |
+} |
+ |
+ |
+void Assembler::ComputeRange(Register result, |
+ Register value, |
+ Register scratch, |
+ Label* not_mint) { |
+ const Register hi = TMP; |
+ const Register lo = scratch; |
+ |
+ Label done; |
+ mov(result, Operand(value, LSR, kBitsPerWord - 1)); |
+ tst(value, Operand(kSmiTagMask)); |
+ b(&done, EQ); |
+ CompareClassId(value, kMintCid, result); |
+ b(not_mint, NE); |
+ ldr(hi, FieldAddress(value, Mint::value_offset() + kWordSize)); |
+ ldr(lo, FieldAddress(value, Mint::value_offset())); |
+ rsb(result, hi, Operand(ICData::kInt32RangeBit)); |
+ cmp(hi, Operand(lo, ASR, kBitsPerWord - 1)); |
+ b(&done, EQ); |
+ LoadImmediate(result, ICData::kUint32RangeBit); // Uint32 |
+ tst(hi, Operand(hi)); |
+ LoadImmediate(result, ICData::kInt64RangeBit, NE); // Int64 |
+ Bind(&done); |
+} |
+ |
+ |
+void Assembler::UpdateRangeFeedback(Register value, |
+ intptr_t index, |
+ Register ic_data, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* miss) { |
+ ASSERT(ICData::IsValidRangeFeedbackIndex(index)); |
+ ComputeRange(scratch1, value, scratch2, miss); |
+ ldr(scratch2, FieldAddress(ic_data, ICData::state_bits_offset())); |
+ orr(scratch2, |
+ scratch2, |
+ Operand(scratch1, LSL, ICData::RangeFeedbackShift(index))); |
+ str(scratch2, FieldAddress(ic_data, ICData::state_bits_offset())); |
+} |
+ |
+ |
+static bool CanEncodeBranchOffset(int32_t offset) { |
+ ASSERT(Utils::IsAligned(offset, 4)); |
+ return Utils::IsInt(Utils::CountOneBits(kBranchOffsetMask), offset); |
+} |
+ |
+ |
+int32_t Assembler::EncodeBranchOffset(int32_t offset, int32_t inst) { |
+ // The offset is off by 8 due to the way the ARM CPUs read PC. |
+ offset -= Instr::kPCReadOffset; |
+ |
+ if (!CanEncodeBranchOffset(offset)) { |
+ ASSERT(!use_far_branches()); |
+ Thread::Current()->long_jump_base()->Jump( |
+ 1, Object::branch_offset_error()); |
+ } |
+ |
+ // Properly preserve only the bits supported in the instruction. |
+ offset >>= 2; |
+ offset &= kBranchOffsetMask; |
+ return (inst & ~kBranchOffsetMask) | offset; |
+} |
+ |
+ |
+int Assembler::DecodeBranchOffset(int32_t inst) { |
+ // Sign-extend, left-shift by 2, then add 8. |
+ return ((((inst & kBranchOffsetMask) << 8) >> 6) + Instr::kPCReadOffset); |
+} |
+ |
+ |
+static int32_t DecodeARMv7LoadImmediate(int32_t movt, int32_t movw) { |
+ int32_t offset = 0; |
+ offset |= (movt & 0xf0000) << 12; |
+ offset |= (movt & 0xfff) << 16; |
+ offset |= (movw & 0xf0000) >> 4; |
+ offset |= movw & 0xfff; |
+ return offset; |
+} |
+ |
+ |
+static int32_t DecodeARMv6LoadImmediate(int32_t mov, int32_t or1, |
+ int32_t or2, int32_t or3) { |
+ int32_t offset = 0; |
+ offset |= (mov & 0xff) << 24; |
+ offset |= (or1 & 0xff) << 16; |
+ offset |= (or2 & 0xff) << 8; |
+ offset |= (or3 & 0xff); |
+ return offset; |
+} |
+ |
+ |
+class PatchFarBranch : public AssemblerFixup { |
+ public: |
+ PatchFarBranch() {} |
+ |
+ void Process(const MemoryRegion& region, intptr_t position) { |
+ const ARMVersion version = TargetCPUFeatures::arm_version(); |
+ if ((version == ARMv5TE) || (version == ARMv6)) { |
+ ProcessARMv6(region, position); |
+ } else { |
+ ASSERT(version == ARMv7); |
+ ProcessARMv7(region, position); |
+ } |
+ } |
+ |
+ private: |
+ void ProcessARMv6(const MemoryRegion& region, intptr_t position) { |
+ const int32_t mov = region.Load<int32_t>(position); |
+ const int32_t or1 = region.Load<int32_t>(position + 1*Instr::kInstrSize); |
+ const int32_t or2 = region.Load<int32_t>(position + 2*Instr::kInstrSize); |
+ const int32_t or3 = region.Load<int32_t>(position + 3*Instr::kInstrSize); |
+ const int32_t bx = region.Load<int32_t>(position + 4*Instr::kInstrSize); |
+ |
+ if (((mov & 0xffffff00) == 0xe3a0c400) && // mov IP, (byte3 rot 4) |
+ ((or1 & 0xffffff00) == 0xe38cc800) && // orr IP, IP, (byte2 rot 8) |
+ ((or2 & 0xffffff00) == 0xe38ccc00) && // orr IP, IP, (byte1 rot 12) |
+ ((or3 & 0xffffff00) == 0xe38cc000)) { // orr IP, IP, byte0 |
+ const int32_t offset = DecodeARMv6LoadImmediate(mov, or1, or2, or3); |
+ const int32_t dest = region.start() + offset; |
+ const int32_t dest0 = (dest & 0x000000ff); |
+ const int32_t dest1 = (dest & 0x0000ff00) >> 8; |
+ const int32_t dest2 = (dest & 0x00ff0000) >> 16; |
+ const int32_t dest3 = (dest & 0xff000000) >> 24; |
+ const int32_t patched_mov = 0xe3a0c400 | dest3; |
+ const int32_t patched_or1 = 0xe38cc800 | dest2; |
+ const int32_t patched_or2 = 0xe38ccc00 | dest1; |
+ const int32_t patched_or3 = 0xe38cc000 | dest0; |
+ |
+ region.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_mov); |
+ region.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_or1); |
+ region.Store<int32_t>(position + 2 * Instr::kInstrSize, patched_or2); |
+ region.Store<int32_t>(position + 3 * Instr::kInstrSize, patched_or3); |
+ return; |
+ } |
+ |
+ // If the offset loading instructions aren't there, we must have replaced |
+ // the far branch with a near one, and so these instructions |
+ // should be NOPs. |
+ ASSERT((or1 == Instr::kNopInstruction) && |
+ (or2 == Instr::kNopInstruction) && |
+ (or3 == Instr::kNopInstruction) && |
+ (bx == Instr::kNopInstruction)); |
+ } |
+ |
+ |
+ void ProcessARMv7(const MemoryRegion& region, intptr_t position) { |
+ const int32_t movw = region.Load<int32_t>(position); |
+ const int32_t movt = region.Load<int32_t>(position + Instr::kInstrSize); |
+ const int32_t bx = region.Load<int32_t>(position + 2 * Instr::kInstrSize); |
+ |
+ if (((movt & 0xfff0f000) == 0xe340c000) && // movt IP, high |
+ ((movw & 0xfff0f000) == 0xe300c000)) { // movw IP, low |
+ const int32_t offset = DecodeARMv7LoadImmediate(movt, movw); |
+ const int32_t dest = region.start() + offset; |
+ const uint16_t dest_high = Utils::High16Bits(dest); |
+ const uint16_t dest_low = Utils::Low16Bits(dest); |
+ const int32_t patched_movt = |
+ 0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff); |
+ const int32_t patched_movw = |
+ 0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff); |
+ |
+ region.Store<int32_t>(position, patched_movw); |
+ region.Store<int32_t>(position + Instr::kInstrSize, patched_movt); |
+ return; |
+ } |
+ |
+ // If the offset loading instructions aren't there, we must have replaced |
+ // the far branch with a near one, and so these instructions |
+ // should be NOPs. |
+ ASSERT((movt == Instr::kNopInstruction) && |
+ (bx == Instr::kNopInstruction)); |
+ } |
+ |
+ virtual bool IsPointerOffset() const { return false; } |
+}; |
+ |
+ |
+void Assembler::EmitFarBranch(Condition cond, int32_t offset, bool link) { |
+ buffer_.EmitFixup(new PatchFarBranch()); |
+ LoadPatchableImmediate(IP, offset); |
+ if (link) { |
+ blx(IP, cond); |
+ } else { |
+ bx(IP, cond); |
+ } |
+} |
+ |
+ |
+void Assembler::EmitBranch(Condition cond, Label* label, bool link) { |
+ if (label->IsBound()) { |
+ const int32_t dest = label->Position() - buffer_.Size(); |
+ if (use_far_branches() && !CanEncodeBranchOffset(dest)) { |
+ EmitFarBranch(cond, label->Position(), link); |
+ } else { |
+ EmitType5(cond, dest, link); |
+ } |
+ } else { |
+ const intptr_t position = buffer_.Size(); |
+ if (use_far_branches()) { |
+ const int32_t dest = label->position_; |
+ EmitFarBranch(cond, dest, link); |
+ } else { |
+ // Use the offset field of the branch instruction for linking the sites. |
+ EmitType5(cond, label->position_, link); |
+ } |
+ label->LinkTo(position); |
+ } |
+} |
+ |
+ |
+void Assembler::BindARMv6(Label* label) { |
+ ASSERT(!label->IsBound()); |
+ intptr_t bound_pc = buffer_.Size(); |
+ while (label->IsLinked()) { |
+ const int32_t position = label->Position(); |
+ int32_t dest = bound_pc - position; |
+ if (use_far_branches() && !CanEncodeBranchOffset(dest)) { |
+ // Far branches are enabled and we can't encode the branch offset. |
+ |
+ // Grab instructions that load the offset. |
+ const int32_t mov = |
+ buffer_.Load<int32_t>(position); |
+ const int32_t or1 = |
+ buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize); |
+ const int32_t or2 = |
+ buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize); |
+ const int32_t or3 = |
+ buffer_.Load<int32_t>(position + 3 * Instr::kInstrSize); |
+ |
+ // Change from relative to the branch to relative to the assembler |
+ // buffer. |
+ dest = buffer_.Size(); |
+ const int32_t dest0 = (dest & 0x000000ff); |
+ const int32_t dest1 = (dest & 0x0000ff00) >> 8; |
+ const int32_t dest2 = (dest & 0x00ff0000) >> 16; |
+ const int32_t dest3 = (dest & 0xff000000) >> 24; |
+ const int32_t patched_mov = 0xe3a0c400 | dest3; |
+ const int32_t patched_or1 = 0xe38cc800 | dest2; |
+ const int32_t patched_or2 = 0xe38ccc00 | dest1; |
+ const int32_t patched_or3 = 0xe38cc000 | dest0; |
+ |
+ // Rewrite the instructions. |
+ buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_mov); |
+ buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_or1); |
+ buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize, patched_or2); |
+ buffer_.Store<int32_t>(position + 3 * Instr::kInstrSize, patched_or3); |
+ label->position_ = DecodeARMv6LoadImmediate(mov, or1, or2, or3); |
+ } else if (use_far_branches() && CanEncodeBranchOffset(dest)) { |
+ // Grab instructions that load the offset, and the branch. |
+ const int32_t mov = |
+ buffer_.Load<int32_t>(position); |
+ const int32_t or1 = |
+ buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize); |
+ const int32_t or2 = |
+ buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize); |
+ const int32_t or3 = |
+ buffer_.Load<int32_t>(position + 3 * Instr::kInstrSize); |
+ const int32_t branch = |
+ buffer_.Load<int32_t>(position + 4 * Instr::kInstrSize); |
+ |
+ // Grab the branch condition, and encode the link bit. |
+ const int32_t cond = branch & 0xf0000000; |
+ const int32_t link = (branch & 0x20) << 19; |
+ |
+ // Encode the branch and the offset. |
+ const int32_t new_branch = cond | link | 0x0a000000; |
+ const int32_t encoded = EncodeBranchOffset(dest, new_branch); |
+ |
+ // Write the encoded branch instruction followed by two nops. |
+ buffer_.Store<int32_t>(position, encoded); |
+ buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, |
+ Instr::kNopInstruction); |
+ buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize, |
+ Instr::kNopInstruction); |
+ buffer_.Store<int32_t>(position + 3 * Instr::kInstrSize, |
+ Instr::kNopInstruction); |
+ buffer_.Store<int32_t>(position + 4 * Instr::kInstrSize, |
+ Instr::kNopInstruction); |
+ |
+ label->position_ = DecodeARMv6LoadImmediate(mov, or1, or2, or3); |
+ } else { |
+ int32_t next = buffer_.Load<int32_t>(position); |
+ int32_t encoded = Assembler::EncodeBranchOffset(dest, next); |
+ buffer_.Store<int32_t>(position, encoded); |
+ label->position_ = Assembler::DecodeBranchOffset(next); |
+ } |
+ } |
+ label->BindTo(bound_pc); |
+} |
+ |
+ |
+void Assembler::BindARMv7(Label* label) { |
+ ASSERT(!label->IsBound()); |
+ intptr_t bound_pc = buffer_.Size(); |
+ while (label->IsLinked()) { |
+ const int32_t position = label->Position(); |
+ int32_t dest = bound_pc - position; |
+ if (use_far_branches() && !CanEncodeBranchOffset(dest)) { |
+ // Far branches are enabled and we can't encode the branch offset. |
+ |
+ // Grab instructions that load the offset. |
+ const int32_t movw = |
+ buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize); |
+ const int32_t movt = |
+ buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize); |
+ |
+ // Change from relative to the branch to relative to the assembler |
+ // buffer. |
+ dest = buffer_.Size(); |
+ const uint16_t dest_high = Utils::High16Bits(dest); |
+ const uint16_t dest_low = Utils::Low16Bits(dest); |
+ const int32_t patched_movt = |
+ 0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff); |
+ const int32_t patched_movw = |
+ 0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff); |
+ |
+ // Rewrite the instructions. |
+ buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_movw); |
+ buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_movt); |
+ label->position_ = DecodeARMv7LoadImmediate(movt, movw); |
+ } else if (use_far_branches() && CanEncodeBranchOffset(dest)) { |
+ // Far branches are enabled, but we can encode the branch offset. |
+ |
+ // Grab instructions that load the offset, and the branch. |
+ const int32_t movw = |
+ buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize); |
+ const int32_t movt = |
+ buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize); |
+ const int32_t branch = |
+ buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize); |
+ |
+ // Grab the branch condition, and encode the link bit. |
+ const int32_t cond = branch & 0xf0000000; |
+ const int32_t link = (branch & 0x20) << 19; |
+ |
+ // Encode the branch and the offset. |
+ const int32_t new_branch = cond | link | 0x0a000000; |
+ const int32_t encoded = EncodeBranchOffset(dest, new_branch); |
+ |
+ // Write the encoded branch instruction followed by two nops. |
+ buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, |
+ encoded); |
+ buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, |
+ Instr::kNopInstruction); |
+ buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize, |
+ Instr::kNopInstruction); |
+ |
+ label->position_ = DecodeARMv7LoadImmediate(movt, movw); |
+ } else { |
+ int32_t next = buffer_.Load<int32_t>(position); |
+ int32_t encoded = Assembler::EncodeBranchOffset(dest, next); |
+ buffer_.Store<int32_t>(position, encoded); |
+ label->position_ = Assembler::DecodeBranchOffset(next); |
+ } |
+ } |
+ label->BindTo(bound_pc); |
+} |
+ |
+ |
+void Assembler::Bind(Label* label) { |
+ const ARMVersion version = TargetCPUFeatures::arm_version(); |
+ if ((version == ARMv5TE) || (version == ARMv6)) { |
+ BindARMv6(label); |
+ } else { |
+ ASSERT(version == ARMv7); |
+ BindARMv7(label); |
+ } |
+} |
+ |
+ |
+OperandSize Address::OperandSizeFor(intptr_t cid) { |
+ switch (cid) { |
+ case kArrayCid: |
+ case kImmutableArrayCid: |
+ return kWord; |
+ case kOneByteStringCid: |
+ case kExternalOneByteStringCid: |
+ return kByte; |
+ case kTwoByteStringCid: |
+ case kExternalTwoByteStringCid: |
+ return kHalfword; |
+ case kTypedDataInt8ArrayCid: |
+ return kByte; |
+ case kTypedDataUint8ArrayCid: |
+ case kTypedDataUint8ClampedArrayCid: |
+ case kExternalTypedDataUint8ArrayCid: |
+ case kExternalTypedDataUint8ClampedArrayCid: |
+ return kUnsignedByte; |
+ case kTypedDataInt16ArrayCid: |
+ return kHalfword; |
+ case kTypedDataUint16ArrayCid: |
+ return kUnsignedHalfword; |
+ case kTypedDataInt32ArrayCid: |
+ return kWord; |
+ case kTypedDataUint32ArrayCid: |
+ return kUnsignedWord; |
+ case kTypedDataInt64ArrayCid: |
+ case kTypedDataUint64ArrayCid: |
+ UNREACHABLE(); |
+ return kByte; |
+ case kTypedDataFloat32ArrayCid: |
+ return kSWord; |
+ case kTypedDataFloat64ArrayCid: |
+ return kDWord; |
+ case kTypedDataFloat32x4ArrayCid: |
+ case kTypedDataInt32x4ArrayCid: |
+ case kTypedDataFloat64x2ArrayCid: |
+ return kRegList; |
+ case kTypedDataInt8ArrayViewCid: |
+ UNREACHABLE(); |
+ return kByte; |
+ default: |
+ UNREACHABLE(); |
+ return kByte; |
+ } |
+} |
+ |
+ |
+bool Address::CanHoldLoadOffset(OperandSize size, |
+ int32_t offset, |
+ int32_t* offset_mask) { |
+ switch (size) { |
+ case kByte: |
+ case kHalfword: |
+ case kUnsignedHalfword: |
+ case kWordPair: { |
+ *offset_mask = 0xff; |
+ return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3. |
+ } |
+ case kUnsignedByte: |
+ case kWord: |
+ case kUnsignedWord: { |
+ *offset_mask = 0xfff; |
+ return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2. |
+ } |
+ case kSWord: |
+ case kDWord: { |
+ *offset_mask = 0x3fc; // Multiple of 4. |
+ // VFP addressing mode. |
+ return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4)); |
+ } |
+ case kRegList: { |
+ *offset_mask = 0x0; |
+ return offset == 0; |
+ } |
+ default: { |
+ UNREACHABLE(); |
+ return false; |
+ } |
+ } |
+} |
+ |
+ |
+bool Address::CanHoldStoreOffset(OperandSize size, |
+ int32_t offset, |
+ int32_t* offset_mask) { |
+ switch (size) { |
+ case kHalfword: |
+ case kUnsignedHalfword: |
+ case kWordPair: { |
+ *offset_mask = 0xff; |
+ return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3. |
+ } |
+ case kByte: |
+ case kUnsignedByte: |
+ case kWord: |
+ case kUnsignedWord: { |
+ *offset_mask = 0xfff; |
+ return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2. |
+ } |
+ case kSWord: |
+ case kDWord: { |
+ *offset_mask = 0x3fc; // Multiple of 4. |
+ // VFP addressing mode. |
+ return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4)); |
+ } |
+ case kRegList: { |
+ *offset_mask = 0x0; |
+ return offset == 0; |
+ } |
+ default: { |
+ UNREACHABLE(); |
+ return false; |
+ } |
+ } |
+} |
+ |
+ |
+bool Address::CanHoldImmediateOffset( |
+ bool is_load, intptr_t cid, int64_t offset) { |
+ int32_t offset_mask = 0; |
+ if (is_load) { |
+ return CanHoldLoadOffset(OperandSizeFor(cid), offset, &offset_mask); |
+ } else { |
+ return CanHoldStoreOffset(OperandSizeFor(cid), offset, &offset_mask); |
+ } |
+} |
+ |
+ |
+void Assembler::Push(Register rd, Condition cond) { |
+ str(rd, Address(SP, -kWordSize, Address::PreIndex), cond); |
+} |
+ |
+ |
+void Assembler::Pop(Register rd, Condition cond) { |
+ ldr(rd, Address(SP, kWordSize, Address::PostIndex), cond); |
+} |
+ |
+ |
+void Assembler::PushList(RegList regs, Condition cond) { |
+ stm(DB_W, SP, regs, cond); |
+} |
+ |
+ |
+void Assembler::PopList(RegList regs, Condition cond) { |
+ ldm(IA_W, SP, regs, cond); |
+} |
+ |
+ |
+void Assembler::MoveRegister(Register rd, Register rm, Condition cond) { |
+ if (rd != rm) { |
+ mov(rd, Operand(rm), cond); |
+ } |
+} |
+ |
+ |
+void Assembler::Lsl(Register rd, Register rm, const Operand& shift_imm, |
+ Condition cond) { |
+ ASSERT(shift_imm.type() == 1); |
+ ASSERT(shift_imm.encoding() != 0); // Do not use Lsl if no shift is wanted. |
+ mov(rd, Operand(rm, LSL, shift_imm.encoding()), cond); |
+} |
+ |
+ |
+void Assembler::Lsl(Register rd, Register rm, Register rs, Condition cond) { |
+ mov(rd, Operand(rm, LSL, rs), cond); |
+} |
+ |
+ |
+void Assembler::Lsr(Register rd, Register rm, const Operand& shift_imm, |
+ Condition cond) { |
+ ASSERT(shift_imm.type() == 1); |
+ uint32_t shift = shift_imm.encoding(); |
+ ASSERT(shift != 0); // Do not use Lsr if no shift is wanted. |
+ if (shift == 32) { |
+ shift = 0; // Comply to UAL syntax. |
+ } |
+ mov(rd, Operand(rm, LSR, shift), cond); |
+} |
+ |
+ |
+void Assembler::Lsr(Register rd, Register rm, Register rs, Condition cond) { |
+ mov(rd, Operand(rm, LSR, rs), cond); |
+} |
+ |
+ |
+void Assembler::Asr(Register rd, Register rm, const Operand& shift_imm, |
+ Condition cond) { |
+ ASSERT(shift_imm.type() == 1); |
+ uint32_t shift = shift_imm.encoding(); |
+ ASSERT(shift != 0); // Do not use Asr if no shift is wanted. |
+ if (shift == 32) { |
+ shift = 0; // Comply to UAL syntax. |
+ } |
+ mov(rd, Operand(rm, ASR, shift), cond); |
+} |
+ |
+ |
+void Assembler::Asrs(Register rd, Register rm, const Operand& shift_imm, |
+ Condition cond) { |
+ ASSERT(shift_imm.type() == 1); |
+ uint32_t shift = shift_imm.encoding(); |
+ ASSERT(shift != 0); // Do not use Asr if no shift is wanted. |
+ if (shift == 32) { |
+ shift = 0; // Comply to UAL syntax. |
+ } |
+ movs(rd, Operand(rm, ASR, shift), cond); |
+} |
+ |
+ |
+void Assembler::Asr(Register rd, Register rm, Register rs, Condition cond) { |
+ mov(rd, Operand(rm, ASR, rs), cond); |
+} |
+ |
+ |
+void Assembler::Ror(Register rd, Register rm, const Operand& shift_imm, |
+ Condition cond) { |
+ ASSERT(shift_imm.type() == 1); |
+ ASSERT(shift_imm.encoding() != 0); // Use Rrx instruction. |
+ mov(rd, Operand(rm, ROR, shift_imm.encoding()), cond); |
+} |
+ |
+ |
+void Assembler::Ror(Register rd, Register rm, Register rs, Condition cond) { |
+ mov(rd, Operand(rm, ROR, rs), cond); |
+} |
+ |
+ |
+void Assembler::Rrx(Register rd, Register rm, Condition cond) { |
+ mov(rd, Operand(rm, ROR, 0), cond); |
+} |
+ |
+ |
+void Assembler::SignFill(Register rd, Register rm, Condition cond) { |
+ Asr(rd, rm, Operand(31), cond); |
+} |
+ |
+ |
+void Assembler::Vreciprocalqs(QRegister qd, QRegister qm) { |
+ ASSERT(qm != QTMP); |
+ ASSERT(qd != QTMP); |
+ |
+ // Reciprocal estimate. |
+ vrecpeqs(qd, qm); |
+ // 2 Newton-Raphson steps. |
+ vrecpsqs(QTMP, qm, qd); |
+ vmulqs(qd, qd, QTMP); |
+ vrecpsqs(QTMP, qm, qd); |
+ vmulqs(qd, qd, QTMP); |
+} |
+ |
+ |
+void Assembler::VreciprocalSqrtqs(QRegister qd, QRegister qm) { |
+ ASSERT(qm != QTMP); |
+ ASSERT(qd != QTMP); |
+ |
+ // Reciprocal square root estimate. |
+ vrsqrteqs(qd, qm); |
+ // 2 Newton-Raphson steps. xn+1 = xn * (3 - Q1*xn^2) / 2. |
+ // First step. |
+ vmulqs(QTMP, qd, qd); // QTMP <- xn^2 |
+ vrsqrtsqs(QTMP, qm, QTMP); // QTMP <- (3 - Q1*QTMP) / 2. |
+ vmulqs(qd, qd, QTMP); // xn+1 <- xn * QTMP |
+ // Second step. |
+ vmulqs(QTMP, qd, qd); |
+ vrsqrtsqs(QTMP, qm, QTMP); |
+ vmulqs(qd, qd, QTMP); |
+} |
+ |
+ |
+void Assembler::Vsqrtqs(QRegister qd, QRegister qm, QRegister temp) { |
+ ASSERT(temp != QTMP); |
+ ASSERT(qm != QTMP); |
+ ASSERT(qd != QTMP); |
+ |
+ if (temp != kNoQRegister) { |
+ vmovq(temp, qm); |
+ qm = temp; |
+ } |
+ |
+ VreciprocalSqrtqs(qd, qm); |
+ vmovq(qm, qd); |
+ Vreciprocalqs(qd, qm); |
+} |
+ |
+ |
+void Assembler::Vdivqs(QRegister qd, QRegister qn, QRegister qm) { |
+ ASSERT(qd != QTMP); |
+ ASSERT(qn != QTMP); |
+ ASSERT(qm != QTMP); |
+ |
+ Vreciprocalqs(qd, qm); |
+ vmulqs(qd, qn, qd); |
+} |
+ |
+ |
+void Assembler::Branch(const StubEntry& stub_entry, |
+ Patchability patchable, |
+ Register pp, |
+ Condition cond) { |
+ const Code& target_code = Code::Handle(stub_entry.code()); |
+ const int32_t offset = ObjectPool::element_offset( |
+ object_pool_wrapper_.FindObject(target_code, patchable)); |
+ LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag, pp, cond); |
+ ldr(IP, FieldAddress(CODE_REG, Code::entry_point_offset()), cond); |
+ bx(IP, cond); |
+} |
+ |
+ |
+void Assembler::BranchLink(const Code& target, Patchability patchable) { |
+ // Make sure that class CallPattern is able to patch the label referred |
+ // to by this code sequence. |
+ // For added code robustness, use 'blx lr' in a patchable sequence and |
+ // use 'blx ip' in a non-patchable sequence (see other BranchLink flavors). |
+ const int32_t offset = ObjectPool::element_offset( |
+ object_pool_wrapper_.FindObject(target, patchable)); |
+ LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag, PP, AL); |
+ ldr(LR, FieldAddress(CODE_REG, Code::entry_point_offset())); |
+ blx(LR); // Use blx instruction so that the return branch prediction works. |
+} |
+ |
+ |
+void Assembler::BranchLink(const StubEntry& stub_entry, |
+ Patchability patchable) { |
+ const Code& code = Code::Handle(stub_entry.code()); |
+ BranchLink(code, patchable); |
+} |
+ |
+ |
+void Assembler::BranchLinkPatchable(const Code& target) { |
+ BranchLink(target, kPatchable); |
+} |
+ |
+ |
+void Assembler::BranchLink(const ExternalLabel* label) { |
+ LoadImmediate(LR, label->address()); // Target address is never patched. |
+ blx(LR); // Use blx instruction so that the return branch prediction works. |
+} |
+ |
+ |
+void Assembler::BranchLinkPatchable(const StubEntry& stub_entry) { |
+ BranchLinkPatchable(Code::Handle(stub_entry.code())); |
+} |
+ |
+ |
+void Assembler::BranchLinkOffset(Register base, int32_t offset) { |
+ ASSERT(base != PC); |
+ ASSERT(base != IP); |
+ LoadFromOffset(kWord, IP, base, offset); |
+ blx(IP); // Use blx instruction so that the return branch prediction works. |
+} |
+ |
+ |
+void Assembler::LoadPatchableImmediate( |
+ Register rd, int32_t value, Condition cond) { |
+ const ARMVersion version = TargetCPUFeatures::arm_version(); |
+ if ((version == ARMv5TE) || (version == ARMv6)) { |
+ // This sequence is patched in a few places, and should remain fixed. |
+ const uint32_t byte0 = (value & 0x000000ff); |
+ const uint32_t byte1 = (value & 0x0000ff00) >> 8; |
+ const uint32_t byte2 = (value & 0x00ff0000) >> 16; |
+ const uint32_t byte3 = (value & 0xff000000) >> 24; |
+ mov(rd, Operand(4, byte3), cond); |
+ orr(rd, rd, Operand(8, byte2), cond); |
+ orr(rd, rd, Operand(12, byte1), cond); |
+ orr(rd, rd, Operand(byte0), cond); |
+ } else { |
+ ASSERT(version == ARMv7); |
+ const uint16_t value_low = Utils::Low16Bits(value); |
+ const uint16_t value_high = Utils::High16Bits(value); |
+ movw(rd, value_low, cond); |
+ movt(rd, value_high, cond); |
+ } |
+} |
+ |
+ |
+void Assembler::LoadDecodableImmediate( |
+ Register rd, int32_t value, Condition cond) { |
+ const ARMVersion version = TargetCPUFeatures::arm_version(); |
+ if ((version == ARMv5TE) || (version == ARMv6)) { |
+ if (constant_pool_allowed()) { |
+ const int32_t offset = Array::element_offset(FindImmediate(value)); |
+ LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, PP, cond); |
+ } else { |
+ LoadPatchableImmediate(rd, value, cond); |
+ } |
+ } else { |
+ ASSERT(version == ARMv7); |
+ movw(rd, Utils::Low16Bits(value), cond); |
+ const uint16_t value_high = Utils::High16Bits(value); |
+ if (value_high != 0) { |
+ movt(rd, value_high, cond); |
+ } |
+ } |
+} |
+ |
+ |
+void Assembler::LoadImmediate(Register rd, int32_t value, Condition cond) { |
+ Operand o; |
+ if (Operand::CanHold(value, &o)) { |
+ mov(rd, o, cond); |
+ } else if (Operand::CanHold(~value, &o)) { |
+ mvn(rd, o, cond); |
+ } else { |
+ LoadDecodableImmediate(rd, value, cond); |
+ } |
+} |
+ |
+ |
+void Assembler::LoadSImmediate(SRegister sd, float value, Condition cond) { |
+ if (!vmovs(sd, value, cond)) { |
+ const DRegister dd = static_cast<DRegister>(sd >> 1); |
+ const int index = sd & 1; |
+ LoadImmediate(IP, bit_cast<int32_t, float>(value), cond); |
+ vmovdr(dd, index, IP, cond); |
+ } |
+} |
+ |
+ |
+void Assembler::LoadDImmediate(DRegister dd, |
+ double value, |
+ Register scratch, |
+ Condition cond) { |
+ ASSERT(scratch != PC); |
+ ASSERT(scratch != IP); |
+ if (!vmovd(dd, value, cond)) { |
+ // A scratch register and IP are needed to load an arbitrary double. |
+ ASSERT(scratch != kNoRegister); |
+ int64_t imm64 = bit_cast<int64_t, double>(value); |
+ LoadImmediate(IP, Utils::Low32Bits(imm64), cond); |
+ LoadImmediate(scratch, Utils::High32Bits(imm64), cond); |
+ vmovdrr(dd, IP, scratch, cond); |
+ } |
+} |
+ |
+ |
+void Assembler::LoadFromOffset(OperandSize size, |
+ Register reg, |
+ Register base, |
+ int32_t offset, |
+ Condition cond) { |
+ int32_t offset_mask = 0; |
+ if (!Address::CanHoldLoadOffset(size, offset, &offset_mask)) { |
+ ASSERT(base != IP); |
+ AddImmediate(IP, base, offset & ~offset_mask, cond); |
+ base = IP; |
+ offset = offset & offset_mask; |
+ } |
+ switch (size) { |
+ case kByte: |
+ ldrsb(reg, Address(base, offset), cond); |
+ break; |
+ case kUnsignedByte: |
+ ldrb(reg, Address(base, offset), cond); |
+ break; |
+ case kHalfword: |
+ ldrsh(reg, Address(base, offset), cond); |
+ break; |
+ case kUnsignedHalfword: |
+ ldrh(reg, Address(base, offset), cond); |
+ break; |
+ case kWord: |
+ ldr(reg, Address(base, offset), cond); |
+ break; |
+ case kWordPair: |
+ ldrd(reg, base, offset, cond); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void Assembler::StoreToOffset(OperandSize size, |
+ Register reg, |
+ Register base, |
+ int32_t offset, |
+ Condition cond) { |
+ int32_t offset_mask = 0; |
+ if (!Address::CanHoldStoreOffset(size, offset, &offset_mask)) { |
+ ASSERT(reg != IP); |
+ ASSERT(base != IP); |
+ AddImmediate(IP, base, offset & ~offset_mask, cond); |
+ base = IP; |
+ offset = offset & offset_mask; |
+ } |
+ switch (size) { |
+ case kByte: |
+ strb(reg, Address(base, offset), cond); |
+ break; |
+ case kHalfword: |
+ strh(reg, Address(base, offset), cond); |
+ break; |
+ case kWord: |
+ str(reg, Address(base, offset), cond); |
+ break; |
+ case kWordPair: |
+ strd(reg, base, offset, cond); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void Assembler::LoadSFromOffset(SRegister reg, |
+ Register base, |
+ int32_t offset, |
+ Condition cond) { |
+ int32_t offset_mask = 0; |
+ if (!Address::CanHoldLoadOffset(kSWord, offset, &offset_mask)) { |
+ ASSERT(base != IP); |
+ AddImmediate(IP, base, offset & ~offset_mask, cond); |
+ base = IP; |
+ offset = offset & offset_mask; |
+ } |
+ vldrs(reg, Address(base, offset), cond); |
+} |
+ |
+ |
+void Assembler::StoreSToOffset(SRegister reg, |
+ Register base, |
+ int32_t offset, |
+ Condition cond) { |
+ int32_t offset_mask = 0; |
+ if (!Address::CanHoldStoreOffset(kSWord, offset, &offset_mask)) { |
+ ASSERT(base != IP); |
+ AddImmediate(IP, base, offset & ~offset_mask, cond); |
+ base = IP; |
+ offset = offset & offset_mask; |
+ } |
+ vstrs(reg, Address(base, offset), cond); |
+} |
+ |
+ |
+void Assembler::LoadDFromOffset(DRegister reg, |
+ Register base, |
+ int32_t offset, |
+ Condition cond) { |
+ int32_t offset_mask = 0; |
+ if (!Address::CanHoldLoadOffset(kDWord, offset, &offset_mask)) { |
+ ASSERT(base != IP); |
+ AddImmediate(IP, base, offset & ~offset_mask, cond); |
+ base = IP; |
+ offset = offset & offset_mask; |
+ } |
+ vldrd(reg, Address(base, offset), cond); |
+} |
+ |
+ |
+void Assembler::StoreDToOffset(DRegister reg, |
+ Register base, |
+ int32_t offset, |
+ Condition cond) { |
+ int32_t offset_mask = 0; |
+ if (!Address::CanHoldStoreOffset(kDWord, offset, &offset_mask)) { |
+ ASSERT(base != IP); |
+ AddImmediate(IP, base, offset & ~offset_mask, cond); |
+ base = IP; |
+ offset = offset & offset_mask; |
+ } |
+ vstrd(reg, Address(base, offset), cond); |
+} |
+ |
+ |
+void Assembler::LoadMultipleDFromOffset(DRegister first, |
+ intptr_t count, |
+ Register base, |
+ int32_t offset) { |
+ ASSERT(base != IP); |
+ AddImmediate(IP, base, offset); |
+ vldmd(IA, IP, first, count); |
+} |
+ |
+void Assembler::StoreMultipleDToOffset(DRegister first, |
+ intptr_t count, |
+ Register base, |
+ int32_t offset) { |
+ ASSERT(base != IP); |
+ AddImmediate(IP, base, offset); |
+ vstmd(IA, IP, first, count); |
+} |
+ |
+ |
+void Assembler::CopyDoubleField( |
+ Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) { |
+ if (TargetCPUFeatures::vfp_supported()) { |
+ LoadDFromOffset(dtmp, src, Double::value_offset() - kHeapObjectTag); |
+ StoreDToOffset(dtmp, dst, Double::value_offset() - kHeapObjectTag); |
+ } else { |
+ LoadFromOffset(kWord, tmp1, src, |
+ Double::value_offset() - kHeapObjectTag); |
+ LoadFromOffset(kWord, tmp2, src, |
+ Double::value_offset() + kWordSize - kHeapObjectTag); |
+ StoreToOffset(kWord, tmp1, dst, |
+ Double::value_offset() - kHeapObjectTag); |
+ StoreToOffset(kWord, tmp2, dst, |
+ Double::value_offset() + kWordSize - kHeapObjectTag); |
+ } |
+} |
+ |
+ |
+void Assembler::CopyFloat32x4Field( |
+ Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) { |
+ if (TargetCPUFeatures::neon_supported()) { |
+ LoadMultipleDFromOffset(dtmp, 2, src, |
+ Float32x4::value_offset() - kHeapObjectTag); |
+ StoreMultipleDToOffset(dtmp, 2, dst, |
+ Float32x4::value_offset() - kHeapObjectTag); |
+ } else { |
+ LoadFromOffset(kWord, tmp1, src, |
+ (Float32x4::value_offset() + 0 * kWordSize) - kHeapObjectTag); |
+ LoadFromOffset(kWord, tmp2, src, |
+ (Float32x4::value_offset() + 1 * kWordSize) - kHeapObjectTag); |
+ StoreToOffset(kWord, tmp1, dst, |
+ (Float32x4::value_offset() + 0 * kWordSize) - kHeapObjectTag); |
+ StoreToOffset(kWord, tmp2, dst, |
+ (Float32x4::value_offset() + 1 * kWordSize) - kHeapObjectTag); |
+ |
+ LoadFromOffset(kWord, tmp1, src, |
+ (Float32x4::value_offset() + 2 * kWordSize) - kHeapObjectTag); |
+ LoadFromOffset(kWord, tmp2, src, |
+ (Float32x4::value_offset() + 3 * kWordSize) - kHeapObjectTag); |
+ StoreToOffset(kWord, tmp1, dst, |
+ (Float32x4::value_offset() + 2 * kWordSize) - kHeapObjectTag); |
+ StoreToOffset(kWord, tmp2, dst, |
+ (Float32x4::value_offset() + 3 * kWordSize) - kHeapObjectTag); |
+ } |
+} |
+ |
+ |
+void Assembler::CopyFloat64x2Field( |
+ Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) { |
+ if (TargetCPUFeatures::neon_supported()) { |
+ LoadMultipleDFromOffset(dtmp, 2, src, |
+ Float64x2::value_offset() - kHeapObjectTag); |
+ StoreMultipleDToOffset(dtmp, 2, dst, |
+ Float64x2::value_offset() - kHeapObjectTag); |
+ } else { |
+ LoadFromOffset(kWord, tmp1, src, |
+ (Float64x2::value_offset() + 0 * kWordSize) - kHeapObjectTag); |
+ LoadFromOffset(kWord, tmp2, src, |
+ (Float64x2::value_offset() + 1 * kWordSize) - kHeapObjectTag); |
+ StoreToOffset(kWord, tmp1, dst, |
+ (Float64x2::value_offset() + 0 * kWordSize) - kHeapObjectTag); |
+ StoreToOffset(kWord, tmp2, dst, |
+ (Float64x2::value_offset() + 1 * kWordSize) - kHeapObjectTag); |
+ |
+ LoadFromOffset(kWord, tmp1, src, |
+ (Float64x2::value_offset() + 2 * kWordSize) - kHeapObjectTag); |
+ LoadFromOffset(kWord, tmp2, src, |
+ (Float64x2::value_offset() + 3 * kWordSize) - kHeapObjectTag); |
+ StoreToOffset(kWord, tmp1, dst, |
+ (Float64x2::value_offset() + 2 * kWordSize) - kHeapObjectTag); |
+ StoreToOffset(kWord, tmp2, dst, |
+ (Float64x2::value_offset() + 3 * kWordSize) - kHeapObjectTag); |
+ } |
+} |
+ |
+ |
+void Assembler::AddImmediate(Register rd, int32_t value, Condition cond) { |
+ AddImmediate(rd, rd, value, cond); |
+} |
+ |
+ |
+void Assembler::AddImmediate(Register rd, Register rn, int32_t value, |
+ Condition cond) { |
+ if (value == 0) { |
+ if (rd != rn) { |
+ mov(rd, Operand(rn), cond); |
+ } |
+ return; |
+ } |
+ // We prefer to select the shorter code sequence rather than selecting add for |
+ // positive values and sub for negatives ones, which would slightly improve |
+ // the readability of generated code for some constants. |
+ Operand o; |
+ if (Operand::CanHold(value, &o)) { |
+ add(rd, rn, o, cond); |
+ } else if (Operand::CanHold(-value, &o)) { |
+ sub(rd, rn, o, cond); |
+ } else { |
+ ASSERT(rn != IP); |
+ if (Operand::CanHold(~value, &o)) { |
+ mvn(IP, o, cond); |
+ add(rd, rn, Operand(IP), cond); |
+ } else if (Operand::CanHold(~(-value), &o)) { |
+ mvn(IP, o, cond); |
+ sub(rd, rn, Operand(IP), cond); |
+ } else { |
+ LoadDecodableImmediate(IP, value, cond); |
+ add(rd, rn, Operand(IP), cond); |
+ } |
+ } |
+} |
+ |
+ |
+void Assembler::AddImmediateSetFlags(Register rd, Register rn, int32_t value, |
+ Condition cond) { |
+ Operand o; |
+ if (Operand::CanHold(value, &o)) { |
+ // Handles value == kMinInt32. |
+ adds(rd, rn, o, cond); |
+ } else if (Operand::CanHold(-value, &o)) { |
+ ASSERT(value != kMinInt32); // Would cause erroneous overflow detection. |
+ subs(rd, rn, o, cond); |
+ } else { |
+ ASSERT(rn != IP); |
+ if (Operand::CanHold(~value, &o)) { |
+ mvn(IP, o, cond); |
+ adds(rd, rn, Operand(IP), cond); |
+ } else if (Operand::CanHold(~(-value), &o)) { |
+ ASSERT(value != kMinInt32); // Would cause erroneous overflow detection. |
+ mvn(IP, o, cond); |
+ subs(rd, rn, Operand(IP), cond); |
+ } else { |
+ LoadDecodableImmediate(IP, value, cond); |
+ adds(rd, rn, Operand(IP), cond); |
+ } |
+ } |
+} |
+ |
+ |
+void Assembler::SubImmediateSetFlags(Register rd, Register rn, int32_t value, |
+ Condition cond) { |
+ Operand o; |
+ if (Operand::CanHold(value, &o)) { |
+ // Handles value == kMinInt32. |
+ subs(rd, rn, o, cond); |
+ } else if (Operand::CanHold(-value, &o)) { |
+ ASSERT(value != kMinInt32); // Would cause erroneous overflow detection. |
+ adds(rd, rn, o, cond); |
+ } else { |
+ ASSERT(rn != IP); |
+ if (Operand::CanHold(~value, &o)) { |
+ mvn(IP, o, cond); |
+ subs(rd, rn, Operand(IP), cond); |
+ } else if (Operand::CanHold(~(-value), &o)) { |
+ ASSERT(value != kMinInt32); // Would cause erroneous overflow detection. |
+ mvn(IP, o, cond); |
+ adds(rd, rn, Operand(IP), cond); |
+ } else { |
+ LoadDecodableImmediate(IP, value, cond); |
+ subs(rd, rn, Operand(IP), cond); |
+ } |
+ } |
+} |
+ |
+ |
+void Assembler::AndImmediate(Register rd, Register rs, int32_t imm, |
+ Condition cond) { |
+ Operand o; |
+ if (Operand::CanHold(imm, &o)) { |
+ and_(rd, rs, Operand(o), cond); |
+ } else { |
+ LoadImmediate(TMP, imm, cond); |
+ and_(rd, rs, Operand(TMP), cond); |
+ } |
+} |
+ |
+ |
+void Assembler::CompareImmediate(Register rn, int32_t value, Condition cond) { |
+ Operand o; |
+ if (Operand::CanHold(value, &o)) { |
+ cmp(rn, o, cond); |
+ } else { |
+ ASSERT(rn != IP); |
+ LoadImmediate(IP, value, cond); |
+ cmp(rn, Operand(IP), cond); |
+ } |
+} |
+ |
+ |
+void Assembler::TestImmediate(Register rn, int32_t imm, Condition cond) { |
+ Operand o; |
+ if (Operand::CanHold(imm, &o)) { |
+ tst(rn, o, cond); |
+ } else { |
+ LoadImmediate(IP, imm); |
+ tst(rn, Operand(IP), cond); |
+ } |
+} |
+ |
+void Assembler::IntegerDivide(Register result, Register left, Register right, |
+ DRegister tmpl, DRegister tmpr) { |
+ ASSERT(tmpl != tmpr); |
+ if (TargetCPUFeatures::integer_division_supported()) { |
+ sdiv(result, left, right); |
+ } else { |
+ ASSERT(TargetCPUFeatures::vfp_supported()); |
+ SRegister stmpl = static_cast<SRegister>(2 * tmpl); |
+ SRegister stmpr = static_cast<SRegister>(2 * tmpr); |
+ vmovsr(stmpl, left); |
+ vcvtdi(tmpl, stmpl); // left is in tmpl. |
+ vmovsr(stmpr, right); |
+ vcvtdi(tmpr, stmpr); // right is in tmpr. |
+ vdivd(tmpr, tmpl, tmpr); |
+ vcvtid(stmpr, tmpr); |
+ vmovrs(result, stmpr); |
+ } |
+} |
+ |
+ |
+static int NumRegsBelowFP(RegList regs) { |
+ int count = 0; |
+ for (int i = 0; i < FP; i++) { |
+ if ((regs & (1 << i)) != 0) { |
+ count++; |
+ } |
+ } |
+ return count; |
+} |
+ |
+ |
+void Assembler::EnterFrame(RegList regs, intptr_t frame_size) { |
+ if (prologue_offset_ == -1) { |
+ prologue_offset_ = CodeSize(); |
+ } |
+ PushList(regs); |
+ if ((regs & (1 << FP)) != 0) { |
+ // Set FP to the saved previous FP. |
+ add(FP, SP, Operand(4 * NumRegsBelowFP(regs))); |
+ } |
+ AddImmediate(SP, -frame_size); |
+} |
+ |
+ |
+void Assembler::LeaveFrame(RegList regs) { |
+ ASSERT((regs & (1 << PC)) == 0); // Must not pop PC. |
+ if ((regs & (1 << FP)) != 0) { |
+ // Use FP to set SP. |
+ sub(SP, FP, Operand(4 * NumRegsBelowFP(regs))); |
+ } |
+ PopList(regs); |
+} |
+ |
+ |
+void Assembler::Ret() { |
+ bx(LR); |
+} |
+ |
+ |
+void Assembler::ReserveAlignedFrameSpace(intptr_t frame_space) { |
+ // Reserve space for arguments and align frame before entering |
+ // the C++ world. |
+ AddImmediate(SP, -frame_space); |
+ if (OS::ActivationFrameAlignment() > 1) { |
+ bic(SP, SP, Operand(OS::ActivationFrameAlignment() - 1)); |
+ } |
+} |
+ |
+ |
+void Assembler::EnterCallRuntimeFrame(intptr_t frame_space) { |
+ // Preserve volatile CPU registers and PP. |
+ EnterFrame(kDartVolatileCpuRegs | (1 << PP) | (1 << FP), 0); |
+ COMPILE_ASSERT((kDartVolatileCpuRegs & (1 << PP)) == 0); |
+ |
+ // Preserve all volatile FPU registers. |
+ if (TargetCPUFeatures::vfp_supported()) { |
+ DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg); |
+ DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg); |
+ if ((lastv - firstv + 1) >= 16) { |
+ DRegister mid = static_cast<DRegister>(firstv + 16); |
+ vstmd(DB_W, SP, mid, lastv - mid + 1); |
+ vstmd(DB_W, SP, firstv, 16); |
+ } else { |
+ vstmd(DB_W, SP, firstv, lastv - firstv + 1); |
+ } |
+ } |
+ |
+ LoadPoolPointer(); |
+ |
+ ReserveAlignedFrameSpace(frame_space); |
+} |
+ |
+ |
+void Assembler::LeaveCallRuntimeFrame() { |
+ // SP might have been modified to reserve space for arguments |
+ // and ensure proper alignment of the stack frame. |
+ // We need to restore it before restoring registers. |
+ const intptr_t kPushedFpuRegisterSize = |
+ TargetCPUFeatures::vfp_supported() ? |
+ kDartVolatileFpuRegCount * kFpuRegisterSize : 0; |
+ |
+ COMPILE_ASSERT(PP < FP); |
+ COMPILE_ASSERT((kDartVolatileCpuRegs & (1 << PP)) == 0); |
+ // kVolatileCpuRegCount +1 for PP, -1 because even though LR is volatile, |
+ // it is pushed ahead of FP. |
+ const intptr_t kPushedRegistersSize = |
+ kDartVolatileCpuRegCount * kWordSize + kPushedFpuRegisterSize; |
+ AddImmediate(SP, FP, -kPushedRegistersSize); |
+ |
+ // Restore all volatile FPU registers. |
+ if (TargetCPUFeatures::vfp_supported()) { |
+ DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg); |
+ DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg); |
+ if ((lastv - firstv + 1) >= 16) { |
+ DRegister mid = static_cast<DRegister>(firstv + 16); |
+ vldmd(IA_W, SP, firstv, 16); |
+ vldmd(IA_W, SP, mid, lastv - mid + 1); |
+ } else { |
+ vldmd(IA_W, SP, firstv, lastv - firstv + 1); |
+ } |
+ } |
+ |
+ // Restore volatile CPU registers. |
+ LeaveFrame(kDartVolatileCpuRegs | (1 << PP) | (1 << FP)); |
+} |
+ |
+ |
+void Assembler::CallRuntime(const RuntimeEntry& entry, |
+ intptr_t argument_count) { |
+ entry.Call(this, argument_count); |
+} |
+ |
+ |
+void Assembler::EnterDartFrame(intptr_t frame_size) { |
+ ASSERT(!constant_pool_allowed()); |
+ |
+ // Registers are pushed in descending order: R9 | R10 | R11 | R14. |
+ EnterFrame((1 << PP) | (1 << CODE_REG) | (1 << FP) | (1 << LR), 0); |
+ |
+ // Setup pool pointer for this dart function. |
+ LoadPoolPointer(); |
+ |
+ // Reserve space for locals. |
+ AddImmediate(SP, -frame_size); |
+} |
+ |
+ |
+// On entry to a function compiled for OSR, the caller's frame pointer, the |
+// stack locals, and any copied parameters are already in place. The frame |
+// pointer is already set up. The PC marker is not correct for the |
+// optimized function and there may be extra space for spill slots to |
+// allocate. We must also set up the pool pointer for the function. |
+void Assembler::EnterOsrFrame(intptr_t extra_size) { |
+ ASSERT(!constant_pool_allowed()); |
+ Comment("EnterOsrFrame"); |
+ RestoreCodePointer(); |
+ LoadPoolPointer(); |
+ |
+ AddImmediate(SP, -extra_size); |
+} |
+ |
+ |
+void Assembler::LeaveDartFrame(RestorePP restore_pp) { |
+ if (restore_pp == kRestoreCallerPP) { |
+ ldr(PP, Address(FP, kSavedCallerPpSlotFromFp * kWordSize)); |
+ set_constant_pool_allowed(false); |
+ } |
+ Drop(2); // Drop saved PP, PC marker. |
+ LeaveFrame((1 << FP) | (1 << LR)); |
+} |
+ |
+ |
+void Assembler::EnterStubFrame() { |
+ EnterDartFrame(0); |
+} |
+ |
+ |
+void Assembler::LeaveStubFrame() { |
+ LeaveDartFrame(); |
+} |
+ |
+ |
+void Assembler::LoadAllocationStatsAddress(Register dest, |
+ intptr_t cid, |
+ bool inline_isolate) { |
+ ASSERT(dest != kNoRegister); |
+ ASSERT(dest != TMP); |
+ ASSERT(cid > 0); |
+ const intptr_t class_offset = ClassTable::ClassOffsetFor(cid); |
+ if (inline_isolate) { |
+ ASSERT(FLAG_allow_absolute_addresses); |
+ ClassTable* class_table = Isolate::Current()->class_table(); |
+ ClassHeapStats** table_ptr = class_table->TableAddressFor(cid); |
+ if (cid < kNumPredefinedCids) { |
+ LoadImmediate(dest, reinterpret_cast<uword>(*table_ptr) + class_offset); |
+ } else { |
+ LoadImmediate(dest, reinterpret_cast<uword>(table_ptr)); |
+ ldr(dest, Address(dest, 0)); |
+ AddImmediate(dest, class_offset); |
+ } |
+ } else { |
+ LoadIsolate(dest); |
+ intptr_t table_offset = |
+ Isolate::class_table_offset() + ClassTable::TableOffsetFor(cid); |
+ ldr(dest, Address(dest, table_offset)); |
+ AddImmediate(dest, class_offset); |
+ } |
+} |
+ |
+ |
+void Assembler::MaybeTraceAllocation(intptr_t cid, |
+ Register temp_reg, |
+ Label* trace, |
+ bool inline_isolate) { |
+ LoadAllocationStatsAddress(temp_reg, cid, inline_isolate); |
+ const uword state_offset = ClassHeapStats::state_offset(); |
+ ldr(temp_reg, Address(temp_reg, state_offset)); |
+ tst(temp_reg, Operand(ClassHeapStats::TraceAllocationMask())); |
+ b(trace, NE); |
+} |
+ |
+ |
+void Assembler::IncrementAllocationStats(Register stats_addr_reg, |
+ intptr_t cid, |
+ Heap::Space space) { |
+ ASSERT(stats_addr_reg != kNoRegister); |
+ ASSERT(stats_addr_reg != TMP); |
+ ASSERT(cid > 0); |
+ const uword count_field_offset = (space == Heap::kNew) ? |
+ ClassHeapStats::allocated_since_gc_new_space_offset() : |
+ ClassHeapStats::allocated_since_gc_old_space_offset(); |
+ const Address& count_address = Address(stats_addr_reg, count_field_offset); |
+ ldr(TMP, count_address); |
+ AddImmediate(TMP, 1); |
+ str(TMP, count_address); |
+} |
+ |
+ |
+void Assembler::IncrementAllocationStatsWithSize(Register stats_addr_reg, |
+ Register size_reg, |
+ Heap::Space space) { |
+ ASSERT(stats_addr_reg != kNoRegister); |
+ ASSERT(stats_addr_reg != TMP); |
+ const uword count_field_offset = (space == Heap::kNew) ? |
+ ClassHeapStats::allocated_since_gc_new_space_offset() : |
+ ClassHeapStats::allocated_since_gc_old_space_offset(); |
+ const uword size_field_offset = (space == Heap::kNew) ? |
+ ClassHeapStats::allocated_size_since_gc_new_space_offset() : |
+ ClassHeapStats::allocated_size_since_gc_old_space_offset(); |
+ const Address& count_address = Address(stats_addr_reg, count_field_offset); |
+ const Address& size_address = Address(stats_addr_reg, size_field_offset); |
+ ldr(TMP, count_address); |
+ AddImmediate(TMP, 1); |
+ str(TMP, count_address); |
+ ldr(TMP, size_address); |
+ add(TMP, TMP, Operand(size_reg)); |
+ str(TMP, size_address); |
+} |
+ |
+ |
+void Assembler::TryAllocate(const Class& cls, |
+ Label* failure, |
+ Register instance_reg, |
+ Register temp_reg) { |
+ ASSERT(failure != NULL); |
+ if (FLAG_inline_alloc) { |
+ ASSERT(instance_reg != temp_reg); |
+ ASSERT(temp_reg != IP); |
+ const intptr_t instance_size = cls.instance_size(); |
+ ASSERT(instance_size != 0); |
+ // If this allocation is traced, program will jump to failure path |
+ // (i.e. the allocation stub) which will allocate the object and trace the |
+ // allocation call site. |
+ MaybeTraceAllocation(cls.id(), temp_reg, failure, |
+ /* inline_isolate = */ false); |
+ Heap::Space space = Heap::SpaceForAllocation(cls.id()); |
+ ldr(temp_reg, Address(THR, Thread::heap_offset())); |
+ ldr(instance_reg, Address(temp_reg, Heap::TopOffset(space))); |
+ // TODO(koda): Protect against unsigned overflow here. |
+ AddImmediateSetFlags(instance_reg, instance_reg, instance_size); |
+ |
+ // instance_reg: potential next object start. |
+ ldr(IP, Address(temp_reg, Heap::EndOffset(space))); |
+ cmp(IP, Operand(instance_reg)); |
+ // fail if heap end unsigned less than or equal to instance_reg. |
+ b(failure, LS); |
+ |
+ // Successfully allocated the object, now update top to point to |
+ // next object start and store the class in the class field of object. |
+ str(instance_reg, Address(temp_reg, Heap::TopOffset(space))); |
+ |
+ LoadAllocationStatsAddress(temp_reg, cls.id(), |
+ /* inline_isolate = */ false); |
+ |
+ ASSERT(instance_size >= kHeapObjectTag); |
+ AddImmediate(instance_reg, -instance_size + kHeapObjectTag); |
+ |
+ uword tags = 0; |
+ tags = RawObject::SizeTag::update(instance_size, tags); |
+ ASSERT(cls.id() != kIllegalCid); |
+ tags = RawObject::ClassIdTag::update(cls.id(), tags); |
+ LoadImmediate(IP, tags); |
+ str(IP, FieldAddress(instance_reg, Object::tags_offset())); |
+ |
+ IncrementAllocationStats(temp_reg, cls.id(), space); |
+ } else { |
+ b(failure); |
+ } |
+} |
+ |
+ |
+void Assembler::TryAllocateArray(intptr_t cid, |
+ intptr_t instance_size, |
+ Label* failure, |
+ Register instance, |
+ Register end_address, |
+ Register temp1, |
+ Register temp2) { |
+ if (FLAG_inline_alloc) { |
+ // If this allocation is traced, program will jump to failure path |
+ // (i.e. the allocation stub) which will allocate the object and trace the |
+ // allocation call site. |
+ MaybeTraceAllocation(cid, temp1, failure, /* inline_isolate = */ false); |
+ Heap::Space space = Heap::SpaceForAllocation(cid); |
+ ldr(temp1, Address(THR, Thread::heap_offset())); |
+ // Potential new object start. |
+ ldr(instance, Address(temp1, Heap::TopOffset(space))); |
+ AddImmediateSetFlags(end_address, instance, instance_size); |
+ b(failure, CS); // Branch if unsigned overflow. |
+ |
+ // Check if the allocation fits into the remaining space. |
+ // instance: potential new object start. |
+ // end_address: potential next object start. |
+ ldr(temp2, Address(temp1, Heap::EndOffset(space))); |
+ cmp(end_address, Operand(temp2)); |
+ b(failure, CS); |
+ |
+ LoadAllocationStatsAddress(temp2, cid, /* inline_isolate = */ false); |
+ |
+ // Successfully allocated the object(s), now update top to point to |
+ // next object start and initialize the object. |
+ str(end_address, Address(temp1, Heap::TopOffset(space))); |
+ add(instance, instance, Operand(kHeapObjectTag)); |
+ |
+ // Initialize the tags. |
+ // instance: new object start as a tagged pointer. |
+ uword tags = 0; |
+ tags = RawObject::ClassIdTag::update(cid, tags); |
+ tags = RawObject::SizeTag::update(instance_size, tags); |
+ LoadImmediate(temp1, tags); |
+ str(temp1, FieldAddress(instance, Array::tags_offset())); // Store tags. |
+ |
+ LoadImmediate(temp1, instance_size); |
+ IncrementAllocationStatsWithSize(temp2, temp1, space); |
+ } else { |
+ b(failure); |
+ } |
+} |
+ |
+ |
+void Assembler::Stop(const char* message) { |
+ if (FLAG_print_stop_message) { |
+ PushList((1 << R0) | (1 << IP) | (1 << LR)); // Preserve R0, IP, LR. |
+ LoadImmediate(R0, reinterpret_cast<int32_t>(message)); |
+ // PrintStopMessage() preserves all registers. |
+ BranchLink(&StubCode::PrintStopMessage_entry()->label()); |
+ PopList((1 << R0) | (1 << IP) | (1 << LR)); // Restore R0, IP, LR. |
+ } |
+ // Emit the message address before the svc instruction, so that we can |
+ // 'unstop' and continue execution in the simulator or jump to the next |
+ // instruction in gdb. |
+ Label stop; |
+ b(&stop); |
+ Emit(reinterpret_cast<int32_t>(message)); |
+ Bind(&stop); |
+ bkpt(Instr::kStopMessageCode); |
+} |
+ |
+ |
+Address Assembler::ElementAddressForIntIndex(bool is_load, |
+ bool is_external, |
+ intptr_t cid, |
+ intptr_t index_scale, |
+ Register array, |
+ intptr_t index, |
+ Register temp) { |
+ const int64_t offset_base = |
+ (is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag)); |
+ const int64_t offset = offset_base + |
+ static_cast<int64_t>(index) * index_scale; |
+ ASSERT(Utils::IsInt(32, offset)); |
+ |
+ if (Address::CanHoldImmediateOffset(is_load, cid, offset)) { |
+ return Address(array, static_cast<int32_t>(offset)); |
+ } else { |
+ ASSERT(Address::CanHoldImmediateOffset(is_load, cid, offset - offset_base)); |
+ AddImmediate(temp, array, static_cast<int32_t>(offset_base)); |
+ return Address(temp, static_cast<int32_t>(offset - offset_base)); |
+ } |
+} |
+ |
+ |
+Address Assembler::ElementAddressForRegIndex(bool is_load, |
+ bool is_external, |
+ intptr_t cid, |
+ intptr_t index_scale, |
+ Register array, |
+ Register index) { |
+ // Note that index is expected smi-tagged, (i.e, LSL 1) for all arrays. |
+ const intptr_t shift = Utils::ShiftForPowerOfTwo(index_scale) - kSmiTagShift; |
+ int32_t offset = |
+ is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag); |
+ const OperandSize size = Address::OperandSizeFor(cid); |
+ ASSERT(array != IP); |
+ ASSERT(index != IP); |
+ const Register base = is_load ? IP : index; |
+ if ((offset != 0) || |
+ (size == kSWord) || (size == kDWord) || (size == kRegList)) { |
+ if (shift < 0) { |
+ ASSERT(shift == -1); |
+ add(base, array, Operand(index, ASR, 1)); |
+ } else { |
+ add(base, array, Operand(index, LSL, shift)); |
+ } |
+ } else { |
+ if (shift < 0) { |
+ ASSERT(shift == -1); |
+ return Address(array, index, ASR, 1); |
+ } else { |
+ return Address(array, index, LSL, shift); |
+ } |
+ } |
+ int32_t offset_mask = 0; |
+ if ((is_load && !Address::CanHoldLoadOffset(size, |
+ offset, |
+ &offset_mask)) || |
+ (!is_load && !Address::CanHoldStoreOffset(size, |
+ offset, |
+ &offset_mask))) { |
+ AddImmediate(base, offset & ~offset_mask); |
+ offset = offset & offset_mask; |
+ } |
+ return Address(base, offset); |
+} |
+ |
+ |
+static const char* cpu_reg_names[kNumberOfCpuRegisters] = { |
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
+ "r8", "ctx", "pp", "fp", "ip", "sp", "lr", "pc", |
+}; |
+ |
+ |
+const char* Assembler::RegisterName(Register reg) { |
+ ASSERT((0 <= reg) && (reg < kNumberOfCpuRegisters)); |
+ return cpu_reg_names[reg]; |
+} |
+ |
+ |
+static const char* fpu_reg_names[kNumberOfFpuRegisters] = { |
+ "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", |
+#if defined(VFPv3_D32) |
+ "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", |
+#endif |
+}; |
+ |
+ |
+const char* Assembler::FpuRegisterName(FpuRegister reg) { |
+ ASSERT((0 <= reg) && (reg < kNumberOfFpuRegisters)); |
+ return fpu_reg_names[reg]; |
+} |
+ |
+} // namespace dart |
+ |
+#endif // defined TARGET_ARCH_ARM |