Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(4)

Side by Side Diff: src/woff2.cc

Issue 13918002: [OTS] Integrate WOFF 2.0 algorithm into OTS (Closed) Base URL: http://ots.googlecode.com/svn/trunk/
Patch Set: Created 7 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/woff2.h ('k') | test/ot-sanitise.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Property Changes:
Added: svn:eol-style
+ LF
OLDNEW
(Empty)
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // This is the implementation of decompression of the proposed WOFF Ultra
6 // Condensed file format.
7
8 #include <cassert>
9 #include <cstdlib>
10 #include <vector>
11
12 #include <zlib.h>
13
14 #include "third_party/lzma_sdk/LzmaLib.h"
15
16 #include "opentype-sanitiser.h"
17 #include "ots-memory-stream.h"
18 #include "ots.h"
19 #include "woff2.h"
20
21 namespace {
22
23 // simple glyph flags
24 const int kGlyfOnCurve = 1 << 0;
25 const int kGlyfXShort = 1 << 1;
26 const int kGlyfYShort = 1 << 2;
27 const int kGlyfRepeat = 1 << 3;
28 const int kGlyfThisXIsSame = 1 << 4;
29 const int kGlyfThisYIsSame = 1 << 5;
30
31 // composite glyph flags
32 const int FLAG_ARG_1_AND_2_ARE_WORDS = 1 << 0;
33 const int FLAG_ARGS_ARE_XY_VALUES = 1 << 1;
34 const int FLAG_ROUND_XY_TO_GRID = 1 << 2;
35 const int FLAG_WE_HAVE_A_SCALE = 1 << 3;
36 const int FLAG_RESERVED = 1 << 4;
37 const int FLAG_MORE_COMPONENTS = 1 << 5;
38 const int FLAG_WE_HAVE_AN_X_AND_Y_SCALE = 1 << 6;
39 const int FLAG_WE_HAVE_A_TWO_BY_TWO = 1 << 7;
40 const int FLAG_WE_HAVE_INSTRUCTIONS = 1 << 8;
41 const int FLAG_USE_MY_METRICS = 1 << 9;
42 const int FLAG_OVERLAP_COMPOUND = 1 << 10;
43 const int FLAG_SCALED_COMPONENT_OFFSET = 1 << 11;
44 const int FLAG_UNSCALED_COMPONENT_OFFSET = 1 << 12;
45
46 const size_t kSfntHeaderSize = 12;
47 const size_t kSfntEntrySize = 16;
48 const size_t kCheckSumAdjustmentOffset = 8;
49
50 const size_t kEndPtsOfContoursOffset = 10;
51 const size_t kCompositeGlyphBegin = 10;
52
53 // Note that the byte order is big-endian, not the same as ots.cc
54 #define TAG(a, b, c, d) ((a << 24) | (b << 16) | (c << 8) | d)
55
56 const unsigned int kWoff2FlagsContinueStream = 1 << 4;
57 const unsigned int kWoff2FlagsTransform = 1 << 5;
58
59 const size_t kWoff2HeaderSize = 44;
60 const size_t kWoff2EntrySize = 20;
61
62 const size_t kLzmaHeaderSize = 13;
63
64 // Compression type values common to both short and long formats
65 const uint32_t kCompressionTypeMask = 0xf;
66 const uint32_t kCompressionTypeNone = 0;
67 const uint32_t kCompressionTypeGzip = 1;
68 const uint32_t kCompressionTypeLzma = 2;
69
70 // This is a special value for the short format only, as described in
71 // "Design for compressed header format" in draft doc.
72 const uint32_t kShortFlagsContinue = 3;
73
74 const uint32_t kKnownTags[] = {
75 TAG('c', 'm', 'a', 'p'), // 0
76 TAG('h', 'e', 'a', 'd'), // 1
77 TAG('h', 'h', 'e', 'a'), // 2
78 TAG('h', 'm', 't', 'x'), // 3
79 TAG('m', 'a', 'x', 'p'), // 4
80 TAG('n', 'a', 'm', 'e'), // 5
81 TAG('O', 'S', '/', '2'), // 6
82 TAG('p', 'o', 's', 't'), // 7
83 TAG('c', 'v', 't', ' '), // 8
84 TAG('f', 'p', 'g', 'm'), // 9
85 TAG('g', 'l', 'y', 'f'), // 10
86 TAG('l', 'o', 'c', 'a'), // 11
87 TAG('p', 'r', 'e', 'p'), // 12
88 TAG('C', 'F', 'F', ' '), // 13
89 TAG('V', 'O', 'R', 'G'), // 14
90 TAG('E', 'B', 'D', 'T'), // 15
91 TAG('E', 'B', 'L', 'C'), // 16
92 TAG('g', 'a', 's', 'p'), // 17
93 TAG('h', 'd', 'm', 'x'), // 18
94 TAG('k', 'e', 'r', 'n'), // 19
95 TAG('L', 'T', 'S', 'H'), // 20
96 TAG('P', 'C', 'L', 'T'), // 21
97 TAG('V', 'D', 'M', 'X'), // 22
98 TAG('v', 'h', 'e', 'a'), // 23
99 TAG('v', 'm', 't', 'x'), // 24
100 TAG('B', 'A', 'S', 'E'), // 25
101 TAG('G', 'D', 'E', 'F'), // 26
102 TAG('G', 'P', 'O', 'S'), // 27
103 TAG('G', 'S', 'U', 'B'), // 28
104 };
105
106 struct Point {
107 int x;
108 int y;
109 bool on_curve;
110 };
111
112 struct Table {
113 uint32_t tag;
114 uint32_t flags;
115 uint32_t src_offset;
116 uint32_t src_length;
117
118 uint32_t transform_length;
119
120 uint32_t dst_offset;
121 uint32_t dst_length;
122
123 Table()
124 : tag(0),
125 flags(0),
126 src_offset(0),
127 src_length(0),
128 transform_length(0),
129 dst_offset(0),
130 dst_length(0) {}
131 };
132
133 // Based on section 6.1.1 of MicroType Express draft spec
134 bool Read255UShort(ots::Buffer* buf, unsigned int* value) {
135 static const int kWordCode = 253;
136 static const int kOneMoreByteCode2 = 254;
137 static const int kOneMoreByteCode1 = 255;
138 static const int kLowestUCode = 253;
139 uint8_t code = 0;
140 if (!buf->ReadU8(&code)) {
141 return OTS_FAILURE();
142 }
143 if (code == kWordCode) {
144 uint16_t result = 0;
145 if (!buf->ReadU16(&result)) {
146 return OTS_FAILURE();
147 }
148 *value = result;
149 return true;
150 } else if (code == kOneMoreByteCode1) {
151 uint8_t result = 0;
152 if (!buf->ReadU8(&result)) {
153 return OTS_FAILURE();
154 }
155 *value = result + kLowestUCode;
156 return true;
157 } else if (code == kOneMoreByteCode2) {
158 uint8_t result = 0;
159 if (!buf->ReadU8(&result)) {
160 return OTS_FAILURE();
161 }
162 *value = result + kLowestUCode * 2;
163 return true;
164 } else {
165 *value = code;
166 return true;
167 }
168 }
169
170 bool ReadBase128(ots::Buffer* buf, uint32_t* value) {
171 uint32_t result = 0;
172 for (size_t i = 0; i < 5; ++i) {
173 uint8_t code = 0;
174 if (!buf->ReadU8(&code)) {
175 return OTS_FAILURE();
176 }
177 // If any of the top seven bits are set then we're about to overflow.
178 if (result & 0xe0000000U) {
179 return OTS_FAILURE();
180 }
181 result = (result << 7) | (code & 0x7f);
182 if ((code & 0x80) == 0) {
183 *value = result;
184 return true;
185 }
186 }
187 // Make sure not to exceed the size bound
188 return OTS_FAILURE();
189 }
190
191 // Caller must ensure that buffer overrun won't happen.
192 // TODO(ksakamaoto): Consider creating 'writer' version of the Buffer class
193 // and use it across the code.
194 size_t StoreU32(uint8_t* dst, size_t offset, uint32_t x) {
195 dst[offset] = x >> 24;
196 dst[offset + 1] = x >> 16;
197 dst[offset + 2] = x >> 8;
198 dst[offset + 3] = x;
199 return offset + 4;
200 }
201
202 size_t Store16(uint8_t* dst, size_t offset, int x) {
203 dst[offset] = x >> 8;
204 dst[offset + 1] = x;
205 return offset + 2;
206 }
207
208 int WithSign(int flag, int baseval) {
209 assert(0 <= baseval && baseval < 65536);
210 return (flag & 1) ? baseval : -baseval;
211 }
212
213 bool TripletDecode(const uint8_t* flags_in, const uint8_t* in, size_t in_size,
214 unsigned int n_points, std::vector<Point>* result,
215 size_t* in_bytes_consumed) {
216 int x = 0;
217 int y = 0;
218
219 // Early return if |in| buffer is too small. Each point consumes 1-4 bytes.
220 if (n_points > in_size) {
221 return OTS_FAILURE();
222 }
223 unsigned int triplet_index = 0;
224
225 for (unsigned int i = 0; i < n_points; ++i) {
226 uint8_t flag = flags_in[i];
227 bool on_curve = !(flag >> 7);
228 flag &= 0x7f;
229 unsigned int n_data_bytes;
230 if (flag < 84) {
231 n_data_bytes = 1;
232 } else if (flag < 120) {
233 n_data_bytes = 2;
234 } else if (flag < 124) {
235 n_data_bytes = 3;
236 } else {
237 n_data_bytes = 4;
238 }
239 if (triplet_index + n_data_bytes > in_size ||
240 triplet_index + n_data_bytes < triplet_index) {
241 return OTS_FAILURE();
242 }
243 int dx, dy;
244 if (flag < 10) {
245 dx = 0;
246 dy = WithSign(flag, ((flag & 14) << 7) + in[triplet_index]);
247 } else if (flag < 20) {
248 dx = WithSign(flag, (((flag - 10) & 14) << 7) + in[triplet_index]);
249 dy = 0;
250 } else if (flag < 84) {
251 int b0 = flag - 20;
252 int b1 = in[triplet_index];
253 dx = WithSign(flag, 1 + (b0 & 0x30) + (b1 >> 4));
254 dy = WithSign(flag >> 1, 1 + ((b0 & 0x0c) << 2) + (b1 & 0x0f));
255 } else if (flag < 120) {
256 int b0 = flag - 84;
257 dx = WithSign(flag, 1 + ((b0 / 12) << 8) + in[triplet_index]);
258 dy = WithSign(flag >> 1,
259 1 + (((b0 % 12) >> 2) << 8) + in[triplet_index + 1]);
260 } else if (flag < 124) {
261 int b2 = in[triplet_index + 1];
262 dx = WithSign(flag, (in[triplet_index] << 4) + (b2 >> 4));
263 dy = WithSign(flag >> 1, ((b2 & 0x0f) << 8) + in[triplet_index + 2]);
264 } else {
265 dx = WithSign(flag, (in[triplet_index] << 8) + in[triplet_index + 1]);
266 dy = WithSign(flag >> 1,
267 (in[triplet_index + 2] << 8) + in[triplet_index + 3]);
268 }
269 triplet_index += n_data_bytes;
270 // Possible overflow but coordinate values are not security sensitive
271 x += dx;
272 y += dy;
273 result->push_back(Point());
274 Point& back = result->back();
275 back.x = x;
276 back.y = y;
277 back.on_curve = on_curve;
278 }
279 *in_bytes_consumed = triplet_index;
280 return true;
281 }
282
283 // This function stores just the point data. On entry, dst points to the
284 // beginning of a simple glyph. Returns true on success.
285 bool StorePoints(const std::vector<Point>& points,
286 unsigned int n_contours, unsigned int instruction_length,
287 uint8_t* dst, size_t dst_size, size_t* glyph_size) {
288 // I believe that n_contours < 65536, in which case this is safe. However, a
289 // comment and/or an assert would be good.
290 unsigned int flag_offset = kEndPtsOfContoursOffset + 2 * n_contours + 2 +
291 instruction_length;
292 int last_flag = -1;
293 int repeat_count = 0;
294 int last_x = 0;
295 int last_y = 0;
296 unsigned int x_bytes = 0;
297 unsigned int y_bytes = 0;
298
299 for (size_t i = 0; i < points.size(); ++i) {
300 const Point& point = points.at(i);
301 int flag = point.on_curve ? kGlyfOnCurve : 0;
302 int dx = point.x - last_x;
303 int dy = point.y - last_y;
304 if (dx == 0) {
305 flag |= kGlyfThisXIsSame;
306 } else if (dx > -256 && dx < 256) {
307 flag |= kGlyfXShort | (dx > 0 ? kGlyfThisXIsSame : 0);
308 x_bytes += 1;
309 } else {
310 x_bytes += 2;
311 }
312 if (dy == 0) {
313 flag |= kGlyfThisYIsSame;
314 } else if (dy > -256 && dy < 256) {
315 flag |= kGlyfYShort | (dy > 0 ? kGlyfThisYIsSame : 0);
316 y_bytes += 1;
317 } else {
318 y_bytes += 2;
319 }
320
321 if (flag == last_flag && repeat_count != 255) {
322 dst[flag_offset - 1] |= kGlyfRepeat;
323 repeat_count++;
324 } else {
325 if (repeat_count != 0) {
326 if (flag_offset >= dst_size) {
327 return OTS_FAILURE();
328 }
329 dst[flag_offset++] = repeat_count;
330 }
331 if (flag_offset >= dst_size) {
332 return OTS_FAILURE();
333 }
334 dst[flag_offset++] = flag;
335 repeat_count = 0;
336 }
337 last_x = point.x;
338 last_y = point.y;
339 last_flag = flag;
340 }
341
342 if (repeat_count != 0) {
343 if (flag_offset >= dst_size) {
344 return OTS_FAILURE();
345 }
346 dst[flag_offset++] = repeat_count;
347 }
348 unsigned int xy_bytes = x_bytes + y_bytes;
349 if (xy_bytes < x_bytes ||
350 flag_offset + xy_bytes < flag_offset ||
351 flag_offset + xy_bytes > dst_size) {
352 return OTS_FAILURE();
353 }
354
355 int x_offset = flag_offset;
356 int y_offset = flag_offset + x_bytes;
357 last_x = 0;
358 last_y = 0;
359 for (size_t i = 0; i < points.size(); ++i) {
360 int dx = points.at(i).x - last_x;
361 if (dx == 0) {
362 // pass
363 } else if (dx > -256 && dx < 256) {
364 dst[x_offset++] = std::abs(dx);
365 } else {
366 // will always fit for valid input, but overflow is harmless
367 x_offset = Store16(dst, x_offset, dx);
368 }
369 last_x += dx;
370 int dy = points.at(i).y - last_y;
371 if (dy == 0) {
372 // pass
373 } else if (dy > -256 && dy < 256) {
374 dst[y_offset++] = std::abs(dy);
375 } else {
376 y_offset = Store16(dst, y_offset, dy);
377 }
378 last_y += dy;
379 }
380 *glyph_size = y_offset;
381 return true;
382 }
383
384 // Compute the bounding box of the coordinates, and store into a glyf buffer.
385 // A precondition is that there are at least 10 bytes available.
386 void ComputeBbox(const std::vector<Point>& points, uint8_t* dst) {
387 int x_min = 0;
388 int y_min = 0;
389 int x_max = 0;
390 int y_max = 0;
391
392 for (size_t i = 0; i < points.size(); ++i) {
393 int x = points.at(i).x;
394 int y = points.at(i).y;
395 if (i == 0 || x < x_min) x_min = x;
396 if (i == 0 || x > x_max) x_max = x;
397 if (i == 0 || y < y_min) y_min = y;
398 if (i == 0 || y > y_max) y_max = y;
399 }
400 size_t offset = 2;
401 offset = Store16(dst, offset, x_min);
402 offset = Store16(dst, offset, y_min);
403 offset = Store16(dst, offset, x_max);
404 offset = Store16(dst, offset, y_max);
405 }
406
407 // Process entire bbox stream. This is done as a separate pass to allow for
408 // composite bbox computations (an optional more aggressive transform).
409 bool ProcessBboxStream(ots::Buffer* bbox_stream, unsigned int n_glyphs,
410 const std::vector<uint32_t>& loca_values, uint8_t* glyf_buf,
411 size_t glyf_buf_length) {
412 const uint8_t* buf = bbox_stream->buffer();
413 if (n_glyphs >= 65536 || loca_values.size() != n_glyphs + 1) {
414 return OTS_FAILURE();
415 }
416 // Safe because n_glyphs is bounded
417 unsigned int bitmap_length = ((n_glyphs + 31) >> 5) << 2;
418 if (!bbox_stream->Skip(bitmap_length)) {
419 return OTS_FAILURE();
420 }
421 for (unsigned int i = 0; i < n_glyphs; ++i) {
422 if (buf[i >> 3] & (0x80 >> (i & 7))) {
423 uint32_t loca_offset = loca_values.at(i);
424 if (loca_values.at(i + 1) - loca_offset < kEndPtsOfContoursOffset) {
425 return OTS_FAILURE();
426 }
427 if (glyf_buf_length < 2 + 10 ||
428 loca_offset > glyf_buf_length - 2 - 10) {
429 return OTS_FAILURE();
430 }
431 if (!bbox_stream->Read(glyf_buf + loca_offset + 2, 8)) {
432 return OTS_FAILURE();
433 }
434 }
435 }
436 return true;
437 }
438
439 bool ProcessComposite(ots::Buffer* composite_stream, uint8_t* dst,
440 size_t dst_size, size_t* glyph_size, bool* have_instructions) {
441 size_t start_offset = composite_stream->offset();
442 bool we_have_instructions = false;
443
444 uint16_t flags = FLAG_MORE_COMPONENTS;
445 while (flags & FLAG_MORE_COMPONENTS) {
446 if (!composite_stream->ReadU16(&flags)) {
447 return OTS_FAILURE();
448 }
449 we_have_instructions |= (flags & FLAG_WE_HAVE_INSTRUCTIONS) != 0;
450 size_t arg_size = 2; // glyph index
451 if (flags & FLAG_ARG_1_AND_2_ARE_WORDS) {
452 arg_size += 4;
453 } else {
454 arg_size += 2;
455 }
456 if (flags & FLAG_WE_HAVE_A_SCALE) {
457 arg_size += 2;
458 } else if (flags & FLAG_WE_HAVE_AN_X_AND_Y_SCALE) {
459 arg_size += 4;
460 } else if (flags & FLAG_WE_HAVE_A_TWO_BY_TWO) {
461 arg_size += 8;
462 }
463 if (!composite_stream->Skip(arg_size)) {
464 return OTS_FAILURE();
465 }
466 }
467 size_t composite_glyph_size = composite_stream->offset() - start_offset;
468 if (composite_glyph_size + kCompositeGlyphBegin > dst_size) {
469 return OTS_FAILURE();
470 }
471 Store16(dst, 0, 0xffff); // nContours = -1 for composite glyph
472 std::memcpy(dst + kCompositeGlyphBegin,
473 composite_stream->buffer() + start_offset,
474 composite_glyph_size);
475 *glyph_size = kCompositeGlyphBegin + composite_glyph_size;
476 *have_instructions = we_have_instructions;
477 return true;
478 }
479
480 // Build TrueType loca table
481 bool StoreLoca(const std::vector<uint32_t>& loca_values, int index_format,
482 uint8_t* dst, size_t dst_size) {
483 const uint64_t loca_size = loca_values.size();
484 const uint64_t offset_size = index_format ? 4 : 2;
485 if ((loca_size << 2) >> 2 != loca_size) {
486 return OTS_FAILURE();
487 }
488 // No integer overflow here (loca_size <= 2^16).
489 if (offset_size * loca_size > dst_size) {
490 return OTS_FAILURE();
491 }
492 size_t offset = 0;
493 for (size_t i = 0; i < loca_values.size(); ++i) {
494 uint32_t value = loca_values.at(i);
495 if (index_format) {
496 offset = StoreU32(dst, offset, value);
497 } else {
498 offset = Store16(dst, offset, value >> 1);
499 }
500 }
501 return true;
502 }
503
504 // Reconstruct entire glyf table based on transformed original
505 bool ReconstructGlyf(const uint8_t* data, size_t data_size,
506 uint8_t* dst, size_t dst_size,
507 uint8_t* loca_buf, size_t loca_size) {
508 static const int kNumSubStreams = 7;
509 ots::Buffer file(data, data_size);
510 uint32_t version;
511 std::vector<std::pair<const uint8_t*, size_t> > substreams(kNumSubStreams);
512
513 if (!file.ReadU32(&version)) {
514 return OTS_FAILURE();
515 }
516 uint16_t num_glyphs;
517 uint16_t index_format;
518 if (!file.ReadU16(&num_glyphs) ||
519 !file.ReadU16(&index_format)) {
520 return OTS_FAILURE();
521 }
522 unsigned int offset = (2 + kNumSubStreams) * 4;
523 if (offset > data_size) {
524 return OTS_FAILURE();
525 }
526 // Invariant from here on: data_size >= offset
527 for (int i = 0; i < kNumSubStreams; ++i) {
528 uint32_t substream_size;
529 if (!file.ReadU32(&substream_size)) {
530 return OTS_FAILURE();
531 }
532 if (substream_size > data_size - offset) {
533 return OTS_FAILURE();
534 }
535 substreams.at(i) = std::make_pair(data + offset, substream_size);
536 offset += substream_size;
537 }
538 ots::Buffer n_contour_stream(substreams.at(0).first, substreams.at(0).second);
539 ots::Buffer n_points_stream(substreams.at(1).first, substreams.at(1).second);
540 ots::Buffer flag_stream(substreams.at(2).first, substreams.at(2).second);
541 ots::Buffer glyph_stream(substreams.at(3).first, substreams.at(3).second);
542 ots::Buffer composite_stream(substreams.at(4).first, substreams.at(4).second);
543 ots::Buffer bbox_stream(substreams.at(5).first, substreams.at(5).second);
544 ots::Buffer instruction_stream(substreams.at(6).first,
545 substreams.at(6).second);
546
547 std::vector<uint32_t> loca_values;
548 loca_values.reserve(num_glyphs + 1);
549 std::vector<unsigned int> n_points_vec;
550 std::vector<Point> points;
551 uint32_t loca_offset = 0;
552 for (unsigned int i = 0; i < num_glyphs; ++i) {
553 size_t glyph_size = 0;
554 uint16_t n_contours = 0;
555 if (!n_contour_stream.ReadU16(&n_contours)) {
556 return OTS_FAILURE();
557 }
558 uint8_t* glyf_dst = dst + loca_offset;
559 size_t glyf_dst_size = dst_size - loca_offset;
560 if (n_contours == 0xffff) {
561 // composite glyph
562 bool have_instructions = false;
563 unsigned int instruction_size = 0;
564 if (!ProcessComposite(&composite_stream, glyf_dst, glyf_dst_size,
565 &glyph_size, &have_instructions)) {
566 return OTS_FAILURE();
567 }
568 if (have_instructions) {
569 if (!Read255UShort(&glyph_stream, &instruction_size)) {
570 return OTS_FAILURE();
571 }
572 // No integer overflow here (instruction_size < 2^16).
573 if (instruction_size + 2 > glyf_dst_size - glyph_size) {
574 return OTS_FAILURE();
575 }
576 Store16(glyf_dst, glyph_size, instruction_size);
577 if (!instruction_stream.Read(glyf_dst + glyph_size + 2,
578 instruction_size)) {
579 return OTS_FAILURE();
580 }
581 glyph_size += instruction_size + 2;
582 }
583 } else if (n_contours > 0) {
584 // simple glyph
585 n_points_vec.clear();
586 points.clear();
587 unsigned int total_n_points = 0;
588 unsigned int n_points_contour;
589 for (unsigned int j = 0; j < n_contours; ++j) {
590 if (!Read255UShort(&n_points_stream, &n_points_contour)) {
591 return OTS_FAILURE();
592 }
593 n_points_vec.push_back(n_points_contour);
594 if (total_n_points + n_points_contour < total_n_points) {
595 return OTS_FAILURE();
596 }
597 total_n_points += n_points_contour;
598 }
599 unsigned int flag_size = total_n_points;
600 if (flag_size > flag_stream.length() - flag_stream.offset()) {
601 return OTS_FAILURE();
602 }
603 const uint8_t* flags_buf = flag_stream.buffer() + flag_stream.offset();
604 const uint8_t* triplet_buf = glyph_stream.buffer() +
605 glyph_stream.offset();
606 size_t triplet_size = glyph_stream.length() - glyph_stream.offset();
607 size_t triplet_bytes_consumed = 0;
608 if (!TripletDecode(flags_buf, triplet_buf, triplet_size, total_n_points,
609 &points, &triplet_bytes_consumed)) {
610 return OTS_FAILURE();
611 }
612 const uint32_t header_and_endpts_contours_size =
613 kEndPtsOfContoursOffset + 2 * n_contours;
614 if (glyf_dst_size < header_and_endpts_contours_size) {
615 return OTS_FAILURE();
616 }
617 Store16(glyf_dst, 0, n_contours);
618 ComputeBbox(points, glyf_dst);
619 size_t offset = kEndPtsOfContoursOffset;
620 int end_point = -1;
621 for (unsigned int contour_ix = 0; contour_ix < n_contours; ++contour_ix) {
622 end_point += n_points_vec.at(contour_ix);
623 if (end_point >= 65536) {
624 return OTS_FAILURE();
625 }
626 offset = Store16(glyf_dst, offset, end_point);
627 }
628 if (!flag_stream.Skip(flag_size)) {
629 return OTS_FAILURE();
630 }
631 if (!glyph_stream.Skip(triplet_bytes_consumed)) {
632 return OTS_FAILURE();
633 }
634 unsigned int instruction_size;
635 if (!Read255UShort(&glyph_stream, &instruction_size)) {
636 return OTS_FAILURE();
637 }
638 // No integer overflow here (instruction_size < 2^16).
639 if (glyf_dst_size - header_and_endpts_contours_size <
640 instruction_size + 2) {
641 return OTS_FAILURE();
642 }
643 uint8_t* instruction_dst = glyf_dst + header_and_endpts_contours_size;
644 Store16(instruction_dst, 0, instruction_size);
645 if (!instruction_stream.Read(instruction_dst + 2, instruction_size)) {
646 return OTS_FAILURE();
647 }
648 if (!StorePoints(points, n_contours, instruction_size,
649 glyf_dst, glyf_dst_size, &glyph_size)) {
650 return OTS_FAILURE();
651 }
652 } else {
653 glyph_size = 0;
654 }
655 loca_values.push_back(loca_offset);
656 if (glyph_size + 3 < glyph_size) {
657 return OTS_FAILURE();
658 }
659 glyph_size = ots::Round4(glyph_size);
660 if (glyph_size > dst_size - loca_offset) {
661 // This shouldn't happen, but this test defensively maintains the
662 // invariant that loca_offset <= dst_size.
663 return OTS_FAILURE();
664 }
665 loca_offset += glyph_size;
666 }
667 loca_values.push_back(loca_offset);
668 assert(loca_values.size() == static_cast<size_t>(num_glyphs + 1));
669 if (!ProcessBboxStream(&bbox_stream, num_glyphs, loca_values,
670 dst, dst_size)) {
671 return OTS_FAILURE();
672 }
673 return StoreLoca(loca_values, index_format, loca_buf, loca_size);
674 }
675
676 // This is linear search, but could be changed to binary because we
677 // do have a guarantee that the tables are sorted by tag. But the total
678 // cpu time is expected to be very small in any case.
679 const Table* FindTable(const std::vector<Table>& tables, uint32_t tag) {
680 size_t n_tables = tables.size();
681 for (size_t i = 0; i < n_tables; ++i) {
682 if (tables.at(i).tag == tag) {
683 return &tables.at(i);
684 }
685 }
686 return NULL;
687 }
688
689 bool ReconstructTransformed(const std::vector<Table>& tables, uint32_t tag,
690 const uint8_t* transformed_buf, size_t transformed_size,
691 uint8_t* dst, size_t dst_length) {
692 if (tag == TAG('g', 'l', 'y', 'f')) {
693 const Table* glyf_table = FindTable(tables, tag);
694 const Table* loca_table = FindTable(tables, TAG('l', 'o', 'c', 'a'));
695 if (glyf_table == NULL || loca_table == NULL) {
696 return OTS_FAILURE();
697 }
698 if (static_cast<uint64_t>(glyf_table->dst_offset) + glyf_table->dst_length >
699 dst_length) {
700 return OTS_FAILURE();
701 }
702 if (static_cast<uint64_t>(loca_table->dst_offset) + loca_table->dst_length >
703 dst_length) {
704 return OTS_FAILURE();
705 }
706 return ReconstructGlyf(transformed_buf, transformed_size,
707 dst + glyf_table->dst_offset, glyf_table->dst_length,
708 dst + loca_table->dst_offset, loca_table->dst_length);
709 } else if (tag == TAG('l', 'o', 'c', 'a')) {
710 // processing was already done by glyf table, but validate
711 if (!FindTable(tables, TAG('g', 'l', 'y', 'f'))) {
712 return OTS_FAILURE();
713 }
714 } else {
715 // transform for the tag is not known
716 return OTS_FAILURE();
717 }
718 return true;
719 }
720
721 uint32_t ComputeChecksum(const uint8_t* buf, size_t size) {
722 uint32_t checksum = 0;
723 for (size_t i = 0; i < size; i += 4) {
724 // We assume the addition is mod 2^32, which is valid because unsigned
725 checksum += (buf[i] << 24) | (buf[i + 1] << 16) |
726 (buf[i + 2] << 8) | buf[i + 3];
727 }
728 return checksum;
729 }
730
731 bool FixChecksums(const std::vector<Table>& tables, uint8_t* dst) {
732 const Table* head_table = FindTable(tables, TAG('h', 'e', 'a', 'd'));
733 if (head_table == NULL ||
734 head_table->dst_length < kCheckSumAdjustmentOffset + 4) {
735 return OTS_FAILURE();
736 }
737 size_t adjustment_offset = head_table->dst_offset + kCheckSumAdjustmentOffset;
738 if (adjustment_offset < head_table->dst_offset) {
739 return OTS_FAILURE();
740 }
741 StoreU32(dst, adjustment_offset, 0);
742 size_t n_tables = tables.size();
743 uint32_t file_checksum = 0;
744 for (size_t i = 0; i < n_tables; ++i) {
745 const Table* table = &tables.at(i);
746 size_t table_length = table->dst_length;
747 uint8_t* table_data = dst + table->dst_offset;
748 uint32_t checksum = ComputeChecksum(table_data, table_length);
749 StoreU32(dst, kSfntHeaderSize + i * kSfntEntrySize + 4, checksum);
750 file_checksum += checksum; // The addition is mod 2^32
751 }
752 file_checksum += ComputeChecksum(dst,
753 kSfntHeaderSize + kSfntEntrySize * n_tables);
754 uint32_t checksum_adjustment = 0xb1b0afba - file_checksum;
755 StoreU32(dst, adjustment_offset, checksum_adjustment);
756 return true;
757 }
758
759 bool Woff2Uncompress(uint8_t* dst_buf, size_t dst_size,
760 const uint8_t* src_buf, size_t src_size, uint32_t compression_type) {
761 if (compression_type == kCompressionTypeGzip) {
762 uLongf uncompressed_length = dst_size;
763 int r = uncompress(reinterpret_cast<Bytef *>(dst_buf), &uncompressed_length,
764 src_buf, src_size);
765 if (r != Z_OK || uncompressed_length != dst_size) {
766 return OTS_FAILURE();
767 }
768 return true;
769 } else if (compression_type == kCompressionTypeLzma) {
770 if (src_size < kLzmaHeaderSize) {
771 // Make sure we have at least a full Lzma header
772 return OTS_FAILURE();
773 }
774 // TODO: check that size matches (or elide size?)
775 size_t uncompressed_size = dst_size;
776 size_t compressed_size = src_size;
777 int result = LzmaUncompress(dst_buf, &dst_size,
778 src_buf + kLzmaHeaderSize, &compressed_size,
779 src_buf, LZMA_PROPS_SIZE);
780 if (result != SZ_OK || uncompressed_size != dst_size) {
781 return OTS_FAILURE();
782 }
783 return true;
784 }
785 // Unknown compression type
786 return OTS_FAILURE();
787 }
788
789 bool ReadShortDirectory(ots::Buffer* file, std::vector<Table>* tables,
790 size_t num_tables) {
791 uint32_t last_compression_type = 0;
792 for (size_t i = 0; i < num_tables; ++i) {
793 Table* table = &tables->at(i);
794 uint8_t flag_byte;
795 if (!file->ReadU8(&flag_byte)) {
796 return OTS_FAILURE();
797 }
798 uint32_t tag;
799 if ((flag_byte & 0x1f) == 0x1f) {
800 if (!file->ReadU32(&tag)) {
801 return OTS_FAILURE();
802 }
803 } else {
804 if ((flag_byte & 0x1f) >= arraysize(kKnownTags)) {
805 return OTS_FAILURE();
806 }
807 tag = kKnownTags[flag_byte & 0x1f];
808 }
809 uint32_t flags = flag_byte >> 6;
810 if (flags == kShortFlagsContinue) {
811 flags = last_compression_type | kWoff2FlagsContinueStream;
812 } else {
813 if (flags == kCompressionTypeNone ||
814 flags == kCompressionTypeGzip ||
815 flags == kCompressionTypeLzma) {
816 last_compression_type = flags;
817 } else {
818 return OTS_FAILURE();
819 }
820 }
821 if ((flag_byte & 0x20) != 0) {
822 flags |= kWoff2FlagsTransform;
823 }
824 uint32_t dst_length;
825 if (!ReadBase128(file, &dst_length)) {
826 return OTS_FAILURE();
827 }
828 uint32_t transform_length = dst_length;
829 if ((flags & kWoff2FlagsTransform) != 0) {
830 if (!ReadBase128(file, &transform_length)) {
831 return OTS_FAILURE();
832 }
833 }
834 uint32_t src_length = transform_length;
835 if ((flag_byte >> 6) == 1 || (flag_byte >> 6) == 2) {
836 if (!ReadBase128(file, &src_length)) {
837 return OTS_FAILURE();
838 }
839 }
840 // Disallow huge numbers (> 1GB) for sanity.
841 if (src_length > 1024 * 1024 * 1024 ||
842 transform_length > 1024 * 1024 * 1024 ||
843 dst_length > 1024 * 1024 * 1024) {
844 return OTS_FAILURE();
845 }
846
847 table->tag = tag;
848 table->flags = flags;
849 table->src_length = src_length;
850 table->transform_length = transform_length;
851 table->dst_length = dst_length;
852 }
853 return true;
854 }
855
856 } // namespace
857
858 namespace ots {
859
860 size_t ComputeWOFF2FinalSize(const uint8_t* data, size_t length) {
861 ots::Buffer file(data, length);
862 uint32_t total_length;
863
864 if (!file.Skip(16) ||
865 !file.ReadU32(&total_length)) {
866 return 0;
867 }
868 return total_length;
869 }
870
871 bool ConvertWOFF2ToTTF(uint8_t* result, size_t result_length,
872 const uint8_t* data, size_t length) {
873 static const uint32_t kWoff2Signature = 0x774f4632; // "wOF2"
874 ots::Buffer file(data, length);
875
876 uint32_t signature;
877 uint32_t flavor;
878 if (!file.ReadU32(&signature) || signature != kWoff2Signature ||
879 !file.ReadU32(&flavor)) {
880 return OTS_FAILURE();
881 }
882
883 if (!IsValidVersionTag(ntohl(flavor))) {
884 return OTS_FAILURE();
885 }
886
887 uint32_t reported_length;
888 if (!file.ReadU32(&reported_length) || length != reported_length) {
889 return OTS_FAILURE();
890 }
891 uint16_t num_tables;
892 if (!file.ReadU16(&num_tables) || !num_tables) {
893 return OTS_FAILURE();
894 }
895 // We don't care about these fields of the header:
896 // uint16_t reserved
897 // uint32_t total_sfnt_size
898 // uint16_t major_version, minor_version
899 // uint32_t meta_offset, meta_length, meta_orig_length
900 // uint32_t priv_offset, priv_length
901 if (!file.Skip(30)) {
902 return OTS_FAILURE();
903 }
904 std::vector<Table> tables(num_tables);
905 if (!ReadShortDirectory(&file, &tables, num_tables)) {
906 return OTS_FAILURE();
907 }
908 uint64_t src_offset = file.offset();
909 uint64_t dst_offset = kSfntHeaderSize +
910 kSfntEntrySize * static_cast<uint64_t>(num_tables);
911 uint64_t uncompressed_sum = 0;
912 for (uint16_t i = 0; i < num_tables; ++i) {
913 Table* table = &tables.at(i);
914 table->src_offset = src_offset;
915 src_offset += table->src_length;
916 if (src_offset > std::numeric_limits<uint32_t>::max()) {
917 return OTS_FAILURE();
918 }
919 src_offset = ots::Round4(src_offset);
920 table->dst_offset = dst_offset;
921 dst_offset += table->dst_length;
922 if (dst_offset > std::numeric_limits<uint32_t>::max()) {
923 return OTS_FAILURE();
924 }
925 dst_offset = ots::Round4(dst_offset);
926 if ((table->flags & kCompressionTypeMask) != kCompressionTypeNone) {
927 uncompressed_sum += table->src_length;
928 if (uncompressed_sum > std::numeric_limits<uint32_t>::max()) {
929 return OTS_FAILURE();
930 }
931 }
932 }
933 // Enforce same 30M limit on uncompressed tables as OTS
934 if (uncompressed_sum > 30 * 1024 * 1024) {
935 return OTS_FAILURE();
936 }
937 if (src_offset > length || dst_offset > result_length) {
938 return OTS_FAILURE();
939 }
940
941 const uint32_t sfnt_header_and_table_directory_size = 12 + 16 * num_tables;
942 if (sfnt_header_and_table_directory_size > result_length) {
943 return OTS_FAILURE();
944 }
945
946 // Start building the font
947 size_t offset = 0;
948 offset = StoreU32(result, offset, flavor);
949 offset = Store16(result, offset, num_tables);
950 unsigned max_pow2 = 0;
951 while (1u << (max_pow2 + 1) <= num_tables) {
952 max_pow2++;
953 }
954 const uint16_t output_search_range = (1u << max_pow2) << 4;
955 offset = Store16(result, offset, output_search_range);
956 offset = Store16(result, offset, max_pow2);
957 offset = Store16(result, offset, (num_tables << 4) - output_search_range);
958 for (uint16_t i = 0; i < num_tables; ++i) {
959 const Table* table = &tables.at(i);
960 offset = StoreU32(result, offset, table->tag);
961 offset = StoreU32(result, offset, 0); // checksum, to fill in later
962 offset = StoreU32(result, offset, table->dst_offset);
963 offset = StoreU32(result, offset, table->dst_length);
964 }
965 std::vector<uint8_t> uncompressed_buf;
966 bool continue_valid = false;
967 for (uint16_t i = 0; i < num_tables; ++i) {
968 const Table* table = &tables.at(i);
969 uint32_t flags = table->flags;
970 const uint8_t* src_buf = data + table->src_offset;
971 uint32_t compression_type = flags & kCompressionTypeMask;
972 const uint8_t* transform_buf = NULL;
973 size_t transform_length = table->transform_length;
974 if ((flags & kWoff2FlagsContinueStream) != 0) {
975 if (!continue_valid) {
976 return OTS_FAILURE();
977 }
978 } else if (compression_type == kCompressionTypeNone) {
979 if (transform_length != table->src_length) {
980 return OTS_FAILURE();
981 }
982 transform_buf = src_buf;
983 continue_valid = false;
984 } else if ((flags & kWoff2FlagsContinueStream) == 0) {
985 uint64_t total_size = transform_length;
986 for (uint16_t j = i + 1; j < num_tables; ++j) {
987 if ((tables.at(j).flags & kWoff2FlagsContinueStream) == 0) {
988 break;
989 }
990 total_size += tables.at(j).transform_length;
991 if (total_size > std::numeric_limits<uint32_t>::max()) {
992 return OTS_FAILURE();
993 }
994 }
995 // Enforce same 30M limit on uncompressed tables as OTS
996 if (total_size > 30 * 1024 * 1024) {
997 return OTS_FAILURE();
998 }
999 uncompressed_buf.resize(total_size);
1000 if (!Woff2Uncompress(&uncompressed_buf[0], total_size,
1001 src_buf, table->src_length, compression_type)) {
1002 return OTS_FAILURE();
1003 }
1004 transform_buf = &uncompressed_buf[0];
1005 continue_valid = true;
1006 } else {
1007 return OTS_FAILURE();
1008 }
1009
1010 if ((flags & kWoff2FlagsTransform) == 0) {
1011 if (transform_length != table->dst_length) {
1012 return OTS_FAILURE();
1013 }
1014 if (static_cast<uint64_t>(table->dst_offset) + transform_length >
1015 result_length) {
1016 return OTS_FAILURE();
1017 }
1018 std::memcpy(result + table->dst_offset, transform_buf,
1019 transform_length);
1020 } else {
1021 if (!ReconstructTransformed(tables, table->tag,
1022 transform_buf, transform_length, result, result_length)) {
1023 return OTS_FAILURE();
1024 }
1025 }
1026 if (continue_valid) {
1027 transform_buf += transform_length;
1028 if (transform_buf > &uncompressed_buf[uncompressed_buf.size()]) {
1029 return OTS_FAILURE();
1030 }
1031 }
1032 }
1033
1034 return FixChecksums(tables, result);
1035 }
1036
1037 } // namespace ots
OLDNEW
« no previous file with comments | « src/woff2.h ('k') | test/ot-sanitise.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698