OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 // This is the implementation of decompression of the proposed WOFF Ultra |
| 6 // Condensed file format. |
| 7 |
| 8 #include <cassert> |
| 9 #include <cstdlib> |
| 10 #include <vector> |
| 11 |
| 12 #include <zlib.h> |
| 13 |
| 14 #include "third_party/lzma_sdk/LzmaLib.h" |
| 15 |
| 16 #include "opentype-sanitiser.h" |
| 17 #include "ots-memory-stream.h" |
| 18 #include "ots.h" |
| 19 #include "woff2.h" |
| 20 |
| 21 namespace { |
| 22 |
| 23 // simple glyph flags |
| 24 const int kGlyfOnCurve = 1 << 0; |
| 25 const int kGlyfXShort = 1 << 1; |
| 26 const int kGlyfYShort = 1 << 2; |
| 27 const int kGlyfRepeat = 1 << 3; |
| 28 const int kGlyfThisXIsSame = 1 << 4; |
| 29 const int kGlyfThisYIsSame = 1 << 5; |
| 30 |
| 31 // composite glyph flags |
| 32 const int FLAG_ARG_1_AND_2_ARE_WORDS = 1 << 0; |
| 33 const int FLAG_ARGS_ARE_XY_VALUES = 1 << 1; |
| 34 const int FLAG_ROUND_XY_TO_GRID = 1 << 2; |
| 35 const int FLAG_WE_HAVE_A_SCALE = 1 << 3; |
| 36 const int FLAG_RESERVED = 1 << 4; |
| 37 const int FLAG_MORE_COMPONENTS = 1 << 5; |
| 38 const int FLAG_WE_HAVE_AN_X_AND_Y_SCALE = 1 << 6; |
| 39 const int FLAG_WE_HAVE_A_TWO_BY_TWO = 1 << 7; |
| 40 const int FLAG_WE_HAVE_INSTRUCTIONS = 1 << 8; |
| 41 const int FLAG_USE_MY_METRICS = 1 << 9; |
| 42 const int FLAG_OVERLAP_COMPOUND = 1 << 10; |
| 43 const int FLAG_SCALED_COMPONENT_OFFSET = 1 << 11; |
| 44 const int FLAG_UNSCALED_COMPONENT_OFFSET = 1 << 12; |
| 45 |
| 46 const size_t kSfntHeaderSize = 12; |
| 47 const size_t kSfntEntrySize = 16; |
| 48 const size_t kCheckSumAdjustmentOffset = 8; |
| 49 |
| 50 const size_t kEndPtsOfContoursOffset = 10; |
| 51 const size_t kCompositeGlyphBegin = 10; |
| 52 |
| 53 // Note that the byte order is big-endian, not the same as ots.cc |
| 54 #define TAG(a, b, c, d) ((a << 24) | (b << 16) | (c << 8) | d) |
| 55 |
| 56 const unsigned int kWoff2FlagsContinueStream = 1 << 4; |
| 57 const unsigned int kWoff2FlagsTransform = 1 << 5; |
| 58 |
| 59 const size_t kWoff2HeaderSize = 44; |
| 60 const size_t kWoff2EntrySize = 20; |
| 61 |
| 62 const size_t kLzmaHeaderSize = 13; |
| 63 |
| 64 // Compression type values common to both short and long formats |
| 65 const uint32_t kCompressionTypeMask = 0xf; |
| 66 const uint32_t kCompressionTypeNone = 0; |
| 67 const uint32_t kCompressionTypeGzip = 1; |
| 68 const uint32_t kCompressionTypeLzma = 2; |
| 69 |
| 70 // This is a special value for the short format only, as described in |
| 71 // "Design for compressed header format" in draft doc. |
| 72 const uint32_t kShortFlagsContinue = 3; |
| 73 |
| 74 const uint32_t kKnownTags[] = { |
| 75 TAG('c', 'm', 'a', 'p'), // 0 |
| 76 TAG('h', 'e', 'a', 'd'), // 1 |
| 77 TAG('h', 'h', 'e', 'a'), // 2 |
| 78 TAG('h', 'm', 't', 'x'), // 3 |
| 79 TAG('m', 'a', 'x', 'p'), // 4 |
| 80 TAG('n', 'a', 'm', 'e'), // 5 |
| 81 TAG('O', 'S', '/', '2'), // 6 |
| 82 TAG('p', 'o', 's', 't'), // 7 |
| 83 TAG('c', 'v', 't', ' '), // 8 |
| 84 TAG('f', 'p', 'g', 'm'), // 9 |
| 85 TAG('g', 'l', 'y', 'f'), // 10 |
| 86 TAG('l', 'o', 'c', 'a'), // 11 |
| 87 TAG('p', 'r', 'e', 'p'), // 12 |
| 88 TAG('C', 'F', 'F', ' '), // 13 |
| 89 TAG('V', 'O', 'R', 'G'), // 14 |
| 90 TAG('E', 'B', 'D', 'T'), // 15 |
| 91 TAG('E', 'B', 'L', 'C'), // 16 |
| 92 TAG('g', 'a', 's', 'p'), // 17 |
| 93 TAG('h', 'd', 'm', 'x'), // 18 |
| 94 TAG('k', 'e', 'r', 'n'), // 19 |
| 95 TAG('L', 'T', 'S', 'H'), // 20 |
| 96 TAG('P', 'C', 'L', 'T'), // 21 |
| 97 TAG('V', 'D', 'M', 'X'), // 22 |
| 98 TAG('v', 'h', 'e', 'a'), // 23 |
| 99 TAG('v', 'm', 't', 'x'), // 24 |
| 100 TAG('B', 'A', 'S', 'E'), // 25 |
| 101 TAG('G', 'D', 'E', 'F'), // 26 |
| 102 TAG('G', 'P', 'O', 'S'), // 27 |
| 103 TAG('G', 'S', 'U', 'B'), // 28 |
| 104 }; |
| 105 |
| 106 struct Point { |
| 107 int x; |
| 108 int y; |
| 109 bool on_curve; |
| 110 }; |
| 111 |
| 112 struct Table { |
| 113 uint32_t tag; |
| 114 uint32_t flags; |
| 115 uint32_t src_offset; |
| 116 uint32_t src_length; |
| 117 |
| 118 uint32_t transform_length; |
| 119 |
| 120 uint32_t dst_offset; |
| 121 uint32_t dst_length; |
| 122 |
| 123 Table() |
| 124 : tag(0), |
| 125 flags(0), |
| 126 src_offset(0), |
| 127 src_length(0), |
| 128 transform_length(0), |
| 129 dst_offset(0), |
| 130 dst_length(0) {} |
| 131 }; |
| 132 |
| 133 // Based on section 6.1.1 of MicroType Express draft spec |
| 134 bool Read255UShort(ots::Buffer* buf, unsigned int* value) { |
| 135 static const int kWordCode = 253; |
| 136 static const int kOneMoreByteCode2 = 254; |
| 137 static const int kOneMoreByteCode1 = 255; |
| 138 static const int kLowestUCode = 253; |
| 139 uint8_t code = 0; |
| 140 if (!buf->ReadU8(&code)) { |
| 141 return OTS_FAILURE(); |
| 142 } |
| 143 if (code == kWordCode) { |
| 144 uint16_t result = 0; |
| 145 if (!buf->ReadU16(&result)) { |
| 146 return OTS_FAILURE(); |
| 147 } |
| 148 *value = result; |
| 149 return true; |
| 150 } else if (code == kOneMoreByteCode1) { |
| 151 uint8_t result = 0; |
| 152 if (!buf->ReadU8(&result)) { |
| 153 return OTS_FAILURE(); |
| 154 } |
| 155 *value = result + kLowestUCode; |
| 156 return true; |
| 157 } else if (code == kOneMoreByteCode2) { |
| 158 uint8_t result = 0; |
| 159 if (!buf->ReadU8(&result)) { |
| 160 return OTS_FAILURE(); |
| 161 } |
| 162 *value = result + kLowestUCode * 2; |
| 163 return true; |
| 164 } else { |
| 165 *value = code; |
| 166 return true; |
| 167 } |
| 168 } |
| 169 |
| 170 bool ReadBase128(ots::Buffer* buf, uint32_t* value) { |
| 171 uint32_t result = 0; |
| 172 for (size_t i = 0; i < 5; ++i) { |
| 173 uint8_t code = 0; |
| 174 if (!buf->ReadU8(&code)) { |
| 175 return OTS_FAILURE(); |
| 176 } |
| 177 // If any of the top seven bits are set then we're about to overflow. |
| 178 if (result & 0xe0000000U) { |
| 179 return OTS_FAILURE(); |
| 180 } |
| 181 result = (result << 7) | (code & 0x7f); |
| 182 if ((code & 0x80) == 0) { |
| 183 *value = result; |
| 184 return true; |
| 185 } |
| 186 } |
| 187 // Make sure not to exceed the size bound |
| 188 return OTS_FAILURE(); |
| 189 } |
| 190 |
| 191 // Caller must ensure that buffer overrun won't happen. |
| 192 // TODO(ksakamaoto): Consider creating 'writer' version of the Buffer class |
| 193 // and use it across the code. |
| 194 size_t StoreU32(uint8_t* dst, size_t offset, uint32_t x) { |
| 195 dst[offset] = x >> 24; |
| 196 dst[offset + 1] = x >> 16; |
| 197 dst[offset + 2] = x >> 8; |
| 198 dst[offset + 3] = x; |
| 199 return offset + 4; |
| 200 } |
| 201 |
| 202 size_t Store16(uint8_t* dst, size_t offset, int x) { |
| 203 dst[offset] = x >> 8; |
| 204 dst[offset + 1] = x; |
| 205 return offset + 2; |
| 206 } |
| 207 |
| 208 int WithSign(int flag, int baseval) { |
| 209 assert(0 <= baseval && baseval < 65536); |
| 210 return (flag & 1) ? baseval : -baseval; |
| 211 } |
| 212 |
| 213 bool TripletDecode(const uint8_t* flags_in, const uint8_t* in, size_t in_size, |
| 214 unsigned int n_points, std::vector<Point>* result, |
| 215 size_t* in_bytes_consumed) { |
| 216 int x = 0; |
| 217 int y = 0; |
| 218 |
| 219 // Early return if |in| buffer is too small. Each point consumes 1-4 bytes. |
| 220 if (n_points > in_size) { |
| 221 return OTS_FAILURE(); |
| 222 } |
| 223 unsigned int triplet_index = 0; |
| 224 |
| 225 for (unsigned int i = 0; i < n_points; ++i) { |
| 226 uint8_t flag = flags_in[i]; |
| 227 bool on_curve = !(flag >> 7); |
| 228 flag &= 0x7f; |
| 229 unsigned int n_data_bytes; |
| 230 if (flag < 84) { |
| 231 n_data_bytes = 1; |
| 232 } else if (flag < 120) { |
| 233 n_data_bytes = 2; |
| 234 } else if (flag < 124) { |
| 235 n_data_bytes = 3; |
| 236 } else { |
| 237 n_data_bytes = 4; |
| 238 } |
| 239 if (triplet_index + n_data_bytes > in_size || |
| 240 triplet_index + n_data_bytes < triplet_index) { |
| 241 return OTS_FAILURE(); |
| 242 } |
| 243 int dx, dy; |
| 244 if (flag < 10) { |
| 245 dx = 0; |
| 246 dy = WithSign(flag, ((flag & 14) << 7) + in[triplet_index]); |
| 247 } else if (flag < 20) { |
| 248 dx = WithSign(flag, (((flag - 10) & 14) << 7) + in[triplet_index]); |
| 249 dy = 0; |
| 250 } else if (flag < 84) { |
| 251 int b0 = flag - 20; |
| 252 int b1 = in[triplet_index]; |
| 253 dx = WithSign(flag, 1 + (b0 & 0x30) + (b1 >> 4)); |
| 254 dy = WithSign(flag >> 1, 1 + ((b0 & 0x0c) << 2) + (b1 & 0x0f)); |
| 255 } else if (flag < 120) { |
| 256 int b0 = flag - 84; |
| 257 dx = WithSign(flag, 1 + ((b0 / 12) << 8) + in[triplet_index]); |
| 258 dy = WithSign(flag >> 1, |
| 259 1 + (((b0 % 12) >> 2) << 8) + in[triplet_index + 1]); |
| 260 } else if (flag < 124) { |
| 261 int b2 = in[triplet_index + 1]; |
| 262 dx = WithSign(flag, (in[triplet_index] << 4) + (b2 >> 4)); |
| 263 dy = WithSign(flag >> 1, ((b2 & 0x0f) << 8) + in[triplet_index + 2]); |
| 264 } else { |
| 265 dx = WithSign(flag, (in[triplet_index] << 8) + in[triplet_index + 1]); |
| 266 dy = WithSign(flag >> 1, |
| 267 (in[triplet_index + 2] << 8) + in[triplet_index + 3]); |
| 268 } |
| 269 triplet_index += n_data_bytes; |
| 270 // Possible overflow but coordinate values are not security sensitive |
| 271 x += dx; |
| 272 y += dy; |
| 273 result->push_back(Point()); |
| 274 Point& back = result->back(); |
| 275 back.x = x; |
| 276 back.y = y; |
| 277 back.on_curve = on_curve; |
| 278 } |
| 279 *in_bytes_consumed = triplet_index; |
| 280 return true; |
| 281 } |
| 282 |
| 283 // This function stores just the point data. On entry, dst points to the |
| 284 // beginning of a simple glyph. Returns true on success. |
| 285 bool StorePoints(const std::vector<Point>& points, |
| 286 unsigned int n_contours, unsigned int instruction_length, |
| 287 uint8_t* dst, size_t dst_size, size_t* glyph_size) { |
| 288 // I believe that n_contours < 65536, in which case this is safe. However, a |
| 289 // comment and/or an assert would be good. |
| 290 unsigned int flag_offset = kEndPtsOfContoursOffset + 2 * n_contours + 2 + |
| 291 instruction_length; |
| 292 int last_flag = -1; |
| 293 int repeat_count = 0; |
| 294 int last_x = 0; |
| 295 int last_y = 0; |
| 296 unsigned int x_bytes = 0; |
| 297 unsigned int y_bytes = 0; |
| 298 |
| 299 for (size_t i = 0; i < points.size(); ++i) { |
| 300 const Point& point = points.at(i); |
| 301 int flag = point.on_curve ? kGlyfOnCurve : 0; |
| 302 int dx = point.x - last_x; |
| 303 int dy = point.y - last_y; |
| 304 if (dx == 0) { |
| 305 flag |= kGlyfThisXIsSame; |
| 306 } else if (dx > -256 && dx < 256) { |
| 307 flag |= kGlyfXShort | (dx > 0 ? kGlyfThisXIsSame : 0); |
| 308 x_bytes += 1; |
| 309 } else { |
| 310 x_bytes += 2; |
| 311 } |
| 312 if (dy == 0) { |
| 313 flag |= kGlyfThisYIsSame; |
| 314 } else if (dy > -256 && dy < 256) { |
| 315 flag |= kGlyfYShort | (dy > 0 ? kGlyfThisYIsSame : 0); |
| 316 y_bytes += 1; |
| 317 } else { |
| 318 y_bytes += 2; |
| 319 } |
| 320 |
| 321 if (flag == last_flag && repeat_count != 255) { |
| 322 dst[flag_offset - 1] |= kGlyfRepeat; |
| 323 repeat_count++; |
| 324 } else { |
| 325 if (repeat_count != 0) { |
| 326 if (flag_offset >= dst_size) { |
| 327 return OTS_FAILURE(); |
| 328 } |
| 329 dst[flag_offset++] = repeat_count; |
| 330 } |
| 331 if (flag_offset >= dst_size) { |
| 332 return OTS_FAILURE(); |
| 333 } |
| 334 dst[flag_offset++] = flag; |
| 335 repeat_count = 0; |
| 336 } |
| 337 last_x = point.x; |
| 338 last_y = point.y; |
| 339 last_flag = flag; |
| 340 } |
| 341 |
| 342 if (repeat_count != 0) { |
| 343 if (flag_offset >= dst_size) { |
| 344 return OTS_FAILURE(); |
| 345 } |
| 346 dst[flag_offset++] = repeat_count; |
| 347 } |
| 348 unsigned int xy_bytes = x_bytes + y_bytes; |
| 349 if (xy_bytes < x_bytes || |
| 350 flag_offset + xy_bytes < flag_offset || |
| 351 flag_offset + xy_bytes > dst_size) { |
| 352 return OTS_FAILURE(); |
| 353 } |
| 354 |
| 355 int x_offset = flag_offset; |
| 356 int y_offset = flag_offset + x_bytes; |
| 357 last_x = 0; |
| 358 last_y = 0; |
| 359 for (size_t i = 0; i < points.size(); ++i) { |
| 360 int dx = points.at(i).x - last_x; |
| 361 if (dx == 0) { |
| 362 // pass |
| 363 } else if (dx > -256 && dx < 256) { |
| 364 dst[x_offset++] = std::abs(dx); |
| 365 } else { |
| 366 // will always fit for valid input, but overflow is harmless |
| 367 x_offset = Store16(dst, x_offset, dx); |
| 368 } |
| 369 last_x += dx; |
| 370 int dy = points.at(i).y - last_y; |
| 371 if (dy == 0) { |
| 372 // pass |
| 373 } else if (dy > -256 && dy < 256) { |
| 374 dst[y_offset++] = std::abs(dy); |
| 375 } else { |
| 376 y_offset = Store16(dst, y_offset, dy); |
| 377 } |
| 378 last_y += dy; |
| 379 } |
| 380 *glyph_size = y_offset; |
| 381 return true; |
| 382 } |
| 383 |
| 384 // Compute the bounding box of the coordinates, and store into a glyf buffer. |
| 385 // A precondition is that there are at least 10 bytes available. |
| 386 void ComputeBbox(const std::vector<Point>& points, uint8_t* dst) { |
| 387 int x_min = 0; |
| 388 int y_min = 0; |
| 389 int x_max = 0; |
| 390 int y_max = 0; |
| 391 |
| 392 for (size_t i = 0; i < points.size(); ++i) { |
| 393 int x = points.at(i).x; |
| 394 int y = points.at(i).y; |
| 395 if (i == 0 || x < x_min) x_min = x; |
| 396 if (i == 0 || x > x_max) x_max = x; |
| 397 if (i == 0 || y < y_min) y_min = y; |
| 398 if (i == 0 || y > y_max) y_max = y; |
| 399 } |
| 400 size_t offset = 2; |
| 401 offset = Store16(dst, offset, x_min); |
| 402 offset = Store16(dst, offset, y_min); |
| 403 offset = Store16(dst, offset, x_max); |
| 404 offset = Store16(dst, offset, y_max); |
| 405 } |
| 406 |
| 407 // Process entire bbox stream. This is done as a separate pass to allow for |
| 408 // composite bbox computations (an optional more aggressive transform). |
| 409 bool ProcessBboxStream(ots::Buffer* bbox_stream, unsigned int n_glyphs, |
| 410 const std::vector<uint32_t>& loca_values, uint8_t* glyf_buf, |
| 411 size_t glyf_buf_length) { |
| 412 const uint8_t* buf = bbox_stream->buffer(); |
| 413 if (n_glyphs >= 65536 || loca_values.size() != n_glyphs + 1) { |
| 414 return OTS_FAILURE(); |
| 415 } |
| 416 // Safe because n_glyphs is bounded |
| 417 unsigned int bitmap_length = ((n_glyphs + 31) >> 5) << 2; |
| 418 if (!bbox_stream->Skip(bitmap_length)) { |
| 419 return OTS_FAILURE(); |
| 420 } |
| 421 for (unsigned int i = 0; i < n_glyphs; ++i) { |
| 422 if (buf[i >> 3] & (0x80 >> (i & 7))) { |
| 423 uint32_t loca_offset = loca_values.at(i); |
| 424 if (loca_values.at(i + 1) - loca_offset < kEndPtsOfContoursOffset) { |
| 425 return OTS_FAILURE(); |
| 426 } |
| 427 if (glyf_buf_length < 2 + 10 || |
| 428 loca_offset > glyf_buf_length - 2 - 10) { |
| 429 return OTS_FAILURE(); |
| 430 } |
| 431 if (!bbox_stream->Read(glyf_buf + loca_offset + 2, 8)) { |
| 432 return OTS_FAILURE(); |
| 433 } |
| 434 } |
| 435 } |
| 436 return true; |
| 437 } |
| 438 |
| 439 bool ProcessComposite(ots::Buffer* composite_stream, uint8_t* dst, |
| 440 size_t dst_size, size_t* glyph_size, bool* have_instructions) { |
| 441 size_t start_offset = composite_stream->offset(); |
| 442 bool we_have_instructions = false; |
| 443 |
| 444 uint16_t flags = FLAG_MORE_COMPONENTS; |
| 445 while (flags & FLAG_MORE_COMPONENTS) { |
| 446 if (!composite_stream->ReadU16(&flags)) { |
| 447 return OTS_FAILURE(); |
| 448 } |
| 449 we_have_instructions |= (flags & FLAG_WE_HAVE_INSTRUCTIONS) != 0; |
| 450 size_t arg_size = 2; // glyph index |
| 451 if (flags & FLAG_ARG_1_AND_2_ARE_WORDS) { |
| 452 arg_size += 4; |
| 453 } else { |
| 454 arg_size += 2; |
| 455 } |
| 456 if (flags & FLAG_WE_HAVE_A_SCALE) { |
| 457 arg_size += 2; |
| 458 } else if (flags & FLAG_WE_HAVE_AN_X_AND_Y_SCALE) { |
| 459 arg_size += 4; |
| 460 } else if (flags & FLAG_WE_HAVE_A_TWO_BY_TWO) { |
| 461 arg_size += 8; |
| 462 } |
| 463 if (!composite_stream->Skip(arg_size)) { |
| 464 return OTS_FAILURE(); |
| 465 } |
| 466 } |
| 467 size_t composite_glyph_size = composite_stream->offset() - start_offset; |
| 468 if (composite_glyph_size + kCompositeGlyphBegin > dst_size) { |
| 469 return OTS_FAILURE(); |
| 470 } |
| 471 Store16(dst, 0, 0xffff); // nContours = -1 for composite glyph |
| 472 std::memcpy(dst + kCompositeGlyphBegin, |
| 473 composite_stream->buffer() + start_offset, |
| 474 composite_glyph_size); |
| 475 *glyph_size = kCompositeGlyphBegin + composite_glyph_size; |
| 476 *have_instructions = we_have_instructions; |
| 477 return true; |
| 478 } |
| 479 |
| 480 // Build TrueType loca table |
| 481 bool StoreLoca(const std::vector<uint32_t>& loca_values, int index_format, |
| 482 uint8_t* dst, size_t dst_size) { |
| 483 const uint64_t loca_size = loca_values.size(); |
| 484 const uint64_t offset_size = index_format ? 4 : 2; |
| 485 if ((loca_size << 2) >> 2 != loca_size) { |
| 486 return OTS_FAILURE(); |
| 487 } |
| 488 // No integer overflow here (loca_size <= 2^16). |
| 489 if (offset_size * loca_size > dst_size) { |
| 490 return OTS_FAILURE(); |
| 491 } |
| 492 size_t offset = 0; |
| 493 for (size_t i = 0; i < loca_values.size(); ++i) { |
| 494 uint32_t value = loca_values.at(i); |
| 495 if (index_format) { |
| 496 offset = StoreU32(dst, offset, value); |
| 497 } else { |
| 498 offset = Store16(dst, offset, value >> 1); |
| 499 } |
| 500 } |
| 501 return true; |
| 502 } |
| 503 |
| 504 // Reconstruct entire glyf table based on transformed original |
| 505 bool ReconstructGlyf(const uint8_t* data, size_t data_size, |
| 506 uint8_t* dst, size_t dst_size, |
| 507 uint8_t* loca_buf, size_t loca_size) { |
| 508 static const int kNumSubStreams = 7; |
| 509 ots::Buffer file(data, data_size); |
| 510 uint32_t version; |
| 511 std::vector<std::pair<const uint8_t*, size_t> > substreams(kNumSubStreams); |
| 512 |
| 513 if (!file.ReadU32(&version)) { |
| 514 return OTS_FAILURE(); |
| 515 } |
| 516 uint16_t num_glyphs; |
| 517 uint16_t index_format; |
| 518 if (!file.ReadU16(&num_glyphs) || |
| 519 !file.ReadU16(&index_format)) { |
| 520 return OTS_FAILURE(); |
| 521 } |
| 522 unsigned int offset = (2 + kNumSubStreams) * 4; |
| 523 if (offset > data_size) { |
| 524 return OTS_FAILURE(); |
| 525 } |
| 526 // Invariant from here on: data_size >= offset |
| 527 for (int i = 0; i < kNumSubStreams; ++i) { |
| 528 uint32_t substream_size; |
| 529 if (!file.ReadU32(&substream_size)) { |
| 530 return OTS_FAILURE(); |
| 531 } |
| 532 if (substream_size > data_size - offset) { |
| 533 return OTS_FAILURE(); |
| 534 } |
| 535 substreams.at(i) = std::make_pair(data + offset, substream_size); |
| 536 offset += substream_size; |
| 537 } |
| 538 ots::Buffer n_contour_stream(substreams.at(0).first, substreams.at(0).second); |
| 539 ots::Buffer n_points_stream(substreams.at(1).first, substreams.at(1).second); |
| 540 ots::Buffer flag_stream(substreams.at(2).first, substreams.at(2).second); |
| 541 ots::Buffer glyph_stream(substreams.at(3).first, substreams.at(3).second); |
| 542 ots::Buffer composite_stream(substreams.at(4).first, substreams.at(4).second); |
| 543 ots::Buffer bbox_stream(substreams.at(5).first, substreams.at(5).second); |
| 544 ots::Buffer instruction_stream(substreams.at(6).first, |
| 545 substreams.at(6).second); |
| 546 |
| 547 std::vector<uint32_t> loca_values; |
| 548 loca_values.reserve(num_glyphs + 1); |
| 549 std::vector<unsigned int> n_points_vec; |
| 550 std::vector<Point> points; |
| 551 uint32_t loca_offset = 0; |
| 552 for (unsigned int i = 0; i < num_glyphs; ++i) { |
| 553 size_t glyph_size = 0; |
| 554 uint16_t n_contours = 0; |
| 555 if (!n_contour_stream.ReadU16(&n_contours)) { |
| 556 return OTS_FAILURE(); |
| 557 } |
| 558 uint8_t* glyf_dst = dst + loca_offset; |
| 559 size_t glyf_dst_size = dst_size - loca_offset; |
| 560 if (n_contours == 0xffff) { |
| 561 // composite glyph |
| 562 bool have_instructions = false; |
| 563 unsigned int instruction_size = 0; |
| 564 if (!ProcessComposite(&composite_stream, glyf_dst, glyf_dst_size, |
| 565 &glyph_size, &have_instructions)) { |
| 566 return OTS_FAILURE(); |
| 567 } |
| 568 if (have_instructions) { |
| 569 if (!Read255UShort(&glyph_stream, &instruction_size)) { |
| 570 return OTS_FAILURE(); |
| 571 } |
| 572 // No integer overflow here (instruction_size < 2^16). |
| 573 if (instruction_size + 2 > glyf_dst_size - glyph_size) { |
| 574 return OTS_FAILURE(); |
| 575 } |
| 576 Store16(glyf_dst, glyph_size, instruction_size); |
| 577 if (!instruction_stream.Read(glyf_dst + glyph_size + 2, |
| 578 instruction_size)) { |
| 579 return OTS_FAILURE(); |
| 580 } |
| 581 glyph_size += instruction_size + 2; |
| 582 } |
| 583 } else if (n_contours > 0) { |
| 584 // simple glyph |
| 585 n_points_vec.clear(); |
| 586 points.clear(); |
| 587 unsigned int total_n_points = 0; |
| 588 unsigned int n_points_contour; |
| 589 for (unsigned int j = 0; j < n_contours; ++j) { |
| 590 if (!Read255UShort(&n_points_stream, &n_points_contour)) { |
| 591 return OTS_FAILURE(); |
| 592 } |
| 593 n_points_vec.push_back(n_points_contour); |
| 594 if (total_n_points + n_points_contour < total_n_points) { |
| 595 return OTS_FAILURE(); |
| 596 } |
| 597 total_n_points += n_points_contour; |
| 598 } |
| 599 unsigned int flag_size = total_n_points; |
| 600 if (flag_size > flag_stream.length() - flag_stream.offset()) { |
| 601 return OTS_FAILURE(); |
| 602 } |
| 603 const uint8_t* flags_buf = flag_stream.buffer() + flag_stream.offset(); |
| 604 const uint8_t* triplet_buf = glyph_stream.buffer() + |
| 605 glyph_stream.offset(); |
| 606 size_t triplet_size = glyph_stream.length() - glyph_stream.offset(); |
| 607 size_t triplet_bytes_consumed = 0; |
| 608 if (!TripletDecode(flags_buf, triplet_buf, triplet_size, total_n_points, |
| 609 &points, &triplet_bytes_consumed)) { |
| 610 return OTS_FAILURE(); |
| 611 } |
| 612 const uint32_t header_and_endpts_contours_size = |
| 613 kEndPtsOfContoursOffset + 2 * n_contours; |
| 614 if (glyf_dst_size < header_and_endpts_contours_size) { |
| 615 return OTS_FAILURE(); |
| 616 } |
| 617 Store16(glyf_dst, 0, n_contours); |
| 618 ComputeBbox(points, glyf_dst); |
| 619 size_t offset = kEndPtsOfContoursOffset; |
| 620 int end_point = -1; |
| 621 for (unsigned int contour_ix = 0; contour_ix < n_contours; ++contour_ix) { |
| 622 end_point += n_points_vec.at(contour_ix); |
| 623 if (end_point >= 65536) { |
| 624 return OTS_FAILURE(); |
| 625 } |
| 626 offset = Store16(glyf_dst, offset, end_point); |
| 627 } |
| 628 if (!flag_stream.Skip(flag_size)) { |
| 629 return OTS_FAILURE(); |
| 630 } |
| 631 if (!glyph_stream.Skip(triplet_bytes_consumed)) { |
| 632 return OTS_FAILURE(); |
| 633 } |
| 634 unsigned int instruction_size; |
| 635 if (!Read255UShort(&glyph_stream, &instruction_size)) { |
| 636 return OTS_FAILURE(); |
| 637 } |
| 638 // No integer overflow here (instruction_size < 2^16). |
| 639 if (glyf_dst_size - header_and_endpts_contours_size < |
| 640 instruction_size + 2) { |
| 641 return OTS_FAILURE(); |
| 642 } |
| 643 uint8_t* instruction_dst = glyf_dst + header_and_endpts_contours_size; |
| 644 Store16(instruction_dst, 0, instruction_size); |
| 645 if (!instruction_stream.Read(instruction_dst + 2, instruction_size)) { |
| 646 return OTS_FAILURE(); |
| 647 } |
| 648 if (!StorePoints(points, n_contours, instruction_size, |
| 649 glyf_dst, glyf_dst_size, &glyph_size)) { |
| 650 return OTS_FAILURE(); |
| 651 } |
| 652 } else { |
| 653 glyph_size = 0; |
| 654 } |
| 655 loca_values.push_back(loca_offset); |
| 656 if (glyph_size + 3 < glyph_size) { |
| 657 return OTS_FAILURE(); |
| 658 } |
| 659 glyph_size = ots::Round4(glyph_size); |
| 660 if (glyph_size > dst_size - loca_offset) { |
| 661 // This shouldn't happen, but this test defensively maintains the |
| 662 // invariant that loca_offset <= dst_size. |
| 663 return OTS_FAILURE(); |
| 664 } |
| 665 loca_offset += glyph_size; |
| 666 } |
| 667 loca_values.push_back(loca_offset); |
| 668 assert(loca_values.size() == static_cast<size_t>(num_glyphs + 1)); |
| 669 if (!ProcessBboxStream(&bbox_stream, num_glyphs, loca_values, |
| 670 dst, dst_size)) { |
| 671 return OTS_FAILURE(); |
| 672 } |
| 673 return StoreLoca(loca_values, index_format, loca_buf, loca_size); |
| 674 } |
| 675 |
| 676 // This is linear search, but could be changed to binary because we |
| 677 // do have a guarantee that the tables are sorted by tag. But the total |
| 678 // cpu time is expected to be very small in any case. |
| 679 const Table* FindTable(const std::vector<Table>& tables, uint32_t tag) { |
| 680 size_t n_tables = tables.size(); |
| 681 for (size_t i = 0; i < n_tables; ++i) { |
| 682 if (tables.at(i).tag == tag) { |
| 683 return &tables.at(i); |
| 684 } |
| 685 } |
| 686 return NULL; |
| 687 } |
| 688 |
| 689 bool ReconstructTransformed(const std::vector<Table>& tables, uint32_t tag, |
| 690 const uint8_t* transformed_buf, size_t transformed_size, |
| 691 uint8_t* dst, size_t dst_length) { |
| 692 if (tag == TAG('g', 'l', 'y', 'f')) { |
| 693 const Table* glyf_table = FindTable(tables, tag); |
| 694 const Table* loca_table = FindTable(tables, TAG('l', 'o', 'c', 'a')); |
| 695 if (glyf_table == NULL || loca_table == NULL) { |
| 696 return OTS_FAILURE(); |
| 697 } |
| 698 if (static_cast<uint64_t>(glyf_table->dst_offset) + glyf_table->dst_length > |
| 699 dst_length) { |
| 700 return OTS_FAILURE(); |
| 701 } |
| 702 if (static_cast<uint64_t>(loca_table->dst_offset) + loca_table->dst_length > |
| 703 dst_length) { |
| 704 return OTS_FAILURE(); |
| 705 } |
| 706 return ReconstructGlyf(transformed_buf, transformed_size, |
| 707 dst + glyf_table->dst_offset, glyf_table->dst_length, |
| 708 dst + loca_table->dst_offset, loca_table->dst_length); |
| 709 } else if (tag == TAG('l', 'o', 'c', 'a')) { |
| 710 // processing was already done by glyf table, but validate |
| 711 if (!FindTable(tables, TAG('g', 'l', 'y', 'f'))) { |
| 712 return OTS_FAILURE(); |
| 713 } |
| 714 } else { |
| 715 // transform for the tag is not known |
| 716 return OTS_FAILURE(); |
| 717 } |
| 718 return true; |
| 719 } |
| 720 |
| 721 uint32_t ComputeChecksum(const uint8_t* buf, size_t size) { |
| 722 uint32_t checksum = 0; |
| 723 for (size_t i = 0; i < size; i += 4) { |
| 724 // We assume the addition is mod 2^32, which is valid because unsigned |
| 725 checksum += (buf[i] << 24) | (buf[i + 1] << 16) | |
| 726 (buf[i + 2] << 8) | buf[i + 3]; |
| 727 } |
| 728 return checksum; |
| 729 } |
| 730 |
| 731 bool FixChecksums(const std::vector<Table>& tables, uint8_t* dst) { |
| 732 const Table* head_table = FindTable(tables, TAG('h', 'e', 'a', 'd')); |
| 733 if (head_table == NULL || |
| 734 head_table->dst_length < kCheckSumAdjustmentOffset + 4) { |
| 735 return OTS_FAILURE(); |
| 736 } |
| 737 size_t adjustment_offset = head_table->dst_offset + kCheckSumAdjustmentOffset; |
| 738 if (adjustment_offset < head_table->dst_offset) { |
| 739 return OTS_FAILURE(); |
| 740 } |
| 741 StoreU32(dst, adjustment_offset, 0); |
| 742 size_t n_tables = tables.size(); |
| 743 uint32_t file_checksum = 0; |
| 744 for (size_t i = 0; i < n_tables; ++i) { |
| 745 const Table* table = &tables.at(i); |
| 746 size_t table_length = table->dst_length; |
| 747 uint8_t* table_data = dst + table->dst_offset; |
| 748 uint32_t checksum = ComputeChecksum(table_data, table_length); |
| 749 StoreU32(dst, kSfntHeaderSize + i * kSfntEntrySize + 4, checksum); |
| 750 file_checksum += checksum; // The addition is mod 2^32 |
| 751 } |
| 752 file_checksum += ComputeChecksum(dst, |
| 753 kSfntHeaderSize + kSfntEntrySize * n_tables); |
| 754 uint32_t checksum_adjustment = 0xb1b0afba - file_checksum; |
| 755 StoreU32(dst, adjustment_offset, checksum_adjustment); |
| 756 return true; |
| 757 } |
| 758 |
| 759 bool Woff2Uncompress(uint8_t* dst_buf, size_t dst_size, |
| 760 const uint8_t* src_buf, size_t src_size, uint32_t compression_type) { |
| 761 if (compression_type == kCompressionTypeGzip) { |
| 762 uLongf uncompressed_length = dst_size; |
| 763 int r = uncompress(reinterpret_cast<Bytef *>(dst_buf), &uncompressed_length, |
| 764 src_buf, src_size); |
| 765 if (r != Z_OK || uncompressed_length != dst_size) { |
| 766 return OTS_FAILURE(); |
| 767 } |
| 768 return true; |
| 769 } else if (compression_type == kCompressionTypeLzma) { |
| 770 if (src_size < kLzmaHeaderSize) { |
| 771 // Make sure we have at least a full Lzma header |
| 772 return OTS_FAILURE(); |
| 773 } |
| 774 // TODO: check that size matches (or elide size?) |
| 775 size_t uncompressed_size = dst_size; |
| 776 size_t compressed_size = src_size; |
| 777 int result = LzmaUncompress(dst_buf, &dst_size, |
| 778 src_buf + kLzmaHeaderSize, &compressed_size, |
| 779 src_buf, LZMA_PROPS_SIZE); |
| 780 if (result != SZ_OK || uncompressed_size != dst_size) { |
| 781 return OTS_FAILURE(); |
| 782 } |
| 783 return true; |
| 784 } |
| 785 // Unknown compression type |
| 786 return OTS_FAILURE(); |
| 787 } |
| 788 |
| 789 bool ReadShortDirectory(ots::Buffer* file, std::vector<Table>* tables, |
| 790 size_t num_tables) { |
| 791 uint32_t last_compression_type = 0; |
| 792 for (size_t i = 0; i < num_tables; ++i) { |
| 793 Table* table = &tables->at(i); |
| 794 uint8_t flag_byte; |
| 795 if (!file->ReadU8(&flag_byte)) { |
| 796 return OTS_FAILURE(); |
| 797 } |
| 798 uint32_t tag; |
| 799 if ((flag_byte & 0x1f) == 0x1f) { |
| 800 if (!file->ReadU32(&tag)) { |
| 801 return OTS_FAILURE(); |
| 802 } |
| 803 } else { |
| 804 if ((flag_byte & 0x1f) >= arraysize(kKnownTags)) { |
| 805 return OTS_FAILURE(); |
| 806 } |
| 807 tag = kKnownTags[flag_byte & 0x1f]; |
| 808 } |
| 809 uint32_t flags = flag_byte >> 6; |
| 810 if (flags == kShortFlagsContinue) { |
| 811 flags = last_compression_type | kWoff2FlagsContinueStream; |
| 812 } else { |
| 813 if (flags == kCompressionTypeNone || |
| 814 flags == kCompressionTypeGzip || |
| 815 flags == kCompressionTypeLzma) { |
| 816 last_compression_type = flags; |
| 817 } else { |
| 818 return OTS_FAILURE(); |
| 819 } |
| 820 } |
| 821 if ((flag_byte & 0x20) != 0) { |
| 822 flags |= kWoff2FlagsTransform; |
| 823 } |
| 824 uint32_t dst_length; |
| 825 if (!ReadBase128(file, &dst_length)) { |
| 826 return OTS_FAILURE(); |
| 827 } |
| 828 uint32_t transform_length = dst_length; |
| 829 if ((flags & kWoff2FlagsTransform) != 0) { |
| 830 if (!ReadBase128(file, &transform_length)) { |
| 831 return OTS_FAILURE(); |
| 832 } |
| 833 } |
| 834 uint32_t src_length = transform_length; |
| 835 if ((flag_byte >> 6) == 1 || (flag_byte >> 6) == 2) { |
| 836 if (!ReadBase128(file, &src_length)) { |
| 837 return OTS_FAILURE(); |
| 838 } |
| 839 } |
| 840 // Disallow huge numbers (> 1GB) for sanity. |
| 841 if (src_length > 1024 * 1024 * 1024 || |
| 842 transform_length > 1024 * 1024 * 1024 || |
| 843 dst_length > 1024 * 1024 * 1024) { |
| 844 return OTS_FAILURE(); |
| 845 } |
| 846 |
| 847 table->tag = tag; |
| 848 table->flags = flags; |
| 849 table->src_length = src_length; |
| 850 table->transform_length = transform_length; |
| 851 table->dst_length = dst_length; |
| 852 } |
| 853 return true; |
| 854 } |
| 855 |
| 856 } // namespace |
| 857 |
| 858 namespace ots { |
| 859 |
| 860 size_t ComputeWOFF2FinalSize(const uint8_t* data, size_t length) { |
| 861 ots::Buffer file(data, length); |
| 862 uint32_t total_length; |
| 863 |
| 864 if (!file.Skip(16) || |
| 865 !file.ReadU32(&total_length)) { |
| 866 return 0; |
| 867 } |
| 868 return total_length; |
| 869 } |
| 870 |
| 871 bool ConvertWOFF2ToTTF(uint8_t* result, size_t result_length, |
| 872 const uint8_t* data, size_t length) { |
| 873 static const uint32_t kWoff2Signature = 0x774f4632; // "wOF2" |
| 874 ots::Buffer file(data, length); |
| 875 |
| 876 uint32_t signature; |
| 877 uint32_t flavor; |
| 878 if (!file.ReadU32(&signature) || signature != kWoff2Signature || |
| 879 !file.ReadU32(&flavor)) { |
| 880 return OTS_FAILURE(); |
| 881 } |
| 882 |
| 883 if (!IsValidVersionTag(ntohl(flavor))) { |
| 884 return OTS_FAILURE(); |
| 885 } |
| 886 |
| 887 uint32_t reported_length; |
| 888 if (!file.ReadU32(&reported_length) || length != reported_length) { |
| 889 return OTS_FAILURE(); |
| 890 } |
| 891 uint16_t num_tables; |
| 892 if (!file.ReadU16(&num_tables) || !num_tables) { |
| 893 return OTS_FAILURE(); |
| 894 } |
| 895 // We don't care about these fields of the header: |
| 896 // uint16_t reserved |
| 897 // uint32_t total_sfnt_size |
| 898 // uint16_t major_version, minor_version |
| 899 // uint32_t meta_offset, meta_length, meta_orig_length |
| 900 // uint32_t priv_offset, priv_length |
| 901 if (!file.Skip(30)) { |
| 902 return OTS_FAILURE(); |
| 903 } |
| 904 std::vector<Table> tables(num_tables); |
| 905 if (!ReadShortDirectory(&file, &tables, num_tables)) { |
| 906 return OTS_FAILURE(); |
| 907 } |
| 908 uint64_t src_offset = file.offset(); |
| 909 uint64_t dst_offset = kSfntHeaderSize + |
| 910 kSfntEntrySize * static_cast<uint64_t>(num_tables); |
| 911 uint64_t uncompressed_sum = 0; |
| 912 for (uint16_t i = 0; i < num_tables; ++i) { |
| 913 Table* table = &tables.at(i); |
| 914 table->src_offset = src_offset; |
| 915 src_offset += table->src_length; |
| 916 if (src_offset > std::numeric_limits<uint32_t>::max()) { |
| 917 return OTS_FAILURE(); |
| 918 } |
| 919 src_offset = ots::Round4(src_offset); |
| 920 table->dst_offset = dst_offset; |
| 921 dst_offset += table->dst_length; |
| 922 if (dst_offset > std::numeric_limits<uint32_t>::max()) { |
| 923 return OTS_FAILURE(); |
| 924 } |
| 925 dst_offset = ots::Round4(dst_offset); |
| 926 if ((table->flags & kCompressionTypeMask) != kCompressionTypeNone) { |
| 927 uncompressed_sum += table->src_length; |
| 928 if (uncompressed_sum > std::numeric_limits<uint32_t>::max()) { |
| 929 return OTS_FAILURE(); |
| 930 } |
| 931 } |
| 932 } |
| 933 // Enforce same 30M limit on uncompressed tables as OTS |
| 934 if (uncompressed_sum > 30 * 1024 * 1024) { |
| 935 return OTS_FAILURE(); |
| 936 } |
| 937 if (src_offset > length || dst_offset > result_length) { |
| 938 return OTS_FAILURE(); |
| 939 } |
| 940 |
| 941 const uint32_t sfnt_header_and_table_directory_size = 12 + 16 * num_tables; |
| 942 if (sfnt_header_and_table_directory_size > result_length) { |
| 943 return OTS_FAILURE(); |
| 944 } |
| 945 |
| 946 // Start building the font |
| 947 size_t offset = 0; |
| 948 offset = StoreU32(result, offset, flavor); |
| 949 offset = Store16(result, offset, num_tables); |
| 950 unsigned max_pow2 = 0; |
| 951 while (1u << (max_pow2 + 1) <= num_tables) { |
| 952 max_pow2++; |
| 953 } |
| 954 const uint16_t output_search_range = (1u << max_pow2) << 4; |
| 955 offset = Store16(result, offset, output_search_range); |
| 956 offset = Store16(result, offset, max_pow2); |
| 957 offset = Store16(result, offset, (num_tables << 4) - output_search_range); |
| 958 for (uint16_t i = 0; i < num_tables; ++i) { |
| 959 const Table* table = &tables.at(i); |
| 960 offset = StoreU32(result, offset, table->tag); |
| 961 offset = StoreU32(result, offset, 0); // checksum, to fill in later |
| 962 offset = StoreU32(result, offset, table->dst_offset); |
| 963 offset = StoreU32(result, offset, table->dst_length); |
| 964 } |
| 965 std::vector<uint8_t> uncompressed_buf; |
| 966 bool continue_valid = false; |
| 967 for (uint16_t i = 0; i < num_tables; ++i) { |
| 968 const Table* table = &tables.at(i); |
| 969 uint32_t flags = table->flags; |
| 970 const uint8_t* src_buf = data + table->src_offset; |
| 971 uint32_t compression_type = flags & kCompressionTypeMask; |
| 972 const uint8_t* transform_buf = NULL; |
| 973 size_t transform_length = table->transform_length; |
| 974 if ((flags & kWoff2FlagsContinueStream) != 0) { |
| 975 if (!continue_valid) { |
| 976 return OTS_FAILURE(); |
| 977 } |
| 978 } else if (compression_type == kCompressionTypeNone) { |
| 979 if (transform_length != table->src_length) { |
| 980 return OTS_FAILURE(); |
| 981 } |
| 982 transform_buf = src_buf; |
| 983 continue_valid = false; |
| 984 } else if ((flags & kWoff2FlagsContinueStream) == 0) { |
| 985 uint64_t total_size = transform_length; |
| 986 for (uint16_t j = i + 1; j < num_tables; ++j) { |
| 987 if ((tables.at(j).flags & kWoff2FlagsContinueStream) == 0) { |
| 988 break; |
| 989 } |
| 990 total_size += tables.at(j).transform_length; |
| 991 if (total_size > std::numeric_limits<uint32_t>::max()) { |
| 992 return OTS_FAILURE(); |
| 993 } |
| 994 } |
| 995 // Enforce same 30M limit on uncompressed tables as OTS |
| 996 if (total_size > 30 * 1024 * 1024) { |
| 997 return OTS_FAILURE(); |
| 998 } |
| 999 uncompressed_buf.resize(total_size); |
| 1000 if (!Woff2Uncompress(&uncompressed_buf[0], total_size, |
| 1001 src_buf, table->src_length, compression_type)) { |
| 1002 return OTS_FAILURE(); |
| 1003 } |
| 1004 transform_buf = &uncompressed_buf[0]; |
| 1005 continue_valid = true; |
| 1006 } else { |
| 1007 return OTS_FAILURE(); |
| 1008 } |
| 1009 |
| 1010 if ((flags & kWoff2FlagsTransform) == 0) { |
| 1011 if (transform_length != table->dst_length) { |
| 1012 return OTS_FAILURE(); |
| 1013 } |
| 1014 if (static_cast<uint64_t>(table->dst_offset) + transform_length > |
| 1015 result_length) { |
| 1016 return OTS_FAILURE(); |
| 1017 } |
| 1018 std::memcpy(result + table->dst_offset, transform_buf, |
| 1019 transform_length); |
| 1020 } else { |
| 1021 if (!ReconstructTransformed(tables, table->tag, |
| 1022 transform_buf, transform_length, result, result_length)) { |
| 1023 return OTS_FAILURE(); |
| 1024 } |
| 1025 } |
| 1026 if (continue_valid) { |
| 1027 transform_buf += transform_length; |
| 1028 if (transform_buf > &uncompressed_buf[uncompressed_buf.size()]) { |
| 1029 return OTS_FAILURE(); |
| 1030 } |
| 1031 } |
| 1032 } |
| 1033 |
| 1034 return FixChecksums(tables, result); |
| 1035 } |
| 1036 |
| 1037 } // namespace ots |
OLD | NEW |