Index: runtime/lib/collection_patch.dart |
diff --git a/runtime/lib/collection_patch.dart b/runtime/lib/collection_patch.dart |
index e7856c5b073908d04abb9d8eb02863e7cc394cef..8ed2abca4f9ef76c59a3dbdf7559d1a3eb15d851 100644 |
--- a/runtime/lib/collection_patch.dart |
+++ b/runtime/lib/collection_patch.dart |
@@ -9,7 +9,6 @@ patch class HashMap<K, V> { |
_hashTable._container = this; |
} |
- |
/* patch */ bool containsKey(K key) { |
return _hashTable._get(key) >= 0; |
} |
@@ -190,22 +189,6 @@ patch class HashSet<E> { |
} |
} |
-class _LinkedHashMapTable<K, V> extends _LinkedHashTable<K> { |
- static const int _INITIAL_CAPACITY = 8; |
- static const int _VALUE_INDEX = 3; |
- |
- int get _entrySize => 4; |
- |
- _LinkedHashMapTable() : super(_INITIAL_CAPACITY); |
- |
- V _value(int offset) => _table[offset + _VALUE_INDEX]; |
- void _setValue(int offset, V value) { _table[offset + _VALUE_INDEX] = value; } |
- |
- _copyEntry(List oldTable, int fromOffset, int toOffset) { |
- _table[toOffset + _VALUE_INDEX] = oldTable[fromOffset + _VALUE_INDEX]; |
- } |
-} |
- |
/** |
* A hash-based map that iterates keys and values in key insertion order. |
*/ |
@@ -318,3 +301,702 @@ patch class LinkedHashMap<K, V> { |
/* patch */ bool get isEmpty => _hashTable._elementCount == 0; |
} |
+ |
+patch class LinkedHashSet<E> extends _HashSetBase<E> { |
+ static const int _INITIAL_CAPACITY = 8; |
+ _LinkedHashTable<E> _table; |
+ |
+ /* patch */ LinkedHashSet() { |
+ _table = new _LinkedHashTable(_INITIAL_CAPACITY); |
+ _table._container = this; |
+ } |
+ |
+ // Iterable. |
+ /* patch */ Iterator<E> get iterator { |
+ return new _LinkedHashTableKeyIterator<E>(_table); |
+ } |
+ |
+ /* patch */ int get length => _table._elementCount; |
+ |
+ /* patch */ bool get isEmpty => _table._elementCount == 0; |
+ |
+ /* patch */ bool contains(Object object) => _table._get(object) >= 0; |
+ |
+ /* patch */ void forEach(void action(E element)) { |
+ int offset = _table._next(_LinkedHashTable._HEAD_OFFSET); |
+ int modificationCount = _table._modificationCount; |
+ while (offset != _LinkedHashTable._HEAD_OFFSET) { |
+ E key = _table._key(offset); |
+ action(key); |
+ _table._checkModification(modificationCount); |
+ offset = _table._next(offset); |
+ } |
+ } |
+ |
+ /* patch */ E get first { |
+ int firstOffset = _table._next(_LinkedHashTable._HEAD_OFFSET); |
+ if (firstOffset == _LinkedHashTable._HEAD_OFFSET) { |
+ throw new StateError("No elements"); |
+ } |
+ return _table._key(firstOffset); |
+ } |
+ |
+ /* patch */ E get last { |
+ int lastOffset = _table._prev(_LinkedHashTable._HEAD_OFFSET); |
+ if (lastOffset == _LinkedHashTable._HEAD_OFFSET) { |
+ throw new StateError("No elements"); |
+ } |
+ return _table._key(lastOffset); |
+ } |
+ |
+ // Collection. |
+ void _filterWhere(bool test(E element), bool removeMatching) { |
+ int entrySize = _table._entrySize; |
+ int length = _table._table.length; |
+ int offset = _table._next(_LinkedHashTable._HEAD_OFFSET); |
+ while (offset != _LinkedHashTable._HEAD_OFFSET) { |
+ E key = _table._key(offset); |
+ int nextOffset = _table._next(offset); |
+ int modificationCount = _table._modificationCount; |
+ bool shouldRemove = (removeMatching == test(key)); |
+ _table._checkModification(modificationCount); |
+ if (shouldRemove) { |
+ _table._deleteEntry(offset); |
+ } |
+ offset = nextOffset; |
+ } |
+ _table._checkCapacity(); |
+ } |
+ |
+ /* patch */ void add(E element) { |
+ _table._put(element); |
+ _table._checkCapacity(); |
+ } |
+ |
+ /* patch */ void addAll(Iterable<E> objects) { |
+ for (E object in objects) { |
+ _table._put(object); |
+ _table._checkCapacity(); |
+ } |
+ } |
+ |
+ /* patch */ bool remove(Object object) { |
+ int offset = _table._remove(object); |
+ if (offset >= 0) { |
+ _table._checkCapacity(); |
+ return true; |
+ } |
+ return false; |
+ } |
+ |
+ /* patch */ void removeAll(Iterable objectsToRemove) { |
+ for (Object object in objectsToRemove) { |
+ if (_table._remove(object) >= 0) { |
+ _table._checkCapacity(); |
+ } |
+ } |
+ } |
+ |
+ /* patch */ void removeWhere(bool test(E element)) { |
+ _filterWhere(test, true); |
+ } |
+ |
+ /* patch */ void retainWhere(bool test(E element)) { |
+ _filterWhere(test, false); |
+ } |
+ |
+ /* patch */ void clear() { |
+ _table._clear(); |
+ } |
+} |
+ |
+class _DeadEntry { |
+ const _DeadEntry(); |
+} |
+ |
+class _NullKey { |
+ const _NullKey(); |
+ int get hashCode => null.hashCode; |
+} |
+ |
+const _TOMBSTONE = const _DeadEntry(); |
+const _NULL = const _NullKey(); |
+ |
+class _HashTable<K> { |
+ /** |
+ * Table of entries with [_entrySize] slots per entry. |
+ * |
+ * Capacity in entries must be factor of two. |
+ */ |
+ List _table; |
+ /** Current capacity. Always equal to [:_table.length ~/ _entrySize:]. */ |
+ int _capacity; |
+ /** Count of occupied entries, including deleted ones. */ |
+ int _entryCount = 0; |
+ /** Count of deleted entries. */ |
+ int _deletedCount = 0; |
+ /** Counter incremented when table is modified. */ |
+ int _modificationCount = 0; |
+ /** If set, used as the source object for [ConcurrentModificationError]s. */ |
+ Object _container; |
+ |
+ _HashTable(int initialCapacity) : _capacity = initialCapacity { |
+ _table = _createTable(initialCapacity); |
+ } |
+ |
+ /** Reads key from table. Converts _NULL marker to null. */ |
+ Object _key(offset) { |
+ assert(!_isFree(_table[offset])); |
+ Object key = _table[offset]; |
+ if (!identical(key, _NULL)) return key; |
+ return null; |
+ } |
+ |
+ /** Writes key to table. Converts null to _NULL marker. */ |
+ void _setKey(int offset, Object key) { |
+ if (key == null) key = _NULL; |
+ _table[offset] = key; |
+ } |
+ |
+ int get _elementCount => _entryCount - _deletedCount; |
+ |
+ /** Size of each entry. */ |
+ int get _entrySize => 1; |
+ |
+ void _checkModification(int expectedModificationCount) { |
+ if (_modificationCount != expectedModificationCount) { |
+ throw new ConcurrentModificationError(_container); |
+ } |
+ } |
+ |
+ void _recordModification() { |
+ // Value cycles after 2^30 modifications. If you keep hold of an |
+ // iterator for that long, you might miss a modification detection, |
+ // and iteration can go sour. Don't do that. |
+ _modificationCount = (_modificationCount + 1) & (0x3FFFFFFF); |
+ } |
+ |
+ /** |
+ * Create an empty table. |
+ */ |
+ List _createTable(int capacity) { |
+ List table = new List(capacity * _entrySize); |
+ return table; |
+ } |
+ |
+ /** First table probe. */ |
+ int _firstProbe(int hashCode, int capacity) { |
+ return hashCode & (capacity - 1); |
+ } |
+ |
+ /** Following table probes. */ |
+ int _nextProbe(int previousIndex, int probeCount, int capacity) { |
+ // When capacity is a power of 2, this probing algorithm (the triangular |
+ // number sequence modulo capacity) is guaranteed to hit all indices exactly |
+ // once before repeating. |
+ return (previousIndex + probeCount) & (capacity - 1); |
+ } |
+ |
+ /** Whether an object is a free-marker (either tombstone or free). */ |
+ bool _isFree(Object marker) => |
+ marker == null || identical(marker, _TOMBSTONE); |
+ |
+ /** |
+ * Look up the offset for an object in the table. |
+ * |
+ * Finds the offset of the object in the table, if it is there, |
+ * or the first free offset for its hashCode. |
+ */ |
+ int _probeForAdd(int hashCode, Object object) { |
+ int entrySize = _entrySize; |
+ int index = _firstProbe(hashCode, _capacity); |
+ int firstTombstone = -1; |
+ int probeCount = 0; |
+ while (true) { |
+ int offset = index * entrySize; |
+ Object entry = _table[offset]; |
+ if (identical(entry, _TOMBSTONE)) { |
+ if (firstTombstone < 0) firstTombstone = offset; |
+ } else if (entry == null) { |
+ if (firstTombstone < 0) return offset; |
+ return firstTombstone; |
+ } else if (identical(_NULL, entry) ? _equals(null, object) |
+ : _equals(entry, object)) { |
+ return offset; |
+ } |
+ // The _nextProbe is designed so that it hits |
+ // every index eventually. |
+ index = _nextProbe(index, ++probeCount, _capacity); |
+ } |
+ } |
+ |
+ /** |
+ * Look up the offset for an object in the table. |
+ * |
+ * If the object is in the table, its offset is returned. |
+ * |
+ * If the object is not in the table, Otherwise a negative value is returned. |
+ */ |
+ int _probeForLookup(int hashCode, Object object) { |
+ int entrySize = _entrySize; |
+ int index = _firstProbe(hashCode, _capacity); |
+ int probeCount = 0; |
+ while (true) { |
+ int offset = index * entrySize; |
+ Object entry = _table[offset]; |
+ if (entry == null) { |
+ return -1; |
+ } else if (!identical(_TOMBSTONE, entry)) { |
+ if (identical(_NULL, entry) ? _equals(null, object) |
+ : _equals(entry, object)) { |
+ return offset; |
+ } |
+ } |
+ // The _nextProbe is designed so that it hits |
+ // every index eventually. |
+ index = _nextProbe(index, ++probeCount, _capacity); |
+ } |
+ } |
+ |
+ // Override the following two to change equality/hashCode computations |
+ |
+ /** |
+ * Compare two object for equality. |
+ * |
+ * The first object is the one already in the table, |
+ * and the second is the one being searched for. |
+ */ |
+ bool _equals(Object element, Object other) { |
+ return element == other; |
+ } |
+ |
+ /** |
+ * Compute hash-code for an object. |
+ */ |
+ int _hashCodeOf(Object object) => object.hashCode; |
+ |
+ /** |
+ * Ensure that the table isn't too full for its own good. |
+ * |
+ * Call this after adding an element. |
+ */ |
+ int _checkCapacity() { |
+ // Compute everything in multiples of entrySize to avoid division. |
+ int freeCount = _capacity - _entryCount; |
+ if (freeCount * 4 < _capacity || |
+ freeCount < _deletedCount) { |
+ // Less than 25% free or more deleted entries than free entries. |
+ _grow(_entryCount - _deletedCount); |
+ } |
+ } |
+ |
+ void _grow(int contentCount) { |
+ int capacity = _capacity; |
+ // Don't grow to less than twice the needed capacity. |
+ int minCapacity = contentCount * 2; |
+ while (capacity < minCapacity) { |
+ capacity *= 2; |
+ } |
+ // Reset to another table and add all existing elements. |
+ List oldTable = _table; |
+ _table = _createTable(capacity); |
+ _capacity = capacity; |
+ _entryCount = 0; |
+ _deletedCount = 0; |
+ _addAllEntries(oldTable); |
+ _recordModification(); |
+ } |
+ |
+ /** |
+ * Copies all non-free entries from the old table to the new empty table. |
+ */ |
+ void _addAllEntries(List oldTable) { |
+ for (int i = 0; i < oldTable.length; i += _entrySize) { |
+ Object object = oldTable[i]; |
+ if (!_isFree(object)) { |
+ int toOffset = _put(object); |
+ _copyEntry(oldTable, i, toOffset); |
+ } |
+ } |
+ } |
+ |
+ /** |
+ * Copies everything but the key element from one entry to another. |
+ * |
+ * Called while growing the base array. |
+ * |
+ * Override this if any non-key fields need copying. |
+ */ |
+ void _copyEntry(List fromTable, int fromOffset, int toOffset) {} |
+ |
+ // The following three methods are for simple get/set/remove operations. |
+ // They only affect the key of an entry. The remaining fields must be |
+ // filled by the caller. |
+ |
+ /** |
+ * Returns the offset of a key in [_table], or negative if it's not there. |
+ */ |
+ int _get(K key) { |
+ return _probeForLookup(_hashCodeOf(key), key); |
+ } |
+ |
+ /** |
+ * Puts the key into the table and returns its offset into [_table]. |
+ * |
+ * If [_entrySize] is greater than 1, the caller should fill the |
+ * remaining fields. |
+ * |
+ * Remember to call [_checkCapacity] after using this method. |
+ */ |
+ int _put(K key) { |
+ int offset = _probeForAdd(_hashCodeOf(key), key); |
+ Object oldEntry = _table[offset]; |
+ if (oldEntry == null) { |
+ _entryCount++; |
+ } else if (identical(oldEntry, _TOMBSTONE)) { |
+ _deletedCount--; |
+ } else { |
+ return offset; |
+ } |
+ _setKey(offset, key); |
+ _recordModification(); |
+ return offset; |
+ } |
+ |
+ /** |
+ * Removes a key from the table and returns its offset into [_table]. |
+ * |
+ * Returns null if the key was not in the table. |
+ * If [_entrySize] is greater than 1, the caller should clean up the |
+ * remaining fields. |
+ */ |
+ int _remove(K key) { |
+ int offset = _probeForLookup(_hashCodeOf(key), key); |
+ if (offset >= 0) { |
+ _deleteEntry(offset); |
+ } |
+ return offset; |
+ } |
+ |
+ /** Clears the table completely, leaving it empty. */ |
+ void _clear() { |
+ if (_elementCount == 0) return; |
+ for (int i = 0; i < _table.length; i++) { |
+ _table[i] = null; |
+ } |
+ _entryCount = _deletedCount = 0; |
+ _recordModification(); |
+ } |
+ |
+ /** Clears an entry in the table. */ |
+ void _deleteEntry(int offset) { |
+ assert(!_isFree(_table[offset])); |
+ _setKey(offset, _TOMBSTONE); |
+ _deletedCount++; |
+ _recordModification(); |
+ } |
+} |
+ |
+/** |
+ * Generic iterable based on a [_HashTable]. |
+ */ |
+abstract class _HashTableIterable<E> extends Iterable<E> { |
+ final _HashTable _hashTable; |
+ _HashTableIterable(this._hashTable); |
+ |
+ Iterator<E> get iterator; |
+ |
+ /** |
+ * Return the iterated value for a given entry. |
+ */ |
+ E _valueAt(int offset, Object key); |
+ |
+ int get length => _hashTable._elementCount; |
+ |
+ bool get isEmpty => _hashTable._elementCount == 0; |
+ |
+ void forEach(void action(E element)) { |
+ int entrySize = _hashTable._entrySize; |
+ List table = _hashTable._table; |
+ int modificationCount = _hashTable._modificationCount; |
+ for (int offset = 0; offset < table.length; offset += entrySize) { |
+ Object entry = table[offset]; |
+ if (!_hashTable._isFree(entry)) { |
+ E value = _valueAt(offset, entry); |
+ action(value); |
+ } |
+ _hashTable._checkModification(modificationCount); |
+ } |
+ } |
+} |
+ |
+abstract class _HashTableIterator<E> implements Iterator<E> { |
+ final _HashTable _hashTable; |
+ final int _modificationCount; |
+ /** Location right after last found element. */ |
+ int _offset = 0; |
+ E _current = null; |
+ |
+ _HashTableIterator(_HashTable hashTable) |
+ : _hashTable = hashTable, |
+ _modificationCount = hashTable._modificationCount; |
+ |
+ bool moveNext() { |
+ _hashTable._checkModification(_modificationCount); |
+ |
+ List table = _hashTable._table; |
+ int entrySize = _hashTable._entrySize; |
+ |
+ while (_offset < table.length) { |
+ int currentOffset = _offset; |
+ Object entry = table[currentOffset]; |
+ _offset = currentOffset + entrySize; |
+ if (!_hashTable._isFree(entry)) { |
+ _current = _valueAt(currentOffset, entry); |
+ return true; |
+ } |
+ } |
+ _current = null; |
+ return false; |
+ } |
+ |
+ E get current => _current; |
+ |
+ E _valueAt(int offset, Object key); |
+} |
+ |
+class _HashTableKeyIterable<K> extends _HashTableIterable<K> { |
+ _HashTableKeyIterable(_HashTable<K> hashTable) : super(hashTable); |
+ |
+ Iterator<K> get iterator => new _HashTableKeyIterator<K>(_hashTable); |
+ |
+ K _valueAt(int offset, Object key) { |
+ if (identical(key, _NULL)) return null; |
+ return key; |
+ } |
+ |
+ bool contains(Object value) => _hashTable._get(value) >= 0; |
+} |
+ |
+class _HashTableKeyIterator<K> extends _HashTableIterator<K> { |
+ _HashTableKeyIterator(_HashTable hashTable) : super(hashTable); |
+ |
+ K _valueAt(int offset, Object key) { |
+ if (identical(key, _NULL)) return null; |
+ return key; |
+ } |
+} |
+ |
+class _HashTableValueIterable<V> extends _HashTableIterable<V> { |
+ final int _entryIndex; |
+ |
+ _HashTableValueIterable(_HashTable hashTable, this._entryIndex) |
+ : super(hashTable); |
+ |
+ Iterator<V> get iterator { |
+ return new _HashTableValueIterator<V>(_hashTable, _entryIndex); |
+ } |
+ |
+ V _valueAt(int offset, Object key) => _hashTable._table[offset + _entryIndex]; |
+} |
+ |
+class _HashTableValueIterator<V> extends _HashTableIterator<V> { |
+ final int _entryIndex; |
+ |
+ _HashTableValueIterator(_HashTable hashTable, this._entryIndex) |
+ : super(hashTable); |
+ |
+ V _valueAt(int offset, Object key) => _hashTable._table[offset + _entryIndex]; |
+} |
+ |
+class _HashMapTable<K, V> extends _HashTable<K> { |
+ static const int _INITIAL_CAPACITY = 8; |
+ static const int _VALUE_INDEX = 1; |
+ |
+ _HashMapTable() : super(_INITIAL_CAPACITY); |
+ |
+ int get _entrySize => 2; |
+ |
+ V _value(int offset) => _table[offset + _VALUE_INDEX]; |
+ void _setValue(int offset, V value) { _table[offset + _VALUE_INDEX] = value; } |
+ |
+ _copyEntry(List fromTable, int fromOffset, int toOffset) { |
+ _table[toOffset + _VALUE_INDEX] = fromTable[fromOffset + _VALUE_INDEX]; |
+ } |
+} |
+ |
+/** Unique marker object for the head of a linked list of entries. */ |
+class _LinkedHashTableHeadMarker { |
+ const _LinkedHashTableHeadMarker(); |
+} |
+ |
+const _LinkedHashTableHeadMarker _HEAD_MARKER = |
+ const _LinkedHashTableHeadMarker(); |
+ |
+class _LinkedHashTable<K> extends _HashTable<K> { |
+ static const _NEXT_INDEX = 1; |
+ static const _PREV_INDEX = 2; |
+ static const _HEAD_OFFSET = 0; |
+ |
+ _LinkedHashTable(int initialCapacity) : super(initialCapacity); |
+ |
+ int get _entrySize => 3; |
+ |
+ List _createTable(int capacity) { |
+ List result = new List(capacity * _entrySize); |
+ result[_HEAD_OFFSET] = _HEAD_MARKER; |
+ result[_HEAD_OFFSET + _NEXT_INDEX] = _HEAD_OFFSET; |
+ result[_HEAD_OFFSET + _PREV_INDEX] = _HEAD_OFFSET; |
+ return result; |
+ } |
+ |
+ int _next(int offset) => _table[offset + _NEXT_INDEX]; |
+ void _setNext(int offset, int to) { _table[offset + _NEXT_INDEX] = to; } |
+ |
+ int _prev(int offset) => _table[offset + _PREV_INDEX]; |
+ void _setPrev(int offset, int to) { _table[offset + _PREV_INDEX] = to; } |
+ |
+ void _linkLast(int offset) { |
+ // Add entry at offset at end of double-linked list. |
+ int last = _prev(_HEAD_OFFSET); |
+ _setNext(offset, _HEAD_OFFSET); |
+ _setPrev(offset, last); |
+ _setNext(last, offset); |
+ _setPrev(_HEAD_OFFSET, offset); |
+ } |
+ |
+ void _unlink(int offset) { |
+ assert(offset != _HEAD_OFFSET); |
+ int next = _next(offset); |
+ int prev = _prev(offset); |
+ _setNext(offset, null); |
+ _setPrev(offset, null); |
+ _setNext(prev, next); |
+ _setPrev(next, prev); |
+ } |
+ |
+ /** |
+ * Copies all non-free entries from the old table to the new empty table. |
+ */ |
+ void _addAllEntries(List oldTable) { |
+ int offset = oldTable[_HEAD_OFFSET + _NEXT_INDEX]; |
+ while (offset != _HEAD_OFFSET) { |
+ Object object = oldTable[offset]; |
+ int nextOffset = oldTable[offset + _NEXT_INDEX]; |
+ int toOffset = _put(object); |
+ _copyEntry(oldTable, offset, toOffset); |
+ offset = nextOffset; |
+ } |
+ } |
+ |
+ void _clear() { |
+ if (_elementCount == 0) return; |
+ _setNext(_HEAD_OFFSET, _HEAD_OFFSET); |
+ _setPrev(_HEAD_OFFSET, _HEAD_OFFSET); |
+ for (int i = _entrySize; i < _table.length; i++) { |
+ _table[i] = null; |
+ } |
+ _entryCount = _deletedCount = 0; |
+ _recordModification(); |
+ } |
+ |
+ int _put(K key) { |
+ int offset = _probeForAdd(_hashCodeOf(key), key); |
+ Object oldEntry = _table[offset]; |
+ if (identical(oldEntry, _TOMBSTONE)) { |
+ _deletedCount--; |
+ } else if (oldEntry == null) { |
+ _entryCount++; |
+ } else { |
+ return offset; |
+ } |
+ _recordModification(); |
+ _setKey(offset, key); |
+ _linkLast(offset); |
+ return offset; |
+ } |
+ |
+ void _deleteEntry(int offset) { |
+ _unlink(offset); |
+ _setKey(offset, _TOMBSTONE); |
+ _deletedCount++; |
+ _recordModification(); |
+ } |
+} |
+ |
+class _LinkedHashTableKeyIterable<K> extends Iterable<K> { |
+ final _LinkedHashTable<K> _table; |
+ _LinkedHashTableKeyIterable(this._table); |
+ Iterator<K> get iterator => new _LinkedHashTableKeyIterator<K>(_table); |
+ |
+ bool contains(Object value) => _table._get(value) >= 0; |
+ |
+ int get length => _table._elementCount; |
+} |
+ |
+class _LinkedHashTableKeyIterator<K> extends _LinkedHashTableIterator<K> { |
+ _LinkedHashTableKeyIterator(_LinkedHashTable<K> hashTable): super(hashTable); |
+ |
+ K _getCurrent(int offset) => _hashTable._key(offset); |
+} |
+ |
+class _LinkedHashTableValueIterable<V> extends Iterable<V> { |
+ final _LinkedHashTable _hashTable; |
+ final int _valueIndex; |
+ _LinkedHashTableValueIterable(this._hashTable, this._valueIndex); |
+ Iterator<V> get iterator => |
+ new _LinkedHashTableValueIterator<V>(_hashTable, _valueIndex); |
+ int get length => _hashTable._elementCount; |
+} |
+ |
+class _LinkedHashTableValueIterator<V> extends _LinkedHashTableIterator<V> { |
+ final int _valueIndex; |
+ |
+ _LinkedHashTableValueIterator(_LinkedHashTable hashTable, this._valueIndex) |
+ : super(hashTable); |
+ |
+ V _getCurrent(int offset) => _hashTable._table[offset + _valueIndex]; |
+} |
+ |
+abstract class _LinkedHashTableIterator<T> implements Iterator<T> { |
+ final _LinkedHashTable _hashTable; |
+ final int _modificationCount; |
+ int _offset; |
+ T _current; |
+ |
+ _LinkedHashTableIterator(_LinkedHashTable table) |
+ : _hashTable = table, |
+ _modificationCount = table._modificationCount, |
+ _offset = table._next(_LinkedHashTable._HEAD_OFFSET); |
+ |
+ bool moveNext() { |
+ _hashTable._checkModification(_modificationCount); |
+ if (_offset == _LinkedHashTable._HEAD_OFFSET) { |
+ _current = null; |
+ return false; |
+ } |
+ _current = _getCurrent(_offset); |
+ _offset = _hashTable._next(_offset); |
+ return true; |
+ } |
+ |
+ T _getCurrent(int offset); |
+ |
+ T get current => _current; |
+} |
+ |
+class _LinkedHashMapTable<K, V> extends _LinkedHashTable<K> { |
+ static const int _INITIAL_CAPACITY = 8; |
+ static const int _VALUE_INDEX = 3; |
+ |
+ int get _entrySize => 4; |
+ |
+ _LinkedHashMapTable() : super(_INITIAL_CAPACITY); |
+ |
+ V _value(int offset) => _table[offset + _VALUE_INDEX]; |
+ void _setValue(int offset, V value) { _table[offset + _VALUE_INDEX] = value; } |
+ |
+ _copyEntry(List oldTable, int fromOffset, int toOffset) { |
+ _table[toOffset + _VALUE_INDEX] = oldTable[fromOffset + _VALUE_INDEX]; |
+ } |
+} |