| Index: nss/lib/freebl/ecl/ecp_384.c
|
| ===================================================================
|
| --- nss/lib/freebl/ecl/ecp_384.c (revision 0)
|
| +++ nss/lib/freebl/ecl/ecp_384.c (revision 0)
|
| @@ -0,0 +1,258 @@
|
| +/* This Source Code Form is subject to the terms of the Mozilla Public
|
| + * License, v. 2.0. If a copy of the MPL was not distributed with this
|
| + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
| +
|
| +#include "ecp.h"
|
| +#include "mpi.h"
|
| +#include "mplogic.h"
|
| +#include "mpi-priv.h"
|
| +
|
| +/* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1. a can be r.
|
| + * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to
|
| + * Elliptic Curve Cryptography. */
|
| +static mp_err
|
| +ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
|
| +{
|
| + mp_err res = MP_OKAY;
|
| + int a_bits = mpl_significant_bits(a);
|
| + int i;
|
| +
|
| + /* m1, m2 are statically-allocated mp_int of exactly the size we need */
|
| + mp_int m[10];
|
| +
|
| +#ifdef ECL_THIRTY_TWO_BIT
|
| + mp_digit s[10][12];
|
| + for (i = 0; i < 10; i++) {
|
| + MP_SIGN(&m[i]) = MP_ZPOS;
|
| + MP_ALLOC(&m[i]) = 12;
|
| + MP_USED(&m[i]) = 12;
|
| + MP_DIGITS(&m[i]) = s[i];
|
| + }
|
| +#else
|
| + mp_digit s[10][6];
|
| + for (i = 0; i < 10; i++) {
|
| + MP_SIGN(&m[i]) = MP_ZPOS;
|
| + MP_ALLOC(&m[i]) = 6;
|
| + MP_USED(&m[i]) = 6;
|
| + MP_DIGITS(&m[i]) = s[i];
|
| + }
|
| +#endif
|
| +
|
| +#ifdef ECL_THIRTY_TWO_BIT
|
| + /* for polynomials larger than twice the field size or polynomials
|
| + * not using all words, use regular reduction */
|
| + if ((a_bits > 768) || (a_bits <= 736)) {
|
| + MP_CHECKOK(mp_mod(a, &meth->irr, r));
|
| + } else {
|
| + for (i = 0; i < 12; i++) {
|
| + s[0][i] = MP_DIGIT(a, i);
|
| + }
|
| + s[1][0] = 0;
|
| + s[1][1] = 0;
|
| + s[1][2] = 0;
|
| + s[1][3] = 0;
|
| + s[1][4] = MP_DIGIT(a, 21);
|
| + s[1][5] = MP_DIGIT(a, 22);
|
| + s[1][6] = MP_DIGIT(a, 23);
|
| + s[1][7] = 0;
|
| + s[1][8] = 0;
|
| + s[1][9] = 0;
|
| + s[1][10] = 0;
|
| + s[1][11] = 0;
|
| + for (i = 0; i < 12; i++) {
|
| + s[2][i] = MP_DIGIT(a, i+12);
|
| + }
|
| + s[3][0] = MP_DIGIT(a, 21);
|
| + s[3][1] = MP_DIGIT(a, 22);
|
| + s[3][2] = MP_DIGIT(a, 23);
|
| + for (i = 3; i < 12; i++) {
|
| + s[3][i] = MP_DIGIT(a, i+9);
|
| + }
|
| + s[4][0] = 0;
|
| + s[4][1] = MP_DIGIT(a, 23);
|
| + s[4][2] = 0;
|
| + s[4][3] = MP_DIGIT(a, 20);
|
| + for (i = 4; i < 12; i++) {
|
| + s[4][i] = MP_DIGIT(a, i+8);
|
| + }
|
| + s[5][0] = 0;
|
| + s[5][1] = 0;
|
| + s[5][2] = 0;
|
| + s[5][3] = 0;
|
| + s[5][4] = MP_DIGIT(a, 20);
|
| + s[5][5] = MP_DIGIT(a, 21);
|
| + s[5][6] = MP_DIGIT(a, 22);
|
| + s[5][7] = MP_DIGIT(a, 23);
|
| + s[5][8] = 0;
|
| + s[5][9] = 0;
|
| + s[5][10] = 0;
|
| + s[5][11] = 0;
|
| + s[6][0] = MP_DIGIT(a, 20);
|
| + s[6][1] = 0;
|
| + s[6][2] = 0;
|
| + s[6][3] = MP_DIGIT(a, 21);
|
| + s[6][4] = MP_DIGIT(a, 22);
|
| + s[6][5] = MP_DIGIT(a, 23);
|
| + s[6][6] = 0;
|
| + s[6][7] = 0;
|
| + s[6][8] = 0;
|
| + s[6][9] = 0;
|
| + s[6][10] = 0;
|
| + s[6][11] = 0;
|
| + s[7][0] = MP_DIGIT(a, 23);
|
| + for (i = 1; i < 12; i++) {
|
| + s[7][i] = MP_DIGIT(a, i+11);
|
| + }
|
| + s[8][0] = 0;
|
| + s[8][1] = MP_DIGIT(a, 20);
|
| + s[8][2] = MP_DIGIT(a, 21);
|
| + s[8][3] = MP_DIGIT(a, 22);
|
| + s[8][4] = MP_DIGIT(a, 23);
|
| + s[8][5] = 0;
|
| + s[8][6] = 0;
|
| + s[8][7] = 0;
|
| + s[8][8] = 0;
|
| + s[8][9] = 0;
|
| + s[8][10] = 0;
|
| + s[8][11] = 0;
|
| + s[9][0] = 0;
|
| + s[9][1] = 0;
|
| + s[9][2] = 0;
|
| + s[9][3] = MP_DIGIT(a, 23);
|
| + s[9][4] = MP_DIGIT(a, 23);
|
| + s[9][5] = 0;
|
| + s[9][6] = 0;
|
| + s[9][7] = 0;
|
| + s[9][8] = 0;
|
| + s[9][9] = 0;
|
| + s[9][10] = 0;
|
| + s[9][11] = 0;
|
| +
|
| + MP_CHECKOK(mp_add(&m[0], &m[1], r));
|
| + MP_CHECKOK(mp_add(r, &m[1], r));
|
| + MP_CHECKOK(mp_add(r, &m[2], r));
|
| + MP_CHECKOK(mp_add(r, &m[3], r));
|
| + MP_CHECKOK(mp_add(r, &m[4], r));
|
| + MP_CHECKOK(mp_add(r, &m[5], r));
|
| + MP_CHECKOK(mp_add(r, &m[6], r));
|
| + MP_CHECKOK(mp_sub(r, &m[7], r));
|
| + MP_CHECKOK(mp_sub(r, &m[8], r));
|
| + MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
|
| + s_mp_clamp(r);
|
| + }
|
| +#else
|
| + /* for polynomials larger than twice the field size or polynomials
|
| + * not using all words, use regular reduction */
|
| + if ((a_bits > 768) || (a_bits <= 736)) {
|
| + MP_CHECKOK(mp_mod(a, &meth->irr, r));
|
| + } else {
|
| + for (i = 0; i < 6; i++) {
|
| + s[0][i] = MP_DIGIT(a, i);
|
| + }
|
| + s[1][0] = 0;
|
| + s[1][1] = 0;
|
| + s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
|
| + s[1][3] = MP_DIGIT(a, 11) >> 32;
|
| + s[1][4] = 0;
|
| + s[1][5] = 0;
|
| + for (i = 0; i < 6; i++) {
|
| + s[2][i] = MP_DIGIT(a, i+6);
|
| + }
|
| + s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
|
| + s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
|
| + for (i = 2; i < 6; i++) {
|
| + s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32);
|
| + }
|
| + s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32;
|
| + s[4][1] = MP_DIGIT(a, 10) << 32;
|
| + for (i = 2; i < 6; i++) {
|
| + s[4][i] = MP_DIGIT(a, i+4);
|
| + }
|
| + s[5][0] = 0;
|
| + s[5][1] = 0;
|
| + s[5][2] = MP_DIGIT(a, 10);
|
| + s[5][3] = MP_DIGIT(a, 11);
|
| + s[5][4] = 0;
|
| + s[5][5] = 0;
|
| + s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32;
|
| + s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32;
|
| + s[6][2] = MP_DIGIT(a, 11);
|
| + s[6][3] = 0;
|
| + s[6][4] = 0;
|
| + s[6][5] = 0;
|
| + s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
|
| + for (i = 1; i < 6; i++) {
|
| + s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32);
|
| + }
|
| + s[8][0] = MP_DIGIT(a, 10) << 32;
|
| + s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
|
| + s[8][2] = MP_DIGIT(a, 11) >> 32;
|
| + s[8][3] = 0;
|
| + s[8][4] = 0;
|
| + s[8][5] = 0;
|
| + s[9][0] = 0;
|
| + s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32;
|
| + s[9][2] = MP_DIGIT(a, 11) >> 32;
|
| + s[9][3] = 0;
|
| + s[9][4] = 0;
|
| + s[9][5] = 0;
|
| +
|
| + MP_CHECKOK(mp_add(&m[0], &m[1], r));
|
| + MP_CHECKOK(mp_add(r, &m[1], r));
|
| + MP_CHECKOK(mp_add(r, &m[2], r));
|
| + MP_CHECKOK(mp_add(r, &m[3], r));
|
| + MP_CHECKOK(mp_add(r, &m[4], r));
|
| + MP_CHECKOK(mp_add(r, &m[5], r));
|
| + MP_CHECKOK(mp_add(r, &m[6], r));
|
| + MP_CHECKOK(mp_sub(r, &m[7], r));
|
| + MP_CHECKOK(mp_sub(r, &m[8], r));
|
| + MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
|
| + s_mp_clamp(r);
|
| + }
|
| +#endif
|
| +
|
| + CLEANUP:
|
| + return res;
|
| +}
|
| +
|
| +/* Compute the square of polynomial a, reduce modulo p384. Store the
|
| + * result in r. r could be a. Uses optimized modular reduction for p384.
|
| + */
|
| +static mp_err
|
| +ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
|
| +{
|
| + mp_err res = MP_OKAY;
|
| +
|
| + MP_CHECKOK(mp_sqr(a, r));
|
| + MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
|
| + CLEANUP:
|
| + return res;
|
| +}
|
| +
|
| +/* Compute the product of two polynomials a and b, reduce modulo p384.
|
| + * Store the result in r. r could be a or b; a could be b. Uses
|
| + * optimized modular reduction for p384. */
|
| +static mp_err
|
| +ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r,
|
| + const GFMethod *meth)
|
| +{
|
| + mp_err res = MP_OKAY;
|
| +
|
| + MP_CHECKOK(mp_mul(a, b, r));
|
| + MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
|
| + CLEANUP:
|
| + return res;
|
| +}
|
| +
|
| +/* Wire in fast field arithmetic and precomputation of base point for
|
| + * named curves. */
|
| +mp_err
|
| +ec_group_set_gfp384(ECGroup *group, ECCurveName name)
|
| +{
|
| + if (name == ECCurve_NIST_P384) {
|
| + group->meth->field_mod = &ec_GFp_nistp384_mod;
|
| + group->meth->field_mul = &ec_GFp_nistp384_mul;
|
| + group->meth->field_sqr = &ec_GFp_nistp384_sqr;
|
| + }
|
| + return MP_OKAY;
|
| +}
|
|
|
| Property changes on: nss/lib/freebl/ecl/ecp_384.c
|
| ___________________________________________________________________
|
| Added: svn:eol-style
|
| + LF
|
|
|
|
|