Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(130)

Side by Side Diff: base/allocator/allocator_unittests.cc

Issue 138433004: Normalize _unittest.cc filename suffix for unittests (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: revert ash_unittest change Created 6 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « base/allocator/allocator_unittest.cc ('k') | base/allocator/type_profiler_map_unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <algorithm> // for min()
8 #include "base/atomicops.h"
9 #include "testing/gtest/include/gtest/gtest.h"
10
11 // Number of bits in a size_t.
12 static const int kSizeBits = 8 * sizeof(size_t);
13 // The maximum size of a size_t.
14 static const size_t kMaxSize = ~static_cast<size_t>(0);
15 // Maximum positive size of a size_t if it were signed.
16 static const size_t kMaxSignedSize = ((size_t(1) << (kSizeBits-1)) - 1);
17 // An allocation size which is not too big to be reasonable.
18 static const size_t kNotTooBig = 100000;
19 // An allocation size which is just too big.
20 static const size_t kTooBig = ~static_cast<size_t>(0);
21
22 namespace {
23
24 using std::min;
25
26 // Fill a buffer of the specified size with a predetermined pattern
27 static void Fill(unsigned char* buffer, int n) {
28 for (int i = 0; i < n; i++) {
29 buffer[i] = (i & 0xff);
30 }
31 }
32
33 // Check that the specified buffer has the predetermined pattern
34 // generated by Fill()
35 static bool Valid(unsigned char* buffer, int n) {
36 for (int i = 0; i < n; i++) {
37 if (buffer[i] != (i & 0xff)) {
38 return false;
39 }
40 }
41 return true;
42 }
43
44 // Check that a buffer is completely zeroed.
45 static bool IsZeroed(unsigned char* buffer, int n) {
46 for (int i = 0; i < n; i++) {
47 if (buffer[i] != 0) {
48 return false;
49 }
50 }
51 return true;
52 }
53
54 // Check alignment
55 static void CheckAlignment(void* p, int align) {
56 EXPECT_EQ(0, reinterpret_cast<uintptr_t>(p) & (align-1));
57 }
58
59 // Return the next interesting size/delta to check. Returns -1 if no more.
60 static int NextSize(int size) {
61 if (size < 100)
62 return size+1;
63
64 if (size < 100000) {
65 // Find next power of two
66 int power = 1;
67 while (power < size)
68 power <<= 1;
69
70 // Yield (power-1, power, power+1)
71 if (size < power-1)
72 return power-1;
73
74 if (size == power-1)
75 return power;
76
77 assert(size == power);
78 return power+1;
79 } else {
80 return -1;
81 }
82 }
83
84 #define GG_ULONGLONG(x) static_cast<uint64>(x)
85
86 template <class AtomicType>
87 static void TestAtomicIncrement() {
88 // For now, we just test single threaded execution
89
90 // use a guard value to make sure the NoBarrier_AtomicIncrement doesn't go
91 // outside the expected address bounds. This is in particular to
92 // test that some future change to the asm code doesn't cause the
93 // 32-bit NoBarrier_AtomicIncrement to do the wrong thing on 64-bit machines.
94 struct {
95 AtomicType prev_word;
96 AtomicType count;
97 AtomicType next_word;
98 } s;
99
100 AtomicType prev_word_value, next_word_value;
101 memset(&prev_word_value, 0xFF, sizeof(AtomicType));
102 memset(&next_word_value, 0xEE, sizeof(AtomicType));
103
104 s.prev_word = prev_word_value;
105 s.count = 0;
106 s.next_word = next_word_value;
107
108 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 1), 1);
109 EXPECT_EQ(s.count, 1);
110 EXPECT_EQ(s.prev_word, prev_word_value);
111 EXPECT_EQ(s.next_word, next_word_value);
112
113 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 2), 3);
114 EXPECT_EQ(s.count, 3);
115 EXPECT_EQ(s.prev_word, prev_word_value);
116 EXPECT_EQ(s.next_word, next_word_value);
117
118 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 3), 6);
119 EXPECT_EQ(s.count, 6);
120 EXPECT_EQ(s.prev_word, prev_word_value);
121 EXPECT_EQ(s.next_word, next_word_value);
122
123 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -3), 3);
124 EXPECT_EQ(s.count, 3);
125 EXPECT_EQ(s.prev_word, prev_word_value);
126 EXPECT_EQ(s.next_word, next_word_value);
127
128 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -2), 1);
129 EXPECT_EQ(s.count, 1);
130 EXPECT_EQ(s.prev_word, prev_word_value);
131 EXPECT_EQ(s.next_word, next_word_value);
132
133 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), 0);
134 EXPECT_EQ(s.count, 0);
135 EXPECT_EQ(s.prev_word, prev_word_value);
136 EXPECT_EQ(s.next_word, next_word_value);
137
138 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), -1);
139 EXPECT_EQ(s.count, -1);
140 EXPECT_EQ(s.prev_word, prev_word_value);
141 EXPECT_EQ(s.next_word, next_word_value);
142
143 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -4), -5);
144 EXPECT_EQ(s.count, -5);
145 EXPECT_EQ(s.prev_word, prev_word_value);
146 EXPECT_EQ(s.next_word, next_word_value);
147
148 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 5), 0);
149 EXPECT_EQ(s.count, 0);
150 EXPECT_EQ(s.prev_word, prev_word_value);
151 EXPECT_EQ(s.next_word, next_word_value);
152 }
153
154
155 #define NUM_BITS(T) (sizeof(T) * 8)
156
157
158 template <class AtomicType>
159 static void TestCompareAndSwap() {
160 AtomicType value = 0;
161 AtomicType prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 1);
162 EXPECT_EQ(1, value);
163 EXPECT_EQ(0, prev);
164
165 // Use test value that has non-zero bits in both halves, more for testing
166 // 64-bit implementation on 32-bit platforms.
167 const AtomicType k_test_val = (GG_ULONGLONG(1) <<
168 (NUM_BITS(AtomicType) - 2)) + 11;
169 value = k_test_val;
170 prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 5);
171 EXPECT_EQ(k_test_val, value);
172 EXPECT_EQ(k_test_val, prev);
173
174 value = k_test_val;
175 prev = base::subtle::NoBarrier_CompareAndSwap(&value, k_test_val, 5);
176 EXPECT_EQ(5, value);
177 EXPECT_EQ(k_test_val, prev);
178 }
179
180
181 template <class AtomicType>
182 static void TestAtomicExchange() {
183 AtomicType value = 0;
184 AtomicType new_value = base::subtle::NoBarrier_AtomicExchange(&value, 1);
185 EXPECT_EQ(1, value);
186 EXPECT_EQ(0, new_value);
187
188 // Use test value that has non-zero bits in both halves, more for testing
189 // 64-bit implementation on 32-bit platforms.
190 const AtomicType k_test_val = (GG_ULONGLONG(1) <<
191 (NUM_BITS(AtomicType) - 2)) + 11;
192 value = k_test_val;
193 new_value = base::subtle::NoBarrier_AtomicExchange(&value, k_test_val);
194 EXPECT_EQ(k_test_val, value);
195 EXPECT_EQ(k_test_val, new_value);
196
197 value = k_test_val;
198 new_value = base::subtle::NoBarrier_AtomicExchange(&value, 5);
199 EXPECT_EQ(5, value);
200 EXPECT_EQ(k_test_val, new_value);
201 }
202
203
204 template <class AtomicType>
205 static void TestAtomicIncrementBounds() {
206 // Test increment at the half-width boundary of the atomic type.
207 // It is primarily for testing at the 32-bit boundary for 64-bit atomic type.
208 AtomicType test_val = GG_ULONGLONG(1) << (NUM_BITS(AtomicType) / 2);
209 AtomicType value = test_val - 1;
210 AtomicType new_value = base::subtle::NoBarrier_AtomicIncrement(&value, 1);
211 EXPECT_EQ(test_val, value);
212 EXPECT_EQ(value, new_value);
213
214 base::subtle::NoBarrier_AtomicIncrement(&value, -1);
215 EXPECT_EQ(test_val - 1, value);
216 }
217
218 // This is a simple sanity check that values are correct. Not testing
219 // atomicity
220 template <class AtomicType>
221 static void TestStore() {
222 const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
223 const AtomicType kVal2 = static_cast<AtomicType>(-1);
224
225 AtomicType value;
226
227 base::subtle::NoBarrier_Store(&value, kVal1);
228 EXPECT_EQ(kVal1, value);
229 base::subtle::NoBarrier_Store(&value, kVal2);
230 EXPECT_EQ(kVal2, value);
231
232 base::subtle::Acquire_Store(&value, kVal1);
233 EXPECT_EQ(kVal1, value);
234 base::subtle::Acquire_Store(&value, kVal2);
235 EXPECT_EQ(kVal2, value);
236
237 base::subtle::Release_Store(&value, kVal1);
238 EXPECT_EQ(kVal1, value);
239 base::subtle::Release_Store(&value, kVal2);
240 EXPECT_EQ(kVal2, value);
241 }
242
243 // This is a simple sanity check that values are correct. Not testing
244 // atomicity
245 template <class AtomicType>
246 static void TestLoad() {
247 const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
248 const AtomicType kVal2 = static_cast<AtomicType>(-1);
249
250 AtomicType value;
251
252 value = kVal1;
253 EXPECT_EQ(kVal1, base::subtle::NoBarrier_Load(&value));
254 value = kVal2;
255 EXPECT_EQ(kVal2, base::subtle::NoBarrier_Load(&value));
256
257 value = kVal1;
258 EXPECT_EQ(kVal1, base::subtle::Acquire_Load(&value));
259 value = kVal2;
260 EXPECT_EQ(kVal2, base::subtle::Acquire_Load(&value));
261
262 value = kVal1;
263 EXPECT_EQ(kVal1, base::subtle::Release_Load(&value));
264 value = kVal2;
265 EXPECT_EQ(kVal2, base::subtle::Release_Load(&value));
266 }
267
268 template <class AtomicType>
269 static void TestAtomicOps() {
270 TestCompareAndSwap<AtomicType>();
271 TestAtomicExchange<AtomicType>();
272 TestAtomicIncrementBounds<AtomicType>();
273 TestStore<AtomicType>();
274 TestLoad<AtomicType>();
275 }
276
277 static void TestCalloc(size_t n, size_t s, bool ok) {
278 char* p = reinterpret_cast<char*>(calloc(n, s));
279 if (!ok) {
280 EXPECT_EQ(NULL, p) << "calloc(n, s) should not succeed";
281 } else {
282 EXPECT_NE(reinterpret_cast<void*>(NULL), p) <<
283 "calloc(n, s) should succeed";
284 for (int i = 0; i < n*s; i++) {
285 EXPECT_EQ('\0', p[i]);
286 }
287 free(p);
288 }
289 }
290
291
292 // A global test counter for number of times the NewHandler is called.
293 static int news_handled = 0;
294 static void TestNewHandler() {
295 ++news_handled;
296 throw std::bad_alloc();
297 }
298
299 // Because we compile without exceptions, we expect these will not throw.
300 static void TestOneNewWithoutExceptions(void* (*func)(size_t),
301 bool should_throw) {
302 // success test
303 try {
304 void* ptr = (*func)(kNotTooBig);
305 EXPECT_NE(reinterpret_cast<void*>(NULL), ptr) <<
306 "allocation should not have failed.";
307 } catch(...) {
308 EXPECT_EQ(0, 1) << "allocation threw unexpected exception.";
309 }
310
311 // failure test
312 try {
313 void* rv = (*func)(kTooBig);
314 EXPECT_EQ(NULL, rv);
315 EXPECT_FALSE(should_throw) << "allocation should have thrown.";
316 } catch(...) {
317 EXPECT_TRUE(should_throw) << "allocation threw unexpected exception.";
318 }
319 }
320
321 static void TestNothrowNew(void* (*func)(size_t)) {
322 news_handled = 0;
323
324 // test without new_handler:
325 std::new_handler saved_handler = std::set_new_handler(0);
326 TestOneNewWithoutExceptions(func, false);
327
328 // test with new_handler:
329 std::set_new_handler(TestNewHandler);
330 TestOneNewWithoutExceptions(func, true);
331 EXPECT_EQ(news_handled, 1) << "nothrow new_handler was not called.";
332 std::set_new_handler(saved_handler);
333 }
334
335 } // namespace
336
337 //-----------------------------------------------------------------------------
338
339 TEST(Atomics, AtomicIncrementWord) {
340 TestAtomicIncrement<AtomicWord>();
341 }
342
343 TEST(Atomics, AtomicIncrement32) {
344 TestAtomicIncrement<Atomic32>();
345 }
346
347 TEST(Atomics, AtomicOpsWord) {
348 TestAtomicIncrement<AtomicWord>();
349 }
350
351 TEST(Atomics, AtomicOps32) {
352 TestAtomicIncrement<Atomic32>();
353 }
354
355 TEST(Allocators, Malloc) {
356 // Try allocating data with a bunch of alignments and sizes
357 for (int size = 1; size < 1048576; size *= 2) {
358 unsigned char* ptr = reinterpret_cast<unsigned char*>(malloc(size));
359 CheckAlignment(ptr, 2); // Should be 2 byte aligned
360 Fill(ptr, size);
361 EXPECT_TRUE(Valid(ptr, size));
362 free(ptr);
363 }
364 }
365
366 TEST(Allocators, Calloc) {
367 TestCalloc(0, 0, true);
368 TestCalloc(0, 1, true);
369 TestCalloc(1, 1, true);
370 TestCalloc(1<<10, 0, true);
371 TestCalloc(1<<20, 0, true);
372 TestCalloc(0, 1<<10, true);
373 TestCalloc(0, 1<<20, true);
374 TestCalloc(1<<20, 2, true);
375 TestCalloc(2, 1<<20, true);
376 TestCalloc(1000, 1000, true);
377
378 TestCalloc(kMaxSize, 2, false);
379 TestCalloc(2, kMaxSize, false);
380 TestCalloc(kMaxSize, kMaxSize, false);
381
382 TestCalloc(kMaxSignedSize, 3, false);
383 TestCalloc(3, kMaxSignedSize, false);
384 TestCalloc(kMaxSignedSize, kMaxSignedSize, false);
385 }
386
387 TEST(Allocators, New) {
388 TestNothrowNew(&::operator new);
389 TestNothrowNew(&::operator new[]);
390 }
391
392 // This makes sure that reallocing a small number of bytes in either
393 // direction doesn't cause us to allocate new memory.
394 TEST(Allocators, Realloc1) {
395 int start_sizes[] = { 100, 1000, 10000, 100000 };
396 int deltas[] = { 1, -2, 4, -8, 16, -32, 64, -128 };
397
398 for (int s = 0; s < sizeof(start_sizes)/sizeof(*start_sizes); ++s) {
399 void* p = malloc(start_sizes[s]);
400 ASSERT_TRUE(p);
401 // The larger the start-size, the larger the non-reallocing delta.
402 for (int d = 0; d < s*2; ++d) {
403 void* new_p = realloc(p, start_sizes[s] + deltas[d]);
404 ASSERT_EQ(p, new_p); // realloc should not allocate new memory
405 }
406 // Test again, but this time reallocing smaller first.
407 for (int d = 0; d < s*2; ++d) {
408 void* new_p = realloc(p, start_sizes[s] - deltas[d]);
409 ASSERT_EQ(p, new_p); // realloc should not allocate new memory
410 }
411 free(p);
412 }
413 }
414
415 TEST(Allocators, Realloc2) {
416 for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
417 for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
418 unsigned char* src = reinterpret_cast<unsigned char*>(malloc(src_size));
419 Fill(src, src_size);
420 unsigned char* dst =
421 reinterpret_cast<unsigned char*>(realloc(src, dst_size));
422 EXPECT_TRUE(Valid(dst, min(src_size, dst_size)));
423 Fill(dst, dst_size);
424 EXPECT_TRUE(Valid(dst, dst_size));
425 if (dst != NULL) free(dst);
426 }
427 }
428
429 // Now make sure realloc works correctly even when we overflow the
430 // packed cache, so some entries are evicted from the cache.
431 // The cache has 2^12 entries, keyed by page number.
432 const int kNumEntries = 1 << 14;
433 int** p = reinterpret_cast<int**>(malloc(sizeof(*p) * kNumEntries));
434 int sum = 0;
435 for (int i = 0; i < kNumEntries; i++) {
436 // no page size is likely to be bigger than 8192?
437 p[i] = reinterpret_cast<int*>(malloc(8192));
438 p[i][1000] = i; // use memory deep in the heart of p
439 }
440 for (int i = 0; i < kNumEntries; i++) {
441 p[i] = reinterpret_cast<int*>(realloc(p[i], 9000));
442 }
443 for (int i = 0; i < kNumEntries; i++) {
444 sum += p[i][1000];
445 free(p[i]);
446 }
447 EXPECT_EQ(kNumEntries/2 * (kNumEntries - 1), sum); // assume kNE is even
448 free(p);
449 }
450
451 TEST(Allocators, ReallocZero) {
452 // Test that realloc to zero does not return NULL.
453 for (int size = 0; size >= 0; size = NextSize(size)) {
454 char* ptr = reinterpret_cast<char*>(malloc(size));
455 EXPECT_NE(static_cast<char*>(NULL), ptr);
456 ptr = reinterpret_cast<char*>(realloc(ptr, 0));
457 EXPECT_NE(static_cast<char*>(NULL), ptr);
458 if (ptr)
459 free(ptr);
460 }
461 }
462
463 #ifdef WIN32
464 // Test recalloc
465 TEST(Allocators, Recalloc) {
466 for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
467 for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
468 unsigned char* src =
469 reinterpret_cast<unsigned char*>(_recalloc(NULL, 1, src_size));
470 EXPECT_TRUE(IsZeroed(src, src_size));
471 Fill(src, src_size);
472 unsigned char* dst =
473 reinterpret_cast<unsigned char*>(_recalloc(src, 1, dst_size));
474 EXPECT_TRUE(Valid(dst, min(src_size, dst_size)));
475 Fill(dst, dst_size);
476 EXPECT_TRUE(Valid(dst, dst_size));
477 if (dst != NULL)
478 free(dst);
479 }
480 }
481 }
482
483 // Test windows specific _aligned_malloc() and _aligned_free() methods.
484 TEST(Allocators, AlignedMalloc) {
485 // Try allocating data with a bunch of alignments and sizes
486 static const int kTestAlignments[] = {8, 16, 256, 4096, 8192, 16384};
487 for (int size = 1; size > 0; size = NextSize(size)) {
488 for (int i = 0; i < ARRAYSIZE(kTestAlignments); ++i) {
489 unsigned char* ptr = static_cast<unsigned char*>(
490 _aligned_malloc(size, kTestAlignments[i]));
491 CheckAlignment(ptr, kTestAlignments[i]);
492 Fill(ptr, size);
493 EXPECT_TRUE(Valid(ptr, size));
494
495 // Make a second allocation of the same size and alignment to prevent
496 // allocators from passing this test by accident. Per jar, tcmalloc
497 // provides allocations for new (never before seen) sizes out of a thread
498 // local heap of a given "size class." Each time the test requests a new
499 // size, it will usually get the first element of a span, which is a
500 // 4K aligned allocation.
501 unsigned char* ptr2 = static_cast<unsigned char*>(
502 _aligned_malloc(size, kTestAlignments[i]));
503 CheckAlignment(ptr2, kTestAlignments[i]);
504 Fill(ptr2, size);
505 EXPECT_TRUE(Valid(ptr2, size));
506
507 // Should never happen, but sanity check just in case.
508 ASSERT_NE(ptr, ptr2);
509 _aligned_free(ptr);
510 _aligned_free(ptr2);
511 }
512 }
513 }
514
515 #endif
516
517
518 int main(int argc, char** argv) {
519 testing::InitGoogleTest(&argc, argv);
520 return RUN_ALL_TESTS();
521 }
OLDNEW
« no previous file with comments | « base/allocator/allocator_unittest.cc ('k') | base/allocator/type_profiler_map_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698