OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include <stdio.h> | |
6 #include <stdlib.h> | |
7 #include <algorithm> // for min() | |
8 #include "base/atomicops.h" | |
9 #include "testing/gtest/include/gtest/gtest.h" | |
10 | |
11 // Number of bits in a size_t. | |
12 static const int kSizeBits = 8 * sizeof(size_t); | |
13 // The maximum size of a size_t. | |
14 static const size_t kMaxSize = ~static_cast<size_t>(0); | |
15 // Maximum positive size of a size_t if it were signed. | |
16 static const size_t kMaxSignedSize = ((size_t(1) << (kSizeBits-1)) - 1); | |
17 // An allocation size which is not too big to be reasonable. | |
18 static const size_t kNotTooBig = 100000; | |
19 // An allocation size which is just too big. | |
20 static const size_t kTooBig = ~static_cast<size_t>(0); | |
21 | |
22 namespace { | |
23 | |
24 using std::min; | |
25 | |
26 // Fill a buffer of the specified size with a predetermined pattern | |
27 static void Fill(unsigned char* buffer, int n) { | |
28 for (int i = 0; i < n; i++) { | |
29 buffer[i] = (i & 0xff); | |
30 } | |
31 } | |
32 | |
33 // Check that the specified buffer has the predetermined pattern | |
34 // generated by Fill() | |
35 static bool Valid(unsigned char* buffer, int n) { | |
36 for (int i = 0; i < n; i++) { | |
37 if (buffer[i] != (i & 0xff)) { | |
38 return false; | |
39 } | |
40 } | |
41 return true; | |
42 } | |
43 | |
44 // Check that a buffer is completely zeroed. | |
45 static bool IsZeroed(unsigned char* buffer, int n) { | |
46 for (int i = 0; i < n; i++) { | |
47 if (buffer[i] != 0) { | |
48 return false; | |
49 } | |
50 } | |
51 return true; | |
52 } | |
53 | |
54 // Check alignment | |
55 static void CheckAlignment(void* p, int align) { | |
56 EXPECT_EQ(0, reinterpret_cast<uintptr_t>(p) & (align-1)); | |
57 } | |
58 | |
59 // Return the next interesting size/delta to check. Returns -1 if no more. | |
60 static int NextSize(int size) { | |
61 if (size < 100) | |
62 return size+1; | |
63 | |
64 if (size < 100000) { | |
65 // Find next power of two | |
66 int power = 1; | |
67 while (power < size) | |
68 power <<= 1; | |
69 | |
70 // Yield (power-1, power, power+1) | |
71 if (size < power-1) | |
72 return power-1; | |
73 | |
74 if (size == power-1) | |
75 return power; | |
76 | |
77 assert(size == power); | |
78 return power+1; | |
79 } else { | |
80 return -1; | |
81 } | |
82 } | |
83 | |
84 #define GG_ULONGLONG(x) static_cast<uint64>(x) | |
85 | |
86 template <class AtomicType> | |
87 static void TestAtomicIncrement() { | |
88 // For now, we just test single threaded execution | |
89 | |
90 // use a guard value to make sure the NoBarrier_AtomicIncrement doesn't go | |
91 // outside the expected address bounds. This is in particular to | |
92 // test that some future change to the asm code doesn't cause the | |
93 // 32-bit NoBarrier_AtomicIncrement to do the wrong thing on 64-bit machines. | |
94 struct { | |
95 AtomicType prev_word; | |
96 AtomicType count; | |
97 AtomicType next_word; | |
98 } s; | |
99 | |
100 AtomicType prev_word_value, next_word_value; | |
101 memset(&prev_word_value, 0xFF, sizeof(AtomicType)); | |
102 memset(&next_word_value, 0xEE, sizeof(AtomicType)); | |
103 | |
104 s.prev_word = prev_word_value; | |
105 s.count = 0; | |
106 s.next_word = next_word_value; | |
107 | |
108 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 1), 1); | |
109 EXPECT_EQ(s.count, 1); | |
110 EXPECT_EQ(s.prev_word, prev_word_value); | |
111 EXPECT_EQ(s.next_word, next_word_value); | |
112 | |
113 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 2), 3); | |
114 EXPECT_EQ(s.count, 3); | |
115 EXPECT_EQ(s.prev_word, prev_word_value); | |
116 EXPECT_EQ(s.next_word, next_word_value); | |
117 | |
118 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 3), 6); | |
119 EXPECT_EQ(s.count, 6); | |
120 EXPECT_EQ(s.prev_word, prev_word_value); | |
121 EXPECT_EQ(s.next_word, next_word_value); | |
122 | |
123 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -3), 3); | |
124 EXPECT_EQ(s.count, 3); | |
125 EXPECT_EQ(s.prev_word, prev_word_value); | |
126 EXPECT_EQ(s.next_word, next_word_value); | |
127 | |
128 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -2), 1); | |
129 EXPECT_EQ(s.count, 1); | |
130 EXPECT_EQ(s.prev_word, prev_word_value); | |
131 EXPECT_EQ(s.next_word, next_word_value); | |
132 | |
133 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), 0); | |
134 EXPECT_EQ(s.count, 0); | |
135 EXPECT_EQ(s.prev_word, prev_word_value); | |
136 EXPECT_EQ(s.next_word, next_word_value); | |
137 | |
138 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), -1); | |
139 EXPECT_EQ(s.count, -1); | |
140 EXPECT_EQ(s.prev_word, prev_word_value); | |
141 EXPECT_EQ(s.next_word, next_word_value); | |
142 | |
143 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -4), -5); | |
144 EXPECT_EQ(s.count, -5); | |
145 EXPECT_EQ(s.prev_word, prev_word_value); | |
146 EXPECT_EQ(s.next_word, next_word_value); | |
147 | |
148 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 5), 0); | |
149 EXPECT_EQ(s.count, 0); | |
150 EXPECT_EQ(s.prev_word, prev_word_value); | |
151 EXPECT_EQ(s.next_word, next_word_value); | |
152 } | |
153 | |
154 | |
155 #define NUM_BITS(T) (sizeof(T) * 8) | |
156 | |
157 | |
158 template <class AtomicType> | |
159 static void TestCompareAndSwap() { | |
160 AtomicType value = 0; | |
161 AtomicType prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 1); | |
162 EXPECT_EQ(1, value); | |
163 EXPECT_EQ(0, prev); | |
164 | |
165 // Use test value that has non-zero bits in both halves, more for testing | |
166 // 64-bit implementation on 32-bit platforms. | |
167 const AtomicType k_test_val = (GG_ULONGLONG(1) << | |
168 (NUM_BITS(AtomicType) - 2)) + 11; | |
169 value = k_test_val; | |
170 prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 5); | |
171 EXPECT_EQ(k_test_val, value); | |
172 EXPECT_EQ(k_test_val, prev); | |
173 | |
174 value = k_test_val; | |
175 prev = base::subtle::NoBarrier_CompareAndSwap(&value, k_test_val, 5); | |
176 EXPECT_EQ(5, value); | |
177 EXPECT_EQ(k_test_val, prev); | |
178 } | |
179 | |
180 | |
181 template <class AtomicType> | |
182 static void TestAtomicExchange() { | |
183 AtomicType value = 0; | |
184 AtomicType new_value = base::subtle::NoBarrier_AtomicExchange(&value, 1); | |
185 EXPECT_EQ(1, value); | |
186 EXPECT_EQ(0, new_value); | |
187 | |
188 // Use test value that has non-zero bits in both halves, more for testing | |
189 // 64-bit implementation on 32-bit platforms. | |
190 const AtomicType k_test_val = (GG_ULONGLONG(1) << | |
191 (NUM_BITS(AtomicType) - 2)) + 11; | |
192 value = k_test_val; | |
193 new_value = base::subtle::NoBarrier_AtomicExchange(&value, k_test_val); | |
194 EXPECT_EQ(k_test_val, value); | |
195 EXPECT_EQ(k_test_val, new_value); | |
196 | |
197 value = k_test_val; | |
198 new_value = base::subtle::NoBarrier_AtomicExchange(&value, 5); | |
199 EXPECT_EQ(5, value); | |
200 EXPECT_EQ(k_test_val, new_value); | |
201 } | |
202 | |
203 | |
204 template <class AtomicType> | |
205 static void TestAtomicIncrementBounds() { | |
206 // Test increment at the half-width boundary of the atomic type. | |
207 // It is primarily for testing at the 32-bit boundary for 64-bit atomic type. | |
208 AtomicType test_val = GG_ULONGLONG(1) << (NUM_BITS(AtomicType) / 2); | |
209 AtomicType value = test_val - 1; | |
210 AtomicType new_value = base::subtle::NoBarrier_AtomicIncrement(&value, 1); | |
211 EXPECT_EQ(test_val, value); | |
212 EXPECT_EQ(value, new_value); | |
213 | |
214 base::subtle::NoBarrier_AtomicIncrement(&value, -1); | |
215 EXPECT_EQ(test_val - 1, value); | |
216 } | |
217 | |
218 // This is a simple sanity check that values are correct. Not testing | |
219 // atomicity | |
220 template <class AtomicType> | |
221 static void TestStore() { | |
222 const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL); | |
223 const AtomicType kVal2 = static_cast<AtomicType>(-1); | |
224 | |
225 AtomicType value; | |
226 | |
227 base::subtle::NoBarrier_Store(&value, kVal1); | |
228 EXPECT_EQ(kVal1, value); | |
229 base::subtle::NoBarrier_Store(&value, kVal2); | |
230 EXPECT_EQ(kVal2, value); | |
231 | |
232 base::subtle::Acquire_Store(&value, kVal1); | |
233 EXPECT_EQ(kVal1, value); | |
234 base::subtle::Acquire_Store(&value, kVal2); | |
235 EXPECT_EQ(kVal2, value); | |
236 | |
237 base::subtle::Release_Store(&value, kVal1); | |
238 EXPECT_EQ(kVal1, value); | |
239 base::subtle::Release_Store(&value, kVal2); | |
240 EXPECT_EQ(kVal2, value); | |
241 } | |
242 | |
243 // This is a simple sanity check that values are correct. Not testing | |
244 // atomicity | |
245 template <class AtomicType> | |
246 static void TestLoad() { | |
247 const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL); | |
248 const AtomicType kVal2 = static_cast<AtomicType>(-1); | |
249 | |
250 AtomicType value; | |
251 | |
252 value = kVal1; | |
253 EXPECT_EQ(kVal1, base::subtle::NoBarrier_Load(&value)); | |
254 value = kVal2; | |
255 EXPECT_EQ(kVal2, base::subtle::NoBarrier_Load(&value)); | |
256 | |
257 value = kVal1; | |
258 EXPECT_EQ(kVal1, base::subtle::Acquire_Load(&value)); | |
259 value = kVal2; | |
260 EXPECT_EQ(kVal2, base::subtle::Acquire_Load(&value)); | |
261 | |
262 value = kVal1; | |
263 EXPECT_EQ(kVal1, base::subtle::Release_Load(&value)); | |
264 value = kVal2; | |
265 EXPECT_EQ(kVal2, base::subtle::Release_Load(&value)); | |
266 } | |
267 | |
268 template <class AtomicType> | |
269 static void TestAtomicOps() { | |
270 TestCompareAndSwap<AtomicType>(); | |
271 TestAtomicExchange<AtomicType>(); | |
272 TestAtomicIncrementBounds<AtomicType>(); | |
273 TestStore<AtomicType>(); | |
274 TestLoad<AtomicType>(); | |
275 } | |
276 | |
277 static void TestCalloc(size_t n, size_t s, bool ok) { | |
278 char* p = reinterpret_cast<char*>(calloc(n, s)); | |
279 if (!ok) { | |
280 EXPECT_EQ(NULL, p) << "calloc(n, s) should not succeed"; | |
281 } else { | |
282 EXPECT_NE(reinterpret_cast<void*>(NULL), p) << | |
283 "calloc(n, s) should succeed"; | |
284 for (int i = 0; i < n*s; i++) { | |
285 EXPECT_EQ('\0', p[i]); | |
286 } | |
287 free(p); | |
288 } | |
289 } | |
290 | |
291 | |
292 // A global test counter for number of times the NewHandler is called. | |
293 static int news_handled = 0; | |
294 static void TestNewHandler() { | |
295 ++news_handled; | |
296 throw std::bad_alloc(); | |
297 } | |
298 | |
299 // Because we compile without exceptions, we expect these will not throw. | |
300 static void TestOneNewWithoutExceptions(void* (*func)(size_t), | |
301 bool should_throw) { | |
302 // success test | |
303 try { | |
304 void* ptr = (*func)(kNotTooBig); | |
305 EXPECT_NE(reinterpret_cast<void*>(NULL), ptr) << | |
306 "allocation should not have failed."; | |
307 } catch(...) { | |
308 EXPECT_EQ(0, 1) << "allocation threw unexpected exception."; | |
309 } | |
310 | |
311 // failure test | |
312 try { | |
313 void* rv = (*func)(kTooBig); | |
314 EXPECT_EQ(NULL, rv); | |
315 EXPECT_FALSE(should_throw) << "allocation should have thrown."; | |
316 } catch(...) { | |
317 EXPECT_TRUE(should_throw) << "allocation threw unexpected exception."; | |
318 } | |
319 } | |
320 | |
321 static void TestNothrowNew(void* (*func)(size_t)) { | |
322 news_handled = 0; | |
323 | |
324 // test without new_handler: | |
325 std::new_handler saved_handler = std::set_new_handler(0); | |
326 TestOneNewWithoutExceptions(func, false); | |
327 | |
328 // test with new_handler: | |
329 std::set_new_handler(TestNewHandler); | |
330 TestOneNewWithoutExceptions(func, true); | |
331 EXPECT_EQ(news_handled, 1) << "nothrow new_handler was not called."; | |
332 std::set_new_handler(saved_handler); | |
333 } | |
334 | |
335 } // namespace | |
336 | |
337 //----------------------------------------------------------------------------- | |
338 | |
339 TEST(Atomics, AtomicIncrementWord) { | |
340 TestAtomicIncrement<AtomicWord>(); | |
341 } | |
342 | |
343 TEST(Atomics, AtomicIncrement32) { | |
344 TestAtomicIncrement<Atomic32>(); | |
345 } | |
346 | |
347 TEST(Atomics, AtomicOpsWord) { | |
348 TestAtomicIncrement<AtomicWord>(); | |
349 } | |
350 | |
351 TEST(Atomics, AtomicOps32) { | |
352 TestAtomicIncrement<Atomic32>(); | |
353 } | |
354 | |
355 TEST(Allocators, Malloc) { | |
356 // Try allocating data with a bunch of alignments and sizes | |
357 for (int size = 1; size < 1048576; size *= 2) { | |
358 unsigned char* ptr = reinterpret_cast<unsigned char*>(malloc(size)); | |
359 CheckAlignment(ptr, 2); // Should be 2 byte aligned | |
360 Fill(ptr, size); | |
361 EXPECT_TRUE(Valid(ptr, size)); | |
362 free(ptr); | |
363 } | |
364 } | |
365 | |
366 TEST(Allocators, Calloc) { | |
367 TestCalloc(0, 0, true); | |
368 TestCalloc(0, 1, true); | |
369 TestCalloc(1, 1, true); | |
370 TestCalloc(1<<10, 0, true); | |
371 TestCalloc(1<<20, 0, true); | |
372 TestCalloc(0, 1<<10, true); | |
373 TestCalloc(0, 1<<20, true); | |
374 TestCalloc(1<<20, 2, true); | |
375 TestCalloc(2, 1<<20, true); | |
376 TestCalloc(1000, 1000, true); | |
377 | |
378 TestCalloc(kMaxSize, 2, false); | |
379 TestCalloc(2, kMaxSize, false); | |
380 TestCalloc(kMaxSize, kMaxSize, false); | |
381 | |
382 TestCalloc(kMaxSignedSize, 3, false); | |
383 TestCalloc(3, kMaxSignedSize, false); | |
384 TestCalloc(kMaxSignedSize, kMaxSignedSize, false); | |
385 } | |
386 | |
387 TEST(Allocators, New) { | |
388 TestNothrowNew(&::operator new); | |
389 TestNothrowNew(&::operator new[]); | |
390 } | |
391 | |
392 // This makes sure that reallocing a small number of bytes in either | |
393 // direction doesn't cause us to allocate new memory. | |
394 TEST(Allocators, Realloc1) { | |
395 int start_sizes[] = { 100, 1000, 10000, 100000 }; | |
396 int deltas[] = { 1, -2, 4, -8, 16, -32, 64, -128 }; | |
397 | |
398 for (int s = 0; s < sizeof(start_sizes)/sizeof(*start_sizes); ++s) { | |
399 void* p = malloc(start_sizes[s]); | |
400 ASSERT_TRUE(p); | |
401 // The larger the start-size, the larger the non-reallocing delta. | |
402 for (int d = 0; d < s*2; ++d) { | |
403 void* new_p = realloc(p, start_sizes[s] + deltas[d]); | |
404 ASSERT_EQ(p, new_p); // realloc should not allocate new memory | |
405 } | |
406 // Test again, but this time reallocing smaller first. | |
407 for (int d = 0; d < s*2; ++d) { | |
408 void* new_p = realloc(p, start_sizes[s] - deltas[d]); | |
409 ASSERT_EQ(p, new_p); // realloc should not allocate new memory | |
410 } | |
411 free(p); | |
412 } | |
413 } | |
414 | |
415 TEST(Allocators, Realloc2) { | |
416 for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) { | |
417 for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) { | |
418 unsigned char* src = reinterpret_cast<unsigned char*>(malloc(src_size)); | |
419 Fill(src, src_size); | |
420 unsigned char* dst = | |
421 reinterpret_cast<unsigned char*>(realloc(src, dst_size)); | |
422 EXPECT_TRUE(Valid(dst, min(src_size, dst_size))); | |
423 Fill(dst, dst_size); | |
424 EXPECT_TRUE(Valid(dst, dst_size)); | |
425 if (dst != NULL) free(dst); | |
426 } | |
427 } | |
428 | |
429 // Now make sure realloc works correctly even when we overflow the | |
430 // packed cache, so some entries are evicted from the cache. | |
431 // The cache has 2^12 entries, keyed by page number. | |
432 const int kNumEntries = 1 << 14; | |
433 int** p = reinterpret_cast<int**>(malloc(sizeof(*p) * kNumEntries)); | |
434 int sum = 0; | |
435 for (int i = 0; i < kNumEntries; i++) { | |
436 // no page size is likely to be bigger than 8192? | |
437 p[i] = reinterpret_cast<int*>(malloc(8192)); | |
438 p[i][1000] = i; // use memory deep in the heart of p | |
439 } | |
440 for (int i = 0; i < kNumEntries; i++) { | |
441 p[i] = reinterpret_cast<int*>(realloc(p[i], 9000)); | |
442 } | |
443 for (int i = 0; i < kNumEntries; i++) { | |
444 sum += p[i][1000]; | |
445 free(p[i]); | |
446 } | |
447 EXPECT_EQ(kNumEntries/2 * (kNumEntries - 1), sum); // assume kNE is even | |
448 free(p); | |
449 } | |
450 | |
451 TEST(Allocators, ReallocZero) { | |
452 // Test that realloc to zero does not return NULL. | |
453 for (int size = 0; size >= 0; size = NextSize(size)) { | |
454 char* ptr = reinterpret_cast<char*>(malloc(size)); | |
455 EXPECT_NE(static_cast<char*>(NULL), ptr); | |
456 ptr = reinterpret_cast<char*>(realloc(ptr, 0)); | |
457 EXPECT_NE(static_cast<char*>(NULL), ptr); | |
458 if (ptr) | |
459 free(ptr); | |
460 } | |
461 } | |
462 | |
463 #ifdef WIN32 | |
464 // Test recalloc | |
465 TEST(Allocators, Recalloc) { | |
466 for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) { | |
467 for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) { | |
468 unsigned char* src = | |
469 reinterpret_cast<unsigned char*>(_recalloc(NULL, 1, src_size)); | |
470 EXPECT_TRUE(IsZeroed(src, src_size)); | |
471 Fill(src, src_size); | |
472 unsigned char* dst = | |
473 reinterpret_cast<unsigned char*>(_recalloc(src, 1, dst_size)); | |
474 EXPECT_TRUE(Valid(dst, min(src_size, dst_size))); | |
475 Fill(dst, dst_size); | |
476 EXPECT_TRUE(Valid(dst, dst_size)); | |
477 if (dst != NULL) | |
478 free(dst); | |
479 } | |
480 } | |
481 } | |
482 | |
483 // Test windows specific _aligned_malloc() and _aligned_free() methods. | |
484 TEST(Allocators, AlignedMalloc) { | |
485 // Try allocating data with a bunch of alignments and sizes | |
486 static const int kTestAlignments[] = {8, 16, 256, 4096, 8192, 16384}; | |
487 for (int size = 1; size > 0; size = NextSize(size)) { | |
488 for (int i = 0; i < ARRAYSIZE(kTestAlignments); ++i) { | |
489 unsigned char* ptr = static_cast<unsigned char*>( | |
490 _aligned_malloc(size, kTestAlignments[i])); | |
491 CheckAlignment(ptr, kTestAlignments[i]); | |
492 Fill(ptr, size); | |
493 EXPECT_TRUE(Valid(ptr, size)); | |
494 | |
495 // Make a second allocation of the same size and alignment to prevent | |
496 // allocators from passing this test by accident. Per jar, tcmalloc | |
497 // provides allocations for new (never before seen) sizes out of a thread | |
498 // local heap of a given "size class." Each time the test requests a new | |
499 // size, it will usually get the first element of a span, which is a | |
500 // 4K aligned allocation. | |
501 unsigned char* ptr2 = static_cast<unsigned char*>( | |
502 _aligned_malloc(size, kTestAlignments[i])); | |
503 CheckAlignment(ptr2, kTestAlignments[i]); | |
504 Fill(ptr2, size); | |
505 EXPECT_TRUE(Valid(ptr2, size)); | |
506 | |
507 // Should never happen, but sanity check just in case. | |
508 ASSERT_NE(ptr, ptr2); | |
509 _aligned_free(ptr); | |
510 _aligned_free(ptr2); | |
511 } | |
512 } | |
513 } | |
514 | |
515 #endif | |
516 | |
517 | |
518 int main(int argc, char** argv) { | |
519 testing::InitGoogleTest(&argc, argv); | |
520 return RUN_ALL_TESTS(); | |
521 } | |
OLD | NEW |