Index: third_party/gsutil/third_party/pyasn1/doc/scalar.html |
diff --git a/third_party/gsutil/third_party/pyasn1/doc/scalar.html b/third_party/gsutil/third_party/pyasn1/doc/scalar.html |
new file mode 100644 |
index 0000000000000000000000000000000000000000..e5ccefe60e3176cd269f81aacef50db9a1feec5e |
--- /dev/null |
+++ b/third_party/gsutil/third_party/pyasn1/doc/scalar.html |
@@ -0,0 +1,794 @@ |
+<html> |
+<title> |
+PyASN1 data model and scalar types |
+</title> |
+<head> |
+</head> |
+<body> |
+<center> |
+<table width=60%> |
+<tr> |
+<td> |
+ |
+<h3> |
+1. Data model for ASN.1 types |
+</h3> |
+ |
+<p> |
+All ASN.1 types could be categorized into two groups: scalar (also called |
+simple or primitive) and constructed. The first group is populated by |
+well-known types like Integer or String. Members of constructed group |
+hold other types (simple or constructed) as their inner components, thus |
+they are semantically close to a programming language records or lists. |
+</p> |
+ |
+<p> |
+In pyasn1, all ASN.1 types and values are implemented as Python objects. |
+The same pyasn1 object can represent either ASN.1 type and/or value |
+depending of the presense of value initializer on object instantiation. |
+We will further refer to these as <i>pyasn1 type object</i> versus <i>pyasn1 |
+value object</i>. |
+</p> |
+ |
+<p> |
+Primitive ASN.1 types are implemented as immutable scalar objects. There values |
+could be used just like corresponding native Python values (integers, |
+strings/bytes etc) and freely mixed with them in expressions. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ |
+>>> asn1IntegerValue = univ.Integer(12) |
+>>> asn1IntegerValue - 2 |
+10 |
+>>> univ.OctetString('abc') == 'abc' |
+True # Python 2 |
+>>> univ.OctetString(b'abc') == b'abc' |
+True # Python 3 |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+It would be an error to perform an operation on a pyasn1 type object |
+as it holds no value to deal with: |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ |
+>>> asn1IntegerType = univ.Integer() |
+>>> asn1IntegerType - 2 |
+... |
+pyasn1.error.PyAsn1Error: No value for __coerce__() |
+</pre> |
+</td></tr></table> |
+ |
+<a name="1.1"></a> |
+<h4> |
+1.1 Scalar types |
+</h4> |
+ |
+<p> |
+In the sub-sections that follow we will explain pyasn1 mapping to those |
+primitive ASN.1 types. Both, ASN.1 notation and corresponding pyasn1 |
+syntax will be given in each case. |
+</p> |
+ |
+<a name="1.1.1"></a> |
+<h4> |
+1.1.1 Boolean type |
+</h4> |
+ |
+<p> |
+This is the simplest type those values could be either True or False. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+;; type specification |
+FunFactorPresent ::= BOOLEAN |
+ |
+;; values declaration and assignment |
+pythonFunFactor FunFactorPresent ::= TRUE |
+cobolFunFactor FunFactorPresent :: FALSE |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+And here's pyasn1 version of it: |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ |
+>>> class FunFactorPresent(univ.Boolean): pass |
+... |
+>>> pythonFunFactor = FunFactorPresent(True) |
+>>> cobolFunFactor = FunFactorPresent(False) |
+>>> pythonFunFactor |
+FunFactorPresent('True(1)') |
+>>> cobolFunFactor |
+FunFactorPresent('False(0)') |
+>>> pythonFunFactor == cobolFunFactor |
+False |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<a name="1.1.2"></a> |
+<h4> |
+1.1.2 Null type |
+</h4> |
+ |
+<p> |
+The NULL type is sometimes used to express the absense of any information. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+;; type specification |
+Vote ::= CHOICE { |
+ agreed BOOLEAN, |
+ skip NULL |
+} |
+</td></tr></table> |
+ |
+;; value declaration and assignment |
+myVote Vote ::= skip:NULL |
+</pre> |
+ |
+<p> |
+We will explain the CHOICE type later in this paper, meanwhile the NULL |
+type: |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ |
+>>> skip = univ.Null() |
+>>> skip |
+Null('') |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<a name="1.1.3"></a> |
+<h4> |
+1.1.3 Integer type |
+</h4> |
+ |
+<p> |
+ASN.1 defines the values of Integer type as negative or positive of whatever |
+length. This definition plays nicely with Python as the latter places no |
+limit on Integers. However, some ASN.1 implementations may impose certain |
+limits of integer value ranges. Keep that in mind when designing new |
+data structures. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+;; values specification |
+age-of-universe INTEGER ::= 13750000000 |
+mean-martian-surface-temperature INTEGER ::= -63 |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+A rather strigntforward mapping into pyasn1: |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ |
+>>> ageOfUniverse = univ.Integer(13750000000) |
+>>> ageOfUniverse |
+Integer(13750000000) |
+>>> |
+>>> meanMartianSurfaceTemperature = univ.Integer(-63) |
+>>> meanMartianSurfaceTemperature |
+Integer(-63) |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+ASN.1 allows to assign human-friendly names to particular values of |
+an INTEGER type. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+Temperature ::= INTEGER { |
+ freezing(0), |
+ boiling(100) |
+} |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+The Temperature type expressed in pyasn1: |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ, namedval |
+>>> class Temperature(univ.Integer): |
+... namedValues = namedval.NamedValues(('freezing', 0), ('boiling', 100)) |
+... |
+>>> t = Temperature(0) |
+>>> t |
+Temperature('freezing(0)') |
+>>> t + 1 |
+Temperature(1) |
+>>> t + 100 |
+Temperature('boiling(100)') |
+>>> t = Temperature('boiling') |
+>>> t |
+Temperature('boiling(100)') |
+>>> Temperature('boiling') / 2 |
+Temperature(50) |
+>>> -1 < Temperature('freezing') |
+True |
+>>> 47 > Temperature('boiling') |
+False |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+These values labels have no effect on Integer type operations, any value |
+still could be assigned to a type (information on value constraints will |
+follow further in this paper). |
+</p> |
+ |
+<a name="1.1.4"></a> |
+<h4> |
+1.1.4 Enumerated type |
+</h4> |
+ |
+<p> |
+ASN.1 Enumerated type differs from an Integer type in a number of ways. |
+Most important is that its instance can only hold a value that belongs |
+to a set of values specified on type declaration. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+error-status ::= ENUMERATED { |
+ no-error(0), |
+ authentication-error(10), |
+ authorization-error(20), |
+ general-failure(51) |
+} |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+When constructing Enumerated type we will use two pyasn1 features: values |
+labels (as mentioned above) and value constraint (will be described in |
+more details later on). |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ, namedval, constraint |
+>>> class ErrorStatus(univ.Enumerated): |
+... namedValues = namedval.NamedValues( |
+... ('no-error', 0), |
+... ('authentication-error', 10), |
+... ('authorization-error', 20), |
+... ('general-failure', 51) |
+... ) |
+... subtypeSpec = univ.Enumerated.subtypeSpec + \ |
+... constraint.SingleValueConstraint(0, 10, 20, 51) |
+... |
+>>> errorStatus = univ.ErrorStatus('no-error') |
+>>> errorStatus |
+ErrorStatus('no-error(0)') |
+>>> errorStatus == univ.ErrorStatus('general-failure') |
+False |
+>>> univ.ErrorStatus('non-existing-state') |
+Traceback (most recent call last): |
+... |
+pyasn1.error.PyAsn1Error: Can't coerce non-existing-state into integer |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+Particular integer values associated with Enumerated value states |
+have no meaning. They should not be used as such or in any kind of |
+math operation. Those integer values are only used by codecs to |
+transfer state from one entity to another. |
+</p> |
+ |
+<a name="1.1.5"></a> |
+<h4> |
+1.1.5 Real type |
+</h4> |
+ |
+<p> |
+Values of the Real type are a three-component tuple of mantissa, base and |
+exponent. All three are integers. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+pi ::= REAL { mantissa 314159, base 10, exponent -5 } |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+Corresponding pyasn1 objects can be initialized with either a three-component |
+tuple or a Python float. Infinite values could be expressed in a way, |
+compatible with Python float type. |
+ |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ |
+>>> pi = univ.Real((314159, 10, -5)) |
+>>> pi |
+Real((314159, 10,-5)) |
+>>> float(pi) |
+3.14159 |
+>>> pi == univ.Real(3.14159) |
+True |
+>>> univ.Real('inf') |
+Real('inf') |
+>>> univ.Real('-inf') == float('-inf') |
+True |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+If a Real object is initialized from a Python float or yielded by a math |
+operation, the base is set to decimal 10 (what affects encoding). |
+</p> |
+ |
+<a name="1.1.6"></a> |
+<h4> |
+1.1.6 Bit string type |
+</h4> |
+ |
+<p> |
+ASN.1 BIT STRING type holds opaque binary data of an arbitrarily length. |
+A BIT STRING value could be initialized by either a binary (base 2) or |
+hex (base 16) value. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+public-key BIT STRING ::= '1010111011110001010110101101101 |
+ 1011000101010000010110101100010 |
+ 0110101010000111101010111111110'B |
+ |
+signature BIT STRING ::= 'AF01330CD932093392100B39FF00DE0'H |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+The pyasn1 BitString objects can initialize from native ASN.1 notation |
+(base 2 or base 16 strings) or from a Python tuple of binary components. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ |
+>>> publicKey = univ.BitString( |
+... "'1010111011110001010110101101101" |
+... "1011000101010000010110101100010" |
+... "0110101010000111101010111111110'B" |
+) |
+>>> publicKey |
+BitString("'10101110111100010101101011011011011000101010000010110101100010\ |
+0110101010000111101010111111110'B") |
+>>> signature = univ.BitString( |
+... "'AF01330CD932093392100B39FF00DE0'H" |
+... ) |
+>>> signature |
+BitString("'101011110000000100110011000011001101100100110010000010010011001\ |
+1100100100001000000001011001110011111111100000000110111100000'B") |
+>>> fingerprint = univ.BitString( |
+... (1, 0, 1, 1 ,0, 1, 1, 1, 0, 1, 0, 1) |
+... ) |
+>>> fingerprint |
+BitString("'101101110101'B") |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+Another BIT STRING initialization method supported by ASN.1 notation |
+is to specify only 1-th bits along with their human-friendly label |
+and bit offset relative to the beginning of the bit string. With this |
+method, all not explicitly mentioned bits are doomed to be zeros. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+bit-mask BIT STRING ::= { |
+ read-flag(0), |
+ write-flag(2), |
+ run-flag(4) |
+} |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+To express this in pyasn1, we will employ the named values feature (as with |
+Enumeration type). |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ, namedval |
+>>> class BitMask(univ.BitString): |
+... namedValues = namedval.NamedValues( |
+... ('read-flag', 0), |
+... ('write-flag', 2), |
+... ('run-flag', 4) |
+... ) |
+>>> bitMask = BitMask('read-flag,run-flag') |
+>>> bitMask |
+BitMask("'10001'B") |
+>>> tuple(bitMask) |
+(1, 0, 0, 0, 1) |
+>>> bitMask[4] |
+1 |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+The BitString objects mimic the properties of Python tuple type in part |
+of immutable sequence object protocol support. |
+</p> |
+ |
+<a name="1.1.7"></a> |
+<h4> |
+1.1.7 OctetString type |
+</h4> |
+ |
+<p> |
+The OCTET STRING type is a confusing subject. According to ASN.1 |
+specification, this type is similar to BIT STRING, the major difference |
+is that the former operates in 8-bit chunks of data. What is important |
+to note, is that OCTET STRING was NOT designed to handle text strings - the |
+standard provides many other types specialized for text content. For that |
+reason, ASN.1 forbids to initialize OCTET STRING values with "quoted text |
+strings", only binary or hex initializers, similar to BIT STRING ones, |
+are allowed. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+thumbnail OCTET STRING ::= '1000010111101110101111000000111011'B |
+thumbnail OCTET STRING ::= 'FA9823C43E43510DE3422'H |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+However, ASN.1 users (e.g. protocols designers) seem to ignore the original |
+purpose of the OCTET STRING type - they used it for handling all kinds of |
+data, including text strings. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+welcome-message OCTET STRING ::= "Welcome to ASN.1 wilderness!" |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+In pyasn1, we have taken a liberal approach and allowed both BIT STRING |
+style and quoted text initializers for the OctetString objects. To avoid |
+possible collisions, quoted text is the default initialization syntax. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ |
+>>> thumbnail = univ.OctetString( |
+... binValue='1000010111101110101111000000111011' |
+... ) |
+>>> thumbnail |
+OctetString(hexValue='85eebcec0') |
+>>> thumbnail = univ.OctetString( |
+... hexValue='FA9823C43E43510DE3422' |
+... ) |
+>>> thumbnail |
+OctetString(hexValue='fa9823c43e4351de34220') |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+Most frequent usage of the OctetString class is to instantiate it with |
+a text string. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ |
+>>> welcomeMessage = univ.OctetString('Welcome to ASN.1 wilderness!') |
+>>> welcomeMessage |
+OctetString(b'Welcome to ASN.1 wilderness!') |
+>>> print('%s' % welcomeMessage) |
+Welcome to ASN.1 wilderness! |
+>>> welcomeMessage[11:16] |
+OctetString(b'ASN.1') |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+OctetString objects support the immutable sequence object protocol. |
+In other words, they behave like Python 3 bytes (or Python 2 strings). |
+</p> |
+ |
+<p> |
+When running pyasn1 on Python 3, it's better to use the bytes objects for |
+OctetString instantiation, as it's more reliable and efficient. |
+</p> |
+ |
+<p> |
+Additionally, OctetString's can also be instantiated with a sequence of |
+8-bit integers (ASCII codes). |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> univ.OctetString((77, 101, 101, 103, 111)) |
+OctetString(b'Meego') |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+It is sometimes convenient to express OctetString instances as 8-bit |
+characters (Python 3 bytes or Python 2 strings) or 8-bit integers. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> octetString = univ.OctetString('ABCDEF') |
+>>> octetString.asNumbers() |
+(65, 66, 67, 68, 69, 70) |
+>>> octetString.asOctets() |
+b'ABCDEF' |
+</pre> |
+</td></tr></table> |
+ |
+<a name="1.1.8"></a> |
+<h4> |
+1.1.8 ObjectIdentifier type |
+</h4> |
+ |
+<p> |
+Values of the OBJECT IDENTIFIER type are sequences of integers that could |
+be used to identify virtually anything in the world. Various ASN.1-based |
+protocols employ OBJECT IDENTIFIERs for their own identification needs. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+internet-id OBJECT IDENTIFIER ::= { |
+ iso(1) identified-organization(3) dod(6) internet(1) |
+} |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+One of the natural ways to map OBJECT IDENTIFIER type into a Python |
+one is to use Python tuples of integers. So this approach is taken by |
+pyasn1. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ |
+>>> internetId = univ.ObjectIdentifier((1, 3, 6, 1)) |
+>>> internetId |
+ObjectIdentifier('1.3.6.1') |
+>>> internetId[2] |
+6 |
+>>> internetId[1:3] |
+ObjectIdentifier('3.6') |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+A more human-friendly "dotted" notation is also supported. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import univ |
+>>> univ.ObjectIdentifier('1.3.6.1') |
+ObjectIdentifier('1.3.6.1') |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+Symbolic names of the arcs of object identifier, sometimes present in |
+ASN.1 specifications, are not preserved and used in pyasn1 objects. |
+</p> |
+ |
+<p> |
+The ObjectIdentifier objects mimic the properties of Python tuple type in |
+part of immutable sequence object protocol support. |
+</p> |
+ |
+<a name="1.1.9"></a> |
+<h4> |
+1.1.9 Character string types |
+</h4> |
+ |
+<p> |
+ASN.1 standard introduces a diverse set of text-specific types. All of them |
+were designed to handle various types of characters. Some of these types seem |
+be obsolete nowdays, as their target technologies are gone. Another issue |
+to be aware of is that raw OCTET STRING type is sometimes used in practice |
+by ASN.1 users instead of specialized character string types, despite |
+explicit prohibition imposed by ASN.1 specification. |
+</p> |
+ |
+<p> |
+The two types are specific to ASN.1 are NumericString and PrintableString. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+welcome-message ::= PrintableString { |
+ "Welcome to ASN.1 text types" |
+} |
+ |
+dial-pad-numbers ::= NumericString { |
+ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" |
+} |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+Their pyasn1 implementations are: |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import char |
+>>> '%s' % char.PrintableString("Welcome to ASN.1 text types") |
+'Welcome to ASN.1 text types' |
+>>> dialPadNumbers = char.NumericString( |
+ "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" |
+) |
+>>> dialPadNumbers |
+NumericString(b'0123456789') |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+The following types came to ASN.1 from ISO standards on character sets. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import char |
+>>> char.VisibleString("abc") |
+VisibleString(b'abc') |
+>>> char.IA5String('abc') |
+IA5String(b'abc') |
+>>> char.TeletexString('abc') |
+TeletexString(b'abc') |
+>>> char.VideotexString('abc') |
+VideotexString(b'abc') |
+>>> char.GraphicString('abc') |
+GraphicString(b'abc') |
+>>> char.GeneralString('abc') |
+GeneralString(b'abc') |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+The last three types are relatively recent addition to the family of |
+character string types: UniversalString, BMPString, UTF8String. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import char |
+>>> char.UniversalString("abc") |
+UniversalString(b'abc') |
+>>> char.BMPString('abc') |
+BMPString(b'abc') |
+>>> char.UTF8String('abc') |
+UTF8String(b'abc') |
+>>> utf8String = char.UTF8String('У попа была собака') |
+>>> utf8String |
+UTF8String(b'\xd0\xa3 \xd0\xbf\xd0\xbe\xd0\xbf\xd0\xb0 \xd0\xb1\xd1\x8b\xd0\xbb\xd0\xb0 \ |
+\xd1\x81\xd0\xbe\xd0\xb1\xd0\xb0\xd0\xba\xd0\xb0') |
+>>> print(utf8String) |
+У попа была собака |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+In pyasn1, all character type objects behave like Python strings. None of |
+them is currently constrained in terms of valid alphabet so it's up to |
+the data source to keep an eye on data validation for these types. |
+</p> |
+ |
+<a name="1.1.10"></a> |
+<h4> |
+1.1.10 Useful types |
+</h4> |
+ |
+<p> |
+There are three so-called useful types defined in the standard: |
+ObjectDescriptor, GeneralizedTime, UTCTime. They all are subtypes |
+of GraphicString or VisibleString types therefore useful types are |
+character string types. |
+</p> |
+ |
+<p> |
+It's advised by the ASN.1 standard to have an instance of ObjectDescriptor |
+type holding a human-readable description of corresponding instance of |
+OBJECT IDENTIFIER type. There are no formal linkage between these instances |
+and provision for ObjectDescriptor uniqueness in the standard. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import useful |
+>>> descrBER = useful.ObjectDescriptor( |
+ "Basic encoding of a single ASN.1 type" |
+) |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+GeneralizedTime and UTCTime types are designed to hold a human-readable |
+timestamp in a universal and unambiguous form. The former provides |
+more flexibility in notation while the latter is more strict but has |
+Y2K issues. |
+</p> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+;; Mar 8 2010 12:00:00 MSK |
+moscow-time GeneralizedTime ::= "20110308120000.0" |
+;; Mar 8 2010 12:00:00 UTC |
+utc-time GeneralizedTime ::= "201103081200Z" |
+;; Mar 8 1999 12:00:00 UTC |
+utc-time UTCTime ::= "9803081200Z" |
+</pre> |
+</td></tr></table> |
+ |
+<table bgcolor="lightgray" border=0 width=100%><TR><TD> |
+<pre> |
+>>> from pyasn1.type import useful |
+>>> moscowTime = useful.GeneralizedTime("20110308120000.0") |
+>>> utcTime = useful.UTCTime("9803081200Z") |
+>>> |
+</pre> |
+</td></tr></table> |
+ |
+<p> |
+Despite their intended use, these types possess no special, time-related, |
+handling in pyasn1. They are just printable strings. |
+</p> |
+ |
+<hr> |
+ |
+</td> |
+</tr> |
+</table> |
+</center> |
+</body> |
+</html> |