Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(171)

Side by Side Diff: src/heap/heap.cc

Issue 1370123002: [heap] Remove retry space from AllocateRaw. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Created 5 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/heap/heap.h ('k') | src/heap/heap-inl.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "src/heap/heap.h" 5 #include "src/heap/heap.h"
6 6
7 #include "src/accessors.h" 7 #include "src/accessors.h"
8 #include "src/api.h" 8 #include "src/api.h"
9 #include "src/base/bits.h" 9 #include "src/base/bits.h"
10 #include "src/base/once.h" 10 #include "src/base/once.h"
(...skipping 1971 matching lines...) Expand 10 before | Expand all | Expand 10 after
1982 static_cast<intptr_t>( 1982 static_cast<intptr_t>(
1983 static_cast<double>(old_generation_allocation_limit_) * 1983 static_cast<double>(old_generation_allocation_limit_) *
1984 (tracer()->AverageSurvivalRatio() / 100))); 1984 (tracer()->AverageSurvivalRatio() / 100)));
1985 } 1985 }
1986 } 1986 }
1987 1987
1988 1988
1989 AllocationResult Heap::AllocatePartialMap(InstanceType instance_type, 1989 AllocationResult Heap::AllocatePartialMap(InstanceType instance_type,
1990 int instance_size) { 1990 int instance_size) {
1991 Object* result = nullptr; 1991 Object* result = nullptr;
1992 AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE); 1992 AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE);
1993 if (!allocation.To(&result)) return allocation; 1993 if (!allocation.To(&result)) return allocation;
1994 1994
1995 // Map::cast cannot be used due to uninitialized map field. 1995 // Map::cast cannot be used due to uninitialized map field.
1996 reinterpret_cast<Map*>(result)->set_map( 1996 reinterpret_cast<Map*>(result)->set_map(
1997 reinterpret_cast<Map*>(root(kMetaMapRootIndex))); 1997 reinterpret_cast<Map*>(root(kMetaMapRootIndex)));
1998 reinterpret_cast<Map*>(result)->set_instance_type(instance_type); 1998 reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
1999 reinterpret_cast<Map*>(result)->set_instance_size(instance_size); 1999 reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
2000 // Initialize to only containing tagged fields. 2000 // Initialize to only containing tagged fields.
2001 reinterpret_cast<Map*>(result)->set_visitor_id( 2001 reinterpret_cast<Map*>(result)->set_visitor_id(
2002 StaticVisitorBase::GetVisitorId(instance_type, instance_size, false)); 2002 StaticVisitorBase::GetVisitorId(instance_type, instance_size, false));
(...skipping 13 matching lines...) Expand all
2016 reinterpret_cast<Map*>(result)->set_bit_field3(bit_field3); 2016 reinterpret_cast<Map*>(result)->set_bit_field3(bit_field3);
2017 reinterpret_cast<Map*>(result)->set_weak_cell_cache(Smi::FromInt(0)); 2017 reinterpret_cast<Map*>(result)->set_weak_cell_cache(Smi::FromInt(0));
2018 return result; 2018 return result;
2019 } 2019 }
2020 2020
2021 2021
2022 AllocationResult Heap::AllocateMap(InstanceType instance_type, 2022 AllocationResult Heap::AllocateMap(InstanceType instance_type,
2023 int instance_size, 2023 int instance_size,
2024 ElementsKind elements_kind) { 2024 ElementsKind elements_kind) {
2025 HeapObject* result = nullptr; 2025 HeapObject* result = nullptr;
2026 AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE); 2026 AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE);
2027 if (!allocation.To(&result)) return allocation; 2027 if (!allocation.To(&result)) return allocation;
2028 2028
2029 result->set_map_no_write_barrier(meta_map()); 2029 result->set_map_no_write_barrier(meta_map());
2030 Map* map = Map::cast(result); 2030 Map* map = Map::cast(result);
2031 map->set_instance_type(instance_type); 2031 map->set_instance_type(instance_type);
2032 map->set_prototype(null_value(), SKIP_WRITE_BARRIER); 2032 map->set_prototype(null_value(), SKIP_WRITE_BARRIER);
2033 map->set_constructor_or_backpointer(null_value(), SKIP_WRITE_BARRIER); 2033 map->set_constructor_or_backpointer(null_value(), SKIP_WRITE_BARRIER);
2034 map->set_instance_size(instance_size); 2034 map->set_instance_size(instance_size);
2035 map->clear_unused(); 2035 map->clear_unused();
2036 map->set_inobject_properties_or_constructor_function_index(0); 2036 map->set_inobject_properties_or_constructor_function_index(0);
(...skipping 20 matching lines...) Expand all
2057 2057
2058 return map; 2058 return map;
2059 } 2059 }
2060 2060
2061 2061
2062 AllocationResult Heap::AllocateFillerObject(int size, bool double_align, 2062 AllocationResult Heap::AllocateFillerObject(int size, bool double_align,
2063 AllocationSpace space) { 2063 AllocationSpace space) {
2064 HeapObject* obj = nullptr; 2064 HeapObject* obj = nullptr;
2065 { 2065 {
2066 AllocationAlignment align = double_align ? kDoubleAligned : kWordAligned; 2066 AllocationAlignment align = double_align ? kDoubleAligned : kWordAligned;
2067 AllocationResult allocation = AllocateRaw(size, space, space, align); 2067 AllocationResult allocation = AllocateRaw(size, space, align);
2068 if (!allocation.To(&obj)) return allocation; 2068 if (!allocation.To(&obj)) return allocation;
2069 } 2069 }
2070 #ifdef DEBUG 2070 #ifdef DEBUG
2071 MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); 2071 MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
2072 DCHECK(chunk->owner()->identity() == space); 2072 DCHECK(chunk->owner()->identity() == space);
2073 #endif 2073 #endif
2074 CreateFillerObjectAt(obj->address(), size); 2074 CreateFillerObjectAt(obj->address(), size);
2075 return obj; 2075 return obj;
2076 } 2076 }
2077 2077
(...skipping 292 matching lines...) Expand 10 before | Expand all | Expand 10 after
2370 PretenureFlag pretenure) { 2370 PretenureFlag pretenure) {
2371 // Statically ensure that it is safe to allocate heap numbers in paged 2371 // Statically ensure that it is safe to allocate heap numbers in paged
2372 // spaces. 2372 // spaces.
2373 int size = HeapNumber::kSize; 2373 int size = HeapNumber::kSize;
2374 STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxRegularHeapObjectSize); 2374 STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxRegularHeapObjectSize);
2375 2375
2376 AllocationSpace space = SelectSpace(pretenure); 2376 AllocationSpace space = SelectSpace(pretenure);
2377 2377
2378 HeapObject* result = nullptr; 2378 HeapObject* result = nullptr;
2379 { 2379 {
2380 AllocationResult allocation = 2380 AllocationResult allocation = AllocateRaw(size, space, kDoubleUnaligned);
2381 AllocateRaw(size, space, OLD_SPACE, kDoubleUnaligned);
2382 if (!allocation.To(&result)) return allocation; 2381 if (!allocation.To(&result)) return allocation;
2383 } 2382 }
2384 2383
2385 Map* map = mode == MUTABLE ? mutable_heap_number_map() : heap_number_map(); 2384 Map* map = mode == MUTABLE ? mutable_heap_number_map() : heap_number_map();
2386 HeapObject::cast(result)->set_map_no_write_barrier(map); 2385 HeapObject::cast(result)->set_map_no_write_barrier(map);
2387 HeapNumber::cast(result)->set_value(value); 2386 HeapNumber::cast(result)->set_value(value);
2388 return result; 2387 return result;
2389 } 2388 }
2390 2389
2391 #define SIMD_ALLOCATE_DEFINITION(TYPE, Type, type, lane_count, lane_type) \ 2390 #define SIMD_ALLOCATE_DEFINITION(TYPE, Type, type, lane_count, lane_type) \
2392 AllocationResult Heap::Allocate##Type(lane_type lanes[lane_count], \ 2391 AllocationResult Heap::Allocate##Type(lane_type lanes[lane_count], \
2393 PretenureFlag pretenure) { \ 2392 PretenureFlag pretenure) { \
2394 int size = Type::kSize; \ 2393 int size = Type::kSize; \
2395 STATIC_ASSERT(Type::kSize <= Page::kMaxRegularHeapObjectSize); \ 2394 STATIC_ASSERT(Type::kSize <= Page::kMaxRegularHeapObjectSize); \
2396 \ 2395 \
2397 AllocationSpace space = SelectSpace(pretenure); \ 2396 AllocationSpace space = SelectSpace(pretenure); \
2398 \ 2397 \
2399 HeapObject* result = nullptr; \ 2398 HeapObject* result = nullptr; \
2400 { \ 2399 { \
2401 AllocationResult allocation = \ 2400 AllocationResult allocation = \
2402 AllocateRaw(size, space, OLD_SPACE, kSimd128Unaligned); \ 2401 AllocateRaw(size, space, kSimd128Unaligned); \
2403 if (!allocation.To(&result)) return allocation; \ 2402 if (!allocation.To(&result)) return allocation; \
2404 } \ 2403 } \
2405 \ 2404 \
2406 result->set_map_no_write_barrier(type##_map()); \ 2405 result->set_map_no_write_barrier(type##_map()); \
2407 Type* instance = Type::cast(result); \ 2406 Type* instance = Type::cast(result); \
2408 for (int i = 0; i < lane_count; i++) { \ 2407 for (int i = 0; i < lane_count; i++) { \
2409 instance->set_lane(i, lanes[i]); \ 2408 instance->set_lane(i, lanes[i]); \
2410 } \ 2409 } \
2411 return result; \ 2410 return result; \
2412 } 2411 }
2413 SIMD128_TYPES(SIMD_ALLOCATE_DEFINITION) 2412 SIMD128_TYPES(SIMD_ALLOCATE_DEFINITION)
2414 #undef SIMD_ALLOCATE_DEFINITION 2413 #undef SIMD_ALLOCATE_DEFINITION
2415 2414
2416 2415
2417 AllocationResult Heap::AllocateCell(Object* value) { 2416 AllocationResult Heap::AllocateCell(Object* value) {
2418 int size = Cell::kSize; 2417 int size = Cell::kSize;
2419 STATIC_ASSERT(Cell::kSize <= Page::kMaxRegularHeapObjectSize); 2418 STATIC_ASSERT(Cell::kSize <= Page::kMaxRegularHeapObjectSize);
2420 2419
2421 HeapObject* result = nullptr; 2420 HeapObject* result = nullptr;
2422 { 2421 {
2423 AllocationResult allocation = AllocateRaw(size, OLD_SPACE, OLD_SPACE); 2422 AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
2424 if (!allocation.To(&result)) return allocation; 2423 if (!allocation.To(&result)) return allocation;
2425 } 2424 }
2426 result->set_map_no_write_barrier(cell_map()); 2425 result->set_map_no_write_barrier(cell_map());
2427 Cell::cast(result)->set_value(value); 2426 Cell::cast(result)->set_value(value);
2428 return result; 2427 return result;
2429 } 2428 }
2430 2429
2431 2430
2432 AllocationResult Heap::AllocatePropertyCell() { 2431 AllocationResult Heap::AllocatePropertyCell() {
2433 int size = PropertyCell::kSize; 2432 int size = PropertyCell::kSize;
2434 STATIC_ASSERT(PropertyCell::kSize <= Page::kMaxRegularHeapObjectSize); 2433 STATIC_ASSERT(PropertyCell::kSize <= Page::kMaxRegularHeapObjectSize);
2435 2434
2436 HeapObject* result = nullptr; 2435 HeapObject* result = nullptr;
2437 AllocationResult allocation = AllocateRaw(size, OLD_SPACE, OLD_SPACE); 2436 AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
2438 if (!allocation.To(&result)) return allocation; 2437 if (!allocation.To(&result)) return allocation;
2439 2438
2440 result->set_map_no_write_barrier(global_property_cell_map()); 2439 result->set_map_no_write_barrier(global_property_cell_map());
2441 PropertyCell* cell = PropertyCell::cast(result); 2440 PropertyCell* cell = PropertyCell::cast(result);
2442 cell->set_dependent_code(DependentCode::cast(empty_fixed_array()), 2441 cell->set_dependent_code(DependentCode::cast(empty_fixed_array()),
2443 SKIP_WRITE_BARRIER); 2442 SKIP_WRITE_BARRIER);
2444 cell->set_property_details(PropertyDetails(Smi::FromInt(0))); 2443 cell->set_property_details(PropertyDetails(Smi::FromInt(0)));
2445 cell->set_value(the_hole_value()); 2444 cell->set_value(the_hole_value());
2446 return result; 2445 return result;
2447 } 2446 }
2448 2447
2449 2448
2450 AllocationResult Heap::AllocateWeakCell(HeapObject* value) { 2449 AllocationResult Heap::AllocateWeakCell(HeapObject* value) {
2451 int size = WeakCell::kSize; 2450 int size = WeakCell::kSize;
2452 STATIC_ASSERT(WeakCell::kSize <= Page::kMaxRegularHeapObjectSize); 2451 STATIC_ASSERT(WeakCell::kSize <= Page::kMaxRegularHeapObjectSize);
2453 HeapObject* result = nullptr; 2452 HeapObject* result = nullptr;
2454 { 2453 {
2455 AllocationResult allocation = AllocateRaw(size, OLD_SPACE, OLD_SPACE); 2454 AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
2456 if (!allocation.To(&result)) return allocation; 2455 if (!allocation.To(&result)) return allocation;
2457 } 2456 }
2458 result->set_map_no_write_barrier(weak_cell_map()); 2457 result->set_map_no_write_barrier(weak_cell_map());
2459 WeakCell::cast(result)->initialize(value); 2458 WeakCell::cast(result)->initialize(value);
2460 WeakCell::cast(result)->clear_next(this); 2459 WeakCell::cast(result)->clear_next(this);
2461 return result; 2460 return result;
2462 } 2461 }
2463 2462
2464 2463
2465 void Heap::CreateApiObjects() { 2464 void Heap::CreateApiObjects() {
(...skipping 464 matching lines...) Expand 10 before | Expand all | Expand 10 after
2930 2929
2931 2930
2932 AllocationResult Heap::AllocateByteArray(int length, PretenureFlag pretenure) { 2931 AllocationResult Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
2933 if (length < 0 || length > ByteArray::kMaxLength) { 2932 if (length < 0 || length > ByteArray::kMaxLength) {
2934 v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); 2933 v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true);
2935 } 2934 }
2936 int size = ByteArray::SizeFor(length); 2935 int size = ByteArray::SizeFor(length);
2937 AllocationSpace space = SelectSpace(pretenure); 2936 AllocationSpace space = SelectSpace(pretenure);
2938 HeapObject* result = nullptr; 2937 HeapObject* result = nullptr;
2939 { 2938 {
2940 AllocationResult allocation = AllocateRaw(size, space, OLD_SPACE); 2939 AllocationResult allocation = AllocateRaw(size, space);
2941 if (!allocation.To(&result)) return allocation; 2940 if (!allocation.To(&result)) return allocation;
2942 } 2941 }
2943 2942
2944 result->set_map_no_write_barrier(byte_array_map()); 2943 result->set_map_no_write_barrier(byte_array_map());
2945 ByteArray::cast(result)->set_length(length); 2944 ByteArray::cast(result)->set_length(length);
2946 return result; 2945 return result;
2947 } 2946 }
2948 2947
2949 2948
2950 AllocationResult Heap::AllocateBytecodeArray(int length, 2949 AllocationResult Heap::AllocateBytecodeArray(int length,
2951 const byte* const raw_bytecodes, 2950 const byte* const raw_bytecodes,
2952 int frame_size, 2951 int frame_size,
2953 int parameter_count, 2952 int parameter_count,
2954 FixedArray* constant_pool) { 2953 FixedArray* constant_pool) {
2955 if (length < 0 || length > BytecodeArray::kMaxLength) { 2954 if (length < 0 || length > BytecodeArray::kMaxLength) {
2956 v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); 2955 v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true);
2957 } 2956 }
2958 // Bytecode array is pretenured, so constant pool array should be to. 2957 // Bytecode array is pretenured, so constant pool array should be to.
2959 DCHECK(!InNewSpace(constant_pool)); 2958 DCHECK(!InNewSpace(constant_pool));
2960 2959
2961 int size = BytecodeArray::SizeFor(length); 2960 int size = BytecodeArray::SizeFor(length);
2962 HeapObject* result = nullptr; 2961 HeapObject* result = nullptr;
2963 { 2962 {
2964 AllocationResult allocation = AllocateRaw(size, OLD_SPACE, OLD_SPACE); 2963 AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
2965 if (!allocation.To(&result)) return allocation; 2964 if (!allocation.To(&result)) return allocation;
2966 } 2965 }
2967 2966
2968 result->set_map_no_write_barrier(bytecode_array_map()); 2967 result->set_map_no_write_barrier(bytecode_array_map());
2969 BytecodeArray* instance = BytecodeArray::cast(result); 2968 BytecodeArray* instance = BytecodeArray::cast(result);
2970 instance->set_length(length); 2969 instance->set_length(length);
2971 instance->set_frame_size(frame_size); 2970 instance->set_frame_size(frame_size);
2972 instance->set_parameter_count(parameter_count); 2971 instance->set_parameter_count(parameter_count);
2973 instance->set_constant_pool(constant_pool); 2972 instance->set_constant_pool(constant_pool);
2974 CopyBytes(instance->GetFirstBytecodeAddress(), raw_bytecodes, length); 2973 CopyBytes(instance->GetFirstBytecodeAddress(), raw_bytecodes, length);
(...skipping 166 matching lines...) Expand 10 before | Expand all | Expand 10 after
3141 } 3140 }
3142 3141
3143 3142
3144 AllocationResult Heap::AllocateFixedTypedArrayWithExternalPointer( 3143 AllocationResult Heap::AllocateFixedTypedArrayWithExternalPointer(
3145 int length, ExternalArrayType array_type, void* external_pointer, 3144 int length, ExternalArrayType array_type, void* external_pointer,
3146 PretenureFlag pretenure) { 3145 PretenureFlag pretenure) {
3147 int size = FixedTypedArrayBase::kHeaderSize; 3146 int size = FixedTypedArrayBase::kHeaderSize;
3148 AllocationSpace space = SelectSpace(pretenure); 3147 AllocationSpace space = SelectSpace(pretenure);
3149 HeapObject* result = nullptr; 3148 HeapObject* result = nullptr;
3150 { 3149 {
3151 AllocationResult allocation = AllocateRaw(size, space, OLD_SPACE); 3150 AllocationResult allocation = AllocateRaw(size, space);
3152 if (!allocation.To(&result)) return allocation; 3151 if (!allocation.To(&result)) return allocation;
3153 } 3152 }
3154 3153
3155 result->set_map_no_write_barrier(MapForFixedTypedArray(array_type)); 3154 result->set_map_no_write_barrier(MapForFixedTypedArray(array_type));
3156 FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(result); 3155 FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(result);
3157 elements->set_base_pointer(Smi::FromInt(0), SKIP_WRITE_BARRIER); 3156 elements->set_base_pointer(Smi::FromInt(0), SKIP_WRITE_BARRIER);
3158 elements->set_external_pointer(external_pointer, SKIP_WRITE_BARRIER); 3157 elements->set_external_pointer(external_pointer, SKIP_WRITE_BARRIER);
3159 elements->set_length(length); 3158 elements->set_length(length);
3160 return elements; 3159 return elements;
3161 } 3160 }
(...skipping 24 matching lines...) Expand all
3186 PretenureFlag pretenure) { 3185 PretenureFlag pretenure) {
3187 int element_size; 3186 int element_size;
3188 ElementsKind elements_kind; 3187 ElementsKind elements_kind;
3189 ForFixedTypedArray(array_type, &element_size, &elements_kind); 3188 ForFixedTypedArray(array_type, &element_size, &elements_kind);
3190 int size = OBJECT_POINTER_ALIGN(length * element_size + 3189 int size = OBJECT_POINTER_ALIGN(length * element_size +
3191 FixedTypedArrayBase::kDataOffset); 3190 FixedTypedArrayBase::kDataOffset);
3192 AllocationSpace space = SelectSpace(pretenure); 3191 AllocationSpace space = SelectSpace(pretenure);
3193 3192
3194 HeapObject* object = nullptr; 3193 HeapObject* object = nullptr;
3195 AllocationResult allocation = AllocateRaw( 3194 AllocationResult allocation = AllocateRaw(
3196 size, space, OLD_SPACE, 3195 size, space,
3197 array_type == kExternalFloat64Array ? kDoubleAligned : kWordAligned); 3196 array_type == kExternalFloat64Array ? kDoubleAligned : kWordAligned);
3198 if (!allocation.To(&object)) return allocation; 3197 if (!allocation.To(&object)) return allocation;
3199 3198
3200 object->set_map_no_write_barrier(MapForFixedTypedArray(array_type)); 3199 object->set_map_no_write_barrier(MapForFixedTypedArray(array_type));
3201 FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(object); 3200 FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(object);
3202 elements->set_base_pointer(elements, SKIP_WRITE_BARRIER); 3201 elements->set_base_pointer(elements, SKIP_WRITE_BARRIER);
3203 elements->set_external_pointer( 3202 elements->set_external_pointer(
3204 ExternalReference::fixed_typed_array_base_data_offset().address(), 3203 ExternalReference::fixed_typed_array_base_data_offset().address(),
3205 SKIP_WRITE_BARRIER); 3204 SKIP_WRITE_BARRIER);
3206 elements->set_length(length); 3205 elements->set_length(length);
3207 if (initialize) memset(elements->DataPtr(), 0, elements->DataSize()); 3206 if (initialize) memset(elements->DataPtr(), 0, elements->DataSize());
3208 return elements; 3207 return elements;
3209 } 3208 }
3210 3209
3211 3210
3212 AllocationResult Heap::AllocateCode(int object_size, bool immovable) { 3211 AllocationResult Heap::AllocateCode(int object_size, bool immovable) {
3213 DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment)); 3212 DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment));
3214 AllocationResult allocation = 3213 AllocationResult allocation = AllocateRaw(object_size, CODE_SPACE);
3215 AllocateRaw(object_size, CODE_SPACE, CODE_SPACE);
3216 3214
3217 HeapObject* result = nullptr; 3215 HeapObject* result = nullptr;
3218 if (!allocation.To(&result)) return allocation; 3216 if (!allocation.To(&result)) return allocation;
3219 3217
3220 if (immovable) { 3218 if (immovable) {
3221 Address address = result->address(); 3219 Address address = result->address();
3222 // Code objects which should stay at a fixed address are allocated either 3220 // Code objects which should stay at a fixed address are allocated either
3223 // in the first page of code space (objects on the first page of each space 3221 // in the first page of code space (objects on the first page of each space
3224 // are never moved) or in large object space. 3222 // are never moved) or in large object space.
3225 if (!code_space_->FirstPage()->Contains(address) && 3223 if (!code_space_->FirstPage()->Contains(address) &&
(...skipping 18 matching lines...) Expand all
3244 return code; 3242 return code;
3245 } 3243 }
3246 3244
3247 3245
3248 AllocationResult Heap::CopyCode(Code* code) { 3246 AllocationResult Heap::CopyCode(Code* code) {
3249 AllocationResult allocation; 3247 AllocationResult allocation;
3250 3248
3251 HeapObject* result = nullptr; 3249 HeapObject* result = nullptr;
3252 // Allocate an object the same size as the code object. 3250 // Allocate an object the same size as the code object.
3253 int obj_size = code->Size(); 3251 int obj_size = code->Size();
3254 allocation = AllocateRaw(obj_size, CODE_SPACE, CODE_SPACE); 3252 allocation = AllocateRaw(obj_size, CODE_SPACE);
3255 if (!allocation.To(&result)) return allocation; 3253 if (!allocation.To(&result)) return allocation;
3256 3254
3257 // Copy code object. 3255 // Copy code object.
3258 Address old_addr = code->address(); 3256 Address old_addr = code->address();
3259 Address new_addr = result->address(); 3257 Address new_addr = result->address();
3260 CopyBlock(new_addr, old_addr, obj_size); 3258 CopyBlock(new_addr, old_addr, obj_size);
3261 Code* new_code = Code::cast(result); 3259 Code* new_code = Code::cast(result);
3262 3260
3263 // Relocate the copy. 3261 // Relocate the copy.
3264 DCHECK(IsAligned(bit_cast<intptr_t>(new_code->address()), kCodeAlignment)); 3262 DCHECK(IsAligned(bit_cast<intptr_t>(new_code->address()), kCodeAlignment));
(...skipping 18 matching lines...) Expand all
3283 int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment); 3281 int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment);
3284 3282
3285 int new_obj_size = Code::SizeFor(new_body_size); 3283 int new_obj_size = Code::SizeFor(new_body_size);
3286 3284
3287 Address old_addr = code->address(); 3285 Address old_addr = code->address();
3288 3286
3289 size_t relocation_offset = 3287 size_t relocation_offset =
3290 static_cast<size_t>(code->instruction_end() - old_addr); 3288 static_cast<size_t>(code->instruction_end() - old_addr);
3291 3289
3292 HeapObject* result = nullptr; 3290 HeapObject* result = nullptr;
3293 AllocationResult allocation = 3291 AllocationResult allocation = AllocateRaw(new_obj_size, CODE_SPACE);
3294 AllocateRaw(new_obj_size, CODE_SPACE, CODE_SPACE);
3295 if (!allocation.To(&result)) return allocation; 3292 if (!allocation.To(&result)) return allocation;
3296 3293
3297 // Copy code object. 3294 // Copy code object.
3298 Address new_addr = result->address(); 3295 Address new_addr = result->address();
3299 3296
3300 // Copy header and instructions. 3297 // Copy header and instructions.
3301 CopyBytes(new_addr, old_addr, relocation_offset); 3298 CopyBytes(new_addr, old_addr, relocation_offset);
3302 3299
3303 Code* new_code = Code::cast(result); 3300 Code* new_code = Code::cast(result);
3304 new_code->set_relocation_info(reloc_info_array); 3301 new_code->set_relocation_info(reloc_info_array);
(...skipping 25 matching lines...) Expand all
3330 if (FLAG_allocation_site_pretenuring) { 3327 if (FLAG_allocation_site_pretenuring) {
3331 allocation_site->IncrementMementoCreateCount(); 3328 allocation_site->IncrementMementoCreateCount();
3332 } 3329 }
3333 } 3330 }
3334 3331
3335 3332
3336 AllocationResult Heap::Allocate(Map* map, AllocationSpace space, 3333 AllocationResult Heap::Allocate(Map* map, AllocationSpace space,
3337 AllocationSite* allocation_site) { 3334 AllocationSite* allocation_site) {
3338 DCHECK(gc_state_ == NOT_IN_GC); 3335 DCHECK(gc_state_ == NOT_IN_GC);
3339 DCHECK(map->instance_type() != MAP_TYPE); 3336 DCHECK(map->instance_type() != MAP_TYPE);
3340 // If allocation failures are disallowed, we may allocate in a different
3341 // space when new space is full and the object is not a large object.
3342 AllocationSpace retry_space = (space != NEW_SPACE) ? space : OLD_SPACE;
3343 int size = map->instance_size(); 3337 int size = map->instance_size();
3344 if (allocation_site != NULL) { 3338 if (allocation_site != NULL) {
3345 size += AllocationMemento::kSize; 3339 size += AllocationMemento::kSize;
3346 } 3340 }
3347 HeapObject* result = nullptr; 3341 HeapObject* result = nullptr;
3348 AllocationResult allocation = AllocateRaw(size, space, retry_space); 3342 AllocationResult allocation = AllocateRaw(size, space);
3349 if (!allocation.To(&result)) return allocation; 3343 if (!allocation.To(&result)) return allocation;
3350 // No need for write barrier since object is white and map is in old space. 3344 // No need for write barrier since object is white and map is in old space.
3351 result->set_map_no_write_barrier(map); 3345 result->set_map_no_write_barrier(map);
3352 if (allocation_site != NULL) { 3346 if (allocation_site != NULL) {
3353 AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>( 3347 AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
3354 reinterpret_cast<Address>(result) + map->instance_size()); 3348 reinterpret_cast<Address>(result) + map->instance_size());
3355 InitializeAllocationMemento(alloc_memento, allocation_site); 3349 InitializeAllocationMemento(alloc_memento, allocation_site);
3356 } 3350 }
3357 return result; 3351 return result;
3358 } 3352 }
(...skipping 81 matching lines...) Expand 10 before | Expand all | Expand 10 after
3440 // We can only clone normal objects or arrays. Copying anything else 3434 // We can only clone normal objects or arrays. Copying anything else
3441 // will break invariants. 3435 // will break invariants.
3442 CHECK(map->instance_type() == JS_OBJECT_TYPE || 3436 CHECK(map->instance_type() == JS_OBJECT_TYPE ||
3443 map->instance_type() == JS_ARRAY_TYPE); 3437 map->instance_type() == JS_ARRAY_TYPE);
3444 3438
3445 int object_size = map->instance_size(); 3439 int object_size = map->instance_size();
3446 HeapObject* clone = nullptr; 3440 HeapObject* clone = nullptr;
3447 3441
3448 DCHECK(site == NULL || AllocationSite::CanTrack(map->instance_type())); 3442 DCHECK(site == NULL || AllocationSite::CanTrack(map->instance_type()));
3449 3443
3450 WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER; 3444 int adjusted_object_size =
3445 site != NULL ? object_size + AllocationMemento::kSize : object_size;
3446 AllocationResult allocation = AllocateRaw(adjusted_object_size, NEW_SPACE);
3447 if (!allocation.To(&clone)) return allocation;
3451 3448
3452 // If we're forced to always allocate, we use the general allocation 3449 SLOW_DCHECK(InNewSpace(clone));
3453 // functions which may leave us with an object in old space. 3450 // Since we know the clone is allocated in new space, we can copy
3454 if (always_allocate()) { 3451 // the contents without worrying about updating the write barrier.
3455 { 3452 CopyBlock(clone->address(), source->address(), object_size);
3456 AllocationResult allocation =
3457 AllocateRaw(object_size, NEW_SPACE, OLD_SPACE);
3458 if (!allocation.To(&clone)) return allocation;
3459 }
3460 Address clone_address = clone->address();
3461 CopyBlock(clone_address, source->address(), object_size);
3462 3453
3463 // Update write barrier for all tagged fields that lie beyond the header. 3454 if (site != NULL) {
3464 const int start_offset = JSObject::kHeaderSize; 3455 AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
3465 const int end_offset = object_size; 3456 reinterpret_cast<Address>(clone) + object_size);
3466 3457 InitializeAllocationMemento(alloc_memento, site);
3467 #if V8_DOUBLE_FIELDS_UNBOXING
3468 LayoutDescriptorHelper helper(map);
3469 bool has_only_tagged_fields = helper.all_fields_tagged();
3470
3471 if (!has_only_tagged_fields) {
3472 for (int offset = start_offset; offset < end_offset;) {
3473 int end_of_region_offset;
3474 if (helper.IsTagged(offset, end_offset, &end_of_region_offset)) {
3475 RecordWrites(clone_address, offset,
3476 (end_of_region_offset - offset) / kPointerSize);
3477 }
3478 offset = end_of_region_offset;
3479 }
3480 } else {
3481 #endif
3482 // Object has only tagged fields.
3483 RecordWrites(clone_address, start_offset,
3484 (end_offset - start_offset) / kPointerSize);
3485 #if V8_DOUBLE_FIELDS_UNBOXING
3486 }
3487 #endif
3488
3489 } else {
3490 wb_mode = SKIP_WRITE_BARRIER;
3491
3492 {
3493 int adjusted_object_size =
3494 site != NULL ? object_size + AllocationMemento::kSize : object_size;
3495 AllocationResult allocation =
3496 AllocateRaw(adjusted_object_size, NEW_SPACE, NEW_SPACE);
3497 if (!allocation.To(&clone)) return allocation;
3498 }
3499 SLOW_DCHECK(InNewSpace(clone));
3500 // Since we know the clone is allocated in new space, we can copy
3501 // the contents without worrying about updating the write barrier.
3502 CopyBlock(clone->address(), source->address(), object_size);
3503
3504 if (site != NULL) {
3505 AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
3506 reinterpret_cast<Address>(clone) + object_size);
3507 InitializeAllocationMemento(alloc_memento, site);
3508 }
3509 } 3458 }
3510 3459
3511 SLOW_DCHECK(JSObject::cast(clone)->GetElementsKind() == 3460 SLOW_DCHECK(JSObject::cast(clone)->GetElementsKind() ==
3512 source->GetElementsKind()); 3461 source->GetElementsKind());
3513 FixedArrayBase* elements = FixedArrayBase::cast(source->elements()); 3462 FixedArrayBase* elements = FixedArrayBase::cast(source->elements());
3514 FixedArray* properties = FixedArray::cast(source->properties()); 3463 FixedArray* properties = FixedArray::cast(source->properties());
3515 // Update elements if necessary. 3464 // Update elements if necessary.
3516 if (elements->length() > 0) { 3465 if (elements->length() > 0) {
3517 FixedArrayBase* elem = nullptr; 3466 FixedArrayBase* elem = nullptr;
3518 { 3467 {
3519 AllocationResult allocation; 3468 AllocationResult allocation;
3520 if (elements->map() == fixed_cow_array_map()) { 3469 if (elements->map() == fixed_cow_array_map()) {
3521 allocation = FixedArray::cast(elements); 3470 allocation = FixedArray::cast(elements);
3522 } else if (source->HasFastDoubleElements()) { 3471 } else if (source->HasFastDoubleElements()) {
3523 allocation = CopyFixedDoubleArray(FixedDoubleArray::cast(elements)); 3472 allocation = CopyFixedDoubleArray(FixedDoubleArray::cast(elements));
3524 } else { 3473 } else {
3525 allocation = CopyFixedArray(FixedArray::cast(elements)); 3474 allocation = CopyFixedArray(FixedArray::cast(elements));
3526 } 3475 }
3527 if (!allocation.To(&elem)) return allocation; 3476 if (!allocation.To(&elem)) return allocation;
3528 } 3477 }
3529 JSObject::cast(clone)->set_elements(elem, wb_mode); 3478 JSObject::cast(clone)->set_elements(elem, SKIP_WRITE_BARRIER);
3530 } 3479 }
3531 // Update properties if necessary. 3480 // Update properties if necessary.
3532 if (properties->length() > 0) { 3481 if (properties->length() > 0) {
3533 FixedArray* prop = nullptr; 3482 FixedArray* prop = nullptr;
3534 { 3483 {
3535 AllocationResult allocation = CopyFixedArray(properties); 3484 AllocationResult allocation = CopyFixedArray(properties);
3536 if (!allocation.To(&prop)) return allocation; 3485 if (!allocation.To(&prop)) return allocation;
3537 } 3486 }
3538 JSObject::cast(clone)->set_properties(prop, wb_mode); 3487 JSObject::cast(clone)->set_properties(prop, SKIP_WRITE_BARRIER);
3539 } 3488 }
3540 // Return the new clone. 3489 // Return the new clone.
3541 return clone; 3490 return clone;
3542 } 3491 }
3543 3492
3544 3493
3545 static inline void WriteOneByteData(Vector<const char> vector, uint8_t* chars, 3494 static inline void WriteOneByteData(Vector<const char> vector, uint8_t* chars,
3546 int len) { 3495 int len) {
3547 // Only works for one byte strings. 3496 // Only works for one byte strings.
3548 DCHECK(vector.length() == len); 3497 DCHECK(vector.length() == len);
(...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after
3602 map = one_byte_internalized_string_map(); 3551 map = one_byte_internalized_string_map();
3603 size = SeqOneByteString::SizeFor(chars); 3552 size = SeqOneByteString::SizeFor(chars);
3604 } else { 3553 } else {
3605 map = internalized_string_map(); 3554 map = internalized_string_map();
3606 size = SeqTwoByteString::SizeFor(chars); 3555 size = SeqTwoByteString::SizeFor(chars);
3607 } 3556 }
3608 3557
3609 // Allocate string. 3558 // Allocate string.
3610 HeapObject* result = nullptr; 3559 HeapObject* result = nullptr;
3611 { 3560 {
3612 AllocationResult allocation = AllocateRaw(size, OLD_SPACE, OLD_SPACE); 3561 AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
3613 if (!allocation.To(&result)) return allocation; 3562 if (!allocation.To(&result)) return allocation;
3614 } 3563 }
3615 3564
3616 result->set_map_no_write_barrier(map); 3565 result->set_map_no_write_barrier(map);
3617 // Set length and hash fields of the allocated string. 3566 // Set length and hash fields of the allocated string.
3618 String* answer = String::cast(result); 3567 String* answer = String::cast(result);
3619 answer->set_length(chars); 3568 answer->set_length(chars);
3620 answer->set_hash_field(hash_field); 3569 answer->set_hash_field(hash_field);
3621 3570
3622 DCHECK_EQ(size, answer->Size()); 3571 DCHECK_EQ(size, answer->Size());
(...skipping 21 matching lines...) Expand all
3644 AllocationResult Heap::AllocateRawOneByteString(int length, 3593 AllocationResult Heap::AllocateRawOneByteString(int length,
3645 PretenureFlag pretenure) { 3594 PretenureFlag pretenure) {
3646 DCHECK_LE(0, length); 3595 DCHECK_LE(0, length);
3647 DCHECK_GE(String::kMaxLength, length); 3596 DCHECK_GE(String::kMaxLength, length);
3648 int size = SeqOneByteString::SizeFor(length); 3597 int size = SeqOneByteString::SizeFor(length);
3649 DCHECK(size <= SeqOneByteString::kMaxSize); 3598 DCHECK(size <= SeqOneByteString::kMaxSize);
3650 AllocationSpace space = SelectSpace(pretenure); 3599 AllocationSpace space = SelectSpace(pretenure);
3651 3600
3652 HeapObject* result = nullptr; 3601 HeapObject* result = nullptr;
3653 { 3602 {
3654 AllocationResult allocation = AllocateRaw(size, space, OLD_SPACE); 3603 AllocationResult allocation = AllocateRaw(size, space);
3655 if (!allocation.To(&result)) return allocation; 3604 if (!allocation.To(&result)) return allocation;
3656 } 3605 }
3657 3606
3658 // Partially initialize the object. 3607 // Partially initialize the object.
3659 result->set_map_no_write_barrier(one_byte_string_map()); 3608 result->set_map_no_write_barrier(one_byte_string_map());
3660 String::cast(result)->set_length(length); 3609 String::cast(result)->set_length(length);
3661 String::cast(result)->set_hash_field(String::kEmptyHashField); 3610 String::cast(result)->set_hash_field(String::kEmptyHashField);
3662 DCHECK_EQ(size, HeapObject::cast(result)->Size()); 3611 DCHECK_EQ(size, HeapObject::cast(result)->Size());
3663 3612
3664 return result; 3613 return result;
3665 } 3614 }
3666 3615
3667 3616
3668 AllocationResult Heap::AllocateRawTwoByteString(int length, 3617 AllocationResult Heap::AllocateRawTwoByteString(int length,
3669 PretenureFlag pretenure) { 3618 PretenureFlag pretenure) {
3670 DCHECK_LE(0, length); 3619 DCHECK_LE(0, length);
3671 DCHECK_GE(String::kMaxLength, length); 3620 DCHECK_GE(String::kMaxLength, length);
3672 int size = SeqTwoByteString::SizeFor(length); 3621 int size = SeqTwoByteString::SizeFor(length);
3673 DCHECK(size <= SeqTwoByteString::kMaxSize); 3622 DCHECK(size <= SeqTwoByteString::kMaxSize);
3674 AllocationSpace space = SelectSpace(pretenure); 3623 AllocationSpace space = SelectSpace(pretenure);
3675 3624
3676 HeapObject* result = nullptr; 3625 HeapObject* result = nullptr;
3677 { 3626 {
3678 AllocationResult allocation = AllocateRaw(size, space, OLD_SPACE); 3627 AllocationResult allocation = AllocateRaw(size, space);
3679 if (!allocation.To(&result)) return allocation; 3628 if (!allocation.To(&result)) return allocation;
3680 } 3629 }
3681 3630
3682 // Partially initialize the object. 3631 // Partially initialize the object.
3683 result->set_map_no_write_barrier(string_map()); 3632 result->set_map_no_write_barrier(string_map());
3684 String::cast(result)->set_length(length); 3633 String::cast(result)->set_length(length);
3685 String::cast(result)->set_hash_field(String::kEmptyHashField); 3634 String::cast(result)->set_hash_field(String::kEmptyHashField);
3686 DCHECK_EQ(size, HeapObject::cast(result)->Size()); 3635 DCHECK_EQ(size, HeapObject::cast(result)->Size());
3687 return result; 3636 return result;
3688 } 3637 }
3689 3638
3690 3639
3691 AllocationResult Heap::AllocateEmptyFixedArray() { 3640 AllocationResult Heap::AllocateEmptyFixedArray() {
3692 int size = FixedArray::SizeFor(0); 3641 int size = FixedArray::SizeFor(0);
3693 HeapObject* result = nullptr; 3642 HeapObject* result = nullptr;
3694 { 3643 {
3695 AllocationResult allocation = AllocateRaw(size, OLD_SPACE, OLD_SPACE); 3644 AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
3696 if (!allocation.To(&result)) return allocation; 3645 if (!allocation.To(&result)) return allocation;
3697 } 3646 }
3698 // Initialize the object. 3647 // Initialize the object.
3699 result->set_map_no_write_barrier(fixed_array_map()); 3648 result->set_map_no_write_barrier(fixed_array_map());
3700 FixedArray::cast(result)->set_length(0); 3649 FixedArray::cast(result)->set_length(0);
3701 return result; 3650 return result;
3702 } 3651 }
3703 3652
3704 3653
3705 AllocationResult Heap::CopyAndTenureFixedCOWArray(FixedArray* src) { 3654 AllocationResult Heap::CopyAndTenureFixedCOWArray(FixedArray* src) {
(...skipping 95 matching lines...) Expand 10 before | Expand all | Expand 10 after
3801 3750
3802 3751
3803 AllocationResult Heap::AllocateRawFixedArray(int length, 3752 AllocationResult Heap::AllocateRawFixedArray(int length,
3804 PretenureFlag pretenure) { 3753 PretenureFlag pretenure) {
3805 if (length < 0 || length > FixedArray::kMaxLength) { 3754 if (length < 0 || length > FixedArray::kMaxLength) {
3806 v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); 3755 v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true);
3807 } 3756 }
3808 int size = FixedArray::SizeFor(length); 3757 int size = FixedArray::SizeFor(length);
3809 AllocationSpace space = SelectSpace(pretenure); 3758 AllocationSpace space = SelectSpace(pretenure);
3810 3759
3811 return AllocateRaw(size, space, OLD_SPACE); 3760 return AllocateRaw(size, space);
3812 } 3761 }
3813 3762
3814 3763
3815 AllocationResult Heap::AllocateFixedArrayWithFiller(int length, 3764 AllocationResult Heap::AllocateFixedArrayWithFiller(int length,
3816 PretenureFlag pretenure, 3765 PretenureFlag pretenure,
3817 Object* filler) { 3766 Object* filler) {
3818 DCHECK(length >= 0); 3767 DCHECK(length >= 0);
3819 DCHECK(empty_fixed_array()->IsFixedArray()); 3768 DCHECK(empty_fixed_array()->IsFixedArray());
3820 if (length == 0) return empty_fixed_array(); 3769 if (length == 0) return empty_fixed_array();
3821 3770
(...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after
3872 PretenureFlag pretenure) { 3821 PretenureFlag pretenure) {
3873 if (length < 0 || length > FixedDoubleArray::kMaxLength) { 3822 if (length < 0 || length > FixedDoubleArray::kMaxLength) {
3874 v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", 3823 v8::internal::Heap::FatalProcessOutOfMemory("invalid array length",
3875 kDoubleAligned); 3824 kDoubleAligned);
3876 } 3825 }
3877 int size = FixedDoubleArray::SizeFor(length); 3826 int size = FixedDoubleArray::SizeFor(length);
3878 AllocationSpace space = SelectSpace(pretenure); 3827 AllocationSpace space = SelectSpace(pretenure);
3879 3828
3880 HeapObject* object = nullptr; 3829 HeapObject* object = nullptr;
3881 { 3830 {
3882 AllocationResult allocation = 3831 AllocationResult allocation = AllocateRaw(size, space, kDoubleAligned);
3883 AllocateRaw(size, space, OLD_SPACE, kDoubleAligned);
3884 if (!allocation.To(&object)) return allocation; 3832 if (!allocation.To(&object)) return allocation;
3885 } 3833 }
3886 3834
3887 return object; 3835 return object;
3888 } 3836 }
3889 3837
3890 3838
3891 AllocationResult Heap::AllocateSymbol() { 3839 AllocationResult Heap::AllocateSymbol() {
3892 // Statically ensure that it is safe to allocate symbols in paged spaces. 3840 // Statically ensure that it is safe to allocate symbols in paged spaces.
3893 STATIC_ASSERT(Symbol::kSize <= Page::kMaxRegularHeapObjectSize); 3841 STATIC_ASSERT(Symbol::kSize <= Page::kMaxRegularHeapObjectSize);
3894 3842
3895 HeapObject* result = nullptr; 3843 HeapObject* result = nullptr;
3896 AllocationResult allocation = 3844 AllocationResult allocation = AllocateRaw(Symbol::kSize, OLD_SPACE);
3897 AllocateRaw(Symbol::kSize, OLD_SPACE, OLD_SPACE);
3898 if (!allocation.To(&result)) return allocation; 3845 if (!allocation.To(&result)) return allocation;
3899 3846
3900 result->set_map_no_write_barrier(symbol_map()); 3847 result->set_map_no_write_barrier(symbol_map());
3901 3848
3902 // Generate a random hash value. 3849 // Generate a random hash value.
3903 int hash; 3850 int hash;
3904 int attempts = 0; 3851 int attempts = 0;
3905 do { 3852 do {
3906 hash = isolate()->random_number_generator()->NextInt() & Name::kHashBitMask; 3853 hash = isolate()->random_number_generator()->NextInt() & Name::kHashBitMask;
3907 attempts++; 3854 attempts++;
(...skipping 2225 matching lines...) Expand 10 before | Expand all | Expand 10 after
6133 } 6080 }
6134 6081
6135 6082
6136 // static 6083 // static
6137 int Heap::GetStaticVisitorIdForMap(Map* map) { 6084 int Heap::GetStaticVisitorIdForMap(Map* map) {
6138 return StaticVisitorBase::GetVisitorId(map); 6085 return StaticVisitorBase::GetVisitorId(map);
6139 } 6086 }
6140 6087
6141 } // namespace internal 6088 } // namespace internal
6142 } // namespace v8 6089 } // namespace v8
OLDNEW
« no previous file with comments | « src/heap/heap.h ('k') | src/heap/heap-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698