Index: third_party/WebKit/LayoutTests/webaudio/resources/biquad-testing.js |
diff --git a/third_party/WebKit/LayoutTests/webaudio/resources/biquad-testing.js b/third_party/WebKit/LayoutTests/webaudio/resources/biquad-testing.js |
index 8d8077ba12d7b037497f3a32918bb849bdfde97b..7c72a4702ba4d0c55177fe773fc691fea20cf7e9 100644 |
--- a/third_party/WebKit/LayoutTests/webaudio/resources/biquad-testing.js |
+++ b/third_party/WebKit/LayoutTests/webaudio/resources/biquad-testing.js |
@@ -28,375 +28,6 @@ var renderLengthSamples = Math.round(renderLengthSeconds * sampleRate); |
// Number of filters that will be processed. |
var nFilters; |
-// A biquad filter has a z-transform of |
-// H(z) = (b0 + b1 / z + b2 / z^2) / (1 + a1 / z + a2 / z^2) |
-// |
-// The formulas for the various filters were taken from |
-// http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt. |
- |
- |
-// Lowpass filter. |
-function createLowpassFilter(freq, q, gain) { |
- var b0; |
- var b1; |
- var b2; |
- var a1; |
- var a2; |
- |
- if (freq == 1) { |
- // The formula below works, except for roundoff. When freq = 1, |
- // the filter is just a wire, so hardwire the coefficients. |
- b0 = 1; |
- b1 = 0; |
- b2 = 0; |
- a1 = 0; |
- a2 = 0; |
- } else { |
- var g = Math.pow(10, q / 20); |
- var d = Math.sqrt((4 - Math.sqrt(16 - 16 / (g * g))) / 2); |
- var theta = Math.PI * freq; |
- var sn = d * Math.sin(theta) / 2; |
- var beta = 0.5 * (1 - sn) / (1 + sn); |
- var gamma = (0.5 + beta) * Math.cos(theta); |
- var alpha = 0.25 * (0.5 + beta - gamma); |
- |
- b0 = 2 * alpha; |
- b1 = 4 * alpha; |
- b2 = 2 * alpha; |
- a1 = 2 * (-gamma); |
- a2 = 2 * beta; |
- } |
- |
- return {b0 : b0, b1 : b1, b2 : b2, a1 : a1, a2 : a2}; |
-} |
- |
-function createHighpassFilter(freq, q, gain) { |
- var b0; |
- var b1; |
- var b2; |
- var a1; |
- var a2; |
- |
- if (freq == 1) { |
- // The filter is 0 |
- b0 = 0; |
- b1 = 0; |
- b2 = 0; |
- a1 = 0; |
- a2 = 0; |
- } else if (freq == 0) { |
- // The filter is 1. Computation of coefficients below is ok, but |
- // there's a pole at 1 and a zero at 1, so round-off could make |
- // the filter unstable. |
- b0 = 1; |
- b1 = 0; |
- b2 = 0; |
- a1 = 0; |
- a2 = 0; |
- } else { |
- var g = Math.pow(10, q / 20); |
- var d = Math.sqrt((4 - Math.sqrt(16 - 16 / (g * g))) / 2); |
- var theta = Math.PI * freq; |
- var sn = d * Math.sin(theta) / 2; |
- var beta = 0.5 * (1 - sn) / (1 + sn); |
- var gamma = (0.5 + beta) * Math.cos(theta); |
- var alpha = 0.25 * (0.5 + beta + gamma); |
- |
- b0 = 2 * alpha; |
- b1 = -4 * alpha; |
- b2 = 2 * alpha; |
- a1 = 2 * (-gamma); |
- a2 = 2 * beta; |
- } |
- |
- return {b0 : b0, b1 : b1, b2 : b2, a1 : a1, a2 : a2}; |
-} |
- |
-function normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2) { |
- var scale = 1 / a0; |
- |
- return {b0 : b0 * scale, |
- b1 : b1 * scale, |
- b2 : b2 * scale, |
- a1 : a1 * scale, |
- a2 : a2 * scale}; |
-} |
- |
-function createBandpassFilter(freq, q, gain) { |
- var b0; |
- var b1; |
- var b2; |
- var a0; |
- var a1; |
- var a2; |
- var coef; |
- |
- if (freq > 0 && freq < 1) { |
- var w0 = Math.PI * freq; |
- if (q > 0) { |
- var alpha = Math.sin(w0) / (2 * q); |
- var k = Math.cos(w0); |
- |
- b0 = alpha; |
- b1 = 0; |
- b2 = -alpha; |
- a0 = 1 + alpha; |
- a1 = -2 * k; |
- a2 = 1 - alpha; |
- |
- coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2); |
- } else { |
- // q = 0, and frequency is not 0 or 1. The above formula has a |
- // divide by zero problem. The limit of the z-transform as q |
- // approaches 0 is 1, so set the filter that way. |
- coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0}; |
- } |
- } else { |
- // When freq = 0 or 1, the z-transform is identically 0, |
- // independent of q. |
- coef = {b0 : 0, b1 : 0, b2 : 0, a1 : 0, a2 : 0} |
- } |
- |
- return coef; |
-} |
- |
-function createLowShelfFilter(freq, q, gain) { |
- // q not used |
- var b0; |
- var b1; |
- var b2; |
- var a0; |
- var a1; |
- var a2; |
- var coef; |
- |
- var S = 1; |
- var A = Math.pow(10, gain / 40); |
- |
- if (freq == 1) { |
- // The filter is just a constant gain |
- coef = {b0 : A * A, b1 : 0, b2 : 0, a1 : 0, a2 : 0}; |
- } else if (freq == 0) { |
- // The filter is 1 |
- coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0}; |
- } else { |
- var w0 = Math.PI * freq; |
- var alpha = 1 / 2 * Math.sin(w0) * Math.sqrt((A + 1 / A) * (1 / S - 1) + 2); |
- var k = Math.cos(w0); |
- var k2 = 2 * Math.sqrt(A) * alpha; |
- var Ap1 = A + 1; |
- var Am1 = A - 1; |
- |
- b0 = A * (Ap1 - Am1 * k + k2); |
- b1 = 2 * A * (Am1 - Ap1 * k); |
- b2 = A * (Ap1 - Am1 * k - k2); |
- a0 = Ap1 + Am1 * k + k2; |
- a1 = -2 * (Am1 + Ap1 * k); |
- a2 = Ap1 + Am1 * k - k2; |
- coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2); |
- } |
- |
- return coef; |
-} |
- |
-function createHighShelfFilter(freq, q, gain) { |
- // q not used |
- var b0; |
- var b1; |
- var b2; |
- var a0; |
- var a1; |
- var a2; |
- var coef; |
- |
- var A = Math.pow(10, gain / 40); |
- |
- if (freq == 1) { |
- // When freq = 1, the z-transform is 1 |
- coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0}; |
- } else if (freq > 0) { |
- var w0 = Math.PI * freq; |
- var S = 1; |
- var alpha = 0.5 * Math.sin(w0) * Math.sqrt((A + 1 / A) * (1 / S - 1) + 2); |
- var k = Math.cos(w0); |
- var k2 = 2 * Math.sqrt(A) * alpha; |
- var Ap1 = A + 1; |
- var Am1 = A - 1; |
- |
- b0 = A * (Ap1 + Am1 * k + k2); |
- b1 = -2 * A * (Am1 + Ap1 * k); |
- b2 = A * (Ap1 + Am1 * k - k2); |
- a0 = Ap1 - Am1 * k + k2; |
- a1 = 2 * (Am1 - Ap1*k); |
- a2 = Ap1 - Am1 * k-k2; |
- |
- coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2); |
- } else { |
- // When freq = 0, the filter is just a gain |
- coef = {b0 : A * A, b1 : 0, b2 : 0, a1 : 0, a2 : 0}; |
- } |
- |
- return coef; |
-} |
- |
-function createPeakingFilter(freq, q, gain) { |
- var b0; |
- var b1; |
- var b2; |
- var a0; |
- var a1; |
- var a2; |
- var coef; |
- |
- var A = Math.pow(10, gain / 40); |
- |
- if (freq > 0 && freq < 1) { |
- if (q > 0) { |
- var w0 = Math.PI * freq; |
- var alpha = Math.sin(w0) / (2 * q); |
- var k = Math.cos(w0); |
- |
- b0 = 1 + alpha * A; |
- b1 = -2 * k; |
- b2 = 1 - alpha * A; |
- a0 = 1 + alpha / A; |
- a1 = -2 * k; |
- a2 = 1 - alpha / A; |
- |
- coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2); |
- } else { |
- // q = 0, we have a divide by zero problem in the formulas |
- // above. But if we look at the z-transform, we see that the |
- // limit as q approaches 0 is A^2. |
- coef = {b0 : A * A, b1 : 0, b2 : 0, a1 : 0, a2 : 0}; |
- } |
- } else { |
- // freq = 0 or 1, the z-transform is 1 |
- coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0}; |
- } |
- |
- return coef; |
-} |
- |
-function createNotchFilter(freq, q, gain) { |
- var b0; |
- var b1; |
- var b2; |
- var a0; |
- var a1; |
- var a2; |
- var coef; |
- |
- if (freq > 0 && freq < 1) { |
- if (q > 0) { |
- var w0 = Math.PI * freq; |
- var alpha = Math.sin(w0) / (2 * q); |
- var k = Math.cos(w0); |
- |
- b0 = 1; |
- b1 = -2 * k; |
- b2 = 1; |
- a0 = 1 + alpha; |
- a1 = -2 * k; |
- a2 = 1 - alpha; |
- coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2); |
- } else { |
- // When q = 0, we get a divide by zero above. The limit of the |
- // z-transform as q approaches 0 is 0, so set the coefficients |
- // appropriately. |
- coef = {b0 : 0, b1 : 0, b2 : 0, a1 : 0, a2 : 0}; |
- } |
- } else { |
- // When freq = 0 or 1, the z-transform is 1 |
- coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0}; |
- } |
- |
- return coef; |
-} |
- |
-function createAllpassFilter(freq, q, gain) { |
- var b0; |
- var b1; |
- var b2; |
- var a0; |
- var a1; |
- var a2; |
- var coef; |
- |
- if (freq > 0 && freq < 1) { |
- if (q > 0) { |
- var w0 = Math.PI * freq; |
- var alpha = Math.sin(w0) / (2 * q); |
- var k = Math.cos(w0); |
- |
- b0 = 1 - alpha; |
- b1 = -2 * k; |
- b2 = 1 + alpha; |
- a0 = 1 + alpha; |
- a1 = -2 * k; |
- a2 = 1 - alpha; |
- coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2); |
- } else { |
- // q = 0 |
- coef = {b0 : -1, b1 : 0, b2 : 0, a1 : 0, a2 : 0}; |
- } |
- } else { |
- coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0}; |
- } |
- |
- return coef; |
-} |
- |
-// Map the filter type name to a function that computes the filter coefficents for the given filter |
-// type. |
-var filterCreatorFunction = {"lowpass": createLowpassFilter, |
- "highpass": createHighpassFilter, |
- "bandpass": createBandpassFilter, |
- "lowshelf": createLowShelfFilter, |
- "highshelf": createHighShelfFilter, |
- "peaking": createPeakingFilter, |
- "notch": createNotchFilter, |
- "allpass": createAllpassFilter}; |
- |
-var filterTypeName = {"lowpass": "Lowpass filter", |
- "highpass": "Highpass filter", |
- "bandpass": "Bandpass filter", |
- "lowshelf": "Lowshelf filter", |
- "highshelf": "Highshelf filter", |
- "peaking": "Peaking filter", |
- "notch": "Notch filter", |
- "allpass": "Allpass filter"}; |
- |
-function createFilter(filterType, freq, q, gain) { |
- return filterCreatorFunction[filterType](freq, q, gain); |
-} |
- |
-function filterData(filterCoef, signal, len) { |
- var y = new Array(len); |
- var b0 = filterCoef.b0; |
- var b1 = filterCoef.b1; |
- var b2 = filterCoef.b2; |
- var a1 = filterCoef.a1; |
- var a2 = filterCoef.a2; |
- |
- // Prime the pump. (Assumes the signal has length >= 2!) |
- y[0] = b0 * signal[0]; |
- y[1] = b0 * signal[1] + b1 * signal[0] - a1 * y[0]; |
- |
- // Filter all of the signal that we have. |
- for (var k = 2; k < Math.min(signal.length, len); ++k) { |
- y[k] = b0 * signal[k] + b1 * signal[k-1] + b2 * signal[k-2] - a1 * y[k-1] - a2 * y[k-2]; |
- } |
- |
- // If we need to filter more, but don't have any signal left, |
- // assume the signal is zero. |
- for (var k = signal.length; k < len; ++k) { |
- y[k] = - a1 * y[k-1] - a2 * y[k-2]; |
- } |
- |
- return y; |
-} |
- |
function createImpulseBuffer(context, length) { |
var impulse = context.createBuffer(1, length, context.sampleRate); |
var data = impulse.getChannelData(0); |