| Index: third_party/WebKit/LayoutTests/webaudio/iirfilter.html
|
| diff --git a/third_party/WebKit/LayoutTests/webaudio/iirfilter.html b/third_party/WebKit/LayoutTests/webaudio/iirfilter.html
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..f1e9a8b4a68bfe12a3960b5b7adda7f1d28089ef
|
| --- /dev/null
|
| +++ b/third_party/WebKit/LayoutTests/webaudio/iirfilter.html
|
| @@ -0,0 +1,574 @@
|
| +<!doctype html>
|
| +<html>
|
| + <head>
|
| + <title>Test Basic IIRFilterNode Operation</title>
|
| + <script src="../resources/js-test.js"></script>
|
| + <script src="resources/compatibility.js"></script>
|
| + <script src="resources/audio-testing.js"></script>
|
| + <script src="resources/biquad-filters.js"></script>
|
| + </head>
|
| +
|
| + <body>
|
| + <script>
|
| + description("Test Basic IIRFilterNode Operation");
|
| + window.jsTestIsAsync = true;
|
| +
|
| + var sampleRate = 48000;
|
| + var testDurationSec = 1;
|
| + var testFrames = testDurationSec * sampleRate;
|
| +
|
| + var audit = Audit.createTaskRunner();
|
| +
|
| + audit.defineTask("coefficient-normalization", function (done) {
|
| + // Test that the feedback coefficients are normalized. Do this be creating two
|
| + // IIRFilterNodes. One has normalized coefficients, and one doesn't. Compute the
|
| + // difference and make sure they're the same.
|
| + var success = true;
|
| + var context = new OfflineAudioContext(2, testFrames, sampleRate);
|
| +
|
| + // Use a simple impulse as the source.
|
| + var buffer = context.createBuffer(1, 1, sampleRate);
|
| + buffer.getChannelData(0)[0] = 1;
|
| + var source = context.createBufferSource();
|
| + source.buffer = buffer;
|
| +
|
| + // Gain node for computing the difference between the filters.
|
| + var gain = context.createGain();
|
| + gain.gain.value = -1;
|
| +
|
| + // The IIR filters. Use a common feedforward array.
|
| + var ff = [1];
|
| +
|
| + var fb1 = [1, .9];
|
| +
|
| + var fb2 = new Float64Array(2);
|
| + // Scale the feedback coefficients by an arbitrary factor.
|
| + var coefScaleFactor = 2;
|
| + for (var k = 0; k < fb2.length; ++k) {
|
| + fb2[k] = coefScaleFactor * fb1[k];
|
| + }
|
| +
|
| + var iir1;
|
| + var iir2;
|
| +
|
| + success = Should("createIIRFilter with normalized coefficients", function () {
|
| + iir1 = context.createIIRFilter(ff, fb1);
|
| + }).notThrow() && success;
|
| +
|
| + success = Should("createIIRFilter with unnormalized coefficients", function () {
|
| + iir2 = context.createIIRFilter(ff, fb2);
|
| + }).notThrow() && success;
|
| +
|
| + // Create the graph. The output of iir1 (normalized coefficients) is channel 0, and the
|
| + // output of iir2 (unnormalized coefficients), with appropriate scaling, is channel 1.
|
| + var merger = context.createChannelMerger(2);
|
| + source.connect(iir1);
|
| + source.connect(iir2);
|
| + iir1.connect(merger, 0, 0);
|
| + iir2.connect(gain);
|
| +
|
| + // The gain for the gain node should be set to compensate for the scaling of the
|
| + // coefficients. Since iir2 has scaled the coefficients by coefScaleFactor, the output is
|
| + // reduced by the same factor, so adjust the gain to scale the output of iir2 back up.
|
| + gain.gain.value = coefScaleFactor;
|
| + gain.connect(merger, 0, 1);
|
| +
|
| + merger.connect(context.destination);
|
| +
|
| + source.start();
|
| +
|
| + // Rock and roll!
|
| +
|
| + context.startRendering().then(function (result) {
|
| + // Find the max amplitude of the result, which should be near zero.
|
| + var iir1Data = result.getChannelData(0);
|
| + var iir2Data = result.getChannelData(1);
|
| +
|
| + // Threshold isn't exactly zero because the arithmetic is done differently between the
|
| + // IIRFilterNode and the BiquadFilterNode.
|
| + success = Should("Output of IIR filter with unnormalized coefficients", iir2Data)
|
| + .beCloseToArray(iir1Data, 2.1958e-38) && success;
|
| + if (success)
|
| + testPassed("IIRFilter coefficients correctly normalized.\n");
|
| + else
|
| + testFailed("IIRFilter coefficients not correctly normalized.\n");
|
| + }).then(done);
|
| + });
|
| +
|
| + audit.defineTask("one-zero", function (done) {
|
| + // Create a simple 1-zero filter and compare with the expected output.
|
| + var context = new OfflineAudioContext(1, testFrames, sampleRate);
|
| +
|
| + // Use a simple impulse as the source
|
| + var buffer = context.createBuffer(1, 1, sampleRate);
|
| + buffer.getChannelData(0)[0] = 1;
|
| + var source = context.createBufferSource();
|
| + source.buffer = buffer;
|
| +
|
| + // The filter is y(n) = 0.5*(x(n) + x(n-1)), a simple 2-point moving average. This is
|
| + // rather arbitrary; keep it simple.
|
| +
|
| + var iir = context.createIIRFilter([0.5, 0.5], [1]);
|
| +
|
| + // Create the graph
|
| + source.connect(iir);
|
| + iir.connect(context.destination);
|
| +
|
| + // Rock and roll!
|
| + source.start();
|
| +
|
| + context.startRendering().then(function (result) {
|
| + var actual = result.getChannelData(0);
|
| + var expected = new Float64Array(testFrames);
|
| + // The filter is a simple 2-point moving average of an impulse, so the first two values
|
| + // are non-zero and the rest are zero.
|
| + expected[0] = 0.5;
|
| + expected[1] = 0.5;
|
| + Should('IIR 1-zero output', actual).beCloseToArray(expected, 0);
|
| + }).then(done);
|
| + });
|
| +
|
| + audit.defineTask("one-pole", function (done) {
|
| + // Create a simple 1-pole filter and compare with the expected output.
|
| +
|
| + // The filter is y(n) + c*y(n-1)= x(n). The analytical response is (-c)^n, so choose a
|
| + // suitable number of frames to run the test for where the output isn't flushed to zero.
|
| + var c = 0.9;
|
| + var eps = 1e-20;
|
| + var duration = Math.floor(Math.log(eps) / Math.log(Math.abs(c)));
|
| + var context = new OfflineAudioContext(1, duration, sampleRate);
|
| +
|
| + // Use a simple impulse as the source
|
| + var buffer = context.createBuffer(1, 1, sampleRate);
|
| + buffer.getChannelData(0)[0] = 1;
|
| + var source = context.createBufferSource();
|
| + source.buffer = buffer;
|
| +
|
| + var iir = context.createIIRFilter([1], [1, c]);
|
| +
|
| + // Create the graph
|
| + source.connect(iir);
|
| + iir.connect(context.destination);
|
| +
|
| + // Rock and roll!
|
| + source.start();
|
| +
|
| + context.startRendering().then(function (result) {
|
| + var actual = result.getChannelData(0);
|
| + var expected = new Float64Array(actual.length);
|
| +
|
| + // The filter is a simple 1-pole filter: y(n) = -c*y(n-k)+x(n), with an impulse as the
|
| + // input.
|
| + expected[0] = 1;
|
| + for (k = 1; k < testFrames; ++k) {
|
| + expected[k] = -c * expected[k-1];
|
| + }
|
| +
|
| + // Threshold isn't exactly zero due to round-off in the single-precision IIRFilterNode
|
| + // computations versus the double-precision Javascript computations.
|
| + Should('IIR 1-pole output', actual, {verbose: true})
|
| + .beCloseToArray(expected, {relativeThreshold: 5.723e-8});
|
| + }).then(done);
|
| + });
|
| +
|
| + // Return a function suitable for use as a defineTask function. This function creates an
|
| + // IIRFilterNode equivalent to the specified BiquadFilterNode and compares the outputs. The
|
| + // outputs from the two filters should be virtually identical.
|
| + function testWithBiquadFilter (filterType, errorThreshold, snrThreshold) {
|
| + return function (done) {
|
| + var context = new OfflineAudioContext(2, testFrames, sampleRate);
|
| +
|
| + // Use a constant (step function) as the source
|
| + var buffer = createConstantBuffer(context, testFrames, 1);
|
| + var source = context.createBufferSource();
|
| + source.buffer = buffer;
|
| +
|
| +
|
| + // Create the biquad. Choose some rather arbitrary values for Q and gain for the biquad
|
| + // so that the shelf filters aren't identical.
|
| + var biquad = context.createBiquadFilter();
|
| + biquad.type = filterType;
|
| + biquad.Q.value = 10;
|
| + biquad.gain.value = 10;
|
| +
|
| + // Create the equivalent IIR Filter node by computing the coefficients of the given biquad
|
| + // filter type.
|
| + var nyquist = sampleRate / 2;
|
| + var coef = createFilter(filterType,
|
| + biquad.frequency.value / nyquist,
|
| + biquad.Q.value,
|
| + biquad.gain.value);
|
| +
|
| + var iir = context.createIIRFilter([coef.b0, coef.b1, coef.b2], [1, coef.a1, coef.a2]);
|
| +
|
| + var merger = context.createChannelMerger(2);
|
| + // Create the graph
|
| + source.connect(biquad);
|
| + source.connect(iir);
|
| +
|
| + biquad.connect(merger, 0, 0);
|
| + iir.connect(merger, 0, 1);
|
| +
|
| + merger.connect(context.destination);
|
| +
|
| + // Rock and roll!
|
| + source.start();
|
| +
|
| + context.startRendering().then(function (result) {
|
| + // Find the max amplitude of the result, which should be near zero.
|
| + var expected = result.getChannelData(0);
|
| + var actual = result.getChannelData(1);
|
| +
|
| + // On MacOSX, WebAudio uses an optimized Biquad implementation that is different from
|
| + // the implementation used for Linux and Windows. This will cause the output to differ,
|
| + // even if the threshold passes. Thus, only print out a very small number of elements
|
| + // of the array where we have tested that they are consistent.
|
| + Should("IIRFilter for Biquad " + filterType, actual, {
|
| + precision: 5,
|
| + verbose: true
|
| + })
|
| + .beCloseToArray(expected, errorThreshold);
|
| +
|
| + var snr = 10*Math.log10(computeSNR(actual, expected));
|
| + Should("SNR for IIRFIlter for Biquad " + filterType, snr).beGreaterThanOrEqualTo(snrThreshold);
|
| + }).then(done);
|
| + };
|
| + }
|
| +
|
| + // Thresholds here are experimentally determined.
|
| + var biquadTestConfigs = [{
|
| + filterType: "lowpass",
|
| + snrThreshold: 91.222,
|
| + errorThreshold: {
|
| + relativeThreshold: 4.15e-5
|
| + }
|
| + }, {
|
| + filterType: "highpass",
|
| + snrThreshold: 107.246,
|
| + errorThreshold: {
|
| + absoluteThreshold: 2.9e-6,
|
| + relativeThreshold: 3e-5
|
| + }
|
| + }, {
|
| + filterType: "bandpass",
|
| + snrThreshold: 104.060,
|
| + errorThreshold: {
|
| + absoluteThreshold: 2e-7,
|
| + relativeThreshold: 8.7e-4
|
| + }
|
| + }, {
|
| + filterType: "notch",
|
| + snrThreshold: 91.312,
|
| + errorThreshold: {
|
| + absoluteThreshold: 0,
|
| + relativeThreshold: 4.22e-5
|
| + }
|
| + }, {
|
| + filterType: "allpass",
|
| + snrThreshold: 91.319,
|
| + errorThreshold: {
|
| + absoluteThreshold: 0,
|
| + relativeThreshold: 4.31e-5
|
| + }
|
| + }, {
|
| + filterType: "lowshelf",
|
| + snrThreshold: 90.609,
|
| + errorThreshold: {
|
| + absoluteThreshold: 0,
|
| + relativeThreshold: 2.98e-5
|
| + }
|
| + }, {
|
| + filterType: "highshelf",
|
| + snrThreshold: 103.159,
|
| + errorThreshold: {
|
| + absoluteThreshold: 0,
|
| + relativeThreshold: 1.24e-5
|
| + }
|
| + }, {
|
| + filterType: "peaking",
|
| + snrThreshold: 91.504,
|
| + errorThreshold: {
|
| + absoluteThreshold: 0,
|
| + relativeThreshold: 5.05e-5
|
| + }
|
| + }];
|
| +
|
| + // Create a set of tasks based on biquadTestConfigs.
|
| + for (k = 0; k < biquadTestConfigs.length; ++k) {
|
| + var config = biquadTestConfigs[k];
|
| + var name = k + ": " + config.filterType;
|
| + audit.defineTask(name, testWithBiquadFilter(config.filterType, config.errorThreshold, config.snrThreshold));
|
| + }
|
| +
|
| + audit.defineTask("multi-channel", function (done) {
|
| + // Multi-channel test. Create a biquad filter and the equivalent IIR filter. Filter the
|
| + // same multichannel signal and compare the results.
|
| + var nChannels = 3;
|
| + var context = new OfflineAudioContext(nChannels, testFrames, sampleRate);
|
| +
|
| + // Create a set of oscillators as the multi-channel source.
|
| + var source = [];
|
| +
|
| + for (k = 0; k < nChannels; ++k) {
|
| + source[k] = context.createOscillator();
|
| + source[k].type = "sawtooth";
|
| + // The frequency of the oscillator is pretty arbitrary, but each oscillator should have a
|
| + // different frequency.
|
| + source[k].frequency.value = 100 + k * 100;
|
| + }
|
| +
|
| + var merger = context.createChannelMerger(3);
|
| +
|
| + var biquad = context.createBiquadFilter();
|
| +
|
| + // Create the equivalent IIR Filter node.
|
| + var nyquist = sampleRate / 2;
|
| + var coef = createFilter(biquad.type,
|
| + biquad.frequency.value / nyquist,
|
| + biquad.Q.value,
|
| + biquad.gain.value);
|
| + var fb = [1, coef.a1, coef.a2];
|
| + var ff = [coef.b0, coef.b1, coef.b2];
|
| +
|
| + var iir = context.createIIRFilter(ff, fb);
|
| + // Gain node to compute the difference between the IIR and biquad filter.
|
| + var gain = context.createGain();
|
| + gain.gain.value = -1;
|
| +
|
| + // Create the graph.
|
| + for (k = 0; k < nChannels; ++k)
|
| + source[k].connect(merger, 0, k);
|
| +
|
| + merger.connect(biquad);
|
| + merger.connect(iir);
|
| + iir.connect(gain);
|
| + biquad.connect(context.destination);
|
| + gain.connect(context.destination);
|
| +
|
| + for (k = 0; k < nChannels; ++k)
|
| + source[k].start();
|
| +
|
| + context.startRendering().then(function (result) {
|
| + var success = true;
|
| + var errorThresholds = [3.7671e-5, 3.0071e-5, 2.6241e-5];
|
| +
|
| + // Check the difference signal on each channel
|
| + for (channel = 0; channel < result.numberOfChannels; ++channel) {
|
| + // Find the max amplitude of the result, which should be near zero.
|
| + var data = result.getChannelData(channel);
|
| + var maxError = data.reduce(function(reducedValue, currentValue) {
|
| + return Math.max(reducedValue, Math.abs(currentValue));
|
| + });
|
| +
|
| + success = Should("Max difference between IIR and Biquad on channel " + channel,
|
| + maxError).beLessThanOrEqualTo(errorThresholds[channel]);
|
| + }
|
| +
|
| + if (success) {
|
| + testPassed("IIRFilter correctly processed " + result.numberOfChannels +
|
| + "-channel input.");
|
| + } else {
|
| + testFailed("IIRFilter failed to correctly process " + result.numberOfChannels +
|
| + "-channel input.");
|
| + }
|
| + }).then(done);
|
| + });
|
| +
|
| + // Apply an IIRFilter to the given input signal.
|
| + //
|
| + // IIR filter in the time domain is
|
| + //
|
| + // y[n] = sum(ff[k]*x[n-k], k, 0, M) - sum(fb[k]*y[n-k], k, 1, N)
|
| + //
|
| + function iirFilter(input, feedforward, feedback) {
|
| + // For simplicity, create an x buffer that contains the input, and a y buffer that contains
|
| + // the output. Both of these buffers have an initial work space to implement the initial
|
| + // memory of the filter.
|
| + var workSize = Math.max(feedforward.length, feedback.length);
|
| + var x = new Float32Array(input.length + workSize);
|
| +
|
| + // Float64 because we want to match the implementation that uses doubles to minimize
|
| + // roundoff.
|
| + var y = new Float64Array(input.length + workSize);
|
| +
|
| + // Copy the input over.
|
| + for (var k = 0; k < input.length; ++k)
|
| + x[k + feedforward.length] = input[k];
|
| +
|
| + // Run the filter
|
| + for (var n = 0; n < input.length; ++n) {
|
| + var index = n + workSize;
|
| + var yn = 0;
|
| + for (var k = 0; k < feedforward.length; ++k)
|
| + yn += feedforward[k] * x[index - k];
|
| + for (var k = 0; k < feedback.length; ++k)
|
| + yn -= feedback[k] * y[index - k];
|
| +
|
| + y[index] = yn;
|
| + }
|
| +
|
| + return y.slice(workSize).map(Math.fround);
|
| + }
|
| +
|
| + // Cascade the two given biquad filters to create one IIR filter.
|
| + function cascadeBiquads(f1Coef, f2Coef) {
|
| + // The biquad filters are:
|
| + //
|
| + // f1 = (b10 + b11/z + b12/z^2)/(1 + a11/z + a12/z^2);
|
| + // f2 = (b20 + b21/z + b22/z^2)/(1 + a21/z + a22/z^2);
|
| + //
|
| + // To cascade them, multiply the two transforms together to get a fourth order IIR filter.
|
| +
|
| + var numProduct = [f1Coef.b0 * f2Coef.b0,
|
| + f1Coef.b0 * f2Coef.b1 + f1Coef.b1 * f2Coef.b0,
|
| + f1Coef.b0 * f2Coef.b2 + f1Coef.b1 * f2Coef.b1 + f1Coef.b2 * f2Coef.b0,
|
| + f1Coef.b1 * f2Coef.b2 + f1Coef.b2 * f2Coef.b1,
|
| + f1Coef.b2 * f2Coef.b2
|
| + ];
|
| +
|
| + var denProduct = [1,
|
| + f2Coef.a1 + f1Coef.a1,
|
| + f2Coef.a2 + f1Coef.a1 * f2Coef.a1 + f1Coef.a2,
|
| + f1Coef.a1 * f2Coef.a2 + f1Coef.a2 * f2Coef.a1,
|
| + f1Coef.a2 * f2Coef.a2
|
| + ];
|
| +
|
| + return {
|
| + ff: numProduct,
|
| + fb: denProduct
|
| + }
|
| + }
|
| +
|
| + // Find the magnitude of the root of the quadratic that has the maximum magnitude.
|
| + //
|
| + // The quadratic is z^2 + a1 * z + a2 and we want the root z that has the largest magnitude.
|
| + function largestRootMagnitude(a1, a2) {
|
| + var discriminant = a1 * a1 - 4 * a2;
|
| + if (discriminant < 0) {
|
| + // Complex roots: -a1/2 +/- i*sqrt(-d)/2. Thus the magnitude of each root is the same
|
| + // and is sqrt(a1^2/4 + |d|/4)
|
| + var d = Math.sqrt(-discriminant);
|
| + return Math.hypot(a1 / 2, d / 2);
|
| + } else {
|
| + // Real roots
|
| + var d = Math.sqrt(discriminant);
|
| + return Math.max(Math.abs((-a1 + d) / 2), Math.abs((-a1 - d) / 2));
|
| + }
|
| + }
|
| +
|
| + audit.defineTask("4th-order-iir", function(done) {
|
| + // Cascade 2 lowpass biquad filters and compare that with the equivalent 4th order IIR
|
| + // filter.
|
| +
|
| + var nyquist = sampleRate / 2;
|
| + // Compute the coefficients of a lowpass filter.
|
| +
|
| + // First some preliminary stuff. Compute the coefficients of the biquad. This is used to
|
| + // figure out how frames to use in the test.
|
| + var biquadType = "lowpass";
|
| + var biquadCutoff = 350;
|
| + var biquadQ = 5;
|
| + var biquadGain = 1;
|
| +
|
| + var coef = createFilter(biquadType,
|
| + biquadCutoff / nyquist,
|
| + biquadQ,
|
| + biquadGain);
|
| +
|
| + // Cascade the biquads together to create an equivalent IIR filter.
|
| + var cascade = cascadeBiquads(coef, coef);
|
| +
|
| + // Since we're cascading two identical biquads, the root of denominator of the IIR filter is
|
| + // repeated, so the root of the denominator with the largest magnitude occurs twice. The
|
| + // impulse response of the IIR filter will be roughly c*(r*r)^n at time n, where r is the
|
| + // root of largest magnitude. This approximation gets better as n increases. We can use
|
| + // this to get a rough idea of when the response has died down to a small value.
|
| +
|
| + // This is the value we will use to determine how many frames to render. Rendering too many
|
| + // is a waste of time and also makes it hard to compare the actual result to the expected
|
| + // because the magnitudes are so small that they could be mostly round-off noise.
|
| + //
|
| + // Find magnitude of the root with largest magnitude
|
| + var rootMagnitude = largestRootMagnitude(coef.a1, coef.a2);
|
| +
|
| + // Find n such that |r|^(2*n) <= eps. That is, n = log(eps)/(2*log(r)). Somewhat
|
| + // arbitrarily choose eps = 1e-20;
|
| + var eps = 1e-20;
|
| + var framesForTest = Math.floor(Math.log(eps) / (2 * Math.log(rootMagnitude)));
|
| +
|
| + // We're ready to create the graph for the test. The offline context has two channels:
|
| + // channel 0 is the expected (cascaded biquad) result and channel 1 is the actual IIR filter
|
| + // result.
|
| + var context = new OfflineAudioContext(2, framesForTest, sampleRate);
|
| +
|
| + // Use a simple impulse with a large (arbitrary) amplitude as the source
|
| + var amplitude = 1;
|
| + var buffer = context.createBuffer(1, testFrames, sampleRate);
|
| + buffer.getChannelData(0)[0] = amplitude;
|
| + var source = context.createBufferSource();
|
| + source.buffer = buffer;
|
| +
|
| + // Create the two biquad filters. Doesn't really matter what, but for simplicity we choose
|
| + // identical lowpass filters with the same parameters.
|
| + var biquad1 = context.createBiquadFilter();
|
| + biquad1.type = biquadType;
|
| + biquad1.frequency.value = biquadCutoff;
|
| + biquad1.Q.value = biquadQ;
|
| +
|
| + var biquad2 = context.createBiquadFilter();
|
| + biquad2.type = biquadType;
|
| + biquad2.frequency.value = biquadCutoff;
|
| + biquad2.Q.value = biquadQ;
|
| +
|
| + var iir = context.createIIRFilter(cascade.ff, cascade.fb);
|
| +
|
| + // Create the merger to get the signals into multiple channels
|
| + var merger = context.createChannelMerger(2);
|
| +
|
| + // Create the graph, filtering the source through two biquads.
|
| + source.connect(biquad1);
|
| + biquad1.connect(biquad2);
|
| + biquad2.connect(merger, 0, 0);
|
| +
|
| + source.connect(iir);
|
| + iir.connect(merger, 0, 1);
|
| +
|
| + merger.connect(context.destination);
|
| +
|
| + // Now filter the source through the IIR filter.
|
| + var y = iirFilter(buffer.getChannelData(0), cascade.ff, cascade.fb);
|
| +
|
| + // Rock and roll!
|
| + source.start();
|
| +
|
| + context.startRendering().then(function(result) {
|
| + var expected = result.getChannelData(0);
|
| + var actual = result.getChannelData(1);
|
| +
|
| + Should("4-th order IIRFilter (biquad ref)",
|
| + actual, {
|
| + verbose: true,
|
| + precision: 5
|
| + })
|
| + .beCloseToArray(expected, {
|
| + // Thresholds experimentally determined.
|
| + absoluteThreshold: 8.4e-8,
|
| + relativeThreshold: 5e-7,
|
| + });
|
| +
|
| + var snr = 10*Math.log10(computeSNR(actual, expected));
|
| + Should("SNR of 4-th order IIRFilter (biquad ref)", snr)
|
| + .beGreaterThanOrEqualTo(110.684);
|
| + }).then(done);
|
| + });
|
| +
|
| + audit.defineTask("finish", function (done) {
|
| + finishJSTest();
|
| + done();
|
| + });
|
| +
|
| + audit.runTasks();
|
| + successfullyParsed = true;
|
| + </script>
|
| + </body>
|
| +</html>
|
|
|