| OLD | NEW |
| 1 // Copyright 2011 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include <limits.h> | 5 #include <limits.h> |
| 6 #include <stdarg.h> | 6 #include <stdarg.h> |
| 7 #include <stdlib.h> | 7 #include <stdlib.h> |
| 8 #include <cmath> | 8 #include <cmath> |
| 9 | 9 |
| 10 #if V8_TARGET_ARCH_MIPS64 | 10 #if V8_TARGET_ARCH_MIPS64 |
| (...skipping 891 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 902 | 902 |
| 903 // The sp is initialized to point to the bottom (high address) of the | 903 // The sp is initialized to point to the bottom (high address) of the |
| 904 // allocated stack area. To be safe in potential stack underflows we leave | 904 // allocated stack area. To be safe in potential stack underflows we leave |
| 905 // some buffer below. | 905 // some buffer below. |
| 906 registers_[sp] = reinterpret_cast<int64_t>(stack_) + stack_size_ - 64; | 906 registers_[sp] = reinterpret_cast<int64_t>(stack_) + stack_size_ - 64; |
| 907 // The ra and pc are initialized to a known bad value that will cause an | 907 // The ra and pc are initialized to a known bad value that will cause an |
| 908 // access violation if the simulator ever tries to execute it. | 908 // access violation if the simulator ever tries to execute it. |
| 909 registers_[pc] = bad_ra; | 909 registers_[pc] = bad_ra; |
| 910 registers_[ra] = bad_ra; | 910 registers_[ra] = bad_ra; |
| 911 InitializeCoverage(); | 911 InitializeCoverage(); |
| 912 for (int i = 0; i < kNumExceptions; i++) { | |
| 913 exceptions[i] = 0; | |
| 914 } | |
| 915 | 912 |
| 916 last_debugger_input_ = NULL; | 913 last_debugger_input_ = NULL; |
| 917 } | 914 } |
| 918 | 915 |
| 919 | 916 |
| 920 Simulator::~Simulator() { free(stack_); } | 917 Simulator::~Simulator() { free(stack_); } |
| 921 | 918 |
| 922 | 919 |
| 923 // When the generated code calls an external reference we need to catch that in | 920 // When the generated code calls an external reference we need to catch that in |
| 924 // the simulator. The external reference will be a function compiled for the | 921 // the simulator. The external reference will be a function compiled for the |
| (...skipping 1243 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 2168 PrintF("stop %ld - 0x%lx: \t%s, \tcounter = %i, \t%s\n", | 2165 PrintF("stop %ld - 0x%lx: \t%s, \tcounter = %i, \t%s\n", |
| 2169 code, code, state, count, watched_stops_[code].desc); | 2166 code, code, state, count, watched_stops_[code].desc); |
| 2170 } else { | 2167 } else { |
| 2171 PrintF("stop %ld - 0x%lx: \t%s, \tcounter = %i\n", | 2168 PrintF("stop %ld - 0x%lx: \t%s, \tcounter = %i\n", |
| 2172 code, code, state, count); | 2169 code, code, state, count); |
| 2173 } | 2170 } |
| 2174 } | 2171 } |
| 2175 } | 2172 } |
| 2176 | 2173 |
| 2177 | 2174 |
| 2178 void Simulator::SignalExceptions() { | 2175 void Simulator::SignalException(Exception e) { |
| 2179 for (int i = 1; i < kNumExceptions; i++) { | 2176 V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", |
| 2180 if (exceptions[i] != 0) { | 2177 static_cast<int>(e)); |
| 2181 V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", i); | |
| 2182 } | |
| 2183 } | |
| 2184 } | 2178 } |
| 2185 | 2179 |
| 2186 | 2180 |
| 2187 // Handle execution based on instruction types. | 2181 // Handle execution based on instruction types. |
| 2188 | 2182 |
| 2189 void Simulator::ConfigureTypeRegister(Instruction* instr, int64_t* alu_out, | 2183 void Simulator::DecodeTypeRegisterSRsType() { |
| 2190 int64_t* i64hilo, uint64_t* u64hilo, | |
| 2191 int64_t* next_pc, int* return_addr_reg, | |
| 2192 bool* do_interrupt, int64_t* i128resultH, | |
| 2193 int64_t* i128resultL) { | |
| 2194 // Every local variable declared here needs to be const. | |
| 2195 // This is to make sure that changed values are sent back to | |
| 2196 // DecodeTypeRegister correctly. | |
| 2197 | |
| 2198 // Instruction fields. | |
| 2199 const Opcode op = instr->OpcodeFieldRaw(); | |
| 2200 const int32_t rs_reg = instr->RsValue(); | |
| 2201 const int64_t rs = get_register(rs_reg); | |
| 2202 const uint64_t rs_u = static_cast<uint64_t>(rs); | |
| 2203 const int32_t rt_reg = instr->RtValue(); | |
| 2204 const int64_t rt = get_register(rt_reg); | |
| 2205 const uint64_t rt_u = static_cast<uint64_t>(rt); | |
| 2206 const int32_t rd_reg = instr->RdValue(); | |
| 2207 const uint64_t sa = instr->SaValue(); | |
| 2208 const uint8_t bp2 = instr->Bp2Value(); | |
| 2209 const uint8_t bp3 = instr->Bp3Value(); | |
| 2210 | |
| 2211 const int32_t fs_reg = instr->FsValue(); | |
| 2212 | |
| 2213 | |
| 2214 // ---------- Configuration. | |
| 2215 switch (op) { | |
| 2216 case COP1: // Coprocessor instructions. | |
| 2217 switch (instr->RsFieldRaw()) { | |
| 2218 case CFC1: | |
| 2219 // At the moment only FCSR is supported. | |
| 2220 DCHECK(fs_reg == kFCSRRegister); | |
| 2221 *alu_out = FCSR_; | |
| 2222 break; | |
| 2223 case MFC1: | |
| 2224 *alu_out = static_cast<int64_t>(get_fpu_register_word(fs_reg)); | |
| 2225 break; | |
| 2226 case DMFC1: | |
| 2227 *alu_out = get_fpu_register(fs_reg); | |
| 2228 break; | |
| 2229 case MFHC1: | |
| 2230 *alu_out = get_fpu_register_hi_word(fs_reg); | |
| 2231 break; | |
| 2232 case CTC1: | |
| 2233 case MTC1: | |
| 2234 case DMTC1: | |
| 2235 case MTHC1: | |
| 2236 case S: | |
| 2237 case D: | |
| 2238 case W: | |
| 2239 case L: | |
| 2240 case PS: | |
| 2241 // Do everything in the execution step. | |
| 2242 break; | |
| 2243 default: | |
| 2244 // BC1 BC1EQZ BC1NEZ handled in DecodeTypeImmed, should never come here. | |
| 2245 UNREACHABLE(); | |
| 2246 } | |
| 2247 break; | |
| 2248 case COP1X: | |
| 2249 break; | |
| 2250 case SPECIAL: | |
| 2251 switch (instr->FunctionFieldRaw()) { | |
| 2252 case JR: | |
| 2253 case JALR: | |
| 2254 *next_pc = get_register(instr->RsValue()); | |
| 2255 *return_addr_reg = instr->RdValue(); | |
| 2256 break; | |
| 2257 case SLL: | |
| 2258 *alu_out = static_cast<int32_t>(rt) << sa; | |
| 2259 break; | |
| 2260 case DSLL: | |
| 2261 *alu_out = rt << sa; | |
| 2262 break; | |
| 2263 case DSLL32: | |
| 2264 *alu_out = rt << sa << 32; | |
| 2265 break; | |
| 2266 case SRL: | |
| 2267 if (rs_reg == 0) { | |
| 2268 // Regular logical right shift of a word by a fixed number of | |
| 2269 // bits instruction. RS field is always equal to 0. | |
| 2270 // Sign-extend the 32-bit result. | |
| 2271 *alu_out = static_cast<int32_t>(static_cast<uint32_t>(rt_u) >> sa); | |
| 2272 } else { | |
| 2273 // Logical right-rotate of a word by a fixed number of bits. This | |
| 2274 // is special case of SRL instruction, added in MIPS32 Release 2. | |
| 2275 // RS field is equal to 00001. | |
| 2276 *alu_out = static_cast<int32_t>( | |
| 2277 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u), | |
| 2278 static_cast<const uint32_t>(sa))); | |
| 2279 } | |
| 2280 break; | |
| 2281 case DSRL: | |
| 2282 *alu_out = rt_u >> sa; | |
| 2283 break; | |
| 2284 case DSRL32: | |
| 2285 *alu_out = rt_u >> sa >> 32; | |
| 2286 break; | |
| 2287 case SRA: | |
| 2288 *alu_out = (int32_t)rt >> sa; | |
| 2289 break; | |
| 2290 case DSRA: | |
| 2291 *alu_out = rt >> sa; | |
| 2292 break; | |
| 2293 case DSRA32: | |
| 2294 *alu_out = rt >> sa >> 32; | |
| 2295 break; | |
| 2296 case SLLV: | |
| 2297 *alu_out = (int32_t)rt << rs; | |
| 2298 break; | |
| 2299 case DSLLV: | |
| 2300 *alu_out = rt << rs; | |
| 2301 break; | |
| 2302 case SRLV: | |
| 2303 if (sa == 0) { | |
| 2304 // Regular logical right-shift of a word by a variable number of | |
| 2305 // bits instruction. SA field is always equal to 0. | |
| 2306 *alu_out = static_cast<int32_t>((uint32_t)rt_u >> rs); | |
| 2307 } else { | |
| 2308 // Logical right-rotate of a word by a variable number of bits. | |
| 2309 // This is special case od SRLV instruction, added in MIPS32 | |
| 2310 // Release 2. SA field is equal to 00001. | |
| 2311 *alu_out = static_cast<int32_t>( | |
| 2312 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u), | |
| 2313 static_cast<const uint32_t>(rs_u))); | |
| 2314 } | |
| 2315 break; | |
| 2316 case DSRLV: | |
| 2317 if (sa == 0) { | |
| 2318 // Regular logical right-shift of a word by a variable number of | |
| 2319 // bits instruction. SA field is always equal to 0. | |
| 2320 *alu_out = rt_u >> rs; | |
| 2321 } else { | |
| 2322 // Logical right-rotate of a word by a variable number of bits. | |
| 2323 // This is special case od SRLV instruction, added in MIPS32 | |
| 2324 // Release 2. SA field is equal to 00001. | |
| 2325 *alu_out = | |
| 2326 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u), | |
| 2327 static_cast<const uint32_t>(rs_u)); | |
| 2328 } | |
| 2329 break; | |
| 2330 case SRAV: | |
| 2331 *alu_out = (int32_t)rt >> rs; | |
| 2332 break; | |
| 2333 case DSRAV: | |
| 2334 *alu_out = rt >> rs; | |
| 2335 break; | |
| 2336 case MFHI: // MFHI == CLZ on R6. | |
| 2337 if (kArchVariant != kMips64r6) { | |
| 2338 DCHECK(instr->SaValue() == 0); | |
| 2339 *alu_out = get_register(HI); | |
| 2340 } else { | |
| 2341 // MIPS spec: If no bits were set in GPR rs, the result written to | |
| 2342 // GPR rd is 32. | |
| 2343 DCHECK(instr->SaValue() == 1); | |
| 2344 *alu_out = | |
| 2345 base::bits::CountLeadingZeros32(static_cast<int32_t>(rs_u)); | |
| 2346 } | |
| 2347 break; | |
| 2348 case MFLO: | |
| 2349 *alu_out = get_register(LO); | |
| 2350 break; | |
| 2351 case MULT: { // MULT == D_MUL_MUH. | |
| 2352 int32_t rs_lo = static_cast<int32_t>(rs); | |
| 2353 int32_t rt_lo = static_cast<int32_t>(rt); | |
| 2354 *i64hilo = static_cast<int64_t>(rs_lo) * static_cast<int64_t>(rt_lo); | |
| 2355 break; | |
| 2356 } | |
| 2357 case MULTU: | |
| 2358 *u64hilo = static_cast<uint64_t>(rs_u & 0xffffffff) * | |
| 2359 static_cast<uint64_t>(rt_u & 0xffffffff); | |
| 2360 break; | |
| 2361 case DMULT: // DMULT == D_MUL_MUH. | |
| 2362 if (kArchVariant != kMips64r6) { | |
| 2363 *i128resultH = MultiplyHighSigned(rs, rt); | |
| 2364 *i128resultL = rs * rt; | |
| 2365 } else { | |
| 2366 switch (instr->SaValue()) { | |
| 2367 case MUL_OP: | |
| 2368 *i128resultL = rs * rt; | |
| 2369 break; | |
| 2370 case MUH_OP: | |
| 2371 *i128resultH = MultiplyHighSigned(rs, rt); | |
| 2372 break; | |
| 2373 default: | |
| 2374 UNIMPLEMENTED_MIPS(); | |
| 2375 break; | |
| 2376 } | |
| 2377 } | |
| 2378 break; | |
| 2379 case DMULTU: | |
| 2380 UNIMPLEMENTED_MIPS(); | |
| 2381 break; | |
| 2382 case ADD: | |
| 2383 case DADD: | |
| 2384 if (HaveSameSign(rs, rt)) { | |
| 2385 if (rs > 0) { | |
| 2386 exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - rt); | |
| 2387 } else if (rs < 0) { | |
| 2388 exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue - rt); | |
| 2389 } | |
| 2390 } | |
| 2391 *alu_out = rs + rt; | |
| 2392 break; | |
| 2393 case ADDU: { | |
| 2394 int32_t alu32_out = static_cast<int32_t>(rs + rt); | |
| 2395 // Sign-extend result of 32bit operation into 64bit register. | |
| 2396 *alu_out = static_cast<int64_t>(alu32_out); | |
| 2397 break; | |
| 2398 } | |
| 2399 case DADDU: | |
| 2400 *alu_out = rs + rt; | |
| 2401 break; | |
| 2402 case SUB: | |
| 2403 case DSUB: | |
| 2404 if (!HaveSameSign(rs, rt)) { | |
| 2405 if (rs > 0) { | |
| 2406 exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue + rt); | |
| 2407 } else if (rs < 0) { | |
| 2408 exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue + rt); | |
| 2409 } | |
| 2410 } | |
| 2411 *alu_out = rs - rt; | |
| 2412 break; | |
| 2413 case SUBU: { | |
| 2414 int32_t alu32_out = static_cast<int32_t>(rs - rt); | |
| 2415 // Sign-extend result of 32bit operation into 64bit register. | |
| 2416 *alu_out = static_cast<int64_t>(alu32_out); | |
| 2417 break; | |
| 2418 } | |
| 2419 case DSUBU: | |
| 2420 *alu_out = rs - rt; | |
| 2421 break; | |
| 2422 case AND: | |
| 2423 *alu_out = rs & rt; | |
| 2424 break; | |
| 2425 case OR: | |
| 2426 *alu_out = rs | rt; | |
| 2427 break; | |
| 2428 case XOR: | |
| 2429 *alu_out = rs ^ rt; | |
| 2430 break; | |
| 2431 case NOR: | |
| 2432 *alu_out = ~(rs | rt); | |
| 2433 break; | |
| 2434 case SLT: | |
| 2435 *alu_out = rs < rt ? 1 : 0; | |
| 2436 break; | |
| 2437 case SLTU: | |
| 2438 *alu_out = rs_u < rt_u ? 1 : 0; | |
| 2439 break; | |
| 2440 // Break and trap instructions. | |
| 2441 case BREAK: | |
| 2442 | |
| 2443 *do_interrupt = true; | |
| 2444 break; | |
| 2445 case TGE: | |
| 2446 *do_interrupt = rs >= rt; | |
| 2447 break; | |
| 2448 case TGEU: | |
| 2449 *do_interrupt = rs_u >= rt_u; | |
| 2450 break; | |
| 2451 case TLT: | |
| 2452 *do_interrupt = rs < rt; | |
| 2453 break; | |
| 2454 case TLTU: | |
| 2455 *do_interrupt = rs_u < rt_u; | |
| 2456 break; | |
| 2457 case TEQ: | |
| 2458 *do_interrupt = rs == rt; | |
| 2459 break; | |
| 2460 case TNE: | |
| 2461 *do_interrupt = rs != rt; | |
| 2462 break; | |
| 2463 case MOVN: | |
| 2464 case MOVZ: | |
| 2465 case MOVCI: | |
| 2466 // No action taken on decode. | |
| 2467 break; | |
| 2468 case DIV: | |
| 2469 case DIVU: | |
| 2470 case DDIV: | |
| 2471 case DDIVU: | |
| 2472 // div and divu never raise exceptions. | |
| 2473 break; | |
| 2474 case SELEQZ_S: | |
| 2475 case SELNEZ_S: | |
| 2476 break; | |
| 2477 default: | |
| 2478 UNREACHABLE(); | |
| 2479 } | |
| 2480 break; | |
| 2481 case SPECIAL2: | |
| 2482 switch (instr->FunctionFieldRaw()) { | |
| 2483 case MUL: | |
| 2484 // Only the lower 32 bits are kept. | |
| 2485 *alu_out = (int32_t)rs_u * (int32_t)rt_u; | |
| 2486 break; | |
| 2487 case CLZ: | |
| 2488 // MIPS32 spec: If no bits were set in GPR rs, the result written to | |
| 2489 // GPR rd is 32. | |
| 2490 *alu_out = | |
| 2491 base::bits::CountLeadingZeros32(static_cast<uint32_t>(rs_u)); | |
| 2492 break; | |
| 2493 default: | |
| 2494 UNREACHABLE(); | |
| 2495 } | |
| 2496 break; | |
| 2497 case SPECIAL3: | |
| 2498 switch (instr->FunctionFieldRaw()) { | |
| 2499 case INS: { // Mips32r2 instruction. | |
| 2500 // Interpret rd field as 5-bit msb of insert. | |
| 2501 uint16_t msb = rd_reg; | |
| 2502 // Interpret sa field as 5-bit lsb of insert. | |
| 2503 uint16_t lsb = sa; | |
| 2504 uint16_t size = msb - lsb + 1; | |
| 2505 uint64_t mask = (1ULL << size) - 1; | |
| 2506 *alu_out = (rt_u & ~(mask << lsb)) | ((rs_u & mask) << lsb); | |
| 2507 break; | |
| 2508 } | |
| 2509 case EXT: { // Mips32r2 instruction. | |
| 2510 // Interpret rd field as 5-bit msb of extract. | |
| 2511 uint16_t msb = rd_reg; | |
| 2512 // Interpret sa field as 5-bit lsb of extract. | |
| 2513 uint16_t lsb = sa; | |
| 2514 uint16_t size = msb + 1; | |
| 2515 uint64_t mask = (1ULL << size) - 1; | |
| 2516 *alu_out = static_cast<int32_t>((rs_u & (mask << lsb)) >> lsb); | |
| 2517 break; | |
| 2518 } | |
| 2519 case DEXT: { // Mips32r2 instruction. | |
| 2520 // Interpret rd field as 5-bit msb of extract. | |
| 2521 uint16_t msb = rd_reg; | |
| 2522 // Interpret sa field as 5-bit lsb of extract. | |
| 2523 uint16_t lsb = sa; | |
| 2524 uint16_t size = msb + 1; | |
| 2525 uint64_t mask = (1ULL << size) - 1; | |
| 2526 *alu_out = static_cast<int64_t>((rs_u & (mask << lsb)) >> lsb); | |
| 2527 break; | |
| 2528 } | |
| 2529 case BSHFL: { | |
| 2530 int sa = instr->SaFieldRaw() >> kSaShift; | |
| 2531 switch (sa) { | |
| 2532 case BITSWAP: { | |
| 2533 uint32_t input = static_cast<uint32_t>(rt); | |
| 2534 uint32_t output = 0; | |
| 2535 uint8_t i_byte, o_byte; | |
| 2536 | |
| 2537 // Reverse the bit in byte for each individual byte | |
| 2538 for (int i = 0; i < 4; i++) { | |
| 2539 output = output >> 8; | |
| 2540 i_byte = input & 0xff; | |
| 2541 | |
| 2542 // Fast way to reverse bits in byte | |
| 2543 // Devised by Sean Anderson, July 13, 2001 | |
| 2544 o_byte = | |
| 2545 static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | | |
| 2546 (i_byte * 0x8020LU & 0x88440LU)) * | |
| 2547 0x10101LU >> | |
| 2548 16); | |
| 2549 | |
| 2550 output = output | (static_cast<uint32_t>(o_byte << 24)); | |
| 2551 input = input >> 8; | |
| 2552 } | |
| 2553 | |
| 2554 *alu_out = static_cast<int64_t>(static_cast<int32_t>(output)); | |
| 2555 break; | |
| 2556 } | |
| 2557 case SEB: | |
| 2558 case SEH: | |
| 2559 case WSBH: | |
| 2560 UNREACHABLE(); | |
| 2561 break; | |
| 2562 default: { | |
| 2563 sa >>= kBp2Bits; | |
| 2564 switch (sa) { | |
| 2565 case ALIGN: { | |
| 2566 if (bp2 == 0) { | |
| 2567 *alu_out = static_cast<int32_t>(rt); | |
| 2568 } else { | |
| 2569 uint64_t rt_hi = rt << (8 * bp2); | |
| 2570 uint64_t rs_lo = rs >> (8 * (4 - bp2)); | |
| 2571 *alu_out = static_cast<int32_t>(rt_hi | rs_lo); | |
| 2572 } | |
| 2573 break; | |
| 2574 } | |
| 2575 default: | |
| 2576 UNREACHABLE(); | |
| 2577 break; | |
| 2578 } | |
| 2579 break; | |
| 2580 } | |
| 2581 } | |
| 2582 break; | |
| 2583 } | |
| 2584 case DBSHFL: { | |
| 2585 int sa = instr->SaFieldRaw() >> kSaShift; | |
| 2586 switch (sa) { | |
| 2587 case DBITSWAP: { | |
| 2588 switch (instr->SaFieldRaw() >> kSaShift) { | |
| 2589 case DBITSWAP_SA: { // Mips64r6 | |
| 2590 uint64_t input = static_cast<uint64_t>(rt); | |
| 2591 uint64_t output = 0; | |
| 2592 uint8_t i_byte, o_byte; | |
| 2593 | |
| 2594 // Reverse the bit in byte for each individual byte | |
| 2595 for (int i = 0; i < 8; i++) { | |
| 2596 output = output >> 8; | |
| 2597 i_byte = input & 0xff; | |
| 2598 | |
| 2599 // Fast way to reverse bits in byte | |
| 2600 // Devised by Sean Anderson, July 13, 2001 | |
| 2601 o_byte = | |
| 2602 static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | | |
| 2603 (i_byte * 0x8020LU & 0x88440LU)) * | |
| 2604 0x10101LU >> | |
| 2605 16); | |
| 2606 | |
| 2607 output = output | ((static_cast<uint64_t>(o_byte) << 56)); | |
| 2608 input = input >> 8; | |
| 2609 } | |
| 2610 | |
| 2611 *alu_out = static_cast<int64_t>(output); | |
| 2612 break; | |
| 2613 } | |
| 2614 } | |
| 2615 break; | |
| 2616 } | |
| 2617 case DSBH: | |
| 2618 case DSHD: | |
| 2619 UNREACHABLE(); | |
| 2620 break; | |
| 2621 default: { | |
| 2622 sa >>= kBp3Bits; | |
| 2623 switch (sa) { | |
| 2624 case DALIGN: { | |
| 2625 if (bp3 == 0) { | |
| 2626 *alu_out = static_cast<int64_t>(rt); | |
| 2627 } else { | |
| 2628 uint64_t rt_hi = rt << (8 * bp3); | |
| 2629 uint64_t rs_lo = rs >> (8 * (8 - bp3)); | |
| 2630 *alu_out = static_cast<int64_t>(rt_hi | rs_lo); | |
| 2631 } | |
| 2632 break; | |
| 2633 } | |
| 2634 default: | |
| 2635 UNREACHABLE(); | |
| 2636 break; | |
| 2637 } | |
| 2638 break; | |
| 2639 } | |
| 2640 } | |
| 2641 break; | |
| 2642 } | |
| 2643 default: | |
| 2644 UNREACHABLE(); | |
| 2645 } | |
| 2646 break; | |
| 2647 default: | |
| 2648 UNREACHABLE(); | |
| 2649 } | |
| 2650 } | |
| 2651 | |
| 2652 | |
| 2653 void Simulator::DecodeTypeRegisterSRsType(Instruction* instr, | |
| 2654 const int32_t fs_reg, | |
| 2655 const int32_t ft_reg, | |
| 2656 const int32_t fd_reg) { | |
| 2657 float fs, ft, fd; | 2184 float fs, ft, fd; |
| 2658 fs = get_fpu_register_float(fs_reg); | 2185 fs = get_fpu_register_float(fs_reg()); |
| 2659 ft = get_fpu_register_float(ft_reg); | 2186 ft = get_fpu_register_float(ft_reg()); |
| 2660 fd = get_fpu_register_float(fd_reg); | 2187 fd = get_fpu_register_float(fd_reg()); |
| 2661 int32_t ft_int = bit_cast<int32_t>(ft); | 2188 int32_t ft_int = bit_cast<int32_t>(ft); |
| 2662 int32_t fd_int = bit_cast<int32_t>(fd); | 2189 int32_t fd_int = bit_cast<int32_t>(fd); |
| 2663 uint32_t cc, fcsr_cc; | 2190 uint32_t cc, fcsr_cc; |
| 2664 cc = instr->FCccValue(); | 2191 cc = get_instr()->FCccValue(); |
| 2665 fcsr_cc = get_fcsr_condition_bit(cc); | 2192 fcsr_cc = get_fcsr_condition_bit(cc); |
| 2666 switch (instr->FunctionFieldRaw()) { | 2193 switch (get_instr()->FunctionFieldRaw()) { |
| 2667 case RINT: { | 2194 case RINT: { |
| 2668 DCHECK(kArchVariant == kMips64r6); | 2195 DCHECK(kArchVariant == kMips64r6); |
| 2669 float result, temp_result; | 2196 float result, temp_result; |
| 2670 double temp; | 2197 double temp; |
| 2671 float upper = std::ceil(fs); | 2198 float upper = std::ceil(fs); |
| 2672 float lower = std::floor(fs); | 2199 float lower = std::floor(fs); |
| 2673 switch (get_fcsr_rounding_mode()) { | 2200 switch (get_fcsr_rounding_mode()) { |
| 2674 case kRoundToNearest: | 2201 case kRoundToNearest: |
| 2675 if (upper - fs < fs - lower) { | 2202 if (upper - fs < fs - lower) { |
| 2676 result = upper; | 2203 result = upper; |
| (...skipping 12 matching lines...) Expand all Loading... |
| 2689 case kRoundToZero: | 2216 case kRoundToZero: |
| 2690 result = (fs > 0 ? lower : upper); | 2217 result = (fs > 0 ? lower : upper); |
| 2691 break; | 2218 break; |
| 2692 case kRoundToPlusInf: | 2219 case kRoundToPlusInf: |
| 2693 result = upper; | 2220 result = upper; |
| 2694 break; | 2221 break; |
| 2695 case kRoundToMinusInf: | 2222 case kRoundToMinusInf: |
| 2696 result = lower; | 2223 result = lower; |
| 2697 break; | 2224 break; |
| 2698 } | 2225 } |
| 2699 set_fpu_register_float(fd_reg, result); | 2226 set_fpu_register_float(fd_reg(), result); |
| 2700 if (result != fs) { | 2227 if (result != fs) { |
| 2701 set_fcsr_bit(kFCSRInexactFlagBit, true); | 2228 set_fcsr_bit(kFCSRInexactFlagBit, true); |
| 2702 } | 2229 } |
| 2703 break; | 2230 break; |
| 2704 } | 2231 } |
| 2705 case ADD_S: | 2232 case ADD_S: |
| 2706 set_fpu_register_float(fd_reg, fs + ft); | 2233 set_fpu_register_float(fd_reg(), fs + ft); |
| 2707 break; | 2234 break; |
| 2708 case SUB_S: | 2235 case SUB_S: |
| 2709 set_fpu_register_float(fd_reg, fs - ft); | 2236 set_fpu_register_float(fd_reg(), fs - ft); |
| 2710 break; | 2237 break; |
| 2711 case MUL_S: | 2238 case MUL_S: |
| 2712 set_fpu_register_float(fd_reg, fs * ft); | 2239 set_fpu_register_float(fd_reg(), fs * ft); |
| 2713 break; | 2240 break; |
| 2714 case DIV_S: | 2241 case DIV_S: |
| 2715 set_fpu_register_float(fd_reg, fs / ft); | 2242 set_fpu_register_float(fd_reg(), fs / ft); |
| 2716 break; | 2243 break; |
| 2717 case ABS_S: | 2244 case ABS_S: |
| 2718 set_fpu_register_float(fd_reg, fabs(fs)); | 2245 set_fpu_register_float(fd_reg(), fabs(fs)); |
| 2719 break; | 2246 break; |
| 2720 case MOV_S: | 2247 case MOV_S: |
| 2721 set_fpu_register_float(fd_reg, fs); | 2248 set_fpu_register_float(fd_reg(), fs); |
| 2722 break; | 2249 break; |
| 2723 case NEG_S: | 2250 case NEG_S: |
| 2724 set_fpu_register_float(fd_reg, -fs); | 2251 set_fpu_register_float(fd_reg(), -fs); |
| 2725 break; | 2252 break; |
| 2726 case SQRT_S: | 2253 case SQRT_S: |
| 2727 set_fpu_register_float(fd_reg, fast_sqrt(fs)); | 2254 set_fpu_register_float(fd_reg(), fast_sqrt(fs)); |
| 2728 break; | 2255 break; |
| 2729 case RSQRT_S: { | 2256 case RSQRT_S: { |
| 2730 float result = 1.0 / fast_sqrt(fs); | 2257 float result = 1.0 / fast_sqrt(fs); |
| 2731 set_fpu_register_float(fd_reg, result); | 2258 set_fpu_register_float(fd_reg(), result); |
| 2732 break; | 2259 break; |
| 2733 } | 2260 } |
| 2734 case RECIP_S: { | 2261 case RECIP_S: { |
| 2735 float result = 1.0 / fs; | 2262 float result = 1.0 / fs; |
| 2736 set_fpu_register_float(fd_reg, result); | 2263 set_fpu_register_float(fd_reg(), result); |
| 2737 break; | 2264 break; |
| 2738 } | 2265 } |
| 2739 case C_F_D: | 2266 case C_F_D: |
| 2740 set_fcsr_bit(fcsr_cc, false); | 2267 set_fcsr_bit(fcsr_cc, false); |
| 2741 break; | 2268 break; |
| 2742 case C_UN_D: | 2269 case C_UN_D: |
| 2743 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); | 2270 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); |
| 2744 break; | 2271 break; |
| 2745 case C_EQ_D: | 2272 case C_EQ_D: |
| 2746 set_fcsr_bit(fcsr_cc, (fs == ft)); | 2273 set_fcsr_bit(fcsr_cc, (fs == ft)); |
| 2747 break; | 2274 break; |
| 2748 case C_UEQ_D: | 2275 case C_UEQ_D: |
| 2749 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); | 2276 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); |
| 2750 break; | 2277 break; |
| 2751 case C_OLT_D: | 2278 case C_OLT_D: |
| 2752 set_fcsr_bit(fcsr_cc, (fs < ft)); | 2279 set_fcsr_bit(fcsr_cc, (fs < ft)); |
| 2753 break; | 2280 break; |
| 2754 case C_ULT_D: | 2281 case C_ULT_D: |
| 2755 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); | 2282 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); |
| 2756 break; | 2283 break; |
| 2757 case C_OLE_D: | 2284 case C_OLE_D: |
| 2758 set_fcsr_bit(fcsr_cc, (fs <= ft)); | 2285 set_fcsr_bit(fcsr_cc, (fs <= ft)); |
| 2759 break; | 2286 break; |
| 2760 case C_ULE_D: | 2287 case C_ULE_D: |
| 2761 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); | 2288 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); |
| 2762 break; | 2289 break; |
| 2763 case CVT_D_S: | 2290 case CVT_D_S: |
| 2764 set_fpu_register_double(fd_reg, static_cast<double>(fs)); | 2291 set_fpu_register_double(fd_reg(), static_cast<double>(fs)); |
| 2765 break; | 2292 break; |
| 2766 case CLASS_S: { // Mips64r6 instruction | 2293 case CLASS_S: { // Mips64r6 instruction |
| 2767 // Convert float input to uint32_t for easier bit manipulation | 2294 // Convert float input to uint32_t for easier bit manipulation |
| 2768 uint32_t classed = bit_cast<uint32_t>(fs); | 2295 uint32_t classed = bit_cast<uint32_t>(fs); |
| 2769 | 2296 |
| 2770 // Extracting sign, exponent and mantissa from the input float | 2297 // Extracting sign, exponent and mantissa from the input float |
| 2771 uint32_t sign = (classed >> 31) & 1; | 2298 uint32_t sign = (classed >> 31) & 1; |
| 2772 uint32_t exponent = (classed >> 23) & 0x000000ff; | 2299 uint32_t exponent = (classed >> 23) & 0x000000ff; |
| 2773 uint32_t mantissa = classed & 0x007fffff; | 2300 uint32_t mantissa = classed & 0x007fffff; |
| 2774 uint32_t result; | 2301 uint32_t result; |
| (...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 2817 } | 2344 } |
| 2818 | 2345 |
| 2819 // Calculating result according to description of CLASS.S instruction | 2346 // Calculating result according to description of CLASS.S instruction |
| 2820 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | | 2347 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | |
| 2821 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | | 2348 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | |
| 2822 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; | 2349 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; |
| 2823 | 2350 |
| 2824 DCHECK(result != 0); | 2351 DCHECK(result != 0); |
| 2825 | 2352 |
| 2826 fResult = bit_cast<float>(result); | 2353 fResult = bit_cast<float>(result); |
| 2827 set_fpu_register_float(fd_reg, fResult); | 2354 set_fpu_register_float(fd_reg(), fResult); |
| 2828 | 2355 |
| 2829 break; | 2356 break; |
| 2830 } | 2357 } |
| 2831 case CVT_L_S: { | 2358 case CVT_L_S: { |
| 2832 float rounded; | 2359 float rounded; |
| 2833 int64_t result; | 2360 int64_t result; |
| 2834 round64_according_to_fcsr(fs, rounded, result, fs); | 2361 round64_according_to_fcsr(fs, rounded, result, fs); |
| 2835 set_fpu_register(fd_reg, result); | 2362 set_fpu_register(fd_reg(), result); |
| 2836 if (set_fcsr_round64_error(fs, rounded)) { | 2363 if (set_fcsr_round64_error(fs, rounded)) { |
| 2837 set_fpu_register(fd_reg, kFPU64InvalidResult); | 2364 set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| 2838 } | 2365 } |
| 2839 break; | 2366 break; |
| 2840 } | 2367 } |
| 2841 case CVT_W_S: { | 2368 case CVT_W_S: { |
| 2842 float rounded; | 2369 float rounded; |
| 2843 int32_t result; | 2370 int32_t result; |
| 2844 round_according_to_fcsr(fs, rounded, result, fs); | 2371 round_according_to_fcsr(fs, rounded, result, fs); |
| 2845 set_fpu_register_word(fd_reg, result); | 2372 set_fpu_register_word(fd_reg(), result); |
| 2846 if (set_fcsr_round_error(fs, rounded)) { | 2373 if (set_fcsr_round_error(fs, rounded)) { |
| 2847 set_fpu_register_word(fd_reg, kFPUInvalidResult); | 2374 set_fpu_register_word(fd_reg(), kFPUInvalidResult); |
| 2848 } | 2375 } |
| 2849 break; | 2376 break; |
| 2850 } | 2377 } |
| 2851 case TRUNC_W_S: { // Truncate single to word (round towards 0). | 2378 case TRUNC_W_S: { // Truncate single to word (round towards 0). |
| 2852 float rounded = trunc(fs); | 2379 float rounded = trunc(fs); |
| 2853 int32_t result = static_cast<int32_t>(rounded); | 2380 int32_t result = static_cast<int32_t>(rounded); |
| 2854 set_fpu_register_word(fd_reg, result); | 2381 set_fpu_register_word(fd_reg(), result); |
| 2855 if (set_fcsr_round_error(fs, rounded)) { | 2382 if (set_fcsr_round_error(fs, rounded)) { |
| 2856 set_fpu_register_word(fd_reg, kFPUInvalidResult); | 2383 set_fpu_register_word(fd_reg(), kFPUInvalidResult); |
| 2857 } | 2384 } |
| 2858 } break; | 2385 } break; |
| 2859 case TRUNC_L_S: { // Mips64r2 instruction. | 2386 case TRUNC_L_S: { // Mips64r2 instruction. |
| 2860 float rounded = trunc(fs); | 2387 float rounded = trunc(fs); |
| 2861 int64_t result = static_cast<int64_t>(rounded); | 2388 int64_t result = static_cast<int64_t>(rounded); |
| 2862 set_fpu_register(fd_reg, result); | 2389 set_fpu_register(fd_reg(), result); |
| 2863 if (set_fcsr_round64_error(fs, rounded)) { | 2390 if (set_fcsr_round64_error(fs, rounded)) { |
| 2864 set_fpu_register(fd_reg, kFPU64InvalidResult); | 2391 set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| 2865 } | 2392 } |
| 2866 break; | 2393 break; |
| 2867 } | 2394 } |
| 2868 case ROUND_W_S: { | 2395 case ROUND_W_S: { |
| 2869 float rounded = std::floor(fs + 0.5); | 2396 float rounded = std::floor(fs + 0.5); |
| 2870 int32_t result = static_cast<int32_t>(rounded); | 2397 int32_t result = static_cast<int32_t>(rounded); |
| 2871 if ((result & 1) != 0 && result - fs == 0.5) { | 2398 if ((result & 1) != 0 && result - fs == 0.5) { |
| 2872 // If the number is halfway between two integers, | 2399 // If the number is halfway between two integers, |
| 2873 // round to the even one. | 2400 // round to the even one. |
| 2874 result--; | 2401 result--; |
| 2875 } | 2402 } |
| 2876 set_fpu_register_word(fd_reg, result); | 2403 set_fpu_register_word(fd_reg(), result); |
| 2877 if (set_fcsr_round_error(fs, rounded)) { | 2404 if (set_fcsr_round_error(fs, rounded)) { |
| 2878 set_fpu_register_word(fd_reg, kFPUInvalidResult); | 2405 set_fpu_register_word(fd_reg(), kFPUInvalidResult); |
| 2879 } | 2406 } |
| 2880 break; | 2407 break; |
| 2881 } | 2408 } |
| 2882 case ROUND_L_S: { // Mips64r2 instruction. | 2409 case ROUND_L_S: { // Mips64r2 instruction. |
| 2883 float rounded = std::floor(fs + 0.5); | 2410 float rounded = std::floor(fs + 0.5); |
| 2884 int64_t result = static_cast<int64_t>(rounded); | 2411 int64_t result = static_cast<int64_t>(rounded); |
| 2885 if ((result & 1) != 0 && result - fs == 0.5) { | 2412 if ((result & 1) != 0 && result - fs == 0.5) { |
| 2886 // If the number is halfway between two integers, | 2413 // If the number is halfway between two integers, |
| 2887 // round to the even one. | 2414 // round to the even one. |
| 2888 result--; | 2415 result--; |
| 2889 } | 2416 } |
| 2890 int64_t i64 = static_cast<int64_t>(result); | 2417 int64_t i64 = static_cast<int64_t>(result); |
| 2891 set_fpu_register(fd_reg, i64); | 2418 set_fpu_register(fd_reg(), i64); |
| 2892 if (set_fcsr_round64_error(fs, rounded)) { | 2419 if (set_fcsr_round64_error(fs, rounded)) { |
| 2893 set_fpu_register(fd_reg, kFPU64InvalidResult); | 2420 set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| 2894 } | 2421 } |
| 2895 break; | 2422 break; |
| 2896 } | 2423 } |
| 2897 case FLOOR_L_S: { // Mips64r2 instruction. | 2424 case FLOOR_L_S: { // Mips64r2 instruction. |
| 2898 float rounded = floor(fs); | 2425 float rounded = floor(fs); |
| 2899 int64_t result = static_cast<int64_t>(rounded); | 2426 int64_t result = static_cast<int64_t>(rounded); |
| 2900 set_fpu_register(fd_reg, result); | 2427 set_fpu_register(fd_reg(), result); |
| 2901 if (set_fcsr_round64_error(fs, rounded)) { | 2428 if (set_fcsr_round64_error(fs, rounded)) { |
| 2902 set_fpu_register(fd_reg, kFPU64InvalidResult); | 2429 set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| 2903 } | 2430 } |
| 2904 break; | 2431 break; |
| 2905 } | 2432 } |
| 2906 case FLOOR_W_S: // Round double to word towards negative infinity. | 2433 case FLOOR_W_S: // Round double to word towards negative infinity. |
| 2907 { | 2434 { |
| 2908 float rounded = std::floor(fs); | 2435 float rounded = std::floor(fs); |
| 2909 int32_t result = static_cast<int32_t>(rounded); | 2436 int32_t result = static_cast<int32_t>(rounded); |
| 2910 set_fpu_register_word(fd_reg, result); | 2437 set_fpu_register_word(fd_reg(), result); |
| 2911 if (set_fcsr_round_error(fs, rounded)) { | 2438 if (set_fcsr_round_error(fs, rounded)) { |
| 2912 set_fpu_register_word(fd_reg, kFPUInvalidResult); | 2439 set_fpu_register_word(fd_reg(), kFPUInvalidResult); |
| 2913 } | 2440 } |
| 2914 } break; | 2441 } break; |
| 2915 case CEIL_W_S: // Round double to word towards positive infinity. | 2442 case CEIL_W_S: // Round double to word towards positive infinity. |
| 2916 { | 2443 { |
| 2917 float rounded = std::ceil(fs); | 2444 float rounded = std::ceil(fs); |
| 2918 int32_t result = static_cast<int32_t>(rounded); | 2445 int32_t result = static_cast<int32_t>(rounded); |
| 2919 set_fpu_register_word(fd_reg, result); | 2446 set_fpu_register_word(fd_reg(), result); |
| 2920 if (set_fcsr_round_error(fs, rounded)) { | 2447 if (set_fcsr_round_error(fs, rounded)) { |
| 2921 set_fpu_register(fd_reg, kFPUInvalidResult); | 2448 set_fpu_register(fd_reg(), kFPUInvalidResult); |
| 2922 } | 2449 } |
| 2923 } break; | 2450 } break; |
| 2924 case CEIL_L_S: { // Mips64r2 instruction. | 2451 case CEIL_L_S: { // Mips64r2 instruction. |
| 2925 float rounded = ceil(fs); | 2452 float rounded = ceil(fs); |
| 2926 int64_t result = static_cast<int64_t>(rounded); | 2453 int64_t result = static_cast<int64_t>(rounded); |
| 2927 set_fpu_register(fd_reg, result); | 2454 set_fpu_register(fd_reg(), result); |
| 2928 if (set_fcsr_round64_error(fs, rounded)) { | 2455 if (set_fcsr_round64_error(fs, rounded)) { |
| 2929 set_fpu_register(fd_reg, kFPU64InvalidResult); | 2456 set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| 2930 } | 2457 } |
| 2931 break; | 2458 break; |
| 2932 } | 2459 } |
| 2933 case MINA: | 2460 case MINA: |
| 2934 DCHECK(kArchVariant == kMips64r6); | 2461 DCHECK(kArchVariant == kMips64r6); |
| 2935 fs = get_fpu_register_float(fs_reg); | 2462 fs = get_fpu_register_float(fs_reg()); |
| 2936 if (std::isnan(fs) && std::isnan(ft)) { | 2463 if (std::isnan(fs) && std::isnan(ft)) { |
| 2937 set_fpu_register_float(fd_reg, fs); | 2464 set_fpu_register_float(fd_reg(), fs); |
| 2938 } else if (std::isnan(fs) && !std::isnan(ft)) { | 2465 } else if (std::isnan(fs) && !std::isnan(ft)) { |
| 2939 set_fpu_register_float(fd_reg, ft); | 2466 set_fpu_register_float(fd_reg(), ft); |
| 2940 } else if (!std::isnan(fs) && std::isnan(ft)) { | 2467 } else if (!std::isnan(fs) && std::isnan(ft)) { |
| 2941 set_fpu_register_float(fd_reg, fs); | 2468 set_fpu_register_float(fd_reg(), fs); |
| 2942 } else { | 2469 } else { |
| 2943 float result; | 2470 float result; |
| 2944 if (fabs(fs) > fabs(ft)) { | 2471 if (fabs(fs) > fabs(ft)) { |
| 2945 result = ft; | 2472 result = ft; |
| 2946 } else if (fabs(fs) < fabs(ft)) { | 2473 } else if (fabs(fs) < fabs(ft)) { |
| 2947 result = fs; | 2474 result = fs; |
| 2948 } else { | 2475 } else { |
| 2949 result = (fs > ft ? fs : ft); | 2476 result = (fs > ft ? fs : ft); |
| 2950 } | 2477 } |
| 2951 set_fpu_register_float(fd_reg, result); | 2478 set_fpu_register_float(fd_reg(), result); |
| 2952 } | 2479 } |
| 2953 break; | 2480 break; |
| 2954 case MAXA: | 2481 case MAXA: |
| 2955 DCHECK(kArchVariant == kMips64r6); | 2482 DCHECK(kArchVariant == kMips64r6); |
| 2956 fs = get_fpu_register_float(fs_reg); | 2483 fs = get_fpu_register_float(fs_reg()); |
| 2957 if (std::isnan(fs) && std::isnan(ft)) { | 2484 if (std::isnan(fs) && std::isnan(ft)) { |
| 2958 set_fpu_register_float(fd_reg, fs); | 2485 set_fpu_register_float(fd_reg(), fs); |
| 2959 } else if (std::isnan(fs) && !std::isnan(ft)) { | 2486 } else if (std::isnan(fs) && !std::isnan(ft)) { |
| 2960 set_fpu_register_float(fd_reg, ft); | 2487 set_fpu_register_float(fd_reg(), ft); |
| 2961 } else if (!std::isnan(fs) && std::isnan(ft)) { | 2488 } else if (!std::isnan(fs) && std::isnan(ft)) { |
| 2962 set_fpu_register_float(fd_reg, fs); | 2489 set_fpu_register_float(fd_reg(), fs); |
| 2963 } else { | 2490 } else { |
| 2964 float result; | 2491 float result; |
| 2965 if (fabs(fs) < fabs(ft)) { | 2492 if (fabs(fs) < fabs(ft)) { |
| 2966 result = ft; | 2493 result = ft; |
| 2967 } else if (fabs(fs) > fabs(ft)) { | 2494 } else if (fabs(fs) > fabs(ft)) { |
| 2968 result = fs; | 2495 result = fs; |
| 2969 } else { | 2496 } else { |
| 2970 result = (fs > ft ? fs : ft); | 2497 result = (fs > ft ? fs : ft); |
| 2971 } | 2498 } |
| 2972 set_fpu_register_float(fd_reg, result); | 2499 set_fpu_register_float(fd_reg(), result); |
| 2973 } | 2500 } |
| 2974 break; | 2501 break; |
| 2975 case MIN: | 2502 case MIN: |
| 2976 DCHECK(kArchVariant == kMips64r6); | 2503 DCHECK(kArchVariant == kMips64r6); |
| 2977 fs = get_fpu_register_float(fs_reg); | 2504 fs = get_fpu_register_float(fs_reg()); |
| 2978 if (std::isnan(fs) && std::isnan(ft)) { | 2505 if (std::isnan(fs) && std::isnan(ft)) { |
| 2979 set_fpu_register_float(fd_reg, fs); | 2506 set_fpu_register_float(fd_reg(), fs); |
| 2980 } else if (std::isnan(fs) && !std::isnan(ft)) { | 2507 } else if (std::isnan(fs) && !std::isnan(ft)) { |
| 2981 set_fpu_register_float(fd_reg, ft); | 2508 set_fpu_register_float(fd_reg(), ft); |
| 2982 } else if (!std::isnan(fs) && std::isnan(ft)) { | 2509 } else if (!std::isnan(fs) && std::isnan(ft)) { |
| 2983 set_fpu_register_float(fd_reg, fs); | 2510 set_fpu_register_float(fd_reg(), fs); |
| 2984 } else { | 2511 } else { |
| 2985 set_fpu_register_float(fd_reg, (fs >= ft) ? ft : fs); | 2512 set_fpu_register_float(fd_reg(), (fs >= ft) ? ft : fs); |
| 2986 } | 2513 } |
| 2987 break; | 2514 break; |
| 2988 case MAX: | 2515 case MAX: |
| 2989 DCHECK(kArchVariant == kMips64r6); | 2516 DCHECK(kArchVariant == kMips64r6); |
| 2990 fs = get_fpu_register_float(fs_reg); | 2517 fs = get_fpu_register_float(fs_reg()); |
| 2991 if (std::isnan(fs) && std::isnan(ft)) { | 2518 if (std::isnan(fs) && std::isnan(ft)) { |
| 2992 set_fpu_register_float(fd_reg, fs); | 2519 set_fpu_register_float(fd_reg(), fs); |
| 2993 } else if (std::isnan(fs) && !std::isnan(ft)) { | 2520 } else if (std::isnan(fs) && !std::isnan(ft)) { |
| 2994 set_fpu_register_float(fd_reg, ft); | 2521 set_fpu_register_float(fd_reg(), ft); |
| 2995 } else if (!std::isnan(fs) && std::isnan(ft)) { | 2522 } else if (!std::isnan(fs) && std::isnan(ft)) { |
| 2996 set_fpu_register_float(fd_reg, fs); | 2523 set_fpu_register_float(fd_reg(), fs); |
| 2997 } else { | 2524 } else { |
| 2998 set_fpu_register_float(fd_reg, (fs <= ft) ? ft : fs); | 2525 set_fpu_register_float(fd_reg(), (fs <= ft) ? ft : fs); |
| 2999 } | 2526 } |
| 3000 break; | 2527 break; |
| 3001 case SEL: | 2528 case SEL: |
| 3002 DCHECK(kArchVariant == kMips64r6); | 2529 DCHECK(kArchVariant == kMips64r6); |
| 3003 set_fpu_register_float(fd_reg, (fd_int & 0x1) == 0 ? fs : ft); | 2530 set_fpu_register_float(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); |
| 3004 break; | 2531 break; |
| 3005 case SELEQZ_C: | 2532 case SELEQZ_C: |
| 3006 DCHECK(kArchVariant == kMips64r6); | 2533 DCHECK(kArchVariant == kMips64r6); |
| 3007 set_fpu_register_float( | 2534 set_fpu_register_float(fd_reg(), (ft_int & 0x1) == 0 |
| 3008 fd_reg, (ft_int & 0x1) == 0 ? get_fpu_register_float(fs_reg) : 0.0); | 2535 ? get_fpu_register_float(fs_reg()) |
| 2536 : 0.0); |
| 3009 break; | 2537 break; |
| 3010 case SELNEZ_C: | 2538 case SELNEZ_C: |
| 3011 DCHECK(kArchVariant == kMips64r6); | 2539 DCHECK(kArchVariant == kMips64r6); |
| 3012 set_fpu_register_float( | 2540 set_fpu_register_float(fd_reg(), (ft_int & 0x1) != 0 |
| 3013 fd_reg, (ft_int & 0x1) != 0 ? get_fpu_register_float(fs_reg) : 0.0); | 2541 ? get_fpu_register_float(fs_reg()) |
| 2542 : 0.0); |
| 3014 break; | 2543 break; |
| 3015 case MOVZ_C: { | 2544 case MOVZ_C: { |
| 3016 DCHECK(kArchVariant == kMips64r2); | 2545 DCHECK(kArchVariant == kMips64r2); |
| 3017 int32_t rt_reg = instr->RtValue(); | 2546 if (rt() == 0) { |
| 3018 int64_t rt = get_register(rt_reg); | 2547 set_fpu_register_float(fd_reg(), fs); |
| 3019 if (rt == 0) { | |
| 3020 set_fpu_register_float(fd_reg, fs); | |
| 3021 } | 2548 } |
| 3022 break; | 2549 break; |
| 3023 } | 2550 } |
| 3024 case MOVN_C: { | 2551 case MOVN_C: { |
| 3025 DCHECK(kArchVariant == kMips64r2); | 2552 DCHECK(kArchVariant == kMips64r2); |
| 3026 int32_t rt_reg = instr->RtValue(); | 2553 if (rt() != 0) { |
| 3027 int64_t rt = get_register(rt_reg); | 2554 set_fpu_register_float(fd_reg(), fs); |
| 3028 if (rt != 0) { | |
| 3029 set_fpu_register_float(fd_reg, fs); | |
| 3030 } | 2555 } |
| 3031 break; | 2556 break; |
| 3032 } | 2557 } |
| 3033 case MOVF: { | 2558 case MOVF: { |
| 3034 // Same function field for MOVT.D and MOVF.D | 2559 // Same function field for MOVT.D and MOVF.D |
| 3035 uint32_t ft_cc = (ft_reg >> 2) & 0x7; | 2560 uint32_t ft_cc = (ft_reg() >> 2) & 0x7; |
| 3036 ft_cc = get_fcsr_condition_bit(ft_cc); | 2561 ft_cc = get_fcsr_condition_bit(ft_cc); |
| 3037 | 2562 |
| 3038 if (instr->Bit(16)) { // Read Tf bit. | 2563 if (get_instr()->Bit(16)) { // Read Tf bit. |
| 3039 // MOVT.D | 2564 // MOVT.D |
| 3040 if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg, fs); | 2565 if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs); |
| 3041 } else { | 2566 } else { |
| 3042 // MOVF.D | 2567 // MOVF.D |
| 3043 if (!test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg, fs); | 2568 if (!test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs); |
| 3044 } | 2569 } |
| 3045 break; | 2570 break; |
| 3046 } | 2571 } |
| 3047 default: | 2572 default: |
| 3048 // TRUNC_W_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S | 2573 // TRUNC_W_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S |
| 3049 // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented. | 2574 // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented. |
| 3050 UNREACHABLE(); | 2575 UNREACHABLE(); |
| 3051 } | 2576 } |
| 3052 } | 2577 } |
| 3053 | 2578 |
| 3054 | 2579 |
| 3055 void Simulator::DecodeTypeRegisterDRsType(Instruction* instr, | 2580 void Simulator::DecodeTypeRegisterDRsType() { |
| 3056 const int32_t fs_reg, | |
| 3057 const int32_t ft_reg, | |
| 3058 const int32_t fd_reg) { | |
| 3059 double ft, fs, fd; | 2581 double ft, fs, fd; |
| 3060 uint32_t cc, fcsr_cc; | 2582 uint32_t cc, fcsr_cc; |
| 3061 fs = get_fpu_register_double(fs_reg); | 2583 fs = get_fpu_register_double(fs_reg()); |
| 3062 ft = (instr->FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg) | 2584 ft = (get_instr()->FunctionFieldRaw() != MOVF) |
| 3063 : 0.0; | 2585 ? get_fpu_register_double(ft_reg()) |
| 3064 fd = get_fpu_register_double(fd_reg); | 2586 : 0.0; |
| 3065 cc = instr->FCccValue(); | 2587 fd = get_fpu_register_double(fd_reg()); |
| 2588 cc = get_instr()->FCccValue(); |
| 3066 fcsr_cc = get_fcsr_condition_bit(cc); | 2589 fcsr_cc = get_fcsr_condition_bit(cc); |
| 3067 int64_t ft_int = bit_cast<int64_t>(ft); | 2590 int64_t ft_int = bit_cast<int64_t>(ft); |
| 3068 int64_t fd_int = bit_cast<int64_t>(fd); | 2591 int64_t fd_int = bit_cast<int64_t>(fd); |
| 3069 switch (instr->FunctionFieldRaw()) { | 2592 switch (get_instr()->FunctionFieldRaw()) { |
| 3070 case RINT: { | 2593 case RINT: { |
| 3071 DCHECK(kArchVariant == kMips64r6); | 2594 DCHECK(kArchVariant == kMips64r6); |
| 3072 double result, temp, temp_result; | 2595 double result, temp, temp_result; |
| 3073 double upper = std::ceil(fs); | 2596 double upper = std::ceil(fs); |
| 3074 double lower = std::floor(fs); | 2597 double lower = std::floor(fs); |
| 3075 switch (get_fcsr_rounding_mode()) { | 2598 switch (get_fcsr_rounding_mode()) { |
| 3076 case kRoundToNearest: | 2599 case kRoundToNearest: |
| 3077 if (upper - fs < fs - lower) { | 2600 if (upper - fs < fs - lower) { |
| 3078 result = upper; | 2601 result = upper; |
| 3079 } else if (upper - fs > fs - lower) { | 2602 } else if (upper - fs > fs - lower) { |
| (...skipping 11 matching lines...) Expand all Loading... |
| 3091 case kRoundToZero: | 2614 case kRoundToZero: |
| 3092 result = (fs > 0 ? lower : upper); | 2615 result = (fs > 0 ? lower : upper); |
| 3093 break; | 2616 break; |
| 3094 case kRoundToPlusInf: | 2617 case kRoundToPlusInf: |
| 3095 result = upper; | 2618 result = upper; |
| 3096 break; | 2619 break; |
| 3097 case kRoundToMinusInf: | 2620 case kRoundToMinusInf: |
| 3098 result = lower; | 2621 result = lower; |
| 3099 break; | 2622 break; |
| 3100 } | 2623 } |
| 3101 set_fpu_register_double(fd_reg, result); | 2624 set_fpu_register_double(fd_reg(), result); |
| 3102 if (result != fs) { | 2625 if (result != fs) { |
| 3103 set_fcsr_bit(kFCSRInexactFlagBit, true); | 2626 set_fcsr_bit(kFCSRInexactFlagBit, true); |
| 3104 } | 2627 } |
| 3105 break; | 2628 break; |
| 3106 } | 2629 } |
| 3107 case SEL: | 2630 case SEL: |
| 3108 DCHECK(kArchVariant == kMips64r6); | 2631 DCHECK(kArchVariant == kMips64r6); |
| 3109 set_fpu_register_double(fd_reg, (fd_int & 0x1) == 0 ? fs : ft); | 2632 set_fpu_register_double(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); |
| 3110 break; | 2633 break; |
| 3111 case SELEQZ_C: | 2634 case SELEQZ_C: |
| 3112 DCHECK(kArchVariant == kMips64r6); | 2635 DCHECK(kArchVariant == kMips64r6); |
| 3113 set_fpu_register_double(fd_reg, (ft_int & 0x1) == 0 ? fs : 0.0); | 2636 set_fpu_register_double(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0); |
| 3114 break; | 2637 break; |
| 3115 case SELNEZ_C: | 2638 case SELNEZ_C: |
| 3116 DCHECK(kArchVariant == kMips64r6); | 2639 DCHECK(kArchVariant == kMips64r6); |
| 3117 set_fpu_register_double(fd_reg, (ft_int & 0x1) != 0 ? fs : 0.0); | 2640 set_fpu_register_double(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0); |
| 3118 break; | 2641 break; |
| 3119 case MOVZ_C: { | 2642 case MOVZ_C: { |
| 3120 DCHECK(kArchVariant == kMips64r2); | 2643 DCHECK(kArchVariant == kMips64r2); |
| 3121 int32_t rt_reg = instr->RtValue(); | 2644 if (rt() == 0) { |
| 3122 int64_t rt = get_register(rt_reg); | 2645 set_fpu_register_double(fd_reg(), fs); |
| 3123 if (rt == 0) { | |
| 3124 set_fpu_register_double(fd_reg, fs); | |
| 3125 } | 2646 } |
| 3126 break; | 2647 break; |
| 3127 } | 2648 } |
| 3128 case MOVN_C: { | 2649 case MOVN_C: { |
| 3129 DCHECK(kArchVariant == kMips64r2); | 2650 DCHECK(kArchVariant == kMips64r2); |
| 3130 int32_t rt_reg = instr->RtValue(); | 2651 if (rt() != 0) { |
| 3131 int64_t rt = get_register(rt_reg); | 2652 set_fpu_register_double(fd_reg(), fs); |
| 3132 if (rt != 0) { | |
| 3133 set_fpu_register_double(fd_reg, fs); | |
| 3134 } | 2653 } |
| 3135 break; | 2654 break; |
| 3136 } | 2655 } |
| 3137 case MOVF: { | 2656 case MOVF: { |
| 3138 // Same function field for MOVT.D and MOVF.D | 2657 // Same function field for MOVT.D and MOVF.D |
| 3139 uint32_t ft_cc = (ft_reg >> 2) & 0x7; | 2658 uint32_t ft_cc = (ft_reg() >> 2) & 0x7; |
| 3140 ft_cc = get_fcsr_condition_bit(ft_cc); | 2659 ft_cc = get_fcsr_condition_bit(ft_cc); |
| 3141 if (instr->Bit(16)) { // Read Tf bit. | 2660 if (get_instr()->Bit(16)) { // Read Tf bit. |
| 3142 // MOVT.D | 2661 // MOVT.D |
| 3143 if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg, fs); | 2662 if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs); |
| 3144 } else { | 2663 } else { |
| 3145 // MOVF.D | 2664 // MOVF.D |
| 3146 if (!test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg, fs); | 2665 if (!test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs); |
| 3147 } | 2666 } |
| 3148 break; | 2667 break; |
| 3149 } | 2668 } |
| 3150 case MINA: | 2669 case MINA: |
| 3151 DCHECK(kArchVariant == kMips64r6); | 2670 DCHECK(kArchVariant == kMips64r6); |
| 3152 fs = get_fpu_register_double(fs_reg); | 2671 fs = get_fpu_register_double(fs_reg()); |
| 3153 if (std::isnan(fs) && std::isnan(ft)) { | 2672 if (std::isnan(fs) && std::isnan(ft)) { |
| 3154 set_fpu_register_double(fd_reg, fs); | 2673 set_fpu_register_double(fd_reg(), fs); |
| 3155 } else if (std::isnan(fs) && !std::isnan(ft)) { | 2674 } else if (std::isnan(fs) && !std::isnan(ft)) { |
| 3156 set_fpu_register_double(fd_reg, ft); | 2675 set_fpu_register_double(fd_reg(), ft); |
| 3157 } else if (!std::isnan(fs) && std::isnan(ft)) { | 2676 } else if (!std::isnan(fs) && std::isnan(ft)) { |
| 3158 set_fpu_register_double(fd_reg, fs); | 2677 set_fpu_register_double(fd_reg(), fs); |
| 3159 } else { | 2678 } else { |
| 3160 double result; | 2679 double result; |
| 3161 if (fabs(fs) > fabs(ft)) { | 2680 if (fabs(fs) > fabs(ft)) { |
| 3162 result = ft; | 2681 result = ft; |
| 3163 } else if (fabs(fs) < fabs(ft)) { | 2682 } else if (fabs(fs) < fabs(ft)) { |
| 3164 result = fs; | 2683 result = fs; |
| 3165 } else { | 2684 } else { |
| 3166 result = (fs > ft ? fs : ft); | 2685 result = (fs > ft ? fs : ft); |
| 3167 } | 2686 } |
| 3168 set_fpu_register_double(fd_reg, result); | 2687 set_fpu_register_double(fd_reg(), result); |
| 3169 } | 2688 } |
| 3170 break; | 2689 break; |
| 3171 case MAXA: | 2690 case MAXA: |
| 3172 DCHECK(kArchVariant == kMips64r6); | 2691 DCHECK(kArchVariant == kMips64r6); |
| 3173 fs = get_fpu_register_double(fs_reg); | 2692 fs = get_fpu_register_double(fs_reg()); |
| 3174 if (std::isnan(fs) && std::isnan(ft)) { | 2693 if (std::isnan(fs) && std::isnan(ft)) { |
| 3175 set_fpu_register_double(fd_reg, fs); | 2694 set_fpu_register_double(fd_reg(), fs); |
| 3176 } else if (std::isnan(fs) && !std::isnan(ft)) { | 2695 } else if (std::isnan(fs) && !std::isnan(ft)) { |
| 3177 set_fpu_register_double(fd_reg, ft); | 2696 set_fpu_register_double(fd_reg(), ft); |
| 3178 } else if (!std::isnan(fs) && std::isnan(ft)) { | 2697 } else if (!std::isnan(fs) && std::isnan(ft)) { |
| 3179 set_fpu_register_double(fd_reg, fs); | 2698 set_fpu_register_double(fd_reg(), fs); |
| 3180 } else { | 2699 } else { |
| 3181 double result; | 2700 double result; |
| 3182 if (fabs(fs) < fabs(ft)) { | 2701 if (fabs(fs) < fabs(ft)) { |
| 3183 result = ft; | 2702 result = ft; |
| 3184 } else if (fabs(fs) > fabs(ft)) { | 2703 } else if (fabs(fs) > fabs(ft)) { |
| 3185 result = fs; | 2704 result = fs; |
| 3186 } else { | 2705 } else { |
| 3187 result = (fs > ft ? fs : ft); | 2706 result = (fs > ft ? fs : ft); |
| 3188 } | 2707 } |
| 3189 set_fpu_register_double(fd_reg, result); | 2708 set_fpu_register_double(fd_reg(), result); |
| 3190 } | 2709 } |
| 3191 break; | 2710 break; |
| 3192 case MIN: | 2711 case MIN: |
| 3193 DCHECK(kArchVariant == kMips64r6); | 2712 DCHECK(kArchVariant == kMips64r6); |
| 3194 fs = get_fpu_register_double(fs_reg); | 2713 fs = get_fpu_register_double(fs_reg()); |
| 3195 if (std::isnan(fs) && std::isnan(ft)) { | 2714 if (std::isnan(fs) && std::isnan(ft)) { |
| 3196 set_fpu_register_double(fd_reg, fs); | 2715 set_fpu_register_double(fd_reg(), fs); |
| 3197 } else if (std::isnan(fs) && !std::isnan(ft)) { | 2716 } else if (std::isnan(fs) && !std::isnan(ft)) { |
| 3198 set_fpu_register_double(fd_reg, ft); | 2717 set_fpu_register_double(fd_reg(), ft); |
| 3199 } else if (!std::isnan(fs) && std::isnan(ft)) { | 2718 } else if (!std::isnan(fs) && std::isnan(ft)) { |
| 3200 set_fpu_register_double(fd_reg, fs); | 2719 set_fpu_register_double(fd_reg(), fs); |
| 3201 } else { | 2720 } else { |
| 3202 set_fpu_register_double(fd_reg, (fs >= ft) ? ft : fs); | 2721 set_fpu_register_double(fd_reg(), (fs >= ft) ? ft : fs); |
| 3203 } | 2722 } |
| 3204 break; | 2723 break; |
| 3205 case MAX: | 2724 case MAX: |
| 3206 DCHECK(kArchVariant == kMips64r6); | 2725 DCHECK(kArchVariant == kMips64r6); |
| 3207 fs = get_fpu_register_double(fs_reg); | 2726 fs = get_fpu_register_double(fs_reg()); |
| 3208 if (std::isnan(fs) && std::isnan(ft)) { | 2727 if (std::isnan(fs) && std::isnan(ft)) { |
| 3209 set_fpu_register_double(fd_reg, fs); | 2728 set_fpu_register_double(fd_reg(), fs); |
| 3210 } else if (std::isnan(fs) && !std::isnan(ft)) { | 2729 } else if (std::isnan(fs) && !std::isnan(ft)) { |
| 3211 set_fpu_register_double(fd_reg, ft); | 2730 set_fpu_register_double(fd_reg(), ft); |
| 3212 } else if (!std::isnan(fs) && std::isnan(ft)) { | 2731 } else if (!std::isnan(fs) && std::isnan(ft)) { |
| 3213 set_fpu_register_double(fd_reg, fs); | 2732 set_fpu_register_double(fd_reg(), fs); |
| 3214 } else { | 2733 } else { |
| 3215 set_fpu_register_double(fd_reg, (fs <= ft) ? ft : fs); | 2734 set_fpu_register_double(fd_reg(), (fs <= ft) ? ft : fs); |
| 3216 } | 2735 } |
| 3217 break; | 2736 break; |
| 3218 case ADD_D: | 2737 case ADD_D: |
| 3219 set_fpu_register_double(fd_reg, fs + ft); | 2738 set_fpu_register_double(fd_reg(), fs + ft); |
| 3220 break; | 2739 break; |
| 3221 case SUB_D: | 2740 case SUB_D: |
| 3222 set_fpu_register_double(fd_reg, fs - ft); | 2741 set_fpu_register_double(fd_reg(), fs - ft); |
| 3223 break; | 2742 break; |
| 3224 case MUL_D: | 2743 case MUL_D: |
| 3225 set_fpu_register_double(fd_reg, fs * ft); | 2744 set_fpu_register_double(fd_reg(), fs * ft); |
| 3226 break; | 2745 break; |
| 3227 case DIV_D: | 2746 case DIV_D: |
| 3228 set_fpu_register_double(fd_reg, fs / ft); | 2747 set_fpu_register_double(fd_reg(), fs / ft); |
| 3229 break; | 2748 break; |
| 3230 case ABS_D: | 2749 case ABS_D: |
| 3231 set_fpu_register_double(fd_reg, fabs(fs)); | 2750 set_fpu_register_double(fd_reg(), fabs(fs)); |
| 3232 break; | 2751 break; |
| 3233 case MOV_D: | 2752 case MOV_D: |
| 3234 set_fpu_register_double(fd_reg, fs); | 2753 set_fpu_register_double(fd_reg(), fs); |
| 3235 break; | 2754 break; |
| 3236 case NEG_D: | 2755 case NEG_D: |
| 3237 set_fpu_register_double(fd_reg, -fs); | 2756 set_fpu_register_double(fd_reg(), -fs); |
| 3238 break; | 2757 break; |
| 3239 case SQRT_D: | 2758 case SQRT_D: |
| 3240 set_fpu_register_double(fd_reg, fast_sqrt(fs)); | 2759 set_fpu_register_double(fd_reg(), fast_sqrt(fs)); |
| 3241 break; | 2760 break; |
| 3242 case RSQRT_D: { | 2761 case RSQRT_D: { |
| 3243 double result = 1.0 / fast_sqrt(fs); | 2762 double result = 1.0 / fast_sqrt(fs); |
| 3244 set_fpu_register_double(fd_reg, result); | 2763 set_fpu_register_double(fd_reg(), result); |
| 3245 break; | 2764 break; |
| 3246 } | 2765 } |
| 3247 case RECIP_D: { | 2766 case RECIP_D: { |
| 3248 double result = 1.0 / fs; | 2767 double result = 1.0 / fs; |
| 3249 set_fpu_register_double(fd_reg, result); | 2768 set_fpu_register_double(fd_reg(), result); |
| 3250 break; | 2769 break; |
| 3251 } | 2770 } |
| 3252 case C_UN_D: | 2771 case C_UN_D: |
| 3253 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); | 2772 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); |
| 3254 break; | 2773 break; |
| 3255 case C_EQ_D: | 2774 case C_EQ_D: |
| 3256 set_fcsr_bit(fcsr_cc, (fs == ft)); | 2775 set_fcsr_bit(fcsr_cc, (fs == ft)); |
| 3257 break; | 2776 break; |
| 3258 case C_UEQ_D: | 2777 case C_UEQ_D: |
| 3259 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); | 2778 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); |
| 3260 break; | 2779 break; |
| 3261 case C_OLT_D: | 2780 case C_OLT_D: |
| 3262 set_fcsr_bit(fcsr_cc, (fs < ft)); | 2781 set_fcsr_bit(fcsr_cc, (fs < ft)); |
| 3263 break; | 2782 break; |
| 3264 case C_ULT_D: | 2783 case C_ULT_D: |
| 3265 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); | 2784 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); |
| 3266 break; | 2785 break; |
| 3267 case C_OLE_D: | 2786 case C_OLE_D: |
| 3268 set_fcsr_bit(fcsr_cc, (fs <= ft)); | 2787 set_fcsr_bit(fcsr_cc, (fs <= ft)); |
| 3269 break; | 2788 break; |
| 3270 case C_ULE_D: | 2789 case C_ULE_D: |
| 3271 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); | 2790 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); |
| 3272 break; | 2791 break; |
| 3273 case CVT_W_D: { // Convert double to word. | 2792 case CVT_W_D: { // Convert double to word. |
| 3274 double rounded; | 2793 double rounded; |
| 3275 int32_t result; | 2794 int32_t result; |
| 3276 round_according_to_fcsr(fs, rounded, result, fs); | 2795 round_according_to_fcsr(fs, rounded, result, fs); |
| 3277 set_fpu_register_word(fd_reg, result); | 2796 set_fpu_register_word(fd_reg(), result); |
| 3278 if (set_fcsr_round_error(fs, rounded)) { | 2797 if (set_fcsr_round_error(fs, rounded)) { |
| 3279 set_fpu_register_word(fd_reg, kFPUInvalidResult); | 2798 set_fpu_register_word(fd_reg(), kFPUInvalidResult); |
| 3280 } | 2799 } |
| 3281 break; | 2800 break; |
| 3282 } | 2801 } |
| 3283 case ROUND_W_D: // Round double to word (round half to even). | 2802 case ROUND_W_D: // Round double to word (round half to even). |
| 3284 { | 2803 { |
| 3285 double rounded = std::floor(fs + 0.5); | 2804 double rounded = std::floor(fs + 0.5); |
| 3286 int32_t result = static_cast<int32_t>(rounded); | 2805 int32_t result = static_cast<int32_t>(rounded); |
| 3287 if ((result & 1) != 0 && result - fs == 0.5) { | 2806 if ((result & 1) != 0 && result - fs == 0.5) { |
| 3288 // If the number is halfway between two integers, | 2807 // If the number is halfway between two integers, |
| 3289 // round to the even one. | 2808 // round to the even one. |
| 3290 result--; | 2809 result--; |
| 3291 } | 2810 } |
| 3292 set_fpu_register_word(fd_reg, result); | 2811 set_fpu_register_word(fd_reg(), result); |
| 3293 if (set_fcsr_round_error(fs, rounded)) { | 2812 if (set_fcsr_round_error(fs, rounded)) { |
| 3294 set_fpu_register(fd_reg, kFPUInvalidResult); | 2813 set_fpu_register(fd_reg(), kFPUInvalidResult); |
| 3295 } | 2814 } |
| 3296 } break; | 2815 } break; |
| 3297 case TRUNC_W_D: // Truncate double to word (round towards 0). | 2816 case TRUNC_W_D: // Truncate double to word (round towards 0). |
| 3298 { | 2817 { |
| 3299 double rounded = trunc(fs); | 2818 double rounded = trunc(fs); |
| 3300 int32_t result = static_cast<int32_t>(rounded); | 2819 int32_t result = static_cast<int32_t>(rounded); |
| 3301 set_fpu_register_word(fd_reg, result); | 2820 set_fpu_register_word(fd_reg(), result); |
| 3302 if (set_fcsr_round_error(fs, rounded)) { | 2821 if (set_fcsr_round_error(fs, rounded)) { |
| 3303 set_fpu_register(fd_reg, kFPUInvalidResult); | 2822 set_fpu_register(fd_reg(), kFPUInvalidResult); |
| 3304 } | 2823 } |
| 3305 } break; | 2824 } break; |
| 3306 case FLOOR_W_D: // Round double to word towards negative infinity. | 2825 case FLOOR_W_D: // Round double to word towards negative infinity. |
| 3307 { | 2826 { |
| 3308 double rounded = std::floor(fs); | 2827 double rounded = std::floor(fs); |
| 3309 int32_t result = static_cast<int32_t>(rounded); | 2828 int32_t result = static_cast<int32_t>(rounded); |
| 3310 set_fpu_register_word(fd_reg, result); | 2829 set_fpu_register_word(fd_reg(), result); |
| 3311 if (set_fcsr_round_error(fs, rounded)) { | 2830 if (set_fcsr_round_error(fs, rounded)) { |
| 3312 set_fpu_register(fd_reg, kFPUInvalidResult); | 2831 set_fpu_register(fd_reg(), kFPUInvalidResult); |
| 3313 } | 2832 } |
| 3314 } break; | 2833 } break; |
| 3315 case CEIL_W_D: // Round double to word towards positive infinity. | 2834 case CEIL_W_D: // Round double to word towards positive infinity. |
| 3316 { | 2835 { |
| 3317 double rounded = std::ceil(fs); | 2836 double rounded = std::ceil(fs); |
| 3318 int32_t result = static_cast<int32_t>(rounded); | 2837 int32_t result = static_cast<int32_t>(rounded); |
| 3319 set_fpu_register_word(fd_reg, result); | 2838 set_fpu_register_word(fd_reg(), result); |
| 3320 if (set_fcsr_round_error(fs, rounded)) { | 2839 if (set_fcsr_round_error(fs, rounded)) { |
| 3321 set_fpu_register(fd_reg, kFPUInvalidResult); | 2840 set_fpu_register(fd_reg(), kFPUInvalidResult); |
| 3322 } | 2841 } |
| 3323 } break; | 2842 } break; |
| 3324 case CVT_S_D: // Convert double to float (single). | 2843 case CVT_S_D: // Convert double to float (single). |
| 3325 set_fpu_register_float(fd_reg, static_cast<float>(fs)); | 2844 set_fpu_register_float(fd_reg(), static_cast<float>(fs)); |
| 3326 break; | 2845 break; |
| 3327 case CVT_L_D: { // Mips64r2: Truncate double to 64-bit long-word. | 2846 case CVT_L_D: { // Mips64r2: Truncate double to 64-bit long-word. |
| 3328 double rounded; | 2847 double rounded; |
| 3329 int64_t result; | 2848 int64_t result; |
| 3330 round64_according_to_fcsr(fs, rounded, result, fs); | 2849 round64_according_to_fcsr(fs, rounded, result, fs); |
| 3331 set_fpu_register(fd_reg, result); | 2850 set_fpu_register(fd_reg(), result); |
| 3332 if (set_fcsr_round64_error(fs, rounded)) { | 2851 if (set_fcsr_round64_error(fs, rounded)) { |
| 3333 set_fpu_register(fd_reg, kFPU64InvalidResult); | 2852 set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| 3334 } | 2853 } |
| 3335 break; | 2854 break; |
| 3336 } | 2855 } |
| 3337 case ROUND_L_D: { // Mips64r2 instruction. | 2856 case ROUND_L_D: { // Mips64r2 instruction. |
| 3338 double rounded = std::floor(fs + 0.5); | 2857 double rounded = std::floor(fs + 0.5); |
| 3339 int64_t result = static_cast<int64_t>(rounded); | 2858 int64_t result = static_cast<int64_t>(rounded); |
| 3340 if ((result & 1) != 0 && result - fs == 0.5) { | 2859 if ((result & 1) != 0 && result - fs == 0.5) { |
| 3341 // If the number is halfway between two integers, | 2860 // If the number is halfway between two integers, |
| 3342 // round to the even one. | 2861 // round to the even one. |
| 3343 result--; | 2862 result--; |
| 3344 } | 2863 } |
| 3345 int64_t i64 = static_cast<int64_t>(result); | 2864 int64_t i64 = static_cast<int64_t>(result); |
| 3346 set_fpu_register(fd_reg, i64); | 2865 set_fpu_register(fd_reg(), i64); |
| 3347 if (set_fcsr_round64_error(fs, rounded)) { | 2866 if (set_fcsr_round64_error(fs, rounded)) { |
| 3348 set_fpu_register(fd_reg, kFPU64InvalidResult); | 2867 set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| 3349 } | 2868 } |
| 3350 break; | 2869 break; |
| 3351 } | 2870 } |
| 3352 case TRUNC_L_D: { // Mips64r2 instruction. | 2871 case TRUNC_L_D: { // Mips64r2 instruction. |
| 3353 double rounded = trunc(fs); | 2872 double rounded = trunc(fs); |
| 3354 int64_t result = static_cast<int64_t>(rounded); | 2873 int64_t result = static_cast<int64_t>(rounded); |
| 3355 set_fpu_register(fd_reg, result); | 2874 set_fpu_register(fd_reg(), result); |
| 3356 if (set_fcsr_round64_error(fs, rounded)) { | 2875 if (set_fcsr_round64_error(fs, rounded)) { |
| 3357 set_fpu_register(fd_reg, kFPU64InvalidResult); | 2876 set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| 3358 } | 2877 } |
| 3359 break; | 2878 break; |
| 3360 } | 2879 } |
| 3361 case FLOOR_L_D: { // Mips64r2 instruction. | 2880 case FLOOR_L_D: { // Mips64r2 instruction. |
| 3362 double rounded = floor(fs); | 2881 double rounded = floor(fs); |
| 3363 int64_t result = static_cast<int64_t>(rounded); | 2882 int64_t result = static_cast<int64_t>(rounded); |
| 3364 set_fpu_register(fd_reg, result); | 2883 set_fpu_register(fd_reg(), result); |
| 3365 if (set_fcsr_round64_error(fs, rounded)) { | 2884 if (set_fcsr_round64_error(fs, rounded)) { |
| 3366 set_fpu_register(fd_reg, kFPU64InvalidResult); | 2885 set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| 3367 } | 2886 } |
| 3368 break; | 2887 break; |
| 3369 } | 2888 } |
| 3370 case CEIL_L_D: { // Mips64r2 instruction. | 2889 case CEIL_L_D: { // Mips64r2 instruction. |
| 3371 double rounded = ceil(fs); | 2890 double rounded = ceil(fs); |
| 3372 int64_t result = static_cast<int64_t>(rounded); | 2891 int64_t result = static_cast<int64_t>(rounded); |
| 3373 set_fpu_register(fd_reg, result); | 2892 set_fpu_register(fd_reg(), result); |
| 3374 if (set_fcsr_round64_error(fs, rounded)) { | 2893 if (set_fcsr_round64_error(fs, rounded)) { |
| 3375 set_fpu_register(fd_reg, kFPU64InvalidResult); | 2894 set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| 3376 } | 2895 } |
| 3377 break; | 2896 break; |
| 3378 } | 2897 } |
| 3379 case CLASS_D: { // Mips64r6 instruction | 2898 case CLASS_D: { // Mips64r6 instruction |
| 3380 // Convert double input to uint64_t for easier bit manipulation | 2899 // Convert double input to uint64_t for easier bit manipulation |
| 3381 uint64_t classed = bit_cast<uint64_t>(fs); | 2900 uint64_t classed = bit_cast<uint64_t>(fs); |
| 3382 | 2901 |
| 3383 // Extracting sign, exponent and mantissa from the input double | 2902 // Extracting sign, exponent and mantissa from the input double |
| 3384 uint32_t sign = (classed >> 63) & 1; | 2903 uint32_t sign = (classed >> 63) & 1; |
| 3385 uint32_t exponent = (classed >> 52) & 0x00000000000007ff; | 2904 uint32_t exponent = (classed >> 52) & 0x00000000000007ff; |
| (...skipping 44 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 3430 } | 2949 } |
| 3431 | 2950 |
| 3432 // Calculating result according to description of CLASS.D instruction | 2951 // Calculating result according to description of CLASS.D instruction |
| 3433 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | | 2952 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | |
| 3434 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | | 2953 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | |
| 3435 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; | 2954 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; |
| 3436 | 2955 |
| 3437 DCHECK(result != 0); | 2956 DCHECK(result != 0); |
| 3438 | 2957 |
| 3439 dResult = bit_cast<double>(result); | 2958 dResult = bit_cast<double>(result); |
| 3440 set_fpu_register_double(fd_reg, dResult); | 2959 set_fpu_register_double(fd_reg(), dResult); |
| 3441 | 2960 |
| 3442 break; | 2961 break; |
| 3443 } | 2962 } |
| 3444 case C_F_D: { | 2963 case C_F_D: { |
| 3445 set_fcsr_bit(fcsr_cc, false); | 2964 set_fcsr_bit(fcsr_cc, false); |
| 3446 break; | 2965 break; |
| 3447 } | 2966 } |
| 3448 default: | 2967 default: |
| 3449 UNREACHABLE(); | 2968 UNREACHABLE(); |
| 3450 } | 2969 } |
| 3451 } | 2970 } |
| 3452 | 2971 |
| 3453 | 2972 |
| 3454 void Simulator::DecodeTypeRegisterWRsType(Instruction* instr, | 2973 void Simulator::DecodeTypeRegisterWRsType() { |
| 3455 const int32_t fs_reg, | 2974 float fs = get_fpu_register_float(fs_reg()); |
| 3456 const int32_t fd_reg, | 2975 float ft = get_fpu_register_float(ft_reg()); |
| 3457 const int32_t ft_reg, | 2976 int64_t alu_out = 0x12345678; |
| 3458 int64_t& alu_out) { | 2977 switch (get_instr()->FunctionFieldRaw()) { |
| 3459 float fs = get_fpu_register_float(fs_reg); | |
| 3460 float ft = get_fpu_register_float(ft_reg); | |
| 3461 switch (instr->FunctionFieldRaw()) { | |
| 3462 case CVT_S_W: // Convert word to float (single). | 2978 case CVT_S_W: // Convert word to float (single). |
| 3463 alu_out = get_fpu_register_signed_word(fs_reg); | 2979 alu_out = get_fpu_register_signed_word(fs_reg()); |
| 3464 set_fpu_register_float(fd_reg, static_cast<float>(alu_out)); | 2980 set_fpu_register_float(fd_reg(), static_cast<float>(alu_out)); |
| 3465 break; | 2981 break; |
| 3466 case CVT_D_W: // Convert word to double. | 2982 case CVT_D_W: // Convert word to double. |
| 3467 alu_out = get_fpu_register_signed_word(fs_reg); | 2983 alu_out = get_fpu_register_signed_word(fs_reg()); |
| 3468 set_fpu_register_double(fd_reg, static_cast<double>(alu_out)); | 2984 set_fpu_register_double(fd_reg(), static_cast<double>(alu_out)); |
| 3469 break; | 2985 break; |
| 3470 case CMP_AF: | 2986 case CMP_AF: |
| 3471 set_fpu_register_word(fd_reg, 0); | 2987 set_fpu_register_word(fd_reg(), 0); |
| 3472 break; | 2988 break; |
| 3473 case CMP_UN: | 2989 case CMP_UN: |
| 3474 if (std::isnan(fs) || std::isnan(ft)) { | 2990 if (std::isnan(fs) || std::isnan(ft)) { |
| 3475 set_fpu_register_word(fd_reg, -1); | 2991 set_fpu_register_word(fd_reg(), -1); |
| 3476 } else { | 2992 } else { |
| 3477 set_fpu_register_word(fd_reg, 0); | 2993 set_fpu_register_word(fd_reg(), 0); |
| 3478 } | 2994 } |
| 3479 break; | 2995 break; |
| 3480 case CMP_EQ: | 2996 case CMP_EQ: |
| 3481 if (fs == ft) { | 2997 if (fs == ft) { |
| 3482 set_fpu_register_word(fd_reg, -1); | 2998 set_fpu_register_word(fd_reg(), -1); |
| 3483 } else { | 2999 } else { |
| 3484 set_fpu_register_word(fd_reg, 0); | 3000 set_fpu_register_word(fd_reg(), 0); |
| 3485 } | 3001 } |
| 3486 break; | 3002 break; |
| 3487 case CMP_UEQ: | 3003 case CMP_UEQ: |
| 3488 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { | 3004 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { |
| 3489 set_fpu_register_word(fd_reg, -1); | 3005 set_fpu_register_word(fd_reg(), -1); |
| 3490 } else { | 3006 } else { |
| 3491 set_fpu_register_word(fd_reg, 0); | 3007 set_fpu_register_word(fd_reg(), 0); |
| 3492 } | 3008 } |
| 3493 break; | 3009 break; |
| 3494 case CMP_LT: | 3010 case CMP_LT: |
| 3495 if (fs < ft) { | 3011 if (fs < ft) { |
| 3496 set_fpu_register_word(fd_reg, -1); | 3012 set_fpu_register_word(fd_reg(), -1); |
| 3497 } else { | 3013 } else { |
| 3498 set_fpu_register_word(fd_reg, 0); | 3014 set_fpu_register_word(fd_reg(), 0); |
| 3499 } | 3015 } |
| 3500 break; | 3016 break; |
| 3501 case CMP_ULT: | 3017 case CMP_ULT: |
| 3502 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { | 3018 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { |
| 3503 set_fpu_register_word(fd_reg, -1); | 3019 set_fpu_register_word(fd_reg(), -1); |
| 3504 } else { | 3020 } else { |
| 3505 set_fpu_register_word(fd_reg, 0); | 3021 set_fpu_register_word(fd_reg(), 0); |
| 3506 } | 3022 } |
| 3507 break; | 3023 break; |
| 3508 case CMP_LE: | 3024 case CMP_LE: |
| 3509 if (fs <= ft) { | 3025 if (fs <= ft) { |
| 3510 set_fpu_register_word(fd_reg, -1); | 3026 set_fpu_register_word(fd_reg(), -1); |
| 3511 } else { | 3027 } else { |
| 3512 set_fpu_register_word(fd_reg, 0); | 3028 set_fpu_register_word(fd_reg(), 0); |
| 3513 } | 3029 } |
| 3514 break; | 3030 break; |
| 3515 case CMP_ULE: | 3031 case CMP_ULE: |
| 3516 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { | 3032 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { |
| 3517 set_fpu_register_word(fd_reg, -1); | 3033 set_fpu_register_word(fd_reg(), -1); |
| 3518 } else { | 3034 } else { |
| 3519 set_fpu_register_word(fd_reg, 0); | 3035 set_fpu_register_word(fd_reg(), 0); |
| 3520 } | 3036 } |
| 3521 break; | 3037 break; |
| 3522 case CMP_OR: | 3038 case CMP_OR: |
| 3523 if (!std::isnan(fs) && !std::isnan(ft)) { | 3039 if (!std::isnan(fs) && !std::isnan(ft)) { |
| 3524 set_fpu_register_word(fd_reg, -1); | 3040 set_fpu_register_word(fd_reg(), -1); |
| 3525 } else { | 3041 } else { |
| 3526 set_fpu_register_word(fd_reg, 0); | 3042 set_fpu_register_word(fd_reg(), 0); |
| 3527 } | 3043 } |
| 3528 break; | 3044 break; |
| 3529 case CMP_UNE: | 3045 case CMP_UNE: |
| 3530 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { | 3046 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { |
| 3531 set_fpu_register_word(fd_reg, -1); | 3047 set_fpu_register_word(fd_reg(), -1); |
| 3532 } else { | 3048 } else { |
| 3533 set_fpu_register_word(fd_reg, 0); | 3049 set_fpu_register_word(fd_reg(), 0); |
| 3534 } | 3050 } |
| 3535 break; | 3051 break; |
| 3536 case CMP_NE: | 3052 case CMP_NE: |
| 3537 if (fs != ft) { | 3053 if (fs != ft) { |
| 3538 set_fpu_register_word(fd_reg, -1); | 3054 set_fpu_register_word(fd_reg(), -1); |
| 3539 } else { | 3055 } else { |
| 3540 set_fpu_register_word(fd_reg, 0); | 3056 set_fpu_register_word(fd_reg(), 0); |
| 3541 } | 3057 } |
| 3542 break; | 3058 break; |
| 3543 default: | 3059 default: |
| 3544 UNREACHABLE(); | 3060 UNREACHABLE(); |
| 3545 } | 3061 } |
| 3546 } | 3062 } |
| 3547 | 3063 |
| 3548 | 3064 |
| 3549 void Simulator::DecodeTypeRegisterLRsType(Instruction* instr, | 3065 void Simulator::DecodeTypeRegisterLRsType() { |
| 3550 const int32_t fs_reg, | 3066 double fs = get_fpu_register_double(fs_reg()); |
| 3551 const int32_t fd_reg, | 3067 double ft = get_fpu_register_double(ft_reg()); |
| 3552 const int32_t ft_reg) { | |
| 3553 double fs = get_fpu_register_double(fs_reg); | |
| 3554 double ft = get_fpu_register_double(ft_reg); | |
| 3555 int64_t i64; | 3068 int64_t i64; |
| 3556 switch (instr->FunctionFieldRaw()) { | 3069 switch (get_instr()->FunctionFieldRaw()) { |
| 3557 case CVT_D_L: // Mips32r2 instruction. | 3070 case CVT_D_L: // Mips32r2 instruction. |
| 3558 i64 = get_fpu_register(fs_reg); | 3071 i64 = get_fpu_register(fs_reg()); |
| 3559 set_fpu_register_double(fd_reg, static_cast<double>(i64)); | 3072 set_fpu_register_double(fd_reg(), static_cast<double>(i64)); |
| 3560 break; | 3073 break; |
| 3561 case CVT_S_L: | 3074 case CVT_S_L: |
| 3562 i64 = get_fpu_register(fs_reg); | 3075 i64 = get_fpu_register(fs_reg()); |
| 3563 set_fpu_register_float(fd_reg, static_cast<float>(i64)); | 3076 set_fpu_register_float(fd_reg(), static_cast<float>(i64)); |
| 3564 break; | 3077 break; |
| 3565 case CMP_AF: | 3078 case CMP_AF: |
| 3566 set_fpu_register(fd_reg, 0); | 3079 set_fpu_register(fd_reg(), 0); |
| 3567 break; | 3080 break; |
| 3568 case CMP_UN: | 3081 case CMP_UN: |
| 3569 if (std::isnan(fs) || std::isnan(ft)) { | 3082 if (std::isnan(fs) || std::isnan(ft)) { |
| 3570 set_fpu_register(fd_reg, -1); | 3083 set_fpu_register(fd_reg(), -1); |
| 3571 } else { | 3084 } else { |
| 3572 set_fpu_register(fd_reg, 0); | 3085 set_fpu_register(fd_reg(), 0); |
| 3573 } | 3086 } |
| 3574 break; | 3087 break; |
| 3575 case CMP_EQ: | 3088 case CMP_EQ: |
| 3576 if (fs == ft) { | 3089 if (fs == ft) { |
| 3577 set_fpu_register(fd_reg, -1); | 3090 set_fpu_register(fd_reg(), -1); |
| 3578 } else { | 3091 } else { |
| 3579 set_fpu_register(fd_reg, 0); | 3092 set_fpu_register(fd_reg(), 0); |
| 3580 } | 3093 } |
| 3581 break; | 3094 break; |
| 3582 case CMP_UEQ: | 3095 case CMP_UEQ: |
| 3583 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { | 3096 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { |
| 3584 set_fpu_register(fd_reg, -1); | 3097 set_fpu_register(fd_reg(), -1); |
| 3585 } else { | 3098 } else { |
| 3586 set_fpu_register(fd_reg, 0); | 3099 set_fpu_register(fd_reg(), 0); |
| 3587 } | 3100 } |
| 3588 break; | 3101 break; |
| 3589 case CMP_LT: | 3102 case CMP_LT: |
| 3590 if (fs < ft) { | 3103 if (fs < ft) { |
| 3591 set_fpu_register(fd_reg, -1); | 3104 set_fpu_register(fd_reg(), -1); |
| 3592 } else { | 3105 } else { |
| 3593 set_fpu_register(fd_reg, 0); | 3106 set_fpu_register(fd_reg(), 0); |
| 3594 } | 3107 } |
| 3595 break; | 3108 break; |
| 3596 case CMP_ULT: | 3109 case CMP_ULT: |
| 3597 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { | 3110 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { |
| 3598 set_fpu_register(fd_reg, -1); | 3111 set_fpu_register(fd_reg(), -1); |
| 3599 } else { | 3112 } else { |
| 3600 set_fpu_register(fd_reg, 0); | 3113 set_fpu_register(fd_reg(), 0); |
| 3601 } | 3114 } |
| 3602 break; | 3115 break; |
| 3603 case CMP_LE: | 3116 case CMP_LE: |
| 3604 if (fs <= ft) { | 3117 if (fs <= ft) { |
| 3605 set_fpu_register(fd_reg, -1); | 3118 set_fpu_register(fd_reg(), -1); |
| 3606 } else { | 3119 } else { |
| 3607 set_fpu_register(fd_reg, 0); | 3120 set_fpu_register(fd_reg(), 0); |
| 3608 } | 3121 } |
| 3609 break; | 3122 break; |
| 3610 case CMP_ULE: | 3123 case CMP_ULE: |
| 3611 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { | 3124 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { |
| 3612 set_fpu_register(fd_reg, -1); | 3125 set_fpu_register(fd_reg(), -1); |
| 3613 } else { | 3126 } else { |
| 3614 set_fpu_register(fd_reg, 0); | 3127 set_fpu_register(fd_reg(), 0); |
| 3615 } | 3128 } |
| 3616 break; | 3129 break; |
| 3617 case CMP_OR: | 3130 case CMP_OR: |
| 3618 if (!std::isnan(fs) && !std::isnan(ft)) { | 3131 if (!std::isnan(fs) && !std::isnan(ft)) { |
| 3619 set_fpu_register(fd_reg, -1); | 3132 set_fpu_register(fd_reg(), -1); |
| 3620 } else { | 3133 } else { |
| 3621 set_fpu_register(fd_reg, 0); | 3134 set_fpu_register(fd_reg(), 0); |
| 3622 } | 3135 } |
| 3623 break; | 3136 break; |
| 3624 case CMP_UNE: | 3137 case CMP_UNE: |
| 3625 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { | 3138 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { |
| 3626 set_fpu_register(fd_reg, -1); | 3139 set_fpu_register(fd_reg(), -1); |
| 3627 } else { | 3140 } else { |
| 3628 set_fpu_register(fd_reg, 0); | 3141 set_fpu_register(fd_reg(), 0); |
| 3629 } | 3142 } |
| 3630 break; | 3143 break; |
| 3631 case CMP_NE: | 3144 case CMP_NE: |
| 3632 if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) { | 3145 if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) { |
| 3633 set_fpu_register(fd_reg, -1); | 3146 set_fpu_register(fd_reg(), -1); |
| 3634 } else { | 3147 } else { |
| 3635 set_fpu_register(fd_reg, 0); | 3148 set_fpu_register(fd_reg(), 0); |
| 3636 } | 3149 } |
| 3637 break; | 3150 break; |
| 3638 default: | 3151 default: |
| 3639 UNREACHABLE(); | 3152 UNREACHABLE(); |
| 3640 } | 3153 } |
| 3641 } | 3154 } |
| 3642 | 3155 |
| 3643 void Simulator::DecodeTypeRegisterCOP1( | 3156 |
| 3644 Instruction* instr, const int32_t rs_reg, const int64_t rs, | 3157 void Simulator::DecodeTypeRegisterCOP1() { |
| 3645 const uint64_t rs_u, const int32_t rt_reg, const int64_t rt, | 3158 switch (get_instr()->RsFieldRaw()) { |
| 3646 const uint64_t rt_u, const int32_t rd_reg, const int32_t fr_reg, | |
| 3647 const int32_t fs_reg, const int32_t ft_reg, const int32_t fd_reg, | |
| 3648 int64_t& alu_out) { | |
| 3649 switch (instr->RsFieldRaw()) { | |
| 3650 case BC1: // Branch on coprocessor condition. | 3159 case BC1: // Branch on coprocessor condition. |
| 3651 case BC1EQZ: | 3160 case BC1EQZ: |
| 3652 case BC1NEZ: | 3161 case BC1NEZ: |
| 3653 UNREACHABLE(); | 3162 UNREACHABLE(); |
| 3654 break; | 3163 break; |
| 3655 case CFC1: | 3164 case CFC1: |
| 3656 set_register(rt_reg, alu_out); | 3165 // At the moment only FCSR is supported. |
| 3166 DCHECK(fs_reg() == kFCSRRegister); |
| 3167 set_register(rt_reg(), FCSR_); |
| 3657 break; | 3168 break; |
| 3658 case MFC1: | 3169 case MFC1: |
| 3170 set_register(rt_reg(), |
| 3171 static_cast<int64_t>(get_fpu_register_word(fs_reg()))); |
| 3172 break; |
| 3659 case DMFC1: | 3173 case DMFC1: |
| 3174 set_register(rt_reg(), get_fpu_register(fs_reg())); |
| 3175 break; |
| 3660 case MFHC1: | 3176 case MFHC1: |
| 3661 set_register(rt_reg, alu_out); | 3177 set_register(rt_reg(), get_fpu_register_hi_word(fs_reg())); |
| 3662 break; | 3178 break; |
| 3663 case CTC1: | 3179 case CTC1: |
| 3664 // At the moment only FCSR is supported. | 3180 // At the moment only FCSR is supported. |
| 3665 DCHECK(fs_reg == kFCSRRegister); | 3181 DCHECK(fs_reg() == kFCSRRegister); |
| 3666 FCSR_ = static_cast<uint32_t>(registers_[rt_reg]); | 3182 FCSR_ = static_cast<uint32_t>(rt()); |
| 3667 break; | 3183 break; |
| 3668 case MTC1: | 3184 case MTC1: |
| 3669 // Hardware writes upper 32-bits to zero on mtc1. | 3185 // Hardware writes upper 32-bits to zero on mtc1. |
| 3670 set_fpu_register_hi_word(fs_reg, 0); | 3186 set_fpu_register_hi_word(fs_reg(), 0); |
| 3671 set_fpu_register_word(fs_reg, static_cast<int32_t>(registers_[rt_reg])); | 3187 set_fpu_register_word(fs_reg(), static_cast<int32_t>(rt())); |
| 3672 break; | 3188 break; |
| 3673 case DMTC1: | 3189 case DMTC1: |
| 3674 set_fpu_register(fs_reg, registers_[rt_reg]); | 3190 set_fpu_register(fs_reg(), rt()); |
| 3675 break; | 3191 break; |
| 3676 case MTHC1: | 3192 case MTHC1: |
| 3677 set_fpu_register_hi_word(fs_reg, | 3193 set_fpu_register_hi_word(fs_reg(), static_cast<int32_t>(rt())); |
| 3678 static_cast<int32_t>(registers_[rt_reg])); | |
| 3679 break; | 3194 break; |
| 3680 case S: | 3195 case S: |
| 3681 DecodeTypeRegisterSRsType(instr, fs_reg, ft_reg, fd_reg); | 3196 DecodeTypeRegisterSRsType(); |
| 3682 break; | 3197 break; |
| 3683 case D: | 3198 case D: |
| 3684 DecodeTypeRegisterDRsType(instr, fs_reg, ft_reg, fd_reg); | 3199 DecodeTypeRegisterDRsType(); |
| 3685 break; | 3200 break; |
| 3686 case W: | 3201 case W: |
| 3687 DecodeTypeRegisterWRsType(instr, fs_reg, fd_reg, ft_reg, alu_out); | 3202 DecodeTypeRegisterWRsType(); |
| 3688 break; | 3203 break; |
| 3689 case L: | 3204 case L: |
| 3690 DecodeTypeRegisterLRsType(instr, fs_reg, fd_reg, ft_reg); | 3205 DecodeTypeRegisterLRsType(); |
| 3691 break; | 3206 break; |
| 3692 default: | 3207 default: |
| 3693 UNREACHABLE(); | 3208 UNREACHABLE(); |
| 3694 } | 3209 } |
| 3695 } | 3210 } |
| 3696 | 3211 |
| 3697 | 3212 |
| 3698 void Simulator::DecodeTypeRegisterCOP1X(Instruction* instr, | 3213 void Simulator::DecodeTypeRegisterCOP1X() { |
| 3699 const int32_t fr_reg, | 3214 switch (get_instr()->FunctionFieldRaw()) { |
| 3700 const int32_t fs_reg, | |
| 3701 const int32_t ft_reg, | |
| 3702 const int32_t fd_reg) { | |
| 3703 switch (instr->FunctionFieldRaw()) { | |
| 3704 case MADD_D: | 3215 case MADD_D: |
| 3705 double fr, ft, fs; | 3216 double fr, ft, fs; |
| 3706 fr = get_fpu_register_double(fr_reg); | 3217 fr = get_fpu_register_double(fr_reg()); |
| 3707 fs = get_fpu_register_double(fs_reg); | 3218 fs = get_fpu_register_double(fs_reg()); |
| 3708 ft = get_fpu_register_double(ft_reg); | 3219 ft = get_fpu_register_double(ft_reg()); |
| 3709 set_fpu_register_double(fd_reg, fs * ft + fr); | 3220 set_fpu_register_double(fd_reg(), fs * ft + fr); |
| 3710 break; | 3221 break; |
| 3711 default: | 3222 default: |
| 3712 UNREACHABLE(); | 3223 UNREACHABLE(); |
| 3713 } | 3224 } |
| 3714 } | 3225 } |
| 3715 | 3226 |
| 3716 | 3227 |
| 3717 void Simulator::DecodeTypeRegisterSPECIAL( | 3228 void Simulator::DecodeTypeRegisterSPECIAL() { |
| 3718 Instruction* instr, const int32_t rs_reg, const int64_t rs, | 3229 int64_t i64hilo; |
| 3719 const uint64_t rs_u, const int32_t rt_reg, const int64_t rt, | 3230 uint64_t u64hilo; |
| 3720 const uint64_t rt_u, const int32_t rd_reg, const int32_t fr_reg, | 3231 int64_t alu_out; |
| 3721 const int32_t fs_reg, const int32_t ft_reg, const int32_t fd_reg, | 3232 bool do_interrupt = false; |
| 3722 const int64_t i64hilo, const uint64_t u64hilo, const int64_t alu_out, | 3233 |
| 3723 const bool do_interrupt, const int64_t current_pc, const int64_t next_pc, | 3234 switch (get_instr()->FunctionFieldRaw()) { |
| 3724 const int32_t return_addr_reg, const int64_t i128resultH, | |
| 3725 const int64_t i128resultL) { | |
| 3726 switch (instr->FunctionFieldRaw()) { | |
| 3727 case SELEQZ_S: | 3235 case SELEQZ_S: |
| 3728 DCHECK(kArchVariant == kMips64r6); | 3236 DCHECK(kArchVariant == kMips64r6); |
| 3729 set_register(rd_reg, rt == 0 ? rs : 0); | 3237 set_register(rd_reg(), rt() == 0 ? rs() : 0); |
| 3730 break; | 3238 break; |
| 3731 case SELNEZ_S: | 3239 case SELNEZ_S: |
| 3732 DCHECK(kArchVariant == kMips64r6); | 3240 DCHECK(kArchVariant == kMips64r6); |
| 3733 set_register(rd_reg, rt != 0 ? rs : 0); | 3241 set_register(rd_reg(), rt() != 0 ? rs() : 0); |
| 3734 break; | 3242 break; |
| 3735 case JR: { | 3243 case JR: { |
| 3244 int64_t next_pc = rs(); |
| 3245 int64_t current_pc = get_pc(); |
| 3736 Instruction* branch_delay_instr = | 3246 Instruction* branch_delay_instr = |
| 3737 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); | 3247 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); |
| 3738 BranchDelayInstructionDecode(branch_delay_instr); | 3248 BranchDelayInstructionDecode(branch_delay_instr); |
| 3739 set_pc(next_pc); | 3249 set_pc(next_pc); |
| 3740 pc_modified_ = true; | 3250 pc_modified_ = true; |
| 3741 break; | 3251 break; |
| 3742 } | 3252 } |
| 3743 case JALR: { | 3253 case JALR: { |
| 3254 int64_t next_pc = rs(); |
| 3255 int64_t current_pc = get_pc(); |
| 3256 int32_t return_addr_reg = rd_reg(); |
| 3744 Instruction* branch_delay_instr = | 3257 Instruction* branch_delay_instr = |
| 3745 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); | 3258 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); |
| 3746 BranchDelayInstructionDecode(branch_delay_instr); | 3259 BranchDelayInstructionDecode(branch_delay_instr); |
| 3747 set_register(return_addr_reg, current_pc + 2 * Instruction::kInstrSize); | 3260 set_register(return_addr_reg, current_pc + 2 * Instruction::kInstrSize); |
| 3748 set_pc(next_pc); | 3261 set_pc(next_pc); |
| 3749 pc_modified_ = true; | 3262 pc_modified_ = true; |
| 3750 break; | 3263 break; |
| 3751 } | 3264 } |
| 3265 case SLL: |
| 3266 SetResult(rd_reg(), static_cast<int32_t>(rt()) << sa()); |
| 3267 break; |
| 3268 case DSLL: |
| 3269 SetResult(rd_reg(), rt() << sa()); |
| 3270 break; |
| 3271 case DSLL32: |
| 3272 SetResult(rd_reg(), rt() << sa() << 32); |
| 3273 break; |
| 3274 case SRL: |
| 3275 if (rs_reg() == 0) { |
| 3276 // Regular logical right shift of a word by a fixed number of |
| 3277 // bits instruction. RS field is always equal to 0. |
| 3278 // Sign-extend the 32-bit result. |
| 3279 alu_out = static_cast<int32_t>(static_cast<uint32_t>(rt_u()) >> sa()); |
| 3280 } else { |
| 3281 // Logical right-rotate of a word by a fixed number of bits. This |
| 3282 // is special case of SRL instruction, added in MIPS32 Release 2. |
| 3283 // RS field is equal to 00001. |
| 3284 alu_out = static_cast<int32_t>( |
| 3285 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()), |
| 3286 static_cast<const uint32_t>(sa()))); |
| 3287 } |
| 3288 SetResult(rd_reg(), alu_out); |
| 3289 break; |
| 3290 case DSRL: |
| 3291 SetResult(rd_reg(), rt_u() >> sa()); |
| 3292 break; |
| 3293 case DSRL32: |
| 3294 SetResult(rd_reg(), rt_u() >> sa() >> 32); |
| 3295 break; |
| 3296 case SRA: |
| 3297 SetResult(rd_reg(), (int32_t)rt() >> sa()); |
| 3298 break; |
| 3299 case DSRA: |
| 3300 SetResult(rd_reg(), rt() >> sa()); |
| 3301 break; |
| 3302 case DSRA32: |
| 3303 SetResult(rd_reg(), rt() >> sa() >> 32); |
| 3304 break; |
| 3305 case SLLV: |
| 3306 SetResult(rd_reg(), (int32_t)rt() << rs()); |
| 3307 break; |
| 3308 case DSLLV: |
| 3309 SetResult(rd_reg(), rt() << rs()); |
| 3310 break; |
| 3311 case SRLV: |
| 3312 if (sa() == 0) { |
| 3313 // Regular logical right-shift of a word by a variable number of |
| 3314 // bits instruction. SA field is always equal to 0. |
| 3315 alu_out = static_cast<int32_t>((uint32_t)rt_u() >> rs()); |
| 3316 } else { |
| 3317 // Logical right-rotate of a word by a variable number of bits. |
| 3318 // This is special case od SRLV instruction, added in MIPS32 |
| 3319 // Release 2. SA field is equal to 00001. |
| 3320 alu_out = static_cast<int32_t>( |
| 3321 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()), |
| 3322 static_cast<const uint32_t>(rs_u()))); |
| 3323 } |
| 3324 SetResult(rd_reg(), alu_out); |
| 3325 break; |
| 3326 case DSRLV: |
| 3327 if (sa() == 0) { |
| 3328 // Regular logical right-shift of a word by a variable number of |
| 3329 // bits instruction. SA field is always equal to 0. |
| 3330 alu_out = rt_u() >> rs(); |
| 3331 } else { |
| 3332 // Logical right-rotate of a word by a variable number of bits. |
| 3333 // This is special case od SRLV instruction, added in MIPS32 |
| 3334 // Release 2. SA field is equal to 00001. |
| 3335 alu_out = |
| 3336 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()), |
| 3337 static_cast<const uint32_t>(rs_u())); |
| 3338 } |
| 3339 SetResult(rd_reg(), alu_out); |
| 3340 break; |
| 3341 case SRAV: |
| 3342 SetResult(rd_reg(), (int32_t)rt() >> rs()); |
| 3343 break; |
| 3344 case DSRAV: |
| 3345 SetResult(rd_reg(), rt() >> rs()); |
| 3346 break; |
| 3347 case MFHI: // MFHI == CLZ on R6. |
| 3348 if (kArchVariant != kMips64r6) { |
| 3349 DCHECK(sa() == 0); |
| 3350 alu_out = get_register(HI); |
| 3351 } else { |
| 3352 // MIPS spec: If no bits were set in GPR rs(), the result written to |
| 3353 // GPR rd() is 32. |
| 3354 DCHECK(sa() == 1); |
| 3355 alu_out = base::bits::CountLeadingZeros32(static_cast<int32_t>(rs_u())); |
| 3356 } |
| 3357 SetResult(rd_reg(), alu_out); |
| 3358 break; |
| 3359 case MFLO: |
| 3360 SetResult(rd_reg(), get_register(LO)); |
| 3361 break; |
| 3752 // Instructions using HI and LO registers. | 3362 // Instructions using HI and LO registers. |
| 3753 case MULT: | 3363 case MULT: { // MULT == D_MUL_MUH. |
| 3364 int32_t rs_lo = static_cast<int32_t>(rs()); |
| 3365 int32_t rt_lo = static_cast<int32_t>(rt()); |
| 3366 i64hilo = static_cast<int64_t>(rs_lo) * static_cast<int64_t>(rt_lo); |
| 3754 if (kArchVariant != kMips64r6) { | 3367 if (kArchVariant != kMips64r6) { |
| 3755 set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff)); | 3368 set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff)); |
| 3756 set_register(HI, static_cast<int32_t>(i64hilo >> 32)); | 3369 set_register(HI, static_cast<int32_t>(i64hilo >> 32)); |
| 3757 } else { | 3370 } else { |
| 3758 switch (instr->SaValue()) { | 3371 switch (sa()) { |
| 3759 case MUL_OP: | 3372 case MUL_OP: |
| 3760 set_register(rd_reg, static_cast<int32_t>(i64hilo & 0xffffffff)); | 3373 set_register(rd_reg(), static_cast<int32_t>(i64hilo & 0xffffffff)); |
| 3761 break; | 3374 break; |
| 3762 case MUH_OP: | 3375 case MUH_OP: |
| 3763 set_register(rd_reg, static_cast<int32_t>(i64hilo >> 32)); | 3376 set_register(rd_reg(), static_cast<int32_t>(i64hilo >> 32)); |
| 3764 break; | 3377 break; |
| 3765 default: | 3378 default: |
| 3766 UNIMPLEMENTED_MIPS(); | 3379 UNIMPLEMENTED_MIPS(); |
| 3767 break; | 3380 break; |
| 3768 } | 3381 } |
| 3769 } | 3382 } |
| 3770 break; | 3383 break; |
| 3384 } |
| 3771 case MULTU: | 3385 case MULTU: |
| 3386 u64hilo = static_cast<uint64_t>(rs_u() & 0xffffffff) * |
| 3387 static_cast<uint64_t>(rt_u() & 0xffffffff); |
| 3772 set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff)); | 3388 set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff)); |
| 3773 set_register(HI, static_cast<int32_t>(u64hilo >> 32)); | 3389 set_register(HI, static_cast<int32_t>(u64hilo >> 32)); |
| 3774 break; | 3390 break; |
| 3775 case DMULT: // DMULT == D_MUL_MUH. | 3391 case DMULT: // DMULT == D_MUL_MUH. |
| 3776 if (kArchVariant != kMips64r6) { | 3392 if (kArchVariant != kMips64r6) { |
| 3777 set_register(LO, static_cast<int64_t>(i128resultL)); | 3393 set_register(LO, rs() * rt()); |
| 3778 set_register(HI, static_cast<int64_t>(i128resultH)); | 3394 set_register(HI, MultiplyHighSigned(rs(), rt())); |
| 3779 } else { | 3395 } else { |
| 3780 switch (instr->SaValue()) { | 3396 switch (sa()) { |
| 3781 case MUL_OP: | 3397 case MUL_OP: |
| 3782 set_register(rd_reg, static_cast<int64_t>(i128resultL)); | 3398 set_register(rd_reg(), rs() * rt()); |
| 3783 break; | 3399 break; |
| 3784 case MUH_OP: | 3400 case MUH_OP: |
| 3785 set_register(rd_reg, static_cast<int64_t>(i128resultH)); | 3401 set_register(rd_reg(), MultiplyHighSigned(rs(), rt())); |
| 3786 break; | 3402 break; |
| 3787 default: | 3403 default: |
| 3788 UNIMPLEMENTED_MIPS(); | 3404 UNIMPLEMENTED_MIPS(); |
| 3789 break; | 3405 break; |
| 3790 } | 3406 } |
| 3791 } | 3407 } |
| 3792 break; | 3408 break; |
| 3793 case DMULTU: | 3409 case DMULTU: |
| 3794 UNIMPLEMENTED_MIPS(); | 3410 UNIMPLEMENTED_MIPS(); |
| 3795 break; | 3411 break; |
| 3796 case DSLL: | |
| 3797 set_register(rd_reg, alu_out); | |
| 3798 TraceRegWr(alu_out); | |
| 3799 break; | |
| 3800 case DIV: | 3412 case DIV: |
| 3801 case DDIV: { | 3413 case DDIV: { |
| 3802 const int64_t int_min_value = | 3414 const int64_t int_min_value = |
| 3803 instr->FunctionFieldRaw() == DIV ? INT_MIN : LONG_MIN; | 3415 get_instr()->FunctionFieldRaw() == DIV ? INT_MIN : LONG_MIN; |
| 3804 switch (kArchVariant) { | 3416 switch (kArchVariant) { |
| 3805 case kMips64r2: | 3417 case kMips64r2: |
| 3806 // Divide by zero and overflow was not checked in the | 3418 // Divide by zero and overflow was not checked in the |
| 3807 // configuration step - div and divu do not raise exceptions. On | 3419 // configuration step - div and divu do not raise exceptions. On |
| 3808 // division by 0 the result will be UNPREDICTABLE. On overflow | 3420 // division by 0 the result will be UNPREDICTABLE. On overflow |
| 3809 // (INT_MIN/-1), return INT_MIN which is what the hardware does. | 3421 // (INT_MIN/-1), return INT_MIN which is what the hardware does. |
| 3810 if (rs == int_min_value && rt == -1) { | 3422 if (rs() == int_min_value && rt() == -1) { |
| 3811 set_register(LO, int_min_value); | 3423 set_register(LO, int_min_value); |
| 3812 set_register(HI, 0); | 3424 set_register(HI, 0); |
| 3813 } else if (rt != 0) { | 3425 } else if (rt() != 0) { |
| 3814 set_register(LO, rs / rt); | 3426 set_register(LO, rs() / rt()); |
| 3815 set_register(HI, rs % rt); | 3427 set_register(HI, rs() % rt()); |
| 3816 } | 3428 } |
| 3817 break; | 3429 break; |
| 3818 case kMips64r6: | 3430 case kMips64r6: |
| 3819 switch (instr->SaValue()) { | 3431 switch (sa()) { |
| 3820 case DIV_OP: | 3432 case DIV_OP: |
| 3821 if (rs == int_min_value && rt == -1) { | 3433 if (rs() == int_min_value && rt() == -1) { |
| 3822 set_register(rd_reg, int_min_value); | 3434 set_register(rd_reg(), int_min_value); |
| 3823 } else if (rt != 0) { | 3435 } else if (rt() != 0) { |
| 3824 set_register(rd_reg, rs / rt); | 3436 set_register(rd_reg(), rs() / rt()); |
| 3825 } | 3437 } |
| 3826 break; | 3438 break; |
| 3827 case MOD_OP: | 3439 case MOD_OP: |
| 3828 if (rs == int_min_value && rt == -1) { | 3440 if (rs() == int_min_value && rt() == -1) { |
| 3829 set_register(rd_reg, 0); | 3441 set_register(rd_reg(), 0); |
| 3830 } else if (rt != 0) { | 3442 } else if (rt() != 0) { |
| 3831 set_register(rd_reg, rs % rt); | 3443 set_register(rd_reg(), rs() % rt()); |
| 3832 } | 3444 } |
| 3833 break; | 3445 break; |
| 3834 default: | 3446 default: |
| 3835 UNIMPLEMENTED_MIPS(); | 3447 UNIMPLEMENTED_MIPS(); |
| 3836 break; | 3448 break; |
| 3837 } | 3449 } |
| 3838 break; | 3450 break; |
| 3839 default: | 3451 default: |
| 3840 break; | 3452 break; |
| 3841 } | 3453 } |
| 3842 break; | 3454 break; |
| 3843 } | 3455 } |
| 3844 case DIVU: | 3456 case DIVU: |
| 3845 if (rt_u != 0) { | 3457 if (rt_u() != 0) { |
| 3846 set_register(LO, rs_u / rt_u); | 3458 uint32_t rt_u_32 = static_cast<uint32_t>(rt_u()); |
| 3847 set_register(HI, rs_u % rt_u); | 3459 uint32_t rs_u_32 = static_cast<uint32_t>(rs_u()); |
| 3848 } | 3460 set_register(LO, rs_u_32 / rt_u_32); |
| 3461 set_register(HI, rs_u_32 % rt_u_32); |
| 3462 } |
| 3463 break; |
| 3464 case DDIVU: |
| 3465 if (rt_u() != 0) { |
| 3466 set_register(LO, rs_u() / rt_u()); |
| 3467 set_register(HI, rs_u() % rt_u()); |
| 3468 } |
| 3469 break; |
| 3470 case ADD: |
| 3471 case DADD: |
| 3472 if (HaveSameSign(rs(), rt())) { |
| 3473 if (rs() > 0) { |
| 3474 if (rs() > (Registers::kMaxValue - rt())) { |
| 3475 SignalException(kIntegerOverflow); |
| 3476 } |
| 3477 } else if (rs() < 0) { |
| 3478 if (rs() < (Registers::kMinValue - rt())) { |
| 3479 SignalException(kIntegerUnderflow); |
| 3480 } |
| 3481 } |
| 3482 } |
| 3483 SetResult(rd_reg(), rs() + rt()); |
| 3484 break; |
| 3485 case ADDU: { |
| 3486 int32_t alu32_out = static_cast<int32_t>(rs() + rt()); |
| 3487 // Sign-extend result of 32bit operation into 64bit register. |
| 3488 SetResult(rd_reg(), static_cast<int64_t>(alu32_out)); |
| 3489 break; |
| 3490 } |
| 3491 case DADDU: |
| 3492 SetResult(rd_reg(), rs() + rt()); |
| 3493 break; |
| 3494 case SUB: |
| 3495 case DSUB: |
| 3496 if (!HaveSameSign(rs(), rt())) { |
| 3497 if (rs() > 0) { |
| 3498 if (rs() > (Registers::kMaxValue + rt())) { |
| 3499 SignalException(kIntegerOverflow); |
| 3500 } |
| 3501 } else if (rs() < 0) { |
| 3502 if (rs() < (Registers::kMinValue + rt())) { |
| 3503 SignalException(kIntegerUnderflow); |
| 3504 } |
| 3505 } |
| 3506 } |
| 3507 SetResult(rd_reg(), rs() - rt()); |
| 3508 break; |
| 3509 case SUBU: { |
| 3510 int32_t alu32_out = static_cast<int32_t>(rs() - rt()); |
| 3511 // Sign-extend result of 32bit operation into 64bit register. |
| 3512 SetResult(rd_reg(), static_cast<int64_t>(alu32_out)); |
| 3513 break; |
| 3514 } |
| 3515 case DSUBU: |
| 3516 SetResult(rd_reg(), rs() - rt()); |
| 3517 break; |
| 3518 case AND: |
| 3519 SetResult(rd_reg(), rs() & rt()); |
| 3520 break; |
| 3521 case OR: |
| 3522 SetResult(rd_reg(), rs() | rt()); |
| 3523 break; |
| 3524 case XOR: |
| 3525 SetResult(rd_reg(), rs() ^ rt()); |
| 3526 break; |
| 3527 case NOR: |
| 3528 SetResult(rd_reg(), ~(rs() | rt())); |
| 3529 break; |
| 3530 case SLT: |
| 3531 SetResult(rd_reg(), rs() < rt() ? 1 : 0); |
| 3532 break; |
| 3533 case SLTU: |
| 3534 SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0); |
| 3849 break; | 3535 break; |
| 3850 // Break and trap instructions. | 3536 // Break and trap instructions. |
| 3851 case BREAK: | 3537 case BREAK: |
| 3538 do_interrupt = true; |
| 3539 break; |
| 3852 case TGE: | 3540 case TGE: |
| 3541 do_interrupt = rs() >= rt(); |
| 3542 break; |
| 3853 case TGEU: | 3543 case TGEU: |
| 3544 do_interrupt = rs_u() >= rt_u(); |
| 3545 break; |
| 3854 case TLT: | 3546 case TLT: |
| 3547 do_interrupt = rs() < rt(); |
| 3548 break; |
| 3855 case TLTU: | 3549 case TLTU: |
| 3550 do_interrupt = rs_u() < rt_u(); |
| 3551 break; |
| 3856 case TEQ: | 3552 case TEQ: |
| 3553 do_interrupt = rs() == rt(); |
| 3554 break; |
| 3857 case TNE: | 3555 case TNE: |
| 3858 if (do_interrupt) { | 3556 do_interrupt = rs() != rt(); |
| 3859 SoftwareInterrupt(instr); | |
| 3860 } | |
| 3861 break; | 3557 break; |
| 3862 // Conditional moves. | 3558 // Conditional moves. |
| 3863 case MOVN: | 3559 case MOVN: |
| 3864 if (rt) { | 3560 if (rt()) { |
| 3865 set_register(rd_reg, rs); | 3561 SetResult(rd_reg(), rs()); |
| 3866 TraceRegWr(rs); | |
| 3867 } | 3562 } |
| 3868 break; | 3563 break; |
| 3869 case MOVCI: { | 3564 case MOVCI: { |
| 3870 uint32_t cc = instr->FBccValue(); | 3565 uint32_t cc = get_instr()->FBccValue(); |
| 3871 uint32_t fcsr_cc = get_fcsr_condition_bit(cc); | 3566 uint32_t fcsr_cc = get_fcsr_condition_bit(cc); |
| 3872 if (instr->Bit(16)) { // Read Tf bit. | 3567 if (get_instr()->Bit(16)) { // Read Tf bit. |
| 3873 if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs); | 3568 if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs()); |
| 3874 } else { | 3569 } else { |
| 3875 if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs); | 3570 if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs()); |
| 3876 } | 3571 } |
| 3877 break; | 3572 break; |
| 3878 } | 3573 } |
| 3879 case MOVZ: | 3574 case MOVZ: |
| 3880 if (!rt) { | 3575 if (!rt()) { |
| 3881 set_register(rd_reg, rs); | 3576 SetResult(rd_reg(), rs()); |
| 3882 TraceRegWr(rs); | 3577 } |
| 3883 } | 3578 break; |
| 3884 break; | 3579 default: |
| 3885 default: // For other special opcodes we do the default operation. | 3580 UNREACHABLE(); |
| 3886 set_register(rd_reg, alu_out); | 3581 } |
| 3887 TraceRegWr(alu_out); | 3582 if (do_interrupt) { |
| 3583 SoftwareInterrupt(get_instr()); |
| 3888 } | 3584 } |
| 3889 } | 3585 } |
| 3890 | 3586 |
| 3891 | 3587 |
| 3892 void Simulator::DecodeTypeRegisterSPECIAL2(Instruction* instr, | 3588 void Simulator::DecodeTypeRegisterSPECIAL2() { |
| 3893 const int32_t rd_reg, | 3589 int64_t alu_out; |
| 3894 int64_t alu_out) { | 3590 switch (get_instr()->FunctionFieldRaw()) { |
| 3895 switch (instr->FunctionFieldRaw()) { | |
| 3896 case MUL: | 3591 case MUL: |
| 3897 set_register(rd_reg, alu_out); | 3592 alu_out = static_cast<int32_t>(rs_u()) * static_cast<int32_t>(rt_u()); |
| 3898 TraceRegWr(alu_out); | 3593 SetResult(rd_reg(), alu_out); |
| 3899 // HI and LO are UNPREDICTABLE after the operation. | 3594 // HI and LO are UNPREDICTABLE after the operation. |
| 3900 set_register(LO, Unpredictable); | 3595 set_register(LO, Unpredictable); |
| 3901 set_register(HI, Unpredictable); | 3596 set_register(HI, Unpredictable); |
| 3902 break; | 3597 break; |
| 3903 default: // For other special2 opcodes we do the default operation. | 3598 case CLZ: |
| 3904 set_register(rd_reg, alu_out); | 3599 // MIPS32 spec: If no bits were set in GPR rs(), the result written to |
| 3600 // GPR rd is 32. |
| 3601 alu_out = base::bits::CountLeadingZeros32(static_cast<uint32_t>(rs_u())); |
| 3602 set_register(rd_reg(), alu_out); |
| 3603 break; |
| 3604 default: |
| 3605 alu_out = 0x12345678; |
| 3606 UNREACHABLE(); |
| 3905 } | 3607 } |
| 3906 } | 3608 } |
| 3907 | 3609 |
| 3908 | 3610 |
| 3909 void Simulator::DecodeTypeRegisterSPECIAL3(Instruction* instr, | 3611 void Simulator::DecodeTypeRegisterSPECIAL3() { |
| 3910 const int32_t rt_reg, | 3612 int64_t alu_out; |
| 3911 const int32_t rd_reg, | 3613 switch (get_instr()->FunctionFieldRaw()) { |
| 3912 const int64_t alu_out) { | 3614 case INS: { // Mips32r2 instruction. |
| 3913 switch (instr->FunctionFieldRaw()) { | 3615 // Interpret rd field as 5-bit msb of insert. |
| 3914 case INS: | 3616 uint16_t msb = rd_reg(); |
| 3915 // Ins instr leaves result in Rt, rather than Rd. | 3617 // Interpret sa field as 5-bit lsb of insert. |
| 3916 set_register(rt_reg, alu_out); | 3618 uint16_t lsb = sa(); |
| 3917 TraceRegWr(alu_out); | 3619 uint16_t size = msb - lsb + 1; |
| 3918 break; | 3620 uint64_t mask = (1ULL << size) - 1; |
| 3919 case EXT: | 3621 alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb); |
| 3920 case DEXT: | 3622 SetResult(rt_reg(), alu_out); |
| 3921 // Dext/Ext instr leaves result in Rt, rather than Rd. | 3623 break; |
| 3922 set_register(rt_reg, alu_out); | 3624 } |
| 3923 TraceRegWr(alu_out); | 3625 case EXT: { // Mips32r2 instruction. |
| 3924 break; | 3626 // Interpret rd field as 5-bit msb of extract. |
| 3925 case BSHFL: | 3627 uint16_t msb = rd_reg(); |
| 3926 case DBSHFL: | 3628 // Interpret sa field as 5-bit lsb of extract. |
| 3927 set_register(rd_reg, alu_out); | 3629 uint16_t lsb = sa(); |
| 3928 TraceRegWr(alu_out); | 3630 uint16_t size = msb + 1; |
| 3929 break; | 3631 uint64_t mask = (1ULL << size) - 1; |
| 3632 alu_out = static_cast<int32_t>((rs_u() & (mask << lsb)) >> lsb); |
| 3633 SetResult(rt_reg(), alu_out); |
| 3634 break; |
| 3635 } |
| 3636 case DEXT: { // Mips32r2 instruction. |
| 3637 // Interpret rd field as 5-bit msb of extract. |
| 3638 uint16_t msb = rd_reg(); |
| 3639 // Interpret sa field as 5-bit lsb of extract. |
| 3640 uint16_t lsb = sa(); |
| 3641 uint16_t size = msb + 1; |
| 3642 uint64_t mask = (1ULL << size) - 1; |
| 3643 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb); |
| 3644 SetResult(rt_reg(), alu_out); |
| 3645 break; |
| 3646 } |
| 3647 case BSHFL: { |
| 3648 int32_t sa = get_instr()->SaFieldRaw() >> kSaShift; |
| 3649 switch (sa) { |
| 3650 case BITSWAP: { |
| 3651 uint32_t input = static_cast<uint32_t>(rt()); |
| 3652 uint32_t output = 0; |
| 3653 uint8_t i_byte, o_byte; |
| 3654 |
| 3655 // Reverse the bit in byte for each individual byte |
| 3656 for (int i = 0; i < 4; i++) { |
| 3657 output = output >> 8; |
| 3658 i_byte = input & 0xff; |
| 3659 |
| 3660 // Fast way to reverse bits in byte |
| 3661 // Devised by Sean Anderson, July 13, 2001 |
| 3662 o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | |
| 3663 (i_byte * 0x8020LU & 0x88440LU)) * |
| 3664 0x10101LU >> |
| 3665 16); |
| 3666 |
| 3667 output = output | (static_cast<uint32_t>(o_byte << 24)); |
| 3668 input = input >> 8; |
| 3669 } |
| 3670 |
| 3671 alu_out = static_cast<int64_t>(static_cast<int32_t>(output)); |
| 3672 break; |
| 3673 } |
| 3674 case SEB: |
| 3675 case SEH: |
| 3676 case WSBH: |
| 3677 alu_out = 0x12345678; |
| 3678 UNREACHABLE(); |
| 3679 break; |
| 3680 default: { |
| 3681 const uint8_t bp2 = get_instr()->Bp2Value(); |
| 3682 sa >>= kBp2Bits; |
| 3683 switch (sa) { |
| 3684 case ALIGN: { |
| 3685 if (bp2 == 0) { |
| 3686 alu_out = static_cast<int32_t>(rt()); |
| 3687 } else { |
| 3688 uint64_t rt_hi = rt() << (8 * bp2); |
| 3689 uint64_t rs_lo = rs() >> (8 * (4 - bp2)); |
| 3690 alu_out = static_cast<int32_t>(rt_hi | rs_lo); |
| 3691 } |
| 3692 break; |
| 3693 } |
| 3694 default: |
| 3695 alu_out = 0x12345678; |
| 3696 UNREACHABLE(); |
| 3697 break; |
| 3698 } |
| 3699 break; |
| 3700 } |
| 3701 } |
| 3702 SetResult(rd_reg(), alu_out); |
| 3703 break; |
| 3704 } |
| 3705 case DBSHFL: { |
| 3706 int32_t sa = get_instr()->SaFieldRaw() >> kSaShift; |
| 3707 switch (sa) { |
| 3708 case DBITSWAP: { |
| 3709 switch (sa) { |
| 3710 case DBITSWAP_SA: { // Mips64r6 |
| 3711 uint64_t input = static_cast<uint64_t>(rt()); |
| 3712 uint64_t output = 0; |
| 3713 uint8_t i_byte, o_byte; |
| 3714 |
| 3715 // Reverse the bit in byte for each individual byte |
| 3716 for (int i = 0; i < 8; i++) { |
| 3717 output = output >> 8; |
| 3718 i_byte = input & 0xff; |
| 3719 |
| 3720 // Fast way to reverse bits in byte |
| 3721 // Devised by Sean Anderson, July 13, 2001 |
| 3722 o_byte = |
| 3723 static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | |
| 3724 (i_byte * 0x8020LU & 0x88440LU)) * |
| 3725 0x10101LU >> |
| 3726 16); |
| 3727 |
| 3728 output = output | ((static_cast<uint64_t>(o_byte) << 56)); |
| 3729 input = input >> 8; |
| 3730 } |
| 3731 |
| 3732 alu_out = static_cast<int64_t>(output); |
| 3733 break; |
| 3734 } |
| 3735 } |
| 3736 break; |
| 3737 } |
| 3738 case DSBH: |
| 3739 case DSHD: |
| 3740 alu_out = 0x12345678; |
| 3741 UNREACHABLE(); |
| 3742 break; |
| 3743 default: { |
| 3744 const uint8_t bp3 = get_instr()->Bp3Value(); |
| 3745 sa >>= kBp3Bits; |
| 3746 switch (sa) { |
| 3747 case DALIGN: { |
| 3748 if (bp3 == 0) { |
| 3749 alu_out = static_cast<int64_t>(rt()); |
| 3750 } else { |
| 3751 uint64_t rt_hi = rt() << (8 * bp3); |
| 3752 uint64_t rs_lo = rs() >> (8 * (8 - bp3)); |
| 3753 alu_out = static_cast<int64_t>(rt_hi | rs_lo); |
| 3754 } |
| 3755 break; |
| 3756 } |
| 3757 default: |
| 3758 alu_out = 0x12345678; |
| 3759 UNREACHABLE(); |
| 3760 break; |
| 3761 } |
| 3762 break; |
| 3763 } |
| 3764 } |
| 3765 SetResult(rd_reg(), alu_out); |
| 3766 break; |
| 3767 } |
| 3930 default: | 3768 default: |
| 3931 UNREACHABLE(); | 3769 UNREACHABLE(); |
| 3932 } | 3770 } |
| 3933 } | 3771 } |
| 3934 | 3772 |
| 3935 | 3773 |
| 3936 void Simulator::DecodeTypeRegister(Instruction* instr) { | 3774 void Simulator::DecodeTypeRegister(Instruction* instr) { |
| 3937 // Instruction fields. | 3775 set_instr(instr); |
| 3938 const Opcode op = instr->OpcodeFieldRaw(); | |
| 3939 const int32_t rs_reg = instr->RsValue(); | |
| 3940 const int64_t rs = get_register(rs_reg); | |
| 3941 const uint64_t rs_u = static_cast<uint32_t>(rs); | |
| 3942 const int32_t rt_reg = instr->RtValue(); | |
| 3943 const int64_t rt = get_register(rt_reg); | |
| 3944 const uint64_t rt_u = static_cast<uint32_t>(rt); | |
| 3945 const int32_t rd_reg = instr->RdValue(); | |
| 3946 | |
| 3947 const int32_t fr_reg = instr->FrValue(); | |
| 3948 const int32_t fs_reg = instr->FsValue(); | |
| 3949 const int32_t ft_reg = instr->FtValue(); | |
| 3950 const int32_t fd_reg = instr->FdValue(); | |
| 3951 int64_t i64hilo = 0; | |
| 3952 uint64_t u64hilo = 0; | |
| 3953 | |
| 3954 // ALU output. | |
| 3955 // It should not be used as is. Instructions using it should always | |
| 3956 // initialize it first. | |
| 3957 int64_t alu_out = 0x12345678; | |
| 3958 | |
| 3959 // For break and trap instructions. | |
| 3960 bool do_interrupt = false; | |
| 3961 | |
| 3962 // For jr and jalr. | |
| 3963 // Get current pc. | |
| 3964 int64_t current_pc = get_pc(); | |
| 3965 // Next pc | |
| 3966 int64_t next_pc = 0; | |
| 3967 int32_t return_addr_reg = 31; | |
| 3968 | |
| 3969 int64_t i128resultH; | |
| 3970 int64_t i128resultL; | |
| 3971 | |
| 3972 // Set up the variables if needed before executing the instruction. | |
| 3973 ConfigureTypeRegister(instr, | |
| 3974 &alu_out, | |
| 3975 &i64hilo, | |
| 3976 &u64hilo, | |
| 3977 &next_pc, | |
| 3978 &return_addr_reg, | |
| 3979 &do_interrupt, | |
| 3980 &i128resultH, | |
| 3981 &i128resultL); | |
| 3982 | |
| 3983 // ---------- Raise exceptions triggered. | |
| 3984 SignalExceptions(); | |
| 3985 | 3776 |
| 3986 // ---------- Execution. | 3777 // ---------- Execution. |
| 3987 switch (op) { | 3778 switch (instr->OpcodeFieldRaw()) { |
| 3988 case COP1: | 3779 case COP1: |
| 3989 DecodeTypeRegisterCOP1(instr, rs_reg, rs, rs_u, rt_reg, rt, rt_u, rd_reg, | 3780 DecodeTypeRegisterCOP1(); |
| 3990 fr_reg, fs_reg, ft_reg, fd_reg, alu_out); | |
| 3991 break; | 3781 break; |
| 3992 case COP1X: | 3782 case COP1X: |
| 3993 DecodeTypeRegisterCOP1X(instr, fr_reg, fs_reg, ft_reg, fd_reg); | 3783 DecodeTypeRegisterCOP1X(); |
| 3994 break; | 3784 break; |
| 3995 case SPECIAL: | 3785 case SPECIAL: |
| 3996 DecodeTypeRegisterSPECIAL( | 3786 DecodeTypeRegisterSPECIAL(); |
| 3997 instr, rs_reg, rs, rs_u, rt_reg, rt, rt_u, rd_reg, fr_reg, fs_reg, | |
| 3998 ft_reg, fd_reg, i64hilo, u64hilo, alu_out, do_interrupt, current_pc, | |
| 3999 next_pc, return_addr_reg, i128resultH, i128resultL); | |
| 4000 break; | 3787 break; |
| 4001 case SPECIAL2: | 3788 case SPECIAL2: |
| 4002 DecodeTypeRegisterSPECIAL2(instr, rd_reg, alu_out); | 3789 DecodeTypeRegisterSPECIAL2(); |
| 4003 break; | 3790 break; |
| 4004 case SPECIAL3: | 3791 case SPECIAL3: |
| 4005 switch (instr->FunctionFieldRaw()) { | 3792 switch (instr->FunctionFieldRaw()) { |
| 4006 case BSHFL: { | 3793 case BSHFL: { |
| 4007 int sa = instr->SaValue(); | 3794 int32_t saVal = sa(); |
| 4008 sa >>= kBp2Bits; | 3795 saVal >>= kBp2Bits; |
| 4009 switch (sa) { | 3796 switch (saVal) { |
| 4010 case ALIGN: { | 3797 case ALIGN: { |
| 4011 DecodeTypeRegisterSPECIAL3(instr, rt_reg, rd_reg, alu_out); | 3798 DecodeTypeRegisterSPECIAL3(); |
| 4012 break; | 3799 break; |
| 4013 } | 3800 } |
| 4014 } | 3801 } |
| 4015 } | 3802 } |
| 4016 case DBSHFL: { | 3803 case DBSHFL: { |
| 4017 int sa = instr->SaValue(); | 3804 int32_t saVal = sa(); |
| 4018 sa >>= kBp3Bits; | 3805 saVal >>= kBp2Bits; |
| 4019 switch (sa) { | 3806 switch (saVal) { |
| 4020 case DALIGN: { | 3807 case DALIGN: { |
| 4021 DecodeTypeRegisterSPECIAL3(instr, rt_reg, rd_reg, alu_out); | 3808 DecodeTypeRegisterSPECIAL3(); |
| 4022 break; | 3809 break; |
| 4023 } | 3810 } |
| 4024 } | 3811 } |
| 4025 } | 3812 } |
| 4026 default: | 3813 default: |
| 4027 DecodeTypeRegisterSPECIAL3(instr, rt_reg, rd_reg, alu_out); | 3814 DecodeTypeRegisterSPECIAL3(); |
| 4028 break; | 3815 break; |
| 4029 } | 3816 } |
| 4030 break; | 3817 break; |
| 4031 // Unimplemented opcodes raised an error in the configuration step before, | 3818 // Unimplemented opcodes raised an error in the configuration step before, |
| 4032 // so we can use the default here to set the destination register in common | 3819 // so we can use the default here to set the destination register in common |
| 4033 // cases. | 3820 // cases. |
| 4034 default: | 3821 default: |
| 4035 set_register(rd_reg, alu_out); | 3822 UNREACHABLE(); |
| 4036 TraceRegWr(alu_out); | |
| 4037 } | 3823 } |
| 4038 } | 3824 } |
| 4039 | 3825 |
| 4040 | 3826 |
| 3827 // Branch instructions common part. |
| 3828 #define BranchAndLinkHelper(do_branch) \ |
| 3829 execute_branch_delay_instruction = true; \ |
| 3830 if (do_branch) { \ |
| 3831 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; \ |
| 3832 set_register(31, current_pc + kBranchReturnOffset); \ |
| 3833 } else { \ |
| 3834 next_pc = current_pc + kBranchReturnOffset; \ |
| 3835 } |
| 3836 |
| 3837 |
| 3838 #define BranchHelper(do_branch) \ |
| 3839 execute_branch_delay_instruction = true; \ |
| 3840 if (do_branch) { \ |
| 3841 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; \ |
| 3842 } else { \ |
| 3843 next_pc = current_pc + kBranchReturnOffset; \ |
| 3844 } |
| 3845 |
| 3846 |
| 4041 // Type 2: instructions using a 16 bytes immediate. (e.g. addi, beq). | 3847 // Type 2: instructions using a 16 bytes immediate. (e.g. addi, beq). |
| 4042 void Simulator::DecodeTypeImmediate(Instruction* instr) { | 3848 void Simulator::DecodeTypeImmediate(Instruction* instr) { |
| 4043 // Instruction fields. | 3849 // Instruction fields. |
| 4044 Opcode op = instr->OpcodeFieldRaw(); | 3850 Opcode op = instr->OpcodeFieldRaw(); |
| 4045 int32_t rs_reg = instr->RsValue(); | 3851 int32_t rs_reg = instr->RsValue(); |
| 4046 int64_t rs = get_register(instr->RsValue()); | 3852 int64_t rs = get_register(instr->RsValue()); |
| 4047 uint64_t rs_u = static_cast<uint64_t>(rs); | 3853 uint64_t rs_u = static_cast<uint64_t>(rs); |
| 4048 int32_t rt_reg = instr->RtValue(); // Destination register. | 3854 int32_t rt_reg = instr->RtValue(); // Destination register. |
| 4049 int64_t rt = get_register(rt_reg); | 3855 int64_t rt = get_register(rt_reg); |
| 4050 int16_t imm16 = instr->Imm16Value(); | 3856 int16_t imm16 = instr->Imm16Value(); |
| 4051 int32_t imm18 = instr->Imm18Value(); | 3857 int32_t imm18 = instr->Imm18Value(); |
| 4052 int32_t imm19 = instr->Imm19Value(); | |
| 4053 int32_t imm21 = instr->Imm21Value(); | 3858 int32_t imm21 = instr->Imm21Value(); |
| 4054 int32_t imm26 = instr->Imm26Value(); | 3859 int32_t imm26 = instr->Imm26Value(); |
| 4055 | 3860 |
| 4056 int32_t ft_reg = instr->FtValue(); // Destination register. | 3861 int32_t ft_reg = instr->FtValue(); // Destination register. |
| 4057 int64_t ft = get_fpu_register(ft_reg); | 3862 int64_t ft = get_fpu_register(ft_reg); |
| 4058 | 3863 |
| 4059 // Zero extended immediate. | 3864 // Zero extended immediate. |
| 4060 uint64_t oe_imm16 = 0xffff & imm16; | 3865 uint64_t oe_imm16 = 0xffff & imm16; |
| 4061 // Sign extended immediate. | 3866 // Sign extended immediate. |
| 4062 int64_t se_imm16 = imm16; | 3867 int64_t se_imm16 = imm16; |
| 4063 int64_t se_imm18 = imm18 | ((imm18 & 0x20000) ? 0xfffffffffffc0000 : 0); | 3868 int64_t se_imm18 = imm18 | ((imm18 & 0x20000) ? 0xfffffffffffc0000 : 0); |
| 4064 int64_t se_imm19 = imm19 | ((imm19 & 0x40000) ? 0xfffffffffff80000 : 0); | |
| 4065 int64_t se_imm26 = imm26 | ((imm26 & 0x2000000) ? 0xfffffffffc000000 : 0); | 3869 int64_t se_imm26 = imm26 | ((imm26 & 0x2000000) ? 0xfffffffffc000000 : 0); |
| 4066 | 3870 |
| 4067 | |
| 4068 // Get current pc. | 3871 // Get current pc. |
| 4069 int64_t current_pc = get_pc(); | 3872 int64_t current_pc = get_pc(); |
| 4070 // Next pc. | 3873 // Next pc. |
| 4071 int64_t next_pc = bad_ra; | 3874 int64_t next_pc = bad_ra; |
| 4072 // pc increment | |
| 4073 int16_t pc_increment; | |
| 4074 | 3875 |
| 4075 // Used for conditional branch instructions. | 3876 // Used for conditional branch instructions. |
| 4076 bool do_branch = false; | |
| 4077 bool execute_branch_delay_instruction = false; | 3877 bool execute_branch_delay_instruction = false; |
| 4078 | 3878 |
| 4079 // Used for arithmetic instructions. | 3879 // Used for arithmetic instructions. |
| 4080 int64_t alu_out = 0; | 3880 int64_t alu_out = 0; |
| 4081 // Floating point. | |
| 4082 double fp_out = 0.0; | |
| 4083 uint32_t cc, cc_value, fcsr_cc; | |
| 4084 | 3881 |
| 4085 // Used for memory instructions. | 3882 // Used for memory instructions. |
| 4086 int64_t addr = 0x0; | 3883 int64_t addr = 0x0; |
| 4087 // Value to be written in memory. | |
| 4088 uint64_t mem_value = 0x0; | |
| 4089 // Alignment for 32-bit integers used in LWL, LWR, etc. | 3884 // Alignment for 32-bit integers used in LWL, LWR, etc. |
| 4090 const int kInt32AlignmentMask = sizeof(uint32_t) - 1; | 3885 const int kInt32AlignmentMask = sizeof(uint32_t) - 1; |
| 4091 | 3886 |
| 4092 // ---------- Configuration (and execution for REGIMM). | 3887 // ---------- Configuration (and execution for REGIMM). |
| 4093 switch (op) { | 3888 switch (op) { |
| 4094 // ------------- COP1. Coprocessor instructions. | 3889 // ------------- COP1. Coprocessor instructions. |
| 4095 case COP1: | 3890 case COP1: |
| 4096 switch (instr->RsFieldRaw()) { | 3891 switch (instr->RsFieldRaw()) { |
| 4097 case BC1: // Branch on coprocessor condition. | 3892 case BC1: { // Branch on coprocessor condition. |
| 4098 cc = instr->FBccValue(); | 3893 uint32_t cc = instr->FBccValue(); |
| 4099 fcsr_cc = get_fcsr_condition_bit(cc); | 3894 uint32_t fcsr_cc = get_fcsr_condition_bit(cc); |
| 4100 cc_value = test_fcsr_bit(fcsr_cc); | 3895 uint32_t cc_value = test_fcsr_bit(fcsr_cc); |
| 4101 do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value; | 3896 bool do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value; |
| 4102 execute_branch_delay_instruction = true; | 3897 execute_branch_delay_instruction = true; |
| 4103 // Set next_pc. | 3898 // Set next_pc. |
| 4104 if (do_branch) { | 3899 if (do_branch) { |
| 4105 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; | 3900 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; |
| 4106 } else { | 3901 } else { |
| 4107 next_pc = current_pc + kBranchReturnOffset; | 3902 next_pc = current_pc + kBranchReturnOffset; |
| 4108 } | 3903 } |
| 4109 break; | 3904 break; |
| 3905 } |
| 4110 case BC1EQZ: | 3906 case BC1EQZ: |
| 4111 do_branch = (ft & 0x1) ? false : true; | |
| 4112 execute_branch_delay_instruction = true; | 3907 execute_branch_delay_instruction = true; |
| 4113 // Set next_pc. | 3908 // Set next_pc. |
| 4114 if (do_branch) { | 3909 if (!(ft & 0x1)) { |
| 4115 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; | 3910 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; |
| 4116 } else { | 3911 } else { |
| 4117 next_pc = current_pc + kBranchReturnOffset; | 3912 next_pc = current_pc + kBranchReturnOffset; |
| 4118 } | 3913 } |
| 4119 break; | 3914 break; |
| 4120 case BC1NEZ: | 3915 case BC1NEZ: |
| 4121 do_branch = (ft & 0x1) ? true : false; | |
| 4122 execute_branch_delay_instruction = true; | 3916 execute_branch_delay_instruction = true; |
| 4123 // Set next_pc. | 3917 // Set next_pc. |
| 4124 if (do_branch) { | 3918 if (ft & 0x1) { |
| 4125 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; | 3919 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; |
| 4126 } else { | 3920 } else { |
| 4127 next_pc = current_pc + kBranchReturnOffset; | 3921 next_pc = current_pc + kBranchReturnOffset; |
| 4128 } | 3922 } |
| 4129 break; | 3923 break; |
| 4130 default: | 3924 default: |
| 4131 UNREACHABLE(); | 3925 UNREACHABLE(); |
| 4132 } | 3926 } |
| 4133 break; | 3927 break; |
| 4134 // ------------- REGIMM class. | 3928 // ------------- REGIMM class. |
| 4135 case REGIMM: | 3929 case REGIMM: |
| 4136 switch (instr->RtFieldRaw()) { | 3930 switch (instr->RtFieldRaw()) { |
| 4137 case BLTZ: | 3931 case BLTZ: |
| 4138 do_branch = (rs < 0); | 3932 BranchHelper(rs < 0); |
| 3933 break; |
| 3934 case BGEZ: |
| 3935 BranchHelper(rs >= 0); |
| 4139 break; | 3936 break; |
| 4140 case BLTZAL: | 3937 case BLTZAL: |
| 4141 do_branch = rs < 0; | 3938 BranchAndLinkHelper(rs < 0); |
| 4142 break; | |
| 4143 case BGEZ: | |
| 4144 do_branch = rs >= 0; | |
| 4145 break; | 3939 break; |
| 4146 case BGEZAL: | 3940 case BGEZAL: |
| 4147 do_branch = rs >= 0; | 3941 BranchAndLinkHelper(rs >= 0); |
| 4148 break; | 3942 break; |
| 4149 default: | 3943 default: |
| 4150 UNREACHABLE(); | 3944 UNREACHABLE(); |
| 4151 } | 3945 } |
| 4152 switch (instr->RtFieldRaw()) { | 3946 break; // case REGIMM. |
| 4153 case BLTZ: | |
| 4154 case BLTZAL: | |
| 4155 case BGEZ: | |
| 4156 case BGEZAL: | |
| 4157 // Branch instructions common part. | |
| 4158 execute_branch_delay_instruction = true; | |
| 4159 // Set next_pc. | |
| 4160 if (do_branch) { | |
| 4161 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; | |
| 4162 if (instr->IsLinkingInstruction()) { | |
| 4163 set_register(31, current_pc + kBranchReturnOffset); | |
| 4164 } | |
| 4165 } else { | |
| 4166 next_pc = current_pc + kBranchReturnOffset; | |
| 4167 } | |
| 4168 default: | |
| 4169 break; | |
| 4170 } | |
| 4171 break; // case REGIMM. | |
| 4172 // ------------- Branch instructions. | 3947 // ------------- Branch instructions. |
| 4173 // When comparing to zero, the encoding of rt field is always 0, so we don't | 3948 // When comparing to zero, the encoding of rt field is always 0, so we don't |
| 4174 // need to replace rt with zero. | 3949 // need to replace rt with zero. |
| 4175 case BEQ: | 3950 case BEQ: |
| 4176 do_branch = (rs == rt); | 3951 BranchHelper(rs == rt); |
| 4177 break; | 3952 break; |
| 4178 case BNE: | 3953 case BNE: |
| 4179 do_branch = rs != rt; | 3954 BranchHelper(rs != rt); |
| 4180 break; | 3955 break; |
| 4181 case BLEZ: | 3956 case BLEZ: |
| 4182 do_branch = rs <= 0; | 3957 BranchHelper(rs <= 0); |
| 4183 break; | 3958 break; |
| 4184 case BGTZ: | 3959 case BGTZ: |
| 4185 do_branch = rs > 0; | 3960 BranchHelper(rs > 0); |
| 4186 break; | 3961 break; |
| 4187 case POP66: { | 3962 case POP66: { |
| 4188 if (rs_reg) { // BEQZC | 3963 if (rs_reg) { // BEQZC |
| 4189 int32_t se_imm21 = | 3964 int32_t se_imm21 = |
| 4190 static_cast<int32_t>(imm21 << (kOpcodeBits + kRsBits)); | 3965 static_cast<int32_t>(imm21 << (kOpcodeBits + kRsBits)); |
| 4191 se_imm21 = se_imm21 >> (kOpcodeBits + kRsBits); | 3966 se_imm21 = se_imm21 >> (kOpcodeBits + kRsBits); |
| 4192 if (rs == 0) | 3967 if (rs == 0) |
| 4193 next_pc = current_pc + 4 + (se_imm21 << 2); | 3968 next_pc = current_pc + 4 + (se_imm21 << 2); |
| 4194 else | 3969 else |
| 4195 next_pc = current_pc + 4; | 3970 next_pc = current_pc + 4; |
| (...skipping 13 matching lines...) Expand all Loading... |
| 4209 next_pc = current_pc + 4 + (se_imm26 << 2); | 3984 next_pc = current_pc + 4 + (se_imm26 << 2); |
| 4210 set_pc(next_pc); | 3985 set_pc(next_pc); |
| 4211 pc_modified_ = true; | 3986 pc_modified_ = true; |
| 4212 break; | 3987 break; |
| 4213 } | 3988 } |
| 4214 // ------------- Arithmetic instructions. | 3989 // ------------- Arithmetic instructions. |
| 4215 case ADDI: | 3990 case ADDI: |
| 4216 case DADDI: | 3991 case DADDI: |
| 4217 if (HaveSameSign(rs, se_imm16)) { | 3992 if (HaveSameSign(rs, se_imm16)) { |
| 4218 if (rs > 0) { | 3993 if (rs > 0) { |
| 4219 exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - se_imm16); | 3994 if (rs > Registers::kMaxValue - se_imm16) { |
| 3995 SignalException(kIntegerOverflow); |
| 3996 } |
| 4220 } else if (rs < 0) { | 3997 } else if (rs < 0) { |
| 4221 exceptions[kIntegerUnderflow] = | 3998 if (rs < Registers::kMinValue - se_imm16) { |
| 4222 rs < (Registers::kMinValue - se_imm16); | 3999 SignalException(kIntegerUnderflow); |
| 4000 } |
| 4223 } | 4001 } |
| 4224 } | 4002 } |
| 4225 alu_out = rs + se_imm16; | 4003 SetResult(rt_reg, rs + se_imm16); |
| 4226 break; | 4004 break; |
| 4227 case ADDIU: { | 4005 case ADDIU: { |
| 4228 int32_t alu32_out = static_cast<int32_t>(rs + se_imm16); | 4006 int32_t alu32_out = static_cast<int32_t>(rs + se_imm16); |
| 4229 // Sign-extend result of 32bit operation into 64bit register. | 4007 // Sign-extend result of 32bit operation into 64bit register. |
| 4230 alu_out = static_cast<int64_t>(alu32_out); | 4008 SetResult(rt_reg, static_cast<int64_t>(alu32_out)); |
| 4231 break; | 4009 break; |
| 4232 } | 4010 } |
| 4233 case DADDIU: | 4011 case DADDIU: |
| 4234 alu_out = rs + se_imm16; | 4012 SetResult(rt_reg, rs + se_imm16); |
| 4235 break; | 4013 break; |
| 4236 case SLTI: | 4014 case SLTI: |
| 4237 alu_out = (rs < se_imm16) ? 1 : 0; | 4015 SetResult(rt_reg, rs < se_imm16 ? 1 : 0); |
| 4238 break; | 4016 break; |
| 4239 case SLTIU: | 4017 case SLTIU: |
| 4240 alu_out = (rs_u < static_cast<uint64_t>(se_imm16)) ? 1 : 0; | 4018 SetResult(rt_reg, rs_u < static_cast<uint64_t>(se_imm16) ? 1 : 0); |
| 4241 break; | 4019 break; |
| 4242 case ANDI: | 4020 case ANDI: |
| 4243 alu_out = rs & oe_imm16; | 4021 SetResult(rt_reg, rs & oe_imm16); |
| 4244 break; | 4022 break; |
| 4245 case ORI: | 4023 case ORI: |
| 4246 alu_out = rs | oe_imm16; | 4024 SetResult(rt_reg, rs | oe_imm16); |
| 4247 break; | 4025 break; |
| 4248 case XORI: | 4026 case XORI: |
| 4249 alu_out = rs ^ oe_imm16; | 4027 SetResult(rt_reg, rs ^ oe_imm16); |
| 4250 break; | 4028 break; |
| 4251 case LUI: { | 4029 case LUI: { |
| 4252 int32_t alu32_out = static_cast<int32_t>(oe_imm16 << 16); | 4030 int32_t alu32_out = static_cast<int32_t>(oe_imm16 << 16); |
| 4253 // Sign-extend result of 32bit operation into 64bit register. | 4031 // Sign-extend result of 32bit operation into 64bit register. |
| 4254 alu_out = static_cast<int64_t>(alu32_out); | 4032 SetResult(rt_reg, static_cast<int64_t>(alu32_out)); |
| 4255 break; | 4033 break; |
| 4256 } | 4034 } |
| 4257 // ------------- Memory instructions. | 4035 // ------------- Memory instructions. |
| 4258 case LB: | 4036 case LB: |
| 4259 addr = rs + se_imm16; | 4037 set_register(rt_reg, ReadB(rs + se_imm16)); |
| 4260 alu_out = ReadB(addr); | |
| 4261 break; | 4038 break; |
| 4262 case LH: | 4039 case LH: |
| 4263 addr = rs + se_imm16; | 4040 set_register(rt_reg, ReadH(rs + se_imm16, instr)); |
| 4264 alu_out = ReadH(addr, instr); | |
| 4265 break; | 4041 break; |
| 4266 case LWL: { | 4042 case LWL: { |
| 4267 // al_offset is offset of the effective address within an aligned word. | 4043 // al_offset is offset of the effective address within an aligned word. |
| 4268 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; | 4044 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; |
| 4269 uint8_t byte_shift = kInt32AlignmentMask - al_offset; | 4045 uint8_t byte_shift = kInt32AlignmentMask - al_offset; |
| 4270 uint32_t mask = (1 << byte_shift * 8) - 1; | 4046 uint32_t mask = (1 << byte_shift * 8) - 1; |
| 4271 addr = rs + se_imm16 - al_offset; | 4047 addr = rs + se_imm16 - al_offset; |
| 4272 alu_out = ReadW(addr, instr); | 4048 alu_out = ReadW(addr, instr); |
| 4273 alu_out <<= byte_shift * 8; | 4049 alu_out <<= byte_shift * 8; |
| 4274 alu_out |= rt & mask; | 4050 alu_out |= rt & mask; |
| 4051 set_register(rt_reg, alu_out); |
| 4275 break; | 4052 break; |
| 4276 } | 4053 } |
| 4277 case LW: | 4054 case LW: |
| 4278 addr = rs + se_imm16; | 4055 set_register(rt_reg, ReadW(rs + se_imm16, instr)); |
| 4279 alu_out = ReadW(addr, instr); | |
| 4280 break; | 4056 break; |
| 4281 case LWU: | 4057 case LWU: |
| 4282 addr = rs + se_imm16; | 4058 set_register(rt_reg, ReadWU(rs + se_imm16, instr)); |
| 4283 alu_out = ReadWU(addr, instr); | |
| 4284 break; | 4059 break; |
| 4285 case LD: | 4060 case LD: |
| 4286 addr = rs + se_imm16; | 4061 set_register(rt_reg, Read2W(rs + se_imm16, instr)); |
| 4287 alu_out = Read2W(addr, instr); | |
| 4288 break; | 4062 break; |
| 4289 case LBU: | 4063 case LBU: |
| 4290 addr = rs + se_imm16; | 4064 set_register(rt_reg, ReadBU(rs + se_imm16)); |
| 4291 alu_out = ReadBU(addr); | |
| 4292 break; | 4065 break; |
| 4293 case LHU: | 4066 case LHU: |
| 4294 addr = rs + se_imm16; | 4067 set_register(rt_reg, ReadHU(rs + se_imm16, instr)); |
| 4295 alu_out = ReadHU(addr, instr); | |
| 4296 break; | 4068 break; |
| 4297 case LWR: { | 4069 case LWR: { |
| 4298 // al_offset is offset of the effective address within an aligned word. | 4070 // al_offset is offset of the effective address within an aligned word. |
| 4299 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; | 4071 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; |
| 4300 uint8_t byte_shift = kInt32AlignmentMask - al_offset; | 4072 uint8_t byte_shift = kInt32AlignmentMask - al_offset; |
| 4301 uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; | 4073 uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; |
| 4302 addr = rs + se_imm16 - al_offset; | 4074 addr = rs + se_imm16 - al_offset; |
| 4303 alu_out = ReadW(addr, instr); | 4075 alu_out = ReadW(addr, instr); |
| 4304 alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8; | 4076 alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8; |
| 4305 alu_out |= rt & mask; | 4077 alu_out |= rt & mask; |
| 4078 set_register(rt_reg, alu_out); |
| 4306 break; | 4079 break; |
| 4307 } | 4080 } |
| 4308 case SB: | 4081 case SB: |
| 4309 addr = rs + se_imm16; | 4082 WriteB(rs + se_imm16, static_cast<int8_t>(rt)); |
| 4310 break; | 4083 break; |
| 4311 case SH: | 4084 case SH: |
| 4312 addr = rs + se_imm16; | 4085 WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr); |
| 4313 break; | 4086 break; |
| 4314 case SWL: { | 4087 case SWL: { |
| 4315 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; | 4088 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; |
| 4316 uint8_t byte_shift = kInt32AlignmentMask - al_offset; | 4089 uint8_t byte_shift = kInt32AlignmentMask - al_offset; |
| 4317 uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; | 4090 uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; |
| 4318 addr = rs + se_imm16 - al_offset; | 4091 addr = rs + se_imm16 - al_offset; |
| 4319 mem_value = ReadW(addr, instr) & mask; | 4092 uint64_t mem_value = ReadW(addr, instr) & mask; |
| 4320 mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8; | 4093 mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8; |
| 4094 WriteW(addr, static_cast<int32_t>(mem_value), instr); |
| 4321 break; | 4095 break; |
| 4322 } | 4096 } |
| 4323 case SW: | 4097 case SW: |
| 4098 WriteW(rs + se_imm16, static_cast<int32_t>(rt), instr); |
| 4099 break; |
| 4324 case SD: | 4100 case SD: |
| 4325 addr = rs + se_imm16; | 4101 Write2W(rs + se_imm16, rt, instr); |
| 4326 break; | 4102 break; |
| 4327 case SWR: { | 4103 case SWR: { |
| 4328 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; | 4104 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; |
| 4329 uint32_t mask = (1 << al_offset * 8) - 1; | 4105 uint32_t mask = (1 << al_offset * 8) - 1; |
| 4330 addr = rs + se_imm16 - al_offset; | 4106 addr = rs + se_imm16 - al_offset; |
| 4331 mem_value = ReadW(addr, instr); | 4107 uint64_t mem_value = ReadW(addr, instr); |
| 4332 mem_value = (rt << al_offset * 8) | (mem_value & mask); | 4108 mem_value = (rt << al_offset * 8) | (mem_value & mask); |
| 4109 WriteW(addr, static_cast<int32_t>(mem_value), instr); |
| 4333 break; | 4110 break; |
| 4334 } | 4111 } |
| 4335 case LWC1: | 4112 case LWC1: |
| 4336 addr = rs + se_imm16; | 4113 set_fpu_register(ft_reg, kFPUInvalidResult); // Trash upper 32 bits. |
| 4337 alu_out = ReadW(addr, instr); | 4114 set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr)); |
| 4338 break; | 4115 break; |
| 4339 case LDC1: | 4116 case LDC1: |
| 4340 addr = rs + se_imm16; | 4117 set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr)); |
| 4341 fp_out = ReadD(addr, instr); | |
| 4342 break; | 4118 break; |
| 4343 case SWC1: | 4119 case SWC1: { |
| 4120 int32_t alu_out_32 = static_cast<int32_t>(get_fpu_register(ft_reg)); |
| 4121 WriteW(rs + se_imm16, alu_out_32, instr); |
| 4122 break; |
| 4123 } |
| 4344 case SDC1: | 4124 case SDC1: |
| 4345 addr = rs + se_imm16; | 4125 WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr); |
| 4346 break; | 4126 break; |
| 4347 // ------------- JIALC and BNEZC instructions. | 4127 // ------------- JIALC and BNEZC instructions. |
| 4348 case POP76: | 4128 case POP76: { |
| 4349 // Next pc. | 4129 // Next pc. |
| 4350 next_pc = rt + se_imm16; | 4130 next_pc = rt + se_imm16; |
| 4351 // The instruction after the jump is NOT executed. | 4131 // The instruction after the jump is NOT executed. |
| 4352 pc_increment = Instruction::kInstrSize; | 4132 uint16_t pc_increment = Instruction::kInstrSize; |
| 4353 if (instr->IsLinkingInstruction()) { | 4133 if (instr->IsLinkingInstruction()) { |
| 4354 set_register(31, current_pc + pc_increment); | 4134 set_register(31, current_pc + pc_increment); |
| 4355 } | 4135 } |
| 4356 set_pc(next_pc); | 4136 set_pc(next_pc); |
| 4357 pc_modified_ = true; | 4137 pc_modified_ = true; |
| 4358 break; | 4138 break; |
| 4139 } |
| 4359 // ------------- PC-Relative instructions. | 4140 // ------------- PC-Relative instructions. |
| 4360 case PCREL: { | 4141 case PCREL: { |
| 4361 // rt field: checking 5-bits. | 4142 // rt field: checking 5-bits. |
| 4362 uint8_t rt = (imm21 >> kImm16Bits); | 4143 uint8_t rt = (imm21 >> kImm16Bits); |
| 4363 switch (rt) { | 4144 switch (rt) { |
| 4364 case ALUIPC: | 4145 case ALUIPC: |
| 4365 addr = current_pc + (se_imm16 << 16); | 4146 addr = current_pc + (se_imm16 << 16); |
| 4366 alu_out = static_cast<int64_t>(~0x0FFFF) & addr; | 4147 alu_out = static_cast<int64_t>(~0x0FFFF) & addr; |
| 4367 break; | 4148 break; |
| 4368 case AUIPC: | 4149 case AUIPC: |
| 4369 alu_out = current_pc + (se_imm16 << 16); | 4150 alu_out = current_pc + (se_imm16 << 16); |
| 4370 break; | 4151 break; |
| 4371 default: { | 4152 default: { |
| 4153 int32_t imm19 = instr->Imm19Value(); |
| 4372 // rt field: checking the most significant 3-bits. | 4154 // rt field: checking the most significant 3-bits. |
| 4373 rt = (imm21 >> kImm18Bits); | 4155 rt = (imm21 >> kImm18Bits); |
| 4374 switch (rt) { | 4156 switch (rt) { |
| 4375 case LDPC: | 4157 case LDPC: |
| 4376 addr = | 4158 addr = |
| 4377 (current_pc & static_cast<int64_t>(~0x7)) + (se_imm18 << 3); | 4159 (current_pc & static_cast<int64_t>(~0x7)) + (se_imm18 << 3); |
| 4378 alu_out = Read2W(addr, instr); | 4160 alu_out = Read2W(addr, instr); |
| 4379 break; | 4161 break; |
| 4380 default: { | 4162 default: { |
| 4381 // rt field: checking the most significant 2-bits. | 4163 // rt field: checking the most significant 2-bits. |
| 4382 rt = (imm21 >> kImm19Bits); | 4164 rt = (imm21 >> kImm19Bits); |
| 4383 switch (rt) { | 4165 switch (rt) { |
| 4384 case LWUPC: { | 4166 case LWUPC: { |
| 4385 int32_t offset = imm19; | |
| 4386 // Set sign. | 4167 // Set sign. |
| 4387 offset <<= (kOpcodeBits + kRsBits + 2); | 4168 imm19 <<= (kOpcodeBits + kRsBits + 2); |
| 4388 offset >>= (kOpcodeBits + kRsBits + 2); | 4169 imm19 >>= (kOpcodeBits + kRsBits + 2); |
| 4389 addr = current_pc + (offset << 2); | 4170 addr = current_pc + (imm19 << 2); |
| 4390 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); | 4171 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); |
| 4391 alu_out = *ptr; | 4172 alu_out = *ptr; |
| 4392 break; | 4173 break; |
| 4393 } | 4174 } |
| 4394 case LWPC: { | 4175 case LWPC: { |
| 4395 int32_t offset = imm19; | |
| 4396 // Set sign. | 4176 // Set sign. |
| 4397 offset <<= (kOpcodeBits + kRsBits + 2); | 4177 imm19 <<= (kOpcodeBits + kRsBits + 2); |
| 4398 offset >>= (kOpcodeBits + kRsBits + 2); | 4178 imm19 >>= (kOpcodeBits + kRsBits + 2); |
| 4399 addr = current_pc + (offset << 2); | 4179 addr = current_pc + (imm19 << 2); |
| 4400 int32_t* ptr = reinterpret_cast<int32_t*>(addr); | 4180 int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| 4401 alu_out = *ptr; | 4181 alu_out = *ptr; |
| 4402 break; | 4182 break; |
| 4403 } | 4183 } |
| 4404 case ADDIUPC: | 4184 case ADDIUPC: { |
| 4185 int64_t se_imm19 = |
| 4186 imm19 | ((imm19 & 0x40000) ? 0xfffffffffff80000 : 0); |
| 4405 alu_out = current_pc + (se_imm19 << 2); | 4187 alu_out = current_pc + (se_imm19 << 2); |
| 4406 break; | 4188 break; |
| 4189 } |
| 4407 default: | 4190 default: |
| 4408 UNREACHABLE(); | 4191 UNREACHABLE(); |
| 4409 break; | 4192 break; |
| 4410 } | 4193 } |
| 4411 break; | 4194 break; |
| 4412 } | 4195 } |
| 4413 } | 4196 } |
| 4414 break; | 4197 break; |
| 4415 } | 4198 } |
| 4416 } | 4199 } |
| 4200 set_register(rs_reg, alu_out); |
| 4417 break; | 4201 break; |
| 4418 } | 4202 } |
| 4419 default: | 4203 default: |
| 4420 UNREACHABLE(); | 4204 UNREACHABLE(); |
| 4421 } | 4205 } |
| 4422 | 4206 |
| 4423 // ---------- Raise exceptions triggered. | |
| 4424 SignalExceptions(); | |
| 4425 | |
| 4426 // ---------- Execution. | |
| 4427 switch (op) { | |
| 4428 // ------------- Branch instructions. | |
| 4429 case BEQ: | |
| 4430 case BNE: | |
| 4431 case BLEZ: | |
| 4432 case BGTZ: | |
| 4433 // Branch instructions common part. | |
| 4434 execute_branch_delay_instruction = true; | |
| 4435 // Set next_pc. | |
| 4436 if (do_branch) { | |
| 4437 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; | |
| 4438 if (instr->IsLinkingInstruction()) { | |
| 4439 set_register(31, current_pc + 2* Instruction::kInstrSize); | |
| 4440 } | |
| 4441 } else { | |
| 4442 next_pc = current_pc + 2 * Instruction::kInstrSize; | |
| 4443 } | |
| 4444 break; | |
| 4445 // ------------- Arithmetic instructions. | |
| 4446 case ADDI: | |
| 4447 case DADDI: | |
| 4448 case ADDIU: | |
| 4449 case DADDIU: | |
| 4450 case SLTI: | |
| 4451 case SLTIU: | |
| 4452 case ANDI: | |
| 4453 case ORI: | |
| 4454 case XORI: | |
| 4455 case LUI: | |
| 4456 set_register(rt_reg, alu_out); | |
| 4457 TraceRegWr(alu_out); | |
| 4458 break; | |
| 4459 // ------------- Memory instructions. | |
| 4460 case LB: | |
| 4461 case LH: | |
| 4462 case LWL: | |
| 4463 case LW: | |
| 4464 case LWU: | |
| 4465 case LD: | |
| 4466 case LBU: | |
| 4467 case LHU: | |
| 4468 case LWR: | |
| 4469 set_register(rt_reg, alu_out); | |
| 4470 break; | |
| 4471 case SB: | |
| 4472 WriteB(addr, static_cast<int8_t>(rt)); | |
| 4473 break; | |
| 4474 case SH: | |
| 4475 WriteH(addr, static_cast<uint16_t>(rt), instr); | |
| 4476 break; | |
| 4477 case SWL: | |
| 4478 WriteW(addr, static_cast<int32_t>(mem_value), instr); | |
| 4479 break; | |
| 4480 case SW: | |
| 4481 WriteW(addr, static_cast<int32_t>(rt), instr); | |
| 4482 break; | |
| 4483 case SD: | |
| 4484 Write2W(addr, rt, instr); | |
| 4485 break; | |
| 4486 case SWR: | |
| 4487 WriteW(addr, static_cast<int32_t>(mem_value), instr); | |
| 4488 break; | |
| 4489 case LWC1: | |
| 4490 set_fpu_register(ft_reg, kFPUInvalidResult); // Trash upper 32 bits. | |
| 4491 set_fpu_register_word(ft_reg, static_cast<int32_t>(alu_out)); | |
| 4492 break; | |
| 4493 case LDC1: | |
| 4494 set_fpu_register_double(ft_reg, fp_out); | |
| 4495 break; | |
| 4496 case SWC1: | |
| 4497 addr = rs + se_imm16; | |
| 4498 WriteW(addr, static_cast<int32_t>(get_fpu_register(ft_reg)), instr); | |
| 4499 break; | |
| 4500 case SDC1: | |
| 4501 addr = rs + se_imm16; | |
| 4502 WriteD(addr, get_fpu_register_double(ft_reg), instr); | |
| 4503 break; | |
| 4504 case PCREL: | |
| 4505 set_register(rs_reg, alu_out); | |
| 4506 default: | |
| 4507 break; | |
| 4508 } | |
| 4509 | |
| 4510 | |
| 4511 if (execute_branch_delay_instruction) { | 4207 if (execute_branch_delay_instruction) { |
| 4512 // Execute branch delay slot | 4208 // Execute branch delay slot |
| 4513 // We don't check for end_sim_pc. First it should not be met as the current | 4209 // We don't check for end_sim_pc. First it should not be met as the current |
| 4514 // pc is valid. Secondly a jump should always execute its branch delay slot. | 4210 // pc is valid. Secondly a jump should always execute its branch delay slot. |
| 4515 Instruction* branch_delay_instr = | 4211 Instruction* branch_delay_instr = |
| 4516 reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize); | 4212 reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize); |
| 4517 BranchDelayInstructionDecode(branch_delay_instr); | 4213 BranchDelayInstructionDecode(branch_delay_instr); |
| 4518 } | 4214 } |
| 4519 | 4215 |
| 4520 // If needed update pc after the branch delay execution. | 4216 // If needed update pc after the branch delay execution. |
| 4521 if (next_pc != bad_ra) { | 4217 if (next_pc != bad_ra) { |
| 4522 set_pc(next_pc); | 4218 set_pc(next_pc); |
| 4523 } | 4219 } |
| 4524 } | 4220 } |
| 4525 | 4221 |
| 4222 #undef BranchHelper |
| 4223 #undef BranchAndLinkHelper |
| 4224 |
| 4526 | 4225 |
| 4527 // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal). | 4226 // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal). |
| 4528 void Simulator::DecodeTypeJump(Instruction* instr) { | 4227 void Simulator::DecodeTypeJump(Instruction* instr) { |
| 4529 // Get current pc. | 4228 // Get current pc. |
| 4530 int64_t current_pc = get_pc(); | 4229 int64_t current_pc = get_pc(); |
| 4531 // Get unchanged bits of pc. | 4230 // Get unchanged bits of pc. |
| 4532 int64_t pc_high_bits = current_pc & 0xfffffffff0000000; | 4231 int64_t pc_high_bits = current_pc & 0xfffffffff0000000; |
| 4533 // Next pc. | 4232 // Next pc. |
| 4534 int64_t next_pc = pc_high_bits | (instr->Imm26Value() << 2); | 4233 int64_t next_pc = pc_high_bits | (instr->Imm26Value() << 2); |
| 4535 | 4234 |
| (...skipping 24 matching lines...) Expand all Loading... |
| 4560 v8::internal::EmbeddedVector<char, 256> buffer; | 4259 v8::internal::EmbeddedVector<char, 256> buffer; |
| 4561 | 4260 |
| 4562 if (::v8::internal::FLAG_trace_sim) { | 4261 if (::v8::internal::FLAG_trace_sim) { |
| 4563 SNPrintF(trace_buf_, " "); | 4262 SNPrintF(trace_buf_, " "); |
| 4564 disasm::NameConverter converter; | 4263 disasm::NameConverter converter; |
| 4565 disasm::Disassembler dasm(converter); | 4264 disasm::Disassembler dasm(converter); |
| 4566 // Use a reasonably large buffer. | 4265 // Use a reasonably large buffer. |
| 4567 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); | 4266 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); |
| 4568 } | 4267 } |
| 4569 | 4268 |
| 4570 switch (instr->InstructionType()) { | 4269 switch (instr->InstructionType(Instruction::TypeChecks::EXTRA)) { |
| 4571 case Instruction::kRegisterType: | 4270 case Instruction::kRegisterType: |
| 4572 DecodeTypeRegister(instr); | 4271 DecodeTypeRegister(instr); |
| 4573 break; | 4272 break; |
| 4574 case Instruction::kImmediateType: | 4273 case Instruction::kImmediateType: |
| 4575 DecodeTypeImmediate(instr); | 4274 DecodeTypeImmediate(instr); |
| 4576 break; | 4275 break; |
| 4577 case Instruction::kJumpType: | 4276 case Instruction::kJumpType: |
| 4578 DecodeTypeJump(instr); | 4277 DecodeTypeJump(instr); |
| 4579 break; | 4278 break; |
| 4580 default: | 4279 default: |
| (...skipping 207 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 4788 } | 4487 } |
| 4789 | 4488 |
| 4790 | 4489 |
| 4791 #undef UNSUPPORTED | 4490 #undef UNSUPPORTED |
| 4792 } // namespace internal | 4491 } // namespace internal |
| 4793 } // namespace v8 | 4492 } // namespace v8 |
| 4794 | 4493 |
| 4795 #endif // USE_SIMULATOR | 4494 #endif // USE_SIMULATOR |
| 4796 | 4495 |
| 4797 #endif // V8_TARGET_ARCH_MIPS64 | 4496 #endif // V8_TARGET_ARCH_MIPS64 |
| OLD | NEW |