OLD | NEW |
1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 957 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
968 } | 968 } |
969 | 969 |
970 | 970 |
971 // Convert and store int passed in register ival to IEEE 754 single precision | 971 // Convert and store int passed in register ival to IEEE 754 single precision |
972 // floating point value at memory location (dst + 4 * wordoffset) | 972 // floating point value at memory location (dst + 4 * wordoffset) |
973 // If VFP3 is available use it for conversion. | 973 // If VFP3 is available use it for conversion. |
974 static void StoreIntAsFloat(MacroAssembler* masm, | 974 static void StoreIntAsFloat(MacroAssembler* masm, |
975 Register dst, | 975 Register dst, |
976 Register wordoffset, | 976 Register wordoffset, |
977 Register ival, | 977 Register ival, |
978 Register fval, | 978 Register scratch1) { |
979 Register scratch1, | 979 __ vmov(s0, ival); |
980 Register scratch2) { | 980 __ add(scratch1, dst, Operand(wordoffset, LSL, 2)); |
981 if (CpuFeatures::IsSupported(VFP2)) { | 981 __ vcvt_f32_s32(s0, s0); |
982 CpuFeatureScope scope(masm, VFP2); | 982 __ vstr(s0, scratch1, 0); |
983 __ vmov(s0, ival); | |
984 __ add(scratch1, dst, Operand(wordoffset, LSL, 2)); | |
985 __ vcvt_f32_s32(s0, s0); | |
986 __ vstr(s0, scratch1, 0); | |
987 } else { | |
988 Label not_special, done; | |
989 // Move sign bit from source to destination. This works because the sign | |
990 // bit in the exponent word of the double has the same position and polarity | |
991 // as the 2's complement sign bit in a Smi. | |
992 ASSERT(kBinary32SignMask == 0x80000000u); | |
993 | |
994 __ and_(fval, ival, Operand(kBinary32SignMask), SetCC); | |
995 // Negate value if it is negative. | |
996 __ rsb(ival, ival, Operand::Zero(), LeaveCC, ne); | |
997 | |
998 // We have -1, 0 or 1, which we treat specially. Register ival contains | |
999 // absolute value: it is either equal to 1 (special case of -1 and 1), | |
1000 // greater than 1 (not a special case) or less than 1 (special case of 0). | |
1001 __ cmp(ival, Operand(1)); | |
1002 __ b(gt, ¬_special); | |
1003 | |
1004 // For 1 or -1 we need to or in the 0 exponent (biased). | |
1005 static const uint32_t exponent_word_for_1 = | |
1006 kBinary32ExponentBias << kBinary32ExponentShift; | |
1007 | |
1008 __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq); | |
1009 __ b(&done); | |
1010 | |
1011 __ bind(¬_special); | |
1012 // Count leading zeros. | |
1013 // Gets the wrong answer for 0, but we already checked for that case above. | |
1014 Register zeros = scratch2; | |
1015 __ CountLeadingZeros(zeros, ival, scratch1); | |
1016 | |
1017 // Compute exponent and or it into the exponent register. | |
1018 __ rsb(scratch1, | |
1019 zeros, | |
1020 Operand((kBitsPerInt - 1) + kBinary32ExponentBias)); | |
1021 | |
1022 __ orr(fval, | |
1023 fval, | |
1024 Operand(scratch1, LSL, kBinary32ExponentShift)); | |
1025 | |
1026 // Shift up the source chopping the top bit off. | |
1027 __ add(zeros, zeros, Operand(1)); | |
1028 // This wouldn't work for 1 and -1 as the shift would be 32 which means 0. | |
1029 __ mov(ival, Operand(ival, LSL, zeros)); | |
1030 // And the top (top 20 bits). | |
1031 __ orr(fval, | |
1032 fval, | |
1033 Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits)); | |
1034 | |
1035 __ bind(&done); | |
1036 __ str(fval, MemOperand(dst, wordoffset, LSL, 2)); | |
1037 } | |
1038 } | 983 } |
1039 | 984 |
1040 | 985 |
1041 void StubCompiler::GenerateTailCall(MacroAssembler* masm, Handle<Code> code) { | 986 void StubCompiler::GenerateTailCall(MacroAssembler* masm, Handle<Code> code) { |
1042 __ Jump(code, RelocInfo::CODE_TARGET); | 987 __ Jump(code, RelocInfo::CODE_TARGET); |
1043 } | 988 } |
1044 | 989 |
1045 | 990 |
1046 #undef __ | 991 #undef __ |
1047 #define __ ACCESS_MASM(masm()) | 992 #define __ ACCESS_MASM(masm()) |
(...skipping 1027 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2075 Handle<JSFunction> function, | 2020 Handle<JSFunction> function, |
2076 Handle<String> name) { | 2021 Handle<String> name) { |
2077 // ----------- S t a t e ------------- | 2022 // ----------- S t a t e ------------- |
2078 // -- r2 : function name | 2023 // -- r2 : function name |
2079 // -- lr : return address | 2024 // -- lr : return address |
2080 // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) | 2025 // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) |
2081 // -- ... | 2026 // -- ... |
2082 // -- sp[argc * 4] : receiver | 2027 // -- sp[argc * 4] : receiver |
2083 // ----------------------------------- | 2028 // ----------------------------------- |
2084 | 2029 |
2085 if (!CpuFeatures::IsSupported(VFP2)) { | |
2086 return Handle<Code>::null(); | |
2087 } | |
2088 | |
2089 CpuFeatureScope scope_vfp2(masm(), VFP2); | |
2090 const int argc = arguments().immediate(); | 2030 const int argc = arguments().immediate(); |
2091 // If the object is not a JSObject or we got an unexpected number of | 2031 // If the object is not a JSObject or we got an unexpected number of |
2092 // arguments, bail out to the regular call. | 2032 // arguments, bail out to the regular call. |
2093 if (!object->IsJSObject() || argc != 1) return Handle<Code>::null(); | 2033 if (!object->IsJSObject() || argc != 1) return Handle<Code>::null(); |
2094 | 2034 |
2095 Label miss, slow; | 2035 Label miss, slow; |
2096 GenerateNameCheck(name, &miss); | 2036 GenerateNameCheck(name, &miss); |
2097 | 2037 |
2098 if (cell.is_null()) { | 2038 if (cell.is_null()) { |
2099 __ ldr(r1, MemOperand(sp, 1 * kPointerSize)); | 2039 __ ldr(r1, MemOperand(sp, 1 * kPointerSize)); |
(...skipping 1019 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3119 | 3059 |
3120 // ---------- S t a t e -------------- | 3060 // ---------- S t a t e -------------- |
3121 // -- lr : return address | 3061 // -- lr : return address |
3122 // -- r0 : key | 3062 // -- r0 : key |
3123 // -- r1 : receiver | 3063 // -- r1 : receiver |
3124 // ----------------------------------- | 3064 // ----------------------------------- |
3125 TailCallBuiltin(masm, Builtins::kKeyedLoadIC_MissForceGeneric); | 3065 TailCallBuiltin(masm, Builtins::kKeyedLoadIC_MissForceGeneric); |
3126 } | 3066 } |
3127 | 3067 |
3128 | 3068 |
3129 static bool IsElementTypeSigned(ElementsKind elements_kind) { | |
3130 switch (elements_kind) { | |
3131 case EXTERNAL_BYTE_ELEMENTS: | |
3132 case EXTERNAL_SHORT_ELEMENTS: | |
3133 case EXTERNAL_INT_ELEMENTS: | |
3134 return true; | |
3135 | |
3136 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | |
3137 case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | |
3138 case EXTERNAL_UNSIGNED_INT_ELEMENTS: | |
3139 case EXTERNAL_PIXEL_ELEMENTS: | |
3140 return false; | |
3141 | |
3142 case EXTERNAL_FLOAT_ELEMENTS: | |
3143 case EXTERNAL_DOUBLE_ELEMENTS: | |
3144 case FAST_ELEMENTS: | |
3145 case FAST_SMI_ELEMENTS: | |
3146 case FAST_DOUBLE_ELEMENTS: | |
3147 case FAST_HOLEY_ELEMENTS: | |
3148 case FAST_HOLEY_SMI_ELEMENTS: | |
3149 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
3150 case DICTIONARY_ELEMENTS: | |
3151 case NON_STRICT_ARGUMENTS_ELEMENTS: | |
3152 UNREACHABLE(); | |
3153 return false; | |
3154 } | |
3155 return false; | |
3156 } | |
3157 | |
3158 | |
3159 static void GenerateSmiKeyCheck(MacroAssembler* masm, | 3069 static void GenerateSmiKeyCheck(MacroAssembler* masm, |
3160 Register key, | 3070 Register key, |
3161 Register scratch0, | 3071 Register scratch0, |
3162 Register scratch1, | 3072 Register scratch1, |
3163 DwVfpRegister double_scratch0, | 3073 DwVfpRegister double_scratch0, |
3164 DwVfpRegister double_scratch1, | 3074 DwVfpRegister double_scratch1, |
3165 Label* fail) { | 3075 Label* fail) { |
3166 if (CpuFeatures::IsSupported(VFP2)) { | 3076 Label key_ok; |
3167 CpuFeatureScope scope(masm, VFP2); | 3077 // Check for smi or a smi inside a heap number. We convert the heap |
3168 Label key_ok; | 3078 // number and check if the conversion is exact and fits into the smi |
3169 // Check for smi or a smi inside a heap number. We convert the heap | 3079 // range. |
3170 // number and check if the conversion is exact and fits into the smi | 3080 __ JumpIfSmi(key, &key_ok); |
3171 // range. | 3081 __ CheckMap(key, |
3172 __ JumpIfSmi(key, &key_ok); | 3082 scratch0, |
3173 __ CheckMap(key, | 3083 Heap::kHeapNumberMapRootIndex, |
3174 scratch0, | 3084 fail, |
3175 Heap::kHeapNumberMapRootIndex, | 3085 DONT_DO_SMI_CHECK); |
3176 fail, | 3086 __ sub(ip, key, Operand(kHeapObjectTag)); |
3177 DONT_DO_SMI_CHECK); | 3087 __ vldr(double_scratch0, ip, HeapNumber::kValueOffset); |
3178 __ sub(ip, key, Operand(kHeapObjectTag)); | 3088 __ TryDoubleToInt32Exact(scratch0, double_scratch0, double_scratch1); |
3179 __ vldr(double_scratch0, ip, HeapNumber::kValueOffset); | 3089 __ b(ne, fail); |
3180 __ TryDoubleToInt32Exact(scratch0, double_scratch0, double_scratch1); | 3090 __ TrySmiTag(scratch0, fail, scratch1); |
3181 __ b(ne, fail); | 3091 __ mov(key, scratch0); |
3182 __ TrySmiTag(scratch0, fail, scratch1); | 3092 __ bind(&key_ok); |
3183 __ mov(key, scratch0); | |
3184 __ bind(&key_ok); | |
3185 } else { | |
3186 // Check that the key is a smi. | |
3187 __ JumpIfNotSmi(key, fail); | |
3188 } | |
3189 } | 3093 } |
3190 | 3094 |
3191 | 3095 |
3192 void KeyedStoreStubCompiler::GenerateStoreExternalArray( | 3096 void KeyedStoreStubCompiler::GenerateStoreExternalArray( |
3193 MacroAssembler* masm, | 3097 MacroAssembler* masm, |
3194 ElementsKind elements_kind) { | 3098 ElementsKind elements_kind) { |
3195 // ---------- S t a t e -------------- | 3099 // ---------- S t a t e -------------- |
3196 // -- r0 : value | 3100 // -- r0 : value |
3197 // -- r1 : key | 3101 // -- r1 : key |
3198 // -- r2 : receiver | 3102 // -- r2 : receiver |
(...skipping 49 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3248 case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 3152 case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
3249 __ strh(r5, MemOperand(r3, key, LSL, 0)); | 3153 __ strh(r5, MemOperand(r3, key, LSL, 0)); |
3250 break; | 3154 break; |
3251 case EXTERNAL_INT_ELEMENTS: | 3155 case EXTERNAL_INT_ELEMENTS: |
3252 case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 3156 case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
3253 __ str(r5, MemOperand(r3, key, LSL, 1)); | 3157 __ str(r5, MemOperand(r3, key, LSL, 1)); |
3254 break; | 3158 break; |
3255 case EXTERNAL_FLOAT_ELEMENTS: | 3159 case EXTERNAL_FLOAT_ELEMENTS: |
3256 // Perform int-to-float conversion and store to memory. | 3160 // Perform int-to-float conversion and store to memory. |
3257 __ SmiUntag(r4, key); | 3161 __ SmiUntag(r4, key); |
3258 StoreIntAsFloat(masm, r3, r4, r5, r6, r7, r9); | 3162 StoreIntAsFloat(masm, r3, r4, r5, r7); |
3259 break; | 3163 break; |
3260 case EXTERNAL_DOUBLE_ELEMENTS: | 3164 case EXTERNAL_DOUBLE_ELEMENTS: |
3261 __ add(r3, r3, Operand(key, LSL, 2)); | 3165 __ add(r3, r3, Operand(key, LSL, 2)); |
3262 // r3: effective address of the double element | 3166 // r3: effective address of the double element |
3263 FloatingPointHelper::Destination destination; | 3167 FloatingPointHelper::Destination destination; |
3264 if (CpuFeatures::IsSupported(VFP2)) { | 3168 destination = FloatingPointHelper::kVFPRegisters; |
3265 destination = FloatingPointHelper::kVFPRegisters; | |
3266 } else { | |
3267 destination = FloatingPointHelper::kCoreRegisters; | |
3268 } | |
3269 FloatingPointHelper::ConvertIntToDouble( | 3169 FloatingPointHelper::ConvertIntToDouble( |
3270 masm, r5, destination, | 3170 masm, r5, destination, |
3271 d0, r6, r7, // These are: double_dst, dst_mantissa, dst_exponent. | 3171 d0, r6, r7, // These are: double_dst, dst_mantissa, dst_exponent. |
3272 r4, s2); // These are: scratch2, single_scratch. | 3172 r4, s2); // These are: scratch2, single_scratch. |
3273 if (destination == FloatingPointHelper::kVFPRegisters) { | 3173 __ vstr(d0, r3, 0); |
3274 CpuFeatureScope scope(masm, VFP2); | |
3275 __ vstr(d0, r3, 0); | |
3276 } else { | |
3277 __ str(r6, MemOperand(r3, 0)); | |
3278 __ str(r7, MemOperand(r3, Register::kSizeInBytes)); | |
3279 } | |
3280 break; | 3174 break; |
3281 case FAST_ELEMENTS: | 3175 case FAST_ELEMENTS: |
3282 case FAST_SMI_ELEMENTS: | 3176 case FAST_SMI_ELEMENTS: |
3283 case FAST_DOUBLE_ELEMENTS: | 3177 case FAST_DOUBLE_ELEMENTS: |
3284 case FAST_HOLEY_ELEMENTS: | 3178 case FAST_HOLEY_ELEMENTS: |
3285 case FAST_HOLEY_SMI_ELEMENTS: | 3179 case FAST_HOLEY_SMI_ELEMENTS: |
3286 case FAST_HOLEY_DOUBLE_ELEMENTS: | 3180 case FAST_HOLEY_DOUBLE_ELEMENTS: |
3287 case DICTIONARY_ELEMENTS: | 3181 case DICTIONARY_ELEMENTS: |
3288 case NON_STRICT_ARGUMENTS_ELEMENTS: | 3182 case NON_STRICT_ARGUMENTS_ELEMENTS: |
3289 UNREACHABLE(); | 3183 UNREACHABLE(); |
3290 break; | 3184 break; |
3291 } | 3185 } |
3292 | 3186 |
3293 // Entry registers are intact, r0 holds the value which is the return value. | 3187 // Entry registers are intact, r0 holds the value which is the return value. |
3294 __ Ret(); | 3188 __ Ret(); |
3295 | 3189 |
3296 if (elements_kind != EXTERNAL_PIXEL_ELEMENTS) { | 3190 if (elements_kind != EXTERNAL_PIXEL_ELEMENTS) { |
3297 // r3: external array. | 3191 // r3: external array. |
3298 __ bind(&check_heap_number); | 3192 __ bind(&check_heap_number); |
3299 __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE); | 3193 __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE); |
3300 __ b(ne, &slow); | 3194 __ b(ne, &slow); |
3301 | 3195 |
3302 __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); | 3196 __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); |
3303 | 3197 |
3304 // r3: base pointer of external storage. | 3198 // r3: base pointer of external storage. |
3305 | 3199 |
3306 // The WebGL specification leaves the behavior of storing NaN and | 3200 // The WebGL specification leaves the behavior of storing NaN and |
3307 // +/-Infinity into integer arrays basically undefined. For more | 3201 // +/-Infinity into integer arrays basically undefined. For more |
3308 // reproducible behavior, convert these to zero. | 3202 // reproducible behavior, convert these to zero. |
3309 if (CpuFeatures::IsSupported(VFP2)) { | |
3310 CpuFeatureScope scope(masm, VFP2); | |
3311 | 3203 |
3312 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { | 3204 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
3313 // vldr requires offset to be a multiple of 4 so we can not | 3205 // vldr requires offset to be a multiple of 4 so we can not |
3314 // include -kHeapObjectTag into it. | 3206 // include -kHeapObjectTag into it. |
3315 __ sub(r5, r0, Operand(kHeapObjectTag)); | 3207 __ sub(r5, r0, Operand(kHeapObjectTag)); |
3316 __ vldr(d0, r5, HeapNumber::kValueOffset); | 3208 __ vldr(d0, r5, HeapNumber::kValueOffset); |
3317 __ add(r5, r3, Operand(key, LSL, 1)); | 3209 __ add(r5, r3, Operand(key, LSL, 1)); |
3318 __ vcvt_f32_f64(s0, d0); | 3210 __ vcvt_f32_f64(s0, d0); |
3319 __ vstr(s0, r5, 0); | 3211 __ vstr(s0, r5, 0); |
3320 } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { | 3212 } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
3321 __ sub(r5, r0, Operand(kHeapObjectTag)); | 3213 __ sub(r5, r0, Operand(kHeapObjectTag)); |
3322 __ vldr(d0, r5, HeapNumber::kValueOffset); | 3214 __ vldr(d0, r5, HeapNumber::kValueOffset); |
3323 __ add(r5, r3, Operand(key, LSL, 2)); | 3215 __ add(r5, r3, Operand(key, LSL, 2)); |
3324 __ vstr(d0, r5, 0); | 3216 __ vstr(d0, r5, 0); |
3325 } else { | 3217 } else { |
3326 // Hoisted load. vldr requires offset to be a multiple of 4 so we can | 3218 // Hoisted load. vldr requires offset to be a multiple of 4 so we can |
3327 // not include -kHeapObjectTag into it. | 3219 // not include -kHeapObjectTag into it. |
3328 __ sub(r5, value, Operand(kHeapObjectTag)); | 3220 __ sub(r5, value, Operand(kHeapObjectTag)); |
3329 __ vldr(d0, r5, HeapNumber::kValueOffset); | 3221 __ vldr(d0, r5, HeapNumber::kValueOffset); |
3330 __ ECMAToInt32VFP(r5, d0, d1, r6, r7, r9); | 3222 __ ECMAToInt32(r5, d0, d1, r6, r7, r9); |
3331 | 3223 |
3332 switch (elements_kind) { | 3224 switch (elements_kind) { |
3333 case EXTERNAL_BYTE_ELEMENTS: | 3225 case EXTERNAL_BYTE_ELEMENTS: |
3334 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 3226 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
3335 __ strb(r5, MemOperand(r3, key, LSR, 1)); | 3227 __ strb(r5, MemOperand(r3, key, LSR, 1)); |
3336 break; | 3228 break; |
3337 case EXTERNAL_SHORT_ELEMENTS: | 3229 case EXTERNAL_SHORT_ELEMENTS: |
3338 case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 3230 case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
3339 __ strh(r5, MemOperand(r3, key, LSL, 0)); | 3231 __ strh(r5, MemOperand(r3, key, LSL, 0)); |
3340 break; | 3232 break; |
3341 case EXTERNAL_INT_ELEMENTS: | 3233 case EXTERNAL_INT_ELEMENTS: |
3342 case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 3234 case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
3343 __ str(r5, MemOperand(r3, key, LSL, 1)); | 3235 __ str(r5, MemOperand(r3, key, LSL, 1)); |
3344 break; | 3236 break; |
3345 case EXTERNAL_PIXEL_ELEMENTS: | 3237 case EXTERNAL_PIXEL_ELEMENTS: |
3346 case EXTERNAL_FLOAT_ELEMENTS: | 3238 case EXTERNAL_FLOAT_ELEMENTS: |
3347 case EXTERNAL_DOUBLE_ELEMENTS: | 3239 case EXTERNAL_DOUBLE_ELEMENTS: |
3348 case FAST_ELEMENTS: | 3240 case FAST_ELEMENTS: |
3349 case FAST_SMI_ELEMENTS: | 3241 case FAST_SMI_ELEMENTS: |
3350 case FAST_DOUBLE_ELEMENTS: | 3242 case FAST_DOUBLE_ELEMENTS: |
3351 case FAST_HOLEY_ELEMENTS: | 3243 case FAST_HOLEY_ELEMENTS: |
3352 case FAST_HOLEY_SMI_ELEMENTS: | 3244 case FAST_HOLEY_SMI_ELEMENTS: |
3353 case FAST_HOLEY_DOUBLE_ELEMENTS: | 3245 case FAST_HOLEY_DOUBLE_ELEMENTS: |
3354 case DICTIONARY_ELEMENTS: | 3246 case DICTIONARY_ELEMENTS: |
3355 case NON_STRICT_ARGUMENTS_ELEMENTS: | 3247 case NON_STRICT_ARGUMENTS_ELEMENTS: |
3356 UNREACHABLE(); | 3248 UNREACHABLE(); |
3357 break; | 3249 break; |
3358 } | |
3359 } | |
3360 | |
3361 // Entry registers are intact, r0 holds the value which is the return | |
3362 // value. | |
3363 __ Ret(); | |
3364 } else { | |
3365 // VFP3 is not available do manual conversions. | |
3366 __ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset)); | |
3367 __ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset)); | |
3368 | |
3369 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { | |
3370 Label done, nan_or_infinity_or_zero; | |
3371 static const int kMantissaInHiWordShift = | |
3372 kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; | |
3373 | |
3374 static const int kMantissaInLoWordShift = | |
3375 kBitsPerInt - kMantissaInHiWordShift; | |
3376 | |
3377 // Test for all special exponent values: zeros, subnormal numbers, NaNs | |
3378 // and infinities. All these should be converted to 0. | |
3379 __ mov(r7, Operand(HeapNumber::kExponentMask)); | |
3380 __ and_(r9, r5, Operand(r7), SetCC); | |
3381 __ b(eq, &nan_or_infinity_or_zero); | |
3382 | |
3383 __ teq(r9, Operand(r7)); | |
3384 __ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq); | |
3385 __ b(eq, &nan_or_infinity_or_zero); | |
3386 | |
3387 // Rebias exponent. | |
3388 __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift)); | |
3389 __ add(r9, | |
3390 r9, | |
3391 Operand(kBinary32ExponentBias - HeapNumber::kExponentBias)); | |
3392 | |
3393 __ cmp(r9, Operand(kBinary32MaxExponent)); | |
3394 __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt); | |
3395 __ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt); | |
3396 __ b(gt, &done); | |
3397 | |
3398 __ cmp(r9, Operand(kBinary32MinExponent)); | |
3399 __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt); | |
3400 __ b(lt, &done); | |
3401 | |
3402 __ and_(r7, r5, Operand(HeapNumber::kSignMask)); | |
3403 __ and_(r5, r5, Operand(HeapNumber::kMantissaMask)); | |
3404 __ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift)); | |
3405 __ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift)); | |
3406 __ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift)); | |
3407 | |
3408 __ bind(&done); | |
3409 __ str(r5, MemOperand(r3, key, LSL, 1)); | |
3410 // Entry registers are intact, r0 holds the value which is the return | |
3411 // value. | |
3412 __ Ret(); | |
3413 | |
3414 __ bind(&nan_or_infinity_or_zero); | |
3415 __ and_(r7, r5, Operand(HeapNumber::kSignMask)); | |
3416 __ and_(r5, r5, Operand(HeapNumber::kMantissaMask)); | |
3417 __ orr(r9, r9, r7); | |
3418 __ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift)); | |
3419 __ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift)); | |
3420 __ b(&done); | |
3421 } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { | |
3422 __ add(r7, r3, Operand(key, LSL, 2)); | |
3423 // r7: effective address of destination element. | |
3424 __ str(r6, MemOperand(r7, 0)); | |
3425 __ str(r5, MemOperand(r7, Register::kSizeInBytes)); | |
3426 __ Ret(); | |
3427 } else { | |
3428 bool is_signed_type = IsElementTypeSigned(elements_kind); | |
3429 int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt; | |
3430 int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000; | |
3431 | |
3432 Label done, sign; | |
3433 | |
3434 // Test for all special exponent values: zeros, subnormal numbers, NaNs | |
3435 // and infinities. All these should be converted to 0. | |
3436 __ mov(r7, Operand(HeapNumber::kExponentMask)); | |
3437 __ and_(r9, r5, Operand(r7), SetCC); | |
3438 __ mov(r5, Operand::Zero(), LeaveCC, eq); | |
3439 __ b(eq, &done); | |
3440 | |
3441 __ teq(r9, Operand(r7)); | |
3442 __ mov(r5, Operand::Zero(), LeaveCC, eq); | |
3443 __ b(eq, &done); | |
3444 | |
3445 // Unbias exponent. | |
3446 __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift)); | |
3447 __ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC); | |
3448 // If exponent is negative then result is 0. | |
3449 __ mov(r5, Operand::Zero(), LeaveCC, mi); | |
3450 __ b(mi, &done); | |
3451 | |
3452 // If exponent is too big then result is minimal value. | |
3453 __ cmp(r9, Operand(meaningfull_bits - 1)); | |
3454 __ mov(r5, Operand(min_value), LeaveCC, ge); | |
3455 __ b(ge, &done); | |
3456 | |
3457 __ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC); | |
3458 __ and_(r5, r5, Operand(HeapNumber::kMantissaMask)); | |
3459 __ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord)); | |
3460 | |
3461 __ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC); | |
3462 __ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl); | |
3463 __ b(pl, &sign); | |
3464 | |
3465 __ rsb(r9, r9, Operand::Zero()); | |
3466 __ mov(r5, Operand(r5, LSL, r9)); | |
3467 __ rsb(r9, r9, Operand(meaningfull_bits)); | |
3468 __ orr(r5, r5, Operand(r6, LSR, r9)); | |
3469 | |
3470 __ bind(&sign); | |
3471 __ teq(r7, Operand::Zero()); | |
3472 __ rsb(r5, r5, Operand::Zero(), LeaveCC, ne); | |
3473 | |
3474 __ bind(&done); | |
3475 switch (elements_kind) { | |
3476 case EXTERNAL_BYTE_ELEMENTS: | |
3477 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | |
3478 __ strb(r5, MemOperand(r3, key, LSR, 1)); | |
3479 break; | |
3480 case EXTERNAL_SHORT_ELEMENTS: | |
3481 case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | |
3482 __ strh(r5, MemOperand(r3, key, LSL, 0)); | |
3483 break; | |
3484 case EXTERNAL_INT_ELEMENTS: | |
3485 case EXTERNAL_UNSIGNED_INT_ELEMENTS: | |
3486 __ str(r5, MemOperand(r3, key, LSL, 1)); | |
3487 break; | |
3488 case EXTERNAL_PIXEL_ELEMENTS: | |
3489 case EXTERNAL_FLOAT_ELEMENTS: | |
3490 case EXTERNAL_DOUBLE_ELEMENTS: | |
3491 case FAST_ELEMENTS: | |
3492 case FAST_SMI_ELEMENTS: | |
3493 case FAST_DOUBLE_ELEMENTS: | |
3494 case FAST_HOLEY_ELEMENTS: | |
3495 case FAST_HOLEY_SMI_ELEMENTS: | |
3496 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
3497 case DICTIONARY_ELEMENTS: | |
3498 case NON_STRICT_ARGUMENTS_ELEMENTS: | |
3499 UNREACHABLE(); | |
3500 break; | |
3501 } | |
3502 } | 3250 } |
3503 } | 3251 } |
| 3252 |
| 3253 // Entry registers are intact, r0 holds the value which is the return |
| 3254 // value. |
| 3255 __ Ret(); |
3504 } | 3256 } |
3505 | 3257 |
3506 // Slow case, key and receiver still in r0 and r1. | 3258 // Slow case, key and receiver still in r0 and r1. |
3507 __ bind(&slow); | 3259 __ bind(&slow); |
3508 __ IncrementCounter( | 3260 __ IncrementCounter( |
3509 masm->isolate()->counters()->keyed_load_external_array_slow(), | 3261 masm->isolate()->counters()->keyed_load_external_array_slow(), |
3510 1, r2, r3); | 3262 1, r2, r3); |
3511 | 3263 |
3512 // ---------- S t a t e -------------- | 3264 // ---------- S t a t e -------------- |
3513 // -- lr : return address | 3265 // -- lr : return address |
(...skipping 334 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3848 TailCallBuiltin(masm, Builtins::kKeyedStoreIC_Slow); | 3600 TailCallBuiltin(masm, Builtins::kKeyedStoreIC_Slow); |
3849 } | 3601 } |
3850 } | 3602 } |
3851 | 3603 |
3852 | 3604 |
3853 #undef __ | 3605 #undef __ |
3854 | 3606 |
3855 } } // namespace v8::internal | 3607 } } // namespace v8::internal |
3856 | 3608 |
3857 #endif // V8_TARGET_ARCH_ARM | 3609 #endif // V8_TARGET_ARCH_ARM |
OLD | NEW |