Chromium Code Reviews| Index: third_party/base/nonstd_unique_ptr.h |
| diff --git a/third_party/base/nonstd_unique_ptr.h b/third_party/base/nonstd_unique_ptr.h |
| index 1d1c43f42fb4ac706cb1ce01795b03f986e6c58a..0038db15e28f7934ff17c448ae0ad38bd4db9739 100644 |
| --- a/third_party/base/nonstd_unique_ptr.h |
| +++ b/third_party/base/nonstd_unique_ptr.h |
| @@ -73,6 +73,11 @@ |
| #include <stddef.h> |
| #include <stdlib.h> |
| +#include <algorithm> |
|
Jeffrey Yasskin
2015/09/19 00:00:47
I don't see any uses of these two headers.
You ar
Lei Zhang
2015/09/23 00:38:56
Done.
|
| +#include <sstream> |
| + |
| +#include "template_util.h" |
| + |
| namespace nonstd { |
| // Replacement for move, but doesn't allow things that are already |
| @@ -82,47 +87,155 @@ T&& move(T& t) { |
| return static_cast<T&&>(t); |
| } |
| +// Function object which deletes its parameter, which must be a pointer. |
| +// If C is an array type, invokes 'delete[]' on the parameter; otherwise, |
| +// invokes 'delete'. The default deleter for scoped_ptr<T>. |
|
Jeffrey Yasskin
2015/09/19 00:00:47
s/scoped_ptr/unique_ptr/
Lei Zhang
2015/09/23 00:38:55
Done.
|
| +template <class T> |
| +struct DefaultDeleter { |
| + DefaultDeleter() {} |
| + template <typename U> |
| + DefaultDeleter(const DefaultDeleter<U>& other) { |
| + // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor |
| + // if U* is implicitly convertible to T* and U is not an array type. |
| + // |
| + // Correct implementation should use SFINAE to disable this |
| + // constructor. However, since there are no other 1-argument constructors, |
| + // using a static_assert() based on is_convertible<> and requiring |
| + // complete types is simpler and will cause compile failures for equivalent |
| + // misuses. |
| + // |
| + // Note, the is_convertible<U*, T*> check also ensures that U is not an |
| + // array. T is guaranteed to be a non-array, so any U* where U is an array |
| + // cannot convert to T*. |
| + enum { T_must_be_complete = sizeof(T) }; |
| + enum { U_must_be_complete = sizeof(U) }; |
| + static_assert((pdfium::base::is_convertible<U*, T*>::value), |
| + "U_ptr_must_implicitly_convert_to_T_ptr"); |
| + } |
| + inline void operator()(T* ptr) const { |
| + enum { type_must_be_complete = sizeof(T) }; |
| + delete ptr; |
| + } |
| +}; |
| + |
| +// Specialization of DefaultDeleter for array types. |
| +template <class T> |
| +struct DefaultDeleter<T[]> { |
| + inline void operator()(T* ptr) const { |
| + enum { type_must_be_complete = sizeof(T) }; |
| + delete[] ptr; |
| + } |
| + |
| + private: |
| + // Disable this operator for any U != T because it is undefined to execute |
| + // an array delete when the static type of the array mismatches the dynamic |
| + // type. |
| + // |
| + // References: |
| + // C++98 [expr.delete]p3 |
| + // http://cplusplus.github.com/LWG/lwg-defects.html#938 |
| + template <typename U> |
| + void operator()(U* array) const; |
| +}; |
| + |
| +template <class T, int n> |
| +struct DefaultDeleter<T[n]> { |
| + // Never allow someone to declare something like scoped_ptr<int[10]>. |
| + static_assert(sizeof(T) == -1, "do_not_use_array_with_size_as_type"); |
| +}; |
| + |
| +namespace internal { |
| + |
| +template <typename T> |
| +struct ShouldAbortOnSelfReset { |
|
Jeffrey Yasskin
2015/09/19 00:00:47
Can you drop this, and just use the C++11 behavior
Lei Zhang
2015/09/23 00:38:55
So, let the caller shoot themselves in the foot wi
Jeffrey Yasskin
2015/09/23 00:53:34
Yeah. ASan should save us in a lot of cases, and w
|
| + template <typename U> |
| + static pdfium::base::internal::NoType Test(const typename U::AllowSelfReset*); |
| + |
| + template <typename U> |
| + static pdfium::base::internal::YesType Test(...); |
| + |
| + static const bool value = |
| + sizeof(Test<T>(0)) == sizeof(pdfium::base::internal::YesType); |
| +}; |
| + |
| // Common implementation for both pointers to elements and pointers to |
| // arrays. These are differentiated below based on the need to invoke |
| // delete vs. delete[] as appropriate. |
| -template <class C> |
| +template <class C, class D> |
| class unique_ptr_base { |
| public: |
| - |
| // The element type |
| typedef C element_type; |
| - explicit unique_ptr_base(C* p) : ptr_(p) { } |
| + explicit unique_ptr_base(C* p) : data_(p) {} |
| + |
| + // Initializer for deleters that have data parameters. |
| + unique_ptr_base(C* p, const D& d) : data_(p, d) {} |
| // Move constructor. |
| - unique_ptr_base(unique_ptr_base<C>&& that) { |
| - ptr_ = that.ptr_; |
| - that.ptr_ = nullptr; |
| + unique_ptr_base(unique_ptr_base<C, D>&& that) |
| + : data_(that.release(), that.get_deleter()) {} |
| + |
| + ~unique_ptr_base() { |
| + enum { type_must_be_complete = sizeof(C) }; |
| + if (data_.ptr != nullptr) { |
| + // Not using get_deleter() saves one function call in non-optimized |
| + // builds. |
| + static_cast<D&>(data_)(data_.ptr); |
| + } |
| + } |
| + |
| + void reset(C* p = nullptr) { |
| + // This is a self-reset, which is no longer allowed for default deleters: |
| + // https://crbug.com/162971 |
| + assert(!ShouldAbortOnSelfReset<D>::value || p == nullptr || p != data_.ptr); |
| + |
| + // Note that running data_.ptr = p can lead to undefined behavior if |
| + // get_deleter()(get()) deletes this. In order to prevent this, reset() |
| + // should update the stored pointer before deleting its old value. |
| + // |
| + // However, changing reset() to use that behavior may cause current code to |
| + // break in unexpected ways. If the destruction of the owned object |
| + // dereferences the scoped_ptr when it is destroyed by a call to reset(), |
| + // then it will incorrectly dispatch calls to |p| rather than the original |
| + // value of |data_.ptr|. |
| + // |
| + // During the transition period, set the stored pointer to nullptr while |
| + // deleting the object. Eventually, this safety check will be removed to |
| + // prevent the scenario initially described from occuring and |
| + // http://crbug.com/176091 can be closed. |
| + C* old = data_.ptr; |
| + data_.ptr = nullptr; |
| + if (old != nullptr) |
| + static_cast<D&>(data_)(old); |
| + data_.ptr = p; |
| } |
| // Accessors to get the owned object. |
| // operator* and operator-> will assert() if there is no current object. |
| C& operator*() const { |
|
Jeffrey Yasskin
2015/09/19 00:00:47
Could you disable unique_ptr<T[]>::operator* and o
Lei Zhang
2015/09/23 00:38:55
Moved out of the base impl.
|
| - assert(ptr_ != NULL); |
| - return *ptr_; |
| + assert(data_.ptr != nullptr); |
| + return *data_.ptr; |
| } |
| C* operator->() const { |
| - assert(ptr_ != NULL); |
| - return ptr_; |
| + assert(data_.ptr != nullptr); |
| + return data_.ptr; |
| } |
| - C* get() const { return ptr_; } |
| + C* get() const { return data_.ptr; } |
| + D& get_deleter() { return data_; } |
| + const D& get_deleter() const { return data_; } |
| // Comparison operators. |
| // These return whether two unique_ptr refer to the same object, not just to |
| // two different but equal objects. |
| - bool operator==(C* p) const { return ptr_ == p; } |
| - bool operator!=(C* p) const { return ptr_ != p; } |
| + bool operator==(C* p) const { return data_.ptr == p; } |
| + bool operator!=(C* p) const { return data_.ptr != p; } |
| // Swap two scoped pointers. |
| void swap(unique_ptr_base& p2) { |
| - C* tmp = ptr_; |
| - ptr_ = p2.ptr_; |
| - p2.ptr_ = tmp; |
| + Data tmp = data_; |
| + data_ = p2.data_; |
| + p2.data_ = tmp; |
| } |
| // Release a pointer. |
| @@ -131,58 +244,58 @@ class unique_ptr_base { |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| C* release() { |
| - C* retVal = ptr_; |
| - ptr_ = NULL; |
| - return retVal; |
| + C* ptr = data_.ptr; |
| + data_.ptr = nullptr; |
| + return ptr; |
| } |
| // Allow promotion to bool for conditional statements. |
| - explicit operator bool() const { return ptr_ != NULL; } |
| + explicit operator bool() const { return data_.ptr != nullptr; } |
| protected: |
| - C* ptr_; |
| + // Use the empty base class optimization to allow us to have a D |
| + // member, while avoiding any space overhead for it when D is an |
| + // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good |
| + // discussion of this technique. |
| + struct Data : public D { |
| + explicit Data(C* ptr_in) : ptr(ptr_in) {} |
| + Data(C* ptr_in, const D& other) : D(other), ptr(ptr_in) {} |
| + C* ptr; |
| + }; |
| + |
| + Data data_; |
| }; |
| +} // namespace internal |
| + |
| // Implementation for ordinary pointers using delete. |
| -template <class C> |
| -class unique_ptr : public unique_ptr_base<C> { |
| +template <class C, class D = DefaultDeleter<C>> |
| +class unique_ptr : public internal::unique_ptr_base<C, D> { |
| public: |
| - using unique_ptr_base<C>::ptr_; |
| + // Constructor. Defaults to initializing with nullptr. |
| + unique_ptr() : internal::unique_ptr_base<C, D>(nullptr) {} |
| - // Constructor. Defaults to initializing with NULL. There is no way |
| - // to create an uninitialized unique_ptr. The input parameter must be |
| - // allocated with new (not new[] - see below). |
| - explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { } |
| + // Constructor. Takes ownership of p. |
| + explicit unique_ptr(C* p) : internal::unique_ptr_base<C, D>(p) {} |
| - // Move constructor. |
| - unique_ptr(unique_ptr<C>&& that) : unique_ptr_base<C>(nonstd::move(that)) {} |
| + // Constructor. Allows initialization of a stateful deleter. |
| + unique_ptr(C* p, const D& d) : internal::unique_ptr_base<C, D>(p, d) {} |
|
Jeffrey Yasskin
2015/09/19 00:00:47
This isn't quite the same as C++11, but it should
Lei Zhang
2015/09/23 00:38:55
Acknowledged.
|
| - // Destructor. If there is a C object, delete it. |
| - // We don't need to test ptr_ == NULL because C++ does that for us. |
| - ~unique_ptr() { |
| - enum { type_must_be_complete = sizeof(C) }; |
| - delete ptr_; |
| - } |
| + // Constructor. Allows construction from a nullptr. |
| + unique_ptr(decltype(nullptr)) : internal::unique_ptr_base<C, D>(nullptr) {} |
| - // Reset. Deletes the current owned object, if any. |
| - // Then takes ownership of a new object, if given. |
| - // this->reset(this->get()) works. |
| - void reset(C* p = NULL) { |
| - if (p != ptr_) { |
| - enum { type_must_be_complete = sizeof(C) }; |
| - C* old_ptr = ptr_; |
| - ptr_ = p; |
| - delete old_ptr; |
| - } |
| + // Move constructor. |
| + unique_ptr(unique_ptr&& that) |
| + : internal::unique_ptr_base<C, D>(nonstd::move(that)) {} |
| + |
| + // operator=. Allows assignment from a nullptr. Deletes the currently owned |
| + // object, if any. |
| + unique_ptr& operator=(decltype(nullptr)) { |
| + this->reset(); |
| + return *this; |
| } |
| -private: |
| - // Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't |
| - // make sense, and if C2 == C, it still doesn't make sense because you should |
| - // never have the same object owned by two different unique_ptrs. |
| - template <class C2> bool operator==(unique_ptr<C2> const& p2) const; |
| - template <class C2> bool operator!=(unique_ptr<C2> const& p2) const; |
| - |
| + private: |
| // Disallow evil constructors. It doesn't make sense to make a copy of |
| // something that's allegedly unique. |
| unique_ptr(const unique_ptr&) = delete; |
| @@ -190,48 +303,43 @@ private: |
| }; |
| // Specialization for arrays using delete[]. |
| -template <class C> |
| -class unique_ptr<C[]> : public unique_ptr_base<C> { |
| +template <class C, class D> |
| +class unique_ptr<C[], D> : public internal::unique_ptr_base<C, D> { |
| public: |
| - using unique_ptr_base<C>::ptr_; |
| - |
| - // Constructor. Defaults to initializing with NULL. There is no way |
| - // to create an uninitialized unique_ptr. The input parameter must be |
| - // allocated with new[] (not new - see above). |
| - explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { } |
| + // Constructor. Defaults to initializing with nullptr. |
| + unique_ptr() : internal::unique_ptr_base<C, D>(nullptr) {} |
| + |
| + // Constructor. Stores the given array. Note that the argument's type |
| + // must exactly match T*. In particular: |
| + // - it cannot be a pointer to a type derived from T, because it is |
| + // inherently unsafe in the general case to access an array through a |
| + // pointer whose dynamic type does not match its static type (eg., if |
| + // T and the derived types had different sizes access would be |
| + // incorrectly calculated). Deletion is also always undefined |
| + // (C++98 [expr.delete]p3). If you're doing this, fix your code. |
| + // - it cannot be const-qualified differently from T per unique_ptr spec |
| + // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting |
| + // to work around this may use const_cast<const T*>(). |
| + explicit unique_ptr(C* p) : internal::unique_ptr_base<C, D>(p) {} |
|
Jeffrey Yasskin
2015/09/19 00:00:48
You need to also copy the "template <typename U> e
Lei Zhang
2015/09/23 00:38:55
Done.
|
| + |
| + // Constructor. Allows construction from a nullptr. |
| + unique_ptr(decltype(nullptr)) : internal::unique_ptr_base<C, D>(nullptr) {} |
| // Move constructor. |
| - unique_ptr(unique_ptr<C>&& that) : unique_ptr_base<C>(nonstd::move(that)) {} |
| - |
| - // Destructor. If there is a C object, delete it. |
| - // We don't need to test ptr_ == NULL because C++ does that for us. |
| - ~unique_ptr() { |
| - enum { type_must_be_complete = sizeof(C) }; |
| - delete[] ptr_; |
| - } |
| - |
| - // Reset. Deletes the current owned object, if any. |
| - // Then takes ownership of a new object, if given. |
| - // this->reset(this->get()) works. |
| - void reset(C* p = NULL) { |
| - if (p != ptr_) { |
| - enum { type_must_be_complete = sizeof(C) }; |
| - C* old_ptr = ptr_; |
| - ptr_ = p; |
| - delete[] old_ptr; |
| - } |
| + unique_ptr(unique_ptr&& that) |
| + : internal::unique_ptr_base<C, D>(nonstd::move(that)) {} |
| + |
| + // operator=. Allows assignment from a nullptr. Deletes the currently owned |
| + // array, if any. |
| + unique_ptr& operator=(decltype(nullptr)) { |
| + this->reset(); |
| + return *this; |
| } |
| // Support indexing since it is holding array. |
| - C& operator[] (size_t i) { return ptr_[i]; } |
| - |
| -private: |
| - // Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't |
| - // make sense, and if C2 == C, it still doesn't make sense because you should |
| - // never have the same object owned by two different unique_ptrs. |
| - template <class C2> bool operator==(unique_ptr<C2> const& p2) const; |
| - template <class C2> bool operator!=(unique_ptr<C2> const& p2) const; |
| + C& operator[](size_t i) { return this->data_.ptr[i]; } |
| + private: |
| // Disallow evil constructors. It doesn't make sense to make a copy of |
| // something that's allegedly unique. |
| unique_ptr(const unique_ptr&) = delete; |
| @@ -254,6 +362,11 @@ bool operator!=(C* p1, const unique_ptr<C>& p2) { |
| return p1 != p2.get(); |
| } |
| +template <typename T> |
| +std::ostream& operator<<(std::ostream& out, const unique_ptr<T>& p) { |
| + return out << p.get(); |
| +} |
| + |
| } // namespace nonstd |
| #endif // NONSTD_UNIQUE_PTR_H_ |