Index: third_party/base/nonstd_unique_ptr.h |
diff --git a/third_party/base/nonstd_unique_ptr.h b/third_party/base/nonstd_unique_ptr.h |
index d666e1eeb2586d093a496cd29eaf51f2a37d7c9a..f519b345b10b151726f6add20374a6df0e017450 100644 |
--- a/third_party/base/nonstd_unique_ptr.h |
+++ b/third_party/base/nonstd_unique_ptr.h |
@@ -73,6 +73,10 @@ |
#include <stddef.h> |
#include <stdlib.h> |
+#include <ostream> |
+ |
+#include "template_util.h" |
+ |
namespace nonstd { |
// Replacement for move, but doesn't allow things that are already |
@@ -82,47 +86,114 @@ T&& move(T& t) { |
return static_cast<T&&>(t); |
} |
+// Function object which deletes its parameter, which must be a pointer. |
+// If C is an array type, invokes 'delete[]' on the parameter; otherwise, |
+// invokes 'delete'. The default deleter for unique_ptr<T>. |
+template <class T> |
+struct DefaultDeleter { |
+ DefaultDeleter() {} |
+ template <typename U> |
+ DefaultDeleter(const DefaultDeleter<U>& other) { |
+ // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor |
+ // if U* is implicitly convertible to T* and U is not an array type. |
+ // |
+ // Correct implementation should use SFINAE to disable this |
+ // constructor. However, since there are no other 1-argument constructors, |
+ // using a static_assert() based on is_convertible<> and requiring |
+ // complete types is simpler and will cause compile failures for equivalent |
+ // misuses. |
+ // |
+ // Note, the is_convertible<U*, T*> check also ensures that U is not an |
+ // array. T is guaranteed to be a non-array, so any U* where U is an array |
+ // cannot convert to T*. |
+ enum { T_must_be_complete = sizeof(T) }; |
+ enum { U_must_be_complete = sizeof(U) }; |
+ static_assert((pdfium::base::is_convertible<U*, T*>::value), |
+ "U_ptr_must_implicitly_convert_to_T_ptr"); |
+ } |
+ inline void operator()(T* ptr) const { |
+ enum { type_must_be_complete = sizeof(T) }; |
+ delete ptr; |
+ } |
+}; |
+ |
+// Specialization of DefaultDeleter for array types. |
+template <class T> |
+struct DefaultDeleter<T[]> { |
+ inline void operator()(T* ptr) const { |
+ enum { type_must_be_complete = sizeof(T) }; |
+ delete[] ptr; |
+ } |
+ |
+ private: |
+ // Disable this operator for any U != T because it is undefined to execute |
+ // an array delete when the static type of the array mismatches the dynamic |
+ // type. |
+ // |
+ // References: |
+ // C++98 [expr.delete]p3 |
+ // http://cplusplus.github.com/LWG/lwg-defects.html#938 |
+ template <typename U> |
+ void operator()(U* array) const; |
+}; |
+ |
+template <class T, int n> |
+struct DefaultDeleter<T[n]> { |
+ // Never allow someone to declare something like unique_ptr<int[10]>. |
+ static_assert(sizeof(T) == -1, "do_not_use_array_with_size_as_type"); |
+}; |
+ |
+namespace internal { |
+ |
// Common implementation for both pointers to elements and pointers to |
// arrays. These are differentiated below based on the need to invoke |
// delete vs. delete[] as appropriate. |
-template <class C> |
+template <class C, class D> |
class unique_ptr_base { |
public: |
- |
// The element type |
typedef C element_type; |
- explicit unique_ptr_base(C* p) : ptr_(p) { } |
+ explicit unique_ptr_base(C* p) : data_(p) {} |
+ |
+ // Initializer for deleters that have data parameters. |
+ unique_ptr_base(C* p, const D& d) : data_(p, d) {} |
// Move constructor. |
- unique_ptr_base(unique_ptr_base<C>&& that) { |
- ptr_ = that.ptr_; |
- that.ptr_ = nullptr; |
- } |
+ unique_ptr_base(unique_ptr_base<C, D>&& that) |
+ : data_(that.release(), that.get_deleter()) {} |
- // Accessors to get the owned object. |
- // operator* and operator-> will assert() if there is no current object. |
- C& operator*() const { |
- assert(ptr_ != NULL); |
- return *ptr_; |
+ ~unique_ptr_base() { |
+ enum { type_must_be_complete = sizeof(C) }; |
+ if (data_.ptr != nullptr) { |
+ // Not using get_deleter() saves one function call in non-optimized |
+ // builds. |
+ static_cast<D&>(data_)(data_.ptr); |
+ } |
} |
- C* operator->() const { |
- assert(ptr_ != NULL); |
- return ptr_; |
+ |
+ void reset(C* p = nullptr) { |
+ C* old = data_.ptr; |
+ data_.ptr = p; |
+ if (old != nullptr) |
+ static_cast<D&>(data_)(old); |
} |
- C* get() const { return ptr_; } |
+ |
+ C* get() const { return data_.ptr; } |
+ D& get_deleter() { return data_; } |
+ const D& get_deleter() const { return data_; } |
// Comparison operators. |
// These return whether two unique_ptr refer to the same object, not just to |
// two different but equal objects. |
- bool operator==(C* p) const { return ptr_ == p; } |
- bool operator!=(C* p) const { return ptr_ != p; } |
+ bool operator==(C* p) const { return data_.ptr == p; } |
+ bool operator!=(C* p) const { return data_.ptr != p; } |
- // Swap two scoped pointers. |
+ // Swap two unique pointers. |
void swap(unique_ptr_base& p2) { |
- C* tmp = ptr_; |
- ptr_ = p2.ptr_; |
- p2.ptr_ = tmp; |
+ Data tmp = data_; |
+ data_ = p2.data_; |
+ p2.data_ = tmp; |
} |
// Release a pointer. |
@@ -131,125 +202,180 @@ class unique_ptr_base { |
// After this operation, this object will hold a NULL pointer, |
// and will not own the object any more. |
C* release() { |
- C* retVal = ptr_; |
- ptr_ = NULL; |
- return retVal; |
+ C* ptr = data_.ptr; |
+ data_.ptr = nullptr; |
+ return ptr; |
} |
// Allow promotion to bool for conditional statements. |
- explicit operator bool() const { return ptr_ != NULL; } |
+ explicit operator bool() const { return data_.ptr != nullptr; } |
protected: |
- C* ptr_; |
+ // Use the empty base class optimization to allow us to have a D |
+ // member, while avoiding any space overhead for it when D is an |
+ // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good |
+ // discussion of this technique. |
+ struct Data : public D { |
+ explicit Data(C* ptr_in) : ptr(ptr_in) {} |
+ Data(C* ptr_in, const D& other) : D(other), ptr(ptr_in) {} |
+ C* ptr; |
+ }; |
+ |
+ Data data_; |
}; |
+} // namespace internal |
+ |
// Implementation for ordinary pointers using delete. |
-template <class C> |
-class unique_ptr : public unique_ptr_base<C> { |
+template <class C, class D = DefaultDeleter<C>> |
+class unique_ptr : public internal::unique_ptr_base<C, D> { |
public: |
- using unique_ptr_base<C>::ptr_; |
+ // Constructor. Defaults to initializing with nullptr. |
+ unique_ptr() : internal::unique_ptr_base<C, D>(nullptr) {} |
- // Constructor. Defaults to initializing with NULL. There is no way |
- // to create an uninitialized unique_ptr. The input parameter must be |
- // allocated with new (not new[] - see below). |
- explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { } |
+ // Constructor. Takes ownership of p. |
+ explicit unique_ptr(C* p) : internal::unique_ptr_base<C, D>(p) {} |
- // Move constructor. |
- unique_ptr(unique_ptr<C>&& that) : unique_ptr_base<C>(nonstd::move(that)) {} |
+ // Constructor. Allows initialization of a stateful deleter. |
+ unique_ptr(C* p, const D& d) : internal::unique_ptr_base<C, D>(p, d) {} |
- // Destructor. If there is a C object, delete it. |
- // We don't need to test ptr_ == NULL because C++ does that for us. |
- ~unique_ptr() { |
- enum { type_must_be_complete = sizeof(C) }; |
- delete ptr_; |
- } |
+ // Constructor. Allows construction from a nullptr. |
+ unique_ptr(decltype(nullptr)) : internal::unique_ptr_base<C, D>(nullptr) {} |
- // Reset. Deletes the current owned object, if any. |
- // Then takes ownership of a new object, if given. |
- // this->reset(this->get()) works. |
- void reset(C* p = NULL) { |
- if (p != ptr_) { |
- enum { type_must_be_complete = sizeof(C) }; |
- C* old_ptr = ptr_; |
- ptr_ = p; |
- delete old_ptr; |
- } |
+ // Move constructor. |
+ unique_ptr(unique_ptr&& that) |
+ : internal::unique_ptr_base<C, D>(nonstd::move(that)) {} |
+ |
+ // operator=. Allows assignment from a nullptr. Deletes the currently owned |
+ // object, if any. |
+ unique_ptr& operator=(decltype(nullptr)) { |
+ this->reset(); |
+ return *this; |
} |
// Move assignment. |
unique_ptr<C>& operator=(unique_ptr<C>&& that) { |
- if (that.ptr_ != ptr_) |
- reset(that.release()); |
+ this->reset(that.release()); |
return *this; |
} |
-private: |
- // Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't |
- // make sense, and if C2 == C, it still doesn't make sense because you should |
- // never have the same object owned by two different unique_ptrs. |
- template <class C2> bool operator==(unique_ptr<C2> const& p2) const; |
- template <class C2> bool operator!=(unique_ptr<C2> const& p2) const; |
+ // Accessors to get the owned object. |
+ // operator* and operator-> will assert() if there is no current object. |
+ C& operator*() const { |
+ assert(this->data_.ptr != nullptr); |
+ return *this->data_.ptr; |
+ } |
+ C* operator->() const { |
+ assert(this->data_.ptr != nullptr); |
+ return this->data_.ptr; |
+ } |
+ |
+ // Comparison operators. |
+ // These return whether two unique_ptr refer to the same object, not just to |
+ // two different but equal objects. |
+ bool operator==(const C* p) const { return this->get() == p; } |
+ bool operator!=(const C* p) const { return this->get() != p; } |
+ private: |
// Disallow evil constructors. It doesn't make sense to make a copy of |
// something that's allegedly unique. |
unique_ptr(const unique_ptr&) = delete; |
void operator=(const unique_ptr&) = delete; |
+ |
+ // Forbid comparison of unique_ptr types. If U != C, it totally |
+ // doesn't make sense, and if U == C, it still doesn't make sense |
+ // because you should never have the same object owned by two different |
+ // unique_ptrs. |
+ template <class U> |
+ bool operator==(unique_ptr<U> const& p2) const; |
+ template <class U> |
+ bool operator!=(unique_ptr<U> const& p2) const; |
}; |
// Specialization for arrays using delete[]. |
-template <class C> |
-class unique_ptr<C[]> : public unique_ptr_base<C> { |
+template <class C, class D> |
+class unique_ptr<C[], D> : public internal::unique_ptr_base<C, D> { |
public: |
- using unique_ptr_base<C>::ptr_; |
- |
- // Constructor. Defaults to initializing with NULL. There is no way |
- // to create an uninitialized unique_ptr. The input parameter must be |
- // allocated with new[] (not new - see above). |
- explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { } |
+ // Constructor. Defaults to initializing with nullptr. |
+ unique_ptr() : internal::unique_ptr_base<C, D>(nullptr) {} |
+ |
+ // Constructor. Stores the given array. Note that the argument's type |
+ // must exactly match T*. In particular: |
+ // - it cannot be a pointer to a type derived from T, because it is |
+ // inherently unsafe in the general case to access an array through a |
+ // pointer whose dynamic type does not match its static type (eg., if |
+ // T and the derived types had different sizes access would be |
+ // incorrectly calculated). Deletion is also always undefined |
+ // (C++98 [expr.delete]p3). If you're doing this, fix your code. |
+ // - it cannot be const-qualified differently from T per unique_ptr spec |
+ // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting |
+ // to work around this may use const_cast<const T*>(). |
+ explicit unique_ptr(C* p) : internal::unique_ptr_base<C, D>(p) {} |
+ |
+ // Constructor. Allows construction from a nullptr. |
+ unique_ptr(decltype(nullptr)) : internal::unique_ptr_base<C, D>(nullptr) {} |
// Move constructor. |
- unique_ptr(unique_ptr<C>&& that) : unique_ptr_base<C>(nonstd::move(that)) {} |
+ unique_ptr(unique_ptr&& that) |
+ : internal::unique_ptr_base<C, D>(nonstd::move(that)) {} |
- // Destructor. If there is a C object, delete it. |
- // We don't need to test ptr_ == NULL because C++ does that for us. |
- ~unique_ptr() { |
- enum { type_must_be_complete = sizeof(C) }; |
- delete[] ptr_; |
- } |
- |
- // Reset. Deletes the current owned object, if any. |
- // Then takes ownership of a new object, if given. |
- // this->reset(this->get()) works. |
- void reset(C* p = NULL) { |
- if (p != ptr_) { |
- enum { type_must_be_complete = sizeof(C) }; |
- C* old_ptr = ptr_; |
- ptr_ = p; |
- delete[] old_ptr; |
- } |
+ // operator=. Allows assignment from a nullptr. Deletes the currently owned |
+ // array, if any. |
+ unique_ptr& operator=(decltype(nullptr)) { |
+ this->reset(); |
+ return *this; |
} |
// Move assignment. |
unique_ptr<C>& operator=(unique_ptr<C>&& that) { |
- if (that.ptr_ != ptr_) |
- reset(that.release()); |
+ this->reset(that.release()); |
return *this; |
} |
+ // Reset. Deletes the currently owned array, if any. |
+ // Then takes ownership of a new object, if given. |
+ void reset(C* array = nullptr) { |
+ static_cast<internal::unique_ptr_base<C, D>*>(this)->reset(array); |
+ } |
+ |
// Support indexing since it is holding array. |
- C& operator[] (size_t i) { return ptr_[i]; } |
+ C& operator[](size_t i) { return this->data_.ptr[i]; } |
-private: |
- // Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't |
- // make sense, and if C2 == C, it still doesn't make sense because you should |
- // never have the same object owned by two different unique_ptrs. |
- template <class C2> bool operator==(unique_ptr<C2> const& p2) const; |
- template <class C2> bool operator!=(unique_ptr<C2> const& p2) const; |
+ // Comparison operators. |
+ // These return whether two unique_ptr refer to the same object, not just to |
+ // two different but equal objects. |
+ bool operator==(C* array) const { return this->get() == array; } |
+ bool operator!=(C* array) const { return this->get() != array; } |
+ |
+ private: |
+ // Disable initialization from any type other than element_type*, by |
+ // providing a constructor that matches such an initialization, but is |
+ // private and has no definition. This is disabled because it is not safe to |
+ // call delete[] on an array whose static type does not match its dynamic |
+ // type. |
+ template <typename U> |
+ explicit unique_ptr(U* array); |
+ explicit unique_ptr(int disallow_construction_from_null); |
+ |
+ // Disable reset() from any type other than element_type*, for the same |
+ // reasons as the constructor above. |
+ template <typename U> |
+ void reset(U* array); |
+ void reset(int disallow_reset_from_null); |
// Disallow evil constructors. It doesn't make sense to make a copy of |
// something that's allegedly unique. |
unique_ptr(const unique_ptr&) = delete; |
void operator=(const unique_ptr&) = delete; |
+ |
+ // Forbid comparison of unique_ptr types. If U != C, it totally |
+ // doesn't make sense, and if U == C, it still doesn't make sense |
+ // because you should never have the same object owned by two different |
+ // unique_ptrs. |
+ template <class U> |
+ bool operator==(unique_ptr<U> const& p2) const; |
+ template <class U> |
+ bool operator!=(unique_ptr<U> const& p2) const; |
}; |
// Free functions |
@@ -268,6 +394,11 @@ bool operator!=(C* p1, const unique_ptr<C>& p2) { |
return p1 != p2.get(); |
} |
+template <typename T> |
+std::ostream& operator<<(std::ostream& out, const unique_ptr<T>& p) { |
+ return out << p.get(); |
+} |
+ |
} // namespace nonstd |
#endif // NONSTD_UNIQUE_PTR_H_ |