| Index: third_party/base/nonstd_unique_ptr.h
|
| diff --git a/third_party/base/nonstd_unique_ptr.h b/third_party/base/nonstd_unique_ptr.h
|
| index d666e1eeb2586d093a496cd29eaf51f2a37d7c9a..f519b345b10b151726f6add20374a6df0e017450 100644
|
| --- a/third_party/base/nonstd_unique_ptr.h
|
| +++ b/third_party/base/nonstd_unique_ptr.h
|
| @@ -73,6 +73,10 @@
|
| #include <stddef.h>
|
| #include <stdlib.h>
|
|
|
| +#include <ostream>
|
| +
|
| +#include "template_util.h"
|
| +
|
| namespace nonstd {
|
|
|
| // Replacement for move, but doesn't allow things that are already
|
| @@ -82,47 +86,114 @@ T&& move(T& t) {
|
| return static_cast<T&&>(t);
|
| }
|
|
|
| +// Function object which deletes its parameter, which must be a pointer.
|
| +// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
|
| +// invokes 'delete'. The default deleter for unique_ptr<T>.
|
| +template <class T>
|
| +struct DefaultDeleter {
|
| + DefaultDeleter() {}
|
| + template <typename U>
|
| + DefaultDeleter(const DefaultDeleter<U>& other) {
|
| + // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
|
| + // if U* is implicitly convertible to T* and U is not an array type.
|
| + //
|
| + // Correct implementation should use SFINAE to disable this
|
| + // constructor. However, since there are no other 1-argument constructors,
|
| + // using a static_assert() based on is_convertible<> and requiring
|
| + // complete types is simpler and will cause compile failures for equivalent
|
| + // misuses.
|
| + //
|
| + // Note, the is_convertible<U*, T*> check also ensures that U is not an
|
| + // array. T is guaranteed to be a non-array, so any U* where U is an array
|
| + // cannot convert to T*.
|
| + enum { T_must_be_complete = sizeof(T) };
|
| + enum { U_must_be_complete = sizeof(U) };
|
| + static_assert((pdfium::base::is_convertible<U*, T*>::value),
|
| + "U_ptr_must_implicitly_convert_to_T_ptr");
|
| + }
|
| + inline void operator()(T* ptr) const {
|
| + enum { type_must_be_complete = sizeof(T) };
|
| + delete ptr;
|
| + }
|
| +};
|
| +
|
| +// Specialization of DefaultDeleter for array types.
|
| +template <class T>
|
| +struct DefaultDeleter<T[]> {
|
| + inline void operator()(T* ptr) const {
|
| + enum { type_must_be_complete = sizeof(T) };
|
| + delete[] ptr;
|
| + }
|
| +
|
| + private:
|
| + // Disable this operator for any U != T because it is undefined to execute
|
| + // an array delete when the static type of the array mismatches the dynamic
|
| + // type.
|
| + //
|
| + // References:
|
| + // C++98 [expr.delete]p3
|
| + // http://cplusplus.github.com/LWG/lwg-defects.html#938
|
| + template <typename U>
|
| + void operator()(U* array) const;
|
| +};
|
| +
|
| +template <class T, int n>
|
| +struct DefaultDeleter<T[n]> {
|
| + // Never allow someone to declare something like unique_ptr<int[10]>.
|
| + static_assert(sizeof(T) == -1, "do_not_use_array_with_size_as_type");
|
| +};
|
| +
|
| +namespace internal {
|
| +
|
| // Common implementation for both pointers to elements and pointers to
|
| // arrays. These are differentiated below based on the need to invoke
|
| // delete vs. delete[] as appropriate.
|
| -template <class C>
|
| +template <class C, class D>
|
| class unique_ptr_base {
|
| public:
|
| -
|
| // The element type
|
| typedef C element_type;
|
|
|
| - explicit unique_ptr_base(C* p) : ptr_(p) { }
|
| + explicit unique_ptr_base(C* p) : data_(p) {}
|
| +
|
| + // Initializer for deleters that have data parameters.
|
| + unique_ptr_base(C* p, const D& d) : data_(p, d) {}
|
|
|
| // Move constructor.
|
| - unique_ptr_base(unique_ptr_base<C>&& that) {
|
| - ptr_ = that.ptr_;
|
| - that.ptr_ = nullptr;
|
| - }
|
| + unique_ptr_base(unique_ptr_base<C, D>&& that)
|
| + : data_(that.release(), that.get_deleter()) {}
|
|
|
| - // Accessors to get the owned object.
|
| - // operator* and operator-> will assert() if there is no current object.
|
| - C& operator*() const {
|
| - assert(ptr_ != NULL);
|
| - return *ptr_;
|
| + ~unique_ptr_base() {
|
| + enum { type_must_be_complete = sizeof(C) };
|
| + if (data_.ptr != nullptr) {
|
| + // Not using get_deleter() saves one function call in non-optimized
|
| + // builds.
|
| + static_cast<D&>(data_)(data_.ptr);
|
| + }
|
| }
|
| - C* operator->() const {
|
| - assert(ptr_ != NULL);
|
| - return ptr_;
|
| +
|
| + void reset(C* p = nullptr) {
|
| + C* old = data_.ptr;
|
| + data_.ptr = p;
|
| + if (old != nullptr)
|
| + static_cast<D&>(data_)(old);
|
| }
|
| - C* get() const { return ptr_; }
|
| +
|
| + C* get() const { return data_.ptr; }
|
| + D& get_deleter() { return data_; }
|
| + const D& get_deleter() const { return data_; }
|
|
|
| // Comparison operators.
|
| // These return whether two unique_ptr refer to the same object, not just to
|
| // two different but equal objects.
|
| - bool operator==(C* p) const { return ptr_ == p; }
|
| - bool operator!=(C* p) const { return ptr_ != p; }
|
| + bool operator==(C* p) const { return data_.ptr == p; }
|
| + bool operator!=(C* p) const { return data_.ptr != p; }
|
|
|
| - // Swap two scoped pointers.
|
| + // Swap two unique pointers.
|
| void swap(unique_ptr_base& p2) {
|
| - C* tmp = ptr_;
|
| - ptr_ = p2.ptr_;
|
| - p2.ptr_ = tmp;
|
| + Data tmp = data_;
|
| + data_ = p2.data_;
|
| + p2.data_ = tmp;
|
| }
|
|
|
| // Release a pointer.
|
| @@ -131,125 +202,180 @@ class unique_ptr_base {
|
| // After this operation, this object will hold a NULL pointer,
|
| // and will not own the object any more.
|
| C* release() {
|
| - C* retVal = ptr_;
|
| - ptr_ = NULL;
|
| - return retVal;
|
| + C* ptr = data_.ptr;
|
| + data_.ptr = nullptr;
|
| + return ptr;
|
| }
|
|
|
| // Allow promotion to bool for conditional statements.
|
| - explicit operator bool() const { return ptr_ != NULL; }
|
| + explicit operator bool() const { return data_.ptr != nullptr; }
|
|
|
| protected:
|
| - C* ptr_;
|
| + // Use the empty base class optimization to allow us to have a D
|
| + // member, while avoiding any space overhead for it when D is an
|
| + // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
|
| + // discussion of this technique.
|
| + struct Data : public D {
|
| + explicit Data(C* ptr_in) : ptr(ptr_in) {}
|
| + Data(C* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
|
| + C* ptr;
|
| + };
|
| +
|
| + Data data_;
|
| };
|
|
|
| +} // namespace internal
|
| +
|
| // Implementation for ordinary pointers using delete.
|
| -template <class C>
|
| -class unique_ptr : public unique_ptr_base<C> {
|
| +template <class C, class D = DefaultDeleter<C>>
|
| +class unique_ptr : public internal::unique_ptr_base<C, D> {
|
| public:
|
| - using unique_ptr_base<C>::ptr_;
|
| + // Constructor. Defaults to initializing with nullptr.
|
| + unique_ptr() : internal::unique_ptr_base<C, D>(nullptr) {}
|
|
|
| - // Constructor. Defaults to initializing with NULL. There is no way
|
| - // to create an uninitialized unique_ptr. The input parameter must be
|
| - // allocated with new (not new[] - see below).
|
| - explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { }
|
| + // Constructor. Takes ownership of p.
|
| + explicit unique_ptr(C* p) : internal::unique_ptr_base<C, D>(p) {}
|
|
|
| - // Move constructor.
|
| - unique_ptr(unique_ptr<C>&& that) : unique_ptr_base<C>(nonstd::move(that)) {}
|
| + // Constructor. Allows initialization of a stateful deleter.
|
| + unique_ptr(C* p, const D& d) : internal::unique_ptr_base<C, D>(p, d) {}
|
|
|
| - // Destructor. If there is a C object, delete it.
|
| - // We don't need to test ptr_ == NULL because C++ does that for us.
|
| - ~unique_ptr() {
|
| - enum { type_must_be_complete = sizeof(C) };
|
| - delete ptr_;
|
| - }
|
| + // Constructor. Allows construction from a nullptr.
|
| + unique_ptr(decltype(nullptr)) : internal::unique_ptr_base<C, D>(nullptr) {}
|
|
|
| - // Reset. Deletes the current owned object, if any.
|
| - // Then takes ownership of a new object, if given.
|
| - // this->reset(this->get()) works.
|
| - void reset(C* p = NULL) {
|
| - if (p != ptr_) {
|
| - enum { type_must_be_complete = sizeof(C) };
|
| - C* old_ptr = ptr_;
|
| - ptr_ = p;
|
| - delete old_ptr;
|
| - }
|
| + // Move constructor.
|
| + unique_ptr(unique_ptr&& that)
|
| + : internal::unique_ptr_base<C, D>(nonstd::move(that)) {}
|
| +
|
| + // operator=. Allows assignment from a nullptr. Deletes the currently owned
|
| + // object, if any.
|
| + unique_ptr& operator=(decltype(nullptr)) {
|
| + this->reset();
|
| + return *this;
|
| }
|
|
|
| // Move assignment.
|
| unique_ptr<C>& operator=(unique_ptr<C>&& that) {
|
| - if (that.ptr_ != ptr_)
|
| - reset(that.release());
|
| + this->reset(that.release());
|
| return *this;
|
| }
|
|
|
| -private:
|
| - // Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't
|
| - // make sense, and if C2 == C, it still doesn't make sense because you should
|
| - // never have the same object owned by two different unique_ptrs.
|
| - template <class C2> bool operator==(unique_ptr<C2> const& p2) const;
|
| - template <class C2> bool operator!=(unique_ptr<C2> const& p2) const;
|
| + // Accessors to get the owned object.
|
| + // operator* and operator-> will assert() if there is no current object.
|
| + C& operator*() const {
|
| + assert(this->data_.ptr != nullptr);
|
| + return *this->data_.ptr;
|
| + }
|
| + C* operator->() const {
|
| + assert(this->data_.ptr != nullptr);
|
| + return this->data_.ptr;
|
| + }
|
| +
|
| + // Comparison operators.
|
| + // These return whether two unique_ptr refer to the same object, not just to
|
| + // two different but equal objects.
|
| + bool operator==(const C* p) const { return this->get() == p; }
|
| + bool operator!=(const C* p) const { return this->get() != p; }
|
|
|
| + private:
|
| // Disallow evil constructors. It doesn't make sense to make a copy of
|
| // something that's allegedly unique.
|
| unique_ptr(const unique_ptr&) = delete;
|
| void operator=(const unique_ptr&) = delete;
|
| +
|
| + // Forbid comparison of unique_ptr types. If U != C, it totally
|
| + // doesn't make sense, and if U == C, it still doesn't make sense
|
| + // because you should never have the same object owned by two different
|
| + // unique_ptrs.
|
| + template <class U>
|
| + bool operator==(unique_ptr<U> const& p2) const;
|
| + template <class U>
|
| + bool operator!=(unique_ptr<U> const& p2) const;
|
| };
|
|
|
| // Specialization for arrays using delete[].
|
| -template <class C>
|
| -class unique_ptr<C[]> : public unique_ptr_base<C> {
|
| +template <class C, class D>
|
| +class unique_ptr<C[], D> : public internal::unique_ptr_base<C, D> {
|
| public:
|
| - using unique_ptr_base<C>::ptr_;
|
| -
|
| - // Constructor. Defaults to initializing with NULL. There is no way
|
| - // to create an uninitialized unique_ptr. The input parameter must be
|
| - // allocated with new[] (not new - see above).
|
| - explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { }
|
| + // Constructor. Defaults to initializing with nullptr.
|
| + unique_ptr() : internal::unique_ptr_base<C, D>(nullptr) {}
|
| +
|
| + // Constructor. Stores the given array. Note that the argument's type
|
| + // must exactly match T*. In particular:
|
| + // - it cannot be a pointer to a type derived from T, because it is
|
| + // inherently unsafe in the general case to access an array through a
|
| + // pointer whose dynamic type does not match its static type (eg., if
|
| + // T and the derived types had different sizes access would be
|
| + // incorrectly calculated). Deletion is also always undefined
|
| + // (C++98 [expr.delete]p3). If you're doing this, fix your code.
|
| + // - it cannot be const-qualified differently from T per unique_ptr spec
|
| + // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
|
| + // to work around this may use const_cast<const T*>().
|
| + explicit unique_ptr(C* p) : internal::unique_ptr_base<C, D>(p) {}
|
| +
|
| + // Constructor. Allows construction from a nullptr.
|
| + unique_ptr(decltype(nullptr)) : internal::unique_ptr_base<C, D>(nullptr) {}
|
|
|
| // Move constructor.
|
| - unique_ptr(unique_ptr<C>&& that) : unique_ptr_base<C>(nonstd::move(that)) {}
|
| + unique_ptr(unique_ptr&& that)
|
| + : internal::unique_ptr_base<C, D>(nonstd::move(that)) {}
|
|
|
| - // Destructor. If there is a C object, delete it.
|
| - // We don't need to test ptr_ == NULL because C++ does that for us.
|
| - ~unique_ptr() {
|
| - enum { type_must_be_complete = sizeof(C) };
|
| - delete[] ptr_;
|
| - }
|
| -
|
| - // Reset. Deletes the current owned object, if any.
|
| - // Then takes ownership of a new object, if given.
|
| - // this->reset(this->get()) works.
|
| - void reset(C* p = NULL) {
|
| - if (p != ptr_) {
|
| - enum { type_must_be_complete = sizeof(C) };
|
| - C* old_ptr = ptr_;
|
| - ptr_ = p;
|
| - delete[] old_ptr;
|
| - }
|
| + // operator=. Allows assignment from a nullptr. Deletes the currently owned
|
| + // array, if any.
|
| + unique_ptr& operator=(decltype(nullptr)) {
|
| + this->reset();
|
| + return *this;
|
| }
|
|
|
| // Move assignment.
|
| unique_ptr<C>& operator=(unique_ptr<C>&& that) {
|
| - if (that.ptr_ != ptr_)
|
| - reset(that.release());
|
| + this->reset(that.release());
|
| return *this;
|
| }
|
|
|
| + // Reset. Deletes the currently owned array, if any.
|
| + // Then takes ownership of a new object, if given.
|
| + void reset(C* array = nullptr) {
|
| + static_cast<internal::unique_ptr_base<C, D>*>(this)->reset(array);
|
| + }
|
| +
|
| // Support indexing since it is holding array.
|
| - C& operator[] (size_t i) { return ptr_[i]; }
|
| + C& operator[](size_t i) { return this->data_.ptr[i]; }
|
|
|
| -private:
|
| - // Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't
|
| - // make sense, and if C2 == C, it still doesn't make sense because you should
|
| - // never have the same object owned by two different unique_ptrs.
|
| - template <class C2> bool operator==(unique_ptr<C2> const& p2) const;
|
| - template <class C2> bool operator!=(unique_ptr<C2> const& p2) const;
|
| + // Comparison operators.
|
| + // These return whether two unique_ptr refer to the same object, not just to
|
| + // two different but equal objects.
|
| + bool operator==(C* array) const { return this->get() == array; }
|
| + bool operator!=(C* array) const { return this->get() != array; }
|
| +
|
| + private:
|
| + // Disable initialization from any type other than element_type*, by
|
| + // providing a constructor that matches such an initialization, but is
|
| + // private and has no definition. This is disabled because it is not safe to
|
| + // call delete[] on an array whose static type does not match its dynamic
|
| + // type.
|
| + template <typename U>
|
| + explicit unique_ptr(U* array);
|
| + explicit unique_ptr(int disallow_construction_from_null);
|
| +
|
| + // Disable reset() from any type other than element_type*, for the same
|
| + // reasons as the constructor above.
|
| + template <typename U>
|
| + void reset(U* array);
|
| + void reset(int disallow_reset_from_null);
|
|
|
| // Disallow evil constructors. It doesn't make sense to make a copy of
|
| // something that's allegedly unique.
|
| unique_ptr(const unique_ptr&) = delete;
|
| void operator=(const unique_ptr&) = delete;
|
| +
|
| + // Forbid comparison of unique_ptr types. If U != C, it totally
|
| + // doesn't make sense, and if U == C, it still doesn't make sense
|
| + // because you should never have the same object owned by two different
|
| + // unique_ptrs.
|
| + template <class U>
|
| + bool operator==(unique_ptr<U> const& p2) const;
|
| + template <class U>
|
| + bool operator!=(unique_ptr<U> const& p2) const;
|
| };
|
|
|
| // Free functions
|
| @@ -268,6 +394,11 @@ bool operator!=(C* p1, const unique_ptr<C>& p2) {
|
| return p1 != p2.get();
|
| }
|
|
|
| +template <typename T>
|
| +std::ostream& operator<<(std::ostream& out, const unique_ptr<T>& p) {
|
| + return out << p.get();
|
| +}
|
| +
|
| } // namespace nonstd
|
|
|
| #endif // NONSTD_UNIQUE_PTR_H_
|
|
|