Chromium Code Reviews| Index: mojo/edk/system/data_pipe_unittest.cc |
| diff --git a/mojo/edk/system/data_pipe_unittest.cc b/mojo/edk/system/data_pipe_unittest.cc |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..2ae2bb2dcc626afe311b5d7f3ba9e964f020c463 |
| --- /dev/null |
| +++ b/mojo/edk/system/data_pipe_unittest.cc |
| @@ -0,0 +1,1583 @@ |
| +// Copyright 2015 The Chromium Authors. All rights reserved. |
| +// Use of this source code is governed by a BSD-style license that can be |
| +// found in the LICENSE file. |
| + |
| +//#include "mojo/edk/system/data_pipe_impl.h" |
| + |
| +#include <stdint.h> |
| + |
| +#include "base/bind.h" |
| +#include "base/location.h" |
| +#include "base/logging.h" |
| +#include "base/memory/scoped_ptr.h" |
| +#include "base/message_loop/message_loop.h" |
| +#include "mojo/edk/embedder/platform_channel_pair.h" |
| +#include "mojo/edk/embedder/simple_platform_support.h" |
| +#include "mojo/edk/system/memory.h" |
| +#include "mojo/edk/system/test_utils.h" |
| +#include "mojo/edk/system/waiter.h" |
| +#include "mojo/public/c/system/data_pipe.h" |
| +#include "mojo/public/c/system/functions.h" |
| +#include "mojo/public/cpp/system/macros.h" |
| +#include "testing/gtest/include/gtest/gtest.h" |
| + |
| +namespace mojo { |
| +namespace edk { |
| +namespace { |
| + |
| +const MojoHandleSignals kSignalAll = MOJO_HANDLE_SIGNAL_READABLE | |
|
Ken Rockot(use gerrit already)
2015/09/23 22:32:17
unused
|
| + MOJO_HANDLE_SIGNAL_WRITABLE | |
| + MOJO_HANDLE_SIGNAL_PEER_CLOSED; |
| +const uint32_t kSizeOfOptions = |
| + static_cast<uint32_t>(sizeof(MojoCreateDataPipeOptions)); |
| + |
| +// In various places, we have to poll (since, e.g., we can't yet wait for a |
| +// certain amount of data to be available). This is the maximum number of |
| +// iterations (separated by a short sleep). |
| +// TODO(vtl): Get rid of this. |
| +const size_t kMaxPoll = 100; |
| + |
| +class DataPipeTest : public test::MojoSystemTest { |
| + public: |
| + DataPipeTest() : producer_(MOJO_HANDLE_INVALID), |
| + consumer_(MOJO_HANDLE_INVALID) {} |
| + |
| + ~DataPipeTest() override { |
| + if (producer_ != MOJO_HANDLE_INVALID) |
| + CHECK_EQ(MOJO_RESULT_OK, MojoClose(producer_)); |
| + if (consumer_ != MOJO_HANDLE_INVALID) |
| + CHECK_EQ(MOJO_RESULT_OK, MojoClose(consumer_)); |
| + } |
| + |
| + MojoResult Create(const MojoCreateDataPipeOptions* options) { |
| + return MojoCreateDataPipe(options, &producer_, &consumer_); |
| + } |
| + |
| + MojoResult WriteData(const void* elements, |
| + uint32_t* num_bytes, |
| + bool all_or_none = false) { |
| + return MojoWriteData(producer_, elements, num_bytes, |
| + all_or_none ? MOJO_READ_DATA_FLAG_ALL_OR_NONE : |
| + MOJO_WRITE_DATA_FLAG_NONE); |
| + } |
| + |
| + MojoResult ReadData(void* elements, |
| + uint32_t* num_bytes, |
| + bool all_or_none = false, |
| + bool peek = false) { |
| + MojoReadDataFlags flags = MOJO_READ_DATA_FLAG_NONE; |
| + if (all_or_none) |
| + flags |= MOJO_READ_DATA_FLAG_ALL_OR_NONE; |
| + if (peek) |
| + flags |= MOJO_READ_DATA_FLAG_PEEK; |
| + return MojoReadData(consumer_, elements, num_bytes, flags); |
| + } |
| + |
| + MojoResult QueryData(uint32_t* num_bytes) { |
| + return MojoReadData(consumer_, nullptr, num_bytes, |
| + MOJO_READ_DATA_FLAG_QUERY); |
| + } |
| + |
| + MojoResult DiscardData(uint32_t* num_bytes, bool all_or_none = false) { |
| + MojoReadDataFlags flags = MOJO_READ_DATA_FLAG_DISCARD; |
| + if (all_or_none) |
| + flags |= MOJO_READ_DATA_FLAG_ALL_OR_NONE; |
| + return MojoReadData(consumer_, nullptr, num_bytes, flags); |
| + } |
| + |
| + MojoResult BeginReadData(const void** elements, |
| + uint32_t* num_bytes, |
| + bool all_or_none = false) { |
| + MojoReadDataFlags flags = MOJO_READ_DATA_FLAG_NONE; |
| + if (all_or_none) |
| + flags |= MOJO_READ_DATA_FLAG_ALL_OR_NONE; |
| + return MojoBeginReadData(consumer_, elements, num_bytes, flags); |
| + } |
| + |
| + MojoResult EndReadData(uint32_t num_bytes_read) { |
| + return MojoEndReadData(consumer_, num_bytes_read); |
| + } |
| + |
| + MojoResult BeginWriteData(void** elements, |
| + uint32_t* num_bytes, |
| + bool all_or_none = false) { |
| + MojoReadDataFlags flags = MOJO_READ_DATA_FLAG_NONE; |
| + if (all_or_none) |
| + flags |= MOJO_READ_DATA_FLAG_ALL_OR_NONE; |
| + return MojoBeginWriteData(producer_, elements, num_bytes, flags); |
| + } |
| + |
| + MojoResult EndWriteData(uint32_t num_bytes_written) { |
| + return MojoEndWriteData(producer_, num_bytes_written); |
| + } |
| + |
| + MojoResult CloseProducer() { |
| + MojoResult rv = MojoClose(producer_); |
| + producer_ = MOJO_HANDLE_INVALID; |
| + return rv; |
| + } |
| + |
| + MojoResult CloseConsumer() { |
| + MojoResult rv = MojoClose(consumer_); |
| + consumer_ = MOJO_HANDLE_INVALID; |
| + return rv; |
| + } |
| + |
| + MojoHandle producer_, consumer_; |
| + |
| + private: |
| + MOJO_DISALLOW_COPY_AND_ASSIGN(DataPipeTest); |
| +}; |
| + |
| +TEST_F(DataPipeTest, Basic) { |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|. |
| + 1000 * sizeof(int32_t) // |capacity_num_bytes|. |
| + }; |
| + |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + |
| + // We can write to a data pipe handle immediately. |
| + int32_t elements[10] = {}; |
| + uint32_t num_bytes = 0; |
| + |
| + num_bytes = |
| + static_cast<uint32_t>(MOJO_ARRAYSIZE(elements) * sizeof(elements[0])); |
| + |
| + elements[0] = 123; |
| + elements[1] = 456; |
| + num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(&elements[0], &num_bytes)); |
| + |
| + // Now wait for the other side to become readable. |
| + MojoHandleSignalsState state; |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &state)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, state.satisfied_signals); |
| + |
| + elements[0] = -1; |
| + elements[1] = -1; |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(&elements[0], &num_bytes)); |
| + ASSERT_EQ(static_cast<uint32_t>(2u * sizeof(elements[0])), num_bytes); |
| + ASSERT_EQ(elements[0], 123); |
| + ASSERT_EQ(elements[1], 456); |
| +} |
| + |
| +// Tests creation of data pipes with various (valid) options. |
| +TEST_F(DataPipeTest, CreateAndMaybeTransfer) { |
| + MojoCreateDataPipeOptions test_options[] = { |
| + // Default options. |
| + {}, |
| + // Trivial element size, non-default capacity. |
| + {kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + 1, // |element_num_bytes|. |
| + 1000}, // |capacity_num_bytes|. |
| + // Nontrivial element size, non-default capacity. |
| + {kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + 4, // |element_num_bytes|. |
| + 4000}, // |capacity_num_bytes|. |
| + // Nontrivial element size, default capacity. |
| + {kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + 100, // |element_num_bytes|. |
| + 0} // |capacity_num_bytes|. |
| + }; |
| + for (size_t i = 0; i < arraysize(test_options); i++) { |
| + MojoHandle producer_handle, consumer_handle; |
| + MojoCreateDataPipeOptions* options = |
| + i ? &test_options[i] : nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoCreateDataPipe(options, &producer_handle, &consumer_handle)); |
| + ASSERT_EQ(MOJO_RESULT_OK, MojoClose(producer_handle)); |
| + ASSERT_EQ(MOJO_RESULT_OK, MojoClose(consumer_handle)); |
| + } |
| +} |
| + |
| + |
| +TEST_F(DataPipeTest, SimpleReadWrite) { |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|. |
| + 1000 * sizeof(int32_t) // |capacity_num_bytes|. |
| + }; |
| + |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + MojoHandleSignalsState hss; |
| + |
| + int32_t elements[10] = {}; |
| + uint32_t num_bytes = 0; |
| + |
| + // Try reading; nothing there yet. |
| + num_bytes = |
| + static_cast<uint32_t>(MOJO_ARRAYSIZE(elements) * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_SHOULD_WAIT, ReadData(elements, &num_bytes)); |
| + |
| + // Query; nothing there yet. |
| + num_bytes = 0; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(0u, num_bytes); |
| + |
| + // Discard; nothing there yet. |
| + num_bytes = static_cast<uint32_t>(5u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_SHOULD_WAIT, DiscardData(&num_bytes)); |
| + |
| + // Read with invalid |num_bytes|. |
| + num_bytes = sizeof(elements[0]) + 1; |
| + ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, ReadData(elements, &num_bytes)); |
| + |
| + // Write two elements. |
| + elements[0] = 123; |
| + elements[1] = 456; |
| + num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes)); |
| + // It should have written everything (even without "all or none"). |
| + ASSERT_EQ(2u * sizeof(elements[0]), num_bytes); |
| + |
| + // Wait. |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Query. |
| + // TODO(vtl): It's theoretically possible (though not with the current |
| + // implementation/configured limits) that not all the data has arrived yet. |
| + // (The theoretically-correct assertion here is that |num_bytes| is |1 * ...| |
| + // or |2 * ...|.) |
| + num_bytes = 0; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(2 * sizeof(elements[0]), num_bytes); |
| + |
| + // Read one element. |
| + elements[0] = -1; |
| + elements[1] = -1; |
| + num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes)); |
| + ASSERT_EQ(1u * sizeof(elements[0]), num_bytes); |
| + ASSERT_EQ(123, elements[0]); |
| + ASSERT_EQ(-1, elements[1]); |
| + |
| + // Query. |
| + // TODO(vtl): See previous TODO. (If we got 2 elements there, however, we |
| + // should get 1 here.) |
| + num_bytes = 0; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(1 * sizeof(elements[0]), num_bytes); |
| + |
| + // Peek one element. |
| + elements[0] = -1; |
| + elements[1] = -1; |
| + num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, false, true)); |
| + ASSERT_EQ(1u * sizeof(elements[0]), num_bytes); |
| + ASSERT_EQ(456, elements[0]); |
| + ASSERT_EQ(-1, elements[1]); |
| + |
| + // Query. Still has 1 element remaining. |
| + num_bytes = 0; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(1 * sizeof(elements[0]), num_bytes); |
| + |
| + // Try to read two elements, with "all or none". |
| + elements[0] = -1; |
| + elements[1] = -1; |
| + num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, |
| + ReadData(elements, &num_bytes, true, false)); |
| + ASSERT_EQ(-1, elements[0]); |
| + ASSERT_EQ(-1, elements[1]); |
| + |
| + // Try to read two elements, without "all or none". |
| + elements[0] = -1; |
| + elements[1] = -1; |
| + num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, false, false)); |
| + ASSERT_EQ(1u * sizeof(elements[0]), num_bytes); |
| + ASSERT_EQ(456, elements[0]); |
| + ASSERT_EQ(-1, elements[1]); |
| + |
| + // Query. |
| + num_bytes = 0; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(0u, num_bytes); |
| +} |
| + |
| +// Note: The "basic" waiting tests test that the "wait states" are correct in |
| +// various situations; they don't test that waiters are properly awoken on state |
| +// changes. (For that, we need to use multiple threads.) |
| +TEST_F(DataPipeTest, BasicProducerWaiting) { |
| + // Note: We take advantage of the fact that current for current |
| + // implementations capacities are strict maximums. This is not guaranteed by |
| + // the API. |
| + |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|. |
| + 2 * sizeof(int32_t) // |capacity_num_bytes|. |
| + }; |
| + Create(&options); |
| + MojoHandleSignalsState hss; |
| + |
| + // Never readable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, |
| + MojoWait(producer_, MOJO_HANDLE_SIGNAL_READABLE, 0, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Already writable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, 0, &hss)); |
| + |
| + // Write two elements. |
| + int32_t elements[2] = {123, 456}; |
| + uint32_t num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes, true)); |
| + ASSERT_EQ(static_cast<uint32_t>(2u * sizeof(elements[0])), num_bytes); |
| + |
| + // Wait for data to become available to the consumer. |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Peek one element. |
| + elements[0] = -1; |
| + elements[1] = -1; |
| + num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true, true)); |
| + ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes); |
| + ASSERT_EQ(123, elements[0]); |
| + ASSERT_EQ(-1, elements[1]); |
| + |
| + // Read one element. |
| + elements[0] = -1; |
| + elements[1] = -1; |
| + num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true, false)); |
| + ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes); |
| + ASSERT_EQ(123, elements[0]); |
| + ASSERT_EQ(-1, elements[1]); |
| + |
| + // Try writing, using a two-phase write. |
| + void* buffer = nullptr; |
| + num_bytes = static_cast<uint32_t>(3u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&buffer, &num_bytes)); |
| + EXPECT_TRUE(buffer); |
| + ASSERT_GE(num_bytes, static_cast<uint32_t>(1u * sizeof(elements[0]))); |
| + |
| + static_cast<int32_t*>(buffer)[0] = 789; |
| + ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(static_cast<uint32_t>( |
| + 1u * sizeof(elements[0])))); |
| + |
| + // Read one element, using a two-phase read. |
| + const void* read_buffer = nullptr; |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + BeginReadData(&read_buffer, &num_bytes, false)); |
| + EXPECT_TRUE(read_buffer); |
| + // Since we only read one element (after having written three in all), the |
| + // two-phase read should only allow us to read one. This checks an |
| + // implementation detail! |
| + ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes); |
| + ASSERT_EQ(456, static_cast<const int32_t*>(read_buffer)[0]); |
| + ASSERT_EQ(MOJO_RESULT_OK, EndReadData(static_cast<uint32_t>( |
| + 1u * sizeof(elements[0])))); |
| + |
| + // Write one element. |
| + elements[0] = 123; |
| + num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes)); |
| + ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes); |
| + |
| + // Close the consumer. |
| + CloseConsumer(); |
| + |
| + // It should now be never-writable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(producer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, |
| + MojoWait(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, 0, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals); |
| +} |
| + |
| +TEST_F(DataPipeTest, PeerClosedProducerWaiting) { |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|. |
| + 2 * sizeof(int32_t) // |capacity_num_bytes|. |
| + }; |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + MojoHandleSignalsState hss; |
| + |
| + // Close the consumer. |
| + CloseConsumer(); |
| + |
| + // It should be signaled. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(producer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals); |
| +} |
| + |
| +TEST_F(DataPipeTest, PeerClosedConsumerWaiting) { |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|. |
| + 2 * sizeof(int32_t) // |capacity_num_bytes|. |
| + }; |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + MojoHandleSignalsState hss; |
| + |
| + // Close the producer. |
| + CloseProducer(); |
| + |
| + // It should be signaled. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals); |
| +} |
| + |
| +TEST_F(DataPipeTest, BasicConsumerWaiting) { |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|. |
| + 1000 * sizeof(int32_t) // |capacity_num_bytes|. |
| + }; |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + MojoHandleSignalsState hss; |
| + |
| + // Never writable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_WRITABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(0u, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Write two elements. |
| + int32_t elements[2] = {123, 456}; |
| + uint32_t num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes, true)); |
| + |
| + // Wait for readability. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Discard one element. |
| + num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, DiscardData(&num_bytes, true)); |
| + ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes); |
| + |
| + // Should still be readable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Peek one element. |
| + elements[0] = -1; |
| + elements[1] = -1; |
| + num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true, true)); |
| + ASSERT_EQ(456, elements[0]); |
| + ASSERT_EQ(-1, elements[1]); |
| + |
| + // Should still be readable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Read one element. |
| + elements[0] = -1; |
| + elements[1] = -1; |
| + num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true)); |
| + ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes); |
| + ASSERT_EQ(456, elements[0]); |
| + ASSERT_EQ(-1, elements[1]); |
| + |
| + // Write one element. |
| + elements[0] = 789; |
| + elements[1] = -1; |
| + num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes, true)); |
| + |
| + // Waiting should now succeed. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Close the producer. |
| + CloseProducer(); |
| + |
| + // Should still be readable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Wait for the peer closed signal. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_TRUE((hss.satisfied_signals & MOJO_HANDLE_SIGNAL_PEER_CLOSED) != 0); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Read one element. |
| + elements[0] = -1; |
| + elements[1] = -1; |
| + num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true)); |
| + ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes); |
| + ASSERT_EQ(789, elements[0]); |
| + ASSERT_EQ(-1, elements[1]); |
| + |
| + // Should be never-readable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals); |
| +} |
| + |
| +// Test with two-phase APIs and also closing the producer with an active |
| +// consumer waiter. |
| +TEST_F(DataPipeTest, ConsumerWaitingTwoPhase) { |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|. |
| + 1000 * sizeof(int32_t) // |capacity_num_bytes|. |
| + }; |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + MojoHandleSignalsState hss; |
| + |
| + // Write two elements. |
| + int32_t* elements = nullptr; |
| + void* buffer = nullptr; |
| + // Request room for three (but we'll only write two). |
| + uint32_t num_bytes = static_cast<uint32_t>(3u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&buffer, &num_bytes, true)); |
| + EXPECT_TRUE(buffer); |
| + EXPECT_GE(num_bytes, static_cast<uint32_t>(3u * sizeof(elements[0]))); |
| + elements = static_cast<int32_t*>(buffer); |
| + elements[0] = 123; |
| + elements[1] = 456; |
| + ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(2u * sizeof(elements[0]))); |
| + |
| + // Wait for readability. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Read one element. |
| + // Request two in all-or-none mode, but only read one. |
| + const void* read_buffer = nullptr; |
| + num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer, &num_bytes, true)); |
| + EXPECT_TRUE(read_buffer); |
| + ASSERT_EQ(static_cast<uint32_t>(2u * sizeof(elements[0])), num_bytes); |
| + const int32_t* read_elements = static_cast<const int32_t*>(read_buffer); |
| + ASSERT_EQ(123, read_elements[0]); |
| + ASSERT_EQ(MOJO_RESULT_OK, EndReadData(1u * sizeof(elements[0]))); |
| + |
| + // Should still be readable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Read one element. |
| + // Request three, but not in all-or-none mode. |
| + read_buffer = nullptr; |
| + num_bytes = static_cast<uint32_t>(3u * sizeof(elements[0])); |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer, &num_bytes)); |
| + EXPECT_TRUE(read_buffer); |
| + ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes); |
| + read_elements = static_cast<const int32_t*>(read_buffer); |
| + ASSERT_EQ(456, read_elements[0]); |
| + ASSERT_EQ(MOJO_RESULT_OK, EndReadData(1u * sizeof(elements[0]))); |
| + |
| + // Close the producer. |
| + CloseProducer(); |
| + |
| + // Should be never-readable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals); |
| +} |
| + |
| +// Tests that data pipes aren't writable/readable during two-phase writes/reads. |
| +TEST_F(DataPipeTest, BasicTwoPhaseWaiting) { |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|. |
| + 1000 * sizeof(int32_t) // |capacity_num_bytes|. |
| + }; |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + MojoHandleSignalsState hss; |
| + |
| + // It should be writable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, 0, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + uint32_t num_bytes = static_cast<uint32_t>(1u * sizeof(int32_t)); |
| + void* write_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes)); |
| + EXPECT_TRUE(write_ptr); |
| + EXPECT_GE(num_bytes, static_cast<uint32_t>(1u * sizeof(int32_t))); |
| + |
| + // At this point, it shouldn't be writable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED, |
| + MojoWait(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, 0, &hss)); |
| + ASSERT_EQ(0u, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // It shouldn't be readable yet either (we'll wait later). |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, 0, &hss)); |
| + ASSERT_EQ(0u, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + static_cast<int32_t*>(write_ptr)[0] = 123; |
| + ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(1u * sizeof(int32_t))); |
| + |
| + // It should immediately be writable again. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, 0, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // It should become readable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Start another two-phase write and check that it's readable even in the |
| + // middle of it. |
| + num_bytes = static_cast<uint32_t>(1u * sizeof(int32_t)); |
| + write_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes)); |
| + EXPECT_TRUE(write_ptr); |
| + EXPECT_GE(num_bytes, static_cast<uint32_t>(1u * sizeof(int32_t))); |
| + |
| + // It should be readable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // End the two-phase write without writing anything. |
| + ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(0u)); |
| + |
| + // Start a two-phase read. |
| + num_bytes = static_cast<uint32_t>(1u * sizeof(int32_t)); |
| + const void* read_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes)); |
| + EXPECT_TRUE(read_ptr); |
| + ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(int32_t)), num_bytes); |
| + |
| + // At this point, it should still be writable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, 0, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // But not readable. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, 0, &hss)); |
| + ASSERT_EQ(0u, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // End the two-phase read without reading anything. |
| + ASSERT_EQ(MOJO_RESULT_OK, EndReadData(0u)); |
| + |
| + // It should be readable again. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, 0, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| +} |
| + |
| +void Seq(int32_t start, size_t count, int32_t* out) { |
| + for (size_t i = 0; i < count; i++) |
| + out[i] = start + static_cast<int32_t>(i); |
| +} |
| + |
| +TEST_F(DataPipeTest, AllOrNone) { |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|. |
| + 10 * sizeof(int32_t) // |capacity_num_bytes|. |
| + }; |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + MojoHandleSignalsState hss; |
| + |
| + // Try writing way too much. |
| + uint32_t num_bytes = 20u * sizeof(int32_t); |
| + int32_t buffer[100]; |
| + Seq(0, MOJO_ARRAYSIZE(buffer), buffer); |
| + ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, WriteData(buffer, &num_bytes, true)); |
| + |
| + // Should still be empty. |
| + num_bytes = ~0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(0u, num_bytes); |
| + |
| + // Write some data. |
| + num_bytes = 5u * sizeof(int32_t); |
| + Seq(100, MOJO_ARRAYSIZE(buffer), buffer); |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(buffer, &num_bytes, true)); |
| + ASSERT_EQ(5u * sizeof(int32_t), num_bytes); |
| + |
| + // Wait for data. |
| + // TODO(vtl): There's no real guarantee that all the data will become |
| + // available at once (except that in current implementations, with reasonable |
| + // limits, it will). Eventually, we'll be able to wait for a specified amount |
| + // of data to become available. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Half full. |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(5u * sizeof(int32_t), num_bytes); |
| + |
| + /* TODO(jam): enable if we end up observing max capacity |
| + // Too much. |
| + num_bytes = 6u * sizeof(int32_t); |
| + Seq(200, MOJO_ARRAYSIZE(buffer), buffer); |
| + ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, WriteData(buffer, &num_bytes, true)); |
| + */ |
| + |
| + // Try reading too much. |
| + num_bytes = 11u * sizeof(int32_t); |
| + memset(buffer, 0xab, sizeof(buffer)); |
| + ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, ReadData(buffer, &num_bytes, true)); |
| + int32_t expected_buffer[100]; |
| + memset(expected_buffer, 0xab, sizeof(expected_buffer)); |
| + ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer))); |
| + |
| + // Try discarding too much. |
| + num_bytes = 11u * sizeof(int32_t); |
| + ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, DiscardData(&num_bytes, true)); |
| + |
| + // Just a little. |
| + num_bytes = 2u * sizeof(int32_t); |
| + Seq(300, MOJO_ARRAYSIZE(buffer), buffer); |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(buffer, &num_bytes, true)); |
| + ASSERT_EQ(2u * sizeof(int32_t), num_bytes); |
| + |
| + // Just right. |
| + num_bytes = 3u * sizeof(int32_t); |
| + Seq(400, MOJO_ARRAYSIZE(buffer), buffer); |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(buffer, &num_bytes, true)); |
| + ASSERT_EQ(3u * sizeof(int32_t), num_bytes); |
| + |
| + // TODO(vtl): Hack (see also the TODO above): We can't currently wait for a |
| + // specified amount of data to be available, so poll. |
| + for (size_t i = 0; i < kMaxPoll; i++) { |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + if (num_bytes >= 10u * sizeof(int32_t)) |
| + break; |
| + |
| + test::Sleep(test::EpsilonDeadline()); |
| + } |
| + ASSERT_EQ(10u * sizeof(int32_t), num_bytes); |
| + |
| + // Read half. |
| + num_bytes = 5u * sizeof(int32_t); |
| + memset(buffer, 0xab, sizeof(buffer)); |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(buffer, &num_bytes, true)); |
| + ASSERT_EQ(5u * sizeof(int32_t), num_bytes); |
| + memset(expected_buffer, 0xab, sizeof(expected_buffer)); |
| + Seq(100, 5, expected_buffer); |
| + ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer))); |
| + |
| + // Try reading too much again. |
| + num_bytes = 6u * sizeof(int32_t); |
| + memset(buffer, 0xab, sizeof(buffer)); |
| + ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, ReadData(buffer, &num_bytes, true)); |
| + memset(expected_buffer, 0xab, sizeof(expected_buffer)); |
| + ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer))); |
| + |
| + // Try discarding too much again. |
| + num_bytes = 6u * sizeof(int32_t); |
| + ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, DiscardData(&num_bytes, true)); |
| + |
| + // Discard a little. |
| + num_bytes = 2u * sizeof(int32_t); |
| + ASSERT_EQ(MOJO_RESULT_OK, DiscardData(&num_bytes, true)); |
| + ASSERT_EQ(2u * sizeof(int32_t), num_bytes); |
| + |
| + // Three left. |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(3u * sizeof(int32_t), num_bytes); |
| + |
| + // Close the producer, then test producer-closed cases. |
| + CloseProducer(); |
| + |
| + // Wait. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Try reading too much; "failed precondition" since the producer is closed. |
| + num_bytes = 4u * sizeof(int32_t); |
| + memset(buffer, 0xab, sizeof(buffer)); |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, |
| + ReadData(buffer, &num_bytes, true)); |
| + memset(expected_buffer, 0xab, sizeof(expected_buffer)); |
| + ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer))); |
| + |
| + // Try discarding too much; "failed precondition" again. |
| + num_bytes = 4u * sizeof(int32_t); |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, DiscardData(&num_bytes, true)); |
| + |
| + // Read a little. |
| + num_bytes = 2u * sizeof(int32_t); |
| + memset(buffer, 0xab, sizeof(buffer)); |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(buffer, &num_bytes, true)); |
| + ASSERT_EQ(2u * sizeof(int32_t), num_bytes); |
| + memset(expected_buffer, 0xab, sizeof(expected_buffer)); |
| + Seq(400, 2, expected_buffer); |
| + ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer))); |
| + |
| + // Discard the remaining element. |
| + num_bytes = 1u * sizeof(int32_t); |
| + ASSERT_EQ(MOJO_RESULT_OK, DiscardData(&num_bytes, true)); |
| + ASSERT_EQ(1u * sizeof(int32_t), num_bytes); |
| + |
| + // Empty again. |
| + num_bytes = ~0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(0u, num_bytes); |
| +} |
| + |
| +TEST_F(DataPipeTest, DISABLED_TwoPhaseAllOrNone) { |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|. |
| + 10 * sizeof(int32_t) // |capacity_num_bytes|. |
| + }; |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + MojoHandleSignalsState hss; |
| + |
| + // Try writing way too much (two-phase). |
| + uint32_t num_bytes = 20u * sizeof(int32_t); |
| + void* write_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, |
| + BeginWriteData(&write_ptr, &num_bytes, true)); |
| + |
| + // Try writing an amount which isn't a multiple of the element size |
| + // (two-phase). |
| + static_assert(sizeof(int32_t) > 1u, "Wow! int32_t's have size 1"); |
| + num_bytes = 1u; |
| + write_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, |
| + BeginWriteData(&write_ptr, &num_bytes, true)); |
| + |
| + // Try reading way too much (two-phase). |
| + num_bytes = 20u * sizeof(int32_t); |
| + const void* read_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, |
| + BeginReadData(&read_ptr, &num_bytes, true)); |
| + |
| + // Write half (two-phase). |
| + num_bytes = 5u * sizeof(int32_t); |
| + write_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes, true)); |
| + // May provide more space than requested. |
| + EXPECT_GE(num_bytes, 5u * sizeof(int32_t)); |
| + EXPECT_TRUE(write_ptr); |
| + Seq(0, 5, static_cast<int32_t*>(write_ptr)); |
| + ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(5u * sizeof(int32_t))); |
| + |
| + // Wait for data. |
| + // TODO(vtl): (See corresponding TODO in AllOrNone.) |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Try reading an amount which isn't a multiple of the element size |
| + // (two-phase). |
| + num_bytes = 1u; |
| + read_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, |
| + BeginReadData(&read_ptr, &num_bytes, true)); |
| + |
| + // Read one (two-phase). |
| + num_bytes = 1u * sizeof(int32_t); |
| + read_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes, true)); |
| + EXPECT_GE(num_bytes, 1u * sizeof(int32_t)); |
| + ASSERT_EQ(0, static_cast<const int32_t*>(read_ptr)[0]); |
| + ASSERT_EQ(MOJO_RESULT_OK, EndReadData(1u * sizeof(int32_t))); |
| + |
| + // We should have four left, leaving room for six. |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(4u * sizeof(int32_t), num_bytes); |
| + |
| + // Assuming a tight circular buffer of the specified capacity, we can't do a |
| + // two-phase write of six now. |
| + num_bytes = 6u * sizeof(int32_t); |
| + write_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, |
| + BeginWriteData(&write_ptr, &num_bytes, true)); |
| + |
| + // TODO(vtl): Hack (see also the TODO above): We can't currently wait for a |
| + // specified amount of space to be available, so poll. |
| + for (size_t i = 0; i < kMaxPoll; i++) { |
| + // Write six elements (simple), filling the buffer. |
| + num_bytes = 6u * sizeof(int32_t); |
| + int32_t buffer[100]; |
| + Seq(100, 6, buffer); |
| + MojoResult result = WriteData(buffer, &num_bytes, true); |
| + if (result == MOJO_RESULT_OK) |
| + break; |
| + ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, result); |
| + |
| + test::Sleep(test::EpsilonDeadline()); |
| + } |
| + ASSERT_EQ(6u * sizeof(int32_t), num_bytes); |
| + |
| + // TODO(vtl): Hack: poll again. |
| + for (size_t i = 0; i < kMaxPoll; i++) { |
| + // We have ten. |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + if (num_bytes >= 10u * sizeof(int32_t)) |
| + break; |
| + |
| + test::Sleep(test::EpsilonDeadline()); |
| + } |
| + ASSERT_EQ(10u * sizeof(int32_t), num_bytes); |
| + |
| + // Note: Whether a two-phase read of ten would fail here or not is |
| + // implementation-dependent. |
| + |
| + // Close the producer. |
| + CloseProducer(); |
| + |
| + // A two-phase read of nine should work. |
| + num_bytes = 9u * sizeof(int32_t); |
| + read_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes, true)); |
| + EXPECT_GE(num_bytes, 9u * sizeof(int32_t)); |
| + ASSERT_EQ(1, static_cast<const int32_t*>(read_ptr)[0]); |
| + ASSERT_EQ(2, static_cast<const int32_t*>(read_ptr)[1]); |
| + ASSERT_EQ(3, static_cast<const int32_t*>(read_ptr)[2]); |
| + ASSERT_EQ(4, static_cast<const int32_t*>(read_ptr)[3]); |
| + ASSERT_EQ(100, static_cast<const int32_t*>(read_ptr)[4]); |
| + ASSERT_EQ(101, static_cast<const int32_t*>(read_ptr)[5]); |
| + ASSERT_EQ(102, static_cast<const int32_t*>(read_ptr)[6]); |
| + ASSERT_EQ(103, static_cast<const int32_t*>(read_ptr)[7]); |
| + ASSERT_EQ(104, static_cast<const int32_t*>(read_ptr)[8]); |
| + ASSERT_EQ(MOJO_RESULT_OK, EndReadData(9u * sizeof(int32_t))); |
| + |
| + // Wait for peer closed. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // A two-phase read of two should fail, with "failed precondition". |
| + num_bytes = 2u * sizeof(int32_t); |
| + read_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, |
| + BeginReadData(&read_ptr, &num_bytes, true)); |
| +} |
| + |
| +/* |
| +jam: this is testing that the implementation uses a circular buffer, which we |
| +don't use currently. |
| +// Tests that |ProducerWriteData()| and |ConsumerReadData()| writes and reads, |
| +// respectively, as much as possible, even if it may have to "wrap around" the |
| +// internal circular buffer. (Note that the two-phase write and read need not do |
| +// this.) |
| +TYPED_TEST(DataPipeImplTest, WrapAround) { |
| + unsigned char test_data[1000]; |
| + for (size_t i = 0; i < MOJO_ARRAYSIZE(test_data); i++) |
| + test_data[i] = static_cast<unsigned char>(i); |
| + |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + 1u, // |element_num_bytes|. |
| + 100u // |capacity_num_bytes|. |
| + }; |
| + MojoCreateDataPipeOptions validated_options = {}; |
| + // This test won't be valid if |ValidateCreateOptions()| decides to give the |
| + // pipe more space. |
| + ASSERT_EQ(MOJO_RESULT_OK, DataPipe::ValidateCreateOptions( |
| + MakeUserPointer(&options), &validated_options)); |
| + ASSERT_EQ(100u, validated_options.capacity_num_bytes); |
| + this->Create(options); |
| + this->DoTransfer(); |
| + |
| + Waiter waiter; |
| + HandleSignalsState hss; |
| + |
| + // Add waiter. |
| + waiter.Init(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + this->ConsumerAddAwakable(&waiter, MOJO_HANDLE_SIGNAL_READABLE, 1, |
| + nullptr)); |
| + |
| + // Write 20 bytes. |
| + uint32_t num_bytes = 20u; |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + this->ProducerWriteData(UserPointer<const void>(&test_data[0]), |
| + MakeUserPointer(&num_bytes), false)); |
| + ASSERT_EQ(20u, num_bytes); |
| + |
| + // Wait for data. |
| + // TODO(vtl): (See corresponding TODO in AllOrNone.) |
| + ASSERT_EQ(MOJO_RESULT_OK, waiter.Wait(test::TinyDeadline(), nullptr)); |
| + hss = HandleSignalsState(); |
| + this->ConsumerRemoveAwakable(&waiter, &hss); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Read 10 bytes. |
| + unsigned char read_buffer[1000] = {0}; |
| + num_bytes = 10u; |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + this->ConsumerReadData(UserPointer<void>(read_buffer), |
| + MakeUserPointer(&num_bytes), false, false)); |
| + ASSERT_EQ(10u, num_bytes); |
| + ASSERT_EQ(0, memcmp(read_buffer, &test_data[0], 10u)); |
| + |
| + if (this->IsStrictCircularBuffer()) { |
| + // Check that a two-phase write can now only write (at most) 80 bytes. (This |
| + // checks an implementation detail; this behavior is not guaranteed.) |
| + void* write_buffer_ptr = nullptr; |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + this->ProducerBeginWriteData(MakeUserPointer(&write_buffer_ptr), |
| + MakeUserPointer(&num_bytes), false)); |
| + EXPECT_TRUE(write_buffer_ptr); |
| + ASSERT_EQ(80u, num_bytes); |
| + ASSERT_EQ(MOJO_RESULT_OK, this->ProducerEndWriteData(0u)); |
| + } |
| + |
| + // TODO(vtl): (See corresponding TODO in TwoPhaseAllOrNone.) |
| + size_t total_num_bytes = 0; |
| + for (size_t i = 0; i < kMaxPoll; i++) { |
| + // Write as much data as we can (using |ProducerWriteData()|). We should |
| + // write 90 bytes (eventually). |
| + num_bytes = 200u; |
| + MojoResult result = this->ProducerWriteData( |
| + UserPointer<const void>(&test_data[20 + total_num_bytes]), |
| + MakeUserPointer(&num_bytes), false); |
| + if (result == MOJO_RESULT_OK) { |
| + total_num_bytes += num_bytes; |
| + if (total_num_bytes >= 90u) |
| + break; |
| + } else { |
| + ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, result); |
| + } |
| + |
| + test::Sleep(test::EpsilonDeadline()); |
| + } |
| + ASSERT_EQ(90u, total_num_bytes); |
| + |
| + // TODO(vtl): (See corresponding TODO in TwoPhaseAllOrNone.) |
| + for (size_t i = 0; i < kMaxPoll; i++) { |
| + // We have 100. |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + this->ConsumerQueryData(MakeUserPointer(&num_bytes))); |
| + if (num_bytes >= 100u) |
| + break; |
| + |
| + test::Sleep(test::EpsilonDeadline()); |
| + } |
| + ASSERT_EQ(100u, num_bytes); |
| + |
| + if (this->IsStrictCircularBuffer()) { |
| + // Check that a two-phase read can now only read (at most) 90 bytes. (This |
| + // checks an implementation detail; this behavior is not guaranteed.) |
| + const void* read_buffer_ptr = nullptr; |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + this->ConsumerBeginReadData(MakeUserPointer(&read_buffer_ptr), |
| + MakeUserPointer(&num_bytes), false)); |
| + EXPECT_TRUE(read_buffer_ptr); |
| + ASSERT_EQ(90u, num_bytes); |
| + ASSERT_EQ(MOJO_RESULT_OK, this->ConsumerEndReadData(0u)); |
| + } |
| + |
| + // Read as much as possible (using |ConsumerReadData()|). We should read 100 |
| + // bytes. |
| + num_bytes = static_cast<uint32_t>(MOJO_ARRAYSIZE(read_buffer) * |
| + sizeof(read_buffer[0])); |
| + memset(read_buffer, 0, num_bytes); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + this->ConsumerReadData(UserPointer<void>(read_buffer), |
| + MakeUserPointer(&num_bytes), false, false)); |
| + ASSERT_EQ(100u, num_bytes); |
| + ASSERT_EQ(0, memcmp(read_buffer, &test_data[10], 100u)); |
| + |
| + this->ProducerClose(); |
| + this->ConsumerClose(); |
| +} |
| +*/ |
| + |
| +// Tests the behavior of writing (simple and two-phase), closing the producer, |
| +// then reading (simple and two-phase). |
| +TEST_F(DataPipeTest, WriteCloseProducerRead) { |
| + const char kTestData[] = "hello world"; |
| + const uint32_t kTestDataSize = static_cast<uint32_t>(sizeof(kTestData)); |
| + |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + 1u, // |element_num_bytes|. |
| + 1000u // |capacity_num_bytes|. |
| + }; |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + |
| + // Write some data, so we'll have something to read. |
| + uint32_t num_bytes = kTestDataSize; |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes, false)); |
| + ASSERT_EQ(kTestDataSize, num_bytes); |
| + |
| + // Write it again, so we'll have something left over. |
| + num_bytes = kTestDataSize; |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes, false)); |
| + ASSERT_EQ(kTestDataSize, num_bytes); |
| + |
| + // Start two-phase write. |
| + void* write_buffer_ptr = nullptr; |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + BeginWriteData(&write_buffer_ptr, &num_bytes, false)); |
| + EXPECT_TRUE(write_buffer_ptr); |
| + EXPECT_GT(num_bytes, 0u); |
| + |
| + // TODO(vtl): (See corresponding TODO in TwoPhaseAllOrNone.) |
| + for (size_t i = 0; i < kMaxPoll; i++) { |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + if (num_bytes >= 2u * kTestDataSize) |
| + break; |
| + |
| + test::Sleep(test::EpsilonDeadline()); |
| + } |
| + ASSERT_EQ(2u * kTestDataSize, num_bytes); |
| + |
| + // Start two-phase read. |
| + const void* read_buffer_ptr = nullptr; |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + BeginReadData(&read_buffer_ptr, &num_bytes)); |
| + EXPECT_TRUE(read_buffer_ptr); |
| + ASSERT_EQ(2u * kTestDataSize, num_bytes); |
| + |
| + // Close the producer. |
| + CloseProducer(); |
| + |
| + // The consumer can finish its two-phase read. |
| + ASSERT_EQ(0, memcmp(read_buffer_ptr, kTestData, kTestDataSize)); |
| + ASSERT_EQ(MOJO_RESULT_OK, EndReadData(kTestDataSize)); |
| + |
| + // And start another. |
| + read_buffer_ptr = nullptr; |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + BeginReadData(&read_buffer_ptr, &num_bytes)); |
| + EXPECT_TRUE(read_buffer_ptr); |
| + ASSERT_EQ(kTestDataSize, num_bytes); |
| +} |
| + |
| + |
| +// Tests the behavior of interrupting a two-phase read and write by closing the |
| +// consumer. |
| +TEST_F(DataPipeTest, TwoPhaseWriteReadCloseConsumer) { |
| + const char kTestData[] = "hello world"; |
| + const uint32_t kTestDataSize = static_cast<uint32_t>(sizeof(kTestData)); |
| + |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + 1u, // |element_num_bytes|. |
| + 1000u // |capacity_num_bytes|. |
| + }; |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + MojoHandleSignalsState hss; |
| + |
| + // Write some data, so we'll have something to read. |
| + uint32_t num_bytes = kTestDataSize; |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes)); |
| + ASSERT_EQ(kTestDataSize, num_bytes); |
| + |
| + // Start two-phase write. |
| + void* write_buffer_ptr = nullptr; |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_buffer_ptr, &num_bytes)); |
| + EXPECT_TRUE(write_buffer_ptr); |
| + ASSERT_GT(num_bytes, kTestDataSize); |
| + |
| + // Wait for data. |
| + // TODO(vtl): (See corresponding TODO in AllOrNone.) |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Start two-phase read. |
| + const void* read_buffer_ptr = nullptr; |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer_ptr, &num_bytes)); |
| + EXPECT_TRUE(read_buffer_ptr); |
| + ASSERT_EQ(kTestDataSize, num_bytes); |
| + |
| + // Close the consumer. |
| + CloseConsumer(); |
| + |
| + // Wait for producer to know that the consumer is closed. |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(producer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals); |
| + |
| + // Actually write some data. (Note: Premature freeing of the buffer would |
| + // probably only be detected under ASAN or similar.) |
| + memcpy(write_buffer_ptr, kTestData, kTestDataSize); |
| + // Note: Even though the consumer has been closed, ending the two-phase |
| + // write will report success. |
| + ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(kTestDataSize)); |
| + |
| + // But trying to write should result in failure. |
| + num_bytes = kTestDataSize; |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, WriteData(kTestData, &num_bytes)); |
| + |
| + // As will trying to start another two-phase write. |
| + write_buffer_ptr = nullptr; |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, |
| + BeginWriteData(&write_buffer_ptr, &num_bytes)); |
| +} |
| + |
| +// Tests the behavior of "interrupting" a two-phase write by closing both the |
| +// producer and the consumer. |
| +TEST_F(DataPipeTest, TwoPhaseWriteCloseBoth) { |
| + const uint32_t kTestDataSize = 15u; |
| + |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + 1u, // |element_num_bytes|. |
| + 1000u // |capacity_num_bytes|. |
| + }; |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + |
| + // Start two-phase write. |
| + void* write_buffer_ptr = nullptr; |
| + uint32_t num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_buffer_ptr, &num_bytes)); |
| + EXPECT_TRUE(write_buffer_ptr); |
| + ASSERT_GT(num_bytes, kTestDataSize); |
| +} |
| + |
| +// Tests the behavior of writing, closing the producer, and then reading (with |
| +// and without data remaining). |
| +TEST_F(DataPipeTest, WriteCloseProducerReadNoData) { |
| + const char kTestData[] = "hello world"; |
| + const uint32_t kTestDataSize = static_cast<uint32_t>(sizeof(kTestData)); |
| + |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + 1u, // |element_num_bytes|. |
| + 1000u // |capacity_num_bytes|. |
| + }; |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + MojoHandleSignalsState hss; |
| + |
| + // Write some data, so we'll have something to read. |
| + uint32_t num_bytes = kTestDataSize; |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes)); |
| + ASSERT_EQ(kTestDataSize, num_bytes); |
| + |
| + // Close the producer. |
| + CloseProducer(); |
| + |
| + // Wait. (Note that once the consumer knows that the producer is closed, it |
| + // must also know about all the data that was sent.) |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // Peek that data. |
| + char buffer[1000]; |
| + num_bytes = static_cast<uint32_t>(sizeof(buffer)); |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(buffer, &num_bytes, false, true)); |
| + ASSERT_EQ(kTestDataSize, num_bytes); |
| + ASSERT_EQ(0, memcmp(buffer, kTestData, kTestDataSize)); |
| + |
| + // Read that data. |
| + memset(buffer, 0, 1000); |
| + num_bytes = static_cast<uint32_t>(sizeof(buffer)); |
| + ASSERT_EQ(MOJO_RESULT_OK, ReadData(buffer, &num_bytes)); |
| + ASSERT_EQ(kTestDataSize, num_bytes); |
| + ASSERT_EQ(0, memcmp(buffer, kTestData, kTestDataSize)); |
| + |
| + // A second read should fail. |
| + num_bytes = static_cast<uint32_t>(sizeof(buffer)); |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, ReadData(buffer, &num_bytes)); |
| + |
| + // A two-phase read should also fail. |
| + const void* read_buffer_ptr = nullptr; |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, |
| + ReadData(&read_buffer_ptr, &num_bytes)); |
| + |
| + // Ditto for discard. |
| + num_bytes = 10u; |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, DiscardData(&num_bytes)); |
| +} |
| + |
| +// Test that two-phase reads/writes behave correctly when given invalid |
| +// arguments. |
| +TEST_F(DataPipeTest, TwoPhaseMoreInvalidArguments) { |
| + const MojoCreateDataPipeOptions options = { |
| + kSizeOfOptions, // |struct_size|. |
| + MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|. |
| + static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|. |
| + 10 * sizeof(int32_t) // |capacity_num_bytes|. |
| + }; |
| + ASSERT_EQ(MOJO_RESULT_OK, Create(&options)); |
| + MojoHandleSignalsState hss; |
| + |
| + // No data. |
| + uint32_t num_bytes = 1000u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(0u, num_bytes); |
| + |
| + // Try "ending" a two-phase write when one isn't active. |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, |
| + EndWriteData(1u * sizeof(int32_t))); |
| + |
| + // Wait a bit, to make sure that if a signal were (incorrectly) sent, it'd |
| + // have time to propagate. |
| + test::Sleep(test::EpsilonDeadline()); |
| + |
| + // Still no data. |
| + num_bytes = 1000u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(0u, num_bytes); |
| + |
| + // Try ending a two-phase write with an invalid amount (too much). |
| + num_bytes = 0u; |
| + void* write_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes)); |
| + ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, |
| + EndWriteData(num_bytes + static_cast<uint32_t>(sizeof(int32_t)))); |
| + |
| + // But the two-phase write still ended. |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, EndWriteData(0u)); |
| + |
| + // Wait a bit (as above). |
| + test::Sleep(test::EpsilonDeadline()); |
| + |
| + // Still no data. |
| + num_bytes = 1000u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(0u, num_bytes); |
| + |
| + // Try ending a two-phase write with an invalid amount (not a multiple of the |
| + // element size). |
| + num_bytes = 0u; |
| + write_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes)); |
| + EXPECT_GE(num_bytes, 1u); |
| + ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, EndWriteData(1u)); |
| + |
| + // But the two-phase write still ended. |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, EndWriteData(0u)); |
| + |
| + // Wait a bit (as above). |
| + test::Sleep(test::EpsilonDeadline()); |
| + |
| + // Still no data. |
| + num_bytes = 1000u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(0u, num_bytes); |
| + |
| + // Now write some data, so we'll be able to try reading. |
| + int32_t element = 123; |
| + num_bytes = 1u * sizeof(int32_t); |
| + ASSERT_EQ(MOJO_RESULT_OK, WriteData(&element, &num_bytes)); |
| + |
| + // Wait for data. |
| + // TODO(vtl): (See corresponding TODO in AllOrNone.) |
| + hss = MojoHandleSignalsState(); |
| + ASSERT_EQ(MOJO_RESULT_OK, |
| + MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, |
| + MOJO_DEADLINE_INDEFINITE, &hss)); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals); |
| + ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED, |
| + hss.satisfiable_signals); |
| + |
| + // One element available. |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(1u * sizeof(int32_t), num_bytes); |
| + |
| + // Try "ending" a two-phase read when one isn't active. |
| + ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, EndReadData(1u * sizeof(int32_t))); |
| + |
| + // Still one element available. |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(1u * sizeof(int32_t), num_bytes); |
| + |
| + // Try ending a two-phase read with an invalid amount (too much). |
| + num_bytes = 0u; |
| + const void* read_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes)); |
| + ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, |
| + EndReadData(num_bytes + static_cast<uint32_t>(sizeof(int32_t)))); |
| + |
| + // Still one element available. |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(1u * sizeof(int32_t), num_bytes); |
| + |
| + // Try ending a two-phase read with an invalid amount (not a multiple of the |
| + // element size). |
| + num_bytes = 0u; |
| + read_ptr = nullptr; |
| + ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes)); |
| + ASSERT_EQ(1u * sizeof(int32_t), num_bytes); |
| + ASSERT_EQ(123, static_cast<const int32_t*>(read_ptr)[0]); |
| + ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, EndReadData(1u)); |
| + |
| + // Still one element available. |
| + num_bytes = 0u; |
| + ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes)); |
| + ASSERT_EQ(1u * sizeof(int32_t), num_bytes); |
| +} |
| + |
| +} // namespace |
| +} // namespace edk |
| +} // namespace mojo |