Index: mojo/public/dart/third_party/analyzer/lib/src/generated/utilities_collection.dart |
diff --git a/mojo/public/dart/third_party/analyzer/lib/src/generated/utilities_collection.dart b/mojo/public/dart/third_party/analyzer/lib/src/generated/utilities_collection.dart |
new file mode 100644 |
index 0000000000000000000000000000000000000000..0d2afe8a49890538ee17d82b6f86bae5c47426ea |
--- /dev/null |
+++ b/mojo/public/dart/third_party/analyzer/lib/src/generated/utilities_collection.dart |
@@ -0,0 +1,743 @@ |
+// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
+// for details. All rights reserved. Use of this source code is governed by a |
+// BSD-style license that can be found in the LICENSE file. |
+ |
+library engine.utilities.collection; |
+ |
+import "dart:math" as math; |
+import 'dart:collection'; |
+ |
+import 'java_core.dart'; |
+import 'scanner.dart' show Token; |
+ |
+/** |
+ * The class `BooleanArray` defines methods for operating on integers as if they were arrays |
+ * of booleans. These arrays can be indexed by either integers or by enumeration constants. |
+ */ |
+class BooleanArray { |
+ /** |
+ * Return the value of the element at the given index. |
+ * |
+ * @param array the array being accessed |
+ * @param index the index of the element being accessed |
+ * @return the value of the element at the given index |
+ * @throws IndexOutOfBoundsException if the index is not between zero (0) and 31, inclusive |
+ */ |
+ static bool get(int array, int index) { |
+ _checkIndex(index); |
+ return (array & (1 << index)) > 0; |
+ } |
+ |
+ /** |
+ * Return the value of the element at the given index. |
+ * |
+ * @param array the array being accessed |
+ * @param index the index of the element being accessed |
+ * @return the value of the element at the given index |
+ * @throws IndexOutOfBoundsException if the index is not between zero (0) and 31, inclusive |
+ */ |
+ static bool getEnum(int array, Enum index) => get(array, index.ordinal); |
+ |
+ /** |
+ * Set the value of the element at the given index to the given value. |
+ * |
+ * @param array the array being modified |
+ * @param index the index of the element being set |
+ * @param value the value to be assigned to the element |
+ * @return the updated value of the array |
+ * @throws IndexOutOfBoundsException if the index is not between zero (0) and 31, inclusive |
+ */ |
+ static int set(int array, int index, bool value) { |
+ _checkIndex(index); |
+ if (value) { |
+ return array | (1 << index); |
+ } else { |
+ return array & ~(1 << index); |
+ } |
+ } |
+ |
+ /** |
+ * Set the value of the element at the given index to the given value. |
+ * |
+ * @param array the array being modified |
+ * @param index the index of the element being set |
+ * @param value the value to be assigned to the element |
+ * @return the updated value of the array |
+ * @throws IndexOutOfBoundsException if the index is not between zero (0) and 31, inclusive |
+ */ |
+ static int setEnum(int array, Enum index, bool value) => |
+ set(array, index.ordinal, value); |
+ |
+ /** |
+ * Throw an exception if the index is not within the bounds allowed for an integer-encoded array |
+ * of boolean values. |
+ * |
+ * @throws IndexOutOfBoundsException if the index is not between zero (0) and 31, inclusive |
+ */ |
+ static void _checkIndex(int index) { |
+ if (index < 0 || index > 30) { |
+ throw new RangeError("Index not between 0 and 30: $index"); |
+ } |
+ } |
+} |
+ |
+/** |
+ * Instances of the class `DirectedGraph` implement a directed graph in which the nodes are |
+ * arbitrary (client provided) objects and edges are represented implicitly. The graph will allow an |
+ * edge from any node to any other node, including itself, but will not represent multiple edges |
+ * between the same pair of nodes. |
+ * |
+ * @param N the type of the nodes in the graph |
+ */ |
+class DirectedGraph<N> { |
+ /** |
+ * The table encoding the edges in the graph. An edge is represented by an entry mapping the head |
+ * to a set of tails. Nodes that are not the head of any edge are represented by an entry mapping |
+ * the node to an empty set of tails. |
+ */ |
+ HashMap<N, HashSet<N>> _edges = new HashMap<N, HashSet<N>>(); |
+ |
+ /** |
+ * Return `true` if this graph is empty. |
+ * |
+ * @return `true` if this graph is empty |
+ */ |
+ bool get isEmpty => _edges.isEmpty; |
+ |
+ /** |
+ * Return the number of nodes in this graph. |
+ * |
+ * @return the number of nodes in this graph |
+ */ |
+ int get nodeCount => _edges.length; |
+ |
+ /** |
+ * Return a set of all nodes in the graph. |
+ */ |
+ Set<N> get nodes => _edges.keys.toSet(); |
+ |
+ /** |
+ * Add an edge from the given head node to the given tail node. Both nodes will be a part of the |
+ * graph after this method is invoked, whether or not they were before. |
+ * |
+ * @param head the node at the head of the edge |
+ * @param tail the node at the tail of the edge |
+ */ |
+ void addEdge(N head, N tail) { |
+ // |
+ // First, ensure that the tail is a node known to the graph. |
+ // |
+ if (_edges[tail] == null) { |
+ _edges[tail] = new HashSet<N>(); |
+ } |
+ // |
+ // Then create the edge. |
+ // |
+ HashSet<N> tails = _edges[head]; |
+ if (tails == null) { |
+ tails = new HashSet<N>(); |
+ _edges[head] = tails; |
+ } |
+ tails.add(tail); |
+ } |
+ |
+ /** |
+ * Add the given node to the set of nodes in the graph. |
+ * |
+ * @param node the node to be added |
+ */ |
+ void addNode(N node) { |
+ HashSet<N> tails = _edges[node]; |
+ if (tails == null) { |
+ _edges[node] = new HashSet<N>(); |
+ } |
+ } |
+ |
+ /** |
+ * Run a topological sort of the graph. Since the graph may contain cycles, this results in a list |
+ * of strongly connected components rather than a list of nodes. The nodes in each strongly |
+ * connected components only have edges that point to nodes in the same component or earlier |
+ * components. |
+ */ |
+ List<List<N>> computeTopologicalSort() { |
+ DirectedGraph_SccFinder<N> finder = new DirectedGraph_SccFinder<N>(this); |
+ return finder.computeTopologicalSort(); |
+ } |
+ |
+ /** |
+ * Return true if the graph contains at least one path from `source` to `destination`. |
+ */ |
+ bool containsPath(N source, N destination) { |
+ HashSet<N> nodesVisited = new HashSet<N>(); |
+ return _containsPathInternal(source, destination, nodesVisited); |
+ } |
+ |
+ /** |
+ * Return a list of nodes that form a cycle containing the given node. If the node is not part of |
+ * this graph, then a list containing only the node itself will be returned. |
+ * |
+ * @return a list of nodes that form a cycle containing the given node |
+ */ |
+ List<N> findCycleContaining(N node) { |
+ if (node == null) { |
+ throw new IllegalArgumentException(); |
+ } |
+ DirectedGraph_SccFinder<N> finder = new DirectedGraph_SccFinder<N>(this); |
+ return finder.componentContaining(node); |
+ } |
+ |
+ /** |
+ * Return a set containing the tails of edges that have the given node as their head. The set will |
+ * be empty if there are no such edges or if the node is not part of the graph. Clients must not |
+ * modify the returned set. |
+ * |
+ * @param head the node at the head of all of the edges whose tails are to be returned |
+ * @return a set containing the tails of edges that have the given node as their head |
+ */ |
+ Set<N> getTails(N head) { |
+ HashSet<N> tails = _edges[head]; |
+ if (tails == null) { |
+ return new HashSet<N>(); |
+ } |
+ return tails; |
+ } |
+ |
+ /** |
+ * Remove all of the given nodes from this graph. As a consequence, any edges for which those |
+ * nodes were either a head or a tail will also be removed. |
+ * |
+ * @param nodes the nodes to be removed |
+ */ |
+ void removeAllNodes(List<N> nodes) { |
+ for (N node in nodes) { |
+ removeNode(node); |
+ } |
+ } |
+ |
+ /** |
+ * Remove the edge from the given head node to the given tail node. If there was no such edge then |
+ * the graph will be unmodified: the number of edges will be the same and the set of nodes will be |
+ * the same (neither node will either be added or removed). |
+ * |
+ * @param head the node at the head of the edge |
+ * @param tail the node at the tail of the edge |
+ * @return `true` if the graph was modified as a result of this operation |
+ */ |
+ void removeEdge(N head, N tail) { |
+ HashSet<N> tails = _edges[head]; |
+ if (tails != null) { |
+ tails.remove(tail); |
+ } |
+ } |
+ |
+ /** |
+ * Remove the given node from this graph. As a consequence, any edges for which that node was |
+ * either a head or a tail will also be removed. |
+ * |
+ * @param node the node to be removed |
+ */ |
+ void removeNode(N node) { |
+ _edges.remove(node); |
+ for (HashSet<N> tails in _edges.values) { |
+ tails.remove(node); |
+ } |
+ } |
+ |
+ /** |
+ * Find one node (referred to as a sink node) that has no outgoing edges (that is, for which there |
+ * are no edges that have that node as the head of the edge) and remove it from this graph. Return |
+ * the node that was removed, or `null` if there are no such nodes either because the graph |
+ * is empty or because every node in the graph has at least one outgoing edge. As a consequence of |
+ * removing the node from the graph any edges for which that node was a tail will also be removed. |
+ * |
+ * @return the sink node that was removed |
+ */ |
+ N removeSink() { |
+ N sink = _findSink(); |
+ if (sink == null) { |
+ return null; |
+ } |
+ removeNode(sink); |
+ return sink; |
+ } |
+ |
+ bool _containsPathInternal(N source, N destination, HashSet<N> nodesVisited) { |
+ if (identical(source, destination)) { |
+ return true; |
+ } |
+ HashSet<N> tails = _edges[source]; |
+ if (tails != null) { |
+ nodesVisited.add(source); |
+ for (N tail in tails) { |
+ if (!nodesVisited.contains(tail)) { |
+ if (_containsPathInternal(tail, destination, nodesVisited)) { |
+ return true; |
+ } |
+ } |
+ } |
+ } |
+ return false; |
+ } |
+ |
+ /** |
+ * Return one node that has no outgoing edges (that is, for which there are no edges that have |
+ * that node as the head of the edge), or `null` if there are no such nodes. |
+ * |
+ * @return a sink node |
+ */ |
+ N _findSink() { |
+ for (N key in _edges.keys) { |
+ if (_edges[key].isEmpty) return key; |
+ } |
+ return null; |
+ } |
+} |
+ |
+/** |
+ * Instances of the class `NodeInfo` are used by the [SccFinder] to maintain |
+ * information about the nodes that have been examined. |
+ * |
+ * @param N the type of the nodes corresponding to the entries |
+ */ |
+class DirectedGraph_NodeInfo<N> { |
+ /** |
+ * The depth of this node. |
+ */ |
+ int index = 0; |
+ |
+ /** |
+ * The depth of the first node in a cycle. |
+ */ |
+ int lowlink = 0; |
+ |
+ /** |
+ * A flag indicating whether the corresponding node is on the stack. Used to remove the need for |
+ * searching a collection for the node each time the question needs to be asked. |
+ */ |
+ bool onStack = false; |
+ |
+ /** |
+ * The component that contains the corresponding node. |
+ */ |
+ List<N> component; |
+ |
+ /** |
+ * Initialize a newly created information holder to represent a node at the given depth. |
+ * |
+ * @param depth the depth of the node being represented |
+ */ |
+ DirectedGraph_NodeInfo(int depth) { |
+ index = depth; |
+ lowlink = depth; |
+ onStack = false; |
+ } |
+} |
+ |
+/** |
+ * Instances of the class `SccFinder` implement Tarjan's Algorithm for finding the strongly |
+ * connected components in a graph. |
+ */ |
+class DirectedGraph_SccFinder<N> { |
+ /** |
+ * The graph to work with. |
+ */ |
+ final DirectedGraph<N> _graph; |
+ |
+ /** |
+ * The index used to uniquely identify the depth of nodes. |
+ */ |
+ int _index = 0; |
+ |
+ /** |
+ * The stack of nodes that are being visited in order to identify components. |
+ */ |
+ List<N> _stack = new List<N>(); |
+ |
+ /** |
+ * A table mapping nodes to information about the nodes that is used by this algorithm. |
+ */ |
+ HashMap<N, DirectedGraph_NodeInfo<N>> _nodeMap = |
+ new HashMap<N, DirectedGraph_NodeInfo<N>>(); |
+ |
+ /** |
+ * A list of all strongly connected components found, in topological sort order (each node in a |
+ * strongly connected component only has edges that point to nodes in the same component or |
+ * earlier components). |
+ */ |
+ List<List<N>> _allComponents = new List<List<N>>(); |
+ |
+ /** |
+ * Initialize a newly created finder. |
+ */ |
+ DirectedGraph_SccFinder(this._graph) : super(); |
+ |
+ /** |
+ * Return a list containing the nodes that are part of the strongly connected component that |
+ * contains the given node. |
+ * |
+ * @param node the node used to identify the strongly connected component to be returned |
+ * @return the nodes that are part of the strongly connected component that contains the given |
+ * node |
+ */ |
+ List<N> componentContaining(N node) => _strongConnect(node).component; |
+ |
+ /** |
+ * Run Tarjan's algorithm and return the resulting list of strongly connected components. The |
+ * list is in topological sort order (each node in a strongly connected component only has edges |
+ * that point to nodes in the same component or earlier components). |
+ */ |
+ List<List<N>> computeTopologicalSort() { |
+ for (N node in _graph._edges.keys.toSet()) { |
+ DirectedGraph_NodeInfo<N> nodeInfo = _nodeMap[node]; |
+ if (nodeInfo == null) { |
+ _strongConnect(node); |
+ } |
+ } |
+ return _allComponents; |
+ } |
+ |
+ /** |
+ * Remove and return the top-most element from the stack. |
+ * |
+ * @return the element that was removed |
+ */ |
+ N _pop() { |
+ N node = _stack.removeAt(_stack.length - 1); |
+ _nodeMap[node].onStack = false; |
+ return node; |
+ } |
+ |
+ /** |
+ * Add the given node to the stack. |
+ * |
+ * @param node the node to be added to the stack |
+ */ |
+ void _push(N node) { |
+ _nodeMap[node].onStack = true; |
+ _stack.add(node); |
+ } |
+ |
+ /** |
+ * Compute the strongly connected component that contains the given node as well as any |
+ * components containing nodes that are reachable from the given component. |
+ * |
+ * @param v the node from which the search will begin |
+ * @return the information about the given node |
+ */ |
+ DirectedGraph_NodeInfo<N> _strongConnect(N v) { |
+ // |
+ // Set the depth index for v to the smallest unused index |
+ // |
+ DirectedGraph_NodeInfo<N> vInfo = new DirectedGraph_NodeInfo<N>(_index++); |
+ _nodeMap[v] = vInfo; |
+ _push(v); |
+ // |
+ // Consider successors of v |
+ // |
+ HashSet<N> tails = _graph._edges[v]; |
+ if (tails != null) { |
+ for (N w in tails) { |
+ DirectedGraph_NodeInfo<N> wInfo = _nodeMap[w]; |
+ if (wInfo == null) { |
+ // Successor w has not yet been visited; recurse on it |
+ wInfo = _strongConnect(w); |
+ vInfo.lowlink = math.min(vInfo.lowlink, wInfo.lowlink); |
+ } else if (wInfo.onStack) { |
+ // Successor w is in stack S and hence in the current SCC |
+ vInfo.lowlink = math.min(vInfo.lowlink, wInfo.index); |
+ } |
+ } |
+ } |
+ // |
+ // If v is a root node, pop the stack and generate an SCC |
+ // |
+ if (vInfo.lowlink == vInfo.index) { |
+ List<N> component = new List<N>(); |
+ N w; |
+ do { |
+ w = _pop(); |
+ component.add(w); |
+ _nodeMap[w].component = component; |
+ } while (!identical(w, v)); |
+ _allComponents.add(component); |
+ } |
+ return vInfo; |
+ } |
+} |
+ |
+/** |
+ * The class `ListUtilities` defines utility methods useful for working with [List |
+ ]. |
+ */ |
+class ListUtilities { |
+ /** |
+ * Add all of the elements in the given array to the given list. |
+ * |
+ * @param list the list to which the elements are to be added |
+ * @param elements the elements to be added to the list |
+ */ |
+ static void addAll(List list, List<Object> elements) { |
+ int count = elements.length; |
+ for (int i = 0; i < count; i++) { |
+ list.add(elements[i]); |
+ } |
+ } |
+} |
+ |
+/** |
+ * The interface `MapIterator` defines the behavior of objects that iterate over the entries |
+ * in a map. |
+ * |
+ * This interface defines the concept of a current entry and provides methods to access the key and |
+ * value in the current entry. When an iterator is first created it will be positioned before the |
+ * first entry and there is no current entry until [moveNext] is invoked. When all of the |
+ * entries have been accessed there will also be no current entry. |
+ * |
+ * There is no guarantee made about the order in which the entries are accessible. |
+ */ |
+abstract class MapIterator<K, V> { |
+ /** |
+ * Return the key associated with the current element. |
+ * |
+ * @return the key associated with the current element |
+ * @throws NoSuchElementException if there is no current element |
+ */ |
+ K get key; |
+ |
+ /** |
+ * Return the value associated with the current element. |
+ * |
+ * @return the value associated with the current element |
+ * @throws NoSuchElementException if there is no current element |
+ */ |
+ V get value; |
+ |
+ /** |
+ * Set the value associated with the current element to the given value. |
+ * |
+ * @param newValue the new value to be associated with the current element |
+ * @throws NoSuchElementException if there is no current element |
+ */ |
+ void set value(V newValue); |
+ |
+ /** |
+ * Advance to the next entry in the map. Return `true` if there is a current element that |
+ * can be accessed after this method returns. It is safe to invoke this method even if the |
+ * previous invocation returned `false`. |
+ * |
+ * @return `true` if there is a current element that can be accessed |
+ */ |
+ bool moveNext(); |
+} |
+ |
+/** |
+ * Instances of the class `MultipleMapIterator` implement an iterator that can be used to |
+ * sequentially access the entries in multiple maps. |
+ */ |
+class MultipleMapIterator<K, V> implements MapIterator<K, V> { |
+ /** |
+ * The iterators used to access the entries. |
+ */ |
+ List<MapIterator<K, V>> _iterators; |
+ |
+ /** |
+ * The index of the iterator currently being used to access the entries. |
+ */ |
+ int _iteratorIndex = -1; |
+ |
+ /** |
+ * The current iterator, or `null` if there is no current iterator. |
+ */ |
+ MapIterator<K, V> _currentIterator; |
+ |
+ /** |
+ * Initialize a newly created iterator to return the entries from the given maps. |
+ * |
+ * @param maps the maps containing the entries to be iterated |
+ */ |
+ MultipleMapIterator(List<Map<K, V>> maps) { |
+ int count = maps.length; |
+ _iterators = new List<MapIterator<K, V>>(count); |
+ for (int i = 0; i < count; i++) { |
+ _iterators[i] = new SingleMapIterator<K, V>(maps[i]); |
+ } |
+ } |
+ |
+ @override |
+ K get key { |
+ if (_currentIterator == null) { |
+ throw new NoSuchElementException(); |
+ } |
+ return _currentIterator.key; |
+ } |
+ |
+ @override |
+ V get value { |
+ if (_currentIterator == null) { |
+ throw new NoSuchElementException(); |
+ } |
+ return _currentIterator.value; |
+ } |
+ |
+ @override |
+ void set value(V newValue) { |
+ if (_currentIterator == null) { |
+ throw new NoSuchElementException(); |
+ } |
+ _currentIterator.value = newValue; |
+ } |
+ |
+ @override |
+ bool moveNext() { |
+ if (_iteratorIndex < 0) { |
+ if (_iterators.length == 0) { |
+ _currentIterator = null; |
+ return false; |
+ } |
+ if (_advanceToNextIterator()) { |
+ return true; |
+ } else { |
+ _currentIterator = null; |
+ return false; |
+ } |
+ } |
+ if (_currentIterator.moveNext()) { |
+ return true; |
+ } else if (_advanceToNextIterator()) { |
+ return true; |
+ } else { |
+ _currentIterator = null; |
+ return false; |
+ } |
+ } |
+ |
+ /** |
+ * Under the assumption that there are no more entries that can be returned using the current |
+ * iterator, advance to the next iterator that has entries. |
+ * |
+ * @return `true` if there is a current iterator that has entries |
+ */ |
+ bool _advanceToNextIterator() { |
+ _iteratorIndex++; |
+ while (_iteratorIndex < _iterators.length) { |
+ MapIterator<K, V> iterator = _iterators[_iteratorIndex]; |
+ if (iterator.moveNext()) { |
+ _currentIterator = iterator; |
+ return true; |
+ } |
+ _iteratorIndex++; |
+ } |
+ return false; |
+ } |
+} |
+ |
+/** |
+ * Instances of the class `SingleMapIterator` implement an iterator that can be used to access |
+ * the entries in a single map. |
+ */ |
+class SingleMapIterator<K, V> implements MapIterator<K, V> { |
+ /** |
+ * The [Map] containing the entries to be iterated over. |
+ */ |
+ final Map<K, V> _map; |
+ |
+ /** |
+ * The iterator used to access the entries. |
+ */ |
+ Iterator<K> _keyIterator; |
+ |
+ /** |
+ * The current key, or `null` if there is no current key. |
+ */ |
+ K _currentKey; |
+ |
+ /** |
+ * The current value. |
+ */ |
+ V _currentValue; |
+ |
+ /** |
+ * Initialize a newly created iterator to return the entries from the given map. |
+ * |
+ * @param map the map containing the entries to be iterated over |
+ */ |
+ SingleMapIterator(this._map) { |
+ this._keyIterator = _map.keys.iterator; |
+ } |
+ |
+ @override |
+ K get key { |
+ if (_currentKey == null) { |
+ throw new NoSuchElementException(); |
+ } |
+ return _currentKey; |
+ } |
+ |
+ @override |
+ V get value { |
+ if (_currentKey == null) { |
+ throw new NoSuchElementException(); |
+ } |
+ if (_currentValue == null) { |
+ _currentValue = _map[_currentKey]; |
+ } |
+ return _currentValue; |
+ } |
+ |
+ @override |
+ void set value(V newValue) { |
+ if (_currentKey == null) { |
+ throw new NoSuchElementException(); |
+ } |
+ _currentValue = newValue; |
+ _map[_currentKey] = newValue; |
+ } |
+ |
+ @override |
+ bool moveNext() { |
+ if (_keyIterator.moveNext()) { |
+ _currentKey = _keyIterator.current; |
+ _currentValue = null; |
+ return true; |
+ } else { |
+ _currentKey = null; |
+ return false; |
+ } |
+ } |
+ |
+ /** |
+ * Returns a new [SingleMapIterator] instance for the given [Map]. |
+ */ |
+ static SingleMapIterator forMap(Map map) => new SingleMapIterator(map); |
+} |
+ |
+/** |
+ * Instances of the class `TokenMap` map one set of tokens to another set of tokens. |
+ */ |
+class TokenMap { |
+ /** |
+ * A table mapping tokens to tokens. This should be replaced by a more performant implementation. |
+ * One possibility is a pair of parallel arrays, with keys being sorted by their offset and a |
+ * cursor indicating where to start searching. |
+ */ |
+ HashMap<Token, Token> _map = new HashMap<Token, Token>(); |
+ |
+ /** |
+ * Return the token that is mapped to the given token, or `null` if there is no token |
+ * corresponding to the given token. |
+ * |
+ * @param key the token being mapped to another token |
+ * @return the token that is mapped to the given token |
+ */ |
+ Token get(Token key) => _map[key]; |
+ |
+ /** |
+ * Map the key to the value. |
+ * |
+ * @param key the token being mapped to the value |
+ * @param value the token to which the key will be mapped |
+ */ |
+ void put(Token key, Token value) { |
+ _map[key] = value; |
+ } |
+} |