| Index: mojo/public/dart/third_party/analyzer/lib/src/generated/element_resolver.dart
|
| diff --git a/mojo/public/dart/third_party/analyzer/lib/src/generated/element_resolver.dart b/mojo/public/dart/third_party/analyzer/lib/src/generated/element_resolver.dart
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..1e5794a863207b49f15f9b00695229f5530c1cf5
|
| --- /dev/null
|
| +++ b/mojo/public/dart/third_party/analyzer/lib/src/generated/element_resolver.dart
|
| @@ -0,0 +1,2809 @@
|
| +// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
|
| +// for details. All rights reserved. Use of this source code is governed by a
|
| +// BSD-style license that can be found in the LICENSE file.
|
| +
|
| +library engine.resolver.element_resolver;
|
| +
|
| +import 'dart:collection';
|
| +
|
| +import 'ast.dart';
|
| +import 'element.dart';
|
| +import 'engine.dart';
|
| +import 'error.dart';
|
| +import 'resolver.dart';
|
| +import 'scanner.dart' as sc;
|
| +import 'utilities_dart.dart';
|
| +
|
| +/**
|
| + * An object used by instances of [ResolverVisitor] to resolve references within
|
| + * the AST structure to the elements being referenced. The requirements for the
|
| + * element resolver are:
|
| + *
|
| + * 1. Every [SimpleIdentifier] should be resolved to the element to which it
|
| + * refers. Specifically:
|
| + * * An identifier within the declaration of that name should resolve to the
|
| + * element being declared.
|
| + * * An identifier denoting a prefix should resolve to the element
|
| + * representing the import that defines the prefix (an [ImportElement]).
|
| + * * An identifier denoting a variable should resolve to the element
|
| + * representing the variable (a [VariableElement]).
|
| + * * An identifier denoting a parameter should resolve to the element
|
| + * representing the parameter (a [ParameterElement]).
|
| + * * An identifier denoting a field should resolve to the element
|
| + * representing the getter or setter being invoked (a
|
| + * [PropertyAccessorElement]).
|
| + * * An identifier denoting the name of a method or function being invoked
|
| + * should resolve to the element representing the method or function (an
|
| + * [ExecutableElement]).
|
| + * * An identifier denoting a label should resolve to the element
|
| + * representing the label (a [LabelElement]).
|
| + * The identifiers within directives are exceptions to this rule and are
|
| + * covered below.
|
| + * 2. Every node containing a token representing an operator that can be
|
| + * overridden ( [BinaryExpression], [PrefixExpression], [PostfixExpression])
|
| + * should resolve to the element representing the method invoked by that
|
| + * operator (a [MethodElement]).
|
| + * 3. Every [FunctionExpressionInvocation] should resolve to the element
|
| + * representing the function being invoked (a [FunctionElement]). This will
|
| + * be the same element as that to which the name is resolved if the function
|
| + * has a name, but is provided for those cases where an unnamed function is
|
| + * being invoked.
|
| + * 4. Every [LibraryDirective] and [PartOfDirective] should resolve to the
|
| + * element representing the library being specified by the directive (a
|
| + * [LibraryElement]) unless, in the case of a part-of directive, the
|
| + * specified library does not exist.
|
| + * 5. Every [ImportDirective] and [ExportDirective] should resolve to the
|
| + * element representing the library being specified by the directive unless
|
| + * the specified library does not exist (an [ImportElement] or
|
| + * [ExportElement]).
|
| + * 6. The identifier representing the prefix in an [ImportDirective] should
|
| + * resolve to the element representing the prefix (a [PrefixElement]).
|
| + * 7. The identifiers in the hide and show combinators in [ImportDirective]s
|
| + * and [ExportDirective]s should resolve to the elements that are being
|
| + * hidden or shown, respectively, unless those names are not defined in the
|
| + * specified library (or the specified library does not exist).
|
| + * 8. Every [PartDirective] should resolve to the element representing the
|
| + * compilation unit being specified by the string unless the specified
|
| + * compilation unit does not exist (a [CompilationUnitElement]).
|
| + *
|
| + * Note that AST nodes that would represent elements that are not defined are
|
| + * not resolved to anything. This includes such things as references to
|
| + * undeclared variables (which is an error) and names in hide and show
|
| + * combinators that are not defined in the imported library (which is not an
|
| + * error).
|
| + */
|
| +class ElementResolver extends SimpleAstVisitor<Object> {
|
| + /**
|
| + * The resolver driving this participant.
|
| + */
|
| + final ResolverVisitor _resolver;
|
| +
|
| + /**
|
| + * The element for the library containing the compilation unit being visited.
|
| + */
|
| + LibraryElement _definingLibrary;
|
| +
|
| + /**
|
| + * A flag indicating whether we should generate hints.
|
| + */
|
| + bool _enableHints = false;
|
| +
|
| + /**
|
| + * A flag indicating whether we should strictly follow the specification when
|
| + * generating warnings on "call" methods (fixes dartbug.com/21938).
|
| + */
|
| + bool _enableStrictCallChecks = false;
|
| +
|
| + /**
|
| + * The type representing the type 'dynamic'.
|
| + */
|
| + DartType _dynamicType;
|
| +
|
| + /**
|
| + * The type representing the type 'type'.
|
| + */
|
| + DartType _typeType;
|
| +
|
| + /**
|
| + * A utility class for the resolver to answer the question of "what are my
|
| + * subtypes?".
|
| + */
|
| + SubtypeManager _subtypeManager;
|
| +
|
| + /**
|
| + * The object keeping track of which elements have had their types promoted.
|
| + */
|
| + TypePromotionManager _promoteManager;
|
| +
|
| + /**
|
| + * Initialize a newly created visitor to work for the given [_resolver] to
|
| + * resolve the nodes in a compilation unit.
|
| + */
|
| + ElementResolver(this._resolver) {
|
| + this._definingLibrary = _resolver.definingLibrary;
|
| + AnalysisOptions options = _definingLibrary.context.analysisOptions;
|
| + _enableHints = options.hint;
|
| + _enableStrictCallChecks = options.enableStrictCallChecks;
|
| + _dynamicType = _resolver.typeProvider.dynamicType;
|
| + _typeType = _resolver.typeProvider.typeType;
|
| + _subtypeManager = new SubtypeManager();
|
| + _promoteManager = _resolver.promoteManager;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` iff the current enclosing function is a constant constructor
|
| + * declaration.
|
| + */
|
| + bool get isInConstConstructor {
|
| + ExecutableElement function = _resolver.enclosingFunction;
|
| + if (function is ConstructorElement) {
|
| + return function.isConst;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + @override
|
| + Object visitAssignmentExpression(AssignmentExpression node) {
|
| + sc.Token operator = node.operator;
|
| + sc.TokenType operatorType = operator.type;
|
| + if (operatorType != sc.TokenType.EQ &&
|
| + operatorType != sc.TokenType.QUESTION_QUESTION_EQ) {
|
| + operatorType = _operatorFromCompoundAssignment(operatorType);
|
| + Expression leftHandSide = node.leftHandSide;
|
| + if (leftHandSide != null) {
|
| + String methodName = operatorType.lexeme;
|
| + DartType staticType = _getStaticType(leftHandSide);
|
| + MethodElement staticMethod =
|
| + _lookUpMethod(leftHandSide, staticType, methodName);
|
| + node.staticElement = staticMethod;
|
| + DartType propagatedType = _getPropagatedType(leftHandSide);
|
| + MethodElement propagatedMethod =
|
| + _lookUpMethod(leftHandSide, propagatedType, methodName);
|
| + node.propagatedElement = propagatedMethod;
|
| + if (_shouldReportMissingMember(staticType, staticMethod)) {
|
| + _recordUndefinedToken(staticType.element,
|
| + StaticTypeWarningCode.UNDEFINED_METHOD, operator, [
|
| + methodName,
|
| + staticType.displayName
|
| + ]);
|
| + } else if (_enableHints &&
|
| + _shouldReportMissingMember(propagatedType, propagatedMethod) &&
|
| + !_memberFoundInSubclass(
|
| + propagatedType.element, methodName, true, false)) {
|
| + _recordUndefinedToken(propagatedType.element,
|
| + HintCode.UNDEFINED_METHOD, operator, [
|
| + methodName,
|
| + propagatedType.displayName
|
| + ]);
|
| + }
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitBinaryExpression(BinaryExpression node) {
|
| + sc.Token operator = node.operator;
|
| + if (operator.isUserDefinableOperator) {
|
| + _resolveBinaryExpression(node, operator.lexeme);
|
| + } else if (operator.type == sc.TokenType.BANG_EQ) {
|
| + _resolveBinaryExpression(node, sc.TokenType.EQ_EQ.lexeme);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitBreakStatement(BreakStatement node) {
|
| + node.target = _lookupBreakOrContinueTarget(node, node.label, false);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitClassDeclaration(ClassDeclaration node) {
|
| + setMetadata(node.element, node);
|
| + return null;
|
| + }
|
| + @override
|
| + Object visitClassTypeAlias(ClassTypeAlias node) {
|
| + setMetadata(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitCommentReference(CommentReference node) {
|
| + Identifier identifier = node.identifier;
|
| + if (identifier is SimpleIdentifier) {
|
| + SimpleIdentifier simpleIdentifier = identifier;
|
| + Element element = _resolveSimpleIdentifier(simpleIdentifier);
|
| + if (element == null) {
|
| + //
|
| + // This might be a reference to an imported name that is missing the
|
| + // prefix.
|
| + //
|
| + element = _findImportWithoutPrefix(simpleIdentifier);
|
| + if (element is MultiplyDefinedElement) {
|
| + // TODO(brianwilkerson) Report this error?
|
| + element = null;
|
| + }
|
| + }
|
| + if (element == null) {
|
| + // TODO(brianwilkerson) Report this error?
|
| + // resolver.reportError(
|
| + // StaticWarningCode.UNDEFINED_IDENTIFIER,
|
| + // simpleIdentifier,
|
| + // simpleIdentifier.getName());
|
| + } else {
|
| + if (element.library == null || element.library != _definingLibrary) {
|
| + // TODO(brianwilkerson) Report this error?
|
| + }
|
| + simpleIdentifier.staticElement = element;
|
| + if (node.newKeyword != null) {
|
| + if (element is ClassElement) {
|
| + ConstructorElement constructor = element.unnamedConstructor;
|
| + if (constructor == null) {
|
| + // TODO(brianwilkerson) Report this error.
|
| + } else {
|
| + simpleIdentifier.staticElement = constructor;
|
| + }
|
| + } else {
|
| + // TODO(brianwilkerson) Report this error.
|
| + }
|
| + }
|
| + }
|
| + } else if (identifier is PrefixedIdentifier) {
|
| + PrefixedIdentifier prefixedIdentifier = identifier;
|
| + SimpleIdentifier prefix = prefixedIdentifier.prefix;
|
| + SimpleIdentifier name = prefixedIdentifier.identifier;
|
| + Element element = _resolveSimpleIdentifier(prefix);
|
| + if (element == null) {
|
| +// resolver.reportError(StaticWarningCode.UNDEFINED_IDENTIFIER, prefix, prefix.getName());
|
| + } else {
|
| + if (element is PrefixElement) {
|
| + prefix.staticElement = element;
|
| + // TODO(brianwilkerson) Report this error?
|
| + element = _resolver.nameScope.lookup(identifier, _definingLibrary);
|
| + name.staticElement = element;
|
| + return null;
|
| + }
|
| + LibraryElement library = element.library;
|
| + if (library == null) {
|
| + // TODO(brianwilkerson) We need to understand how the library could
|
| + // ever be null.
|
| + AnalysisEngine.instance.logger
|
| + .logError("Found element with null library: ${element.name}");
|
| + } else if (library != _definingLibrary) {
|
| + // TODO(brianwilkerson) Report this error.
|
| + }
|
| + name.staticElement = element;
|
| + if (node.newKeyword == null) {
|
| + if (element is ClassElement) {
|
| + Element memberElement =
|
| + _lookupGetterOrMethod(element.type, name.name);
|
| + if (memberElement == null) {
|
| + memberElement = element.getNamedConstructor(name.name);
|
| + if (memberElement == null) {
|
| + memberElement = _lookUpSetter(prefix, element.type, name.name);
|
| + }
|
| + }
|
| + if (memberElement == null) {
|
| +// reportGetterOrSetterNotFound(prefixedIdentifier, name, element.getDisplayName());
|
| + } else {
|
| + name.staticElement = memberElement;
|
| + }
|
| + } else {
|
| + // TODO(brianwilkerson) Report this error.
|
| + }
|
| + } else {
|
| + if (element is ClassElement) {
|
| + ConstructorElement constructor =
|
| + element.getNamedConstructor(name.name);
|
| + if (constructor == null) {
|
| + // TODO(brianwilkerson) Report this error.
|
| + } else {
|
| + name.staticElement = constructor;
|
| + }
|
| + } else {
|
| + // TODO(brianwilkerson) Report this error.
|
| + }
|
| + }
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| + super.visitConstructorDeclaration(node);
|
| + ConstructorElement element = node.element;
|
| + if (element is ConstructorElementImpl) {
|
| + ConstructorElementImpl constructorElement = element;
|
| + ConstructorName redirectedNode = node.redirectedConstructor;
|
| + if (redirectedNode != null) {
|
| + // set redirected factory constructor
|
| + ConstructorElement redirectedElement = redirectedNode.staticElement;
|
| + constructorElement.redirectedConstructor = redirectedElement;
|
| + } else {
|
| + // set redirected generative constructor
|
| + for (ConstructorInitializer initializer in node.initializers) {
|
| + if (initializer is RedirectingConstructorInvocation) {
|
| + ConstructorElement redirectedElement = initializer.staticElement;
|
| + constructorElement.redirectedConstructor = redirectedElement;
|
| + }
|
| + }
|
| + }
|
| + setMetadata(constructorElement, node);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitConstructorFieldInitializer(ConstructorFieldInitializer node) {
|
| + SimpleIdentifier fieldName = node.fieldName;
|
| + ClassElement enclosingClass = _resolver.enclosingClass;
|
| + FieldElement fieldElement = enclosingClass.getField(fieldName.name);
|
| + fieldName.staticElement = fieldElement;
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitConstructorName(ConstructorName node) {
|
| + DartType type = node.type.type;
|
| + if (type != null && type.isDynamic) {
|
| + return null;
|
| + } else if (type is! InterfaceType) {
|
| +// TODO(brianwilkerson) Report these errors.
|
| +// ASTNode parent = node.getParent();
|
| +// if (parent instanceof InstanceCreationExpression) {
|
| +// if (((InstanceCreationExpression) parent).isConst()) {
|
| +// // CompileTimeErrorCode.CONST_WITH_NON_TYPE
|
| +// } else {
|
| +// // StaticWarningCode.NEW_WITH_NON_TYPE
|
| +// }
|
| +// } else {
|
| +// // This is part of a redirecting factory constructor; not sure which error code to use
|
| +// }
|
| + return null;
|
| + }
|
| + // look up ConstructorElement
|
| + ConstructorElement constructor;
|
| + SimpleIdentifier name = node.name;
|
| + InterfaceType interfaceType = type as InterfaceType;
|
| + if (name == null) {
|
| + constructor = interfaceType.lookUpConstructor(null, _definingLibrary);
|
| + } else {
|
| + constructor =
|
| + interfaceType.lookUpConstructor(name.name, _definingLibrary);
|
| + name.staticElement = constructor;
|
| + }
|
| + node.staticElement = constructor;
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitContinueStatement(ContinueStatement node) {
|
| + node.target = _lookupBreakOrContinueTarget(node, node.label, true);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitDeclaredIdentifier(DeclaredIdentifier node) {
|
| + setMetadata(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitEnumDeclaration(EnumDeclaration node) {
|
| + setMetadata(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitExportDirective(ExportDirective node) {
|
| + ExportElement exportElement = node.element;
|
| + if (exportElement != null) {
|
| + // The element is null when the URI is invalid
|
| + // TODO(brianwilkerson) Figure out whether the element can ever be
|
| + // something other than an ExportElement
|
| + _resolveCombinators(exportElement.exportedLibrary, node.combinators);
|
| + setMetadata(exportElement, node);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFieldFormalParameter(FieldFormalParameter node) {
|
| + _setMetadataForParameter(node.element, node);
|
| + return super.visitFieldFormalParameter(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| + setMetadata(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionExpressionInvocation(FunctionExpressionInvocation node) {
|
| + // TODO(brianwilkerson) Can we ever resolve the function being invoked?
|
| + Expression expression = node.function;
|
| + if (expression is FunctionExpression) {
|
| + FunctionExpression functionExpression = expression;
|
| + ExecutableElement functionElement = functionExpression.element;
|
| + ArgumentList argumentList = node.argumentList;
|
| + List<ParameterElement> parameters =
|
| + _resolveArgumentsToFunction(false, argumentList, functionElement);
|
| + if (parameters != null) {
|
| + argumentList.correspondingStaticParameters = parameters;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionTypeAlias(FunctionTypeAlias node) {
|
| + setMetadata(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
|
| + _setMetadataForParameter(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitImportDirective(ImportDirective node) {
|
| + SimpleIdentifier prefixNode = node.prefix;
|
| + if (prefixNode != null) {
|
| + String prefixName = prefixNode.name;
|
| + for (PrefixElement prefixElement in _definingLibrary.prefixes) {
|
| + if (prefixElement.displayName == prefixName) {
|
| + prefixNode.staticElement = prefixElement;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + ImportElement importElement = node.element;
|
| + if (importElement != null) {
|
| + // The element is null when the URI is invalid
|
| + LibraryElement library = importElement.importedLibrary;
|
| + if (library != null) {
|
| + _resolveCombinators(library, node.combinators);
|
| + }
|
| + setMetadata(importElement, node);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitIndexExpression(IndexExpression node) {
|
| + Expression target = node.realTarget;
|
| + DartType staticType = _getStaticType(target);
|
| + DartType propagatedType = _getPropagatedType(target);
|
| + String getterMethodName = sc.TokenType.INDEX.lexeme;
|
| + String setterMethodName = sc.TokenType.INDEX_EQ.lexeme;
|
| + bool isInGetterContext = node.inGetterContext();
|
| + bool isInSetterContext = node.inSetterContext();
|
| + if (isInGetterContext && isInSetterContext) {
|
| + // lookup setter
|
| + MethodElement setterStaticMethod =
|
| + _lookUpMethod(target, staticType, setterMethodName);
|
| + MethodElement setterPropagatedMethod =
|
| + _lookUpMethod(target, propagatedType, setterMethodName);
|
| + // set setter element
|
| + node.staticElement = setterStaticMethod;
|
| + node.propagatedElement = setterPropagatedMethod;
|
| + // generate undefined method warning
|
| + _checkForUndefinedIndexOperator(node, target, getterMethodName,
|
| + setterStaticMethod, setterPropagatedMethod, staticType,
|
| + propagatedType);
|
| + // lookup getter method
|
| + MethodElement getterStaticMethod =
|
| + _lookUpMethod(target, staticType, getterMethodName);
|
| + MethodElement getterPropagatedMethod =
|
| + _lookUpMethod(target, propagatedType, getterMethodName);
|
| + // set getter element
|
| + AuxiliaryElements auxiliaryElements =
|
| + new AuxiliaryElements(getterStaticMethod, getterPropagatedMethod);
|
| + node.auxiliaryElements = auxiliaryElements;
|
| + // generate undefined method warning
|
| + _checkForUndefinedIndexOperator(node, target, getterMethodName,
|
| + getterStaticMethod, getterPropagatedMethod, staticType,
|
| + propagatedType);
|
| + } else if (isInGetterContext) {
|
| + // lookup getter method
|
| + MethodElement staticMethod =
|
| + _lookUpMethod(target, staticType, getterMethodName);
|
| + MethodElement propagatedMethod =
|
| + _lookUpMethod(target, propagatedType, getterMethodName);
|
| + // set getter element
|
| + node.staticElement = staticMethod;
|
| + node.propagatedElement = propagatedMethod;
|
| + // generate undefined method warning
|
| + _checkForUndefinedIndexOperator(node, target, getterMethodName,
|
| + staticMethod, propagatedMethod, staticType, propagatedType);
|
| + } else if (isInSetterContext) {
|
| + // lookup setter method
|
| + MethodElement staticMethod =
|
| + _lookUpMethod(target, staticType, setterMethodName);
|
| + MethodElement propagatedMethod =
|
| + _lookUpMethod(target, propagatedType, setterMethodName);
|
| + // set setter element
|
| + node.staticElement = staticMethod;
|
| + node.propagatedElement = propagatedMethod;
|
| + // generate undefined method warning
|
| + _checkForUndefinedIndexOperator(node, target, setterMethodName,
|
| + staticMethod, propagatedMethod, staticType, propagatedType);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitInstanceCreationExpression(InstanceCreationExpression node) {
|
| + ConstructorElement invokedConstructor = node.constructorName.staticElement;
|
| + node.staticElement = invokedConstructor;
|
| + ArgumentList argumentList = node.argumentList;
|
| + List<ParameterElement> parameters = _resolveArgumentsToFunction(
|
| + node.isConst, argumentList, invokedConstructor);
|
| + if (parameters != null) {
|
| + argumentList.correspondingStaticParameters = parameters;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitLibraryDirective(LibraryDirective node) {
|
| + setMetadata(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitMethodDeclaration(MethodDeclaration node) {
|
| + setMetadata(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitMethodInvocation(MethodInvocation node) {
|
| + SimpleIdentifier methodName = node.methodName;
|
| + //
|
| + // Synthetic identifiers have been already reported during parsing.
|
| + //
|
| + if (methodName.isSynthetic) {
|
| + return null;
|
| + }
|
| + //
|
| + // We have a method invocation of one of two forms: 'e.m(a1, ..., an)' or
|
| + // 'm(a1, ..., an)'. The first step is to figure out which executable is
|
| + // being invoked, using both the static and the propagated type information.
|
| + //
|
| + Expression target = node.realTarget;
|
| + if (target is SuperExpression && !_isSuperInValidContext(target)) {
|
| + return null;
|
| + }
|
| + Element staticElement;
|
| + Element propagatedElement;
|
| + DartType staticType = null;
|
| + DartType propagatedType = null;
|
| + if (target == null) {
|
| + staticElement = _resolveInvokedElement(methodName);
|
| + propagatedElement = null;
|
| + } else if (methodName.name == FunctionElement.LOAD_LIBRARY_NAME &&
|
| + _isDeferredPrefix(target)) {
|
| + if (node.operator.type == sc.TokenType.QUESTION_PERIOD) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.PREFIX_IDENTIFIER_NOT_FOLLOWED_BY_DOT, target,
|
| + [(target as SimpleIdentifier).name]);
|
| + }
|
| + LibraryElement importedLibrary = _getImportedLibrary(target);
|
| + methodName.staticElement = importedLibrary.loadLibraryFunction;
|
| + return null;
|
| + } else {
|
| + staticType = _getStaticType(target);
|
| + propagatedType = _getPropagatedType(target);
|
| + //
|
| + // If this method invocation is of the form 'C.m' where 'C' is a class,
|
| + // then we don't call resolveInvokedElement(...) which walks up the class
|
| + // hierarchy, instead we just look for the member in the type only. This
|
| + // does not apply to conditional method invocation (i.e. 'C?.m(...)').
|
| + //
|
| + bool isConditional = node.operator.type == sc.TokenType.QUESTION_PERIOD;
|
| + ClassElementImpl typeReference = getTypeReference(target);
|
| + if (typeReference != null) {
|
| + staticElement =
|
| + propagatedElement = _resolveElement(typeReference, methodName);
|
| + } else {
|
| + staticElement = _resolveInvokedElementWithTarget(
|
| + target, staticType, methodName, isConditional);
|
| + propagatedElement = _resolveInvokedElementWithTarget(
|
| + target, propagatedType, methodName, isConditional);
|
| + }
|
| + }
|
| + staticElement = _convertSetterToGetter(staticElement);
|
| + propagatedElement = _convertSetterToGetter(propagatedElement);
|
| + //
|
| + // Record the results.
|
| + //
|
| + methodName.staticElement = staticElement;
|
| + methodName.propagatedElement = propagatedElement;
|
| + ArgumentList argumentList = node.argumentList;
|
| + if (staticElement != null) {
|
| + List<ParameterElement> parameters =
|
| + _computeCorrespondingParameters(argumentList, staticElement);
|
| + if (parameters != null) {
|
| + argumentList.correspondingStaticParameters = parameters;
|
| + }
|
| + }
|
| + if (propagatedElement != null) {
|
| + List<ParameterElement> parameters =
|
| + _computeCorrespondingParameters(argumentList, propagatedElement);
|
| + if (parameters != null) {
|
| + argumentList.correspondingPropagatedParameters = parameters;
|
| + }
|
| + }
|
| + //
|
| + // Then check for error conditions.
|
| + //
|
| + ErrorCode errorCode = _checkForInvocationError(target, true, staticElement);
|
| + bool generatedWithTypePropagation = false;
|
| + if (_enableHints && errorCode == null && staticElement == null) {
|
| + // The method lookup may have failed because there were multiple
|
| + // incompatible choices. In this case we don't want to generate a hint.
|
| + errorCode = _checkForInvocationError(target, false, propagatedElement);
|
| + if (identical(errorCode, StaticTypeWarningCode.UNDEFINED_METHOD)) {
|
| + ClassElement classElementContext = null;
|
| + if (target == null) {
|
| + classElementContext = _resolver.enclosingClass;
|
| + } else {
|
| + DartType type = _getBestType(target);
|
| + if (type != null) {
|
| + if (type.element is ClassElement) {
|
| + classElementContext = type.element as ClassElement;
|
| + }
|
| + }
|
| + }
|
| + if (classElementContext != null) {
|
| + _subtypeManager.ensureLibraryVisited(_definingLibrary);
|
| + HashSet<ClassElement> subtypeElements =
|
| + _subtypeManager.computeAllSubtypes(classElementContext);
|
| + for (ClassElement subtypeElement in subtypeElements) {
|
| + if (subtypeElement.getMethod(methodName.name) != null) {
|
| + errorCode = null;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + generatedWithTypePropagation = true;
|
| + }
|
| + if (errorCode == null) {
|
| + return null;
|
| + }
|
| + if (identical(
|
| + errorCode, StaticTypeWarningCode.INVOCATION_OF_NON_FUNCTION) ||
|
| + identical(errorCode,
|
| + CompileTimeErrorCode.PREFIX_IDENTIFIER_NOT_FOLLOWED_BY_DOT) ||
|
| + identical(errorCode, StaticTypeWarningCode.UNDEFINED_FUNCTION)) {
|
| + _resolver.reportErrorForNode(errorCode, methodName, [methodName.name]);
|
| + } else if (identical(errorCode, StaticTypeWarningCode.UNDEFINED_METHOD)) {
|
| + String targetTypeName;
|
| + if (target == null) {
|
| + ClassElement enclosingClass = _resolver.enclosingClass;
|
| + targetTypeName = enclosingClass.displayName;
|
| + ErrorCode proxyErrorCode = (generatedWithTypePropagation
|
| + ? HintCode.UNDEFINED_METHOD
|
| + : StaticTypeWarningCode.UNDEFINED_METHOD);
|
| + _recordUndefinedNode(_resolver.enclosingClass, proxyErrorCode,
|
| + methodName, [methodName.name, targetTypeName]);
|
| + } else {
|
| + // ignore Function "call"
|
| + // (if we are about to create a hint using type propagation,
|
| + // then we can use type propagation here as well)
|
| + DartType targetType = null;
|
| + if (!generatedWithTypePropagation) {
|
| + targetType = _getStaticType(target);
|
| + } else {
|
| + // choose the best type
|
| + targetType = _getPropagatedType(target);
|
| + if (targetType == null) {
|
| + targetType = _getStaticType(target);
|
| + }
|
| + }
|
| + if (!_enableStrictCallChecks &&
|
| + targetType != null &&
|
| + targetType.isDartCoreFunction &&
|
| + methodName.name == FunctionElement.CALL_METHOD_NAME) {
|
| + // TODO(brianwilkerson) Can we ever resolve the function being
|
| + // invoked?
|
| +// resolveArgumentsToParameters(node.getArgumentList(), invokedFunction);
|
| + return null;
|
| + }
|
| + targetTypeName = targetType == null ? null : targetType.displayName;
|
| + ErrorCode proxyErrorCode = (generatedWithTypePropagation
|
| + ? HintCode.UNDEFINED_METHOD
|
| + : StaticTypeWarningCode.UNDEFINED_METHOD);
|
| + _recordUndefinedNode(targetType.element, proxyErrorCode, methodName, [
|
| + methodName.name,
|
| + targetTypeName
|
| + ]);
|
| + }
|
| + } else if (identical(
|
| + errorCode, StaticTypeWarningCode.UNDEFINED_SUPER_METHOD)) {
|
| + // Generate the type name.
|
| + // The error code will never be generated via type propagation
|
| + DartType targetType = _getStaticType(target);
|
| + if (targetType is InterfaceType && !targetType.isObject) {
|
| + targetType = (targetType as InterfaceType).superclass;
|
| + }
|
| + String targetTypeName = targetType == null ? null : targetType.name;
|
| + _resolver.reportErrorForNode(StaticTypeWarningCode.UNDEFINED_SUPER_METHOD,
|
| + methodName, [methodName.name, targetTypeName]);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitPartDirective(PartDirective node) {
|
| + setMetadata(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitPartOfDirective(PartOfDirective node) {
|
| + setMetadata(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitPostfixExpression(PostfixExpression node) {
|
| + Expression operand = node.operand;
|
| + String methodName = _getPostfixOperator(node);
|
| + DartType staticType = _getStaticType(operand);
|
| + MethodElement staticMethod = _lookUpMethod(operand, staticType, methodName);
|
| + node.staticElement = staticMethod;
|
| + DartType propagatedType = _getPropagatedType(operand);
|
| + MethodElement propagatedMethod =
|
| + _lookUpMethod(operand, propagatedType, methodName);
|
| + node.propagatedElement = propagatedMethod;
|
| + if (_shouldReportMissingMember(staticType, staticMethod)) {
|
| + if (operand is SuperExpression) {
|
| + _recordUndefinedToken(staticType.element,
|
| + StaticTypeWarningCode.UNDEFINED_SUPER_OPERATOR, node.operator, [
|
| + methodName,
|
| + staticType.displayName
|
| + ]);
|
| + } else {
|
| + _recordUndefinedToken(staticType.element,
|
| + StaticTypeWarningCode.UNDEFINED_OPERATOR, node.operator, [
|
| + methodName,
|
| + staticType.displayName
|
| + ]);
|
| + }
|
| + } else if (_enableHints &&
|
| + _shouldReportMissingMember(propagatedType, propagatedMethod) &&
|
| + !_memberFoundInSubclass(
|
| + propagatedType.element, methodName, true, false)) {
|
| + _recordUndefinedToken(propagatedType.element, HintCode.UNDEFINED_OPERATOR,
|
| + node.operator, [methodName, propagatedType.displayName]);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitPrefixedIdentifier(PrefixedIdentifier node) {
|
| + SimpleIdentifier prefix = node.prefix;
|
| + SimpleIdentifier identifier = node.identifier;
|
| + //
|
| + // First, check the "lib.loadLibrary" case
|
| + //
|
| + if (identifier.name == FunctionElement.LOAD_LIBRARY_NAME &&
|
| + _isDeferredPrefix(prefix)) {
|
| + LibraryElement importedLibrary = _getImportedLibrary(prefix);
|
| + identifier.staticElement = importedLibrary.loadLibraryFunction;
|
| + return null;
|
| + }
|
| + //
|
| + // Check to see whether the prefix is really a prefix.
|
| + //
|
| + Element prefixElement = prefix.staticElement;
|
| + if (prefixElement is PrefixElement) {
|
| + Element element = _resolver.nameScope.lookup(node, _definingLibrary);
|
| + if (element == null && identifier.inSetterContext()) {
|
| + element = _resolver.nameScope.lookup(
|
| + new SyntheticIdentifier("${node.name}=", node), _definingLibrary);
|
| + }
|
| + if (element == null) {
|
| + if (identifier.inSetterContext()) {
|
| + _resolver.reportErrorForNode(StaticWarningCode.UNDEFINED_SETTER,
|
| + identifier, [identifier.name, prefixElement.name]);
|
| + } else if (node.parent is Annotation) {
|
| + Annotation annotation = node.parent as Annotation;
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.INVALID_ANNOTATION, annotation);
|
| + return null;
|
| + } else {
|
| + _resolver.reportErrorForNode(StaticWarningCode.UNDEFINED_GETTER,
|
| + identifier, [identifier.name, prefixElement.name]);
|
| + }
|
| + return null;
|
| + }
|
| + if (element is PropertyAccessorElement && identifier.inSetterContext()) {
|
| + PropertyInducingElement variable =
|
| + (element as PropertyAccessorElement).variable;
|
| + if (variable != null) {
|
| + PropertyAccessorElement setter = variable.setter;
|
| + if (setter != null) {
|
| + element = setter;
|
| + }
|
| + }
|
| + }
|
| + // TODO(brianwilkerson) The prefix needs to be resolved to the element for
|
| + // the import that defines the prefix, not the prefix's element.
|
| + identifier.staticElement = element;
|
| + // Validate annotation element.
|
| + if (node.parent is Annotation) {
|
| + Annotation annotation = node.parent as Annotation;
|
| + _resolveAnnotationElement(annotation);
|
| + return null;
|
| + }
|
| + return null;
|
| + }
|
| + // May be annotation, resolve invocation of "const" constructor.
|
| + if (node.parent is Annotation) {
|
| + Annotation annotation = node.parent as Annotation;
|
| + _resolveAnnotationElement(annotation);
|
| + }
|
| + //
|
| + // Otherwise, the prefix is really an expression that happens to be a simple
|
| + // identifier and this is really equivalent to a property access node.
|
| + //
|
| + _resolvePropertyAccess(prefix, identifier);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitPrefixExpression(PrefixExpression node) {
|
| + sc.Token operator = node.operator;
|
| + sc.TokenType operatorType = operator.type;
|
| + if (operatorType.isUserDefinableOperator ||
|
| + operatorType == sc.TokenType.PLUS_PLUS ||
|
| + operatorType == sc.TokenType.MINUS_MINUS) {
|
| + Expression operand = node.operand;
|
| + String methodName = _getPrefixOperator(node);
|
| + DartType staticType = _getStaticType(operand);
|
| + MethodElement staticMethod =
|
| + _lookUpMethod(operand, staticType, methodName);
|
| + node.staticElement = staticMethod;
|
| + DartType propagatedType = _getPropagatedType(operand);
|
| + MethodElement propagatedMethod =
|
| + _lookUpMethod(operand, propagatedType, methodName);
|
| + node.propagatedElement = propagatedMethod;
|
| + if (_shouldReportMissingMember(staticType, staticMethod)) {
|
| + if (operand is SuperExpression) {
|
| + _recordUndefinedToken(staticType.element,
|
| + StaticTypeWarningCode.UNDEFINED_SUPER_OPERATOR, operator, [
|
| + methodName,
|
| + staticType.displayName
|
| + ]);
|
| + } else {
|
| + _recordUndefinedToken(staticType.element,
|
| + StaticTypeWarningCode.UNDEFINED_OPERATOR, operator, [
|
| + methodName,
|
| + staticType.displayName
|
| + ]);
|
| + }
|
| + } else if (_enableHints &&
|
| + _shouldReportMissingMember(propagatedType, propagatedMethod) &&
|
| + !_memberFoundInSubclass(
|
| + propagatedType.element, methodName, true, false)) {
|
| + _recordUndefinedToken(propagatedType.element,
|
| + HintCode.UNDEFINED_OPERATOR, operator, [
|
| + methodName,
|
| + propagatedType.displayName
|
| + ]);
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitPropertyAccess(PropertyAccess node) {
|
| + Expression target = node.realTarget;
|
| + if (target is SuperExpression && !_isSuperInValidContext(target)) {
|
| + return null;
|
| + }
|
| + SimpleIdentifier propertyName = node.propertyName;
|
| + _resolvePropertyAccess(target, propertyName);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitRedirectingConstructorInvocation(
|
| + RedirectingConstructorInvocation node) {
|
| + ClassElement enclosingClass = _resolver.enclosingClass;
|
| + if (enclosingClass == null) {
|
| + // TODO(brianwilkerson) Report this error.
|
| + return null;
|
| + }
|
| + SimpleIdentifier name = node.constructorName;
|
| + ConstructorElement element;
|
| + if (name == null) {
|
| + element = enclosingClass.unnamedConstructor;
|
| + } else {
|
| + element = enclosingClass.getNamedConstructor(name.name);
|
| + }
|
| + if (element == null) {
|
| + // TODO(brianwilkerson) Report this error and decide what element to
|
| + // associate with the node.
|
| + return null;
|
| + }
|
| + if (name != null) {
|
| + name.staticElement = element;
|
| + }
|
| + node.staticElement = element;
|
| + ArgumentList argumentList = node.argumentList;
|
| + List<ParameterElement> parameters =
|
| + _resolveArgumentsToFunction(false, argumentList, element);
|
| + if (parameters != null) {
|
| + argumentList.correspondingStaticParameters = parameters;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitSimpleFormalParameter(SimpleFormalParameter node) {
|
| + _setMetadataForParameter(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitSimpleIdentifier(SimpleIdentifier node) {
|
| + //
|
| + // Synthetic identifiers have been already reported during parsing.
|
| + //
|
| + if (node.isSynthetic) {
|
| + return null;
|
| + }
|
| + //
|
| + // We ignore identifiers that have already been resolved, such as
|
| + // identifiers representing the name in a declaration.
|
| + //
|
| + if (node.staticElement != null) {
|
| + return null;
|
| + }
|
| + //
|
| + // The name dynamic denotes a Type object even though dynamic is not a
|
| + // class.
|
| + //
|
| + if (node.name == _dynamicType.name) {
|
| + node.staticElement = _dynamicType.element;
|
| + node.staticType = _typeType;
|
| + return null;
|
| + }
|
| + //
|
| + // Otherwise, the node should be resolved.
|
| + //
|
| + Element element = _resolveSimpleIdentifier(node);
|
| + ClassElement enclosingClass = _resolver.enclosingClass;
|
| + if (_isFactoryConstructorReturnType(node) &&
|
| + !identical(element, enclosingClass)) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.INVALID_FACTORY_NAME_NOT_A_CLASS, node);
|
| + } else if (_isConstructorReturnType(node) &&
|
| + !identical(element, enclosingClass)) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.INVALID_CONSTRUCTOR_NAME, node);
|
| + element = null;
|
| + } else if (element == null ||
|
| + (element is PrefixElement && !_isValidAsPrefix(node))) {
|
| + // TODO(brianwilkerson) Recover from this error.
|
| + if (_isConstructorReturnType(node)) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.INVALID_CONSTRUCTOR_NAME, node);
|
| + } else if (node.parent is Annotation) {
|
| + Annotation annotation = node.parent as Annotation;
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.INVALID_ANNOTATION, annotation);
|
| + } else if (element is PrefixElement) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.PREFIX_IDENTIFIER_NOT_FOLLOWED_BY_DOT, node,
|
| + [element.name]);
|
| + } else {
|
| + _recordUndefinedNode(_resolver.enclosingClass,
|
| + StaticWarningCode.UNDEFINED_IDENTIFIER, node, [node.name]);
|
| + }
|
| + }
|
| + node.staticElement = element;
|
| + if (node.inSetterContext() &&
|
| + node.inGetterContext() &&
|
| + enclosingClass != null) {
|
| + InterfaceType enclosingType = enclosingClass.type;
|
| + AuxiliaryElements auxiliaryElements = new AuxiliaryElements(
|
| + _lookUpGetter(null, enclosingType, node.name), null);
|
| + node.auxiliaryElements = auxiliaryElements;
|
| + }
|
| + //
|
| + // Validate annotation element.
|
| + //
|
| + if (node.parent is Annotation) {
|
| + Annotation annotation = node.parent as Annotation;
|
| + _resolveAnnotationElement(annotation);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitSuperConstructorInvocation(SuperConstructorInvocation node) {
|
| + ClassElementImpl enclosingClass = _resolver.enclosingClass;
|
| + if (enclosingClass == null) {
|
| + // TODO(brianwilkerson) Report this error.
|
| + return null;
|
| + }
|
| + InterfaceType superType = enclosingClass.supertype;
|
| + if (superType == null) {
|
| + // TODO(brianwilkerson) Report this error.
|
| + return null;
|
| + }
|
| + SimpleIdentifier name = node.constructorName;
|
| + String superName = name != null ? name.name : null;
|
| + ConstructorElement element =
|
| + superType.lookUpConstructor(superName, _definingLibrary);
|
| + if (element == null ||
|
| + (!enclosingClass.doesMixinLackConstructors &&
|
| + !enclosingClass.isSuperConstructorAccessible(element))) {
|
| + if (name != null) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.UNDEFINED_CONSTRUCTOR_IN_INITIALIZER, node, [
|
| + superType.displayName,
|
| + name
|
| + ]);
|
| + } else {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.UNDEFINED_CONSTRUCTOR_IN_INITIALIZER_DEFAULT,
|
| + node, [superType.displayName]);
|
| + }
|
| + return null;
|
| + } else {
|
| + if (element.isFactory) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.NON_GENERATIVE_CONSTRUCTOR, node, [element]);
|
| + }
|
| + }
|
| + if (name != null) {
|
| + name.staticElement = element;
|
| + }
|
| + node.staticElement = element;
|
| + ArgumentList argumentList = node.argumentList;
|
| + List<ParameterElement> parameters = _resolveArgumentsToFunction(
|
| + isInConstConstructor, argumentList, element);
|
| + if (parameters != null) {
|
| + argumentList.correspondingStaticParameters = parameters;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitSuperExpression(SuperExpression node) {
|
| + if (!_isSuperInValidContext(node)) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.SUPER_IN_INVALID_CONTEXT, node);
|
| + }
|
| + return super.visitSuperExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitTypeParameter(TypeParameter node) {
|
| + setMetadata(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitVariableDeclaration(VariableDeclaration node) {
|
| + setMetadata(node.element, node);
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Given that we have found code to invoke the given [element], return the
|
| + * error code that should be reported, or `null` if no error should be
|
| + * reported. The [target] is the target of the invocation, or `null` if there
|
| + * was no target. The flag [useStaticContext] should be `true` if the
|
| + * invocation is in a static constant (does not have access to instance state.
|
| + */
|
| + ErrorCode _checkForInvocationError(
|
| + Expression target, bool useStaticContext, Element element) {
|
| + // Prefix is not declared, instead "prefix.id" are declared.
|
| + if (element is PrefixElement) {
|
| + return CompileTimeErrorCode.PREFIX_IDENTIFIER_NOT_FOLLOWED_BY_DOT;
|
| + }
|
| + if (element is PropertyAccessorElement) {
|
| + //
|
| + // This is really a function expression invocation.
|
| + //
|
| + // TODO(brianwilkerson) Consider the possibility of re-writing the AST.
|
| + FunctionType getterType = element.type;
|
| + if (getterType != null) {
|
| + DartType returnType = getterType.returnType;
|
| + if (!_isExecutableType(returnType)) {
|
| + return StaticTypeWarningCode.INVOCATION_OF_NON_FUNCTION;
|
| + }
|
| + }
|
| + } else if (element is ExecutableElement) {
|
| + return null;
|
| + } else if (element is MultiplyDefinedElement) {
|
| + // The error has already been reported
|
| + return null;
|
| + } else if (element == null && target is SuperExpression) {
|
| + // TODO(jwren) We should split the UNDEFINED_METHOD into two error codes,
|
| + // this one, and a code that describes the situation where the method was
|
| + // found, but it was not accessible from the current library.
|
| + return StaticTypeWarningCode.UNDEFINED_SUPER_METHOD;
|
| + } else {
|
| + //
|
| + // This is really a function expression invocation.
|
| + //
|
| + // TODO(brianwilkerson) Consider the possibility of re-writing the AST.
|
| + if (element is PropertyInducingElement) {
|
| + PropertyAccessorElement getter = element.getter;
|
| + FunctionType getterType = getter.type;
|
| + if (getterType != null) {
|
| + DartType returnType = getterType.returnType;
|
| + if (!_isExecutableType(returnType)) {
|
| + return StaticTypeWarningCode.INVOCATION_OF_NON_FUNCTION;
|
| + }
|
| + }
|
| + } else if (element is VariableElement) {
|
| + DartType variableType = element.type;
|
| + if (!_isExecutableType(variableType)) {
|
| + return StaticTypeWarningCode.INVOCATION_OF_NON_FUNCTION;
|
| + }
|
| + } else {
|
| + if (target == null) {
|
| + ClassElement enclosingClass = _resolver.enclosingClass;
|
| + if (enclosingClass == null) {
|
| + return StaticTypeWarningCode.UNDEFINED_FUNCTION;
|
| + } else if (element == null) {
|
| + // Proxy-conditional warning, based on state of
|
| + // resolver.getEnclosingClass()
|
| + return StaticTypeWarningCode.UNDEFINED_METHOD;
|
| + } else {
|
| + return StaticTypeWarningCode.INVOCATION_OF_NON_FUNCTION;
|
| + }
|
| + } else {
|
| + DartType targetType;
|
| + if (useStaticContext) {
|
| + targetType = _getStaticType(target);
|
| + } else {
|
| + // Compute and use the propagated type, if it is null, then it may
|
| + // be the case that static type is some type, in which the static
|
| + // type should be used.
|
| + targetType = _getBestType(target);
|
| + }
|
| + if (targetType == null) {
|
| + return StaticTypeWarningCode.UNDEFINED_FUNCTION;
|
| + } else if (!targetType.isDynamic && !targetType.isBottom) {
|
| + // Proxy-conditional warning, based on state of
|
| + // targetType.getElement()
|
| + return StaticTypeWarningCode.UNDEFINED_METHOD;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Check that the given index [expression] was resolved, otherwise a
|
| + * [StaticTypeWarningCode.UNDEFINED_OPERATOR] is generated. The [target] is
|
| + * the target of the expression. The [methodName] is the name of the operator
|
| + * associated with the context of using of the given index expression.
|
| + */
|
| + bool _checkForUndefinedIndexOperator(IndexExpression expression,
|
| + Expression target, String methodName, MethodElement staticMethod,
|
| + MethodElement propagatedMethod, DartType staticType,
|
| + DartType propagatedType) {
|
| + bool shouldReportMissingMember_static =
|
| + _shouldReportMissingMember(staticType, staticMethod);
|
| + bool shouldReportMissingMember_propagated =
|
| + !shouldReportMissingMember_static &&
|
| + _enableHints &&
|
| + _shouldReportMissingMember(propagatedType, propagatedMethod) &&
|
| + !_memberFoundInSubclass(
|
| + propagatedType.element, methodName, true, false);
|
| + if (shouldReportMissingMember_static ||
|
| + shouldReportMissingMember_propagated) {
|
| + sc.Token leftBracket = expression.leftBracket;
|
| + sc.Token rightBracket = expression.rightBracket;
|
| + ErrorCode errorCode;
|
| + if (shouldReportMissingMember_static) {
|
| + if (target is SuperExpression) {
|
| + errorCode = StaticTypeWarningCode.UNDEFINED_SUPER_OPERATOR;
|
| + } else {
|
| + errorCode = StaticTypeWarningCode.UNDEFINED_OPERATOR;
|
| + }
|
| + } else {
|
| + errorCode = HintCode.UNDEFINED_OPERATOR;
|
| + }
|
| + DartType type =
|
| + shouldReportMissingMember_static ? staticType : propagatedType;
|
| + if (leftBracket == null || rightBracket == null) {
|
| + _recordUndefinedNode(type.element, errorCode, expression, [
|
| + methodName,
|
| + type.displayName
|
| + ]);
|
| + } else {
|
| + int offset = leftBracket.offset;
|
| + int length = rightBracket.offset - offset + 1;
|
| + _recordUndefinedOffset(type.element, errorCode, offset, length, [
|
| + methodName,
|
| + type.displayName
|
| + ]);
|
| + }
|
| + return true;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Given an [argumentList] and the executable [element] that will be invoked
|
| + * using those arguments, compute the list of parameters that correspond to
|
| + * the list of arguments. Return the parameters that correspond to the
|
| + * arguments, or `null` if no correspondence could be computed.
|
| + */
|
| + List<ParameterElement> _computeCorrespondingParameters(
|
| + ArgumentList argumentList, Element element) {
|
| + if (element is PropertyAccessorElement) {
|
| + //
|
| + // This is an invocation of the call method defined on the value returned
|
| + // by the getter.
|
| + //
|
| + FunctionType getterType = element.type;
|
| + if (getterType != null) {
|
| + DartType getterReturnType = getterType.returnType;
|
| + if (getterReturnType is InterfaceType) {
|
| + MethodElement callMethod = getterReturnType.lookUpMethod(
|
| + FunctionElement.CALL_METHOD_NAME, _definingLibrary);
|
| + if (callMethod != null) {
|
| + return _resolveArgumentsToFunction(false, argumentList, callMethod);
|
| + }
|
| + } else if (getterReturnType is FunctionType) {
|
| + List<ParameterElement> parameters = getterReturnType.parameters;
|
| + return _resolveArgumentsToParameters(false, argumentList, parameters);
|
| + }
|
| + }
|
| + } else if (element is ExecutableElement) {
|
| + return _resolveArgumentsToFunction(false, argumentList, element);
|
| + } else if (element is VariableElement) {
|
| + VariableElement variable = element;
|
| + DartType type = _promoteManager.getStaticType(variable);
|
| + if (type is FunctionType) {
|
| + FunctionType functionType = type;
|
| + List<ParameterElement> parameters = functionType.parameters;
|
| + return _resolveArgumentsToParameters(false, argumentList, parameters);
|
| + } else if (type is InterfaceType) {
|
| + // "call" invocation
|
| + MethodElement callMethod = type.lookUpMethod(
|
| + FunctionElement.CALL_METHOD_NAME, _definingLibrary);
|
| + if (callMethod != null) {
|
| + List<ParameterElement> parameters = callMethod.parameters;
|
| + return _resolveArgumentsToParameters(false, argumentList, parameters);
|
| + }
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * If the given [element] is a setter, return the getter associated with it.
|
| + * Otherwise, return the element unchanged.
|
| + */
|
| + Element _convertSetterToGetter(Element element) {
|
| + // TODO(brianwilkerson) Determine whether and why the element could ever be
|
| + // a setter.
|
| + if (element is PropertyAccessorElement) {
|
| + return element.variable.getter;
|
| + }
|
| + return element;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given [element] is not a proxy. See
|
| + * [ClassElement.isOrInheritsProxy].
|
| + */
|
| + bool _doesntHaveProxy(Element element) =>
|
| + !(element is ClassElement && element.isOrInheritsProxy);
|
| +
|
| + /**
|
| + * Look for any declarations of the given [identifier] that are imported using
|
| + * a prefix. Return the element that was found, or `null` if the name is not
|
| + * imported using a prefix.
|
| + */
|
| + Element _findImportWithoutPrefix(SimpleIdentifier identifier) {
|
| + Element element = null;
|
| + Scope nameScope = _resolver.nameScope;
|
| + for (ImportElement importElement in _definingLibrary.imports) {
|
| + PrefixElement prefixElement = importElement.prefix;
|
| + if (prefixElement != null) {
|
| + Identifier prefixedIdentifier = new SyntheticIdentifier(
|
| + "${prefixElement.name}.${identifier.name}", identifier);
|
| + Element importedElement =
|
| + nameScope.lookup(prefixedIdentifier, _definingLibrary);
|
| + if (importedElement != null) {
|
| + if (element == null) {
|
| + element = importedElement;
|
| + } else {
|
| + element = MultiplyDefinedElementImpl.fromElements(
|
| + _definingLibrary.context, element, importedElement);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + return element;
|
| + }
|
| +
|
| + /**
|
| + * Return the best type of the given [expression] that is to be used for
|
| + * type analysis.
|
| + */
|
| + DartType _getBestType(Expression expression) {
|
| + DartType bestType = _resolveTypeParameter(expression.bestType);
|
| + if (bestType is FunctionType) {
|
| + //
|
| + // All function types are subtypes of 'Function', which is itself a
|
| + // subclass of 'Object'.
|
| + //
|
| + bestType = _resolver.typeProvider.functionType;
|
| + }
|
| + return bestType;
|
| + }
|
| +
|
| + /**
|
| + * Assuming that the given [expression] is a prefix for a deferred import,
|
| + * return the library that is being imported.
|
| + */
|
| + LibraryElement _getImportedLibrary(Expression expression) {
|
| + PrefixElement prefixElement =
|
| + (expression as SimpleIdentifier).staticElement as PrefixElement;
|
| + List<ImportElement> imports =
|
| + prefixElement.enclosingElement.getImportsWithPrefix(prefixElement);
|
| + return imports[0].importedLibrary;
|
| + }
|
| +
|
| + /**
|
| + * Return the name of the method invoked by the given postfix [expression].
|
| + */
|
| + String _getPostfixOperator(PostfixExpression expression) =>
|
| + (expression.operator.type == sc.TokenType.PLUS_PLUS)
|
| + ? sc.TokenType.PLUS.lexeme
|
| + : sc.TokenType.MINUS.lexeme;
|
| +
|
| + /**
|
| + * Return the name of the method invoked by the given postfix [expression].
|
| + */
|
| + String _getPrefixOperator(PrefixExpression expression) {
|
| + sc.Token operator = expression.operator;
|
| + sc.TokenType operatorType = operator.type;
|
| + if (operatorType == sc.TokenType.PLUS_PLUS) {
|
| + return sc.TokenType.PLUS.lexeme;
|
| + } else if (operatorType == sc.TokenType.MINUS_MINUS) {
|
| + return sc.TokenType.MINUS.lexeme;
|
| + } else if (operatorType == sc.TokenType.MINUS) {
|
| + return "unary-";
|
| + } else {
|
| + return operator.lexeme;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Return the propagated type of the given [expression] that is to be used for
|
| + * type analysis.
|
| + */
|
| + DartType _getPropagatedType(Expression expression) {
|
| + DartType propagatedType = _resolveTypeParameter(expression.propagatedType);
|
| + if (propagatedType is FunctionType) {
|
| + //
|
| + // All function types are subtypes of 'Function', which is itself a
|
| + // subclass of 'Object'.
|
| + //
|
| + propagatedType = _resolver.typeProvider.functionType;
|
| + }
|
| + return propagatedType;
|
| + }
|
| +
|
| + /**
|
| + * Return the static type of the given [expression] that is to be used for
|
| + * type analysis.
|
| + */
|
| + DartType _getStaticType(Expression expression) {
|
| + if (expression is NullLiteral) {
|
| + return _resolver.typeProvider.bottomType;
|
| + }
|
| + DartType staticType = _resolveTypeParameter(expression.staticType);
|
| + if (staticType is FunctionType) {
|
| + //
|
| + // All function types are subtypes of 'Function', which is itself a
|
| + // subclass of 'Object'.
|
| + //
|
| + staticType = _resolver.typeProvider.functionType;
|
| + }
|
| + return staticType;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given [expression] is a prefix for a deferred import.
|
| + */
|
| + bool _isDeferredPrefix(Expression expression) {
|
| + if (expression is! SimpleIdentifier) {
|
| + return false;
|
| + }
|
| + Element element = (expression as SimpleIdentifier).staticElement;
|
| + if (element is! PrefixElement) {
|
| + return false;
|
| + }
|
| + PrefixElement prefixElement = element as PrefixElement;
|
| + List<ImportElement> imports =
|
| + prefixElement.enclosingElement.getImportsWithPrefix(prefixElement);
|
| + if (imports.length != 1) {
|
| + return false;
|
| + }
|
| + return imports[0].isDeferred;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given [type] represents an object that could be
|
| + * invoked using the call operator '()'.
|
| + */
|
| + bool _isExecutableType(DartType type) {
|
| + if (type.isDynamic || type is FunctionType) {
|
| + return true;
|
| + } else if (!_enableStrictCallChecks &&
|
| + (type.isDartCoreFunction || type.isObject)) {
|
| + return true;
|
| + } else if (type is InterfaceType) {
|
| + ClassElement classElement = type.element;
|
| + // 16078 from Gilad: If the type is a Functor with the @proxy annotation,
|
| + // treat it as an executable type.
|
| + // example code: NonErrorResolverTest.
|
| + // test_invocationOfNonFunction_proxyOnFunctionClass()
|
| + if (classElement.isProxy &&
|
| + type.isSubtypeOf(_resolver.typeProvider.functionType)) {
|
| + return true;
|
| + }
|
| + MethodElement methodElement = classElement.lookUpMethod(
|
| + FunctionElement.CALL_METHOD_NAME, _definingLibrary);
|
| + return methodElement != null;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given [element] is a static element.
|
| + */
|
| + bool _isStatic(Element element) {
|
| + if (element is ExecutableElement) {
|
| + return element.isStatic;
|
| + } else if (element is PropertyInducingElement) {
|
| + return element.isStatic;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given [node] can validly be resolved to a prefix:
|
| + * * it is the prefix in an import directive, or
|
| + * * it is the prefix in a prefixed identifier.
|
| + */
|
| + bool _isValidAsPrefix(SimpleIdentifier node) {
|
| + AstNode parent = node.parent;
|
| + if (parent is ImportDirective) {
|
| + return identical(parent.prefix, node);
|
| + } else if (parent is PrefixedIdentifier) {
|
| + return true;
|
| + } else if (parent is MethodInvocation) {
|
| + return identical(parent.target, node);
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Return the target of a break or continue statement, and update the static
|
| + * element of its label (if any). The [parentNode] is the AST node of the
|
| + * break or continue statement. The [labelNode] is the label contained in that
|
| + * statement (if any). The flag [isContinue] is `true` if the node being
|
| + * visited is a continue statement.
|
| + */
|
| + AstNode _lookupBreakOrContinueTarget(
|
| + AstNode parentNode, SimpleIdentifier labelNode, bool isContinue) {
|
| + if (labelNode == null) {
|
| + return _resolver.implicitLabelScope.getTarget(isContinue);
|
| + } else {
|
| + LabelScope labelScope = _resolver.labelScope;
|
| + if (labelScope == null) {
|
| + // There are no labels in scope, so by definition the label is
|
| + // undefined.
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.LABEL_UNDEFINED, labelNode, [labelNode.name]);
|
| + return null;
|
| + }
|
| + LabelScope definingScope = labelScope.lookup(labelNode.name);
|
| + if (definingScope == null) {
|
| + // No definition of the given label name could be found in any
|
| + // enclosing scope.
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.LABEL_UNDEFINED, labelNode, [labelNode.name]);
|
| + return null;
|
| + }
|
| + // The target has been found.
|
| + labelNode.staticElement = definingScope.element;
|
| + ExecutableElement labelContainer = definingScope.element
|
| + .getAncestor((element) => element is ExecutableElement);
|
| + if (!identical(labelContainer, _resolver.enclosingFunction)) {
|
| + _resolver.reportErrorForNode(CompileTimeErrorCode.LABEL_IN_OUTER_SCOPE,
|
| + labelNode, [labelNode.name]);
|
| + }
|
| + return definingScope.node;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Look up the getter with the given [getterName] in the given [type]. Return
|
| + * the element representing the getter that was found, or `null` if there is
|
| + * no getter with the given name. The [target] is the target of the
|
| + * invocation, or `null` if there is no target.
|
| + */
|
| + PropertyAccessorElement _lookUpGetter(
|
| + Expression target, DartType type, String getterName) {
|
| + type = _resolveTypeParameter(type);
|
| + if (type is InterfaceType) {
|
| + InterfaceType interfaceType = type;
|
| + PropertyAccessorElement accessor;
|
| + if (target is SuperExpression) {
|
| + accessor = interfaceType.lookUpGetterInSuperclass(
|
| + getterName, _definingLibrary);
|
| + } else {
|
| + accessor = interfaceType.lookUpGetter(getterName, _definingLibrary);
|
| + }
|
| + if (accessor != null) {
|
| + return accessor;
|
| + }
|
| + return _lookUpGetterInInterfaces(
|
| + interfaceType, false, getterName, new HashSet<ClassElement>());
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Look up the getter with the given [getterName] in the interfaces
|
| + * implemented by the given [targetType], either directly or indirectly.
|
| + * Return the element representing the getter that was found, or `null` if
|
| + * there is no getter with the given name. The flag [includeTargetType] should
|
| + * be `true` if the search should include the target type. The
|
| + * [visitedInterfaces] is a set containing all of the interfaces that have
|
| + * been examined, used to prevent infinite recursion and to optimize the
|
| + * search.
|
| + */
|
| + PropertyAccessorElement _lookUpGetterInInterfaces(InterfaceType targetType,
|
| + bool includeTargetType, String getterName,
|
| + HashSet<ClassElement> visitedInterfaces) {
|
| + // TODO(brianwilkerson) This isn't correct. Section 8.1.1 of the
|
| + // specification (titled "Inheritance and Overriding" under "Interfaces")
|
| + // describes a much more complex scheme for finding the inherited member.
|
| + // We need to follow that scheme. The code below should cover the 80% case.
|
| + ClassElement targetClass = targetType.element;
|
| + if (visitedInterfaces.contains(targetClass)) {
|
| + return null;
|
| + }
|
| + visitedInterfaces.add(targetClass);
|
| + if (includeTargetType) {
|
| + PropertyAccessorElement getter = targetType.getGetter(getterName);
|
| + if (getter != null && getter.isAccessibleIn(_definingLibrary)) {
|
| + return getter;
|
| + }
|
| + }
|
| + for (InterfaceType interfaceType in targetType.interfaces) {
|
| + PropertyAccessorElement getter = _lookUpGetterInInterfaces(
|
| + interfaceType, true, getterName, visitedInterfaces);
|
| + if (getter != null) {
|
| + return getter;
|
| + }
|
| + }
|
| + for (InterfaceType mixinType in targetType.mixins.reversed) {
|
| + PropertyAccessorElement getter = _lookUpGetterInInterfaces(
|
| + mixinType, true, getterName, visitedInterfaces);
|
| + if (getter != null) {
|
| + return getter;
|
| + }
|
| + }
|
| + InterfaceType superclass = targetType.superclass;
|
| + if (superclass == null) {
|
| + return null;
|
| + }
|
| + return _lookUpGetterInInterfaces(
|
| + superclass, true, getterName, visitedInterfaces);
|
| + }
|
| +
|
| + /**
|
| + * Look up the method or getter with the given [memberName] in the given
|
| + * [type]. Return the element representing the method or getter that was
|
| + * found, or `null` if there is no method or getter with the given name.
|
| + */
|
| + ExecutableElement _lookupGetterOrMethod(DartType type, String memberName) {
|
| + type = _resolveTypeParameter(type);
|
| + if (type is InterfaceType) {
|
| + InterfaceType interfaceType = type;
|
| + ExecutableElement member =
|
| + interfaceType.lookUpMethod(memberName, _definingLibrary);
|
| + if (member != null) {
|
| + return member;
|
| + }
|
| + member = interfaceType.lookUpGetter(memberName, _definingLibrary);
|
| + if (member != null) {
|
| + return member;
|
| + }
|
| + return _lookUpGetterOrMethodInInterfaces(
|
| + interfaceType, false, memberName, new HashSet<ClassElement>());
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Look up the method or getter with the given [memberName] in the interfaces
|
| + * implemented by the given [targetType], either directly or indirectly.
|
| + * Return the element representing the method or getter that was found, or
|
| + * `null` if there is no method or getter with the given name. The flag
|
| + * [includeTargetType] should be `true` if the search should include the
|
| + * target type. The [visitedInterfaces] is a set containing all of the
|
| + * interfaces that have been examined, used to prevent infinite recursion and
|
| + * to optimize the search.
|
| + */
|
| + ExecutableElement _lookUpGetterOrMethodInInterfaces(InterfaceType targetType,
|
| + bool includeTargetType, String memberName,
|
| + HashSet<ClassElement> visitedInterfaces) {
|
| + // TODO(brianwilkerson) This isn't correct. Section 8.1.1 of the
|
| + // specification (titled "Inheritance and Overriding" under "Interfaces")
|
| + // describes a much more complex scheme for finding the inherited member.
|
| + // We need to follow that scheme. The code below should cover the 80% case.
|
| + ClassElement targetClass = targetType.element;
|
| + if (visitedInterfaces.contains(targetClass)) {
|
| + return null;
|
| + }
|
| + visitedInterfaces.add(targetClass);
|
| + if (includeTargetType) {
|
| + ExecutableElement member = targetType.getMethod(memberName);
|
| + if (member != null) {
|
| + return member;
|
| + }
|
| + member = targetType.getGetter(memberName);
|
| + if (member != null) {
|
| + return member;
|
| + }
|
| + }
|
| + for (InterfaceType interfaceType in targetType.interfaces) {
|
| + ExecutableElement member = _lookUpGetterOrMethodInInterfaces(
|
| + interfaceType, true, memberName, visitedInterfaces);
|
| + if (member != null) {
|
| + return member;
|
| + }
|
| + }
|
| + for (InterfaceType mixinType in targetType.mixins.reversed) {
|
| + ExecutableElement member = _lookUpGetterOrMethodInInterfaces(
|
| + mixinType, true, memberName, visitedInterfaces);
|
| + if (member != null) {
|
| + return member;
|
| + }
|
| + }
|
| + InterfaceType superclass = targetType.superclass;
|
| + if (superclass == null) {
|
| + return null;
|
| + }
|
| + return _lookUpGetterOrMethodInInterfaces(
|
| + superclass, true, memberName, visitedInterfaces);
|
| + }
|
| +
|
| + /**
|
| + * Look up the method with the given [methodName] in the given [type]. Return
|
| + * the element representing the method that was found, or `null` if there is
|
| + * no method with the given name. The [target] is the target of the
|
| + * invocation, or `null` if there is no target.
|
| + */
|
| + MethodElement _lookUpMethod(
|
| + Expression target, DartType type, String methodName) {
|
| + type = _resolveTypeParameter(type);
|
| + if (type is InterfaceType) {
|
| + InterfaceType interfaceType = type;
|
| + MethodElement method;
|
| + if (target is SuperExpression) {
|
| + method = interfaceType.lookUpMethodInSuperclass(
|
| + methodName, _definingLibrary);
|
| + } else {
|
| + method = interfaceType.lookUpMethod(methodName, _definingLibrary);
|
| + }
|
| + if (method != null) {
|
| + return method;
|
| + }
|
| + return _lookUpMethodInInterfaces(
|
| + interfaceType, false, methodName, new HashSet<ClassElement>());
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Look up the method with the given [methodName] in the interfaces
|
| + * implemented by the given [targetType], either directly or indirectly.
|
| + * Return the element representing the method that was found, or `null` if
|
| + * there is no method with the given name. The flag [includeTargetType] should
|
| + * be `true` if the search should include the target type. The
|
| + * [visitedInterfaces] is a set containing all of the interfaces that have
|
| + * been examined, used to prevent infinite recursion and to optimize the
|
| + * search.
|
| + */
|
| + MethodElement _lookUpMethodInInterfaces(InterfaceType targetType,
|
| + bool includeTargetType, String methodName,
|
| + HashSet<ClassElement> visitedInterfaces) {
|
| + // TODO(brianwilkerson) This isn't correct. Section 8.1.1 of the
|
| + // specification (titled "Inheritance and Overriding" under "Interfaces")
|
| + // describes a much more complex scheme for finding the inherited member.
|
| + // We need to follow that scheme. The code below should cover the 80% case.
|
| + ClassElement targetClass = targetType.element;
|
| + if (visitedInterfaces.contains(targetClass)) {
|
| + return null;
|
| + }
|
| + visitedInterfaces.add(targetClass);
|
| + if (includeTargetType) {
|
| + MethodElement method = targetType.getMethod(methodName);
|
| + if (method != null && method.isAccessibleIn(_definingLibrary)) {
|
| + return method;
|
| + }
|
| + }
|
| + for (InterfaceType interfaceType in targetType.interfaces) {
|
| + MethodElement method = _lookUpMethodInInterfaces(
|
| + interfaceType, true, methodName, visitedInterfaces);
|
| + if (method != null) {
|
| + return method;
|
| + }
|
| + }
|
| + for (InterfaceType mixinType in targetType.mixins.reversed) {
|
| + MethodElement method = _lookUpMethodInInterfaces(
|
| + mixinType, true, methodName, visitedInterfaces);
|
| + if (method != null) {
|
| + return method;
|
| + }
|
| + }
|
| + InterfaceType superclass = targetType.superclass;
|
| + if (superclass == null) {
|
| + return null;
|
| + }
|
| + return _lookUpMethodInInterfaces(
|
| + superclass, true, methodName, visitedInterfaces);
|
| + }
|
| +
|
| + /**
|
| + * Look up the setter with the given [setterName] in the given [type]. Return
|
| + * the element representing the setter that was found, or `null` if there is
|
| + * no setter with the given name. The [target] is the target of the
|
| + * invocation, or `null` if there is no target.
|
| + */
|
| + PropertyAccessorElement _lookUpSetter(
|
| + Expression target, DartType type, String setterName) {
|
| + type = _resolveTypeParameter(type);
|
| + if (type is InterfaceType) {
|
| + InterfaceType interfaceType = type;
|
| + PropertyAccessorElement accessor;
|
| + if (target is SuperExpression) {
|
| + accessor = interfaceType.lookUpSetterInSuperclass(
|
| + setterName, _definingLibrary);
|
| + } else {
|
| + accessor = interfaceType.lookUpSetter(setterName, _definingLibrary);
|
| + }
|
| + if (accessor != null) {
|
| + return accessor;
|
| + }
|
| + return _lookUpSetterInInterfaces(
|
| + interfaceType, false, setterName, new HashSet<ClassElement>());
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Look up the setter with the given [setterName] in the interfaces
|
| + * implemented by the given [targetType], either directly or indirectly.
|
| + * Return the element representing the setter that was found, or `null` if
|
| + * there is no setter with the given name. The [targetType] is the type in
|
| + * which the setter might be defined. The flag [includeTargetType] should be
|
| + * `true` if the search should include the target type. The
|
| + * [visitedInterfaces] is a set containing all of the interfaces that have
|
| + * been examined, used to prevent infinite recursion and to optimize the
|
| + * search.
|
| + */
|
| + PropertyAccessorElement _lookUpSetterInInterfaces(InterfaceType targetType,
|
| + bool includeTargetType, String setterName,
|
| + HashSet<ClassElement> visitedInterfaces) {
|
| + // TODO(brianwilkerson) This isn't correct. Section 8.1.1 of the
|
| + // specification (titled "Inheritance and Overriding" under "Interfaces")
|
| + // describes a much more complex scheme for finding the inherited member.
|
| + // We need to follow that scheme. The code below should cover the 80% case.
|
| + ClassElement targetClass = targetType.element;
|
| + if (visitedInterfaces.contains(targetClass)) {
|
| + return null;
|
| + }
|
| + visitedInterfaces.add(targetClass);
|
| + if (includeTargetType) {
|
| + PropertyAccessorElement setter = targetType.getSetter(setterName);
|
| + if (setter != null && setter.isAccessibleIn(_definingLibrary)) {
|
| + return setter;
|
| + }
|
| + }
|
| + for (InterfaceType interfaceType in targetType.interfaces) {
|
| + PropertyAccessorElement setter = _lookUpSetterInInterfaces(
|
| + interfaceType, true, setterName, visitedInterfaces);
|
| + if (setter != null) {
|
| + return setter;
|
| + }
|
| + }
|
| + for (InterfaceType mixinType in targetType.mixins.reversed) {
|
| + PropertyAccessorElement setter = _lookUpSetterInInterfaces(
|
| + mixinType, true, setterName, visitedInterfaces);
|
| + if (setter != null) {
|
| + return setter;
|
| + }
|
| + }
|
| + InterfaceType superclass = targetType.superclass;
|
| + if (superclass == null) {
|
| + return null;
|
| + }
|
| + return _lookUpSetterInInterfaces(
|
| + superclass, true, setterName, visitedInterfaces);
|
| + }
|
| +
|
| + /**
|
| + * Given some class [element], this method uses [_subtypeManager] to find the
|
| + * set of all subtypes; the subtypes are then searched for a member (method,
|
| + * getter, or setter), that has the given [memberName]. The flag [asMethod]
|
| + * should be `true` if the methods should be searched for in the subtypes. The
|
| + * flag [asAccessor] should be `true` if the accessors (getters and setters)
|
| + * should be searched for in the subtypes.
|
| + */
|
| + bool _memberFoundInSubclass(
|
| + Element element, String memberName, bool asMethod, bool asAccessor) {
|
| + if (element is ClassElement) {
|
| + _subtypeManager.ensureLibraryVisited(_definingLibrary);
|
| + HashSet<ClassElement> subtypeElements =
|
| + _subtypeManager.computeAllSubtypes(element);
|
| + for (ClassElement subtypeElement in subtypeElements) {
|
| + if (asMethod && subtypeElement.getMethod(memberName) != null) {
|
| + return true;
|
| + } else if (asAccessor &&
|
| + (subtypeElement.getGetter(memberName) != null ||
|
| + subtypeElement.getSetter(memberName) != null)) {
|
| + return true;
|
| + }
|
| + }
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Return the binary operator that is invoked by the given compound assignment
|
| + * [operator].
|
| + */
|
| + sc.TokenType _operatorFromCompoundAssignment(sc.TokenType operator) {
|
| + while (true) {
|
| + if (operator == sc.TokenType.AMPERSAND_EQ) {
|
| + return sc.TokenType.AMPERSAND;
|
| + } else if (operator == sc.TokenType.BAR_EQ) {
|
| + return sc.TokenType.BAR;
|
| + } else if (operator == sc.TokenType.CARET_EQ) {
|
| + return sc.TokenType.CARET;
|
| + } else if (operator == sc.TokenType.GT_GT_EQ) {
|
| + return sc.TokenType.GT_GT;
|
| + } else if (operator == sc.TokenType.LT_LT_EQ) {
|
| + return sc.TokenType.LT_LT;
|
| + } else if (operator == sc.TokenType.MINUS_EQ) {
|
| + return sc.TokenType.MINUS;
|
| + } else if (operator == sc.TokenType.PERCENT_EQ) {
|
| + return sc.TokenType.PERCENT;
|
| + } else if (operator == sc.TokenType.PLUS_EQ) {
|
| + return sc.TokenType.PLUS;
|
| + } else if (operator == sc.TokenType.SLASH_EQ) {
|
| + return sc.TokenType.SLASH;
|
| + } else if (operator == sc.TokenType.STAR_EQ) {
|
| + return sc.TokenType.STAR;
|
| + } else if (operator == sc.TokenType.TILDE_SLASH_EQ) {
|
| + return sc.TokenType.TILDE_SLASH;
|
| + } else {
|
| + // Internal error: Unmapped assignment operator.
|
| + AnalysisEngine.instance.logger.logError(
|
| + "Failed to map ${operator.lexeme} to it's corresponding operator");
|
| + return operator;
|
| + }
|
| + break;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Record that the given [node] is undefined, causing an error to be reported
|
| + * if appropriate. The [declaringElement] is the element inside which no
|
| + * declaration was found. If this element is a proxy, no error will be
|
| + * reported. If null, then an error will always be reported. The [errorCode]
|
| + * is the error code to report. The [arguments] are the arguments to the error
|
| + * message.
|
| + */
|
| + void _recordUndefinedNode(Element declaringElement, ErrorCode errorCode,
|
| + AstNode node, List<Object> arguments) {
|
| + if (_doesntHaveProxy(declaringElement)) {
|
| + _resolver.reportErrorForNode(errorCode, node, arguments);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Record that the given [offset]/[length] is undefined, causing an error to
|
| + * be reported if appropriate. The [declaringElement] is the element inside
|
| + * which no declaration was found. If this element is a proxy, no error will
|
| + * be reported. If null, then an error will always be reported. The
|
| + * [errorCode] is the error code to report. The [arguments] are arguments to
|
| + * the error message.
|
| + */
|
| + void _recordUndefinedOffset(Element declaringElement, ErrorCode errorCode,
|
| + int offset, int length, List<Object> arguments) {
|
| + if (_doesntHaveProxy(declaringElement)) {
|
| + _resolver.reportErrorForOffset(errorCode, offset, length, arguments);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Record that the given [token] is undefined, causing an error to be reported
|
| + * if appropriate. The [declaringElement] is the element inside which no
|
| + * declaration was found. If this element is a proxy, no error will be
|
| + * reported. If null, then an error will always be reported. The [errorCode]
|
| + * is the error code to report. The [arguments] are arguments to the error
|
| + * message.
|
| + */
|
| + void _recordUndefinedToken(Element declaringElement, ErrorCode errorCode,
|
| + sc.Token token, List<Object> arguments) {
|
| + if (_doesntHaveProxy(declaringElement)) {
|
| + _resolver.reportErrorForToken(errorCode, token, arguments);
|
| + }
|
| + }
|
| +
|
| + void _resolveAnnotationConstructorInvocationArguments(
|
| + Annotation annotation, ConstructorElement constructor) {
|
| + ArgumentList argumentList = annotation.arguments;
|
| + // error will be reported in ConstantVerifier
|
| + if (argumentList == null) {
|
| + return;
|
| + }
|
| + // resolve arguments to parameters
|
| + List<ParameterElement> parameters =
|
| + _resolveArgumentsToFunction(true, argumentList, constructor);
|
| + if (parameters != null) {
|
| + argumentList.correspondingStaticParameters = parameters;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Continues resolution of the given [annotation].
|
| + */
|
| + void _resolveAnnotationElement(Annotation annotation) {
|
| + SimpleIdentifier nameNode1;
|
| + SimpleIdentifier nameNode2;
|
| + {
|
| + Identifier annName = annotation.name;
|
| + if (annName is PrefixedIdentifier) {
|
| + PrefixedIdentifier prefixed = annName;
|
| + nameNode1 = prefixed.prefix;
|
| + nameNode2 = prefixed.identifier;
|
| + } else {
|
| + nameNode1 = annName as SimpleIdentifier;
|
| + nameNode2 = null;
|
| + }
|
| + }
|
| + SimpleIdentifier nameNode3 = annotation.constructorName;
|
| + ConstructorElement constructor = null;
|
| + //
|
| + // CONST or Class(args)
|
| + //
|
| + if (nameNode1 != null && nameNode2 == null && nameNode3 == null) {
|
| + Element element1 = nameNode1.staticElement;
|
| + // CONST
|
| + if (element1 is PropertyAccessorElement) {
|
| + _resolveAnnotationElementGetter(annotation, element1);
|
| + return;
|
| + }
|
| + // Class(args)
|
| + if (element1 is ClassElement) {
|
| + ClassElement classElement = element1;
|
| + constructor = new InterfaceTypeImpl(classElement).lookUpConstructor(
|
| + null, _definingLibrary);
|
| + }
|
| + }
|
| + //
|
| + // prefix.CONST or prefix.Class() or Class.CONST or Class.constructor(args)
|
| + //
|
| + if (nameNode1 != null && nameNode2 != null && nameNode3 == null) {
|
| + Element element1 = nameNode1.staticElement;
|
| + Element element2 = nameNode2.staticElement;
|
| + // Class.CONST - not resolved yet
|
| + if (element1 is ClassElement) {
|
| + ClassElement classElement = element1;
|
| + element2 = classElement.lookUpGetter(nameNode2.name, _definingLibrary);
|
| + }
|
| + // prefix.CONST or Class.CONST
|
| + if (element2 is PropertyAccessorElement) {
|
| + nameNode2.staticElement = element2;
|
| + annotation.element = element2;
|
| + _resolveAnnotationElementGetter(annotation, element2);
|
| + return;
|
| + }
|
| + // prefix.Class()
|
| + if (element2 is ClassElement) {
|
| + constructor = element2.unnamedConstructor;
|
| + }
|
| + // Class.constructor(args)
|
| + if (element1 is ClassElement) {
|
| + ClassElement classElement = element1;
|
| + constructor = new InterfaceTypeImpl(classElement).lookUpConstructor(
|
| + nameNode2.name, _definingLibrary);
|
| + nameNode2.staticElement = constructor;
|
| + }
|
| + }
|
| + //
|
| + // prefix.Class.CONST or prefix.Class.constructor(args)
|
| + //
|
| + if (nameNode1 != null && nameNode2 != null && nameNode3 != null) {
|
| + Element element2 = nameNode2.staticElement;
|
| + // element2 should be ClassElement
|
| + if (element2 is ClassElement) {
|
| + ClassElement classElement = element2;
|
| + String name3 = nameNode3.name;
|
| + // prefix.Class.CONST
|
| + PropertyAccessorElement getter =
|
| + classElement.lookUpGetter(name3, _definingLibrary);
|
| + if (getter != null) {
|
| + nameNode3.staticElement = getter;
|
| + annotation.element = element2;
|
| + _resolveAnnotationElementGetter(annotation, getter);
|
| + return;
|
| + }
|
| + // prefix.Class.constructor(args)
|
| + constructor = new InterfaceTypeImpl(classElement).lookUpConstructor(
|
| + name3, _definingLibrary);
|
| + nameNode3.staticElement = constructor;
|
| + }
|
| + }
|
| + // we need constructor
|
| + if (constructor == null) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.INVALID_ANNOTATION, annotation);
|
| + return;
|
| + }
|
| + // record element
|
| + annotation.element = constructor;
|
| + // resolve arguments
|
| + _resolveAnnotationConstructorInvocationArguments(annotation, constructor);
|
| + }
|
| +
|
| + void _resolveAnnotationElementGetter(
|
| + Annotation annotation, PropertyAccessorElement accessorElement) {
|
| + // accessor should be synthetic
|
| + if (!accessorElement.isSynthetic) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.INVALID_ANNOTATION, annotation);
|
| + return;
|
| + }
|
| + // variable should be constant
|
| + VariableElement variableElement = accessorElement.variable;
|
| + if (!variableElement.isConst) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.INVALID_ANNOTATION, annotation);
|
| + }
|
| + // OK
|
| + return;
|
| + }
|
| +
|
| + /**
|
| + * Given an [argumentList] and the [executableElement] that will be invoked
|
| + * using those argument, compute the list of parameters that correspond to the
|
| + * list of arguments. An error will be reported if any of the arguments cannot
|
| + * be matched to a parameter. The flag [reportError] should be `true` if a
|
| + * compile-time error should be reported; or `false` if a compile-time warning
|
| + * should be reported. Return the parameters that correspond to the arguments,
|
| + * or `null` if no correspondence could be computed.
|
| + */
|
| + List<ParameterElement> _resolveArgumentsToFunction(bool reportError,
|
| + ArgumentList argumentList, ExecutableElement executableElement) {
|
| + if (executableElement == null) {
|
| + return null;
|
| + }
|
| + List<ParameterElement> parameters = executableElement.parameters;
|
| + return _resolveArgumentsToParameters(reportError, argumentList, parameters);
|
| + }
|
| +
|
| + /**
|
| + * Given an [argumentList] and the [parameters] related to the element that
|
| + * will be invoked using those arguments, compute the list of parameters that
|
| + * correspond to the list of arguments. An error will be reported if any of
|
| + * the arguments cannot be matched to a parameter. The flag [reportError]
|
| + * should be `true` if a compile-time error should be reported; or `false` if
|
| + * a compile-time warning should be reported. Return the parameters that
|
| + * correspond to the arguments.
|
| + */
|
| + List<ParameterElement> _resolveArgumentsToParameters(bool reportError,
|
| + ArgumentList argumentList, List<ParameterElement> parameters) {
|
| + List<ParameterElement> requiredParameters = new List<ParameterElement>();
|
| + List<ParameterElement> positionalParameters = new List<ParameterElement>();
|
| + HashMap<String, ParameterElement> namedParameters =
|
| + new HashMap<String, ParameterElement>();
|
| + for (ParameterElement parameter in parameters) {
|
| + ParameterKind kind = parameter.parameterKind;
|
| + if (kind == ParameterKind.REQUIRED) {
|
| + requiredParameters.add(parameter);
|
| + } else if (kind == ParameterKind.POSITIONAL) {
|
| + positionalParameters.add(parameter);
|
| + } else {
|
| + namedParameters[parameter.name] = parameter;
|
| + }
|
| + }
|
| + List<ParameterElement> unnamedParameters =
|
| + new List<ParameterElement>.from(requiredParameters);
|
| + unnamedParameters.addAll(positionalParameters);
|
| + int unnamedParameterCount = unnamedParameters.length;
|
| + int unnamedIndex = 0;
|
| + NodeList<Expression> arguments = argumentList.arguments;
|
| + int argumentCount = arguments.length;
|
| + List<ParameterElement> resolvedParameters =
|
| + new List<ParameterElement>(argumentCount);
|
| + int positionalArgumentCount = 0;
|
| + HashSet<String> usedNames = new HashSet<String>();
|
| + bool noBlankArguments = true;
|
| + for (int i = 0; i < argumentCount; i++) {
|
| + Expression argument = arguments[i];
|
| + if (argument is NamedExpression) {
|
| + SimpleIdentifier nameNode = argument.name.label;
|
| + String name = nameNode.name;
|
| + ParameterElement element = namedParameters[name];
|
| + if (element == null) {
|
| + ErrorCode errorCode = (reportError
|
| + ? CompileTimeErrorCode.UNDEFINED_NAMED_PARAMETER
|
| + : StaticWarningCode.UNDEFINED_NAMED_PARAMETER);
|
| + _resolver.reportErrorForNode(errorCode, nameNode, [name]);
|
| + } else {
|
| + resolvedParameters[i] = element;
|
| + nameNode.staticElement = element;
|
| + }
|
| + if (!usedNames.add(name)) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.DUPLICATE_NAMED_ARGUMENT, nameNode, [name]);
|
| + }
|
| + } else {
|
| + if (argument is SimpleIdentifier && argument.name.isEmpty) {
|
| + noBlankArguments = false;
|
| + }
|
| + positionalArgumentCount++;
|
| + if (unnamedIndex < unnamedParameterCount) {
|
| + resolvedParameters[i] = unnamedParameters[unnamedIndex++];
|
| + }
|
| + }
|
| + }
|
| + if (positionalArgumentCount < requiredParameters.length &&
|
| + noBlankArguments) {
|
| + ErrorCode errorCode = (reportError
|
| + ? CompileTimeErrorCode.NOT_ENOUGH_REQUIRED_ARGUMENTS
|
| + : StaticWarningCode.NOT_ENOUGH_REQUIRED_ARGUMENTS);
|
| + _resolver.reportErrorForNode(errorCode, argumentList, [
|
| + requiredParameters.length,
|
| + positionalArgumentCount
|
| + ]);
|
| + } else if (positionalArgumentCount > unnamedParameterCount &&
|
| + noBlankArguments) {
|
| + ErrorCode errorCode = (reportError
|
| + ? CompileTimeErrorCode.EXTRA_POSITIONAL_ARGUMENTS
|
| + : StaticWarningCode.EXTRA_POSITIONAL_ARGUMENTS);
|
| + _resolver.reportErrorForNode(errorCode, argumentList, [
|
| + unnamedParameterCount,
|
| + positionalArgumentCount
|
| + ]);
|
| + }
|
| + return resolvedParameters;
|
| + }
|
| +
|
| + void _resolveBinaryExpression(BinaryExpression node, String methodName) {
|
| + Expression leftOperand = node.leftOperand;
|
| + if (leftOperand != null) {
|
| + DartType staticType = _getStaticType(leftOperand);
|
| + MethodElement staticMethod =
|
| + _lookUpMethod(leftOperand, staticType, methodName);
|
| + node.staticElement = staticMethod;
|
| + DartType propagatedType = _getPropagatedType(leftOperand);
|
| + MethodElement propagatedMethod =
|
| + _lookUpMethod(leftOperand, propagatedType, methodName);
|
| + node.propagatedElement = propagatedMethod;
|
| + if (_shouldReportMissingMember(staticType, staticMethod)) {
|
| + if (leftOperand is SuperExpression) {
|
| + _recordUndefinedToken(staticType.element,
|
| + StaticTypeWarningCode.UNDEFINED_SUPER_OPERATOR, node.operator, [
|
| + methodName,
|
| + staticType.displayName
|
| + ]);
|
| + } else {
|
| + _recordUndefinedToken(staticType.element,
|
| + StaticTypeWarningCode.UNDEFINED_OPERATOR, node.operator, [
|
| + methodName,
|
| + staticType.displayName
|
| + ]);
|
| + }
|
| + } else if (_enableHints &&
|
| + _shouldReportMissingMember(propagatedType, propagatedMethod) &&
|
| + !_memberFoundInSubclass(
|
| + propagatedType.element, methodName, true, false)) {
|
| + _recordUndefinedToken(propagatedType.element,
|
| + HintCode.UNDEFINED_OPERATOR, node.operator, [
|
| + methodName,
|
| + propagatedType.displayName
|
| + ]);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Resolve the names in the given [combinators] in the scope of the given
|
| + * [library].
|
| + */
|
| + void _resolveCombinators(
|
| + LibraryElement library, NodeList<Combinator> combinators) {
|
| + if (library == null) {
|
| + //
|
| + // The library will be null if the directive containing the combinators
|
| + // has a URI that is not valid.
|
| + //
|
| + return;
|
| + }
|
| + Namespace namespace =
|
| + new NamespaceBuilder().createExportNamespaceForLibrary(library);
|
| + for (Combinator combinator in combinators) {
|
| + NodeList<SimpleIdentifier> names;
|
| + if (combinator is HideCombinator) {
|
| + names = combinator.hiddenNames;
|
| + } else {
|
| + names = (combinator as ShowCombinator).shownNames;
|
| + }
|
| + for (SimpleIdentifier name in names) {
|
| + String nameStr = name.name;
|
| + Element element = namespace.get(nameStr);
|
| + if (element == null) {
|
| + element = namespace.get("$nameStr=");
|
| + }
|
| + if (element != null) {
|
| + // Ensure that the name always resolves to a top-level variable
|
| + // rather than a getter or setter
|
| + if (element is PropertyAccessorElement) {
|
| + element = (element as PropertyAccessorElement).variable;
|
| + }
|
| + name.staticElement = element;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Given that we are accessing a property of the given [classElement] with the
|
| + * given [propertyName], return the element that represents the property.
|
| + */
|
| + Element _resolveElement(
|
| + ClassElementImpl classElement, SimpleIdentifier propertyName) {
|
| + String name = propertyName.name;
|
| + Element element = null;
|
| + if (propertyName.inSetterContext()) {
|
| + element = classElement.getSetter(name);
|
| + }
|
| + if (element == null) {
|
| + element = classElement.getGetter(name);
|
| + }
|
| + if (element == null) {
|
| + element = classElement.getMethod(name);
|
| + }
|
| + if (element != null && element.isAccessibleIn(_definingLibrary)) {
|
| + return element;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Given an invocation of the form 'm(a1, ..., an)', resolve 'm' to the
|
| + * element being invoked. If the returned element is a method, then the method
|
| + * will be invoked. If the returned element is a getter, the getter will be
|
| + * invoked without arguments and the result of that invocation will then be
|
| + * invoked with the arguments. The [methodName] is the name of the method
|
| + * being invoked ('m').
|
| + */
|
| + Element _resolveInvokedElement(SimpleIdentifier methodName) {
|
| + //
|
| + // Look first in the lexical scope.
|
| + //
|
| + Element element = _resolver.nameScope.lookup(methodName, _definingLibrary);
|
| + if (element == null) {
|
| + //
|
| + // If it isn't defined in the lexical scope, and the invocation is within
|
| + // a class, then look in the inheritance scope.
|
| + //
|
| + ClassElement enclosingClass = _resolver.enclosingClass;
|
| + if (enclosingClass != null) {
|
| + InterfaceType enclosingType = enclosingClass.type;
|
| + element = _lookUpMethod(null, enclosingType, methodName.name);
|
| + if (element == null) {
|
| + //
|
| + // If there's no method, then it's possible that 'm' is a getter that
|
| + // returns a function.
|
| + //
|
| + element = _lookUpGetter(null, enclosingType, methodName.name);
|
| + }
|
| + }
|
| + }
|
| + // TODO(brianwilkerson) Report this error.
|
| + return element;
|
| + }
|
| +
|
| + /**
|
| + * Given an invocation of the form 'e.m(a1, ..., an)', resolve 'e.m' to the
|
| + * element being invoked. If the returned element is a method, then the method
|
| + * will be invoked. If the returned element is a getter, the getter will be
|
| + * invoked without arguments and the result of that invocation will then be
|
| + * invoked with the arguments. The [target] is the target of the invocation
|
| + * ('e'). The [targetType] is the type of the target. The [methodName] is th
|
| + * name of the method being invoked ('m'). [isConditional] indicates
|
| + * whether the invocatoin uses a '?.' operator.
|
| + */
|
| + Element _resolveInvokedElementWithTarget(Expression target,
|
| + DartType targetType, SimpleIdentifier methodName, bool isConditional) {
|
| + if (targetType is InterfaceType) {
|
| + Element element = _lookUpMethod(target, targetType, methodName.name);
|
| + if (element == null) {
|
| + //
|
| + // If there's no method, then it's possible that 'm' is a getter that
|
| + // returns a function.
|
| + //
|
| + // TODO (collinsn): need to add union type support here too, in the
|
| + // style of [lookUpMethod].
|
| + element = _lookUpGetter(target, targetType, methodName.name);
|
| + }
|
| + return element;
|
| + } else if (target is SimpleIdentifier) {
|
| + Element targetElement = target.staticElement;
|
| + if (targetElement is PrefixElement) {
|
| + if (isConditional) {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.PREFIX_IDENTIFIER_NOT_FOLLOWED_BY_DOT,
|
| + target, [target.name]);
|
| + }
|
| + //
|
| + // Look to see whether the name of the method is really part of a
|
| + // prefixed identifier for an imported top-level function or top-level
|
| + // getter that returns a function.
|
| + //
|
| + String name = "${target.name}.$methodName";
|
| + Identifier functionName = new SyntheticIdentifier(name, methodName);
|
| + Element element =
|
| + _resolver.nameScope.lookup(functionName, _definingLibrary);
|
| + if (element != null) {
|
| + // TODO(brianwilkerson) This isn't a method invocation, it's a
|
| + // function invocation where the function name is a prefixed
|
| + // identifier. Consider re-writing the AST.
|
| + return element;
|
| + }
|
| + }
|
| + }
|
| + // TODO(brianwilkerson) Report this error.
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Given that we are accessing a property of the given [targetType] with the
|
| + * given [propertyName], return the element that represents the property. The
|
| + * [target] is the target of the invocation ('e').
|
| + */
|
| + ExecutableElement _resolveProperty(
|
| + Expression target, DartType targetType, SimpleIdentifier propertyName) {
|
| + ExecutableElement memberElement = null;
|
| + if (propertyName.inSetterContext()) {
|
| + memberElement = _lookUpSetter(target, targetType, propertyName.name);
|
| + }
|
| + if (memberElement == null) {
|
| + memberElement = _lookUpGetter(target, targetType, propertyName.name);
|
| + }
|
| + if (memberElement == null) {
|
| + memberElement = _lookUpMethod(target, targetType, propertyName.name);
|
| + }
|
| + return memberElement;
|
| + }
|
| +
|
| + void _resolvePropertyAccess(
|
| + Expression target, SimpleIdentifier propertyName) {
|
| + DartType staticType = _getStaticType(target);
|
| + DartType propagatedType = _getPropagatedType(target);
|
| + Element staticElement = null;
|
| + Element propagatedElement = null;
|
| + //
|
| + // If this property access is of the form 'C.m' where 'C' is a class,
|
| + // then we don't call resolveProperty(...) which walks up the class
|
| + // hierarchy, instead we just look for the member in the type only. This
|
| + // does not apply to conditional property accesses (i.e. 'C?.m').
|
| + //
|
| + ClassElementImpl typeReference = getTypeReference(target);
|
| + if (typeReference != null) {
|
| + // TODO(brianwilkerson) Why are we setting the propagated element here?
|
| + // It looks wrong.
|
| + staticElement =
|
| + propagatedElement = _resolveElement(typeReference, propertyName);
|
| + } else {
|
| + staticElement = _resolveProperty(target, staticType, propertyName);
|
| + propagatedElement =
|
| + _resolveProperty(target, propagatedType, propertyName);
|
| + }
|
| + // May be part of annotation, record property element only if exists.
|
| + // Error was already reported in validateAnnotationElement().
|
| + if (target.parent.parent is Annotation) {
|
| + if (staticElement != null) {
|
| + propertyName.staticElement = staticElement;
|
| + }
|
| + return;
|
| + }
|
| + propertyName.staticElement = staticElement;
|
| + propertyName.propagatedElement = propagatedElement;
|
| + bool shouldReportMissingMember_static =
|
| + _shouldReportMissingMember(staticType, staticElement);
|
| + bool shouldReportMissingMember_propagated =
|
| + !shouldReportMissingMember_static &&
|
| + _enableHints &&
|
| + _shouldReportMissingMember(propagatedType, propagatedElement) &&
|
| + !_memberFoundInSubclass(
|
| + propagatedType.element, propertyName.name, false, true);
|
| + if (shouldReportMissingMember_static ||
|
| + shouldReportMissingMember_propagated) {
|
| + DartType staticOrPropagatedType =
|
| + shouldReportMissingMember_static ? staticType : propagatedType;
|
| + Element staticOrPropagatedEnclosingElt = staticOrPropagatedType.element;
|
| + bool isStaticProperty = _isStatic(staticOrPropagatedEnclosingElt);
|
| + DartType displayType = staticOrPropagatedType != null
|
| + ? staticOrPropagatedType
|
| + : propagatedType != null ? propagatedType : staticType;
|
| + // Special getter cases.
|
| + if (propertyName.inGetterContext()) {
|
| + if (!isStaticProperty &&
|
| + staticOrPropagatedEnclosingElt is ClassElement) {
|
| + ClassElement classElement = staticOrPropagatedEnclosingElt;
|
| + InterfaceType targetType = classElement.type;
|
| + if (!_enableStrictCallChecks &&
|
| + targetType != null &&
|
| + targetType.isDartCoreFunction &&
|
| + propertyName.name == FunctionElement.CALL_METHOD_NAME) {
|
| + // TODO(brianwilkerson) Can we ever resolve the function being
|
| + // invoked?
|
| +// resolveArgumentsToParameters(node.getArgumentList(), invokedFunction);
|
| + return;
|
| + } else if (classElement.isEnum && propertyName.name == "_name") {
|
| + _resolver.reportErrorForNode(
|
| + CompileTimeErrorCode.ACCESS_PRIVATE_ENUM_FIELD, propertyName,
|
| + [propertyName.name]);
|
| + return;
|
| + }
|
| + }
|
| + }
|
| + Element declaringElement =
|
| + staticType.isVoid ? null : staticOrPropagatedEnclosingElt;
|
| + if (propertyName.inSetterContext()) {
|
| + ErrorCode errorCode;
|
| + if (shouldReportMissingMember_static) {
|
| + if (target is SuperExpression) {
|
| + if (isStaticProperty && !staticType.isVoid) {
|
| + errorCode = StaticWarningCode.UNDEFINED_SUPER_SETTER;
|
| + } else {
|
| + errorCode = StaticTypeWarningCode.UNDEFINED_SUPER_SETTER;
|
| + }
|
| + } else {
|
| + if (isStaticProperty && !staticType.isVoid) {
|
| + errorCode = StaticWarningCode.UNDEFINED_SETTER;
|
| + } else {
|
| + errorCode = StaticTypeWarningCode.UNDEFINED_SETTER;
|
| + }
|
| + }
|
| + } else {
|
| + errorCode = HintCode.UNDEFINED_SETTER;
|
| + }
|
| + _recordUndefinedNode(declaringElement, errorCode, propertyName, [
|
| + propertyName.name,
|
| + displayType.displayName
|
| + ]);
|
| + } else if (propertyName.inGetterContext()) {
|
| + ErrorCode errorCode;
|
| + if (shouldReportMissingMember_static) {
|
| + if (target is SuperExpression) {
|
| + if (isStaticProperty && !staticType.isVoid) {
|
| + errorCode = StaticWarningCode.UNDEFINED_SUPER_GETTER;
|
| + } else {
|
| + errorCode = StaticTypeWarningCode.UNDEFINED_SUPER_GETTER;
|
| + }
|
| + } else {
|
| + if (isStaticProperty && !staticType.isVoid) {
|
| + errorCode = StaticWarningCode.UNDEFINED_GETTER;
|
| + } else {
|
| + errorCode = StaticTypeWarningCode.UNDEFINED_GETTER;
|
| + }
|
| + }
|
| + } else {
|
| + errorCode = HintCode.UNDEFINED_GETTER;
|
| + }
|
| + _recordUndefinedNode(declaringElement, errorCode, propertyName, [
|
| + propertyName.name,
|
| + displayType.displayName
|
| + ]);
|
| + } else {
|
| + _recordUndefinedNode(declaringElement,
|
| + StaticWarningCode.UNDEFINED_IDENTIFIER, propertyName,
|
| + [propertyName.name]);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Resolve the given simple [identifier] if possible. Return the element to
|
| + * which it could be resolved, or `null` if it could not be resolved. This
|
| + * does not record the results of the resolution.
|
| + */
|
| + Element _resolveSimpleIdentifier(SimpleIdentifier identifier) {
|
| + Element element = _resolver.nameScope.lookup(identifier, _definingLibrary);
|
| + if (element is PropertyAccessorElement && identifier.inSetterContext()) {
|
| + PropertyInducingElement variable =
|
| + (element as PropertyAccessorElement).variable;
|
| + if (variable != null) {
|
| + PropertyAccessorElement setter = variable.setter;
|
| + if (setter == null) {
|
| + //
|
| + // Check to see whether there might be a locally defined getter and
|
| + // an inherited setter.
|
| + //
|
| + ClassElement enclosingClass = _resolver.enclosingClass;
|
| + if (enclosingClass != null) {
|
| + setter = _lookUpSetter(null, enclosingClass.type, identifier.name);
|
| + }
|
| + }
|
| + if (setter != null) {
|
| + element = setter;
|
| + }
|
| + }
|
| + } else if (element == null &&
|
| + (identifier.inSetterContext() ||
|
| + identifier.parent is CommentReference)) {
|
| + element = _resolver.nameScope.lookup(
|
| + new SyntheticIdentifier("${identifier.name}=", identifier),
|
| + _definingLibrary);
|
| + }
|
| + ClassElement enclosingClass = _resolver.enclosingClass;
|
| + if (element == null && enclosingClass != null) {
|
| + InterfaceType enclosingType = enclosingClass.type;
|
| + if (element == null &&
|
| + (identifier.inSetterContext() ||
|
| + identifier.parent is CommentReference)) {
|
| + element = _lookUpSetter(null, enclosingType, identifier.name);
|
| + }
|
| + if (element == null && identifier.inGetterContext()) {
|
| + element = _lookUpGetter(null, enclosingType, identifier.name);
|
| + }
|
| + if (element == null) {
|
| + element = _lookUpMethod(null, enclosingType, identifier.name);
|
| + }
|
| + }
|
| + return element;
|
| + }
|
| +
|
| + /**
|
| + * If the given [type] is a type parameter, resolve it to the type that should
|
| + * be used when looking up members. Otherwise, return the original type.
|
| + */
|
| + DartType _resolveTypeParameter(DartType type) {
|
| + if (type is TypeParameterType) {
|
| + DartType bound = type.element.bound;
|
| + if (bound == null) {
|
| + return _resolver.typeProvider.objectType;
|
| + }
|
| + return bound;
|
| + }
|
| + return type;
|
| + }
|
| +
|
| + /**
|
| + * Given a [node] that can have annotations associated with it and the
|
| + * [element] to which that node has been resolved, create the annotations in
|
| + * the element model representing the annotations on the node.
|
| + */
|
| + void _setMetadataForParameter(Element element, NormalFormalParameter node) {
|
| + if (element is! ElementImpl) {
|
| + return;
|
| + }
|
| + List<ElementAnnotationImpl> annotationList =
|
| + new List<ElementAnnotationImpl>();
|
| + _addAnnotations(annotationList, node.metadata);
|
| + if (!annotationList.isEmpty) {
|
| + (element as ElementImpl).metadata = annotationList;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if we should report an error as a result of looking up a
|
| + * [member] in the given [type] and not finding any member.
|
| + */
|
| + bool _shouldReportMissingMember(DartType type, Element member) {
|
| + if (member != null || type == null || type.isDynamic || type.isBottom) {
|
| + return false;
|
| + }
|
| + return true;
|
| + }
|
| +
|
| + /**
|
| + * Checks whether the given [expression] is a reference to a class. If it is
|
| + * then the element representing the class is returned, otherwise `null` is
|
| + * returned.
|
| + */
|
| + static ClassElementImpl getTypeReference(Expression expression) {
|
| + if (expression is Identifier) {
|
| + Element staticElement = expression.staticElement;
|
| + if (staticElement is ClassElementImpl) {
|
| + return staticElement;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Given a [node] that can have annotations associated with it and the
|
| + * [element] to which that node has been resolved, create the annotations in
|
| + * the element model representing the annotations on the node.
|
| + */
|
| + static void setMetadata(Element element, AnnotatedNode node) {
|
| + if (element is! ElementImpl) {
|
| + return;
|
| + }
|
| + List<ElementAnnotationImpl> annotationList = <ElementAnnotationImpl>[];
|
| + _addAnnotations(annotationList, node.metadata);
|
| + if (node is VariableDeclaration && node.parent is VariableDeclarationList) {
|
| + VariableDeclarationList list = node.parent as VariableDeclarationList;
|
| + _addAnnotations(annotationList, list.metadata);
|
| + if (list.parent is FieldDeclaration) {
|
| + FieldDeclaration fieldDeclaration = list.parent as FieldDeclaration;
|
| + _addAnnotations(annotationList, fieldDeclaration.metadata);
|
| + } else if (list.parent is TopLevelVariableDeclaration) {
|
| + TopLevelVariableDeclaration variableDeclaration =
|
| + list.parent as TopLevelVariableDeclaration;
|
| + _addAnnotations(annotationList, variableDeclaration.metadata);
|
| + }
|
| + }
|
| + if (!annotationList.isEmpty) {
|
| + (element as ElementImpl).metadata = annotationList;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Generate annotation elements for each of the annotations in the
|
| + * [annotationList] and add them to the given list of [annotations].
|
| + */
|
| + static void _addAnnotations(List<ElementAnnotationImpl> annotationList,
|
| + NodeList<Annotation> annotations) {
|
| + int annotationCount = annotations.length;
|
| + for (int i = 0; i < annotationCount; i++) {
|
| + Annotation annotation = annotations[i];
|
| + Element resolvedElement = annotation.element;
|
| + if (resolvedElement != null) {
|
| + ElementAnnotationImpl elementAnnotation =
|
| + new ElementAnnotationImpl(resolvedElement);
|
| + annotation.elementAnnotation = elementAnnotation;
|
| + annotationList.add(elementAnnotation);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given [identifier] is the return type of a constructor
|
| + * declaration.
|
| + */
|
| + static bool _isConstructorReturnType(SimpleIdentifier identifier) {
|
| + AstNode parent = identifier.parent;
|
| + if (parent is ConstructorDeclaration) {
|
| + return identical(parent.returnType, identifier);
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given [identifier] is the return type of a factory
|
| + * constructor.
|
| + */
|
| + static bool _isFactoryConstructorReturnType(SimpleIdentifier identifier) {
|
| + AstNode parent = identifier.parent;
|
| + if (parent is ConstructorDeclaration) {
|
| + ConstructorDeclaration constructor = parent;
|
| + return identical(constructor.returnType, identifier) &&
|
| + constructor.factoryKeyword != null;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given 'super' [expression] is used in a valid context.
|
| + */
|
| + static bool _isSuperInValidContext(SuperExpression expression) {
|
| + for (AstNode node = expression; node != null; node = node.parent) {
|
| + if (node is CompilationUnit) {
|
| + return false;
|
| + }
|
| + if (node is ConstructorDeclaration) {
|
| + return node.factoryKeyword == null;
|
| + }
|
| + if (node is ConstructorFieldInitializer) {
|
| + return false;
|
| + }
|
| + if (node is MethodDeclaration) {
|
| + return !node.isStatic;
|
| + }
|
| + }
|
| + return false;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * An identifier that can be used to look up names in the lexical scope when
|
| + * there is no identifier in the AST structure. There is no identifier in the
|
| + * AST when the parser could not distinguish between a method invocation and an
|
| + * invocation of a top-level function imported with a prefix.
|
| + */
|
| +class SyntheticIdentifier extends Identifier {
|
| + /**
|
| + * The name of the synthetic identifier.
|
| + */
|
| + final String name;
|
| +
|
| + /**
|
| + * The identifier to be highlighted in case of an error
|
| + */
|
| + final Identifier targetIdentifier;
|
| +
|
| + /**
|
| + * Initialize a newly created synthetic identifier to have the given [name]
|
| + * and [targetIdentifier].
|
| + */
|
| + SyntheticIdentifier(this.name, this.targetIdentifier);
|
| +
|
| + @override
|
| + sc.Token get beginToken => null;
|
| +
|
| + @override
|
| + Element get bestElement => null;
|
| +
|
| + @override
|
| + Iterable get childEntities {
|
| + // Should never be called, since a SyntheticIdentifier never appears in the
|
| + // AST--it is just used for lookup.
|
| + assert(false);
|
| + return new ChildEntities();
|
| + }
|
| +
|
| + @override
|
| + sc.Token get endToken => null;
|
| +
|
| + @override
|
| + int get length => targetIdentifier.length;
|
| +
|
| + @override
|
| + int get offset => targetIdentifier.offset;
|
| +
|
| + @override
|
| + int get precedence => 16;
|
| +
|
| + @override
|
| + Element get propagatedElement => null;
|
| +
|
| + @override
|
| + Element get staticElement => null;
|
| +
|
| + @override
|
| + accept(AstVisitor visitor) => null;
|
| +
|
| + @override
|
| + void visitChildren(AstVisitor visitor) {}
|
| +}
|
|
|