Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(337)

Unified Diff: mojo/public/dart/third_party/analyzer/lib/src/generated/element.dart

Issue 1346773002: Stop running pub get at gclient sync time and fix build bugs (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: Created 5 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: mojo/public/dart/third_party/analyzer/lib/src/generated/element.dart
diff --git a/mojo/public/dart/third_party/analyzer/lib/src/generated/element.dart b/mojo/public/dart/third_party/analyzer/lib/src/generated/element.dart
new file mode 100644
index 0000000000000000000000000000000000000000..45f52bfa1cc5fbd537049f85c1edbe93cbc82fd2
--- /dev/null
+++ b/mojo/public/dart/third_party/analyzer/lib/src/generated/element.dart
@@ -0,0 +1,10798 @@
+// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
+// for details. All rights reserved. Use of this source code is governed by a
+// BSD-style license that can be found in the LICENSE file.
+
+library engine.element;
+
+import 'dart:collection';
+
+import 'package:analyzer/src/generated/utilities_general.dart';
+import 'package:analyzer/src/task/dart.dart';
+import 'package:analyzer/task/model.dart'
+ show AnalysisTarget, ConstantEvaluationTarget;
+
+import 'ast.dart';
+import 'constant.dart' show EvaluationResultImpl;
+import 'engine.dart' show AnalysisContext, AnalysisEngine, AnalysisException;
+import 'html.dart' show XmlAttributeNode, XmlTagNode;
+import 'java_core.dart';
+import 'java_engine.dart';
+import 'resolver.dart';
+import 'scanner.dart' show Keyword;
+import 'sdk.dart' show DartSdk;
+import 'source.dart';
+import 'utilities_collection.dart';
+import 'utilities_dart.dart';
+
+/**
+ * For AST nodes that could be in both the getter and setter contexts
+ * ([IndexExpression]s and [SimpleIdentifier]s), the additional resolved
+ * elements are stored in the AST node, in an [AuxiliaryElements]. Because
+ * resolved elements are either statically resolved or resolved using propagated
+ * type information, this class is a wrapper for a pair of [ExecutableElement]s,
+ * not just a single [ExecutableElement].
+ */
+class AuxiliaryElements {
+ /**
+ * The element based on propagated type information, or `null` if the AST
+ * structure has not been resolved or if the node could not be resolved.
+ */
+ final ExecutableElement propagatedElement;
+
+ /**
+ * The element based on static type information, or `null` if the AST
+ * structure has not been resolved or if the node could not be resolved.
+ */
+ final ExecutableElement staticElement;
+
+ /**
+ * Initialize a newly created pair to have both the [staticElement] and the
+ * [propagatedElement].
+ */
+ AuxiliaryElements(this.staticElement, this.propagatedElement);
+}
+
+/**
+ * A [Type] that represents the type 'bottom'.
+ */
+class BottomTypeImpl extends TypeImpl {
+ /**
+ * The unique instance of this class.
+ */
+ static BottomTypeImpl _INSTANCE = new BottomTypeImpl._();
+
+ /**
+ * Return the unique instance of this class.
+ */
+ static BottomTypeImpl get instance => _INSTANCE;
+
+ /**
+ * Prevent the creation of instances of this class.
+ */
+ BottomTypeImpl._() : super(null, "<bottom>");
+
+ @override
+ int get hashCode => 0;
+
+ @override
+ bool get isBottom => true;
+
+ @override
+ bool operator ==(Object object) => identical(object, this);
+
+ @override
+ bool isMoreSpecificThan(DartType type,
+ [bool withDynamic = false, Set<Element> visitedElements]) =>
+ true;
+
+ @override
+ bool isSubtypeOf(DartType type) => true;
+
+ @override
+ bool isSupertypeOf(DartType type) => false;
+
+ @override
+ TypeImpl pruned(List<FunctionTypeAliasElement> prune) => this;
+
+ @override
+ BottomTypeImpl substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes,
+ [List<FunctionTypeAliasElement> prune]) =>
+ this;
+}
+
+/**
+ * Type created internally if a circular reference is ever detected. Behaves
+ * like `dynamic`, except that when converted to a string it is displayed as
+ * `...`.
+ */
+class CircularTypeImpl extends DynamicTypeImpl {
+ CircularTypeImpl() : super._circular();
+
+ @override
+ int get hashCode => 1;
+
+ @override
+ bool operator ==(Object object) => object is CircularTypeImpl;
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ buffer.write('...');
+ }
+
+ @override
+ TypeImpl pruned(List<FunctionTypeAliasElement> prune) => this;
+}
+
+/**
+ * An element that represents a class.
+ */
+abstract class ClassElement implements TypeDefiningElement {
+ /**
+ * An empty list of class elements.
+ */
+ static const List<ClassElement> EMPTY_LIST = const <ClassElement>[];
+
+ /**
+ * Return a list containing all of the accessors (getters and setters)
+ * declared in this class.
+ */
+ List<PropertyAccessorElement> get accessors;
+
+ /**
+ * Return a list containing all the supertypes defined for this class and its
+ * supertypes. This includes superclasses, mixins and interfaces.
+ */
+ List<InterfaceType> get allSupertypes;
+
+ /**
+ * Return a list containing all of the constructors declared in this class.
+ */
+ List<ConstructorElement> get constructors;
+
+ /**
+ * Return a list containing all of the fields declared in this class.
+ */
+ List<FieldElement> get fields;
+
+ /**
+ * Return `true` if this class or its superclass declares a non-final instance
+ * field.
+ */
+ bool get hasNonFinalField;
+
+ /**
+ * Return `true` if this class has reference to super (so, for example, cannot
+ * be used as a mixin).
+ */
+ bool get hasReferenceToSuper;
+
+ /**
+ * Return `true` if this class declares a static member.
+ */
+ bool get hasStaticMember;
+
+ /**
+ * Return a list containing all of the interfaces that are implemented by this
+ * class.
+ *
+ * <b>Note:</b> Because the element model represents the state of the code, it
+ * is possible for it to be semantically invalid. In particular, it is not
+ * safe to assume that the inheritance structure of a class does not contain a
+ * cycle. Clients that traverse the inheritance structure must explicitly
+ * guard against infinite loops.
+ */
+ List<InterfaceType> get interfaces;
+
+ /**
+ * Return `true` if this class is abstract. A class is abstract if it has an
+ * explicit `abstract` modifier. Note, that this definition of <i>abstract</i>
+ * is different from <i>has unimplemented members</i>.
+ */
+ bool get isAbstract;
+
+ /**
+ * Return `true` if this class is defined by an enum declaration.
+ */
+ bool get isEnum;
+
+ /**
+ * Return `true` if this class is a mixin application. A class is a mixin
+ * application if it was declared using the syntax "class A = B with C;".
+ */
+ bool get isMixinApplication;
+
+ /**
+ * Return `true` if this class [isProxy], or if it inherits the proxy
+ * annotation from a supertype.
+ */
+ bool get isOrInheritsProxy;
+
+ /**
+ * Return `true` if this element has an annotation of the form '@proxy'.
+ */
+ bool get isProxy;
+
+ /**
+ * Return `true` if this class is a mixin application. Deprecated--please
+ * use [isMixinApplication] instead.
+ */
+ @deprecated
+ bool get isTypedef;
+
+ /**
+ * Return `true` if this class can validly be used as a mixin when defining
+ * another class. The behavior of this method is defined by the Dart Language
+ * Specification in section 9:
+ * <blockquote>
+ * It is a compile-time error if a declared or derived mixin refers to super.
+ * It is a compile-time error if a declared or derived mixin explicitly
+ * declares a constructor. It is a compile-time error if a mixin is derived
+ * from a class whose superclass is not Object.
+ * </blockquote>
+ */
+ bool get isValidMixin;
+
+ /**
+ * Return a list containing all of the methods declared in this class.
+ */
+ List<MethodElement> get methods;
+
+ /**
+ * Return a list containing all of the mixins that are applied to the class
+ * being extended in order to derive the superclass of this class.
+ *
+ * <b>Note:</b> Because the element model represents the state of the code, it
+ * is possible for it to be semantically invalid. In particular, it is not
+ * safe to assume that the inheritance structure of a class does not contain a
+ * cycle. Clients that traverse the inheritance structure must explicitly
+ * guard against infinite loops.
+ */
+ List<InterfaceType> get mixins;
+
+ /**
+ * Return the superclass of this class, or `null` if the class represents the
+ * class 'Object'. All other classes will have a non-`null` superclass. If the
+ * superclass was not explicitly declared then the implicit superclass
+ * 'Object' will be returned.
+ *
+ * <b>Note:</b> Because the element model represents the state of the code, it
+ * is possible for it to be semantically invalid. In particular, it is not
+ * safe to assume that the inheritance structure of a class does not contain a
+ * cycle. Clients that traverse the inheritance structure must explicitly
+ * guard against infinite loops.
+ */
+ InterfaceType get supertype;
+
+ @override
+ InterfaceType get type;
+
+ /**
+ * Return a list containing all of the type parameters declared for this
+ * class.
+ */
+ List<TypeParameterElement> get typeParameters;
+
+ /**
+ * Return the unnamed constructor declared in this class, or `null` if this
+ * class does not declare an unnamed constructor but does declare named
+ * constructors. The returned constructor will be synthetic if this class does
+ * not declare any constructors, in which case it will represent the default
+ * constructor for the class.
+ */
+ ConstructorElement get unnamedConstructor;
+
+ /**
+ * Return the resolved [ClassDeclaration] or [EnumDeclaration] node that
+ * declares this [ClassElement].
+ *
+ * This method is expensive, because resolved AST might be evicted from cache,
+ * so parsing and resolving will be performed.
+ */
+ @override
+ NamedCompilationUnitMember computeNode();
+
+ /**
+ * Return the field (synthetic or explicit) defined in this class that has the
+ * given [name], or `null` if this class does not define a field with the
+ * given name.
+ */
+ FieldElement getField(String name);
+
+ /**
+ * Return the element representing the getter with the given [name] that is
+ * declared in this class, or `null` if this class does not declare a getter
+ * with the given name.
+ */
+ PropertyAccessorElement getGetter(String name);
+
+ /**
+ * Return the element representing the method with the given [name] that is
+ * declared in this class, or `null` if this class does not declare a method
+ * with the given name.
+ */
+ MethodElement getMethod(String name);
+
+ /**
+ * Return the named constructor declared in this class with the given [name],
+ * or `null` if this class does not declare a named constructor with the given
+ * name.
+ */
+ ConstructorElement getNamedConstructor(String name);
+
+ /**
+ * Return the element representing the setter with the given [name] that is
+ * declared in this class, or `null` if this class does not declare a setter
+ * with the given name.
+ */
+ PropertyAccessorElement getSetter(String name);
+
+ /**
+ * Determine whether the given [constructor], which exists in the superclass
+ * of this class, is accessible to constructors in this class.
+ */
+ bool isSuperConstructorAccessible(ConstructorElement constructor);
+
+ /**
+ * Return the element representing the method that results from looking up the
+ * given [methodName] in this class with respect to the given [library],
+ * ignoring abstract methods, or `null` if the look up fails. The behavior of
+ * this method is defined by the Dart Language Specification in section
+ * 16.15.1:
+ * <blockquote>
+ * The result of looking up method <i>m</i> in class <i>C</i> with respect to
+ * library <i>L</i> is: If <i>C</i> declares an instance method named <i>m</i>
+ * that is accessible to <i>L</i>, then that method is the result of the
+ * lookup. Otherwise, if <i>C</i> has a superclass <i>S</i>, then the result
+ * of the lookup is the result of looking up method <i>m</i> in <i>S</i> with
+ * respect to <i>L</i>. Otherwise, we say that the lookup has failed.
+ * </blockquote>
+ */
+ MethodElement lookUpConcreteMethod(String methodName, LibraryElement library);
+
+ /**
+ * Return the element representing the getter that results from looking up the
+ * given [getterName] in this class with respect to the given [library], or
+ * `null` if the look up fails. The behavior of this method is defined by the
+ * Dart Language Specification in section 16.15.2:
+ * <blockquote>
+ * The result of looking up getter (respectively setter) <i>m</i> in class
+ * <i>C</i> with respect to library <i>L</i> is: If <i>C</i> declares an
+ * instance getter (respectively setter) named <i>m</i> that is accessible to
+ * <i>L</i>, then that getter (respectively setter) is the result of the
+ * lookup. Otherwise, if <i>C</i> has a superclass <i>S</i>, then the result
+ * of the lookup is the result of looking up getter (respectively setter)
+ * <i>m</i> in <i>S</i> with respect to <i>L</i>. Otherwise, we say that the
+ * lookup has failed.
+ * </blockquote>
+ */
+ PropertyAccessorElement lookUpGetter(
+ String getterName, LibraryElement library);
+
+ /**
+ * Return the element representing the getter that results from looking up the
+ * given [getterName] in the superclass of this class with respect to the
+ * given [library], ignoring abstract getters, or `null` if the look up fails.
+ * The behavior of this method is defined by the Dart Language Specification
+ * in section 16.15.2:
+ * <blockquote>
+ * The result of looking up getter (respectively setter) <i>m</i> in class
+ * <i>C</i> with respect to library <i>L</i> is: If <i>C</i> declares an
+ * instance getter (respectively setter) named <i>m</i> that is accessible to
+ * <i>L</i>, then that getter (respectively setter) is the result of the
+ * lookup. Otherwise, if <i>C</i> has a superclass <i>S</i>, then the result
+ * of the lookup is the result of looking up getter (respectively setter)
+ * <i>m</i> in <i>S</i> with respect to <i>L</i>. Otherwise, we say that the
+ * lookup has failed.
+ * </blockquote>
+ */
+ PropertyAccessorElement lookUpInheritedConcreteGetter(
+ String getterName, LibraryElement library);
+
+ /**
+ * Return the element representing the method that results from looking up the
+ * given [methodName] in the superclass of this class with respect to the
+ * given [library], ignoring abstract methods, or `null` if the look up fails.
+ * The behavior of this method is defined by the Dart Language Specification
+ * in section 16.15.1:
+ * <blockquote>
+ * The result of looking up method <i>m</i> in class <i>C</i> with respect to
+ * library <i>L</i> is: If <i>C</i> declares an instance method named
+ * <i>m</i> that is accessible to <i>L</i>, then that method is the result of
+ * the lookup. Otherwise, if <i>C</i> has a superclass <i>S</i>, then the
+ * result of the lookup is the result of looking up method <i>m</i> in
+ * <i>S</i> with respect to <i>L</i>. Otherwise, we say that the lookup has
+ * failed.
+ * </blockquote>
+ */
+ MethodElement lookUpInheritedConcreteMethod(
+ String methodName, LibraryElement library);
+
+ /**
+ * Return the element representing the setter that results from looking up the
+ * given [setterName] in the superclass of this class with respect to the
+ * given [library], ignoring abstract setters, or `null` if the look up fails.
+ * The behavior of this method is defined by the Dart Language Specification
+ * in section 16.15.2:
+ * <blockquote>
+ * The result of looking up getter (respectively setter) <i>m</i> in class
+ * <i>C</i> with respect to library <i>L</i> is: If <i>C</i> declares an
+ * instance getter (respectively setter) named <i>m</i> that is accessible to
+ * <i>L</i>, then that getter (respectively setter) is the result of the
+ * lookup. Otherwise, if <i>C</i> has a superclass <i>S</i>, then the result
+ * of the lookup is the result of looking up getter (respectively setter)
+ * <i>m</i> in <i>S</i> with respect to <i>L</i>. Otherwise, we say that the
+ * lookup has failed.
+ * </blockquote>
+ */
+ PropertyAccessorElement lookUpInheritedConcreteSetter(
+ String setterName, LibraryElement library);
+
+ /**
+ * Return the element representing the method that results from looking up the
+ * given [methodName] in the superclass of this class with respect to the
+ * given [library], or `null` if the look up fails. The behavior of this
+ * method is defined by the Dart Language Specification in section 16.15.1:
+ * <blockquote>
+ * The result of looking up method <i>m</i> in class <i>C</i> with respect to
+ * library <i>L</i> is: If <i>C</i> declares an instance method named
+ * <i>m</i> that is accessible to <i>L</i>, then that method is the result of
+ * the lookup. Otherwise, if <i>C</i> has a superclass <i>S</i>, then the
+ * result of the lookup is the result of looking up method <i>m</i> in
+ * <i>S</i> with respect to <i>L</i>. Otherwise, we say that the lookup has
+ * failed.
+ * </blockquote>
+ */
+ MethodElement lookUpInheritedMethod(
+ String methodName, LibraryElement library);
+
+ /**
+ * Return the element representing the method that results from looking up the
+ * given [methodName] in this class with respect to the given [library], or
+ * `null` if the look up fails. The behavior of this method is defined by the
+ * Dart Language Specification in section 16.15.1:
+ * <blockquote>
+ * The result of looking up method <i>m</i> in class <i>C</i> with respect to
+ * library <i>L</i> is: If <i>C</i> declares an instance method named
+ * <i>m</i> that is accessible to <i>L</i>, then that method is the result of
+ * the lookup. Otherwise, if <i>C</i> has a superclass <i>S</i>, then the
+ * result of the lookup is the result of looking up method <i>m</i> in
+ * <i>S</i> with respect to <i>L</i>. Otherwise, we say that the lookup has
+ * failed.
+ * </blockquote>
+ */
+ MethodElement lookUpMethod(String methodName, LibraryElement library);
+
+ /**
+ * Return the element representing the setter that results from looking up the
+ * given [setterName] in this class with respect to the given [library], or
+ * `null` if the look up fails. The behavior of this method is defined by the
+ * Dart Language Specification in section 16.15.2:
+ * <blockquote>
+ * The result of looking up getter (respectively setter) <i>m</i> in class
+ * <i>C</i> with respect to library <i>L</i> is: If <i>C</i> declares an
+ * instance getter (respectively setter) named <i>m</i> that is accessible to
+ * <i>L</i>, then that getter (respectively setter) is the result of the
+ * lookup. Otherwise, if <i>C</i> has a superclass <i>S</i>, then the result
+ * of the lookup is the result of looking up getter (respectively setter)
+ * <i>m</i> in <i>S</i> with respect to <i>L</i>. Otherwise, we say that the
+ * lookup has failed.
+ * </blockquote>
+ */
+ PropertyAccessorElement lookUpSetter(
+ String setterName, LibraryElement library);
+}
+
+/**
+ * A concrete implementation of a [ClassElement].
+ */
+class ClassElementImpl extends ElementImpl implements ClassElement {
+ /**
+ * An empty list of class elements.
+ */
+ @deprecated // Use ClassElement.EMPTY_LIST
+ static const List<ClassElement> EMPTY_ARRAY = const <ClassElement>[];
+
+ /**
+ * A list containing all of the accessors (getters and setters) contained in
+ * this class.
+ */
+ List<PropertyAccessorElement> _accessors = PropertyAccessorElement.EMPTY_LIST;
+
+ /**
+ * For classes which are not mixin applications, a list containing all of the
+ * constructors contained in this class, or `null` if the list of
+ * constructors has not yet been built.
+ *
+ * For classes which are mixin applications, the list of constructors is
+ * computed on the fly by the [constructors] getter, and this field is
+ * `null`.
+ */
+ List<ConstructorElement> _constructors;
+
+ /**
+ * A list containing all of the fields contained in this class.
+ */
+ List<FieldElement> _fields = FieldElement.EMPTY_LIST;
+
+ /**
+ * A list containing all of the mixins that are applied to the class being
+ * extended in order to derive the superclass of this class.
+ */
+ List<InterfaceType> mixins = InterfaceType.EMPTY_LIST;
+
+ /**
+ * A list containing all of the interfaces that are implemented by this class.
+ */
+ List<InterfaceType> interfaces = InterfaceType.EMPTY_LIST;
+
+ /**
+ * A list containing all of the methods contained in this class.
+ */
+ List<MethodElement> _methods = MethodElement.EMPTY_LIST;
+
+ /**
+ * The superclass of the class, or `null` if the class does not have an
+ * explicit superclass.
+ */
+ InterfaceType supertype;
+
+ /**
+ * The type defined by the class.
+ */
+ InterfaceType type;
+
+ /**
+ * A list containing all of the type parameters defined for this class.
+ */
+ List<TypeParameterElement> _typeParameters = TypeParameterElement.EMPTY_LIST;
+
+ /**
+ * The [SourceRange] of the `with` clause, `null` if there is no one.
+ */
+ SourceRange withClauseRange;
+
+ /**
+ * A flag indicating whether the types associated with the instance members of
+ * this class have been inferred.
+ */
+ bool hasBeenInferred = false;
+
+ /**
+ * Initialize a newly created class element to have the given [name] at the
+ * given [offset] in the file that contains the declaration of this element.
+ */
+ ClassElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created class element to have the given [name].
+ */
+ ClassElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ /**
+ * Set whether this class is abstract.
+ */
+ void set abstract(bool isAbstract) {
+ setModifier(Modifier.ABSTRACT, isAbstract);
+ }
+
+ @override
+ List<PropertyAccessorElement> get accessors => _accessors;
+
+ /**
+ * Set the accessors contained in this class to the given [accessors].
+ */
+ void set accessors(List<PropertyAccessorElement> accessors) {
+ for (PropertyAccessorElement accessor in accessors) {
+ (accessor as PropertyAccessorElementImpl).enclosingElement = this;
+ }
+ this._accessors = accessors;
+ }
+
+ @override
+ List<InterfaceType> get allSupertypes {
+ List<InterfaceType> list = new List<InterfaceType>();
+ _collectAllSupertypes(list);
+ return list;
+ }
+
+ @override
+ List<ConstructorElement> get constructors {
+ if (!isMixinApplication) {
+ assert(_constructors != null);
+ return _constructors == null
+ ? ConstructorElement.EMPTY_LIST
+ : _constructors;
+ }
+
+ return _computeMixinAppConstructors();
+ }
+
+ /**
+ * Set the constructors contained in this class to the given [constructors].
+ *
+ * Should only be used for class elements that are not mixin applications.
+ */
+ void set constructors(List<ConstructorElement> constructors) {
+ assert(!isMixinApplication);
+ for (ConstructorElement constructor in constructors) {
+ (constructor as ConstructorElementImpl).enclosingElement = this;
+ }
+ this._constructors = constructors;
+ }
+
+ /**
+ * Return `true` if [CompileTimeErrorCode.MIXIN_HAS_NO_CONSTRUCTORS] should
+ * be reported for this class.
+ */
+ bool get doesMixinLackConstructors {
+ if (!isMixinApplication && mixins.isEmpty) {
+ // This class is not a mixin application and it doesn't have a "with"
+ // clause, so CompileTimeErrorCode.MIXIN_HAS_NO_CONSTRUCTORS is
+ // inapplicable.
+ return false;
+ }
+ if (supertype == null) {
+ // Should never happen, since Object is the only class that has no
+ // supertype, and it should have been caught by the test above.
+ assert(false);
+ return false;
+ }
+ // Find the nearest class in the supertype chain that is not a mixin
+ // application.
+ ClassElement nearestNonMixinClass = supertype.element;
+ if (nearestNonMixinClass.isMixinApplication) {
+ // Use a list to keep track of the classes we've seen, so that we won't
+ // go into an infinite loop in the event of a non-trivial loop in the
+ // class hierarchy.
+ List<ClassElementImpl> classesSeen = <ClassElementImpl>[this];
+ while (nearestNonMixinClass.isMixinApplication) {
+ if (classesSeen.contains(nearestNonMixinClass)) {
+ // Loop in the class hierarchy (which is reported elsewhere). Don't
+ // confuse the user with further errors.
+ return false;
+ }
+ classesSeen.add(nearestNonMixinClass);
+ if (nearestNonMixinClass.supertype == null) {
+ // Should never happen, since Object is the only class that has no
+ // supertype, and it is not a mixin application.
+ assert(false);
+ return false;
+ }
+ nearestNonMixinClass = nearestNonMixinClass.supertype.element;
+ }
+ }
+ return !nearestNonMixinClass.constructors.any(isSuperConstructorAccessible);
+ }
+
+ /**
+ * Set whether this class is defined by an enum declaration.
+ */
+ void set enum2(bool isEnum) {
+ setModifier(Modifier.ENUM, isEnum);
+ }
+
+ @override
+ List<FieldElement> get fields => _fields;
+
+ /**
+ * Set the fields contained in this class to the given [fields].
+ */
+ void set fields(List<FieldElement> fields) {
+ for (FieldElement field in fields) {
+ (field as FieldElementImpl).enclosingElement = this;
+ }
+ this._fields = fields;
+ }
+
+ @override
+ bool get hasNonFinalField {
+ List<ClassElement> classesToVisit = new List<ClassElement>();
+ HashSet<ClassElement> visitedClasses = new HashSet<ClassElement>();
+ classesToVisit.add(this);
+ while (!classesToVisit.isEmpty) {
+ ClassElement currentElement = classesToVisit.removeAt(0);
+ if (visitedClasses.add(currentElement)) {
+ // check fields
+ for (FieldElement field in currentElement.fields) {
+ if (!field.isFinal &&
+ !field.isConst &&
+ !field.isStatic &&
+ !field.isSynthetic) {
+ return true;
+ }
+ }
+ // check mixins
+ for (InterfaceType mixinType in currentElement.mixins) {
+ ClassElement mixinElement = mixinType.element;
+ classesToVisit.add(mixinElement);
+ }
+ // check super
+ InterfaceType supertype = currentElement.supertype;
+ if (supertype != null) {
+ ClassElement superElement = supertype.element;
+ if (superElement != null) {
+ classesToVisit.add(superElement);
+ }
+ }
+ }
+ }
+ // not found
+ return false;
+ }
+
+ @override
+ bool get hasReferenceToSuper => hasModifier(Modifier.REFERENCES_SUPER);
+
+ /**
+ * Set whether this class references 'super'.
+ */
+ void set hasReferenceToSuper(bool isReferencedSuper) {
+ setModifier(Modifier.REFERENCES_SUPER, isReferencedSuper);
+ }
+
+ @override
+ bool get hasStaticMember {
+ for (MethodElement method in _methods) {
+ if (method.isStatic) {
+ return true;
+ }
+ }
+ for (PropertyAccessorElement accessor in _accessors) {
+ if (accessor.isStatic) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ @override
+ bool get isAbstract => hasModifier(Modifier.ABSTRACT);
+
+ @override
+ bool get isEnum => hasModifier(Modifier.ENUM);
+
+ @override
+ bool get isMixinApplication => hasModifier(Modifier.MIXIN_APPLICATION);
+
+ @override
+ bool get isOrInheritsProxy =>
+ _safeIsOrInheritsProxy(this, new HashSet<ClassElement>());
+
+ @override
+ bool get isProxy {
+ for (ElementAnnotation annotation in metadata) {
+ if (annotation.isProxy) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ @override
+ @deprecated
+ bool get isTypedef => isMixinApplication;
+
+ @override
+ bool get isValidMixin => hasModifier(Modifier.MIXIN);
+
+ @override
+ ElementKind get kind => ElementKind.CLASS;
+
+ @override
+ List<MethodElement> get methods => _methods;
+
+ /**
+ * Set the methods contained in this class to the given [methods].
+ */
+ void set methods(List<MethodElement> methods) {
+ for (MethodElement method in methods) {
+ (method as MethodElementImpl).enclosingElement = this;
+ }
+ this._methods = methods;
+ }
+
+ /**
+ * Set whether this class is a mixin application.
+ */
+ void set mixinApplication(bool isMixinApplication) {
+ setModifier(Modifier.MIXIN_APPLICATION, isMixinApplication);
+ }
+
+ @override
+ List<TypeParameterElement> get typeParameters => _typeParameters;
+
+ /**
+ * Set the type parameters defined for this class to the given
+ * [typeParameters].
+ */
+ void set typeParameters(List<TypeParameterElement> typeParameters) {
+ for (TypeParameterElement typeParameter in typeParameters) {
+ (typeParameter as TypeParameterElementImpl).enclosingElement = this;
+ }
+ this._typeParameters = typeParameters;
+ }
+
+ @override
+ ConstructorElement get unnamedConstructor {
+ for (ConstructorElement element in constructors) {
+ String name = element.displayName;
+ if (name == null || name.isEmpty) {
+ return element;
+ }
+ }
+ return null;
+ }
+
+ /**
+ * Set whether this class is a valid mixin.
+ */
+ void set validMixin(bool isValidMixin) {
+ setModifier(Modifier.MIXIN, isValidMixin);
+ }
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitClassElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ String name = displayName;
+ if (name == null) {
+ buffer.write("{unnamed class}");
+ } else {
+ buffer.write(name);
+ }
+ int variableCount = _typeParameters.length;
+ if (variableCount > 0) {
+ buffer.write("<");
+ for (int i = 0; i < variableCount; i++) {
+ if (i > 0) {
+ buffer.write(", ");
+ }
+ (_typeParameters[i] as TypeParameterElementImpl).appendTo(buffer);
+ }
+ buffer.write(">");
+ }
+ }
+
+ @override
+ NamedCompilationUnitMember computeNode() {
+ if (isEnum) {
+ return getNodeMatching((node) => node is EnumDeclaration);
+ } else {
+ return getNodeMatching(
+ (node) => node is ClassDeclaration || node is ClassTypeAlias);
+ }
+ }
+
+ @override
+ ElementImpl getChild(String identifier) {
+ //
+ // The casts in this method are safe because the set methods would have
+ // thrown a CCE if any of the elements in the arrays were not of the
+ // expected types.
+ //
+ for (PropertyAccessorElement accessor in _accessors) {
+ if ((accessor as PropertyAccessorElementImpl).identifier == identifier) {
+ return accessor as PropertyAccessorElementImpl;
+ }
+ }
+ for (ConstructorElement constructor in _constructors) {
+ if ((constructor as ConstructorElementImpl).identifier == identifier) {
+ return constructor as ConstructorElementImpl;
+ }
+ }
+ for (FieldElement field in _fields) {
+ if ((field as FieldElementImpl).identifier == identifier) {
+ return field as FieldElementImpl;
+ }
+ }
+ for (MethodElement method in _methods) {
+ if ((method as MethodElementImpl).identifier == identifier) {
+ return method as MethodElementImpl;
+ }
+ }
+ for (TypeParameterElement typeParameter in _typeParameters) {
+ if ((typeParameter as TypeParameterElementImpl).identifier ==
+ identifier) {
+ return typeParameter as TypeParameterElementImpl;
+ }
+ }
+ return null;
+ }
+
+ @override
+ FieldElement getField(String name) {
+ for (FieldElement fieldElement in _fields) {
+ if (name == fieldElement.name) {
+ return fieldElement;
+ }
+ }
+ return null;
+ }
+
+ @override
+ PropertyAccessorElement getGetter(String getterName) {
+ for (PropertyAccessorElement accessor in _accessors) {
+ if (accessor.isGetter && accessor.name == getterName) {
+ return accessor;
+ }
+ }
+ return null;
+ }
+
+ @override
+ MethodElement getMethod(String methodName) {
+ for (MethodElement method in _methods) {
+ if (method.name == methodName) {
+ return method;
+ }
+ }
+ return null;
+ }
+
+ @override
+ ConstructorElement getNamedConstructor(String name) {
+ for (ConstructorElement element in constructors) {
+ String elementName = element.name;
+ if (elementName != null && elementName == name) {
+ return element;
+ }
+ }
+ return null;
+ }
+
+ @override
+ PropertyAccessorElement getSetter(String setterName) {
+ // TODO (jwren) revisit- should we append '=' here or require clients to
+ // include it?
+ // Do we need the check for isSetter below?
+ if (!StringUtilities.endsWithChar(setterName, 0x3D)) {
+ setterName += '=';
+ }
+ for (PropertyAccessorElement accessor in _accessors) {
+ if (accessor.isSetter && accessor.name == setterName) {
+ return accessor;
+ }
+ }
+ return null;
+ }
+
+ @override
+ bool isSuperConstructorAccessible(ConstructorElement constructor) {
+ // If this class has no mixins, then all superclass constructors are
+ // accessible.
+ if (mixins.isEmpty) {
+ return true;
+ }
+ // Otherwise only constructors that lack optional parameters are
+ // accessible (see dartbug.com/19576).
+ for (ParameterElement parameter in constructor.parameters) {
+ if (parameter.parameterKind != ParameterKind.REQUIRED) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ @override
+ MethodElement lookUpConcreteMethod(
+ String methodName, LibraryElement library) =>
+ _internalLookUpConcreteMethod(methodName, library, true);
+
+ @override
+ PropertyAccessorElement lookUpGetter(
+ String getterName, LibraryElement library) =>
+ _internalLookUpGetter(getterName, library, true);
+
+ @override
+ PropertyAccessorElement lookUpInheritedConcreteGetter(
+ String getterName, LibraryElement library) =>
+ _internalLookUpConcreteGetter(getterName, library, false);
+
+ @override
+ MethodElement lookUpInheritedConcreteMethod(
+ String methodName, LibraryElement library) =>
+ _internalLookUpConcreteMethod(methodName, library, false);
+
+ @override
+ PropertyAccessorElement lookUpInheritedConcreteSetter(
+ String setterName, LibraryElement library) =>
+ _internalLookUpConcreteSetter(setterName, library, false);
+
+ @override
+ MethodElement lookUpInheritedMethod(
+ String methodName, LibraryElement library) =>
+ _internalLookUpMethod(methodName, library, false);
+
+ @override
+ MethodElement lookUpMethod(String methodName, LibraryElement library) =>
+ _internalLookUpMethod(methodName, library, true);
+
+ @override
+ PropertyAccessorElement lookUpSetter(
+ String setterName, LibraryElement library) =>
+ _internalLookUpSetter(setterName, library, true);
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ super.visitChildren(visitor);
+ safelyVisitChildren(_accessors, visitor);
+ safelyVisitChildren(_constructors, visitor);
+ safelyVisitChildren(_fields, visitor);
+ safelyVisitChildren(_methods, visitor);
+ safelyVisitChildren(_typeParameters, visitor);
+ }
+
+ void _collectAllSupertypes(List<InterfaceType> supertypes) {
+ List<InterfaceType> typesToVisit = new List<InterfaceType>();
+ List<ClassElement> visitedClasses = new List<ClassElement>();
+ typesToVisit.add(this.type);
+ while (!typesToVisit.isEmpty) {
+ InterfaceType currentType = typesToVisit.removeAt(0);
+ ClassElement currentElement = currentType.element;
+ if (!visitedClasses.contains(currentElement)) {
+ visitedClasses.add(currentElement);
+ if (!identical(currentType, this.type)) {
+ supertypes.add(currentType);
+ }
+ InterfaceType supertype = currentType.superclass;
+ if (supertype != null) {
+ typesToVisit.add(supertype);
+ }
+ for (InterfaceType type in currentElement.interfaces) {
+ typesToVisit.add(type);
+ }
+ for (InterfaceType type in currentElement.mixins) {
+ ClassElement element = type.element;
+ if (!visitedClasses.contains(element)) {
+ supertypes.add(type);
+ }
+ }
+ }
+ }
+ }
+
+ /**
+ * Compute a list of constructors for this class, which is a mixin
+ * application. If specified, [visitedClasses] is a list of the other mixin
+ * application classes which have been visited on the way to reaching this
+ * one (this is used to detect circularities).
+ */
+ List<ConstructorElement> _computeMixinAppConstructors(
+ [List<ClassElementImpl> visitedClasses = null]) {
+ // First get the list of constructors of the superclass which need to be
+ // forwarded to this class.
+ Iterable<ConstructorElement> constructorsToForward;
+ if (supertype == null) {
+ // Shouldn't ever happen, since the only class with no supertype is
+ // Object, and it isn't a mixin application. But for safety's sake just
+ // assume an empty list.
+ assert(false);
+ constructorsToForward = <ConstructorElement>[];
+ } else if (!supertype.element.isMixinApplication) {
+ List<ConstructorElement> superclassConstructors =
+ supertype.element.constructors;
+ // Filter out any constructors with optional parameters (see
+ // dartbug.com/15101).
+ constructorsToForward =
+ superclassConstructors.where(isSuperConstructorAccessible);
+ } else {
+ if (visitedClasses == null) {
+ visitedClasses = <ClassElementImpl>[this];
+ } else {
+ if (visitedClasses.contains(this)) {
+ // Loop in the class hierarchy. Don't try to forward any
+ // constructors.
+ return <ConstructorElement>[];
+ }
+ visitedClasses.add(this);
+ }
+ try {
+ ClassElementImpl superclass = supertype.element;
+ constructorsToForward =
+ superclass._computeMixinAppConstructors(visitedClasses);
+ } finally {
+ visitedClasses.removeLast();
+ }
+ }
+
+ // Figure out the type parameter substitution we need to perform in order
+ // to produce constructors for this class. We want to be robust in the
+ // face of errors, so drop any extra type arguments and fill in any missing
+ // ones with `dynamic`.
+ List<DartType> parameterTypes =
+ TypeParameterTypeImpl.getTypes(supertype.typeParameters);
+ List<DartType> argumentTypes = new List<DartType>.filled(
+ parameterTypes.length, DynamicTypeImpl.instance);
+ for (int i = 0; i < supertype.typeArguments.length; i++) {
+ if (i >= argumentTypes.length) {
+ break;
+ }
+ argumentTypes[i] = supertype.typeArguments[i];
+ }
+
+ // Now create an implicit constructor for every constructor found above,
+ // substituting type parameters as appropriate.
+ return constructorsToForward
+ .map((ConstructorElement superclassConstructor) {
+ ConstructorElementImpl implicitConstructor =
+ new ConstructorElementImpl(superclassConstructor.name, -1);
+ implicitConstructor.synthetic = true;
+ implicitConstructor.redirectedConstructor = superclassConstructor;
+ implicitConstructor.const2 = superclassConstructor.isConst;
+ implicitConstructor.returnType = type;
+ List<ParameterElement> superParameters = superclassConstructor.parameters;
+ int count = superParameters.length;
+ if (count > 0) {
+ List<ParameterElement> implicitParameters =
+ new List<ParameterElement>(count);
+ for (int i = 0; i < count; i++) {
+ ParameterElement superParameter = superParameters[i];
+ ParameterElementImpl implicitParameter =
+ new ParameterElementImpl(superParameter.name, -1);
+ implicitParameter.const3 = superParameter.isConst;
+ implicitParameter.final2 = superParameter.isFinal;
+ implicitParameter.parameterKind = superParameter.parameterKind;
+ implicitParameter.synthetic = true;
+ implicitParameter.type =
+ superParameter.type.substitute2(argumentTypes, parameterTypes);
+ implicitParameters[i] = implicitParameter;
+ }
+ implicitConstructor.parameters = implicitParameters;
+ }
+ FunctionTypeImpl constructorType =
+ new FunctionTypeImpl(implicitConstructor);
+ constructorType.typeArguments = type.typeArguments;
+ implicitConstructor.type = constructorType;
+ implicitConstructor.enclosingElement = this;
+ return implicitConstructor;
+ }).toList();
+ }
+
+ PropertyAccessorElement _internalLookUpConcreteGetter(
+ String getterName, LibraryElement library, bool includeThisClass) {
+ PropertyAccessorElement getter =
+ _internalLookUpGetter(getterName, library, includeThisClass);
+ while (getter != null && getter.isAbstract) {
+ Element definingClass = getter.enclosingElement;
+ if (definingClass is! ClassElementImpl) {
+ return null;
+ }
+ getter = (definingClass as ClassElementImpl)
+ ._internalLookUpGetter(getterName, library, false);
+ }
+ return getter;
+ }
+
+ MethodElement _internalLookUpConcreteMethod(
+ String methodName, LibraryElement library, bool includeThisClass) {
+ MethodElement method =
+ _internalLookUpMethod(methodName, library, includeThisClass);
+ while (method != null && method.isAbstract) {
+ ClassElement definingClass = method.enclosingElement;
+ if (definingClass == null) {
+ return null;
+ }
+ method = definingClass.lookUpInheritedMethod(methodName, library);
+ }
+ return method;
+ }
+
+ PropertyAccessorElement _internalLookUpConcreteSetter(
+ String setterName, LibraryElement library, bool includeThisClass) {
+ PropertyAccessorElement setter =
+ _internalLookUpSetter(setterName, library, includeThisClass);
+ while (setter != null && setter.isAbstract) {
+ Element definingClass = setter.enclosingElement;
+ if (definingClass is! ClassElementImpl) {
+ return null;
+ }
+ setter = (definingClass as ClassElementImpl)
+ ._internalLookUpSetter(setterName, library, false);
+ }
+ return setter;
+ }
+
+ PropertyAccessorElement _internalLookUpGetter(
+ String getterName, LibraryElement library, bool includeThisClass) {
+ HashSet<ClassElement> visitedClasses = new HashSet<ClassElement>();
+ ClassElement currentElement = this;
+ if (includeThisClass) {
+ PropertyAccessorElement element = currentElement.getGetter(getterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ while (currentElement != null && visitedClasses.add(currentElement)) {
+ for (InterfaceType mixin in currentElement.mixins.reversed) {
+ ClassElement mixinElement = mixin.element;
+ if (mixinElement != null) {
+ PropertyAccessorElement element = mixinElement.getGetter(getterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ }
+ InterfaceType supertype = currentElement.supertype;
+ if (supertype == null) {
+ return null;
+ }
+ currentElement = supertype.element;
+ PropertyAccessorElement element = currentElement.getGetter(getterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ return null;
+ }
+
+ MethodElement _internalLookUpMethod(
+ String methodName, LibraryElement library, bool includeThisClass) {
+ HashSet<ClassElement> visitedClasses = new HashSet<ClassElement>();
+ ClassElement currentElement = this;
+ if (includeThisClass) {
+ MethodElement element = currentElement.getMethod(methodName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ while (currentElement != null && visitedClasses.add(currentElement)) {
+ for (InterfaceType mixin in currentElement.mixins.reversed) {
+ ClassElement mixinElement = mixin.element;
+ if (mixinElement != null) {
+ MethodElement element = mixinElement.getMethod(methodName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ }
+ InterfaceType supertype = currentElement.supertype;
+ if (supertype == null) {
+ return null;
+ }
+ currentElement = supertype.element;
+ MethodElement element = currentElement.getMethod(methodName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ return null;
+ }
+
+ PropertyAccessorElement _internalLookUpSetter(
+ String setterName, LibraryElement library, bool includeThisClass) {
+ HashSet<ClassElement> visitedClasses = new HashSet<ClassElement>();
+ ClassElement currentElement = this;
+ if (includeThisClass) {
+ PropertyAccessorElement element = currentElement.getSetter(setterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ while (currentElement != null && visitedClasses.add(currentElement)) {
+ for (InterfaceType mixin in currentElement.mixins.reversed) {
+ ClassElement mixinElement = mixin.element;
+ if (mixinElement != null) {
+ PropertyAccessorElement element = mixinElement.getSetter(setterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ }
+ InterfaceType supertype = currentElement.supertype;
+ if (supertype == null) {
+ return null;
+ }
+ currentElement = supertype.element;
+ PropertyAccessorElement element = currentElement.getSetter(setterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ return null;
+ }
+
+ bool _safeIsOrInheritsProxy(
+ ClassElement classElt, HashSet<ClassElement> visitedClassElts) {
+ if (visitedClassElts.contains(classElt)) {
+ return false;
+ }
+ visitedClassElts.add(classElt);
+ if (classElt.isProxy) {
+ return true;
+ } else if (classElt.supertype != null &&
+ _safeIsOrInheritsProxy(classElt.supertype.element, visitedClassElts)) {
+ return true;
+ }
+ List<InterfaceType> supertypes = classElt.interfaces;
+ for (int i = 0; i < supertypes.length; i++) {
+ if (_safeIsOrInheritsProxy(supertypes[i].element, visitedClassElts)) {
+ return true;
+ }
+ }
+ supertypes = classElt.mixins;
+ for (int i = 0; i < supertypes.length; i++) {
+ if (_safeIsOrInheritsProxy(supertypes[i].element, visitedClassElts)) {
+ return true;
+ }
+ }
+ return false;
+ }
+}
+
+/**
+ * An element that is contained within a [ClassElement].
+ */
+abstract class ClassMemberElement implements Element {
+ /**
+ * Return the type in which this member is defined.
+ */
+ @override
+ ClassElement get enclosingElement;
+
+ /**
+ * Return `true` if this element is a static element. A static element is an
+ * element that is not associated with a particular instance, but rather with
+ * an entire library or class.
+ */
+ bool get isStatic;
+}
+
+/**
+ * An element representing a compilation unit.
+ */
+abstract class CompilationUnitElement implements Element, UriReferencedElement {
+ /**
+ * An empty list of compilation unit elements.
+ */
+ static const List<CompilationUnitElement> EMPTY_LIST =
+ const <CompilationUnitElement>[];
+
+ /**
+ * Return a list containing all of the top-level accessors (getters and
+ * setters) contained in this compilation unit.
+ */
+ List<PropertyAccessorElement> get accessors;
+
+ /**
+ * Return the library in which this compilation unit is defined.
+ */
+ @override
+ LibraryElement get enclosingElement;
+
+ /**
+ * Return a list containing all of the enums contained in this compilation
+ * unit.
+ */
+ List<ClassElement> get enums;
+
+ /**
+ * Return a list containing all of the top-level functions contained in this
+ * compilation unit.
+ */
+ List<FunctionElement> get functions;
+
+ /**
+ * Return a list containing all of the function type aliases contained in this
+ * compilation unit.
+ */
+ List<FunctionTypeAliasElement> get functionTypeAliases;
+
+ /**
+ * Return `true` if this compilation unit defines a top-level function named
+ * `loadLibrary`.
+ */
+ bool get hasLoadLibraryFunction;
+
+ /**
+ * Return a list containing all of the top-level variables contained in this
+ * compilation unit.
+ */
+ List<TopLevelVariableElement> get topLevelVariables;
+
+ /**
+ * Return a list containing all of the classes contained in this compilation
+ * unit.
+ */
+ List<ClassElement> get types;
+
+ /**
+ * Return the resolved [CompilationUnit] node that declares this element.
+ *
+ * This method is expensive, because resolved AST might be evicted from cache,
+ * so parsing and resolving will be performed.
+ */
+ @override
+ CompilationUnit computeNode();
+
+ /**
+ * Return the element at the given [offset], maybe `null` if no such element.
+ */
+ Element getElementAt(int offset);
+
+ /**
+ * Return the enum defined in this compilation unit that has the given [name],
+ * or `null` if this compilation unit does not define an enum with the given
+ * name.
+ */
+ ClassElement getEnum(String name);
+
+ /**
+ * Return the class defined in this compilation unit that has the given
+ * [name], or `null` if this compilation unit does not define a class with the
+ * given name.
+ */
+ ClassElement getType(String name);
+}
+
+/**
+ * A concrete implementation of a [CompilationUnitElement].
+ */
+class CompilationUnitElementImpl extends UriReferencedElementImpl
+ implements CompilationUnitElement {
+ /**
+ * An empty list of compilation unit elements.
+ */
+ @deprecated // Use CompilationUnitElement.EMPTY_LIST
+ static const List<CompilationUnitElement> EMPTY_ARRAY =
+ const <CompilationUnitElement>[];
+
+ /**
+ * The source that corresponds to this compilation unit.
+ */
+ Source source;
+
+ /**
+ * The source of the library containing this compilation unit.
+ *
+ * This is the same as the source of the containing [LibraryElement],
+ * except that it does not require the containing [LibraryElement] to be
+ * computed.
+ */
+ Source librarySource;
+
+ /**
+ * A list containing all of the top-level accessors (getters and setters)
+ * contained in this compilation unit.
+ */
+ List<PropertyAccessorElement> _accessors = PropertyAccessorElement.EMPTY_LIST;
+
+ /**
+ * A list containing all of the enums contained in this compilation unit.
+ */
+ List<ClassElement> _enums = ClassElement.EMPTY_LIST;
+
+ /**
+ * A list containing all of the top-level functions contained in this
+ * compilation unit.
+ */
+ List<FunctionElement> _functions = FunctionElement.EMPTY_LIST;
+
+ /**
+ * A list containing all of the function type aliases contained in this
+ * compilation unit.
+ */
+ List<FunctionTypeAliasElement> _typeAliases =
+ FunctionTypeAliasElement.EMPTY_LIST;
+
+ /**
+ * A list containing all of the types contained in this compilation unit.
+ */
+ List<ClassElement> _types = ClassElement.EMPTY_LIST;
+
+ /**
+ * A list containing all of the variables contained in this compilation unit.
+ */
+ List<TopLevelVariableElement> _variables = TopLevelVariableElement.EMPTY_LIST;
+
+ /**
+ * A map from offsets to elements of this unit at these offsets.
+ */
+ final Map<int, Element> _offsetToElementMap = new HashMap<int, Element>();
+
+ /**
+ * Initialize a newly created compilation unit element to have the given
+ * [name].
+ */
+ CompilationUnitElementImpl(String name) : super(name, -1);
+
+ @override
+ List<PropertyAccessorElement> get accessors => _accessors;
+
+ /**
+ * Set the top-level accessors (getters and setters) contained in this
+ * compilation unit to the given [accessors].
+ */
+ void set accessors(List<PropertyAccessorElement> accessors) {
+ for (PropertyAccessorElement accessor in accessors) {
+ (accessor as PropertyAccessorElementImpl).enclosingElement = this;
+ }
+ this._accessors = accessors;
+ }
+
+ @override
+ LibraryElement get enclosingElement =>
+ super.enclosingElement as LibraryElement;
+
+ @override
+ List<ClassElement> get enums => _enums;
+
+ /**
+ * Set the enums contained in this compilation unit to the given [enums].
+ */
+ void set enums(List<ClassElement> enums) {
+ for (ClassElement enumDeclaration in enums) {
+ (enumDeclaration as ClassElementImpl).enclosingElement = this;
+ }
+ this._enums = enums;
+ }
+
+ @override
+ List<FunctionElement> get functions => _functions;
+
+ /**
+ * Set the top-level functions contained in this compilation unit to the given
+ * [functions].
+ */
+ void set functions(List<FunctionElement> functions) {
+ for (FunctionElement function in functions) {
+ (function as FunctionElementImpl).enclosingElement = this;
+ }
+ this._functions = functions;
+ }
+
+ @override
+ List<FunctionTypeAliasElement> get functionTypeAliases => _typeAliases;
+
+ @override
+ int get hashCode => source.hashCode;
+
+ @override
+ bool get hasLoadLibraryFunction {
+ for (int i = 0; i < _functions.length; i++) {
+ if (_functions[i].name == FunctionElement.LOAD_LIBRARY_NAME) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ @override
+ String get identifier => source.encoding;
+
+ @override
+ ElementKind get kind => ElementKind.COMPILATION_UNIT;
+
+ @override
+ List<TopLevelVariableElement> get topLevelVariables => _variables;
+
+ /**
+ * Set the top-level variables contained in this compilation unit to the given
+ * [variables].
+ */
+ void set topLevelVariables(List<TopLevelVariableElement> variables) {
+ for (TopLevelVariableElement field in variables) {
+ (field as TopLevelVariableElementImpl).enclosingElement = this;
+ }
+ this._variables = variables;
+ }
+
+ /**
+ * Set the function type aliases contained in this compilation unit to the
+ * given [typeAliases].
+ */
+ void set typeAliases(List<FunctionTypeAliasElement> typeAliases) {
+ for (FunctionTypeAliasElement typeAlias in typeAliases) {
+ (typeAlias as FunctionTypeAliasElementImpl).enclosingElement = this;
+ }
+ this._typeAliases = typeAliases;
+ }
+
+ @override
+ List<ClassElement> get types => _types;
+
+ /**
+ * Set the types contained in this compilation unit to the given [types].
+ */
+ void set types(List<ClassElement> types) {
+ for (ClassElement type in types) {
+ (type as ClassElementImpl).enclosingElement = this;
+ }
+ this._types = types;
+ }
+
+ @override
+ bool operator ==(Object object) =>
+ object is CompilationUnitElementImpl && source == object.source;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitCompilationUnitElement(this);
+
+ /**
+ * This method is invoked after this unit was incrementally resolved.
+ */
+ void afterIncrementalResolution() {
+ _offsetToElementMap.clear();
+ }
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ if (source == null) {
+ buffer.write("{compilation unit}");
+ } else {
+ buffer.write(source.fullName);
+ }
+ }
+
+ @override
+ CompilationUnit computeNode() => unit;
+
+ @override
+ ElementImpl getChild(String identifier) {
+ //
+ // The casts in this method are safe because the set methods would have
+ // thrown a CCE if any of the elements in the arrays were not of the
+ // expected types.
+ //
+ for (PropertyAccessorElement accessor in _accessors) {
+ if ((accessor as PropertyAccessorElementImpl).identifier == identifier) {
+ return accessor as PropertyAccessorElementImpl;
+ }
+ }
+ for (VariableElement variable in _variables) {
+ if ((variable as VariableElementImpl).identifier == identifier) {
+ return variable as VariableElementImpl;
+ }
+ }
+ for (ExecutableElement function in _functions) {
+ if ((function as ExecutableElementImpl).identifier == identifier) {
+ return function as ExecutableElementImpl;
+ }
+ }
+ for (FunctionTypeAliasElement typeAlias in _typeAliases) {
+ if ((typeAlias as FunctionTypeAliasElementImpl).identifier ==
+ identifier) {
+ return typeAlias as FunctionTypeAliasElementImpl;
+ }
+ }
+ for (ClassElement type in _types) {
+ if ((type as ClassElementImpl).identifier == identifier) {
+ return type as ClassElementImpl;
+ }
+ }
+ for (ClassElement type in _enums) {
+ if ((type as ClassElementImpl).identifier == identifier) {
+ return type as ClassElementImpl;
+ }
+ }
+ return null;
+ }
+
+ @override
+ Element getElementAt(int offset) {
+ if (_offsetToElementMap.isEmpty) {
+ accept(new _BuildOffsetToElementMap(_offsetToElementMap));
+ }
+ return _offsetToElementMap[offset];
+ }
+
+ @override
+ ClassElement getEnum(String enumName) {
+ for (ClassElement enumDeclaration in _enums) {
+ if (enumDeclaration.name == enumName) {
+ return enumDeclaration;
+ }
+ }
+ return null;
+ }
+
+ @override
+ ClassElement getType(String className) {
+ for (ClassElement type in _types) {
+ if (type.name == className) {
+ return type;
+ }
+ }
+ return null;
+ }
+
+ /**
+ * Replace the given [from] top-level variable with [to] in this compilation unit.
+ */
+ void replaceTopLevelVariable(
+ TopLevelVariableElement from, TopLevelVariableElement to) {
+ int index = _variables.indexOf(from);
+ _variables[index] = to;
+ }
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ super.visitChildren(visitor);
+ safelyVisitChildren(_accessors, visitor);
+ safelyVisitChildren(_enums, visitor);
+ safelyVisitChildren(_functions, visitor);
+ safelyVisitChildren(_typeAliases, visitor);
+ safelyVisitChildren(_types, visitor);
+ safelyVisitChildren(_variables, visitor);
+ }
+}
+
+/**
+ * A [FieldElement] for a 'const' or 'final' field that has an initializer.
+ *
+ * TODO(paulberry): we should rename this class to reflect the fact that it's
+ * used for both const and final fields. However, we shouldn't do so until
+ * we've created an API for reading the values of constants; until that API is
+ * available, clients are likely to read constant values by casting to
+ * ConstFieldElementImpl, so it would be a breaking change to rename this
+ * class.
+ */
+class ConstFieldElementImpl extends FieldElementImpl with ConstVariableElement {
+ /**
+ * The result of evaluating this variable's initializer.
+ */
+ EvaluationResultImpl _result;
+
+ /**
+ * Initialize a newly created synthetic field element to have the given
+ * [name] and [offset].
+ */
+ ConstFieldElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created field element to have the given [name].
+ */
+ @deprecated // Use new ConstFieldElementImpl.forNode(name)
+ ConstFieldElementImpl.con1(Identifier name) : super.forNode(name);
+
+ /**
+ * Initialize a newly created synthetic field element to have the given
+ * [name] and [offset].
+ */
+ @deprecated // Use new ConstFieldElementImpl(name, offset)
+ ConstFieldElementImpl.con2(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created field element to have the given [name].
+ */
+ ConstFieldElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ @override
+ EvaluationResultImpl get evaluationResult => _result;
+
+ @override
+ void set evaluationResult(EvaluationResultImpl result) {
+ this._result = result;
+ }
+}
+
+/**
+ * A [LocalVariableElement] for a local 'const' variable that has an
+ * initializer.
+ */
+class ConstLocalVariableElementImpl extends LocalVariableElementImpl
+ with ConstVariableElement {
+ /**
+ * The result of evaluating this variable's initializer.
+ */
+ EvaluationResultImpl _result;
+
+ /**
+ * Initialize a newly created local variable element to have the given [name]
+ * and [offset].
+ */
+ ConstLocalVariableElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created local variable element to have the given [name].
+ */
+ ConstLocalVariableElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ @override
+ EvaluationResultImpl get evaluationResult => _result;
+
+ @override
+ void set evaluationResult(EvaluationResultImpl result) {
+ this._result = result;
+ }
+}
+
+/**
+ * An element representing a constructor or a factory method defined within a
+ * class.
+ */
+abstract class ConstructorElement
+ implements ClassMemberElement, ExecutableElement, ConstantEvaluationTarget {
+ /**
+ * An empty list of constructor elements.
+ */
+ static const List<ConstructorElement> EMPTY_LIST =
+ const <ConstructorElement>[];
+
+ /**
+ * Return `true` if this constructor is a const constructor.
+ */
+ bool get isConst;
+
+ /**
+ * Return `true` if this constructor can be used as a default constructor -
+ * unnamed and has no required parameters.
+ */
+ bool get isDefaultConstructor;
+
+ /**
+ * Return `true` if this constructor represents a factory constructor.
+ */
+ bool get isFactory;
+
+ /**
+ * Return the offset of the character immediately following the last character
+ * of this constructor's name, or `null` if not named.
+ */
+ int get nameEnd;
+
+ /**
+ * Return the offset of the `.` before this constructor name, or `null` if
+ * not named.
+ */
+ int get periodOffset;
+
+ /**
+ * Return the constructor to which this constructor is redirecting, or `null`
+ * if this constructor does not redirect to another constructor or if the
+ * library containing this constructor has not yet been resolved.
+ */
+ ConstructorElement get redirectedConstructor;
+
+ /**
+ * Return the resolved [ConstructorDeclaration] node that declares this
+ * [ConstructorElement] .
+ *
+ * This method is expensive, because resolved AST might be evicted from cache,
+ * so parsing and resolving will be performed.
+ */
+ @override
+ ConstructorDeclaration computeNode();
+}
+
+/**
+ * A concrete implementation of a [ConstructorElement].
+ */
+class ConstructorElementImpl extends ExecutableElementImpl
+ implements ConstructorElement {
+ /**
+ * An empty list of constructor elements.
+ */
+ @deprecated // Use ConstructorElement.EMPTY_LIST
+ static const List<ConstructorElement> EMPTY_ARRAY =
+ const <ConstructorElement>[];
+
+ /**
+ * The constructor to which this constructor is redirecting.
+ */
+ ConstructorElement redirectedConstructor;
+
+ /**
+ * The initializers for this constructor (used for evaluating constant
+ * instance creation expressions).
+ */
+ List<ConstructorInitializer> constantInitializers;
+
+ /**
+ * The offset of the `.` before this constructor name or `null` if not named.
+ */
+ int periodOffset;
+
+ /**
+ * Return the offset of the character immediately following the last character
+ * of this constructor's name, or `null` if not named.
+ */
+ int nameEnd;
+
+ /**
+ * True if this constructor has been found by constant evaluation to be free
+ * of redirect cycles, and is thus safe to evaluate.
+ */
+ bool isCycleFree = false;
+
+ /**
+ * Initialize a newly created constructor element to have the given [name] and
+ * [offset].
+ */
+ ConstructorElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created constructor element to have the given [name].
+ */
+ ConstructorElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ /**
+ * Set whether this constructor represents a 'const' constructor.
+ */
+ void set const2(bool isConst) {
+ setModifier(Modifier.CONST, isConst);
+ }
+
+ @override
+ ClassElement get enclosingElement => super.enclosingElement as ClassElement;
+
+ /**
+ * Set whether this constructor represents a factory method.
+ */
+ void set factory(bool isFactory) {
+ setModifier(Modifier.FACTORY, isFactory);
+ }
+
+ @override
+ bool get isConst => hasModifier(Modifier.CONST);
+
+ @override
+ bool get isDefaultConstructor {
+ // unnamed
+ String name = this.name;
+ if (name != null && name.length != 0) {
+ return false;
+ }
+ // no required parameters
+ for (ParameterElement parameter in parameters) {
+ if (parameter.parameterKind == ParameterKind.REQUIRED) {
+ return false;
+ }
+ }
+ // OK, can be used as default constructor
+ return true;
+ }
+
+ @override
+ bool get isFactory => hasModifier(Modifier.FACTORY);
+
+ @override
+ bool get isStatic => false;
+
+ @override
+ ElementKind get kind => ElementKind.CONSTRUCTOR;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitConstructorElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ if (enclosingElement == null) {
+ String message;
+ String name = displayName;
+ if (name != null && !name.isEmpty) {
+ message =
+ 'Found constructor element named $name with no enclosing element';
+ } else {
+ message = 'Found unnamed constructor element with no enclosing element';
+ }
+ AnalysisEngine.instance.logger.logError(message);
+ buffer.write('<unknown class>');
+ } else {
+ buffer.write(enclosingElement.displayName);
+ }
+ String name = displayName;
+ if (name != null && !name.isEmpty) {
+ buffer.write(".");
+ buffer.write(name);
+ }
+ super.appendTo(buffer);
+ }
+
+ @override
+ ConstructorDeclaration computeNode() =>
+ getNodeMatching((node) => node is ConstructorDeclaration);
+}
+
+/**
+ * A constructor element defined in a parameterized type where the values of the
+ * type parameters are known.
+ */
+class ConstructorMember extends ExecutableMember implements ConstructorElement {
+ /**
+ * Initialize a newly created element to represent a constructor, based on the
+ * [baseElement], defined by the [definingType].
+ */
+ ConstructorMember(ConstructorElement baseElement, InterfaceType definingType)
+ : super(baseElement, definingType);
+
+ @override
+ ConstructorElement get baseElement => super.baseElement as ConstructorElement;
+
+ @override
+ InterfaceType get definingType => super.definingType as InterfaceType;
+
+ @override
+ ClassElement get enclosingElement => baseElement.enclosingElement;
+
+ @override
+ bool get isConst => baseElement.isConst;
+
+ @override
+ bool get isDefaultConstructor => baseElement.isDefaultConstructor;
+
+ @override
+ bool get isFactory => baseElement.isFactory;
+
+ @override
+ int get nameEnd => baseElement.nameEnd;
+
+ @override
+ int get periodOffset => baseElement.periodOffset;
+
+ @override
+ ConstructorElement get redirectedConstructor =>
+ from(baseElement.redirectedConstructor, definingType);
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitConstructorElement(this);
+
+ @override
+ ConstructorDeclaration computeNode() => baseElement.computeNode();
+
+ @override
+ String toString() {
+ ConstructorElement baseElement = this.baseElement;
+ List<ParameterElement> parameters = this.parameters;
+ FunctionType type = this.type;
+ StringBuffer buffer = new StringBuffer();
+ buffer.write(baseElement.enclosingElement.displayName);
+ String name = displayName;
+ if (name != null && !name.isEmpty) {
+ buffer.write(".");
+ buffer.write(name);
+ }
+ buffer.write("(");
+ int parameterCount = parameters.length;
+ for (int i = 0; i < parameterCount; i++) {
+ if (i > 0) {
+ buffer.write(", ");
+ }
+ buffer.write(parameters[i]);
+ }
+ buffer.write(")");
+ if (type != null) {
+ buffer.write(Element.RIGHT_ARROW);
+ buffer.write(type.returnType);
+ }
+ return buffer.toString();
+ }
+
+ /**
+ * If the given [constructor]'s type is different when any type parameters
+ * from the defining type's declaration are replaced with the actual type
+ * arguments from the [definingType], create a constructor member representing
+ * the given constructor. Return the member that was created, or the original
+ * constructor if no member was created.
+ */
+ static ConstructorElement from(
+ ConstructorElement constructor, InterfaceType definingType) {
+ if (constructor == null || definingType.typeArguments.length == 0) {
+ return constructor;
+ }
+ FunctionType baseType = constructor.type;
+ if (baseType == null) {
+ // TODO(brianwilkerson) We need to understand when this can happen.
+ return constructor;
+ }
+ List<DartType> argumentTypes = definingType.typeArguments;
+ List<DartType> parameterTypes = definingType.element.type.typeArguments;
+ FunctionType substitutedType =
+ baseType.substitute2(argumentTypes, parameterTypes);
+ if (baseType == substitutedType) {
+ return constructor;
+ }
+ // TODO(brianwilkerson) Consider caching the substituted type in the
+ // instance. It would use more memory but speed up some operations.
+ // We need to see how often the type is being re-computed.
+ return new ConstructorMember(constructor, definingType);
+ }
+}
+
+/**
+ * A [TopLevelVariableElement] for a top-level 'const' variable that has an
+ * initializer.
+ */
+class ConstTopLevelVariableElementImpl extends TopLevelVariableElementImpl
+ with ConstVariableElement {
+ /**
+ * The result of evaluating this variable's initializer.
+ */
+ EvaluationResultImpl _result;
+
+ /**
+ * Initialize a newly created top-level variable element to have the given
+ * [name].
+ */
+ ConstTopLevelVariableElementImpl(Identifier name) : super.forNode(name);
+
+ @override
+ EvaluationResultImpl get evaluationResult => _result;
+
+ @override
+ void set evaluationResult(EvaluationResultImpl result) {
+ this._result = result;
+ }
+}
+
+/**
+ * Mixin used by elements that represent constant variables and have
+ * initializers.
+ *
+ * Note that in correct Dart code, all constant variables must have
+ * initializers. However, analyzer also needs to handle incorrect Dart code,
+ * in which case there might be some constant variables that lack initializers.
+ * This interface is only used for constant variables that have initializers.
+ *
+ * This class is not intended to be part of the public API for analyzer.
+ */
+abstract class ConstVariableElement implements PotentiallyConstVariableElement {
+ /**
+ * If this element represents a constant variable, and it has an initializer,
+ * a copy of the initializer for the constant. Otherwise `null`.
+ *
+ * Note that in correct Dart code, all constant variables must have
+ * initializers. However, analyzer also needs to handle incorrect Dart code,
+ * in which case there might be some constant variables that lack
+ * initializers.
+ */
+ Expression constantInitializer;
+}
+
+/**
+ * The type associated with elements in the element model.
+ */
+abstract class DartType {
+ /**
+ * An empty list of types.
+ */
+ static const List<DartType> EMPTY_LIST = const <DartType>[];
+
+ /**
+ * Return the name of this type as it should appear when presented to users in
+ * contexts such as error messages.
+ */
+ String get displayName;
+
+ /**
+ * Return the element representing the declaration of this type, or `null` if
+ * the type has not, or cannot, be associated with an element. The former case
+ * will occur if the element model is not yet complete; the latter case will
+ * occur if this object represents an undefined type.
+ */
+ Element get element;
+
+ /**
+ * Return `true` if this type represents the bottom type.
+ */
+ bool get isBottom;
+
+ /**
+ * Return `true` if this type represents the type 'Function' defined in the
+ * dart:core library.
+ */
+ bool get isDartCoreFunction;
+
+ /**
+ * Return `true` if this type represents the type 'dynamic'.
+ */
+ bool get isDynamic;
+
+ /**
+ * Return `true` if this type represents the type 'Object'.
+ */
+ bool get isObject;
+
+ /**
+ * Return `true` if this type represents a typename that couldn't be resolved.
+ */
+ bool get isUndefined;
+
+ /**
+ * Return `true` if this type represents the type 'void'.
+ */
+ bool get isVoid;
+
+ /**
+ * Return the name of this type, or `null` if the type does not have a name,
+ * such as when the type represents the type of an unnamed function.
+ */
+ String get name;
+
+ /**
+ * Return the least upper bound of this type and the given [type], or `null`
+ * if there is no least upper bound.
+ *
+ * Deprecated, since it is impossible to implement the correct algorithm
+ * without access to a [TypeProvider]. Please use
+ * [TypeSystem.getLeastUpperBound] instead.
+ */
+ @deprecated
+ DartType getLeastUpperBound(DartType type);
+
+ /**
+ * Return `true` if this type is assignable to the given [type]. A type
+ * <i>T</i> may be assigned to a type <i>S</i>, written <i>T</i> &hArr;
+ * <i>S</i>, iff either <i>T</i> <: <i>S</i> or <i>S</i> <: <i>T</i>.
+ */
+ bool isAssignableTo(DartType type);
+
+ /**
+ * Return `true` if this type is more specific than the given [type].
+ */
+ bool isMoreSpecificThan(DartType type);
+
+ /**
+ * Return `true` if this type is a subtype of the given [type].
+ */
+ bool isSubtypeOf(DartType type);
+
+ /**
+ * Return `true` if this type is a supertype of the given [type]. A type
+ * <i>S</i> is a supertype of <i>T</i>, written <i>S</i> :> <i>T</i>, iff
+ * <i>T</i> is a subtype of <i>S</i>.
+ */
+ bool isSupertypeOf(DartType type);
+
+ /**
+ * Return the type resulting from substituting the given [argumentTypes] for
+ * the given [parameterTypes] in this type. The specification defines this
+ * operation in section 2:
+ * <blockquote>
+ * The notation <i>[x<sub>1</sub>, ..., x<sub>n</sub>/y<sub>1</sub>, ...,
+ * y<sub>n</sub>]E</i> denotes a copy of <i>E</i> in which all occurrences of
+ * <i>y<sub>i</sub>, 1 <= i <= n</i> have been replaced with
+ * <i>x<sub>i</sub></i>.
+ * </blockquote>
+ * Note that, contrary to the specification, this method will not create a
+ * copy of this type if no substitutions were required, but will return this
+ * type directly.
+ *
+ * Note too that the current implementation of this method is only guaranteed
+ * to work when the parameter types are type variables.
+ */
+ DartType substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes);
+}
+
+/**
+ * A [FieldFormalParameterElementImpl] for parameters that have an initializer.
+ */
+class DefaultFieldFormalParameterElementImpl
+ extends FieldFormalParameterElementImpl with ConstVariableElement {
+ /**
+ * The result of evaluating this variable's initializer.
+ */
+ EvaluationResultImpl _result;
+
+ /**
+ * Initialize a newly created parameter element to have the given [name].
+ */
+ DefaultFieldFormalParameterElementImpl(Identifier name) : super(name);
+
+ @override
+ EvaluationResultImpl get evaluationResult => _result;
+
+ @override
+ void set evaluationResult(EvaluationResultImpl result) {
+ this._result = result;
+ }
+}
+
+/**
+ * A [ParameterElement] for parameters that have an initializer.
+ */
+class DefaultParameterElementImpl extends ParameterElementImpl
+ with ConstVariableElement {
+ /**
+ * The result of evaluating this variable's initializer.
+ */
+ EvaluationResultImpl _result;
+
+ /**
+ * Initialize a newly created parameter element to have the given [name].
+ */
+ DefaultParameterElementImpl(Identifier name) : super.forNode(name);
+
+ @override
+ EvaluationResultImpl get evaluationResult => _result;
+
+ @override
+ void set evaluationResult(EvaluationResultImpl result) {
+ this._result = result;
+ }
+
+ @override
+ DefaultFormalParameter computeNode() =>
+ getNodeMatching((node) => node is DefaultFormalParameter);
+}
+
+/**
+ * The synthetic element representing the declaration of the type `dynamic`.
+ */
+class DynamicElementImpl extends ElementImpl implements TypeDefiningElement {
+ /**
+ * Return the unique instance of this class.
+ */
+ static DynamicElementImpl get instance =>
+ DynamicTypeImpl.instance.element as DynamicElementImpl;
+
+ @override
+ DynamicTypeImpl type;
+
+ /**
+ * Initialize a newly created instance of this class. Instances of this class
+ * should <b>not</b> be created except as part of creating the type associated
+ * with this element. The single instance of this class should be accessed
+ * through the method [getInstance].
+ */
+ DynamicElementImpl() : super(Keyword.DYNAMIC.syntax, -1) {
+ setModifier(Modifier.SYNTHETIC, true);
+ }
+
+ @override
+ ElementKind get kind => ElementKind.DYNAMIC;
+
+ @override
+ accept(ElementVisitor visitor) => null;
+}
+
+/**
+ * The [Type] representing the type `dynamic`.
+ */
+class DynamicTypeImpl extends TypeImpl {
+ /**
+ * The unique instance of this class.
+ */
+ static DynamicTypeImpl _INSTANCE = new DynamicTypeImpl._();
+
+ /**
+ * Return the unique instance of this class.
+ */
+ static DynamicTypeImpl get instance => _INSTANCE;
+
+ /**
+ * Prevent the creation of instances of this class.
+ */
+ DynamicTypeImpl._()
+ : super(new DynamicElementImpl(), Keyword.DYNAMIC.syntax) {
+ (element as DynamicElementImpl).type = this;
+ }
+
+ /**
+ * Constructor used by [CircularTypeImpl].
+ */
+ DynamicTypeImpl._circular()
+ : super(_INSTANCE.element, Keyword.DYNAMIC.syntax);
+
+ @override
+ int get hashCode => 1;
+
+ @override
+ bool get isDynamic => true;
+
+ @override
+ bool operator ==(Object object) => identical(object, this);
+
+ @override
+ bool isMoreSpecificThan(DartType type,
+ [bool withDynamic = false, Set<Element> visitedElements]) {
+ // T is S
+ if (identical(this, type)) {
+ return true;
+ }
+ // else
+ return withDynamic;
+ }
+
+ @override
+ bool isSubtypeOf(DartType type) => true;
+
+ @override
+ bool isSupertypeOf(DartType type) => true;
+
+ @override
+ TypeImpl pruned(List<FunctionTypeAliasElement> prune) => this;
+
+ @override
+ DartType substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes,
+ [List<FunctionTypeAliasElement> prune]) {
+ int length = parameterTypes.length;
+ for (int i = 0; i < length; i++) {
+ if (parameterTypes[i] == this) {
+ return argumentTypes[i];
+ }
+ }
+ return this;
+ }
+}
+
+/**
+ * The base class for all of the elements in the element model. Generally
+ * speaking, the element model is a semantic model of the program that
+ * represents things that are declared with a name and hence can be referenced
+ * elsewhere in the code.
+ *
+ * There are two exceptions to the general case. First, there are elements in
+ * the element model that are created for the convenience of various kinds of
+ * analysis but that do not have any corresponding declaration within the source
+ * code. Such elements are marked as being <i>synthetic</i>. Examples of
+ * synthetic elements include
+ * * default constructors in classes that do not define any explicit
+ * constructors,
+ * * getters and setters that are induced by explicit field declarations,
+ * * fields that are induced by explicit declarations of getters and setters,
+ * and
+ * * functions representing the initialization expression for a variable.
+ *
+ * Second, there are elements in the element model that do not have a name.
+ * These correspond to unnamed functions and exist in order to more accurately
+ * represent the semantic structure of the program.
+ */
+abstract class Element implements AnalysisTarget {
+ /**
+ * An Unicode right arrow.
+ */
+ static final String RIGHT_ARROW = " \u2192 ";
+
+ /**
+ * A comparator that can be used to sort elements by their name offset.
+ * Elements with a smaller offset will be sorted to be before elements with a
+ * larger name offset.
+ */
+ static final Comparator<Element> SORT_BY_OFFSET = (Element firstElement,
+ Element secondElement) =>
+ firstElement.nameOffset - secondElement.nameOffset;
+
+ /**
+ * Return the analysis context in which this element is defined.
+ */
+ AnalysisContext get context;
+
+ /**
+ * Return the display name of this element, or `null` if this element does not
+ * have a name.
+ *
+ * In most cases the name and the display name are the same. Differences
+ * though are cases such as setters where the name of some setter `set f(x)`
+ * is `f=`, instead of `f`.
+ */
+ String get displayName;
+
+ /**
+ * Return the element that either physically or logically encloses this
+ * element. This will be `null` if this element is a library because libraries
+ * are the top-level elements in the model.
+ */
+ Element get enclosingElement;
+
+ /**
+ * The unique integer identifier of this element.
+ */
+ int get id;
+
+ /**
+ * Return `true` if this element has an annotation of the form '@deprecated'
+ * or '@Deprecated('..')'.
+ */
+ bool get isDeprecated;
+
+ /**
+ * Return `true` if this element has an annotation of the form '@override'.
+ */
+ bool get isOverride;
+
+ /**
+ * Return `true` if this element is private. Private elements are visible only
+ * within the library in which they are declared.
+ */
+ bool get isPrivate;
+
+ /**
+ * Return `true` if this element is public. Public elements are visible within
+ * any library that imports the library in which they are declared.
+ */
+ bool get isPublic;
+
+ /**
+ * Return `true` if this element is synthetic. A synthetic element is an
+ * element that is not represented in the source code explicitly, but is
+ * implied by the source code, such as the default constructor for a class
+ * that does not explicitly define any constructors.
+ */
+ bool get isSynthetic;
+
+ /**
+ * Return the kind of element that this is.
+ */
+ ElementKind get kind;
+
+ /**
+ * Return the library that contains this element. This will be the element
+ * itself if it is a library element. This will be `null` if this element is
+ * an HTML file because HTML files are not contained in libraries.
+ */
+ LibraryElement get library;
+
+ /**
+ * Return an object representing the location of this element in the element
+ * model. The object can be used to locate this element at a later time.
+ */
+ ElementLocation get location;
+
+ /**
+ * Return a list containing all of the metadata associated with this element.
+ * The array will be empty if the element does not have any metadata or if the
+ * library containing this element has not yet been resolved.
+ */
+ List<ElementAnnotation> get metadata;
+
+ /**
+ * Return the name of this element, or `null` if this element does not have a
+ * name.
+ */
+ String get name;
+
+ /**
+ * Return the offset of the name of this element in the file that contains the
+ * declaration of this element, or `-1` if this element is synthetic, does not
+ * have a name, or otherwise does not have an offset.
+ */
+ int get nameOffset;
+
+ /**
+ * **DEPRECATED** Use `computeNode()` instead.
+ *
+ * Return the resolved [AstNode] node that declares this element, or `null` if
+ * this element is synthetic or isn't contained in a compilation unit, such as
+ * a [LibraryElement].
+ *
+ * This method is expensive, because resolved AST might be evicted from cache,
+ * so parsing and resolving will be performed.
+ *
+ * <b>Note:</b> This method cannot be used in an async environment.
+ */
+ @deprecated
+ AstNode get node;
+
+ /**
+ * Return the source that contains this element, or `null` if this element is
+ * not contained in a source.
+ */
+ Source get source;
+
+ /**
+ * Return the resolved [CompilationUnit] that declares this element, or `null`
+ * if this element is synthetic.
+ *
+ * This method is expensive, because resolved AST might have been already
+ * evicted from cache, so parsing and resolving will be performed.
+ */
+ CompilationUnit get unit;
+
+ /**
+ * Use the given [visitor] to visit this element. Return the value returned by
+ * the visitor as a result of visiting this element.
+ */
+ accept(ElementVisitor visitor);
+
+ /**
+ * Return the documentation comment for this element as it appears in the
+ * original source (complete with the beginning and ending delimiters), or
+ * `null` if this element does not have a documentation comment associated
+ * with it. This can be a long-running operation if the information needed to
+ * access the comment is not cached.
+ *
+ * Throws [AnalysisException] if the documentation comment could not be
+ * determined because the analysis could not be performed
+ */
+ String computeDocumentationComment();
+
+ /**
+ * Return the resolved [AstNode] node that declares this element, or `null` if
+ * this element is synthetic or isn't contained in a compilation unit, such as
+ * a [LibraryElement].
+ *
+ * This method is expensive, because resolved AST might be evicted from cache,
+ * so parsing and resolving will be performed.
+ *
+ * <b>Note:</b> This method cannot be used in an async environment.
+ */
+ AstNode computeNode();
+
+ /**
+ * Return the most immediate ancestor of this element for which the
+ * [predicate] returns `true`, or `null` if there is no such ancestor. Note
+ * that this element will never be returned.
+ */
+ Element getAncestor(Predicate<Element> predicate);
+
+ /**
+ * Return a display name for the given element that includes the path to the
+ * compilation unit in which the type is defined. If [shortName] is `null`
+ * then [getDisplayName] will be used as the name of this element. Otherwise
+ * the provided name will be used.
+ */
+ // TODO(brianwilkerson) Make the parameter optional.
+ String getExtendedDisplayName(String shortName);
+
+ /**
+ * Return `true` if this element, assuming that it is within scope, is
+ * accessible to code in the given [library]. This is defined by the Dart
+ * Language Specification in section 3.2:
+ * <blockquote>
+ * A declaration <i>m</i> is accessible to library <i>L</i> if <i>m</i> is
+ * declared in <i>L</i> or if <i>m</i> is public.
+ * </blockquote>
+ */
+ bool isAccessibleIn(LibraryElement library);
+
+ /**
+ * Use the given [visitor] to visit all of the children of this element. There
+ * is no guarantee of the order in which the children will be visited.
+ */
+ void visitChildren(ElementVisitor visitor);
+}
+
+/**
+ * A single annotation associated with an element.
+ */
+abstract class ElementAnnotation {
+ /**
+ * An empty list of annotations.
+ */
+ static const List<ElementAnnotation> EMPTY_LIST = const <ElementAnnotation>[];
+
+ /**
+ * Return the element representing the field, variable, or const constructor
+ * being used as an annotation.
+ */
+ Element get element;
+
+ /**
+ * Return `true` if this annotation marks the associated element as being
+ * deprecated.
+ */
+ bool get isDeprecated;
+
+ /**
+ * Return `true` if this annotation marks the associated method as being
+ * expected to override an inherited method.
+ */
+ bool get isOverride;
+
+ /**
+ * Return `true` if this annotation marks the associated class as implementing
+ * a proxy object.
+ */
+ bool get isProxy;
+}
+
+/**
+ * A concrete implementation of an [ElementAnnotation].
+ */
+class ElementAnnotationImpl implements ElementAnnotation {
+ /**
+ * An empty list of annotations.
+ */
+ @deprecated // Use ElementAnnotation.EMPTY_LIST
+ static const List<ElementAnnotationImpl> EMPTY_ARRAY =
+ const <ElementAnnotationImpl>[];
+
+ /**
+ * The name of the class used to mark an element as being deprecated.
+ */
+ static String _DEPRECATED_CLASS_NAME = "Deprecated";
+
+ /**
+ * The name of the top-level variable used to mark an element as being
+ * deprecated.
+ */
+ static String _DEPRECATED_VARIABLE_NAME = "deprecated";
+
+ /**
+ * The name of the top-level variable used to mark a method as being expected
+ * to override an inherited method.
+ */
+ static String _OVERRIDE_VARIABLE_NAME = "override";
+
+ /**
+ * The name of the top-level variable used to mark a class as implementing a
+ * proxy object.
+ */
+ static String PROXY_VARIABLE_NAME = "proxy";
+
+ /**
+ * The element representing the field, variable, or constructor being used as
+ * an annotation.
+ */
+ final Element element;
+
+ /**
+ * The result of evaluating this annotation as a compile-time constant
+ * expression, or `null` if the compilation unit containing the variable has
+ * not been resolved.
+ */
+ EvaluationResultImpl evaluationResult;
+
+ /**
+ * Initialize a newly created annotation. The given [element] is the element
+ * representing the field, variable, or constructor being used as an
+ * annotation.
+ */
+ ElementAnnotationImpl(this.element);
+
+ @override
+ bool get isDeprecated {
+ if (element != null) {
+ LibraryElement library = element.library;
+ if (library != null && library.isDartCore) {
+ if (element is ConstructorElement) {
+ ConstructorElement constructorElement = element as ConstructorElement;
+ if (constructorElement.enclosingElement.name ==
+ _DEPRECATED_CLASS_NAME) {
+ return true;
+ }
+ } else if (element is PropertyAccessorElement &&
+ element.name == _DEPRECATED_VARIABLE_NAME) {
+ return true;
+ }
+ }
+ }
+ return false;
+ }
+
+ @override
+ bool get isOverride {
+ if (element != null) {
+ LibraryElement library = element.library;
+ if (library != null && library.isDartCore) {
+ if (element is PropertyAccessorElement &&
+ element.name == _OVERRIDE_VARIABLE_NAME) {
+ return true;
+ }
+ }
+ }
+ return false;
+ }
+
+ @override
+ bool get isProxy {
+ if (element != null) {
+ LibraryElement library = element.library;
+ if (library != null && library.isDartCore) {
+ if (element is PropertyAccessorElement &&
+ element.name == PROXY_VARIABLE_NAME) {
+ return true;
+ }
+ }
+ }
+ return false;
+ }
+
+ @override
+ String toString() => '@$element';
+}
+
+/**
+ * A base class for concrete implementations of an [Element].
+ */
+abstract class ElementImpl implements Element {
+ static int _NEXT_ID = 0;
+
+ final int id = _NEXT_ID++;
+
+ /**
+ * The enclosing element of this element, or `null` if this element is at the
+ * root of the element structure.
+ */
+ ElementImpl _enclosingElement;
+
+ /**
+ * The name of this element.
+ */
+ String _name;
+
+ /**
+ * The offset of the name of this element in the file that contains the
+ * declaration of this element.
+ */
+ int _nameOffset = 0;
+
+ /**
+ * A bit-encoded form of the modifiers associated with this element.
+ */
+ int _modifiers = 0;
+
+ /**
+ * A list containing all of the metadata associated with this element.
+ */
+ List<ElementAnnotation> metadata = ElementAnnotation.EMPTY_LIST;
+
+ /**
+ * A cached copy of the calculated hashCode for this element.
+ */
+ int _cachedHashCode;
+
+ /**
+ * A cached copy of the calculated location for this element.
+ */
+ ElementLocation _cachedLocation;
+
+ /**
+ * Initialize a newly created element to have the given [name] at the given
+ * [_nameOffset].
+ */
+ ElementImpl(String name, this._nameOffset) {
+ this._name = StringUtilities.intern(name);
+ }
+
+ /**
+ * Initialize a newly created element to have the given [name].
+ */
+ ElementImpl.forNode(Identifier name)
+ : this(name == null ? "" : name.name, name == null ? -1 : name.offset);
+
+ @override
+ AnalysisContext get context {
+ if (_enclosingElement == null) {
+ return null;
+ }
+ return _enclosingElement.context;
+ }
+
+ @override
+ String get displayName => _name;
+
+ @override
+ Element get enclosingElement => _enclosingElement;
+
+ /**
+ * Set the enclosing element of this element to the given [element].
+ */
+ void set enclosingElement(Element element) {
+ _enclosingElement = element as ElementImpl;
+ _cachedLocation = null;
+ _cachedHashCode = null;
+ }
+
+ @override
+ int get hashCode {
+ // TODO: We might want to re-visit this optimization in the future.
+ // We cache the hash code value as this is a very frequently called method.
+ if (_cachedHashCode == null) {
+ int hashIdentifier = identifier.hashCode;
+ Element enclosing = enclosingElement;
+ if (enclosing != null) {
+ _cachedHashCode = hashIdentifier + enclosing.hashCode;
+ } else {
+ _cachedHashCode = hashIdentifier;
+ }
+ }
+ return _cachedHashCode;
+ }
+
+ /**
+ * Return an identifier that uniquely identifies this element among the
+ * children of this element's parent.
+ */
+ String get identifier => name;
+
+ @override
+ bool get isDeprecated {
+ for (ElementAnnotation annotation in metadata) {
+ if (annotation.isDeprecated) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ @override
+ bool get isOverride {
+ for (ElementAnnotation annotation in metadata) {
+ if (annotation.isOverride) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ @override
+ bool get isPrivate {
+ String name = displayName;
+ if (name == null) {
+ return true;
+ }
+ return Identifier.isPrivateName(name);
+ }
+
+ @override
+ bool get isPublic => !isPrivate;
+
+ @override
+ bool get isSynthetic => hasModifier(Modifier.SYNTHETIC);
+
+ @override
+ LibraryElement get library =>
+ getAncestor((element) => element is LibraryElement);
+
+ @override
+ ElementLocation get location {
+ if (_cachedLocation == null) {
+ _cachedLocation = new ElementLocationImpl.con1(this);
+ }
+ return _cachedLocation;
+ }
+
+ @override
+ String get name => _name;
+
+ void set name(String name) {
+ this._name = name;
+ _cachedLocation = null;
+ _cachedHashCode = null;
+ }
+
+ /**
+ * The offset of the name of this element in the file that contains the
+ * declaration of this element.
+ */
+ int get nameOffset => _nameOffset;
+
+ /**
+ * Sets the offset of the name of this element in the file that contains the
+ * declaration of this element.
+ */
+ void set nameOffset(int offset) {
+ _nameOffset = offset;
+ _cachedHashCode = null;
+ _cachedLocation = null;
+ }
+
+ @deprecated
+ @override
+ AstNode get node => computeNode();
+
+ @override
+ Source get source {
+ if (_enclosingElement == null) {
+ return null;
+ }
+ return _enclosingElement.source;
+ }
+
+ /**
+ * Set whether this element is synthetic.
+ */
+ void set synthetic(bool isSynthetic) {
+ setModifier(Modifier.SYNTHETIC, isSynthetic);
+ }
+
+ @override
+ CompilationUnit get unit => context.resolveCompilationUnit(source, library);
+
+ @override
+ bool operator ==(Object object) {
+ if (identical(this, object)) {
+ return true;
+ }
+ if (object == null || hashCode != object.hashCode) {
+ return false;
+ }
+ return object.runtimeType == runtimeType &&
+ (object as Element).location == location;
+ }
+
+ /**
+ * Append a textual representation of this element to the given [buffer].
+ */
+ void appendTo(StringBuffer buffer) {
+ if (_name == null) {
+ buffer.write("<unnamed ");
+ buffer.write(runtimeType.toString());
+ buffer.write(">");
+ } else {
+ buffer.write(_name);
+ }
+ }
+
+ @override
+ String computeDocumentationComment() {
+ AnalysisContext context = this.context;
+ if (context == null) {
+ return null;
+ }
+ return context.computeDocumentationComment(this);
+ }
+
+ @override
+ AstNode computeNode() => getNodeMatching((node) => node is AstNode);
+
+ /**
+ * Set this element as the enclosing element for given [element].
+ */
+ void encloseElement(ElementImpl element) {
+ element.enclosingElement = this;
+ }
+
+ @override
+ Element getAncestor(Predicate<Element> predicate) {
+ Element ancestor = _enclosingElement;
+ while (ancestor != null && !predicate(ancestor)) {
+ ancestor = ancestor.enclosingElement;
+ }
+ return ancestor;
+ }
+
+ /**
+ * Return the child of this element that is uniquely identified by the given
+ * [identifier], or `null` if there is no such child.
+ */
+ ElementImpl getChild(String identifier) => null;
+
+ @override
+ String getExtendedDisplayName(String shortName) {
+ if (shortName == null) {
+ shortName = displayName;
+ }
+ Source source = this.source;
+ if (source != null) {
+ return "$shortName (${source.fullName})";
+ }
+ return shortName;
+ }
+
+ /**
+ * Return the resolved [AstNode] of the given type enclosing [getNameOffset].
+ */
+ AstNode getNodeMatching(Predicate<AstNode> predicate) {
+ CompilationUnit unit = this.unit;
+ if (unit == null) {
+ return null;
+ }
+ int offset = nameOffset;
+ AstNode node = new NodeLocator(offset).searchWithin(unit);
+ if (node == null) {
+ return null;
+ }
+ return node.getAncestor(predicate);
+ }
+
+ /**
+ * Return `true` if this element has the given [modifier] associated with it.
+ */
+ bool hasModifier(Modifier modifier) =>
+ BooleanArray.getEnum(_modifiers, modifier);
+
+ @override
+ bool isAccessibleIn(LibraryElement library) {
+ if (Identifier.isPrivateName(_name)) {
+ return library == this.library;
+ }
+ return true;
+ }
+
+ /**
+ * If the given [child] is not `null`, use the given [visitor] to visit it.
+ */
+ void safelyVisitChild(Element child, ElementVisitor visitor) {
+ if (child != null) {
+ child.accept(visitor);
+ }
+ }
+
+ /**
+ * Use the given [visitor] to visit all of the [children] in the given array.
+ */
+ void safelyVisitChildren(List<Element> children, ElementVisitor visitor) {
+ if (children != null) {
+ for (Element child in children) {
+ child.accept(visitor);
+ }
+ }
+ }
+
+ /**
+ * Set whether the given [modifier] is associated with this element to
+ * correspond to the given [value].
+ */
+ void setModifier(Modifier modifier, bool value) {
+ _modifiers = BooleanArray.setEnum(_modifiers, modifier, value);
+ }
+
+ @override
+ String toString() {
+ StringBuffer buffer = new StringBuffer();
+ appendTo(buffer);
+ return buffer.toString();
+ }
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ // There are no children to visit
+ }
+}
+
+/**
+ * The enumeration `ElementKind` defines the various kinds of elements in the
+ * element model.
+ */
+class ElementKind extends Enum<ElementKind> {
+ static const ElementKind CLASS = const ElementKind('CLASS', 0, "class");
+
+ static const ElementKind COMPILATION_UNIT =
+ const ElementKind('COMPILATION_UNIT', 1, "compilation unit");
+
+ static const ElementKind CONSTRUCTOR =
+ const ElementKind('CONSTRUCTOR', 2, "constructor");
+
+ static const ElementKind DYNAMIC =
+ const ElementKind('DYNAMIC', 3, "<dynamic>");
+
+ static const ElementKind EMBEDDED_HTML_SCRIPT =
+ const ElementKind('EMBEDDED_HTML_SCRIPT', 4, "embedded html script");
+
+ static const ElementKind ERROR = const ElementKind('ERROR', 5, "<error>");
+
+ static const ElementKind EXPORT =
+ const ElementKind('EXPORT', 6, "export directive");
+
+ static const ElementKind EXTERNAL_HTML_SCRIPT =
+ const ElementKind('EXTERNAL_HTML_SCRIPT', 7, "external html script");
+
+ static const ElementKind FIELD = const ElementKind('FIELD', 8, "field");
+
+ static const ElementKind FUNCTION =
+ const ElementKind('FUNCTION', 9, "function");
+
+ static const ElementKind GETTER = const ElementKind('GETTER', 10, "getter");
+
+ static const ElementKind HTML = const ElementKind('HTML', 11, "html");
+
+ static const ElementKind IMPORT =
+ const ElementKind('IMPORT', 12, "import directive");
+
+ static const ElementKind LABEL = const ElementKind('LABEL', 13, "label");
+
+ static const ElementKind LIBRARY =
+ const ElementKind('LIBRARY', 14, "library");
+
+ static const ElementKind LOCAL_VARIABLE =
+ const ElementKind('LOCAL_VARIABLE', 15, "local variable");
+
+ static const ElementKind METHOD = const ElementKind('METHOD', 16, "method");
+
+ static const ElementKind NAME = const ElementKind('NAME', 17, "<name>");
+
+ static const ElementKind PARAMETER =
+ const ElementKind('PARAMETER', 18, "parameter");
+
+ static const ElementKind PREFIX =
+ const ElementKind('PREFIX', 19, "import prefix");
+
+ static const ElementKind SETTER = const ElementKind('SETTER', 20, "setter");
+
+ static const ElementKind TOP_LEVEL_VARIABLE =
+ const ElementKind('TOP_LEVEL_VARIABLE', 21, "top level variable");
+
+ static const ElementKind FUNCTION_TYPE_ALIAS =
+ const ElementKind('FUNCTION_TYPE_ALIAS', 22, "function type alias");
+
+ static const ElementKind TYPE_PARAMETER =
+ const ElementKind('TYPE_PARAMETER', 23, "type parameter");
+
+ static const ElementKind UNIVERSE =
+ const ElementKind('UNIVERSE', 24, "<universe>");
+
+ static const List<ElementKind> values = const [
+ CLASS,
+ COMPILATION_UNIT,
+ CONSTRUCTOR,
+ DYNAMIC,
+ EMBEDDED_HTML_SCRIPT,
+ ERROR,
+ EXPORT,
+ EXTERNAL_HTML_SCRIPT,
+ FIELD,
+ FUNCTION,
+ GETTER,
+ HTML,
+ IMPORT,
+ LABEL,
+ LIBRARY,
+ LOCAL_VARIABLE,
+ METHOD,
+ NAME,
+ PARAMETER,
+ PREFIX,
+ SETTER,
+ TOP_LEVEL_VARIABLE,
+ FUNCTION_TYPE_ALIAS,
+ TYPE_PARAMETER,
+ UNIVERSE
+ ];
+
+ /**
+ * The name displayed in the UI for this kind of element.
+ */
+ final String displayName;
+
+ /**
+ * Initialize a newly created element kind to have the given [displayName].
+ */
+ const ElementKind(String name, int ordinal, this.displayName)
+ : super(name, ordinal);
+
+ /**
+ * Return the kind of the given [element], or [ERROR] if the element is
+ * `null`. This is a utility method that can reduce the need for null checks
+ * in other places.
+ */
+ static ElementKind of(Element element) {
+ if (element == null) {
+ return ERROR;
+ }
+ return element.kind;
+ }
+}
+
+/**
+ * The location of an element within the element model.
+ */
+abstract class ElementLocation {
+ /**
+ * Return the path to the element whose location is represented by this
+ * object. Clients must not modify the returned array.
+ */
+ List<String> get components;
+
+ /**
+ * Return an encoded representation of this location that can be used to
+ * create a location that is equal to this location.
+ */
+ String get encoding;
+}
+
+/**
+ * A concrete implementation of an [ElementLocation].
+ */
+class ElementLocationImpl implements ElementLocation {
+ /**
+ * The character used to separate components in the encoded form.
+ */
+ static int _SEPARATOR_CHAR = 0x3B;
+
+ /**
+ * The path to the element whose location is represented by this object.
+ */
+ List<String> _components;
+
+ /**
+ * The object managing [indexKeyId] and [indexLocationId].
+ */
+ Object indexOwner;
+
+ /**
+ * A cached id of this location in index.
+ */
+ int indexKeyId;
+
+ /**
+ * A cached id of this location in index.
+ */
+ int indexLocationId;
+
+ /**
+ * Initialize a newly created location to represent the given [element].
+ */
+ ElementLocationImpl.con1(Element element) {
+ List<String> components = new List<String>();
+ Element ancestor = element;
+ while (ancestor != null) {
+ components.insert(0, (ancestor as ElementImpl).identifier);
+ ancestor = ancestor.enclosingElement;
+ }
+ this._components = components;
+ }
+
+ /**
+ * Initialize a newly created location from the given [encoding].
+ */
+ ElementLocationImpl.con2(String encoding) {
+ this._components = _decode(encoding);
+ }
+
+ /**
+ * Initialize a newly created location from the given [components].
+ */
+ ElementLocationImpl.con3(List<String> components) {
+ this._components = components;
+ }
+
+ @override
+ List<String> get components => _components;
+
+ @override
+ String get encoding {
+ StringBuffer buffer = new StringBuffer();
+ int length = _components.length;
+ for (int i = 0; i < length; i++) {
+ if (i > 0) {
+ buffer.writeCharCode(_SEPARATOR_CHAR);
+ }
+ _encode(buffer, _components[i]);
+ }
+ return buffer.toString();
+ }
+
+ @override
+ int get hashCode {
+ int result = 1;
+ for (int i = 0; i < _components.length; i++) {
+ String component = _components[i];
+ result = 31 * result + component.hashCode;
+ }
+ return result;
+ }
+
+ @override
+ bool operator ==(Object object) {
+ if (identical(this, object)) {
+ return true;
+ }
+ if (object is! ElementLocationImpl) {
+ return false;
+ }
+ ElementLocationImpl location = object as ElementLocationImpl;
+ List<String> otherComponents = location._components;
+ int length = _components.length;
+ if (otherComponents.length != length) {
+ return false;
+ }
+ for (int i = 0; i < length; i++) {
+ if (_components[i] != otherComponents[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ @override
+ String toString() => encoding;
+
+ /**
+ * Decode the [encoding] of a location into a list of components and return
+ * the components.
+ */
+ List<String> _decode(String encoding) {
+ List<String> components = new List<String>();
+ StringBuffer buffer = new StringBuffer();
+ int index = 0;
+ int length = encoding.length;
+ while (index < length) {
+ int currentChar = encoding.codeUnitAt(index);
+ if (currentChar == _SEPARATOR_CHAR) {
+ if (index + 1 < length &&
+ encoding.codeUnitAt(index + 1) == _SEPARATOR_CHAR) {
+ buffer.writeCharCode(_SEPARATOR_CHAR);
+ index += 2;
+ } else {
+ components.add(buffer.toString());
+ buffer = new StringBuffer();
+ index++;
+ }
+ } else {
+ buffer.writeCharCode(currentChar);
+ index++;
+ }
+ }
+ components.add(buffer.toString());
+ return components;
+ }
+
+ /**
+ * Append an encoded form of the given [component] to the given [buffer].
+ */
+ void _encode(StringBuffer buffer, String component) {
+ int length = component.length;
+ for (int i = 0; i < length; i++) {
+ int currentChar = component.codeUnitAt(i);
+ if (currentChar == _SEPARATOR_CHAR) {
+ buffer.writeCharCode(_SEPARATOR_CHAR);
+ }
+ buffer.writeCharCode(currentChar);
+ }
+ }
+}
+
+/**
+ * An object that can be used to visit an element structure.
+ */
+abstract class ElementVisitor<R> {
+ R visitClassElement(ClassElement element);
+
+ R visitCompilationUnitElement(CompilationUnitElement element);
+
+ R visitConstructorElement(ConstructorElement element);
+
+ @deprecated
+ R visitEmbeddedHtmlScriptElement(EmbeddedHtmlScriptElement element);
+
+ R visitExportElement(ExportElement element);
+
+ @deprecated
+ R visitExternalHtmlScriptElement(ExternalHtmlScriptElement element);
+
+ R visitFieldElement(FieldElement element);
+
+ R visitFieldFormalParameterElement(FieldFormalParameterElement element);
+
+ R visitFunctionElement(FunctionElement element);
+
+ R visitFunctionTypeAliasElement(FunctionTypeAliasElement element);
+
+ @deprecated
+ R visitHtmlElement(HtmlElement element);
+
+ R visitImportElement(ImportElement element);
+
+ R visitLabelElement(LabelElement element);
+
+ R visitLibraryElement(LibraryElement element);
+
+ R visitLocalVariableElement(LocalVariableElement element);
+
+ R visitMethodElement(MethodElement element);
+
+ R visitMultiplyDefinedElement(MultiplyDefinedElement element);
+
+ R visitParameterElement(ParameterElement element);
+
+ R visitPrefixElement(PrefixElement element);
+
+ R visitPropertyAccessorElement(PropertyAccessorElement element);
+
+ R visitTopLevelVariableElement(TopLevelVariableElement element);
+
+ R visitTypeParameterElement(TypeParameterElement element);
+}
+
+/**
+ * A script tag in an HTML file having content that defines a Dart library.
+ */
+@deprecated
+abstract class EmbeddedHtmlScriptElement implements HtmlScriptElement {
+ /**
+ * Return the library element defined by the content of the script tag.
+ */
+ LibraryElement get scriptLibrary;
+}
+
+/**
+ * A concrete implementation of an [EmbeddedHtmlScriptElement].
+ */
+@deprecated
+class EmbeddedHtmlScriptElementImpl extends HtmlScriptElementImpl
+ implements EmbeddedHtmlScriptElement {
+ /**
+ * The library defined by the script tag's content.
+ */
+ LibraryElement _scriptLibrary;
+
+ /**
+ * Initialize a newly created script element to represent the given [node].
+ */
+ EmbeddedHtmlScriptElementImpl(XmlTagNode node) : super(node);
+
+ @override
+ ElementKind get kind => ElementKind.EMBEDDED_HTML_SCRIPT;
+
+ @override
+ LibraryElement get scriptLibrary => _scriptLibrary;
+
+ /**
+ * Set the script library defined by the script tag's content to the given
+ * [library].
+ */
+ void set scriptLibrary(LibraryElementImpl library) {
+ library.enclosingElement = this;
+ _scriptLibrary = library;
+ }
+
+ @override
+ accept(ElementVisitor visitor) =>
+ visitor.visitEmbeddedHtmlScriptElement(this);
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ safelyVisitChild(_scriptLibrary, visitor);
+ }
+}
+
+/**
+ * An element representing an executable object, including functions, methods,
+ * constructors, getters, and setters.
+ */
+abstract class ExecutableElement implements Element {
+ /**
+ * An empty list of executable elements.
+ */
+ static const List<ExecutableElement> EMPTY_LIST = const <ExecutableElement>[];
+
+ /**
+ * Return a list containing all of the functions defined within this
+ * executable element.
+ */
+ List<FunctionElement> get functions;
+
+ /**
+ * Return `true` if this executable element did not have an explicit return
+ * type specified for it in the original source. Note that if there was no
+ * explicit return type, and if the element model is fully populated, then
+ * the [returnType] will not be `null`.
+ */
+ bool get hasImplicitReturnType;
+
+ /**
+ * Return `true` if this executable element is abstract. Executable elements
+ * are abstract if they are not external and have no body.
+ */
+ bool get isAbstract;
+
+ /**
+ * Return `true` if this executable element has body marked as being
+ * asynchronous.
+ */
+ bool get isAsynchronous;
+
+ /**
+ * Return `true` if this executable element is external. Executable elements
+ * are external if they are explicitly marked as such using the 'external'
+ * keyword.
+ */
+ bool get isExternal;
+
+ /**
+ * Return `true` if this executable element has a body marked as being a
+ * generator.
+ */
+ bool get isGenerator;
+
+ /**
+ * Return `true` if this executable element is an operator. The test may be
+ * based on the name of the executable element, in which case the result will
+ * be correct when the name is legal.
+ */
+ bool get isOperator;
+
+ /**
+ * Return `true` if this element is a static element. A static element is an
+ * element that is not associated with a particular instance, but rather with
+ * an entire library or class.
+ */
+ bool get isStatic;
+
+ /**
+ * Return `true` if this executable element has a body marked as being
+ * synchronous.
+ */
+ bool get isSynchronous;
+
+ /**
+ * Return a list containing all of the labels defined within this executable
+ * element.
+ */
+ List<LabelElement> get labels;
+
+ /**
+ * Return a list containing all of the local variables defined within this
+ * executable element.
+ */
+ List<LocalVariableElement> get localVariables;
+
+ /**
+ * Return a list containing all of the parameters defined by this executable
+ * element.
+ */
+ List<ParameterElement> get parameters;
+
+ /**
+ * Return the return type defined by this executable element. If the element
+ * model is fully populated, then the [returnType] will not be `null`, even
+ * if no return type was explicitly specified.
+ */
+ DartType get returnType;
+
+ /**
+ * Return the type of function defined by this executable element.
+ */
+ FunctionType get type;
+
+ /**
+ * Return a list containing all of the type parameters defined for this
+ * executable element.
+ */
+ List<TypeParameterElement> get typeParameters;
+}
+
+/**
+ * A base class for concrete implementations of an [ExecutableElement].
+ */
+abstract class ExecutableElementImpl extends ElementImpl
+ implements ExecutableElement {
+ /**
+ * An empty list of executable elements.
+ */
+ @deprecated // Use ExecutableElement.EMPTY_LIST
+ static const List<ExecutableElement> EMPTY_ARRAY =
+ const <ExecutableElement>[];
+
+ /**
+ * A list containing all of the functions defined within this executable
+ * element.
+ */
+ List<FunctionElement> _functions = FunctionElement.EMPTY_LIST;
+
+ /**
+ * A list containing all of the labels defined within this executable element.
+ */
+ List<LabelElement> _labels = LabelElement.EMPTY_LIST;
+
+ /**
+ * A list containing all of the local variables defined within this executable
+ * element.
+ */
+ List<LocalVariableElement> _localVariables = LocalVariableElement.EMPTY_LIST;
+
+ /**
+ * A list containing all of the parameters defined by this executable element.
+ */
+ List<ParameterElement> _parameters = ParameterElement.EMPTY_LIST;
+
+ /**
+ * A list containing all of the type parameters defined for this executable
+ * element.
+ */
+ List<TypeParameterElement> _typeParameters = TypeParameterElement.EMPTY_LIST;
+
+ /**
+ * The return type defined by this executable element.
+ */
+ DartType returnType;
+
+ /**
+ * The type of function defined by this executable element.
+ */
+ FunctionType type;
+
+ /**
+ * Initialize a newly created executable element to have the given [name] and
+ * [offset].
+ */
+ ExecutableElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created executable element to have the given [name].
+ */
+ ExecutableElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ /**
+ * Set whether this executable element's body is asynchronous.
+ */
+ void set asynchronous(bool isAsynchronous) {
+ setModifier(Modifier.ASYNCHRONOUS, isAsynchronous);
+ }
+
+ /**
+ * Set whether this executable element is external.
+ */
+ void set external(bool isExternal) {
+ setModifier(Modifier.EXTERNAL, isExternal);
+ }
+
+ @override
+ List<FunctionElement> get functions => _functions;
+
+ /**
+ * Set the functions defined within this executable element to the given
+ * [functions].
+ */
+ void set functions(List<FunctionElement> functions) {
+ for (FunctionElement function in functions) {
+ (function as FunctionElementImpl).enclosingElement = this;
+ }
+ this._functions = functions;
+ }
+
+ /**
+ * Set whether this method's body is a generator.
+ */
+ void set generator(bool isGenerator) {
+ setModifier(Modifier.GENERATOR, isGenerator);
+ }
+
+ @override
+ bool get hasImplicitReturnType => hasModifier(Modifier.IMPLICIT_TYPE);
+
+ /**
+ * Set whether this executable element has an implicit return type.
+ */
+ void set hasImplicitReturnType(bool hasImplicitReturnType) {
+ setModifier(Modifier.IMPLICIT_TYPE, hasImplicitReturnType);
+ }
+
+ @override
+ bool get isAbstract => hasModifier(Modifier.ABSTRACT);
+
+ @override
+ bool get isAsynchronous => hasModifier(Modifier.ASYNCHRONOUS);
+
+ @override
+ bool get isExternal => hasModifier(Modifier.EXTERNAL);
+
+ @override
+ bool get isGenerator => hasModifier(Modifier.GENERATOR);
+
+ @override
+ bool get isOperator => false;
+
+ @override
+ bool get isSynchronous => !hasModifier(Modifier.ASYNCHRONOUS);
+
+ @override
+ List<LabelElement> get labels => _labels;
+
+ /**
+ * Set the labels defined within this executable element to the given
+ * [labels].
+ */
+ void set labels(List<LabelElement> labels) {
+ for (LabelElement label in labels) {
+ (label as LabelElementImpl).enclosingElement = this;
+ }
+ this._labels = labels;
+ }
+
+ @override
+ List<LocalVariableElement> get localVariables => _localVariables;
+
+ /**
+ * Set the local variables defined within this executable element to the given
+ * [variables].
+ */
+ void set localVariables(List<LocalVariableElement> variables) {
+ for (LocalVariableElement variable in variables) {
+ (variable as LocalVariableElementImpl).enclosingElement = this;
+ }
+ this._localVariables = variables;
+ }
+
+ @override
+ List<ParameterElement> get parameters => _parameters;
+
+ /**
+ * Set the parameters defined by this executable element to the given
+ * [parameters].
+ */
+ void set parameters(List<ParameterElement> parameters) {
+ for (ParameterElement parameter in parameters) {
+ (parameter as ParameterElementImpl).enclosingElement = this;
+ }
+ this._parameters = parameters;
+ }
+
+ @override
+ List<TypeParameterElement> get typeParameters => _typeParameters;
+
+ /**
+ * Set the type parameters defined by this executable element to the given
+ * [typeParameters].
+ */
+ void set typeParameters(List<TypeParameterElement> typeParameters) {
+ for (TypeParameterElement parameter in typeParameters) {
+ (parameter as TypeParameterElementImpl).enclosingElement = this;
+ }
+ this._typeParameters = typeParameters;
+ }
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ if (this.kind != ElementKind.GETTER) {
+ int typeParameterCount = _typeParameters.length;
+ if (typeParameterCount > 0) {
+ buffer.write('<');
+ for (int i = 0; i < typeParameterCount; i++) {
+ if (i > 0) {
+ buffer.write(", ");
+ }
+ (_typeParameters[i] as TypeParameterElementImpl).appendTo(buffer);
+ }
+ buffer.write('>');
+ }
+ buffer.write("(");
+ String closing = null;
+ ParameterKind kind = ParameterKind.REQUIRED;
+ int parameterCount = _parameters.length;
+ for (int i = 0; i < parameterCount; i++) {
+ if (i > 0) {
+ buffer.write(", ");
+ }
+ ParameterElementImpl parameter = _parameters[i] as ParameterElementImpl;
+ ParameterKind parameterKind = parameter.parameterKind;
+ if (parameterKind != kind) {
+ if (closing != null) {
+ buffer.write(closing);
+ }
+ if (parameterKind == ParameterKind.POSITIONAL) {
+ buffer.write("[");
+ closing = "]";
+ } else if (parameterKind == ParameterKind.NAMED) {
+ buffer.write("{");
+ closing = "}";
+ } else {
+ closing = null;
+ }
+ }
+ kind = parameterKind;
+ parameter.appendToWithoutDelimiters(buffer);
+ }
+ if (closing != null) {
+ buffer.write(closing);
+ }
+ buffer.write(")");
+ }
+ if (type != null) {
+ buffer.write(Element.RIGHT_ARROW);
+ buffer.write(type.returnType);
+ }
+ }
+
+ @override
+ ElementImpl getChild(String identifier) {
+ for (ExecutableElement function in _functions) {
+ if ((function as ExecutableElementImpl).identifier == identifier) {
+ return function as ExecutableElementImpl;
+ }
+ }
+ for (LabelElement label in _labels) {
+ if ((label as LabelElementImpl).identifier == identifier) {
+ return label as LabelElementImpl;
+ }
+ }
+ for (VariableElement variable in _localVariables) {
+ if ((variable as VariableElementImpl).identifier == identifier) {
+ return variable as VariableElementImpl;
+ }
+ }
+ for (ParameterElement parameter in _parameters) {
+ if ((parameter as ParameterElementImpl).identifier == identifier) {
+ return parameter as ParameterElementImpl;
+ }
+ }
+ return null;
+ }
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ super.visitChildren(visitor);
+ safelyVisitChildren(_functions, visitor);
+ safelyVisitChildren(_labels, visitor);
+ safelyVisitChildren(_localVariables, visitor);
+ safelyVisitChildren(_parameters, visitor);
+ }
+}
+
+/**
+ * An executable element defined in a parameterized type where the values of the
+ * type parameters are known.
+ */
+abstract class ExecutableMember extends Member implements ExecutableElement {
+ /**
+ * Initialize a newly created element to represent a constructor, based on the
+ * [baseElement], defined by the [definingType].
+ */
+ ExecutableMember(ExecutableElement baseElement, InterfaceType definingType)
+ : super(baseElement, definingType);
+
+ @override
+ ExecutableElement get baseElement => super.baseElement as ExecutableElement;
+
+ @override
+ List<FunctionElement> get functions {
+ //
+ // Elements within this element should have type parameters substituted,
+ // just like this element.
+ //
+ throw new UnsupportedOperationException();
+// return getBaseElement().getFunctions();
+ }
+
+ @override
+ bool get hasImplicitReturnType => baseElement.hasImplicitReturnType;
+
+ @override
+ bool get isAbstract => baseElement.isAbstract;
+
+ @override
+ bool get isAsynchronous => baseElement.isAsynchronous;
+
+ @override
+ bool get isExternal => baseElement.isExternal;
+
+ @override
+ bool get isGenerator => baseElement.isGenerator;
+
+ @override
+ bool get isOperator => baseElement.isOperator;
+
+ @override
+ bool get isStatic => baseElement.isStatic;
+
+ @override
+ bool get isSynchronous => baseElement.isSynchronous;
+
+ @override
+ List<LabelElement> get labels => baseElement.labels;
+
+ @override
+ List<LocalVariableElement> get localVariables {
+ //
+ // Elements within this element should have type parameters substituted,
+ // just like this element.
+ //
+ throw new UnsupportedOperationException();
+// return getBaseElement().getLocalVariables();
+ }
+
+ @override
+ List<ParameterElement> get parameters {
+ List<ParameterElement> baseParameters = baseElement.parameters;
+ int parameterCount = baseParameters.length;
+ if (parameterCount == 0) {
+ return baseParameters;
+ }
+ List<ParameterElement> parameterizedParameters =
+ new List<ParameterElement>(parameterCount);
+ for (int i = 0; i < parameterCount; i++) {
+ parameterizedParameters[i] =
+ ParameterMember.from(baseParameters[i], definingType);
+ }
+ return parameterizedParameters;
+ }
+
+ @override
+ DartType get returnType => substituteFor(baseElement.returnType);
+
+ @override
+ FunctionType get type => substituteFor(baseElement.type);
+
+ @override
+ List<TypeParameterElement> get typeParameters => baseElement.typeParameters;
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ // TODO(brianwilkerson) We need to finish implementing the accessors used
+ // below so that we can safely invoke them.
+ super.visitChildren(visitor);
+ safelyVisitChildren(baseElement.functions, visitor);
+ safelyVisitChildren(labels, visitor);
+ safelyVisitChildren(baseElement.localVariables, visitor);
+ safelyVisitChildren(parameters, visitor);
+ }
+}
+
+/**
+ * An export directive within a library.
+ */
+abstract class ExportElement implements Element, UriReferencedElement {
+ /**
+ * An empty list of export elements.
+ */
+ @deprecated // Use ExportElement.EMPTY_LIST
+ static const List<ExportElement> EMPTY_ARRAY = const <ExportElement>[];
+
+ /**
+ * An empty list of export elements.
+ */
+ static const List<ExportElement> EMPTY_LIST = const <ExportElement>[];
+
+ /**
+ * Return a list containing the combinators that were specified as part of the
+ * export directive in the order in which they were specified.
+ */
+ List<NamespaceCombinator> get combinators;
+
+ /**
+ * Return the library that is exported from this library by this export
+ * directive.
+ */
+ LibraryElement get exportedLibrary;
+}
+
+/**
+ * A concrete implementation of an [ExportElement].
+ */
+class ExportElementImpl extends UriReferencedElementImpl
+ implements ExportElement {
+ /**
+ * The library that is exported from this library by this export directive.
+ */
+ LibraryElement exportedLibrary;
+
+ /**
+ * The combinators that were specified as part of the export directive in the
+ * order in which they were specified.
+ */
+ List<NamespaceCombinator> combinators = NamespaceCombinator.EMPTY_LIST;
+
+ /**
+ * Initialize a newly created export element at the given [offset].
+ */
+ ExportElementImpl(int offset) : super(null, offset);
+
+ @override
+ String get identifier => exportedLibrary.name;
+
+ @override
+ ElementKind get kind => ElementKind.EXPORT;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitExportElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ buffer.write("export ");
+ (exportedLibrary as LibraryElementImpl).appendTo(buffer);
+ }
+}
+
+/**
+ * A script tag in an HTML file having a `source` attribute that references a
+ * Dart library source file.
+ */
+@deprecated
+abstract class ExternalHtmlScriptElement implements HtmlScriptElement {
+ /**
+ * Return the source referenced by this element, or `null` if this element
+ * does not reference a Dart library source file.
+ */
+ Source get scriptSource;
+}
+
+/**
+ * A concrete implementation of an [ExternalHtmlScriptElement].
+ */
+@deprecated
+class ExternalHtmlScriptElementImpl extends HtmlScriptElementImpl
+ implements ExternalHtmlScriptElement {
+ /**
+ * The source specified in the `source` attribute or `null` if unspecified.
+ */
+ Source scriptSource;
+
+ /**
+ * Initialize a newly created script element to correspond to the given
+ * [node].
+ */
+ ExternalHtmlScriptElementImpl(XmlTagNode node) : super(node);
+
+ @override
+ ElementKind get kind => ElementKind.EXTERNAL_HTML_SCRIPT;
+
+ @override
+ accept(ElementVisitor visitor) =>
+ visitor.visitExternalHtmlScriptElement(this);
+}
+
+/**
+ * A field defined within a type.
+ */
+abstract class FieldElement
+ implements ClassMemberElement, PropertyInducingElement {
+ /**
+ * An empty list of field elements.
+ */
+ static const List<FieldElement> EMPTY_LIST = const <FieldElement>[];
+
+ /**
+ * Return {@code true} if this element is an enum constant.
+ */
+ bool get isEnumConstant;
+
+ /**
+ * Return the resolved [VariableDeclaration] or [EnumConstantDeclaration]
+ * node that declares this [FieldElement].
+ *
+ * This method is expensive, because resolved AST might be evicted from cache,
+ * so parsing and resolving will be performed.
+ */
+ @override
+ AstNode computeNode();
+}
+
+/**
+ * A concrete implementation of a [FieldElement].
+ */
+class FieldElementImpl extends PropertyInducingElementImpl
+ with PotentiallyConstVariableElement
+ implements FieldElement {
+ /**
+ * An empty list of field elements.
+ */
+ @deprecated // Use FieldElement.EMPTY_LIST
+ static const List<FieldElement> EMPTY_ARRAY = const <FieldElement>[];
+
+ /**
+ * Initialize a newly created synthetic field element to have the given [name]
+ * at the given [offset].
+ */
+ FieldElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created field element to have the given [name].
+ */
+ FieldElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ @override
+ ClassElement get enclosingElement => super.enclosingElement as ClassElement;
+
+ @override
+ bool get isEnumConstant =>
+ enclosingElement != null ? enclosingElement.isEnum : false;
+
+ @override
+ ElementKind get kind => ElementKind.FIELD;
+
+ /**
+ * Set whether this field is static.
+ */
+ void set static(bool isStatic) {
+ setModifier(Modifier.STATIC, isStatic);
+ }
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitFieldElement(this);
+
+ @override
+ AstNode computeNode() {
+ if (isEnumConstant) {
+ return getNodeMatching((node) => node is EnumConstantDeclaration);
+ } else {
+ return getNodeMatching((node) => node is VariableDeclaration);
+ }
+ }
+}
+
+/**
+ * A field formal parameter defined within a constructor element.
+ */
+abstract class FieldFormalParameterElement implements ParameterElement {
+ /**
+ * Return the field element associated with this field formal parameter, or
+ * `null` if the parameter references a field that doesn't exist.
+ */
+ FieldElement get field;
+}
+
+/**
+ * A [ParameterElementImpl] that has the additional information of the
+ * [FieldElement] associated with the parameter.
+ */
+class FieldFormalParameterElementImpl extends ParameterElementImpl
+ implements FieldFormalParameterElement {
+ /**
+ * The field associated with this field formal parameter.
+ */
+ FieldElement field;
+
+ /**
+ * Initialize a newly created parameter element to have the given [name].
+ */
+ FieldFormalParameterElementImpl(Identifier name) : super.forNode(name);
+
+ @override
+ bool get isInitializingFormal => true;
+
+ @override
+ accept(ElementVisitor visitor) =>
+ visitor.visitFieldFormalParameterElement(this);
+}
+
+/**
+ * A parameter element defined in a parameterized type where the values of the
+ * type parameters are known.
+ */
+class FieldFormalParameterMember extends ParameterMember
+ implements FieldFormalParameterElement {
+ /**
+ * Initialize a newly created element to represent a constructor, based on the
+ * [baseElement], defined by the [definingType].
+ */
+ FieldFormalParameterMember(
+ FieldFormalParameterElement baseElement, ParameterizedType definingType)
+ : super(baseElement, definingType);
+
+ @override
+ FieldElement get field {
+ FieldElement field = (baseElement as FieldFormalParameterElement).field;
+ if (field is FieldElement) {
+ return FieldMember.from(field, definingType);
+ }
+ return field;
+ }
+
+ @override
+ accept(ElementVisitor visitor) =>
+ visitor.visitFieldFormalParameterElement(this);
+}
+
+/**
+ * A field element defined in a parameterized type where the values of the type
+ * parameters are known.
+ */
+class FieldMember extends VariableMember implements FieldElement {
+ /**
+ * Initialize a newly created element to represent a constructor, based on the
+ * [baseElement], defined by the [definingType].
+ */
+ FieldMember(FieldElement baseElement, InterfaceType definingType)
+ : super(baseElement, definingType);
+
+ @override
+ FieldElement get baseElement => super.baseElement as FieldElement;
+
+ @override
+ InterfaceType get definingType => super.definingType as InterfaceType;
+
+ @override
+ ClassElement get enclosingElement => baseElement.enclosingElement;
+
+ @override
+ PropertyAccessorElement get getter =>
+ PropertyAccessorMember.from(baseElement.getter, definingType);
+
+ @override
+ bool get isEnumConstant => baseElement.isEnumConstant;
+
+ @override
+ DartType get propagatedType => substituteFor(baseElement.propagatedType);
+
+ @override
+ PropertyAccessorElement get setter =>
+ PropertyAccessorMember.from(baseElement.setter, definingType);
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitFieldElement(this);
+
+ @override
+ VariableDeclaration computeNode() => baseElement.computeNode();
+
+ @override
+ String toString() => '$type $displayName';
+
+ /**
+ * If the given [field]'s type is different when any type parameters from the
+ * defining type's declaration are replaced with the actual type arguments
+ * from the [definingType], create a field member representing the given
+ * field. Return the member that was created, or the base field if no member
+ * was created.
+ */
+ static FieldElement from(FieldElement field, InterfaceType definingType) {
+ if (!_isChangedByTypeSubstitution(field, definingType)) {
+ return field;
+ }
+ // TODO(brianwilkerson) Consider caching the substituted type in the
+ // instance. It would use more memory but speed up some operations.
+ // We need to see how often the type is being re-computed.
+ return new FieldMember(field, definingType);
+ }
+
+ /**
+ * Determine whether the given [field]'s type is changed when type parameters
+ * from the [definingType]'s declaration are replaced with the actual type
+ * arguments from the defining type.
+ */
+ static bool _isChangedByTypeSubstitution(
+ FieldElement field, InterfaceType definingType) {
+ List<DartType> argumentTypes = definingType.typeArguments;
+ if (field != null && argumentTypes.length != 0) {
+ DartType baseType = field.type;
+ List<DartType> parameterTypes = definingType.element.type.typeArguments;
+ if (baseType != null) {
+ DartType substitutedType =
+ baseType.substitute2(argumentTypes, parameterTypes);
+ if (baseType != substitutedType) {
+ return true;
+ }
+ }
+ // If the field has a propagated type, then we need to check whether the
+ // propagated type needs substitution.
+ DartType basePropagatedType = field.propagatedType;
+ if (basePropagatedType != null) {
+ DartType substitutedPropagatedType =
+ basePropagatedType.substitute2(argumentTypes, parameterTypes);
+ if (basePropagatedType != substitutedPropagatedType) {
+ return true;
+ }
+ }
+ }
+ return false;
+ }
+}
+
+/**
+ * A (non-method) function. This can be either a top-level function, a local
+ * function, a closure, or the initialization expression for a field or
+ * variable.
+ */
+abstract class FunctionElement implements ExecutableElement, LocalElement {
+ /**
+ * An empty list of function elements.
+ */
+ static const List<FunctionElement> EMPTY_LIST = const <FunctionElement>[];
+
+ /**
+ * The name of the method that can be implemented by a class to allow its
+ * instances to be invoked as if they were a function.
+ */
+ static final String CALL_METHOD_NAME = "call";
+
+ /**
+ * The name of the synthetic function defined for libraries that are deferred.
+ */
+ static final String LOAD_LIBRARY_NAME = "loadLibrary";
+
+ /**
+ * The name of the function used as an entry point.
+ */
+ static const String MAIN_FUNCTION_NAME = "main";
+
+ /**
+ * The name of the method that will be invoked if an attempt is made to invoke
+ * an undefined method on an object.
+ */
+ static final String NO_SUCH_METHOD_METHOD_NAME = "noSuchMethod";
+
+ /**
+ * Return `true` if the function is an entry point, i.e. a top-level function
+ * and has the name `main`.
+ */
+ bool get isEntryPoint;
+
+ /**
+ * Return the resolved function declaration node that declares this element.
+ *
+ * This method is expensive, because resolved AST might be evicted from cache,
+ * so parsing and resolving will be performed.
+ */
+ @override
+ FunctionDeclaration computeNode();
+}
+
+/**
+ * A concrete implementation of a [FunctionElement].
+ */
+class FunctionElementImpl extends ExecutableElementImpl
+ implements FunctionElement {
+ /**
+ * An empty list of function elements.
+ */
+ @deprecated // Use FunctionElement.EMPTY_LIST
+ static const List<FunctionElement> EMPTY_ARRAY = const <FunctionElement>[];
+
+ /**
+ * The offset to the beginning of the visible range for this element.
+ */
+ int _visibleRangeOffset = 0;
+
+ /**
+ * The length of the visible range for this element, or `-1` if this element
+ * does not have a visible range.
+ */
+ int _visibleRangeLength = -1;
+
+ /**
+ * Initialize a newly created function element to have the given [name] and
+ * [offset].
+ */
+ FunctionElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created function element to have the given [name].
+ */
+ FunctionElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ /**
+ * Initialize a newly created function element to have no name and the given
+ * [offset]. This is used for function expressions, that have no name.
+ */
+ FunctionElementImpl.forOffset(int nameOffset) : super("", nameOffset);
+
+ @override
+ String get identifier {
+ String identifier = super.identifier;
+ if (!isStatic) {
+ identifier += "@$nameOffset";
+ }
+ return identifier;
+ }
+
+ @override
+ bool get isEntryPoint {
+ return isStatic && displayName == FunctionElement.MAIN_FUNCTION_NAME;
+ }
+
+ @override
+ bool get isStatic => enclosingElement is CompilationUnitElement;
+
+ @override
+ ElementKind get kind => ElementKind.FUNCTION;
+
+ @override
+ SourceRange get visibleRange {
+ if (_visibleRangeLength < 0) {
+ return null;
+ }
+ return new SourceRange(_visibleRangeOffset, _visibleRangeLength);
+ }
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitFunctionElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ String name = displayName;
+ if (name != null) {
+ buffer.write(name);
+ }
+ super.appendTo(buffer);
+ }
+
+ @override
+ FunctionDeclaration computeNode() =>
+ getNodeMatching((node) => node is FunctionDeclaration);
+
+ /**
+ * Set the visible range for this element to the range starting at the given
+ * [offset] with the given [length].
+ */
+ void setVisibleRange(int offset, int length) {
+ _visibleRangeOffset = offset;
+ _visibleRangeLength = length;
+ }
+}
+
+/**
+ * The type of a function, method, constructor, getter, or setter. Function
+ * types come in three variations:
+ *
+ * * The types of functions that only have required parameters. These have the
+ * general form <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>) &rarr; T</i>.
+ * * The types of functions with optional positional parameters. These have the
+ * general form <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, [T<sub>n+1</sub>
+ * &hellip;, T<sub>n+k</sub>]) &rarr; T</i>.
+ * * The types of functions with named parameters. These have the general form
+ * <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, {T<sub>x1</sub> x1, &hellip;,
+ * T<sub>xk</sub> xk}) &rarr; T</i>.
+ */
+abstract class FunctionType implements ParameterizedType {
+ /**
+ * Return a map from the names of named parameters to the types of the named
+ * parameters of this type of function. The entries in the map will be
+ * iterated in the same order as the order in which the named parameters were
+ * defined. If there were no named parameters declared then the map will be
+ * empty.
+ */
+ Map<String, DartType> get namedParameterTypes;
+
+ /**
+ * Return a list containing the types of the normal parameters of this type of
+ * function. The parameter types are in the same order as they appear in the
+ * declaration of the function.
+ */
+ List<DartType> get normalParameterTypes;
+
+ /**
+ * Return a map from the names of optional (positional) parameters to the
+ * types of the optional parameters of this type of function. The entries in
+ * the map will be iterated in the same order as the order in which the
+ * optional parameters were defined. If there were no optional parameters
+ * declared then the map will be empty.
+ */
+ List<DartType> get optionalParameterTypes;
+
+ /**
+ * Return a list containing the parameters elements of this type of function.
+ * The parameter types are in the same order as they appear in the declaration
+ * of the function.
+ */
+ List<ParameterElement> get parameters;
+
+ /**
+ * Return the type of object returned by this type of function.
+ */
+ DartType get returnType;
+
+ /**
+ * Return `true` if this type is a subtype of the given [type].
+ *
+ * A function type <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>) &rarr; T</i> is
+ * a subtype of the function type <i>(S<sub>1</sub>, &hellip;, S<sub>n</sub>)
+ * &rarr; S</i>, if all of the following conditions are met:
+ *
+ * * Either
+ * * <i>S</i> is void, or
+ * * <i>T &hArr; S</i>.
+ *
+ * * For all <i>i</i>, 1 <= <i>i</i> <= <i>n</i>, <i>T<sub>i</sub> &hArr;
+ * S<sub>i</sub></i>.
+ *
+ * A function type <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>,
+ * [T<sub>n+1</sub>, &hellip;, T<sub>n+k</sub>]) &rarr; T</i> is a subtype of
+ * the function type <i>(S<sub>1</sub>, &hellip;, S<sub>n</sub>,
+ * [S<sub>n+1</sub>, &hellip;, S<sub>n+m</sub>]) &rarr; S</i>, if all of the
+ * following conditions are met:
+ *
+ * * Either
+ * * <i>S</i> is void, or
+ * * <i>T &hArr; S</i>.
+ *
+ * * <i>k</i> >= <i>m</i> and for all <i>i</i>, 1 <= <i>i</i> <= <i>n+m</i>,
+ * <i>T<sub>i</sub> &hArr; S<sub>i</sub></i>.
+ *
+ * A function type <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>,
+ * {T<sub>x1</sub> x1, &hellip;, T<sub>xk</sub> xk}) &rarr; T</i> is a subtype
+ * of the function type <i>(S<sub>1</sub>, &hellip;, S<sub>n</sub>,
+ * {S<sub>y1</sub> y1, &hellip;, S<sub>ym</sub> ym}) &rarr; S</i>, if all of
+ * the following conditions are met:
+ * * Either
+ * * <i>S</i> is void,
+ * * or <i>T &hArr; S</i>.
+ *
+ * * For all <i>i</i>, 1 <= <i>i</i> <= <i>n</i>, <i>T<sub>i</sub> &hArr;
+ * S<sub>i</sub></i>.
+ * * <i>k</i> >= <i>m</i> and <i>y<sub>i</sub></i> in <i>{x<sub>1</sub>,
+ * &hellip;, x<sub>k</sub>}</i>, 1 <= <i>i</i> <= <i>m</i>.
+ * * For all <i>y<sub>i</sub></i> in <i>{y<sub>1</sub>, &hellip;,
+ * y<sub>m</sub>}</i>, <i>y<sub>i</sub> = x<sub>j</sub> => Tj &hArr; Si</i>.
+ *
+ * In addition, the following subtype rules apply:
+ *
+ * <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, []) &rarr; T <: (T<sub>1</sub>,
+ * &hellip;, T<sub>n</sub>) &rarr; T.</i><br>
+ * <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>) &rarr; T <: (T<sub>1</sub>,
+ * &hellip;, T<sub>n</sub>, {}) &rarr; T.</i><br>
+ * <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, {}) &rarr; T <: (T<sub>1</sub>,
+ * &hellip;, T<sub>n</sub>) &rarr; T.</i><br>
+ * <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>) &rarr; T <: (T<sub>1</sub>,
+ * &hellip;, T<sub>n</sub>, []) &rarr; T.</i>
+ *
+ * All functions implement the class `Function`. However not all function
+ * types are a subtype of `Function`. If an interface type <i>I</i> includes a
+ * method named `call()`, and the type of `call()` is the function type
+ * <i>F</i>, then <i>I</i> is considered to be a subtype of <i>F</i>.
+ */
+ @override
+ bool isSubtypeOf(DartType type);
+
+ @override
+ FunctionType substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes);
+
+ /**
+ * Return the type resulting from substituting the given [argumentTypes] for
+ * this type's parameters. This is fully equivalent to
+ * `substitute(argumentTypes, getTypeArguments())`.
+ */
+ FunctionType substitute3(List<DartType> argumentTypes);
+}
+
+/**
+ * A function type alias (`typedef`).
+ */
+abstract class FunctionTypeAliasElement implements TypeDefiningElement {
+ /**
+ * An empty array of type alias elements.
+ */
+ static List<FunctionTypeAliasElement> EMPTY_LIST =
+ new List<FunctionTypeAliasElement>(0);
+
+ /**
+ * Return the compilation unit in which this type alias is defined.
+ */
+ @override
+ CompilationUnitElement get enclosingElement;
+
+ /**
+ * Return a list containing all of the parameters defined by this type alias.
+ */
+ List<ParameterElement> get parameters;
+
+ /**
+ * Return the return type defined by this type alias.
+ */
+ DartType get returnType;
+
+ @override
+ FunctionType get type;
+
+ /**
+ * Return a list containing all of the type parameters defined for this type.
+ */
+ List<TypeParameterElement> get typeParameters;
+
+ /**
+ * Return the resolved function type alias node that declares this element.
+ *
+ * This method is expensive, because resolved AST might be evicted from cache,
+ * so parsing and resolving will be performed.
+ */
+ @override
+ FunctionTypeAlias computeNode();
+}
+
+/**
+ * A concrete implementation of a [FunctionTypeAliasElement].
+ */
+class FunctionTypeAliasElementImpl extends ElementImpl
+ implements FunctionTypeAliasElement {
+ /**
+ * An empty array of type alias elements.
+ */
+ @deprecated // Use FunctionTypeAliasElement.EMPTY_LIST
+ static List<FunctionTypeAliasElement> EMPTY_ARRAY =
+ new List<FunctionTypeAliasElement>(0);
+
+ /**
+ * A list containing all of the parameters defined by this type alias.
+ */
+ List<ParameterElement> _parameters = ParameterElement.EMPTY_LIST;
+
+ /**
+ * The return type defined by this type alias.
+ */
+ DartType returnType;
+
+ /**
+ * The type of function defined by this type alias.
+ */
+ FunctionType type;
+
+ /**
+ * A list containing all of the type parameters defined for this type.
+ */
+ List<TypeParameterElement> _typeParameters = TypeParameterElement.EMPTY_LIST;
+
+ /**
+ * Initialize a newly created type alias element to have the given name.
+ *
+ * [name] the name of this element
+ * [nameOffset] the offset of the name of this element in the file that
+ * contains the declaration of this element
+ */
+ FunctionTypeAliasElementImpl(String name, int nameOffset)
+ : super(name, nameOffset);
+
+ /**
+ * Initialize a newly created type alias element to have the given [name].
+ */
+ FunctionTypeAliasElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ @override
+ CompilationUnitElement get enclosingElement =>
+ super.enclosingElement as CompilationUnitElement;
+
+ @override
+ ElementKind get kind => ElementKind.FUNCTION_TYPE_ALIAS;
+
+ @override
+ List<ParameterElement> get parameters => _parameters;
+
+ /**
+ * Set the parameters defined by this type alias to the given [parameters].
+ */
+ void set parameters(List<ParameterElement> parameters) {
+ if (parameters != null) {
+ for (ParameterElement parameter in parameters) {
+ (parameter as ParameterElementImpl).enclosingElement = this;
+ }
+ }
+ this._parameters = parameters;
+ }
+
+ @override
+ List<TypeParameterElement> get typeParameters => _typeParameters;
+
+ /**
+ * Set the type parameters defined for this type to the given
+ * [typeParameters].
+ */
+ void set typeParameters(List<TypeParameterElement> typeParameters) {
+ for (TypeParameterElement typeParameter in typeParameters) {
+ (typeParameter as TypeParameterElementImpl).enclosingElement = this;
+ }
+ this._typeParameters = typeParameters;
+ }
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitFunctionTypeAliasElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ buffer.write("typedef ");
+ buffer.write(displayName);
+ int typeParameterCount = _typeParameters.length;
+ if (typeParameterCount > 0) {
+ buffer.write("<");
+ for (int i = 0; i < typeParameterCount; i++) {
+ if (i > 0) {
+ buffer.write(", ");
+ }
+ (_typeParameters[i] as TypeParameterElementImpl).appendTo(buffer);
+ }
+ buffer.write(">");
+ }
+ buffer.write("(");
+ int parameterCount = _parameters.length;
+ for (int i = 0; i < parameterCount; i++) {
+ if (i > 0) {
+ buffer.write(", ");
+ }
+ (_parameters[i] as ParameterElementImpl).appendTo(buffer);
+ }
+ buffer.write(")");
+ if (type != null) {
+ buffer.write(Element.RIGHT_ARROW);
+ buffer.write(type.returnType);
+ } else if (returnType != null) {
+ buffer.write(Element.RIGHT_ARROW);
+ buffer.write(returnType);
+ }
+ }
+
+ @override
+ FunctionTypeAlias computeNode() =>
+ getNodeMatching((node) => node is FunctionTypeAlias);
+
+ @override
+ ElementImpl getChild(String identifier) {
+ for (VariableElement parameter in _parameters) {
+ if ((parameter as VariableElementImpl).identifier == identifier) {
+ return parameter as VariableElementImpl;
+ }
+ }
+ for (TypeParameterElement typeParameter in _typeParameters) {
+ if ((typeParameter as TypeParameterElementImpl).identifier ==
+ identifier) {
+ return typeParameter as TypeParameterElementImpl;
+ }
+ }
+ return null;
+ }
+
+ /**
+ * Set the parameters defined by this type alias to the given [parameters]
+ * without becoming the parent of the parameters. This should only be used by
+ * the [TypeResolverVisitor] when creating a synthetic type alias.
+ */
+ void shareParameters(List<ParameterElement> parameters) {
+ this._parameters = parameters;
+ }
+
+ /**
+ * Set the type parameters defined for this type to the given [typeParameters]
+ * without becoming the parent of the parameters. This should only be used by
+ * the [TypeResolverVisitor] when creating a synthetic type alias.
+ */
+ void shareTypeParameters(List<TypeParameterElement> typeParameters) {
+ this._typeParameters = typeParameters;
+ }
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ super.visitChildren(visitor);
+ safelyVisitChildren(_parameters, visitor);
+ safelyVisitChildren(_typeParameters, visitor);
+ }
+}
+
+/**
+ * The type of a function, method, constructor, getter, or setter.
+ */
+class FunctionTypeImpl extends TypeImpl implements FunctionType {
+ /**
+ * A list containing the actual types of the type arguments.
+ */
+ List<DartType> typeArguments = DartType.EMPTY_LIST;
+
+ /**
+ * The set of typedefs which should not be expanded when exploring this type,
+ * to avoid creating infinite types in response to self-referential typedefs.
+ */
+ final List<FunctionTypeAliasElement> prunedTypedefs;
+
+ /**
+ * Initialize a newly created function type to be declared by the given
+ * [element].
+ */
+ FunctionTypeImpl(ExecutableElement element, [this.prunedTypedefs])
+ : super(element, null);
+
+ /**
+ * Initialize a newly created function type to be declared by the given
+ * [element].
+ */
+ @deprecated // Use new FunctionTypeImpl(element)
+ FunctionTypeImpl.con1(ExecutableElement element)
+ : prunedTypedefs = null,
+ super(element, null);
+
+ /**
+ * Initialize a newly created function type to be declared by the given
+ * [element].
+ */
+ @deprecated // Use new FunctionTypeImpl.forTypedef(element)
+ FunctionTypeImpl.con2(FunctionTypeAliasElement element)
+ : prunedTypedefs = null,
+ super(element, element == null ? null : element.name);
+
+ /**
+ * Initialize a newly created function type to be declared by the given
+ * [element].
+ */
+ FunctionTypeImpl.forTypedef(FunctionTypeAliasElement element,
+ [this.prunedTypedefs])
+ : super(element, element == null ? null : element.name);
+
+ /**
+ * Private constructor.
+ */
+ FunctionTypeImpl._(Element element, String name, this.prunedTypedefs)
+ : super(element, name);
+
+ /**
+ * Return the base parameter elements of this function element.
+ */
+ List<ParameterElement> get baseParameters {
+ Element element = this.element;
+ if (element is ExecutableElement) {
+ return element.parameters;
+ } else {
+ return (element as FunctionTypeAliasElement).parameters;
+ }
+ }
+
+ /**
+ * Return the return type defined by this function's element.
+ */
+ DartType get baseReturnType {
+ Element element = this.element;
+ if (element is ExecutableElement) {
+ return element.returnType;
+ } else {
+ return (element as FunctionTypeAliasElement).returnType;
+ }
+ }
+
+ @override
+ String get displayName {
+ String name = this.name;
+ if (name == null || name.length == 0) {
+ // Function types have an empty name when they are defined implicitly by
+ // either a closure or as part of a parameter declaration.
+ List<DartType> normalParameterTypes = this.normalParameterTypes;
+ List<DartType> optionalParameterTypes = this.optionalParameterTypes;
+ Map<String, DartType> namedParameterTypes = this.namedParameterTypes;
+ DartType returnType = this.returnType;
+ StringBuffer buffer = new StringBuffer();
+ buffer.write("(");
+ bool needsComma = false;
+ if (normalParameterTypes.length > 0) {
+ for (DartType type in normalParameterTypes) {
+ if (needsComma) {
+ buffer.write(", ");
+ } else {
+ needsComma = true;
+ }
+ buffer.write(type.displayName);
+ }
+ }
+ if (optionalParameterTypes.length > 0) {
+ if (needsComma) {
+ buffer.write(", ");
+ needsComma = false;
+ }
+ buffer.write("[");
+ for (DartType type in optionalParameterTypes) {
+ if (needsComma) {
+ buffer.write(", ");
+ } else {
+ needsComma = true;
+ }
+ buffer.write(type.displayName);
+ }
+ buffer.write("]");
+ needsComma = true;
+ }
+ if (namedParameterTypes.length > 0) {
+ if (needsComma) {
+ buffer.write(", ");
+ needsComma = false;
+ }
+ buffer.write("{");
+ namedParameterTypes.forEach((String name, DartType type) {
+ if (needsComma) {
+ buffer.write(", ");
+ } else {
+ needsComma = true;
+ }
+ buffer.write(name);
+ buffer.write(": ");
+ buffer.write(type.displayName);
+ });
+ buffer.write("}");
+ needsComma = true;
+ }
+ buffer.write(")");
+ buffer.write(Element.RIGHT_ARROW);
+ if (returnType == null) {
+ buffer.write("null");
+ } else {
+ buffer.write(returnType.displayName);
+ }
+ name = buffer.toString();
+ }
+ return name;
+ }
+
+ @override
+ int get hashCode {
+ if (element == null) {
+ return 0;
+ }
+ // Reference the arrays of parameters
+ List<DartType> normalParameterTypes = this.normalParameterTypes;
+ List<DartType> optionalParameterTypes = this.optionalParameterTypes;
+ Iterable<DartType> namedParameterTypes = this.namedParameterTypes.values;
+ // Generate the hashCode
+ int code = (returnType as TypeImpl).hashCode;
+ for (int i = 0; i < normalParameterTypes.length; i++) {
+ code = (code << 1) + (normalParameterTypes[i] as TypeImpl).hashCode;
+ }
+ for (int i = 0; i < optionalParameterTypes.length; i++) {
+ code = (code << 1) + (optionalParameterTypes[i] as TypeImpl).hashCode;
+ }
+ for (DartType type in namedParameterTypes) {
+ code = (code << 1) + (type as TypeImpl).hashCode;
+ }
+ return code;
+ }
+
+ @override
+ Map<String, DartType> get namedParameterTypes {
+ LinkedHashMap<String, DartType> namedParameterTypes =
+ new LinkedHashMap<String, DartType>();
+ List<ParameterElement> parameters = baseParameters;
+ if (parameters.length == 0) {
+ return namedParameterTypes;
+ }
+ List<DartType> typeParameters =
+ TypeParameterTypeImpl.getTypes(this.typeParameters);
+ for (ParameterElement parameter in parameters) {
+ if (parameter.parameterKind == ParameterKind.NAMED) {
+ DartType type = parameter.type;
+ if (typeArguments.length != 0 &&
+ typeArguments.length == typeParameters.length) {
+ type = (type as TypeImpl)
+ .substitute2(typeArguments, typeParameters, newPrune);
+ } else {
+ type = (type as TypeImpl).pruned(newPrune);
+ }
+ namedParameterTypes[parameter.name] = type;
+ }
+ }
+ return namedParameterTypes;
+ }
+
+ /**
+ * Determine the new set of typedefs which should be pruned when expanding
+ * this function type.
+ */
+ List<FunctionTypeAliasElement> get newPrune {
+ Element element = this.element;
+ if (element is FunctionTypeAliasElement && !element.isSynthetic) {
+ // This typedef should be pruned, along with anything that was previously
+ // pruned.
+ if (prunedTypedefs == null) {
+ return <FunctionTypeAliasElement>[element];
+ } else {
+ return new List<FunctionTypeAliasElement>.from(prunedTypedefs)
+ ..add(element);
+ }
+ } else {
+ // This is not a typedef, so nothing additional needs to be pruned.
+ return prunedTypedefs;
+ }
+ }
+
+ @override
+ List<DartType> get normalParameterTypes {
+ List<ParameterElement> parameters = baseParameters;
+ if (parameters.length == 0) {
+ return DartType.EMPTY_LIST;
+ }
+ List<DartType> typeParameters =
+ TypeParameterTypeImpl.getTypes(this.typeParameters);
+ List<DartType> types = new List<DartType>();
+ for (ParameterElement parameter in parameters) {
+ if (parameter.parameterKind == ParameterKind.REQUIRED) {
+ DartType type = parameter.type;
+ if (typeArguments.length != 0 &&
+ typeArguments.length == typeParameters.length) {
+ type = (type as TypeImpl)
+ .substitute2(typeArguments, typeParameters, newPrune);
+ } else {
+ type = (type as TypeImpl).pruned(newPrune);
+ }
+ types.add(type);
+ }
+ }
+ return types;
+ }
+
+ @override
+ List<DartType> get optionalParameterTypes {
+ List<ParameterElement> parameters = baseParameters;
+ if (parameters.length == 0) {
+ return DartType.EMPTY_LIST;
+ }
+ List<DartType> typeParameters =
+ TypeParameterTypeImpl.getTypes(this.typeParameters);
+ List<DartType> types = new List<DartType>();
+ for (ParameterElement parameter in parameters) {
+ if (parameter.parameterKind == ParameterKind.POSITIONAL) {
+ DartType type = parameter.type;
+ if (typeArguments.length != 0 &&
+ typeArguments.length == typeParameters.length) {
+ type = (type as TypeImpl)
+ .substitute2(typeArguments, typeParameters, newPrune);
+ } else {
+ type = (type as TypeImpl).pruned(newPrune);
+ }
+ types.add(type);
+ }
+ }
+ return types;
+ }
+
+ @override
+ List<ParameterElement> get parameters {
+ List<ParameterElement> baseParameters = this.baseParameters;
+ // no parameters, quick return
+ int parameterCount = baseParameters.length;
+ if (parameterCount == 0) {
+ return baseParameters;
+ }
+ // create specialized parameters
+ List<ParameterElement> specializedParameters =
+ new List<ParameterElement>(parameterCount);
+ for (int i = 0; i < parameterCount; i++) {
+ specializedParameters[i] = ParameterMember.from(baseParameters[i], this);
+ }
+ return specializedParameters;
+ }
+
+ @override
+ DartType get returnType {
+ DartType baseReturnType = this.baseReturnType;
+ if (baseReturnType == null) {
+ // TODO(brianwilkerson) This is a patch. The return type should never be
+ // null and we need to understand why it is and fix it.
+ return DynamicTypeImpl.instance;
+ }
+ // If there are no arguments to substitute, or if the arguments size doesn't
+ // match the parameter size, return the base return type.
+ if (typeArguments.length == 0 ||
+ typeArguments.length != typeParameters.length) {
+ return (baseReturnType as TypeImpl).pruned(newPrune);
+ }
+ return (baseReturnType as TypeImpl).substitute2(typeArguments,
+ TypeParameterTypeImpl.getTypes(typeParameters), newPrune);
+ }
+
+ @override
+ List<TypeParameterElement> get typeParameters {
+ Element element = this.element;
+ if (element is FunctionTypeAliasElement) {
+ return element.typeParameters;
+ }
+ ClassElement definingClass =
+ element.getAncestor((element) => element is ClassElement);
+ if (definingClass != null) {
+ return definingClass.typeParameters;
+ }
+ return TypeParameterElement.EMPTY_LIST;
+ }
+
+ @override
+ bool operator ==(Object object) {
+ if (object is! FunctionTypeImpl) {
+ return false;
+ }
+ FunctionTypeImpl otherType = object as FunctionTypeImpl;
+ return returnType == otherType.returnType &&
+ TypeImpl.equalArrays(
+ normalParameterTypes, otherType.normalParameterTypes) &&
+ TypeImpl.equalArrays(
+ optionalParameterTypes, otherType.optionalParameterTypes) &&
+ _equals(namedParameterTypes, otherType.namedParameterTypes);
+ }
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ List<DartType> normalParameterTypes = this.normalParameterTypes;
+ List<DartType> optionalParameterTypes = this.optionalParameterTypes;
+ Map<String, DartType> namedParameterTypes = this.namedParameterTypes;
+ DartType returnType = this.returnType;
+ buffer.write("(");
+ bool needsComma = false;
+ if (normalParameterTypes.length > 0) {
+ for (DartType type in normalParameterTypes) {
+ if (needsComma) {
+ buffer.write(", ");
+ } else {
+ needsComma = true;
+ }
+ (type as TypeImpl).appendTo(buffer);
+ }
+ }
+ if (optionalParameterTypes.length > 0) {
+ if (needsComma) {
+ buffer.write(", ");
+ needsComma = false;
+ }
+ buffer.write("[");
+ for (DartType type in optionalParameterTypes) {
+ if (needsComma) {
+ buffer.write(", ");
+ } else {
+ needsComma = true;
+ }
+ (type as TypeImpl).appendTo(buffer);
+ }
+ buffer.write("]");
+ needsComma = true;
+ }
+ if (namedParameterTypes.length > 0) {
+ if (needsComma) {
+ buffer.write(", ");
+ needsComma = false;
+ }
+ buffer.write("{");
+ namedParameterTypes.forEach((String name, DartType type) {
+ if (needsComma) {
+ buffer.write(", ");
+ } else {
+ needsComma = true;
+ }
+ buffer.write(name);
+ buffer.write(": ");
+ (type as TypeImpl).appendTo(buffer);
+ });
+ buffer.write("}");
+ needsComma = true;
+ }
+ buffer.write(")");
+ buffer.write(Element.RIGHT_ARROW);
+ if (returnType == null) {
+ buffer.write("null");
+ } else {
+ (returnType as TypeImpl).appendTo(buffer);
+ }
+ }
+
+ @override
+ bool isAssignableTo(DartType type) {
+ // A function type T may be assigned to a function type S, written T <=> S,
+ // iff T <: S.
+ return isSubtypeOf(type);
+ }
+
+ @override
+ bool isMoreSpecificThan(DartType type,
+ [bool withDynamic = false, Set<Element> visitedElements]) {
+ // Note: visitedElements is only used for breaking recursion in the type
+ // hierarchy; we don't use it when recursing into the function type.
+
+ // trivial base cases
+ if (type == null) {
+ return false;
+ } else if (identical(this, type) ||
+ type.isDynamic ||
+ type.isDartCoreFunction ||
+ type.isObject) {
+ return true;
+ } else if (type is! FunctionType) {
+ return false;
+ } else if (this == type) {
+ return true;
+ }
+ FunctionType t = this;
+ FunctionType s = type as FunctionType;
+ List<DartType> tTypes = t.normalParameterTypes;
+ List<DartType> tOpTypes = t.optionalParameterTypes;
+ List<DartType> sTypes = s.normalParameterTypes;
+ List<DartType> sOpTypes = s.optionalParameterTypes;
+ // If one function has positional and the other has named parameters,
+ // return false.
+ if ((sOpTypes.length > 0 && t.namedParameterTypes.length > 0) ||
+ (tOpTypes.length > 0 && s.namedParameterTypes.length > 0)) {
+ return false;
+ }
+ // named parameters case
+ if (t.namedParameterTypes.length > 0) {
+ // check that the number of required parameters are equal, and check that
+ // every t_i is more specific than every s_i
+ if (t.normalParameterTypes.length != s.normalParameterTypes.length) {
+ return false;
+ } else if (t.normalParameterTypes.length > 0) {
+ for (int i = 0; i < tTypes.length; i++) {
+ if (!(tTypes[i] as TypeImpl)
+ .isMoreSpecificThan(sTypes[i], withDynamic)) {
+ return false;
+ }
+ }
+ }
+ Map<String, DartType> namedTypesT = t.namedParameterTypes;
+ Map<String, DartType> namedTypesS = s.namedParameterTypes;
+ // if k >= m is false, return false: the passed function type has more
+ // named parameter types than this
+ if (namedTypesT.length < namedTypesS.length) {
+ return false;
+ }
+ // Loop through each element in S verifying that T has a matching
+ // parameter name and that the corresponding type is more specific then
+ // the type in S.
+ for (String keyS in namedTypesS.keys) {
+ DartType typeT = namedTypesT[keyS];
+ if (typeT == null) {
+ return false;
+ }
+ if (!(typeT as TypeImpl)
+ .isMoreSpecificThan(namedTypesS[keyS], withDynamic)) {
+ return false;
+ }
+ }
+ } else if (s.namedParameterTypes.length > 0) {
+ return false;
+ } else {
+ // positional parameter case
+ int tArgLength = tTypes.length + tOpTypes.length;
+ int sArgLength = sTypes.length + sOpTypes.length;
+ // Check that the total number of parameters in t is greater than or equal
+ // to the number of parameters in s and that the number of required
+ // parameters in s is greater than or equal to the number of required
+ // parameters in t.
+ if (tArgLength < sArgLength || sTypes.length < tTypes.length) {
+ return false;
+ }
+ if (tOpTypes.length == 0 && sOpTypes.length == 0) {
+ // No positional arguments, don't copy contents to new array
+ for (int i = 0; i < sTypes.length; i++) {
+ if (!(tTypes[i] as TypeImpl)
+ .isMoreSpecificThan(sTypes[i], withDynamic)) {
+ return false;
+ }
+ }
+ } else {
+ // Else, we do have positional parameters, copy required and positional
+ // parameter types into arrays to do the compare (for loop below).
+ List<DartType> tAllTypes = new List<DartType>(sArgLength);
+ for (int i = 0; i < tTypes.length; i++) {
+ tAllTypes[i] = tTypes[i];
+ }
+ for (int i = tTypes.length, j = 0; i < sArgLength; i++, j++) {
+ tAllTypes[i] = tOpTypes[j];
+ }
+ List<DartType> sAllTypes = new List<DartType>(sArgLength);
+ for (int i = 0; i < sTypes.length; i++) {
+ sAllTypes[i] = sTypes[i];
+ }
+ for (int i = sTypes.length, j = 0; i < sArgLength; i++, j++) {
+ sAllTypes[i] = sOpTypes[j];
+ }
+ for (int i = 0; i < sAllTypes.length; i++) {
+ if (!(tAllTypes[i] as TypeImpl)
+ .isMoreSpecificThan(sAllTypes[i], withDynamic)) {
+ return false;
+ }
+ }
+ }
+ }
+ DartType tRetType = t.returnType;
+ DartType sRetType = s.returnType;
+ return sRetType.isVoid ||
+ (tRetType as TypeImpl).isMoreSpecificThan(sRetType, withDynamic);
+ }
+
+ @override
+ bool isSubtypeOf(DartType type) {
+ // trivial base cases
+ if (type == null) {
+ return false;
+ } else if (identical(this, type) ||
+ type.isDynamic ||
+ type.isDartCoreFunction ||
+ type.isObject) {
+ return true;
+ } else if (type is! FunctionType) {
+ return false;
+ } else if (this == type) {
+ return true;
+ }
+ FunctionType t = this;
+ FunctionType s = type as FunctionType;
+ List<DartType> tTypes = t.normalParameterTypes;
+ List<DartType> tOpTypes = t.optionalParameterTypes;
+ List<DartType> sTypes = s.normalParameterTypes;
+ List<DartType> sOpTypes = s.optionalParameterTypes;
+ // If one function has positional and the other has named parameters,
+ // return false.
+ if ((sOpTypes.length > 0 && t.namedParameterTypes.length > 0) ||
+ (tOpTypes.length > 0 && s.namedParameterTypes.length > 0)) {
+ return false;
+ }
+ // named parameters case
+ if (t.namedParameterTypes.length > 0) {
+ // check that the number of required parameters are equal,
+ // and check that every t_i is assignable to every s_i
+ if (t.normalParameterTypes.length != s.normalParameterTypes.length) {
+ return false;
+ } else if (t.normalParameterTypes.length > 0) {
+ for (int i = 0; i < tTypes.length; i++) {
+ if (!(tTypes[i] as TypeImpl).isAssignableTo(sTypes[i])) {
+ return false;
+ }
+ }
+ }
+ Map<String, DartType> namedTypesT = t.namedParameterTypes;
+ Map<String, DartType> namedTypesS = s.namedParameterTypes;
+ // if k >= m is false, return false: the passed function type has more
+ // named parameter types than this
+ if (namedTypesT.length < namedTypesS.length) {
+ return false;
+ }
+ // Loop through each element in S verifying that T has a matching
+ // parameter name and that the corresponding type is assignable to the
+ // type in S.
+ for (String keyS in namedTypesS.keys) {
+ DartType typeT = namedTypesT[keyS];
+ if (typeT == null) {
+ return false;
+ }
+ if (!(typeT as TypeImpl).isAssignableTo(namedTypesS[keyS])) {
+ return false;
+ }
+ }
+ } else if (s.namedParameterTypes.length > 0) {
+ return false;
+ } else {
+ // positional parameter case
+ int tArgLength = tTypes.length + tOpTypes.length;
+ int sArgLength = sTypes.length + sOpTypes.length;
+ // Check that the total number of parameters in t is greater than or
+ // equal to the number of parameters in s and that the number of
+ // required parameters in s is greater than or equal to the number of
+ // required parameters in t.
+ if (tArgLength < sArgLength || sTypes.length < tTypes.length) {
+ return false;
+ }
+ if (tOpTypes.length == 0 && sOpTypes.length == 0) {
+ // No positional arguments, don't copy contents to new array
+ for (int i = 0; i < sTypes.length; i++) {
+ if (!(tTypes[i] as TypeImpl).isAssignableTo(sTypes[i])) {
+ return false;
+ }
+ }
+ } else {
+ // Else, we do have positional parameters, copy required and
+ // positional parameter types into arrays to do the compare (for loop
+ // below).
+ List<DartType> tAllTypes = new List<DartType>(sArgLength);
+ for (int i = 0; i < tTypes.length; i++) {
+ tAllTypes[i] = tTypes[i];
+ }
+ for (int i = tTypes.length, j = 0; i < sArgLength; i++, j++) {
+ tAllTypes[i] = tOpTypes[j];
+ }
+ List<DartType> sAllTypes = new List<DartType>(sArgLength);
+ for (int i = 0; i < sTypes.length; i++) {
+ sAllTypes[i] = sTypes[i];
+ }
+ for (int i = sTypes.length, j = 0; i < sArgLength; i++, j++) {
+ sAllTypes[i] = sOpTypes[j];
+ }
+ for (int i = 0; i < sAllTypes.length; i++) {
+ if (!(tAllTypes[i] as TypeImpl).isAssignableTo(sAllTypes[i])) {
+ return false;
+ }
+ }
+ }
+ }
+ DartType tRetType = t.returnType;
+ DartType sRetType = s.returnType;
+ return sRetType.isVoid || (tRetType as TypeImpl).isAssignableTo(sRetType);
+ }
+
+ @override
+ TypeImpl pruned(List<FunctionTypeAliasElement> prune) {
+ if (prune == null) {
+ return this;
+ } else if (prune.contains(element)) {
+ // Circularity found. Prune the type declaration.
+ return new CircularTypeImpl();
+ } else {
+ // There should never be a reason to prune a type that has already been
+ // pruned, since pruning is only done when expanding a function type
+ // alias, and function type aliases are always expanded by starting with
+ // base types.
+ assert(this.prunedTypedefs == null);
+ FunctionTypeImpl result = new FunctionTypeImpl._(element, name, prune);
+ result.typeArguments =
+ typeArguments.map((TypeImpl t) => t.pruned(prune)).toList();
+ return result;
+ }
+ }
+
+ @override
+ DartType substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes,
+ [List<FunctionTypeAliasElement> prune]) {
+ // Pruned types should only ever result from peforming type variable
+ // substitution, and it doesn't make sense to substitute again after
+ // substituting once.
+ assert(this.prunedTypedefs == null);
+ if (argumentTypes.length != parameterTypes.length) {
+ throw new IllegalArgumentException(
+ "argumentTypes.length (${argumentTypes.length}) != parameterTypes.length (${parameterTypes.length})");
+ }
+ Element element = this.element;
+ if (prune != null && prune.contains(element)) {
+ // Circularity found. Prune the type declaration.
+ return new CircularTypeImpl();
+ }
+ if (argumentTypes.length == 0) {
+ return this.pruned(prune);
+ }
+ FunctionTypeImpl newType = (element is ExecutableElement)
+ ? new FunctionTypeImpl(element, prune)
+ : new FunctionTypeImpl.forTypedef(
+ element as FunctionTypeAliasElement, prune);
+ newType.typeArguments =
+ TypeImpl.substitute(typeArguments, argumentTypes, parameterTypes);
+ return newType;
+ }
+
+ @override
+ FunctionTypeImpl substitute3(List<DartType> argumentTypes) =>
+ substitute2(argumentTypes, typeArguments);
+
+ /**
+ * Compute the least upper bound of types [f] and [g], both of which are
+ * known to be function types.
+ *
+ * In the event that f and g have different numbers of required parameters,
+ * `null` is returned, in which case the least upper bound is the interface
+ * type `Function`.
+ */
+ static FunctionType computeLeastUpperBound(FunctionType f, FunctionType g) {
+ // TODO(paulberry): implement this.
+ return null;
+ }
+
+ /**
+ * Return `true` if all of the name/type pairs in the first map ([firstTypes])
+ * are equal to the corresponding name/type pairs in the second map
+ * ([secondTypes]). The maps are expected to iterate over their entries in the
+ * same order in which those entries were added to the map.
+ */
+ static bool _equals(
+ Map<String, DartType> firstTypes, Map<String, DartType> secondTypes) {
+ if (secondTypes.length != firstTypes.length) {
+ return false;
+ }
+ Iterator<String> firstKeys = firstTypes.keys.iterator;
+ Iterator<String> secondKeys = secondTypes.keys.iterator;
+ while (firstKeys.moveNext() && secondKeys.moveNext()) {
+ String firstKey = firstKeys.current;
+ String secondKey = secondKeys.current;
+ TypeImpl firstType = firstTypes[firstKey];
+ TypeImpl secondType = secondTypes[secondKey];
+ if (firstKey != secondKey || firstType != secondType) {
+ return false;
+ }
+ }
+ return true;
+ }
+}
+
+/**
+ * An element visitor that will recursively visit all of the elements in an
+ * element model (like instances of the class [RecursiveElementVisitor]). In
+ * addition, when an element of a specific type is visited not only will the
+ * visit method for that specific type of element be invoked, but additional
+ * methods for the supertypes of that element will also be invoked. For example,
+ * using an instance of this class to visit a [MethodElement] will cause the
+ * method [visitMethodElement] to be invoked but will also cause the methods
+ * [visitExecutableElement] and [visitElement] to be subsequently invoked. This
+ * allows visitors to be written that visit all executable elements without
+ * needing to override the visit method for each of the specific subclasses of
+ * [ExecutableElement].
+ *
+ * Note, however, that unlike many visitors, element visitors visit objects
+ * based on the interfaces implemented by those elements. Because interfaces
+ * form a graph structure rather than a tree structure the way classes do, and
+ * because it is generally undesirable for an object to be visited more than
+ * once, this class flattens the interface graph into a pseudo-tree. In
+ * particular, this class treats elements as if the element types were
+ * structured in the following way:
+ *
+ * <pre>
+ * Element
+ * ClassElement
+ * CompilationUnitElement
+ * ExecutableElement
+ * ConstructorElement
+ * LocalElement
+ * FunctionElement
+ * MethodElement
+ * PropertyAccessorElement
+ * ExportElement
+ * HtmlElement
+ * ImportElement
+ * LabelElement
+ * LibraryElement
+ * MultiplyDefinedElement
+ * PrefixElement
+ * TypeAliasElement
+ * TypeParameterElement
+ * UndefinedElement
+ * VariableElement
+ * PropertyInducingElement
+ * FieldElement
+ * TopLevelVariableElement
+ * LocalElement
+ * LocalVariableElement
+ * ParameterElement
+ * FieldFormalParameterElement
+ * </pre>
+ *
+ * Subclasses that override a visit method must either invoke the overridden
+ * visit method or explicitly invoke the more general visit method. Failure to
+ * do so will cause the visit methods for superclasses of the element to not be
+ * invoked and will cause the children of the visited node to not be visited.
+ */
+class GeneralizingElementVisitor<R> implements ElementVisitor<R> {
+ @override
+ R visitClassElement(ClassElement element) => visitElement(element);
+
+ @override
+ R visitCompilationUnitElement(CompilationUnitElement element) =>
+ visitElement(element);
+
+ @override
+ R visitConstructorElement(ConstructorElement element) =>
+ visitExecutableElement(element);
+
+ R visitElement(Element element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ @deprecated
+ R visitEmbeddedHtmlScriptElement(EmbeddedHtmlScriptElement element) =>
+ visitHtmlScriptElement(element);
+
+ R visitExecutableElement(ExecutableElement element) => visitElement(element);
+
+ @override
+ R visitExportElement(ExportElement element) => visitElement(element);
+
+ @override
+ @deprecated
+ R visitExternalHtmlScriptElement(ExternalHtmlScriptElement element) =>
+ visitHtmlScriptElement(element);
+
+ @override
+ R visitFieldElement(FieldElement element) =>
+ visitPropertyInducingElement(element);
+
+ @override
+ R visitFieldFormalParameterElement(FieldFormalParameterElement element) =>
+ visitParameterElement(element);
+
+ @override
+ R visitFunctionElement(FunctionElement element) => visitLocalElement(element);
+
+ @override
+ R visitFunctionTypeAliasElement(FunctionTypeAliasElement element) =>
+ visitElement(element);
+
+ @override
+ @deprecated
+ R visitHtmlElement(HtmlElement element) => visitElement(element);
+
+ @deprecated
+ R visitHtmlScriptElement(HtmlScriptElement element) => visitElement(element);
+
+ @override
+ R visitImportElement(ImportElement element) => visitElement(element);
+
+ @override
+ R visitLabelElement(LabelElement element) => visitElement(element);
+
+ @override
+ R visitLibraryElement(LibraryElement element) => visitElement(element);
+
+ R visitLocalElement(LocalElement element) {
+ if (element is LocalVariableElement) {
+ return visitVariableElement(element);
+ } else if (element is ParameterElement) {
+ return visitVariableElement(element);
+ } else if (element is FunctionElement) {
+ return visitExecutableElement(element);
+ }
+ return null;
+ }
+
+ @override
+ R visitLocalVariableElement(LocalVariableElement element) =>
+ visitLocalElement(element);
+
+ @override
+ R visitMethodElement(MethodElement element) =>
+ visitExecutableElement(element);
+
+ @override
+ R visitMultiplyDefinedElement(MultiplyDefinedElement element) =>
+ visitElement(element);
+
+ @override
+ R visitParameterElement(ParameterElement element) =>
+ visitLocalElement(element);
+
+ @override
+ R visitPrefixElement(PrefixElement element) => visitElement(element);
+
+ @override
+ R visitPropertyAccessorElement(PropertyAccessorElement element) =>
+ visitExecutableElement(element);
+
+ R visitPropertyInducingElement(PropertyInducingElement element) =>
+ visitVariableElement(element);
+
+ @override
+ R visitTopLevelVariableElement(TopLevelVariableElement element) =>
+ visitPropertyInducingElement(element);
+
+ @override
+ R visitTypeParameterElement(TypeParameterElement element) =>
+ visitElement(element);
+
+ R visitVariableElement(VariableElement element) => visitElement(element);
+}
+
+/**
+ * A combinator that causes some of the names in a namespace to be hidden when
+ * being imported.
+ */
+abstract class HideElementCombinator implements NamespaceCombinator {
+ /**
+ * Return a list containing the names that are not to be made visible in the
+ * importing library even if they are defined in the imported library.
+ */
+ List<String> get hiddenNames;
+}
+
+/**
+ * A concrete implementation of a [HideElementCombinator].
+ */
+class HideElementCombinatorImpl implements HideElementCombinator {
+ /**
+ * The names that are not to be made visible in the importing library even if
+ * they are defined in the imported library.
+ */
+ List<String> hiddenNames = StringUtilities.EMPTY_ARRAY;
+
+ @override
+ String toString() {
+ StringBuffer buffer = new StringBuffer();
+ buffer.write("show ");
+ int count = hiddenNames.length;
+ for (int i = 0; i < count; i++) {
+ if (i > 0) {
+ buffer.write(", ");
+ }
+ buffer.write(hiddenNames[i]);
+ }
+ return buffer.toString();
+ }
+}
+
+/**
+ * An HTML file.
+ */
+@deprecated
+abstract class HtmlElement implements Element {
+ /**
+ * An empty list of HTML file elements.
+ */
+ static const List<HtmlElement> EMPTY_LIST = const <HtmlElement>[];
+
+ /**
+ * Return a list containing all of the script elements contained in the HTML
+ * file. This includes scripts with libraries that are defined by the content
+ * of a script tag as well as libraries that are referenced in the `source`
+ * attribute of a script tag.
+ */
+ List<HtmlScriptElement> get scripts;
+}
+
+/**
+ * A concrete implementation of an [HtmlElement].
+ */
+@deprecated
+class HtmlElementImpl extends ElementImpl implements HtmlElement {
+ /**
+ * An empty list of HTML file elements.
+ */
+ @deprecated // Use HtmlElement.EMPTY_LIST
+ static const List<HtmlElement> EMPTY_ARRAY = const <HtmlElement>[];
+
+ /**
+ * The analysis context in which this library is defined.
+ */
+ final AnalysisContext context;
+
+ /**
+ * The scripts contained in or referenced from script tags in the HTML file.
+ */
+ List<HtmlScriptElement> _scripts = HtmlScriptElement.EMPTY_LIST;
+
+ /**
+ * The source that corresponds to this HTML file.
+ */
+ Source source;
+
+ /**
+ * Initialize a newly created HTML element in the given [context] to have the
+ * given [name].
+ */
+ HtmlElementImpl(this.context, String name) : super(name, -1);
+
+ @override
+ int get hashCode => source.hashCode;
+
+ @override
+ String get identifier => source.encoding;
+
+ @override
+ ElementKind get kind => ElementKind.HTML;
+
+ @override
+ List<HtmlScriptElement> get scripts => _scripts;
+
+ /**
+ * Set the scripts contained in the HTML file to the given [scripts].
+ */
+ void set scripts(List<HtmlScriptElement> scripts) {
+ if (scripts.length == 0) {
+ this._scripts = HtmlScriptElement.EMPTY_LIST;
+ return;
+ }
+ for (HtmlScriptElement script in scripts) {
+ (script as HtmlScriptElementImpl).enclosingElement = this;
+ }
+ this._scripts = scripts;
+ }
+
+ @override
+ bool operator ==(Object object) {
+ if (identical(object, this)) {
+ return true;
+ }
+ return object is HtmlElementImpl && source == object.source;
+ }
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitHtmlElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ if (source == null) {
+ buffer.write("{HTML file}");
+ } else {
+ buffer.write(source.fullName);
+ }
+ }
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ super.visitChildren(visitor);
+ safelyVisitChildren(_scripts, visitor);
+ }
+}
+
+/**
+ * A script tag in an HTML file.
+ *
+ * See [EmbeddedHtmlScriptElement], and [ExternalHtmlScriptElement].
+ */
+@deprecated
+abstract class HtmlScriptElement implements Element {
+ /**
+ * An empty list of HTML script elements.
+ */
+ static const List<HtmlScriptElement> EMPTY_LIST = const <HtmlScriptElement>[];
+}
+
+/**
+ * A concrete implementation of an [HtmlScriptElement].
+ */
+@deprecated
+abstract class HtmlScriptElementImpl extends ElementImpl
+ implements HtmlScriptElement {
+ /**
+ * An empty list of HTML script elements.
+ */
+ @deprecated // Use HtmlScriptElement.EMPTY_LIST
+ static const List<HtmlScriptElement> EMPTY_ARRAY =
+ const <HtmlScriptElement>[];
+
+ /**
+ * Initialize a newly created script element corresponding to the given
+ * [node].
+ */
+ HtmlScriptElementImpl(XmlTagNode node)
+ : super(node.tag, node.tagToken.offset);
+}
+
+/**
+ * A single import directive within a library.
+ */
+abstract class ImportElement implements Element, UriReferencedElement {
+ /**
+ * An empty list of import elements.
+ */
+ @deprecated // Use ImportElement.EMPTY_LIST
+ static const List<ImportElement> EMPTY_ARRAY = const <ImportElement>[];
+
+ /**
+ * An empty list of import elements.
+ */
+ static const List<ImportElement> EMPTY_LIST = const <ImportElement>[];
+
+ /**
+ * Return a list containing the combinators that were specified as part of the
+ * import directive in the order in which they were specified.
+ */
+ List<NamespaceCombinator> get combinators;
+
+ /**
+ * Return the library that is imported into this library by this import
+ * directive.
+ */
+ LibraryElement get importedLibrary;
+
+ /**
+ * Return `true` if this import is for a deferred library.
+ */
+ bool get isDeferred;
+
+ /**
+ * Return the prefix that was specified as part of the import directive, or
+ * `null` if there was no prefix specified.
+ */
+ PrefixElement get prefix;
+
+ /**
+ * Return the offset of the prefix of this import in the file that contains
+ * this import directive, or `-1` if this import is synthetic, does not have a
+ * prefix, or otherwise does not have an offset.
+ */
+ int get prefixOffset;
+}
+
+/**
+ * A concrete implementation of an [ImportElement].
+ */
+class ImportElementImpl extends UriReferencedElementImpl
+ implements ImportElement {
+ /**
+ * The offset of the prefix of this import in the file that contains the this
+ * import directive, or `-1` if this import is synthetic.
+ */
+ int prefixOffset = 0;
+
+ /**
+ * The library that is imported into this library by this import directive.
+ */
+ LibraryElement importedLibrary;
+
+ /**
+ * The combinators that were specified as part of the import directive in the
+ * order in which they were specified.
+ */
+ List<NamespaceCombinator> combinators = NamespaceCombinator.EMPTY_LIST;
+
+ /**
+ * The prefix that was specified as part of the import directive, or `null` if
+ * there was no prefix specified.
+ */
+ PrefixElement prefix;
+
+ /**
+ * Initialize a newly created import element at the given [offset].
+ * The offset may be `-1` if the import is synthetic.
+ */
+ ImportElementImpl(int offset) : super(null, offset);
+
+ /**
+ * Set whether this import is for a deferred library.
+ */
+ void set deferred(bool isDeferred) {
+ setModifier(Modifier.DEFERRED, isDeferred);
+ }
+
+ @override
+ String get identifier =>
+ "${(importedLibrary as LibraryElementImpl).identifier}@$nameOffset";
+
+ @override
+ bool get isDeferred => hasModifier(Modifier.DEFERRED);
+
+ @override
+ ElementKind get kind => ElementKind.IMPORT;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitImportElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ buffer.write("import ");
+ (importedLibrary as LibraryElementImpl).appendTo(buffer);
+ }
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ super.visitChildren(visitor);
+ safelyVisitChild(prefix, visitor);
+ }
+}
+
+/**
+ * The type introduced by either a class or an interface, or a reference to such
+ * a type.
+ */
+abstract class InterfaceType implements ParameterizedType {
+ /**
+ * An empty list of types.
+ */
+ @deprecated // Use InterfaceType.EMPTY_LIST
+ static const List<InterfaceType> EMPTY_ARRAY = const <InterfaceType>[];
+
+ /**
+ * An empty list of types.
+ */
+ static const List<InterfaceType> EMPTY_LIST = const <InterfaceType>[];
+
+ /**
+ * Return a list containing all of the accessors (getters and setters)
+ * declared in this type.
+ */
+ List<PropertyAccessorElement> get accessors;
+
+ /**
+ * Return a list containing all of the constructors declared in this type.
+ */
+ List<ConstructorElement> get constructors;
+
+ @override
+ ClassElement get element;
+
+ /**
+ * Return a list containing all of the interfaces that are implemented by this
+ * interface. Note that this is <b>not</b>, in general, equivalent to getting
+ * the interfaces from this type's element because the types returned by this
+ * method will have had their type parameters replaced.
+ */
+ List<InterfaceType> get interfaces;
+
+ /**
+ * Return a list containing all of the methods declared in this type.
+ */
+ List<MethodElement> get methods;
+
+ /**
+ * Return a list containing all of the mixins that are applied to the class
+ * being extended in order to derive the superclass of this class. Note that
+ * this is <b>not</b>, in general, equivalent to getting the mixins from this
+ * type's element because the types returned by this method will have had
+ * their type parameters replaced.
+ */
+ List<InterfaceType> get mixins;
+
+ /**
+ * Return the type representing the superclass of this type, or null if this
+ * type represents the class 'Object'. Note that this is <b>not</b>, in
+ * general, equivalent to getting the superclass from this type's element
+ * because the type returned by this method will have had it's type parameters
+ * replaced.
+ */
+ InterfaceType get superclass;
+
+ /**
+ * Return the element representing the getter with the given [name] that is
+ * declared in this class, or `null` if this class does not declare a getter
+ * with the given name.
+ */
+ PropertyAccessorElement getGetter(String name);
+
+ /**
+ * Return the least upper bound of this type and the given [type], or `null`
+ * if there is no least upper bound.
+ *
+ * Given two interfaces <i>I</i> and <i>J</i>, let <i>S<sub>I</sub></i> be the
+ * set of superinterfaces of <i>I<i>, let <i>S<sub>J</sub></i> be the set of
+ * superinterfaces of <i>J</i> and let <i>S = (I &cup; S<sub>I</sub>) &cap;
+ * (J &cup; S<sub>J</sub>)</i>. Furthermore, we define <i>S<sub>n</sub> =
+ * {T | T &isin; S &and; depth(T) = n}</i> for any finite <i>n</i>, where
+ * <i>depth(T)</i> is the number of steps in the longest inheritance path from
+ * <i>T</i> to <i>Object</i>. Let <i>q</i> be the largest number such that
+ * <i>S<sub>q</sub></i> has cardinality one. The least upper bound of <i>I</i>
+ * and <i>J</i> is the sole element of <i>S<sub>q</sub></i>.
+ */
+ @override
+ @deprecated
+ DartType getLeastUpperBound(DartType type);
+
+ /**
+ * Return the element representing the method with the given [name] that is
+ * declared in this class, or `null` if this class does not declare a method
+ * with the given name.
+ */
+ MethodElement getMethod(String name);
+
+ /**
+ * Return the element representing the setter with the given [name] that is
+ * declared in this class, or `null` if this class does not declare a setter
+ * with the given name.
+ */
+ PropertyAccessorElement getSetter(String name);
+
+ /**
+ * Return `true` if this type is a direct supertype of the given [type]. The
+ * implicit interface of class <i>I</i> is a direct supertype of the implicit
+ * interface of class <i>J</i> iff:
+ *
+ * * <i>I</i> is Object, and <i>J</i> has no extends clause.
+ * * <i>I</i> is listed in the extends clause of <i>J</i>.
+ * * <i>I</i> is listed in the implements clause of <i>J</i>.
+ * * <i>I</i> is listed in the with clause of <i>J</i>.
+ * * <i>J</i> is a mixin application of the mixin of <i>I</i>.
+ */
+ bool isDirectSupertypeOf(InterfaceType type);
+
+ /**
+ * Return `true` if this type is more specific than the given [type]. An
+ * interface type <i>T</i> is more specific than an interface type <i>S</i>,
+ * written <i>T &laquo; S</i>, if one of the following conditions is met:
+ *
+ * * Reflexivity: <i>T</i> is <i>S</i>.
+ * * <i>T</i> is bottom.
+ * * <i>S</i> is dynamic.
+ * * Direct supertype: <i>S</i> is a direct supertype of <i>T</i>.
+ * * <i>T</i> is a type parameter and <i>S</i> is the upper bound of <i>T</i>.
+ * * Covariance: <i>T</i> is of the form <i>I&lt;T<sub>1</sub>, &hellip;,
+ * T<sub>n</sub>&gt;</i> and S</i> is of the form <i>I&lt;S<sub>1</sub>,
+ * &hellip;, S<sub>n</sub>&gt;</i> and <i>T<sub>i</sub> &laquo;
+ * S<sub>i</sub></i>, <i>1 <= i <= n</i>.
+ * * Transitivity: <i>T &laquo; U</i> and <i>U &laquo; S</i>.
+ */
+ @override
+ bool isMoreSpecificThan(DartType type);
+
+ /**
+ * Return `true` if this type is a subtype of the given [type]. An interface
+ * type <i>T</i> is a subtype of an interface type <i>S</i>, written <i>T</i>
+ * <: <i>S</i>, iff <i>[bottom/dynamic]T</i> &laquo; <i>S</i> (<i>T</i> is
+ * more specific than <i>S</i>). If an interface type <i>I</i> includes a
+ * method named <i>call()</i>, and the type of <i>call()</i> is the function
+ * type <i>F</i>, then <i>I</i> is considered to be a subtype of <i>F</i>.
+ */
+ @override
+ bool isSubtypeOf(DartType type);
+
+ /**
+ * Return the element representing the constructor that results from looking
+ * up the constructor with the given [name] in this class with respect to the
+ * given [library], or `null` if the look up fails. The behavior of this
+ * method is defined by the Dart Language Specification in section 12.11.1:
+ * <blockquote>
+ * If <i>e</i> is of the form <b>new</b> <i>T.id()</i> then let <i>q<i> be the
+ * constructor <i>T.id</i>, otherwise let <i>q<i> be the constructor <i>T<i>.
+ * Otherwise, if <i>q</i> is not defined or not accessible, a
+ * NoSuchMethodException is thrown.
+ * </blockquote>
+ */
+ ConstructorElement lookUpConstructor(String name, LibraryElement library);
+
+ /**
+ * Return the element representing the getter that results from looking up the
+ * getter with the given [name] in this class with respect to the given
+ * [library], or `null` if the look up fails. The behavior of this method is
+ * defined by the Dart Language Specification in section 12.15.1:
+ * <blockquote>
+ * The result of looking up getter (respectively setter) <i>m</i> in class
+ * <i>C</i> with respect to library <i>L</i> is:
+ * * If <i>C</i> declares an instance getter (respectively setter) named
+ * <i>m</i> that is accessible to <i>L</i>, then that getter (respectively
+ * setter) is the result of the lookup. Otherwise, if <i>C</i> has a
+ * superclass <i>S</i>, then the result of the lookup is the result of
+ * looking up getter (respectively setter) <i>m</i> in <i>S</i> with respect
+ * to <i>L</i>. Otherwise, we say that the lookup has failed.
+ * </blockquote>
+ */
+ PropertyAccessorElement lookUpGetter(String name, LibraryElement library);
+
+ /**
+ * Return the element representing the getter that results from looking up the
+ * getter with the given [name] in the superclass of this class with respect
+ * to the given [library], or `null` if the look up fails. The behavior of
+ * this method is defined by the Dart Language Specification in section
+ * 12.15.1:
+ * <blockquote>
+ * The result of looking up getter (respectively setter) <i>m</i> in class
+ * <i>C</i> with respect to library <i>L</i> is:
+ * * If <i>C</i> declares an instance getter (respectively setter) named
+ * <i>m</i> that is accessible to <i>L</i>, then that getter (respectively
+ * setter) is the result of the lookup. Otherwise, if <i>C</i> has a
+ * superclass <i>S</i>, then the result of the lookup is the result of
+ * looking up getter (respectively setter) <i>m</i> in <i>S</i> with respect
+ * to <i>L</i>. Otherwise, we say that the lookup has failed.
+ * </blockquote>
+ */
+ PropertyAccessorElement lookUpGetterInSuperclass(
+ String name, LibraryElement library);
+
+ /**
+ * Return the element representing the method that results from looking up the
+ * method with the given [name] in this class with respect to the given
+ * [library], or `null` if the look up fails. The behavior of this method is
+ * defined by the Dart Language Specification in section 12.15.1:
+ * <blockquote>
+ * The result of looking up method <i>m</i> in class <i>C</i> with respect to
+ * library <i>L</i> is:
+ * * If <i>C</i> declares an instance method named <i>m</i> that is accessible
+ * to <i>L</i>, then that method is the result of the lookup. Otherwise, if
+ * <i>C</i> has a superclass <i>S</i>, then the result of the lookup is the
+ * result of looking up method <i>m</i> in <i>S</i> with respect to <i>L</i>
+ * Otherwise, we say that the lookup has failed.
+ * </blockquote>
+ */
+ MethodElement lookUpMethod(String name, LibraryElement library);
+
+ /**
+ * Return the element representing the method that results from looking up the
+ * method with the given [name] in the superclass of this class with respect
+ * to the given [library], or `null` if the look up fails. The behavior of
+ * this method is defined by the Dart Language Specification in section
+ * 12.15.1:
+ * <blockquote>
+ * The result of looking up method <i>m</i> in class <i>C</i> with respect to
+ * library <i>L</i> is:
+ * * If <i>C</i> declares an instance method named <i>m</i> that is accessible
+ * to <i>L</i>, then that method is the result of the lookup. Otherwise, if
+ * <i>C</i> has a superclass <i>S</i>, then the result of the lookup is the
+ * result of looking up method <i>m</i> in <i>S</i> with respect to <i>L</i>.
+ * Otherwise, we say that the lookup has failed.
+ * </blockquote>
+ */
+ MethodElement lookUpMethodInSuperclass(String name, LibraryElement library);
+
+ /**
+ * Return the element representing the setter that results from looking up the
+ * setter with the given [name] in this class with respect to the given
+ * [library], or `null` if the look up fails. The behavior of this method is
+ * defined by the Dart Language Specification in section 12.16:
+ * <blockquote>
+ * The result of looking up getter (respectively setter) <i>m</i> in class
+ * <i>C</i> with respect to library <i>L</i> is:
+ * * If <i>C</i> declares an instance getter (respectively setter) named
+ * <i>m</i> that is accessible to <i>L</i>, then that getter (respectively
+ * setter) is the result of the lookup. Otherwise, if <i>C</i> has a
+ * superclass <i>S</i>, then the result of the lookup is the result of
+ * looking up getter (respectively setter) <i>m</i> in <i>S</i> with respect
+ * to <i>L</i>. Otherwise, we say that the lookup has failed.
+ * </blockquote>
+ */
+ PropertyAccessorElement lookUpSetter(String name, LibraryElement library);
+
+ /**
+ * Return the element representing the setter that results from looking up the
+ * setter with the given [name] in the superclass of this class with respect
+ * to the given [library], or `null` if the look up fails. The behavior of
+ * this method is defined by the Dart Language Specification in section 12.16:
+ * <blockquote>
+ * The result of looking up getter (respectively setter) <i>m</i> in class
+ * <i>C</i> with respect to library <i>L</i> is:
+ * * If <i>C</i> declares an instance getter (respectively setter) named
+ * <i>m</i> that is accessible to <i>L</i>, then that getter (respectively
+ * setter) is the result of the lookup. Otherwise, if <i>C</i> has a
+ * superclass <i>S</i>, then the result of the lookup is the result of
+ * looking up getter (respectively setter) <i>m</i> in <i>S</i> with respect
+ * to <i>L</i>. Otherwise, we say that the lookup has failed.
+ * </blockquote>
+ */
+ PropertyAccessorElement lookUpSetterInSuperclass(
+ String name, LibraryElement library);
+
+ @override
+ InterfaceType substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes);
+
+ /**
+ * Return the type resulting from substituting the given arguments for this
+ * type's parameters. This is fully equivalent to `substitute2(argumentTypes,
+ * getTypeArguments())`.
+ */
+ InterfaceType substitute4(List<DartType> argumentTypes);
+
+ /**
+ * Returns a "smart" version of the "least upper bound" of the given types.
+ *
+ * If these types have the same element and differ only in terms of the type
+ * arguments, attempts to find a compatible set of type arguments.
+ *
+ * Otherwise, calls [DartType.getLeastUpperBound].
+ */
+ static InterfaceType getSmartLeastUpperBound(
+ InterfaceType first, InterfaceType second) {
+ // TODO(paulberry): this needs to be deprecated and replaced with a method
+ // in [TypeSystem], since it relies on the deprecated functionality of
+ // [DartType.getLeastUpperBound].
+ if (first.element == second.element) {
+ return _leastUpperBound(first, second);
+ }
+ return first.getLeastUpperBound(second);
+ }
+
+ /**
+ * Return the "least upper bound" of the given types under the assumption that
+ * the types have the same element and differ only in terms of the type
+ * arguments.
+ *
+ * The resulting type is composed by comparing the corresponding type
+ * arguments, keeping those that are the same, and using 'dynamic' for those
+ * that are different.
+ */
+ static InterfaceType _leastUpperBound(
+ InterfaceType firstType, InterfaceType secondType) {
+ ClassElement firstElement = firstType.element;
+ ClassElement secondElement = secondType.element;
+ if (firstElement != secondElement) {
+ throw new IllegalArgumentException('The same elements expected, but '
+ '$firstElement and $secondElement are given.');
+ }
+ if (firstType == secondType) {
+ return firstType;
+ }
+ List<DartType> firstArguments = firstType.typeArguments;
+ List<DartType> secondArguments = secondType.typeArguments;
+ int argumentCount = firstArguments.length;
+ if (argumentCount == 0) {
+ return firstType;
+ }
+ List<DartType> lubArguments = new List<DartType>(argumentCount);
+ for (int i = 0; i < argumentCount; i++) {
+ //
+ // Ideally we would take the least upper bound of the two argument types,
+ // but this can cause an infinite recursion (such as when finding the
+ // least upper bound of String and num).
+ //
+ if (firstArguments[i] == secondArguments[i]) {
+ lubArguments[i] = firstArguments[i];
+ }
+ if (lubArguments[i] == null) {
+ lubArguments[i] = DynamicTypeImpl.instance;
+ }
+ }
+ InterfaceTypeImpl lub = new InterfaceTypeImpl(firstElement);
+ lub.typeArguments = lubArguments;
+ return lub;
+ }
+}
+
+/**
+ * A concrete implementation of an [InterfaceType].
+ */
+class InterfaceTypeImpl extends TypeImpl implements InterfaceType {
+ /**
+ * A list containing the actual types of the type arguments.
+ */
+ List<DartType> typeArguments = DartType.EMPTY_LIST;
+
+ /**
+ * The set of typedefs which should not be expanded when exploring this type,
+ * to avoid creating infinite types in response to self-referential typedefs.
+ */
+ final List<FunctionTypeAliasElement> prunedTypedefs;
+
+ /**
+ * Initialize a newly created type to be declared by the given [element].
+ */
+ InterfaceTypeImpl(ClassElement element, [this.prunedTypedefs])
+ : super(element, element.displayName);
+
+ /**
+ * Initialize a newly created type to be declared by the given [element].
+ */
+ @deprecated // Use new InterfaceTypeImpl(element)
+ InterfaceTypeImpl.con1(ClassElement element)
+ : prunedTypedefs = null,
+ super(element, element.displayName);
+
+ /**
+ * Initialize a newly created type to have the given [name]. This constructor
+ * should only be used in cases where there is no declaration of the type.
+ */
+ @deprecated // Use new InterfaceTypeImpl.named(name)
+ InterfaceTypeImpl.con2(String name)
+ : prunedTypedefs = null,
+ super(null, name);
+
+ /**
+ * Initialize a newly created type to have the given [name]. This constructor
+ * should only be used in cases where there is no declaration of the type.
+ */
+ InterfaceTypeImpl.named(String name)
+ : prunedTypedefs = null,
+ super(null, name);
+
+ /**
+ * Private constructor.
+ */
+ InterfaceTypeImpl._(Element element, String name, this.prunedTypedefs)
+ : super(element, name);
+
+ @override
+ List<PropertyAccessorElement> get accessors {
+ List<PropertyAccessorElement> accessors = element.accessors;
+ List<PropertyAccessorElement> members =
+ new List<PropertyAccessorElement>(accessors.length);
+ for (int i = 0; i < accessors.length; i++) {
+ members[i] = PropertyAccessorMember.from(accessors[i], this);
+ }
+ return members;
+ }
+
+ @override
+ List<ConstructorElement> get constructors {
+ List<ConstructorElement> constructors = element.constructors;
+ List<ConstructorElement> members =
+ new List<ConstructorElement>(constructors.length);
+ for (int i = 0; i < constructors.length; i++) {
+ members[i] = ConstructorMember.from(constructors[i], this);
+ }
+ return members;
+ }
+
+ @override
+ String get displayName {
+ String name = this.name;
+ List<DartType> typeArguments = this.typeArguments;
+ bool allDynamic = true;
+ for (DartType type in typeArguments) {
+ if (type != null && !type.isDynamic) {
+ allDynamic = false;
+ break;
+ }
+ }
+ // If there is at least one non-dynamic type, then list them out
+ if (!allDynamic) {
+ StringBuffer buffer = new StringBuffer();
+ buffer.write(name);
+ buffer.write("<");
+ for (int i = 0; i < typeArguments.length; i++) {
+ if (i != 0) {
+ buffer.write(", ");
+ }
+ DartType typeArg = typeArguments[i];
+ buffer.write(typeArg.displayName);
+ }
+ buffer.write(">");
+ name = buffer.toString();
+ }
+ return name;
+ }
+
+ @override
+ ClassElement get element => super.element as ClassElement;
+
+ @override
+ int get hashCode {
+ ClassElement element = this.element;
+ if (element == null) {
+ return 0;
+ }
+ return element.hashCode;
+ }
+
+ @override
+ List<InterfaceType> get interfaces {
+ ClassElement classElement = element;
+ List<InterfaceType> interfaces = classElement.interfaces;
+ List<TypeParameterElement> typeParameters = classElement.typeParameters;
+ List<DartType> parameterTypes = classElement.type.typeArguments;
+ if (typeParameters.length == 0) {
+ return interfaces;
+ }
+ int count = interfaces.length;
+ List<InterfaceType> typedInterfaces = new List<InterfaceType>(count);
+ for (int i = 0; i < count; i++) {
+ typedInterfaces[i] =
+ interfaces[i].substitute2(typeArguments, parameterTypes);
+ }
+ return typedInterfaces;
+ }
+
+ @override
+ bool get isDartCoreFunction {
+ ClassElement element = this.element;
+ if (element == null) {
+ return false;
+ }
+ return element.name == "Function" && element.library.isDartCore;
+ }
+
+ @override
+ bool get isObject => element.supertype == null;
+
+ @override
+ List<MethodElement> get methods {
+ List<MethodElement> methods = element.methods;
+ List<MethodElement> members = new List<MethodElement>(methods.length);
+ for (int i = 0; i < methods.length; i++) {
+ members[i] = MethodMember.from(methods[i], this);
+ }
+ return members;
+ }
+
+ @override
+ List<InterfaceType> get mixins {
+ ClassElement classElement = element;
+ List<InterfaceType> mixins = classElement.mixins;
+ List<TypeParameterElement> typeParameters = classElement.typeParameters;
+ List<DartType> parameterTypes = classElement.type.typeArguments;
+ if (typeParameters.length == 0) {
+ return mixins;
+ }
+ int count = mixins.length;
+ List<InterfaceType> typedMixins = new List<InterfaceType>(count);
+ for (int i = 0; i < count; i++) {
+ typedMixins[i] = mixins[i].substitute2(typeArguments, parameterTypes);
+ }
+ return typedMixins;
+ }
+
+ @override
+ InterfaceType get superclass {
+ ClassElement classElement = element;
+ InterfaceType supertype = classElement.supertype;
+ if (supertype == null) {
+ return null;
+ }
+ List<DartType> typeParameters = classElement.type.typeArguments;
+ if (typeArguments.length == 0 ||
+ typeArguments.length != typeParameters.length) {
+ return supertype;
+ }
+ return supertype.substitute2(typeArguments, typeParameters);
+ }
+
+ @override
+ List<TypeParameterElement> get typeParameters => element.typeParameters;
+
+ @override
+ bool operator ==(Object object) {
+ if (identical(object, this)) {
+ return true;
+ }
+ if (object is! InterfaceTypeImpl) {
+ return false;
+ }
+ InterfaceTypeImpl otherType = object as InterfaceTypeImpl;
+ return (element == otherType.element) &&
+ TypeImpl.equalArrays(typeArguments, otherType.typeArguments);
+ }
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ buffer.write(name);
+ int argumentCount = typeArguments.length;
+ if (argumentCount > 0) {
+ buffer.write("<");
+ for (int i = 0; i < argumentCount; i++) {
+ if (i > 0) {
+ buffer.write(", ");
+ }
+ (typeArguments[i] as TypeImpl).appendTo(buffer);
+ }
+ buffer.write(">");
+ }
+ }
+
+ @override
+ PropertyAccessorElement getGetter(String getterName) => PropertyAccessorMember
+ .from((element as ClassElementImpl).getGetter(getterName), this);
+
+ @override
+ @deprecated
+ DartType getLeastUpperBound(DartType type) {
+ // quick check for self
+ if (identical(type, this)) {
+ return this;
+ }
+ // dynamic
+ DartType dynamicType = DynamicTypeImpl.instance;
+ if (identical(this, dynamicType) || identical(type, dynamicType)) {
+ return dynamicType;
+ }
+ // TODO (jwren) opportunity here for a better, faster algorithm if this
+ // turns out to be a bottle-neck
+ if (type is! InterfaceType) {
+ return null;
+ }
+ return computeLeastUpperBound(this, type);
+ }
+
+ @override
+ MethodElement getMethod(String methodName) => MethodMember.from(
+ (element as ClassElementImpl).getMethod(methodName), this);
+
+ @override
+ PropertyAccessorElement getSetter(String setterName) => PropertyAccessorMember
+ .from((element as ClassElementImpl).getSetter(setterName), this);
+
+ @override
+ bool isDirectSupertypeOf(InterfaceType type) {
+ InterfaceType i = this;
+ InterfaceType j = type;
+ ClassElement jElement = j.element;
+ InterfaceType supertype = jElement.supertype;
+ //
+ // If J has no direct supertype then it is Object, and Object has no direct
+ // supertypes.
+ //
+ if (supertype == null) {
+ return false;
+ }
+ //
+ // I is listed in the extends clause of J.
+ //
+ List<DartType> jArgs = j.typeArguments;
+ List<DartType> jVars = jElement.type.typeArguments;
+ supertype = supertype.substitute2(jArgs, jVars);
+ if (supertype == i) {
+ return true;
+ }
+ //
+ // I is listed in the implements clause of J.
+ //
+ for (InterfaceType interfaceType in jElement.interfaces) {
+ interfaceType = interfaceType.substitute2(jArgs, jVars);
+ if (interfaceType == i) {
+ return true;
+ }
+ }
+ //
+ // I is listed in the with clause of J.
+ //
+ for (InterfaceType mixinType in jElement.mixins) {
+ mixinType = mixinType.substitute2(jArgs, jVars);
+ if (mixinType == i) {
+ return true;
+ }
+ }
+ //
+ // J is a mixin application of the mixin of I.
+ //
+ // TODO(brianwilkerson) Determine whether this needs to be implemented or
+ // whether it is covered by the case above.
+ return false;
+ }
+
+ @override
+ bool isMoreSpecificThan(DartType type,
+ [bool withDynamic = false, Set<Element> visitedElements]) {
+ //
+ // S is dynamic.
+ // The test to determine whether S is dynamic is done here because dynamic
+ // is not an instance of InterfaceType.
+ //
+ if (type.isDynamic) {
+ return true;
+ }
+ //
+ // A type T is more specific than a type S, written T << S,
+ // if one of the following conditions is met:
+ //
+ // Reflexivity: T is S.
+ //
+ if (this == type) {
+ return true;
+ }
+ if (type is InterfaceType) {
+ //
+ // T is bottom. (This case is handled by the class BottomTypeImpl.)
+ //
+ // Direct supertype: S is a direct supertype of T.
+ //
+ if (type.isDirectSupertypeOf(this)) {
+ return true;
+ }
+ //
+ // Covariance: T is of the form I<T1, ..., Tn> and S is of the form
+ // I<S1, ..., Sn> and Ti << Si, 1 <= i <= n.
+ //
+ ClassElement tElement = this.element;
+ ClassElement sElement = type.element;
+ if (tElement == sElement) {
+ List<DartType> tArguments = typeArguments;
+ List<DartType> sArguments = type.typeArguments;
+ if (tArguments.length != sArguments.length) {
+ return false;
+ }
+ for (int i = 0; i < tArguments.length; i++) {
+ if (!(tArguments[i] as TypeImpl)
+ .isMoreSpecificThan(sArguments[i], withDynamic)) {
+ return false;
+ }
+ }
+ return true;
+ }
+ }
+ //
+ // Transitivity: T << U and U << S.
+ //
+ // First check for infinite loops
+ if (element == null) {
+ return false;
+ }
+ if (visitedElements == null) {
+ visitedElements = new HashSet<ClassElement>();
+ } else if (visitedElements.contains(element)) {
+ return false;
+ }
+ visitedElements.add(element);
+ try {
+ // Iterate over all of the types U that are more specific than T because
+ // they are direct supertypes of T and return true if any of them are more
+ // specific than S.
+ InterfaceTypeImpl supertype = superclass;
+ if (supertype != null &&
+ supertype.isMoreSpecificThan(type, withDynamic, visitedElements)) {
+ return true;
+ }
+ for (InterfaceType interfaceType in interfaces) {
+ if ((interfaceType as InterfaceTypeImpl)
+ .isMoreSpecificThan(type, withDynamic, visitedElements)) {
+ return true;
+ }
+ }
+ for (InterfaceType mixinType in mixins) {
+ if ((mixinType as InterfaceTypeImpl)
+ .isMoreSpecificThan(type, withDynamic, visitedElements)) {
+ return true;
+ }
+ }
+ // If a type I includes an instance method named `call`, and the type of
+ // `call` is the function type F, then I is considered to be more specific
+ // than F.
+ MethodElement callMethod = getMethod('call');
+ if (callMethod != null && !callMethod.isStatic) {
+ FunctionTypeImpl callType = callMethod.type;
+ if (callType.isMoreSpecificThan(type, withDynamic, visitedElements)) {
+ return true;
+ }
+ }
+ return false;
+ } finally {
+ visitedElements.remove(element);
+ }
+ }
+
+ @override
+ ConstructorElement lookUpConstructor(
+ String constructorName, LibraryElement library) {
+ // prepare base ConstructorElement
+ ConstructorElement constructorElement;
+ if (constructorName == null) {
+ constructorElement = element.unnamedConstructor;
+ } else {
+ constructorElement = element.getNamedConstructor(constructorName);
+ }
+ // not found or not accessible
+ if (constructorElement == null ||
+ !constructorElement.isAccessibleIn(library)) {
+ return null;
+ }
+ // return member
+ return ConstructorMember.from(constructorElement, this);
+ }
+
+ @override
+ PropertyAccessorElement lookUpGetter(
+ String getterName, LibraryElement library) {
+ PropertyAccessorElement element = getGetter(getterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ return lookUpGetterInSuperclass(getterName, library);
+ }
+
+ @override
+ PropertyAccessorElement lookUpGetterInSuperclass(
+ String getterName, LibraryElement library) {
+ for (InterfaceType mixin in mixins.reversed) {
+ PropertyAccessorElement element = mixin.getGetter(getterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ HashSet<ClassElement> visitedClasses = new HashSet<ClassElement>();
+ InterfaceType supertype = superclass;
+ ClassElement supertypeElement =
+ supertype == null ? null : supertype.element;
+ while (supertype != null && !visitedClasses.contains(supertypeElement)) {
+ visitedClasses.add(supertypeElement);
+ PropertyAccessorElement element = supertype.getGetter(getterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ for (InterfaceType mixin in supertype.mixins.reversed) {
+ element = mixin.getGetter(getterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ supertype = supertype.superclass;
+ supertypeElement = supertype == null ? null : supertype.element;
+ }
+ return null;
+ }
+
+ @override
+ MethodElement lookUpMethod(String methodName, LibraryElement library) {
+ MethodElement element = getMethod(methodName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ return lookUpMethodInSuperclass(methodName, library);
+ }
+
+ @override
+ MethodElement lookUpMethodInSuperclass(
+ String methodName, LibraryElement library) {
+ for (InterfaceType mixin in mixins.reversed) {
+ MethodElement element = mixin.getMethod(methodName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ HashSet<ClassElement> visitedClasses = new HashSet<ClassElement>();
+ InterfaceType supertype = superclass;
+ ClassElement supertypeElement =
+ supertype == null ? null : supertype.element;
+ while (supertype != null && !visitedClasses.contains(supertypeElement)) {
+ visitedClasses.add(supertypeElement);
+ MethodElement element = supertype.getMethod(methodName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ for (InterfaceType mixin in supertype.mixins.reversed) {
+ element = mixin.getMethod(methodName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ supertype = supertype.superclass;
+ supertypeElement = supertype == null ? null : supertype.element;
+ }
+ return null;
+ }
+
+ @override
+ PropertyAccessorElement lookUpSetter(
+ String setterName, LibraryElement library) {
+ PropertyAccessorElement element = getSetter(setterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ return lookUpSetterInSuperclass(setterName, library);
+ }
+
+ @override
+ PropertyAccessorElement lookUpSetterInSuperclass(
+ String setterName, LibraryElement library) {
+ for (InterfaceType mixin in mixins.reversed) {
+ PropertyAccessorElement element = mixin.getSetter(setterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ HashSet<ClassElement> visitedClasses = new HashSet<ClassElement>();
+ InterfaceType supertype = superclass;
+ ClassElement supertypeElement =
+ supertype == null ? null : supertype.element;
+ while (supertype != null && !visitedClasses.contains(supertypeElement)) {
+ visitedClasses.add(supertypeElement);
+ PropertyAccessorElement element = supertype.getSetter(setterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ for (InterfaceType mixin in supertype.mixins.reversed) {
+ element = mixin.getSetter(setterName);
+ if (element != null && element.isAccessibleIn(library)) {
+ return element;
+ }
+ }
+ supertype = supertype.superclass;
+ supertypeElement = supertype == null ? null : supertype.element;
+ }
+ return null;
+ }
+
+ @override
+ InterfaceTypeImpl pruned(List<FunctionTypeAliasElement> prune) {
+ if (prune == null) {
+ return this;
+ } else {
+ // There should never be a reason to prune a type that has already been
+ // pruned, since pruning is only done when expanding a function type
+ // alias, and function type aliases are always expanded by starting with
+ // base types.
+ assert(this.prunedTypedefs == null);
+ InterfaceTypeImpl result = new InterfaceTypeImpl._(element, name, prune);
+ result.typeArguments =
+ typeArguments.map((TypeImpl t) => t.pruned(prune)).toList();
+ return result;
+ }
+ }
+
+ @override
+ InterfaceTypeImpl substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes,
+ [List<FunctionTypeAliasElement> prune]) {
+ // Pruned types should only ever result from performing type variable
+ // substitution, and it doesn't make sense to substitute again after
+ // substituting once.
+ assert(this.prunedTypedefs == null);
+ if (argumentTypes.length != parameterTypes.length) {
+ throw new IllegalArgumentException(
+ "argumentTypes.length (${argumentTypes.length}) != parameterTypes.length (${parameterTypes.length})");
+ }
+ if (argumentTypes.length == 0 || typeArguments.length == 0) {
+ return this.pruned(prune);
+ }
+ List<DartType> newTypeArguments = TypeImpl.substitute(
+ typeArguments, argumentTypes, parameterTypes, prune);
+ if (JavaArrays.equals(newTypeArguments, typeArguments)) {
+ return this;
+ }
+ InterfaceTypeImpl newType = new InterfaceTypeImpl(element, prune);
+ newType.typeArguments = newTypeArguments;
+ return newType;
+ }
+
+ @override
+ InterfaceTypeImpl substitute4(List<DartType> argumentTypes) =>
+ substitute2(argumentTypes, typeArguments);
+
+ /**
+ * Compute the least upper bound of types [i] and [j], both of which are
+ * known to be interface types.
+ *
+ * In the event that the algorithm fails (which might occur due to a bug in
+ * the analyzer), `null` is returned.
+ */
+ static InterfaceType computeLeastUpperBound(
+ InterfaceType i, InterfaceType j) {
+ // compute set of supertypes
+ Set<InterfaceType> si = computeSuperinterfaceSet(i);
+ Set<InterfaceType> sj = computeSuperinterfaceSet(j);
+ // union si with i and sj with j
+ si.add(i);
+ sj.add(j);
+ // compute intersection, reference as set 's'
+ List<InterfaceType> s = _intersection(si, sj);
+ // for each element in Set s, compute the largest inheritance path to Object
+ List<int> depths = new List<int>.filled(s.length, 0);
+ int maxDepth = 0;
+ for (int n = 0; n < s.length; n++) {
+ depths[n] = computeLongestInheritancePathToObject(s[n]);
+ if (depths[n] > maxDepth) {
+ maxDepth = depths[n];
+ }
+ }
+ // ensure that the currently computed maxDepth is unique,
+ // otherwise, decrement and test for uniqueness again
+ for (; maxDepth >= 0; maxDepth--) {
+ int indexOfLeastUpperBound = -1;
+ int numberOfTypesAtMaxDepth = 0;
+ for (int m = 0; m < depths.length; m++) {
+ if (depths[m] == maxDepth) {
+ numberOfTypesAtMaxDepth++;
+ indexOfLeastUpperBound = m;
+ }
+ }
+ if (numberOfTypesAtMaxDepth == 1) {
+ return s[indexOfLeastUpperBound];
+ }
+ }
+ // Should be impossible--there should always be exactly one type with the
+ // maximum depth.
+ assert(false);
+ return null;
+ }
+
+ /**
+ * Return the length of the longest inheritance path from the given [type] to
+ * Object.
+ *
+ * See [computeLeastUpperBound].
+ */
+ static int computeLongestInheritancePathToObject(InterfaceType type) =>
+ _computeLongestInheritancePathToObject(
+ type, 0, new HashSet<ClassElement>());
+
+ /**
+ * Returns the set of all superinterfaces of the given [type].
+ *
+ * See [computeLeastUpperBound].
+ */
+ static Set<InterfaceType> computeSuperinterfaceSet(InterfaceType type) =>
+ _computeSuperinterfaceSet(type, new HashSet<InterfaceType>());
+
+ /**
+ * Return the length of the longest inheritance path from a subtype of the
+ * given [type] to Object, where the given [depth] is the length of the
+ * longest path from the subtype to this type. The set of [visitedTypes] is
+ * used to prevent infinite recursion in the case of a cyclic type structure.
+ *
+ * See [computeLongestInheritancePathToObject], and [computeLeastUpperBound].
+ */
+ static int _computeLongestInheritancePathToObject(
+ InterfaceType type, int depth, HashSet<ClassElement> visitedTypes) {
+ ClassElement classElement = type.element;
+ // Object case
+ if (classElement.supertype == null || visitedTypes.contains(classElement)) {
+ return depth;
+ }
+ int longestPath = 1;
+ try {
+ visitedTypes.add(classElement);
+ List<InterfaceType> superinterfaces = classElement.interfaces;
+ int pathLength;
+ if (superinterfaces.length > 0) {
+ // loop through each of the superinterfaces recursively calling this
+ // method and keeping track of the longest path to return
+ for (InterfaceType superinterface in superinterfaces) {
+ pathLength = _computeLongestInheritancePathToObject(
+ superinterface, depth + 1, visitedTypes);
+ if (pathLength > longestPath) {
+ longestPath = pathLength;
+ }
+ }
+ }
+ // finally, perform this same check on the super type
+ // TODO(brianwilkerson) Does this also need to add in the number of mixin
+ // classes?
+ InterfaceType supertype = classElement.supertype;
+ pathLength = _computeLongestInheritancePathToObject(
+ supertype, depth + 1, visitedTypes);
+ if (pathLength > longestPath) {
+ longestPath = pathLength;
+ }
+ } finally {
+ visitedTypes.remove(classElement);
+ }
+ return longestPath;
+ }
+
+ /**
+ * Add all of the superinterfaces of the given [type] to the given [set].
+ * Return the [set] as a convenience.
+ *
+ * See [computeSuperinterfaceSet], and [computeLeastUpperBound].
+ */
+ static Set<InterfaceType> _computeSuperinterfaceSet(
+ InterfaceType type, HashSet<InterfaceType> set) {
+ Element element = type.element;
+ if (element != null) {
+ List<InterfaceType> superinterfaces = type.interfaces;
+ for (InterfaceType superinterface in superinterfaces) {
+ if (set.add(superinterface)) {
+ _computeSuperinterfaceSet(superinterface, set);
+ }
+ }
+ InterfaceType supertype = type.superclass;
+ if (supertype != null) {
+ if (set.add(supertype)) {
+ _computeSuperinterfaceSet(supertype, set);
+ }
+ }
+ }
+ return set;
+ }
+
+ /**
+ * Return the intersection of the [first] and [second] sets of types, where
+ * intersection is based on the equality of the types themselves.
+ */
+ static List<InterfaceType> _intersection(
+ Set<InterfaceType> first, Set<InterfaceType> second) {
+ Set<InterfaceType> result = new HashSet<InterfaceType>.from(first);
+ result.retainAll(second);
+ return new List.from(result);
+ }
+}
+
+/**
+ * A label associated with a statement.
+ */
+abstract class LabelElement implements Element {
+ /**
+ * An empty list of label elements.
+ */
+ static const List<LabelElement> EMPTY_LIST = const <LabelElement>[];
+
+ /**
+ * Return the executable element in which this label is defined.
+ */
+ @override
+ ExecutableElement get enclosingElement;
+}
+
+/**
+ * A concrete implementation of a [LabelElement].
+ */
+class LabelElementImpl extends ElementImpl implements LabelElement {
+ /**
+ * An empty list of label elements.
+ */
+ @deprecated // Use LabelElement.EMPTY_LIST
+ static const List<LabelElement> EMPTY_ARRAY = const <LabelElement>[];
+
+ /**
+ * A flag indicating whether this label is associated with a `switch`
+ * statement.
+ */
+ // TODO(brianwilkerson) Make this a modifier.
+ final bool _onSwitchStatement;
+
+ /**
+ * A flag indicating whether this label is associated with a `switch` member
+ * (`case` or `default`).
+ */
+ // TODO(brianwilkerson) Make this a modifier.
+ final bool _onSwitchMember;
+
+ /**
+ * Initialize a newly created label element to have the given [name].
+ * [onSwitchStatement] should be `true` if this label is associated with a
+ * `switch` statement and [onSwitchMember] should be `true` if this label is
+ * associated with a `switch` member.
+ */
+ LabelElementImpl(
+ Identifier name, this._onSwitchStatement, this._onSwitchMember)
+ : super.forNode(name);
+
+ @override
+ ExecutableElement get enclosingElement =>
+ super.enclosingElement as ExecutableElement;
+
+ /**
+ * Return `true` if this label is associated with a `switch` member (`case` or
+ * `default`).
+ */
+ bool get isOnSwitchMember => _onSwitchMember;
+
+ /**
+ * Return `true` if this label is associated with a `switch` statement.
+ */
+ bool get isOnSwitchStatement => _onSwitchStatement;
+
+ @override
+ ElementKind get kind => ElementKind.LABEL;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitLabelElement(this);
+}
+
+/**
+ * A library.
+ */
+abstract class LibraryElement implements Element {
+ /**
+ * An empty list of library elements.
+ */
+ static const List<LibraryElement> EMPTY_LIST = const <LibraryElement>[];
+
+ /**
+ * Return the compilation unit that defines this library.
+ */
+ CompilationUnitElement get definingCompilationUnit;
+
+ /**
+ * Return the entry point for this library, or `null` if this library does not
+ * have an entry point. The entry point is defined to be a zero argument
+ * top-level function whose name is `main`.
+ */
+ FunctionElement get entryPoint;
+
+ /**
+ * Return a list containing all of the libraries that are exported from this
+ * library.
+ */
+ List<LibraryElement> get exportedLibraries;
+
+ /**
+ * The export [Namespace] of this library, `null` if it has not been
+ * computed yet.
+ */
+ Namespace get exportNamespace;
+
+ /**
+ * Return a list containing all of the exports defined in this library.
+ */
+ List<ExportElement> get exports;
+
+ /**
+ * Return `true` if the defining compilation unit of this library contains at
+ * least one import directive whose URI uses the "dart-ext" scheme.
+ */
+ bool get hasExtUri;
+
+ /**
+ * Return `true` if this library defines a top-level function named
+ * `loadLibrary`.
+ */
+ bool get hasLoadLibraryFunction;
+
+ /**
+ * Return a list containing all of the libraries that are imported into this
+ * library. This includes all of the libraries that are imported using a
+ * prefix (also available through the prefixes returned by [getPrefixes]) and
+ * those that are imported without a prefix.
+ */
+ List<LibraryElement> get importedLibraries;
+
+ /**
+ * Return a list containing all of the imports defined in this library.
+ */
+ List<ImportElement> get imports;
+
+ /**
+ * Return `true` if this library is an application that can be run in the
+ * browser.
+ */
+ bool get isBrowserApplication;
+
+ /**
+ * Return `true` if this library is the dart:core library.
+ */
+ bool get isDartCore;
+
+ /**
+ * Return `true` if this library is part of the SDK.
+ */
+ bool get isInSdk;
+
+ /**
+ * Return the element representing the synthetic function `loadLibrary` that
+ * is implicitly defined for this library if the library is imported using a
+ * deferred import.
+ */
+ FunctionElement get loadLibraryFunction;
+
+ /**
+ * Return a list containing all of the compilation units that are included in
+ * this library using a `part` directive. This does not include the defining
+ * compilation unit that contains the `part` directives.
+ */
+ List<CompilationUnitElement> get parts;
+
+ /**
+ * Return a list containing elements for each of the prefixes used to `import`
+ * libraries into this library. Each prefix can be used in more than one
+ * `import` directive.
+ */
+ List<PrefixElement> get prefixes;
+
+ /**
+ * The public [Namespace] of this library, `null` if it has not been
+ * computed yet.
+ */
+ Namespace get publicNamespace;
+
+ /**
+ * Return a list containing all of the compilation units this library consists
+ * of. This includes the defining compilation unit and units included using
+ * the `part` directive.
+ */
+ List<CompilationUnitElement> get units;
+
+ /**
+ * Return a list containing all directly and indirectly imported libraries.
+ */
+ List<LibraryElement> get visibleLibraries;
+
+ /**
+ * Return a list containing all of the imports that share the given [prefix],
+ * or an empty array if there are no such imports.
+ */
+ List<ImportElement> getImportsWithPrefix(PrefixElement prefix);
+
+ /**
+ * Return the class defined in this library that has the given [name], or
+ * `null` if this library does not define a class with the given name.
+ */
+ ClassElement getType(String className);
+
+ /**
+ * Return `true` if this library is up to date with respect to the given
+ * [timeStamp]. If any transitively referenced Source is newer than the time
+ * stamp, this method returns false.
+ */
+ bool isUpToDate(int timeStamp);
+}
+
+/**
+ * A concrete implementation of a [LibraryElement].
+ */
+class LibraryElementImpl extends ElementImpl implements LibraryElement {
+ /**
+ * An empty list of library elements.
+ */
+ @deprecated // Use LibraryElement.EMPTY_LIST
+ static const List<LibraryElement> EMPTY_ARRAY = const <LibraryElement>[];
+
+ /**
+ * The analysis context in which this library is defined.
+ */
+ final AnalysisContext context;
+
+ /**
+ * The compilation unit that defines this library.
+ */
+ CompilationUnitElement _definingCompilationUnit;
+
+ /**
+ * The entry point for this library, or `null` if this library does not have
+ * an entry point.
+ */
+ FunctionElement entryPoint;
+
+ /**
+ * A list containing specifications of all of the imports defined in this
+ * library.
+ */
+ List<ImportElement> _imports = ImportElement.EMPTY_LIST;
+
+ /**
+ * A list containing specifications of all of the exports defined in this
+ * library.
+ */
+ List<ExportElement> _exports = ExportElement.EMPTY_LIST;
+
+ /**
+ * A list containing all of the compilation units that are included in this
+ * library using a `part` directive.
+ */
+ List<CompilationUnitElement> _parts = CompilationUnitElement.EMPTY_LIST;
+
+ /**
+ * The element representing the synthetic function `loadLibrary` that is
+ * defined for this library, or `null` if the element has not yet been created.
+ */
+ FunctionElement _loadLibraryFunction;
+
+ /**
+ * The export [Namespace] of this library, `null` if it has not been
+ * computed yet.
+ */
+ @override
+ Namespace exportNamespace;
+
+ /**
+ * The public [Namespace] of this library, `null` if it has not been
+ * computed yet.
+ */
+ @override
+ Namespace publicNamespace;
+
+ /**
+ * Initialize a newly created library element in the given [context] to have
+ * the given [name] and [offset].
+ */
+ LibraryElementImpl(this.context, String name, int offset)
+ : super(name, offset);
+
+ /**
+ * Initialize a newly created library element in the given [context] to have
+ * the given [name].
+ */
+ LibraryElementImpl.forNode(this.context, LibraryIdentifier name)
+ : super.forNode(name);
+
+ @override
+ CompilationUnitElement get definingCompilationUnit =>
+ _definingCompilationUnit;
+
+ /**
+ * Set the compilation unit that defines this library to the given compilation
+ * [unit].
+ */
+ void set definingCompilationUnit(CompilationUnitElement unit) {
+ assert((unit as CompilationUnitElementImpl).librarySource == unit.source);
+ (unit as CompilationUnitElementImpl).enclosingElement = this;
+ this._definingCompilationUnit = unit;
+ }
+
+ @override
+ List<LibraryElement> get exportedLibraries {
+ HashSet<LibraryElement> libraries = new HashSet<LibraryElement>();
+ for (ExportElement element in _exports) {
+ LibraryElement library = element.exportedLibrary;
+ if (library != null) {
+ libraries.add(library);
+ }
+ }
+ return new List.from(libraries);
+ }
+
+ @override
+ List<ExportElement> get exports => _exports;
+
+ /**
+ * Set the specifications of all of the exports defined in this library to the
+ * given list of [exports].
+ */
+ void set exports(List<ExportElement> exports) {
+ for (ExportElement exportElement in exports) {
+ (exportElement as ExportElementImpl).enclosingElement = this;
+ }
+ this._exports = exports;
+ }
+
+ @override
+ bool get hasExtUri => hasModifier(Modifier.HAS_EXT_URI);
+
+ /**
+ * Set whether this library has an import of a "dart-ext" URI.
+ */
+ void set hasExtUri(bool hasExtUri) {
+ setModifier(Modifier.HAS_EXT_URI, hasExtUri);
+ }
+
+ @override
+ int get hashCode => _definingCompilationUnit.hashCode;
+
+ @override
+ bool get hasLoadLibraryFunction {
+ if (_definingCompilationUnit.hasLoadLibraryFunction) {
+ return true;
+ }
+ for (int i = 0; i < _parts.length; i++) {
+ if (_parts[i].hasLoadLibraryFunction) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ @override
+ String get identifier => _definingCompilationUnit.source.encoding;
+
+ @override
+ List<LibraryElement> get importedLibraries {
+ HashSet<LibraryElement> libraries = new HashSet<LibraryElement>();
+ for (ImportElement element in _imports) {
+ LibraryElement library = element.importedLibrary;
+ if (library != null) {
+ libraries.add(library);
+ }
+ }
+ return new List.from(libraries);
+ }
+
+ @override
+ List<ImportElement> get imports => _imports;
+
+ /**
+ * Set the specifications of all of the imports defined in this library to the
+ * given list of [imports].
+ */
+ void set imports(List<ImportElement> imports) {
+ for (ImportElement importElement in imports) {
+ (importElement as ImportElementImpl).enclosingElement = this;
+ PrefixElementImpl prefix = importElement.prefix as PrefixElementImpl;
+ if (prefix != null) {
+ prefix.enclosingElement = this;
+ }
+ }
+ this._imports = imports;
+ }
+
+ @override
+ bool get isBrowserApplication =>
+ entryPoint != null && isOrImportsBrowserLibrary;
+
+ @override
+ bool get isDartCore => name == "dart.core";
+
+ @override
+ bool get isInSdk =>
+ StringUtilities.startsWith5(name, 0, 0x64, 0x61, 0x72, 0x74, 0x2E);
+
+ /**
+ * Return `true` if the receiver directly or indirectly imports the
+ * 'dart:html' libraries.
+ */
+ bool get isOrImportsBrowserLibrary {
+ List<LibraryElement> visited = new List<LibraryElement>();
+ Source htmlLibSource = context.sourceFactory.forUri(DartSdk.DART_HTML);
+ visited.add(this);
+ for (int index = 0; index < visited.length; index++) {
+ LibraryElement library = visited[index];
+ Source source = library.definingCompilationUnit.source;
+ if (source == htmlLibSource) {
+ return true;
+ }
+ for (LibraryElement importedLibrary in library.importedLibraries) {
+ if (!visited.contains(importedLibrary)) {
+ visited.add(importedLibrary);
+ }
+ }
+ for (LibraryElement exportedLibrary in library.exportedLibraries) {
+ if (!visited.contains(exportedLibrary)) {
+ visited.add(exportedLibrary);
+ }
+ }
+ }
+ return false;
+ }
+
+ @override
+ ElementKind get kind => ElementKind.LIBRARY;
+
+ @override
+ LibraryElement get library => this;
+
+ @override
+ FunctionElement get loadLibraryFunction {
+ if (_loadLibraryFunction == null) {
+ FunctionElementImpl function =
+ new FunctionElementImpl(FunctionElement.LOAD_LIBRARY_NAME, -1);
+ function.synthetic = true;
+ function.enclosingElement = this;
+ function.returnType = loadLibraryReturnType;
+ function.type = new FunctionTypeImpl(function);
+ _loadLibraryFunction = function;
+ }
+ return _loadLibraryFunction;
+ }
+
+ /**
+ * Return the object representing the type 'Future' from the 'dart:async'
+ * library, or the type 'void' if the type 'Future' cannot be accessed.
+ */
+ DartType get loadLibraryReturnType {
+ try {
+ Source asyncSource = context.sourceFactory.forUri(DartSdk.DART_ASYNC);
+ if (asyncSource == null) {
+ AnalysisEngine.instance.logger
+ .logError("Could not create a source for dart:async");
+ return VoidTypeImpl.instance;
+ }
+ LibraryElement asyncElement = context.computeLibraryElement(asyncSource);
+ if (asyncElement == null) {
+ AnalysisEngine.instance.logger
+ .logError("Could not build the element model for dart:async");
+ return VoidTypeImpl.instance;
+ }
+ ClassElement futureElement = asyncElement.getType("Future");
+ if (futureElement == null) {
+ AnalysisEngine.instance.logger
+ .logError("Could not find type Future in dart:async");
+ return VoidTypeImpl.instance;
+ }
+ InterfaceType futureType = futureElement.type;
+ return futureType.substitute4(<DartType>[DynamicTypeImpl.instance]);
+ } on AnalysisException catch (exception, stackTrace) {
+ AnalysisEngine.instance.logger.logError(
+ "Could not build the element model for dart:async",
+ new CaughtException(exception, stackTrace));
+ return VoidTypeImpl.instance;
+ }
+ }
+
+ @override
+ List<CompilationUnitElement> get parts => _parts;
+
+ /**
+ * Set the compilation units that are included in this library using a `part`
+ * directive to the given list of [parts].
+ */
+ void set parts(List<CompilationUnitElement> parts) {
+ for (CompilationUnitElement compilationUnit in parts) {
+ assert((compilationUnit as CompilationUnitElementImpl).librarySource ==
+ source);
+ (compilationUnit as CompilationUnitElementImpl).enclosingElement = this;
+ }
+ this._parts = parts;
+ }
+
+ @override
+ List<PrefixElement> get prefixes {
+ HashSet<PrefixElement> prefixes = new HashSet<PrefixElement>();
+ for (ImportElement element in _imports) {
+ PrefixElement prefix = element.prefix;
+ if (prefix != null) {
+ prefixes.add(prefix);
+ }
+ }
+ return new List.from(prefixes);
+ }
+
+ @override
+ Source get source {
+ if (_definingCompilationUnit == null) {
+ return null;
+ }
+ return _definingCompilationUnit.source;
+ }
+
+ @override
+ List<CompilationUnitElement> get units {
+ List<CompilationUnitElement> units = new List<CompilationUnitElement>();
+ units.add(_definingCompilationUnit);
+ units.addAll(_parts);
+ return units;
+ }
+
+ @override
+ List<LibraryElement> get visibleLibraries {
+ Set<LibraryElement> visibleLibraries = new Set();
+ _addVisibleLibraries(visibleLibraries, false);
+ return new List.from(visibleLibraries);
+ }
+
+ @override
+ bool operator ==(Object object) => object is LibraryElementImpl &&
+ _definingCompilationUnit == object.definingCompilationUnit;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitLibraryElement(this);
+
+ @override
+ ElementImpl getChild(String identifier) {
+ if ((_definingCompilationUnit as CompilationUnitElementImpl).identifier ==
+ identifier) {
+ return _definingCompilationUnit as CompilationUnitElementImpl;
+ }
+ for (CompilationUnitElement part in _parts) {
+ if ((part as CompilationUnitElementImpl).identifier == identifier) {
+ return part as CompilationUnitElementImpl;
+ }
+ }
+ for (ImportElement importElement in _imports) {
+ if ((importElement as ImportElementImpl).identifier == identifier) {
+ return importElement as ImportElementImpl;
+ }
+ }
+ for (ExportElement exportElement in _exports) {
+ if ((exportElement as ExportElementImpl).identifier == identifier) {
+ return exportElement as ExportElementImpl;
+ }
+ }
+ return null;
+ }
+
+ @override
+ List<ImportElement> getImportsWithPrefix(PrefixElement prefixElement) {
+ int count = _imports.length;
+ List<ImportElement> importList = new List<ImportElement>();
+ for (int i = 0; i < count; i++) {
+ if (identical(_imports[i].prefix, prefixElement)) {
+ importList.add(_imports[i]);
+ }
+ }
+ return importList;
+ }
+
+ @override
+ ClassElement getType(String className) {
+ ClassElement type = _definingCompilationUnit.getType(className);
+ if (type != null) {
+ return type;
+ }
+ for (CompilationUnitElement part in _parts) {
+ type = part.getType(className);
+ if (type != null) {
+ return type;
+ }
+ }
+ return null;
+ }
+
+ @override
+ bool isUpToDate(int timeStamp) {
+ Set<LibraryElement> visitedLibraries = new Set();
+ return _safeIsUpToDate(this, timeStamp, visitedLibraries);
+ }
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ super.visitChildren(visitor);
+ safelyVisitChild(_definingCompilationUnit, visitor);
+ safelyVisitChildren(_exports, visitor);
+ safelyVisitChildren(_imports, visitor);
+ safelyVisitChildren(_parts, visitor);
+ }
+
+ /**
+ * Recursively fills set of visible libraries for
+ * [getVisibleElementsLibraries].
+ */
+ void _addVisibleLibraries(
+ Set<LibraryElement> visibleLibraries, bool includeExports) {
+ // maybe already processed
+ if (!visibleLibraries.add(this)) {
+ return;
+ }
+ // add imported libraries
+ for (ImportElement importElement in _imports) {
+ LibraryElement importedLibrary = importElement.importedLibrary;
+ if (importedLibrary != null) {
+ (importedLibrary as LibraryElementImpl)
+ ._addVisibleLibraries(visibleLibraries, true);
+ }
+ }
+ // add exported libraries
+ if (includeExports) {
+ for (ExportElement exportElement in _exports) {
+ LibraryElement exportedLibrary = exportElement.exportedLibrary;
+ if (exportedLibrary != null) {
+ (exportedLibrary as LibraryElementImpl)
+ ._addVisibleLibraries(visibleLibraries, true);
+ }
+ }
+ }
+ }
+
+ /**
+ * Return `true` if the given [library] is up to date with respect to the
+ * given [timeStamp]. The set of [visitedLibraries] is used to prevent
+ * infinite recusion in the case of mutually dependent libraries.
+ */
+ static bool _safeIsUpToDate(LibraryElement library, int timeStamp,
+ Set<LibraryElement> visitedLibraries) {
+ if (!visitedLibraries.contains(library)) {
+ visitedLibraries.add(library);
+ AnalysisContext context = library.context;
+ // Check the defining compilation unit.
+ if (timeStamp <
+ context
+ .getModificationStamp(library.definingCompilationUnit.source)) {
+ return false;
+ }
+ // Check the parted compilation units.
+ for (CompilationUnitElement element in library.parts) {
+ if (timeStamp < context.getModificationStamp(element.source)) {
+ return false;
+ }
+ }
+ // Check the imported libraries.
+ for (LibraryElement importedLibrary in library.importedLibraries) {
+ if (!_safeIsUpToDate(importedLibrary, timeStamp, visitedLibraries)) {
+ return false;
+ }
+ }
+ // Check the exported libraries.
+ for (LibraryElement exportedLibrary in library.exportedLibraries) {
+ if (!_safeIsUpToDate(exportedLibrary, timeStamp, visitedLibraries)) {
+ return false;
+ }
+ }
+ }
+ return true;
+ }
+}
+
+/**
+ * An element that can be (but are not required to be) defined within a method
+ * or function (an [ExecutableElement]).
+ */
+abstract class LocalElement implements Element {
+ /**
+ * Return a source range that covers the approximate portion of the source in
+ * which the name of this element is visible, or `null` if there is no single
+ * range of characters within which the element name is visible.
+ *
+ * * For a local variable, this includes everything from the end of the
+ * variable's initializer to the end of the block that encloses the variable
+ * declaration.
+ * * For a parameter, this includes the body of the method or function that
+ * declares the parameter.
+ * * For a local function, this includes everything from the beginning of the
+ * function's body to the end of the block that encloses the function
+ * declaration.
+ * * For top-level functions, `null` will be returned because they are
+ * potentially visible in multiple sources.
+ */
+ SourceRange get visibleRange;
+}
+
+/**
+ * A local variable.
+ */
+abstract class LocalVariableElement implements LocalElement, VariableElement {
+ /**
+ * An empty list of field elements.
+ */
+ static const List<LocalVariableElement> EMPTY_LIST =
+ const <LocalVariableElement>[];
+
+ /**
+ * Return the resolved [VariableDeclaration] node that declares this
+ * [LocalVariableElement].
+ *
+ * This method is expensive, because resolved AST might be evicted from cache,
+ * so parsing and resolving will be performed.
+ */
+ @override
+ VariableDeclaration computeNode();
+}
+
+/**
+ * A concrete implementation of a [LocalVariableElement].
+ */
+class LocalVariableElementImpl extends VariableElementImpl
+ with PotentiallyConstVariableElement
+ implements LocalVariableElement {
+ /**
+ * An empty list of field elements.
+ */
+ @deprecated // Use LocalVariableElement.EMPTY_LIST
+ static const List<LocalVariableElement> EMPTY_ARRAY =
+ const <LocalVariableElement>[];
+
+ /**
+ * The offset to the beginning of the visible range for this element.
+ */
+ int _visibleRangeOffset = 0;
+
+ /**
+ * The length of the visible range for this element, or `-1` if this element
+ * does not have a visible range.
+ */
+ int _visibleRangeLength = -1;
+
+ /**
+ * Initialize a newly created method element to have the given [name] and
+ * [offset].
+ */
+ LocalVariableElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created local variable element to have the given [name].
+ */
+ LocalVariableElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ @override
+ String get identifier {
+ int enclosingOffset =
+ enclosingElement != null ? enclosingElement.nameOffset : 0;
+ int delta = nameOffset - enclosingOffset;
+ return '${super.identifier}@$delta';
+ }
+
+ @override
+ bool get isPotentiallyMutatedInClosure =>
+ hasModifier(Modifier.POTENTIALLY_MUTATED_IN_CONTEXT);
+
+ @override
+ bool get isPotentiallyMutatedInScope =>
+ hasModifier(Modifier.POTENTIALLY_MUTATED_IN_SCOPE);
+
+ @override
+ ElementKind get kind => ElementKind.LOCAL_VARIABLE;
+
+ @override
+ SourceRange get visibleRange {
+ if (_visibleRangeLength < 0) {
+ return null;
+ }
+ return new SourceRange(_visibleRangeOffset, _visibleRangeLength);
+ }
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitLocalVariableElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ buffer.write(type);
+ buffer.write(" ");
+ buffer.write(displayName);
+ }
+
+ @override
+ VariableDeclaration computeNode() =>
+ getNodeMatching((node) => node is VariableDeclaration);
+
+ /**
+ * Specifies that this variable is potentially mutated somewhere in closure.
+ */
+ void markPotentiallyMutatedInClosure() {
+ setModifier(Modifier.POTENTIALLY_MUTATED_IN_CONTEXT, true);
+ }
+
+ /**
+ * Specifies that this variable is potentially mutated somewhere in its scope.
+ */
+ void markPotentiallyMutatedInScope() {
+ setModifier(Modifier.POTENTIALLY_MUTATED_IN_SCOPE, true);
+ }
+
+ /**
+ * Set the visible range for this element to the range starting at the given
+ * [offset] with the given [length].
+ */
+ void setVisibleRange(int offset, int length) {
+ _visibleRangeOffset = offset;
+ _visibleRangeLength = length;
+ }
+}
+
+/**
+ * An element defined in a parameterized type where the values of the type
+ * parameters are known.
+ */
+abstract class Member implements Element {
+ /**
+ * The element on which the parameterized element was created.
+ */
+ final Element _baseElement;
+
+ /**
+ * The type in which the element is defined.
+ */
+ final ParameterizedType _definingType;
+
+ /**
+ * Initialize a newly created element to represent a constructor, based on the
+ * [baseElement], defined by the [definingType].
+ */
+ Member(this._baseElement, this._definingType);
+
+ /**
+ * Return the element on which the parameterized element was created.
+ */
+ Element get baseElement => _baseElement;
+
+ @override
+ AnalysisContext get context => _baseElement.context;
+
+ /**
+ * Return the type in which the element is defined.
+ */
+ ParameterizedType get definingType => _definingType;
+
+ @override
+ String get displayName => _baseElement.displayName;
+
+ int get id => _baseElement.id;
+
+ @override
+ bool get isDeprecated => _baseElement.isDeprecated;
+
+ @override
+ bool get isOverride => _baseElement.isOverride;
+
+ @override
+ bool get isPrivate => _baseElement.isPrivate;
+
+ @override
+ bool get isPublic => _baseElement.isPublic;
+
+ @override
+ bool get isSynthetic => _baseElement.isSynthetic;
+
+ @override
+ ElementKind get kind => _baseElement.kind;
+
+ @override
+ LibraryElement get library => _baseElement.library;
+
+ @override
+ ElementLocation get location => _baseElement.location;
+
+ @override
+ List<ElementAnnotation> get metadata => _baseElement.metadata;
+
+ @override
+ String get name => _baseElement.name;
+
+ @override
+ int get nameOffset => _baseElement.nameOffset;
+
+ @deprecated
+ @override
+ AstNode get node => computeNode();
+
+ @override
+ Source get source => _baseElement.source;
+
+ @override
+ CompilationUnit get unit => _baseElement.unit;
+
+ @override
+ String computeDocumentationComment() =>
+ _baseElement.computeDocumentationComment();
+
+ @override
+ AstNode computeNode() => _baseElement.computeNode();
+
+ @override
+ Element getAncestor(Predicate<Element> predicate) =>
+ baseElement.getAncestor(predicate);
+
+ @override
+ String getExtendedDisplayName(String shortName) =>
+ _baseElement.getExtendedDisplayName(shortName);
+
+ @override
+ bool isAccessibleIn(LibraryElement library) =>
+ _baseElement.isAccessibleIn(library);
+
+ /**
+ * If the given [child] is not `null`, use the given [visitor] to visit it.
+ */
+ void safelyVisitChild(Element child, ElementVisitor visitor) {
+ // TODO(brianwilkerson) Make this private
+ if (child != null) {
+ child.accept(visitor);
+ }
+ }
+
+ /**
+ * Use the given [visitor] to visit all of the [children].
+ */
+ void safelyVisitChildren(List<Element> children, ElementVisitor visitor) {
+ // TODO(brianwilkerson) Make this private
+ if (children != null) {
+ for (Element child in children) {
+ child.accept(visitor);
+ }
+ }
+ }
+
+ /**
+ * Return the type that results from replacing the type parameters in the
+ * given [type] with the type arguments associated with this member.
+ */
+ DartType substituteFor(DartType type) {
+ if (type == null) {
+ return null;
+ }
+ List<DartType> argumentTypes = _definingType.typeArguments;
+ List<DartType> parameterTypes =
+ TypeParameterTypeImpl.getTypes(_definingType.typeParameters);
+ return type.substitute2(argumentTypes, parameterTypes);
+ }
+
+ /**
+ * Return the list of types that results from replacing the type parameters in
+ * the given [types] with the type arguments associated with this member.
+ */
+ List<InterfaceType> substituteFor2(List<InterfaceType> types) {
+ int count = types.length;
+ List<InterfaceType> substitutedTypes = new List<InterfaceType>(count);
+ for (int i = 0; i < count; i++) {
+ substitutedTypes[i] = substituteFor(types[i]);
+ }
+ return substitutedTypes;
+ }
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ // There are no children to visit
+ }
+}
+
+/**
+ * An element that represents a method defined within a type.
+ */
+abstract class MethodElement implements ClassMemberElement, ExecutableElement {
+ /**
+ * An empty list of method elements.
+ */
+ static const List<MethodElement> EMPTY_LIST = const <MethodElement>[];
+
+ /**
+ * Return the resolved [MethodDeclaration] node that declares this
+ * [MethodElement].
+ *
+ * This method is expensive, because resolved AST might be evicted from cache,
+ * so parsing and resolving will be performed.
+ */
+ @override
+ MethodDeclaration computeNode();
+}
+
+/**
+ * A concrete implementation of a [MethodElement].
+ */
+class MethodElementImpl extends ExecutableElementImpl implements MethodElement {
+ /**
+ * An empty list of method elements.
+ */
+ @deprecated // Use MethodElement.EMPTY_LIST
+ static const List<MethodElement> EMPTY_ARRAY = const <MethodElement>[];
+
+ /**
+ * Initialize a newly created method element to have the given [name] at the
+ * given [offset].
+ */
+ MethodElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created method element to have the given [name].
+ */
+ MethodElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ /**
+ * Set whether this method is abstract.
+ */
+ void set abstract(bool isAbstract) {
+ setModifier(Modifier.ABSTRACT, isAbstract);
+ }
+
+ @override
+ String get displayName {
+ String displayName = super.displayName;
+ if ("unary-" == displayName) {
+ return "-";
+ }
+ return displayName;
+ }
+
+ @override
+ ClassElement get enclosingElement => super.enclosingElement as ClassElement;
+
+ @override
+ bool get isOperator {
+ String name = displayName;
+ if (name.isEmpty) {
+ return false;
+ }
+ int first = name.codeUnitAt(0);
+ return !((0x61 <= first && first <= 0x7A) ||
+ (0x41 <= first && first <= 0x5A) ||
+ first == 0x5F ||
+ first == 0x24);
+ }
+
+ @override
+ bool get isStatic => hasModifier(Modifier.STATIC);
+
+ @override
+ ElementKind get kind => ElementKind.METHOD;
+
+ @override
+ String get name {
+ String name = super.name;
+ if (isOperator && name == "-") {
+ if (parameters.length == 0) {
+ return "unary-";
+ }
+ }
+ return super.name;
+ }
+
+ /**
+ * Set whether this method is static.
+ */
+ void set static(bool isStatic) {
+ setModifier(Modifier.STATIC, isStatic);
+ }
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitMethodElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ buffer.write(displayName);
+ super.appendTo(buffer);
+ }
+
+ @override
+ MethodDeclaration computeNode() =>
+ getNodeMatching((node) => node is MethodDeclaration);
+}
+
+/**
+ * A method element defined in a parameterized type where the values of the type
+ * parameters are known.
+ */
+class MethodMember extends ExecutableMember implements MethodElement {
+ /**
+ * Initialize a newly created element to represent a constructor, based on the
+ * [baseElement], defined by the [definingType].
+ */
+ MethodMember(MethodElement baseElement, InterfaceType definingType)
+ : super(baseElement, definingType);
+
+ @override
+ MethodElement get baseElement => super.baseElement as MethodElement;
+
+ @override
+ ClassElement get enclosingElement => baseElement.enclosingElement;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitMethodElement(this);
+
+ @override
+ MethodDeclaration computeNode() => baseElement.computeNode();
+
+ @override
+ String toString() {
+ MethodElement baseElement = this.baseElement;
+ List<ParameterElement> parameters = this.parameters;
+ FunctionType type = this.type;
+ StringBuffer buffer = new StringBuffer();
+ buffer.write(baseElement.enclosingElement.displayName);
+ buffer.write(".");
+ buffer.write(baseElement.displayName);
+ buffer.write("(");
+ int parameterCount = parameters.length;
+ for (int i = 0; i < parameterCount; i++) {
+ if (i > 0) {
+ buffer.write(", ");
+ }
+ buffer.write(parameters[i]);
+ }
+ buffer.write(")");
+ if (type != null) {
+ buffer.write(Element.RIGHT_ARROW);
+ buffer.write(type.returnType);
+ }
+ return buffer.toString();
+ }
+
+ /**
+ * If the given [method]'s type is different when any type parameters from the
+ * defining type's declaration are replaced with the actual type arguments
+ * from the [definingType], create a method member representing the given
+ * method. Return the member that was created, or the base method if no member
+ * was created.
+ */
+ static MethodElement from(MethodElement method, InterfaceType definingType) {
+ if (method == null || definingType.typeArguments.length == 0) {
+ return method;
+ }
+ FunctionType baseType = method.type;
+ List<DartType> argumentTypes = definingType.typeArguments;
+ List<DartType> parameterTypes = definingType.element.type.typeArguments;
+ FunctionType substitutedType =
+ baseType.substitute2(argumentTypes, parameterTypes);
+ if (baseType == substitutedType) {
+ return method;
+ }
+ // TODO(brianwilkerson) Consider caching the substituted type in the
+ // instance. It would use more memory but speed up some operations.
+ // We need to see how often the type is being re-computed.
+ return new MethodMember(method, definingType);
+ }
+}
+
+/**
+ * The enumeration `Modifier` defines constants for all of the modifiers defined
+ * by the Dart language and for a few additional flags that are useful.
+ */
+class Modifier extends Enum<Modifier> {
+ /**
+ * Indicates that the modifier 'abstract' was applied to the element.
+ */
+ static const Modifier ABSTRACT = const Modifier('ABSTRACT', 0);
+
+ /**
+ * Indicates that an executable element has a body marked as being
+ * asynchronous.
+ */
+ static const Modifier ASYNCHRONOUS = const Modifier('ASYNCHRONOUS', 1);
+
+ /**
+ * Indicates that the modifier 'const' was applied to the element.
+ */
+ static const Modifier CONST = const Modifier('CONST', 2);
+
+ /**
+ * Indicates that the import element represents a deferred library.
+ */
+ static const Modifier DEFERRED = const Modifier('DEFERRED', 3);
+
+ /**
+ * Indicates that a class element was defined by an enum declaration.
+ */
+ static const Modifier ENUM = const Modifier('ENUM', 4);
+
+ /**
+ * Indicates that a class element was defined by an enum declaration.
+ */
+ static const Modifier EXTERNAL = const Modifier('EXTERNAL', 5);
+
+ /**
+ * Indicates that the modifier 'factory' was applied to the element.
+ */
+ static const Modifier FACTORY = const Modifier('FACTORY', 6);
+
+ /**
+ * Indicates that the modifier 'final' was applied to the element.
+ */
+ static const Modifier FINAL = const Modifier('FINAL', 7);
+
+ /**
+ * Indicates that an executable element has a body marked as being a
+ * generator.
+ */
+ static const Modifier GENERATOR = const Modifier('GENERATOR', 8);
+
+ /**
+ * Indicates that the pseudo-modifier 'get' was applied to the element.
+ */
+ static const Modifier GETTER = const Modifier('GETTER', 9);
+
+ /**
+ * A flag used for libraries indicating that the defining compilation unit
+ * contains at least one import directive whose URI uses the "dart-ext"
+ * scheme.
+ */
+ static const Modifier HAS_EXT_URI = const Modifier('HAS_EXT_URI', 10);
+
+ /**
+ * Indicates that the associated element did not have an explicit type
+ * associated with it. If the element is an [ExecutableElement], then the
+ * type being referred to is the return type.
+ */
+ static const Modifier IMPLICIT_TYPE = const Modifier('IMPLICIT_TYPE', 11);
+
+ /**
+ * Indicates that a class can validly be used as a mixin.
+ */
+ static const Modifier MIXIN = const Modifier('MIXIN', 12);
+
+ /**
+ * Indicates that a class is a mixin application.
+ */
+ static const Modifier MIXIN_APPLICATION =
+ const Modifier('MIXIN_APPLICATION', 13);
+
+ /**
+ * Indicates that the value of a parameter or local variable might be mutated
+ * within the context.
+ */
+ static const Modifier POTENTIALLY_MUTATED_IN_CONTEXT =
+ const Modifier('POTENTIALLY_MUTATED_IN_CONTEXT', 14);
+
+ /**
+ * Indicates that the value of a parameter or local variable might be mutated
+ * within the scope.
+ */
+ static const Modifier POTENTIALLY_MUTATED_IN_SCOPE =
+ const Modifier('POTENTIALLY_MUTATED_IN_SCOPE', 15);
+
+ /**
+ * Indicates that a class contains an explicit reference to 'super'.
+ */
+ static const Modifier REFERENCES_SUPER =
+ const Modifier('REFERENCES_SUPER', 16);
+
+ /**
+ * Indicates that the pseudo-modifier 'set' was applied to the element.
+ */
+ static const Modifier SETTER = const Modifier('SETTER', 17);
+
+ /**
+ * Indicates that the modifier 'static' was applied to the element.
+ */
+ static const Modifier STATIC = const Modifier('STATIC', 18);
+
+ /**
+ * Indicates that the element does not appear in the source code but was
+ * implicitly created. For example, if a class does not define any
+ * constructors, an implicit zero-argument constructor will be created and it
+ * will be marked as being synthetic.
+ */
+ static const Modifier SYNTHETIC = const Modifier('SYNTHETIC', 19);
+
+ static const List<Modifier> values = const [
+ ABSTRACT,
+ ASYNCHRONOUS,
+ CONST,
+ DEFERRED,
+ ENUM,
+ EXTERNAL,
+ FACTORY,
+ FINAL,
+ GENERATOR,
+ GETTER,
+ HAS_EXT_URI,
+ IMPLICIT_TYPE,
+ MIXIN,
+ MIXIN_APPLICATION,
+ POTENTIALLY_MUTATED_IN_CONTEXT,
+ POTENTIALLY_MUTATED_IN_SCOPE,
+ REFERENCES_SUPER,
+ SETTER,
+ STATIC,
+ SYNTHETIC
+ ];
+
+ const Modifier(String name, int ordinal) : super(name, ordinal);
+}
+
+/**
+ * A pseudo-element that represents multiple elements defined within a single
+ * scope that have the same name. This situation is not allowed by the language,
+ * so objects implementing this interface always represent an error. As a
+ * result, most of the normal operations on elements do not make sense and will
+ * return useless results.
+ */
+abstract class MultiplyDefinedElement implements Element {
+ /**
+ * Return a list containing all of the elements that were defined within the
+ * scope to have the same name.
+ */
+ List<Element> get conflictingElements;
+
+ /**
+ * Return the type of this element as the dynamic type.
+ */
+ DartType get type;
+}
+
+/**
+ * A concrete implementation of a [MultiplyDefinedElement].
+ */
+class MultiplyDefinedElementImpl implements MultiplyDefinedElement {
+ /**
+ * The unique integer identifier of this element.
+ */
+ final int id = ElementImpl._NEXT_ID++;
+
+ /**
+ * The analysis context in which the multiply defined elements are defined.
+ */
+ final AnalysisContext context;
+
+ /**
+ * The name of the conflicting elements.
+ */
+ String _name;
+
+ /**
+ * A list containing all of the elements that conflict.
+ */
+ final List<Element> conflictingElements;
+
+ /**
+ * Initialize a newly created element in the given [context] to represent a
+ * list of [conflictingElements].
+ */
+ MultiplyDefinedElementImpl(this.context, this.conflictingElements) {
+ _name = conflictingElements[0].name;
+ }
+
+ @override
+ String get displayName => _name;
+
+ @override
+ Element get enclosingElement => null;
+
+ @override
+ bool get isDeprecated => false;
+
+ @override
+ bool get isOverride => false;
+
+ @override
+ bool get isPrivate {
+ String name = displayName;
+ if (name == null) {
+ return false;
+ }
+ return Identifier.isPrivateName(name);
+ }
+
+ @override
+ bool get isPublic => !isPrivate;
+
+ @override
+ bool get isSynthetic => true;
+
+ @override
+ ElementKind get kind => ElementKind.ERROR;
+
+ @override
+ LibraryElement get library => null;
+
+ @override
+ ElementLocation get location => null;
+
+ @override
+ List<ElementAnnotation> get metadata => ElementAnnotation.EMPTY_LIST;
+
+ @override
+ String get name => _name;
+
+ @override
+ int get nameOffset => -1;
+
+ @deprecated
+ @override
+ AstNode get node => null;
+
+ @override
+ Source get source => null;
+
+ @override
+ DartType get type => DynamicTypeImpl.instance;
+
+ @override
+ CompilationUnit get unit => null;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitMultiplyDefinedElement(this);
+
+ @override
+ String computeDocumentationComment() => null;
+
+ @override
+ AstNode computeNode() => null;
+
+ @override
+ Element getAncestor(Predicate<Element> predicate) => null;
+
+ @override
+ String getExtendedDisplayName(String shortName) {
+ if (shortName != null) {
+ return shortName;
+ }
+ return displayName;
+ }
+
+ @override
+ bool isAccessibleIn(LibraryElement library) {
+ for (Element element in conflictingElements) {
+ if (element.isAccessibleIn(library)) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ @override
+ String toString() {
+ StringBuffer buffer = new StringBuffer();
+ buffer.write("[");
+ int count = conflictingElements.length;
+ for (int i = 0; i < count; i++) {
+ if (i > 0) {
+ buffer.write(", ");
+ }
+ (conflictingElements[i] as ElementImpl).appendTo(buffer);
+ }
+ buffer.write("]");
+ return buffer.toString();
+ }
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ // There are no children to visit
+ }
+
+ /**
+ * Return an element in the given [context] that represents the fact that the
+ * [firstElement] and [secondElement] conflict. (If the elements are the same,
+ * then one of the two will be returned directly.)
+ */
+ static Element fromElements(
+ AnalysisContext context, Element firstElement, Element secondElement) {
+ List<Element> conflictingElements =
+ _computeConflictingElements(firstElement, secondElement);
+ int length = conflictingElements.length;
+ if (length == 0) {
+ return null;
+ } else if (length == 1) {
+ return conflictingElements[0];
+ }
+ return new MultiplyDefinedElementImpl(context, conflictingElements);
+ }
+
+ /**
+ * Add the given [element] to the list of [elements]. If the element is a
+ * multiply-defined element, add all of the conflicting elements that it
+ * represents.
+ */
+ static void _add(HashSet<Element> elements, Element element) {
+ if (element is MultiplyDefinedElementImpl) {
+ for (Element conflictingElement in element.conflictingElements) {
+ elements.add(conflictingElement);
+ }
+ } else {
+ elements.add(element);
+ }
+ }
+
+ /**
+ * Use the given elements to construct a list of conflicting elements. If
+ * either the [firstElement] or [secondElement] are multiply-defined elements
+ * then the conflicting elements they represent will be included in the array.
+ * Otherwise, the element itself will be included.
+ */
+ static List<Element> _computeConflictingElements(
+ Element firstElement, Element secondElement) {
+ HashSet<Element> elements = new HashSet<Element>();
+ _add(elements, firstElement);
+ _add(elements, secondElement);
+ return new List.from(elements);
+ }
+}
+
+/**
+ * An [ExecutableElement], with the additional information of a list of
+ * [ExecutableElement]s from which this element was composed.
+ */
+abstract class MultiplyInheritedExecutableElement implements ExecutableElement {
+ /**
+ * Return a list containing all of the executable elements defined within this
+ * executable element.
+ */
+ List<ExecutableElement> get inheritedElements;
+}
+
+/**
+ * A [MethodElementImpl], with the additional information of a list of
+ * [ExecutableElement]s from which this element was composed.
+ */
+class MultiplyInheritedMethodElementImpl extends MethodElementImpl
+ implements MultiplyInheritedExecutableElement {
+ /**
+ * A list the array of executable elements that were used to compose this
+ * element.
+ */
+ List<ExecutableElement> _elements = MethodElement.EMPTY_LIST;
+
+ MultiplyInheritedMethodElementImpl(Identifier name) : super.forNode(name) {
+ synthetic = true;
+ }
+
+ @override
+ List<ExecutableElement> get inheritedElements => _elements;
+
+ void set inheritedElements(List<ExecutableElement> elements) {
+ this._elements = elements;
+ }
+}
+
+/**
+ * A [PropertyAccessorElementImpl], with the additional information of a list of
+ * [ExecutableElement]s from which this element was composed.
+ */
+class MultiplyInheritedPropertyAccessorElementImpl
+ extends PropertyAccessorElementImpl
+ implements MultiplyInheritedExecutableElement {
+ /**
+ * A list the array of executable elements that were used to compose this
+ * element.
+ */
+ List<ExecutableElement> _elements = PropertyAccessorElement.EMPTY_LIST;
+
+ MultiplyInheritedPropertyAccessorElementImpl(Identifier name)
+ : super.forNode(name) {
+ synthetic = true;
+ }
+
+ @override
+ List<ExecutableElement> get inheritedElements => _elements;
+
+ void set inheritedElements(List<ExecutableElement> elements) {
+ this._elements = elements;
+ }
+}
+
+/**
+ * An object that controls how namespaces are combined.
+ */
+abstract class NamespaceCombinator {
+ /**
+ * An empty list of namespace combinators.
+ */
+ @deprecated // Use NamespaceCombinator.EMPTY_LIST
+ static const List<NamespaceCombinator> EMPTY_ARRAY =
+ const <NamespaceCombinator>[];
+
+ /**
+ * An empty list of namespace combinators.
+ */
+ static const List<NamespaceCombinator> EMPTY_LIST =
+ const <NamespaceCombinator>[];
+}
+
+/**
+ * A parameter defined within an executable element.
+ */
+abstract class ParameterElement
+ implements LocalElement, VariableElement, ConstantEvaluationTarget {
+ /**
+ * An empty list of parameter elements.
+ */
+ static const List<ParameterElement> EMPTY_LIST = const <ParameterElement>[];
+
+ /**
+ * Return the Dart code of the default value, or `null` if no default value.
+ */
+ String get defaultValueCode;
+
+ /**
+ * Return `true` if this parameter is an initializing formal parameter.
+ */
+ bool get isInitializingFormal;
+
+ /**
+ * Return the kind of this parameter.
+ */
+ ParameterKind get parameterKind;
+
+ /**
+ * Return a list containing all of the parameters defined by this parameter.
+ * A parameter will only define other parameters if it is a function typed
+ * parameter.
+ */
+ List<ParameterElement> get parameters;
+
+ /**
+ * Return a list containing all of the type parameters defined by this
+ * parameter. A parameter will only define other parameters if it is a
+ * function typed parameter.
+ */
+ List<TypeParameterElement> get typeParameters;
+
+ /**
+ * Append the type, name and possibly the default value of this parameter to
+ * the given [buffer].
+ */
+ void appendToWithoutDelimiters(StringBuffer buffer);
+
+ @override
+ FormalParameter computeNode();
+}
+
+/**
+ * A concrete implementation of a [ParameterElement].
+ */
+class ParameterElementImpl extends VariableElementImpl
+ with ParameterElementMixin, PotentiallyConstVariableElement
+ implements ParameterElement {
+ /**
+ * An empty list of parameter elements.
+ */
+ @deprecated // Use ParameterElement.EMPTY_LIST
+ static const List<ParameterElement> EMPTY_ARRAY = const <ParameterElement>[];
+
+ /**
+ * A list containing all of the parameters defined by this parameter element.
+ * There will only be parameters if this parameter is a function typed
+ * parameter.
+ */
+ List<ParameterElement> _parameters = ParameterElement.EMPTY_LIST;
+
+ /**
+ * A list containing all of the type parameters defined for this parameter
+ * element. There will only be parameters if this parameter is a function
+ * typed parameter.
+ */
+ List<TypeParameterElement> _typeParameters = TypeParameterElement.EMPTY_LIST;
+
+ /**
+ * The kind of this parameter.
+ */
+ ParameterKind parameterKind;
+
+ /**
+ * The Dart code of the default value.
+ */
+ String _defaultValueCode;
+
+ /**
+ * The offset to the beginning of the visible range for this element.
+ */
+ int _visibleRangeOffset = 0;
+
+ /**
+ * The length of the visible range for this element, or `-1` if this element
+ * does not have a visible range.
+ */
+ int _visibleRangeLength = -1;
+
+ /**
+ * Initialize a newly created parameter element to have the given [name] and
+ * [offset].
+ */
+ ParameterElementImpl(String name, int nameOffset) : super(name, nameOffset);
+
+ /**
+ * Initialize a newly created parameter element to have the given [name].
+ */
+ ParameterElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ @override
+ String get defaultValueCode => _defaultValueCode;
+
+ /**
+ * Set Dart code of the default value.
+ */
+ void set defaultValueCode(String defaultValueCode) {
+ this._defaultValueCode = StringUtilities.intern(defaultValueCode);
+ }
+
+ @override
+ bool get isInitializingFormal => false;
+
+ @override
+ bool get isPotentiallyMutatedInClosure =>
+ hasModifier(Modifier.POTENTIALLY_MUTATED_IN_CONTEXT);
+
+ @override
+ bool get isPotentiallyMutatedInScope =>
+ hasModifier(Modifier.POTENTIALLY_MUTATED_IN_SCOPE);
+
+ @override
+ ElementKind get kind => ElementKind.PARAMETER;
+
+ @override
+ List<ParameterElement> get parameters => _parameters;
+
+ /**
+ * Set the parameters defined by this executable element to the given
+ * [parameters].
+ */
+ void set parameters(List<ParameterElement> parameters) {
+ for (ParameterElement parameter in parameters) {
+ (parameter as ParameterElementImpl).enclosingElement = this;
+ }
+ this._parameters = parameters;
+ }
+
+ @override
+ List<TypeParameterElement> get typeParameters => _typeParameters;
+
+ /**
+ * Set the type parameters defined by this parameter element to the given
+ * [typeParameters].
+ */
+ void set typeParameters(List<TypeParameterElement> typeParameters) {
+ for (TypeParameterElement parameter in typeParameters) {
+ (parameter as TypeParameterElementImpl).enclosingElement = this;
+ }
+ this._typeParameters = typeParameters;
+ }
+
+ @override
+ SourceRange get visibleRange {
+ if (_visibleRangeLength < 0) {
+ return null;
+ }
+ return new SourceRange(_visibleRangeOffset, _visibleRangeLength);
+ }
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitParameterElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ String left = "";
+ String right = "";
+ while (true) {
+ if (parameterKind == ParameterKind.NAMED) {
+ left = "{";
+ right = "}";
+ } else if (parameterKind == ParameterKind.POSITIONAL) {
+ left = "[";
+ right = "]";
+ } else if (parameterKind == ParameterKind.REQUIRED) {}
+ break;
+ }
+ buffer.write(left);
+ appendToWithoutDelimiters(buffer);
+ buffer.write(right);
+ }
+
+ @override
+ FormalParameter computeNode() =>
+ getNodeMatching((node) => node is FormalParameter);
+
+ @override
+ ElementImpl getChild(String identifier) {
+ for (ParameterElement parameter in _parameters) {
+ if ((parameter as ParameterElementImpl).identifier == identifier) {
+ return parameter as ParameterElementImpl;
+ }
+ }
+ return null;
+ }
+
+ /**
+ * Specifies that this variable is potentially mutated somewhere in closure.
+ */
+ void markPotentiallyMutatedInClosure() {
+ setModifier(Modifier.POTENTIALLY_MUTATED_IN_CONTEXT, true);
+ }
+
+ /**
+ * Specifies that this variable is potentially mutated somewhere in its scope.
+ */
+ void markPotentiallyMutatedInScope() {
+ setModifier(Modifier.POTENTIALLY_MUTATED_IN_SCOPE, true);
+ }
+
+ /**
+ * Set the visible range for this element to the range starting at the given
+ * [offset] with the given [length].
+ */
+ void setVisibleRange(int offset, int length) {
+ _visibleRangeOffset = offset;
+ _visibleRangeLength = length;
+ }
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ super.visitChildren(visitor);
+ safelyVisitChildren(_parameters, visitor);
+ }
+}
+
+/**
+ * A mixin that provides a common implementation for methods defined in
+ * [ParameterElement].
+ */
+abstract class ParameterElementMixin implements ParameterElement {
+ @override
+ void appendToWithoutDelimiters(StringBuffer buffer) {
+ buffer.write(type);
+ buffer.write(" ");
+ buffer.write(displayName);
+ if (defaultValueCode != null) {
+ if (parameterKind == ParameterKind.NAMED) {
+ buffer.write(": ");
+ }
+ if (parameterKind == ParameterKind.POSITIONAL) {
+ buffer.write(" = ");
+ }
+ buffer.write(defaultValueCode);
+ }
+ }
+}
+
+/**
+ * A type with type parameters, such as a class or function type alias.
+ */
+abstract class ParameterizedType implements DartType {
+ /**
+ * Return a list containing the actual types of the type arguments. If this
+ * type's element does not have type parameters, then the array should be
+ * empty (although it is possible for type arguments to be erroneously
+ * declared). If the element has type parameters and the actual type does not
+ * explicitly include argument values, then the type "dynamic" will be
+ * automatically provided.
+ */
+ List<DartType> get typeArguments;
+
+ /**
+ * Return a list containing all of the type parameters declared for this type.
+ */
+ List<TypeParameterElement> get typeParameters;
+}
+
+/**
+ * A parameter element defined in a parameterized type where the values of the
+ * type parameters are known.
+ */
+class ParameterMember extends VariableMember
+ with ParameterElementMixin
+ implements ParameterElement {
+ /**
+ * Initialize a newly created element to represent a constructor, based on the
+ * [baseElement], defined by the [definingType].
+ */
+ ParameterMember(ParameterElement baseElement, ParameterizedType definingType)
+ : super(baseElement, definingType);
+
+ @override
+ ParameterElement get baseElement => super.baseElement as ParameterElement;
+
+ @override
+ String get defaultValueCode => baseElement.defaultValueCode;
+
+ @override
+ Element get enclosingElement => baseElement.enclosingElement;
+
+ @override
+ bool get isInitializingFormal => baseElement.isInitializingFormal;
+
+ @override
+ ParameterKind get parameterKind => baseElement.parameterKind;
+
+ @override
+ List<ParameterElement> get parameters {
+ List<ParameterElement> baseParameters = baseElement.parameters;
+ int parameterCount = baseParameters.length;
+ if (parameterCount == 0) {
+ return baseParameters;
+ }
+ List<ParameterElement> parameterizedParameters =
+ new List<ParameterElement>(parameterCount);
+ for (int i = 0; i < parameterCount; i++) {
+ parameterizedParameters[i] =
+ ParameterMember.from(baseParameters[i], definingType);
+ }
+ return parameterizedParameters;
+ }
+
+ @override
+ List<TypeParameterElement> get typeParameters => baseElement.typeParameters;
+
+ @override
+ SourceRange get visibleRange => baseElement.visibleRange;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitParameterElement(this);
+
+ @override
+ FormalParameter computeNode() => baseElement.computeNode();
+
+ @override
+ Element getAncestor(Predicate<Element> predicate) {
+ Element element = baseElement.getAncestor(predicate);
+ ParameterizedType definingType = this.definingType;
+ if (definingType is InterfaceType) {
+ InterfaceType definingInterfaceType = definingType;
+ if (element is ConstructorElement) {
+ return ConstructorMember.from(element, definingInterfaceType);
+ } else if (element is MethodElement) {
+ return MethodMember.from(element, definingInterfaceType);
+ } else if (element is PropertyAccessorElement) {
+ return PropertyAccessorMember.from(element, definingInterfaceType);
+ }
+ }
+ return element;
+ }
+
+ @override
+ String toString() {
+ ParameterElement baseElement = this.baseElement;
+ String left = "";
+ String right = "";
+ while (true) {
+ if (baseElement.parameterKind == ParameterKind.NAMED) {
+ left = "{";
+ right = "}";
+ } else if (baseElement.parameterKind == ParameterKind.POSITIONAL) {
+ left = "[";
+ right = "]";
+ } else if (baseElement.parameterKind == ParameterKind.REQUIRED) {}
+ break;
+ }
+ return '$left$type ${baseElement.displayName}$right';
+ }
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ super.visitChildren(visitor);
+ safelyVisitChildren(parameters, visitor);
+ }
+
+ /**
+ * If the given [parameter]'s type is different when any type parameters from
+ * the defining type's declaration are replaced with the actual type
+ * arguments from the [definingType], create a parameter member representing
+ * the given parameter. Return the member that was created, or the base
+ * parameter if no member was created.
+ */
+ static ParameterElement from(
+ ParameterElement parameter, ParameterizedType definingType) {
+ if (parameter == null || definingType.typeArguments.length == 0) {
+ return parameter;
+ }
+ // Check if parameter type depends on defining type type arguments.
+ // It is possible that we did not resolve field formal parameter yet,
+ // so skip this check for it.
+ bool isFieldFormal = parameter is FieldFormalParameterElement;
+ if (!isFieldFormal) {
+ DartType baseType = parameter.type;
+ List<DartType> argumentTypes = definingType.typeArguments;
+ List<DartType> parameterTypes =
+ TypeParameterTypeImpl.getTypes(definingType.typeParameters);
+ DartType substitutedType =
+ baseType.substitute2(argumentTypes, parameterTypes);
+ if (baseType == substitutedType) {
+ return parameter;
+ }
+ }
+ // TODO(brianwilkerson) Consider caching the substituted type in the
+ // instance. It would use more memory but speed up some operations.
+ // We need to see how often the type is being re-computed.
+ if (isFieldFormal) {
+ return new FieldFormalParameterMember(
+ parameter as FieldFormalParameterElement, definingType);
+ }
+ return new ParameterMember(parameter, definingType);
+ }
+}
+
+/**
+ * Interface used by elements that might represent constant variables.
+ *
+ * This class may be used as a mixin in the case where [constInitializer] is
+ * known to return null.
+ *
+ * This class is not intended to be part of the public API for analyzer.
+ */
+abstract class PotentiallyConstVariableElement
+ implements VariableElementImpl, ConstantEvaluationTarget {
+ /**
+ * If this element represents a constant variable, and it has an initializer,
+ * a copy of the initializer for the constant. Otherwise `null`.
+ *
+ * Note that in correct Dart code, all constant variables must have
+ * initializers. However, analyzer also needs to handle incorrect Dart code,
+ * in which case there might be some constant variables that lack
+ * initializers.
+ */
+ Expression get constantInitializer => null;
+}
+
+/**
+ * A prefix used to import one or more libraries into another library.
+ */
+abstract class PrefixElement implements Element {
+ /**
+ * An empty list of prefix elements.
+ */
+ static const List<PrefixElement> EMPTY_LIST = const <PrefixElement>[];
+
+ /**
+ * Return the library into which other libraries are imported using this
+ * prefix.
+ */
+ @override
+ LibraryElement get enclosingElement;
+
+ /**
+ * Return a list containing all of the libraries that are imported using this
+ * prefix.
+ */
+ List<LibraryElement> get importedLibraries;
+}
+
+/**
+ * A concrete implementation of a [PrefixElement].
+ */
+class PrefixElementImpl extends ElementImpl implements PrefixElement {
+ /**
+ * An empty list of prefix elements.
+ */
+ @deprecated // Use PrefixElement.EMPTY_LIST
+ static const List<PrefixElement> EMPTY_ARRAY = const <PrefixElement>[];
+
+ /**
+ * A list containing all of the libraries that are imported using this prefix.
+ */
+ List<LibraryElement> _importedLibraries = LibraryElement.EMPTY_LIST;
+
+ /**
+ * Initialize a newly created method element to have the given [name] and
+ * [offset].
+ */
+ PrefixElementImpl(String name, int nameOffset) : super(name, nameOffset);
+
+ /**
+ * Initialize a newly created prefix element to have the given [name].
+ */
+ PrefixElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ @override
+ LibraryElement get enclosingElement =>
+ super.enclosingElement as LibraryElement;
+
+ @override
+ String get identifier => "_${super.identifier}";
+
+ @override
+ List<LibraryElement> get importedLibraries => _importedLibraries;
+
+ /**
+ * Set the libraries that are imported using this prefix to the given
+ * [libraries].
+ */
+ void set importedLibraries(List<LibraryElement> libraries) {
+ for (LibraryElement library in libraries) {
+ (library as LibraryElementImpl).enclosingElement = this;
+ }
+ _importedLibraries = libraries;
+ }
+
+ @override
+ ElementKind get kind => ElementKind.PREFIX;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitPrefixElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ buffer.write("as ");
+ super.appendTo(buffer);
+ }
+}
+
+/**
+ * A getter or a setter. Note that explicitly defined property accessors
+ * implicitly define a synthetic field. Symmetrically, synthetic accessors are
+ * implicitly created for explicitly defined fields. The following rules apply:
+ *
+ * * Every explicit field is represented by a non-synthetic [FieldElement].
+ * * Every explicit field induces a getter and possibly a setter, both of which
+ * are represented by synthetic [PropertyAccessorElement]s.
+ * * Every explicit getter or setter is represented by a non-synthetic
+ * [PropertyAccessorElement].
+ * * Every explicit getter or setter (or pair thereof if they have the same
+ * name) induces a field that is represented by a synthetic [FieldElement].
+ */
+abstract class PropertyAccessorElement implements ExecutableElement {
+ /**
+ * An empty list of property accessor elements.
+ */
+ static const List<PropertyAccessorElement> EMPTY_LIST =
+ const <PropertyAccessorElement>[];
+
+ /**
+ * Return the accessor representing the getter that corresponds to (has the
+ * same name as) this setter, or `null` if this accessor is not a setter or if
+ * there is no corresponding getter.
+ */
+ PropertyAccessorElement get correspondingGetter;
+
+ /**
+ * Return the accessor representing the setter that corresponds to (has the
+ * same name as) this getter, or `null` if this accessor is not a getter or if
+ * there is no corresponding setter.
+ */
+ PropertyAccessorElement get correspondingSetter;
+
+ /**
+ * Return `true` if this accessor represents a getter.
+ */
+ bool get isGetter;
+
+ /**
+ * Return `true` if this accessor represents a setter.
+ */
+ bool get isSetter;
+
+ /**
+ * Return the field or top-level variable associated with this accessor. If
+ * this accessor was explicitly defined (is not synthetic) then the variable
+ * associated with it will be synthetic.
+ */
+ PropertyInducingElement get variable;
+}
+
+/**
+ * A concrete implementation of a [PropertyAccessorElement].
+ */
+class PropertyAccessorElementImpl extends ExecutableElementImpl
+ implements PropertyAccessorElement {
+ /**
+ * An empty list of property accessor elements.
+ */
+ @deprecated // Use PropertyAccessorElement.EMPTY_LIST
+ static const List<PropertyAccessorElement> EMPTY_ARRAY =
+ const <PropertyAccessorElement>[];
+
+ /**
+ * The variable associated with this accessor.
+ */
+ PropertyInducingElement variable;
+
+ /**
+ * Initialize a newly created property accessor element to have the given
+ * [name].
+ */
+ PropertyAccessorElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ /**
+ * Initialize a newly created synthetic property accessor element to be
+ * associated with the given [variable].
+ */
+ PropertyAccessorElementImpl.forVariable(PropertyInducingElementImpl variable)
+ : super(variable.name, variable.nameOffset) {
+ this.variable = variable;
+ static = variable.isStatic;
+ synthetic = true;
+ }
+
+ /**
+ * Set whether this accessor is abstract.
+ */
+ void set abstract(bool isAbstract) {
+ setModifier(Modifier.ABSTRACT, isAbstract);
+ }
+
+ @override
+ PropertyAccessorElement get correspondingGetter {
+ if (isGetter || variable == null) {
+ return null;
+ }
+ return variable.getter;
+ }
+
+ @override
+ PropertyAccessorElement get correspondingSetter {
+ if (isSetter || variable == null) {
+ return null;
+ }
+ return variable.setter;
+ }
+
+ /**
+ * Set whether this accessor is a getter.
+ */
+ void set getter(bool isGetter) {
+ setModifier(Modifier.GETTER, isGetter);
+ }
+
+ @override
+ int get hashCode => JenkinsSmiHash.hash2(super.hashCode, isGetter ? 1 : 2);
+
+ @override
+ String get identifier {
+ String name = displayName;
+ String suffix = isGetter ? "?" : "=";
+ return "$name$suffix";
+ }
+
+ @override
+ bool get isGetter => hasModifier(Modifier.GETTER);
+
+ @override
+ bool get isSetter => hasModifier(Modifier.SETTER);
+
+ @override
+ bool get isStatic => hasModifier(Modifier.STATIC);
+
+ @override
+ ElementKind get kind {
+ if (isGetter) {
+ return ElementKind.GETTER;
+ }
+ return ElementKind.SETTER;
+ }
+
+ @override
+ String get name {
+ if (isSetter) {
+ return "${super.name}=";
+ }
+ return super.name;
+ }
+
+ /**
+ * Set whether this accessor is a setter.
+ */
+ void set setter(bool isSetter) {
+ setModifier(Modifier.SETTER, isSetter);
+ }
+
+ /**
+ * Set whether this accessor is static.
+ */
+ void set static(bool isStatic) {
+ setModifier(Modifier.STATIC, isStatic);
+ }
+
+ @override
+ bool operator ==(Object object) => super == object &&
+ isGetter == (object as PropertyAccessorElement).isGetter;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitPropertyAccessorElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ buffer.write(isGetter ? "get " : "set ");
+ buffer.write(variable.displayName);
+ super.appendTo(buffer);
+ }
+
+ @override
+ AstNode computeNode() {
+ if (isSynthetic) {
+ return null;
+ }
+ if (enclosingElement is ClassElement) {
+ return getNodeMatching((node) => node is MethodDeclaration);
+ }
+ if (enclosingElement is CompilationUnitElement) {
+ return getNodeMatching((node) => node is FunctionDeclaration);
+ }
+ return null;
+ }
+}
+
+/**
+ * A property accessor element defined in a parameterized type where the values
+ * of the type parameters are known.
+ */
+class PropertyAccessorMember extends ExecutableMember
+ implements PropertyAccessorElement {
+ /**
+ * Initialize a newly created element to represent a constructor, based on the
+ * [baseElement], defined by the [definingType].
+ */
+ PropertyAccessorMember(
+ PropertyAccessorElement baseElement, InterfaceType definingType)
+ : super(baseElement, definingType);
+
+ @override
+ PropertyAccessorElement get baseElement =>
+ super.baseElement as PropertyAccessorElement;
+
+ @override
+ PropertyAccessorElement get correspondingGetter =>
+ from(baseElement.correspondingGetter, definingType);
+
+ @override
+ PropertyAccessorElement get correspondingSetter =>
+ from(baseElement.correspondingSetter, definingType);
+
+ @override
+ InterfaceType get definingType => super.definingType as InterfaceType;
+
+ @override
+ Element get enclosingElement => baseElement.enclosingElement;
+
+ @override
+ bool get isGetter => baseElement.isGetter;
+
+ @override
+ bool get isSetter => baseElement.isSetter;
+
+ @override
+ PropertyInducingElement get variable {
+ PropertyInducingElement variable = baseElement.variable;
+ if (variable is FieldElement) {
+ return FieldMember.from(variable, definingType);
+ }
+ return variable;
+ }
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitPropertyAccessorElement(this);
+
+ @override
+ String toString() {
+ PropertyAccessorElement baseElement = this.baseElement;
+ List<ParameterElement> parameters = this.parameters;
+ FunctionType type = this.type;
+ StringBuffer builder = new StringBuffer();
+ if (isGetter) {
+ builder.write("get ");
+ } else {
+ builder.write("set ");
+ }
+ builder.write(baseElement.enclosingElement.displayName);
+ builder.write(".");
+ builder.write(baseElement.displayName);
+ builder.write("(");
+ int parameterCount = parameters.length;
+ for (int i = 0; i < parameterCount; i++) {
+ if (i > 0) {
+ builder.write(", ");
+ }
+ builder.write(parameters[i]);
+ }
+ builder.write(")");
+ if (type != null) {
+ builder.write(Element.RIGHT_ARROW);
+ builder.write(type.returnType);
+ }
+ return builder.toString();
+ }
+
+ /**
+ * If the given [accessor]'s type is different when any type parameters from
+ * the defining type's declaration are replaced with the actual type
+ * arguments from the [definingType], create an accessor member representing
+ * the given accessor. Return the member that was created, or the base
+ * accessor if no member was created.
+ */
+ static PropertyAccessorElement from(
+ PropertyAccessorElement accessor, InterfaceType definingType) {
+ if (!_isChangedByTypeSubstitution(accessor, definingType)) {
+ return accessor;
+ }
+ // TODO(brianwilkerson) Consider caching the substituted type in the
+ // instance. It would use more memory but speed up some operations.
+ // We need to see how often the type is being re-computed.
+ return new PropertyAccessorMember(accessor, definingType);
+ }
+
+ /**
+ * Determine whether the given property [accessor]'s type is changed when type
+ * parameters from the defining type's declaration are replaced with the
+ * actual type arguments from the [definingType].
+ */
+ static bool _isChangedByTypeSubstitution(
+ PropertyAccessorElement accessor, InterfaceType definingType) {
+ List<DartType> argumentTypes = definingType.typeArguments;
+ if (accessor != null && argumentTypes.length != 0) {
+ FunctionType baseType = accessor.type;
+ if (baseType == null) {
+ AnalysisEngine.instance.logger.logInformation(
+ 'Type of $accessor is null in PropertyAccessorMember._isChangedByTypeSubstitution');
+ return false;
+ }
+ List<DartType> parameterTypes = definingType.element.type.typeArguments;
+ FunctionType substitutedType =
+ baseType.substitute2(argumentTypes, parameterTypes);
+ if (baseType != substitutedType) {
+ return true;
+ }
+ // If this property accessor is based on a field, that field might have a
+ // propagated type. In which case we need to check whether the propagated
+ // type of the field needs substitution.
+ PropertyInducingElement field = accessor.variable;
+ if (!field.isSynthetic) {
+ DartType baseFieldType = field.propagatedType;
+ if (baseFieldType != null) {
+ DartType substitutedFieldType =
+ baseFieldType.substitute2(argumentTypes, parameterTypes);
+ if (baseFieldType != substitutedFieldType) {
+ return true;
+ }
+ }
+ }
+ }
+ return false;
+ }
+}
+
+/**
+ * A variable that has an associated getter and possibly a setter. Note that
+ * explicitly defined variables implicitly define a synthetic getter and that
+ * non-`final` explicitly defined variables implicitly define a synthetic
+ * setter. Symmetrically, synthetic fields are implicitly created for explicitly
+ * defined getters and setters. The following rules apply:
+ *
+ * * Every explicit variable is represented by a non-synthetic
+ * [PropertyInducingElement].
+ * * Every explicit variable induces a getter and possibly a setter, both of
+ * which are represented by synthetic [PropertyAccessorElement]s.
+ * * Every explicit getter or setter is represented by a non-synthetic
+ * [PropertyAccessorElement].
+ * * Every explicit getter or setter (or pair thereof if they have the same
+ * name) induces a variable that is represented by a synthetic
+ * [PropertyInducingElement].
+ */
+abstract class PropertyInducingElement implements VariableElement {
+ /**
+ * An empty list of elements.
+ */
+ static const List<PropertyInducingElement> EMPTY_LIST =
+ const <PropertyInducingElement>[];
+
+ /**
+ * Return the getter associated with this variable. If this variable was
+ * explicitly defined (is not synthetic) then the getter associated with it
+ * will be synthetic.
+ */
+ PropertyAccessorElement get getter;
+
+ /**
+ * Return the propagated type of this variable, or `null` if type propagation
+ * has not been performed, for example because the variable is not final.
+ */
+ DartType get propagatedType;
+
+ /**
+ * Return the setter associated with this variable, or `null` if the variable
+ * is effectively `final` and therefore does not have a setter associated with
+ * it. (This can happen either because the variable is explicitly defined as
+ * being `final` or because the variable is induced by an explicit getter that
+ * does not have a corresponding setter.) If this variable was explicitly
+ * defined (is not synthetic) then the setter associated with it will be
+ * synthetic.
+ */
+ PropertyAccessorElement get setter;
+}
+
+/**
+ * A concrete implementation of a [PropertyInducingElement].
+ */
+abstract class PropertyInducingElementImpl extends VariableElementImpl
+ implements PropertyInducingElement {
+ /**
+ * An empty list of elements.
+ */
+ @deprecated // Use PropertyInducingElement.EMPTY_LIST
+ static const List<PropertyInducingElement> EMPTY_ARRAY =
+ const <PropertyInducingElement>[];
+
+ /**
+ * The getter associated with this element.
+ */
+ PropertyAccessorElement getter;
+
+ /**
+ * The setter associated with this element, or `null` if the element is
+ * effectively `final` and therefore does not have a setter associated with
+ * it.
+ */
+ PropertyAccessorElement setter;
+
+ /**
+ * The propagated type of this variable, or `null` if type propagation has not
+ * been performed.
+ */
+ DartType propagatedType;
+
+ /**
+ * Initialize a newly created synthetic element to have the given [name] and
+ * [offset].
+ */
+ PropertyInducingElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created element to have the given [name].
+ */
+ PropertyInducingElementImpl.forNode(Identifier name) : super.forNode(name);
+}
+
+/**
+ * A visitor that will recursively visit all of the element in an element model.
+ * For example, using an instance of this class to visit a
+ * [CompilationUnitElement] will also cause all of the types in the compilation
+ * unit to be visited.
+ *
+ * Subclasses that override a visit method must either invoke the overridden
+ * visit method or must explicitly ask the visited element to visit its
+ * children. Failure to do so will cause the children of the visited element to
+ * not be visited.
+ */
+class RecursiveElementVisitor<R> implements ElementVisitor<R> {
+ @override
+ R visitClassElement(ClassElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitCompilationUnitElement(CompilationUnitElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitConstructorElement(ConstructorElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ @deprecated
+ R visitEmbeddedHtmlScriptElement(EmbeddedHtmlScriptElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitExportElement(ExportElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ @deprecated
+ R visitExternalHtmlScriptElement(ExternalHtmlScriptElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitFieldElement(FieldElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitFieldFormalParameterElement(FieldFormalParameterElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitFunctionElement(FunctionElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitFunctionTypeAliasElement(FunctionTypeAliasElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ @deprecated
+ R visitHtmlElement(HtmlElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitImportElement(ImportElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitLabelElement(LabelElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitLibraryElement(LibraryElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitLocalVariableElement(LocalVariableElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitMethodElement(MethodElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitMultiplyDefinedElement(MultiplyDefinedElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitParameterElement(ParameterElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitPrefixElement(PrefixElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitPropertyAccessorElement(PropertyAccessorElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitTopLevelVariableElement(TopLevelVariableElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+
+ @override
+ R visitTypeParameterElement(TypeParameterElement element) {
+ element.visitChildren(this);
+ return null;
+ }
+}
+
+/**
+ * A combinator that cause some of the names in a namespace to be visible (and
+ * the rest hidden) when being imported.
+ */
+abstract class ShowElementCombinator implements NamespaceCombinator {
+ /**
+ * Return the offset of the character immediately following the last character
+ * of this node.
+ */
+ int get end;
+
+ /**
+ * Return the offset of the 'show' keyword of this element.
+ */
+ int get offset;
+
+ /**
+ * Return a list containing the names that are to be made visible in the
+ * importing library if they are defined in the imported library.
+ */
+ List<String> get shownNames;
+}
+
+/**
+ * A concrete implementation of a [ShowElementCombinator].
+ */
+class ShowElementCombinatorImpl implements ShowElementCombinator {
+ /**
+ * The names that are to be made visible in the importing library if they are
+ * defined in the imported library.
+ */
+ List<String> shownNames = StringUtilities.EMPTY_ARRAY;
+
+ /**
+ * The offset of the character immediately following the last character of
+ * this node.
+ */
+ int end = -1;
+
+ /**
+ * The offset of the 'show' keyword of this element.
+ */
+ int offset = 0;
+
+ @override
+ String toString() {
+ StringBuffer buffer = new StringBuffer();
+ buffer.write("show ");
+ int count = shownNames.length;
+ for (int i = 0; i < count; i++) {
+ if (i > 0) {
+ buffer.write(", ");
+ }
+ buffer.write(shownNames[i]);
+ }
+ return buffer.toString();
+ }
+}
+
+/**
+ * A visitor that will do nothing when visiting an element. It is intended to be
+ * a superclass for classes that use the visitor pattern primarily as a dispatch
+ * mechanism (and hence don't need to recursively visit a whole structure) and
+ * that only need to visit a small number of element types.
+ */
+class SimpleElementVisitor<R> implements ElementVisitor<R> {
+ @override
+ R visitClassElement(ClassElement element) => null;
+
+ @override
+ R visitCompilationUnitElement(CompilationUnitElement element) => null;
+
+ @override
+ R visitConstructorElement(ConstructorElement element) => null;
+
+ @override
+ @deprecated
+ R visitEmbeddedHtmlScriptElement(EmbeddedHtmlScriptElement element) => null;
+
+ @override
+ R visitExportElement(ExportElement element) => null;
+
+ @override
+ @deprecated
+ R visitExternalHtmlScriptElement(ExternalHtmlScriptElement element) => null;
+
+ @override
+ R visitFieldElement(FieldElement element) => null;
+
+ @override
+ R visitFieldFormalParameterElement(FieldFormalParameterElement element) =>
+ null;
+
+ @override
+ R visitFunctionElement(FunctionElement element) => null;
+
+ @override
+ R visitFunctionTypeAliasElement(FunctionTypeAliasElement element) => null;
+
+ @override
+ @deprecated
+ R visitHtmlElement(HtmlElement element) => null;
+
+ @override
+ R visitImportElement(ImportElement element) => null;
+
+ @override
+ R visitLabelElement(LabelElement element) => null;
+
+ @override
+ R visitLibraryElement(LibraryElement element) => null;
+
+ @override
+ R visitLocalVariableElement(LocalVariableElement element) => null;
+
+ @override
+ R visitMethodElement(MethodElement element) => null;
+
+ @override
+ R visitMultiplyDefinedElement(MultiplyDefinedElement element) => null;
+
+ @override
+ R visitParameterElement(ParameterElement element) => null;
+
+ @override
+ R visitPrefixElement(PrefixElement element) => null;
+
+ @override
+ R visitPropertyAccessorElement(PropertyAccessorElement element) => null;
+
+ @override
+ R visitTopLevelVariableElement(TopLevelVariableElement element) => null;
+
+ @override
+ R visitTypeParameterElement(TypeParameterElement element) => null;
+}
+
+/**
+ * A top-level variable.
+ */
+abstract class TopLevelVariableElement implements PropertyInducingElement {
+ /**
+ * An empty list of top-level variable elements.
+ */
+ static const List<TopLevelVariableElement> EMPTY_LIST =
+ const <TopLevelVariableElement>[];
+
+ @override
+ VariableDeclaration computeNode();
+}
+
+/**
+ * A concrete implementation of a [TopLevelVariableElement].
+ */
+class TopLevelVariableElementImpl extends PropertyInducingElementImpl
+ with PotentiallyConstVariableElement
+ implements TopLevelVariableElement {
+ /**
+ * An empty list of top-level variable elements.
+ */
+ @deprecated // Use TopLevelVariableElement.EMPTY_LIST
+ static const List<TopLevelVariableElement> EMPTY_ARRAY =
+ const <TopLevelVariableElement>[];
+
+ /**
+ * Initialize a newly created synthetic top-level variable element to have the
+ * given [name] and [offset].
+ */
+ TopLevelVariableElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created top-level variable element to have the given
+ * [name].
+ */
+ TopLevelVariableElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ @override
+ bool get isStatic => true;
+
+ @override
+ ElementKind get kind => ElementKind.TOP_LEVEL_VARIABLE;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitTopLevelVariableElement(this);
+
+ @override
+ VariableDeclaration computeNode() =>
+ getNodeMatching((node) => node is VariableDeclaration);
+}
+
+/**
+ * An element that defines a type.
+ */
+abstract class TypeDefiningElement implements Element {
+ /**
+ * Return the type defined by this element.
+ */
+ DartType get type;
+}
+
+/**
+ * The abstract class `TypeImpl` implements the behavior common to objects
+ * representing the declared type of elements in the element model.
+ */
+abstract class TypeImpl implements DartType {
+ /**
+ * An empty list of types.
+ */
+ @deprecated // Use DartType.EMPTY_LIST
+ static const List<DartType> EMPTY_ARRAY = const <DartType>[];
+
+ /**
+ * The element representing the declaration of this type, or `null` if the
+ * type has not, or cannot, be associated with an element.
+ */
+ final Element _element;
+
+ /**
+ * The name of this type, or `null` if the type does not have a name.
+ */
+ final String name;
+
+ /**
+ * Initialize a newly created type to be declared by the given [element] and
+ * to have the given [name].
+ */
+ TypeImpl(this._element, this.name);
+
+ @override
+ String get displayName => name;
+
+ @override
+ Element get element => _element;
+
+ @override
+ bool get isBottom => false;
+
+ @override
+ bool get isDartCoreFunction => false;
+
+ @override
+ bool get isDynamic => false;
+
+ @override
+ bool get isObject => false;
+
+ @override
+ bool get isUndefined => false;
+
+ @override
+ bool get isVoid => false;
+
+ /**
+ * Append a textual representation of this type to the given [buffer]. The set
+ * of [visitedTypes] is used to prevent infinite recusion.
+ */
+ void appendTo(StringBuffer buffer) {
+ if (name == null) {
+ buffer.write("<unnamed type>");
+ } else {
+ buffer.write(name);
+ }
+ }
+
+ @override
+ DartType getLeastUpperBound(DartType type) => null;
+
+ /**
+ * Return `true` if this type is assignable to the given [type] (written in
+ * the spec as "T <=> S", where T=[this] and S=[type]).
+ *
+ * The sets [thisExpansions] and [typeExpansions], if given, are the sets of
+ * function type aliases that have been expanded so far in the process of
+ * reaching [this] and [type], respectively. These are used to avoid
+ * infinite regress when analyzing invalid code; since the language spec
+ * forbids a typedef from referring to itself directly or indirectly, we can
+ * use these as sets of function type aliases that don't need to be expanded.
+ */
+ @override
+ bool isAssignableTo(DartType type) {
+ // An interface type T may be assigned to a type S, written T <=> S, iff
+ // either T <: S or S <: T.
+ return isSubtypeOf(type) || (type as TypeImpl).isSubtypeOf(this);
+ }
+
+ /**
+ * Return `true` if this type is more specific than the given [type] (written
+ * in the spec as "T << S", where T=[this] and S=[type]).
+ *
+ * If [withDynamic] is `true`, then "dynamic" should be considered as a
+ * subtype of any type (as though "dynamic" had been replaced with bottom).
+ *
+ * The set [visitedElements], if given, is the set of classes and type
+ * parameters that have been visited so far while examining the class
+ * hierarchy of [this]. This is used to avoid infinite regress when
+ * analyzing invalid code; since the language spec forbids loops in the class
+ * hierarchy, we can use this as a set of classes that don't need to be
+ * examined when walking the class hierarchy.
+ */
+ @override
+ bool isMoreSpecificThan(DartType type,
+ [bool withDynamic = false, Set<Element> visitedElements]);
+
+ /**
+ * Return `true` if this type is a subtype of the given [type] (written in
+ * the spec as "T <: S", where T=[this] and S=[type]).
+ *
+ * The sets [thisExpansions] and [typeExpansions], if given, are the sets of
+ * function type aliases that have been expanded so far in the process of
+ * reaching [this] and [type], respectively. These are used to avoid
+ * infinite regress when analyzing invalid code; since the language spec
+ * forbids a typedef from referring to itself directly or indirectly, we can
+ * use these as sets of function type aliases that don't need to be expanded.
+ */
+ @override
+ bool isSubtypeOf(DartType type) {
+ // For non-function types, T <: S iff [_|_/dynamic]T << S.
+ return isMoreSpecificThan(type, true);
+ }
+
+ @override
+ bool isSupertypeOf(DartType type) => type.isSubtypeOf(this);
+
+ /**
+ * Create a new [TypeImpl] that is identical to [this] except that when
+ * visiting type parameters, function parameter types, and function return
+ * types, function types listed in [prune] will not be expanded. This is
+ * used to avoid creating infinite types in the presence of circular
+ * typedefs.
+ *
+ * If [prune] is null, then [this] is returned unchanged.
+ *
+ * Only legal to call on a [TypeImpl] that is not already subject to pruning.
+ */
+ TypeImpl pruned(List<FunctionTypeAliasElement> prune);
+
+ /**
+ * Return the type resulting from substituting the given [argumentTypes] for
+ * the given [parameterTypes] in this type.
+ *
+ * In all classes derived from [TypeImpl], a new optional argument
+ * [prune] is added. If specified, it is a list of function typdefs
+ * which should not be expanded. This is used to avoid creating infinite
+ * types in response to self-referential typedefs.
+ */
+ @override
+ DartType substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes,
+ [List<FunctionTypeAliasElement> prune]);
+
+ @override
+ String toString() {
+ StringBuffer buffer = new StringBuffer();
+ appendTo(buffer);
+ return buffer.toString();
+ }
+
+ /**
+ * Return `true` if corresponding elements of the [first] and [second] lists
+ * of type arguments are all equal.
+ */
+ static bool equalArrays(List<DartType> first, List<DartType> second) {
+ if (first.length != second.length) {
+ return false;
+ }
+ for (int i = 0; i < first.length; i++) {
+ if (first[i] == null) {
+ AnalysisEngine.instance.logger
+ .logInformation('Found null type argument in TypeImpl.equalArrays');
+ return second[i] == null;
+ } else if (second[i] == null) {
+ AnalysisEngine.instance.logger
+ .logInformation('Found null type argument in TypeImpl.equalArrays');
+ return false;
+ }
+ if (first[i] != second[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /**
+ * Return a list containing the results of using the given [argumentTypes] and
+ * [parameterTypes] to perform a substitution on all of the given [types].
+ *
+ * If [prune] is specified, it is a list of function typdefs which should not
+ * be expanded. This is used to avoid creating infinite types in response to
+ * self-referential typedefs.
+ */
+ static List<DartType> substitute(List<DartType> types,
+ List<DartType> argumentTypes, List<DartType> parameterTypes,
+ [List<FunctionTypeAliasElement> prune]) {
+ int length = types.length;
+ if (length == 0) {
+ return types;
+ }
+ List<DartType> newTypes = new List<DartType>(length);
+ for (int i = 0; i < length; i++) {
+ newTypes[i] = (types[i] as TypeImpl)
+ .substitute2(argumentTypes, parameterTypes, prune);
+ }
+ return newTypes;
+ }
+}
+
+/**
+ * A type parameter.
+ */
+abstract class TypeParameterElement implements TypeDefiningElement {
+ /**
+ * An empty list of type parameter elements.
+ */
+ static const List<TypeParameterElement> EMPTY_LIST =
+ const <TypeParameterElement>[];
+
+ /**
+ * Return the type representing the bound associated with this parameter, or
+ * `null` if this parameter does not have an explicit bound.
+ */
+ DartType get bound;
+
+ /**
+ * Return the type defined by this type parameter.
+ */
+ TypeParameterType get type;
+}
+
+/**
+ * A concrete implementation of a [TypeParameterElement].
+ */
+class TypeParameterElementImpl extends ElementImpl
+ implements TypeParameterElement {
+ /**
+ * An empty list of type parameter elements.
+ */
+ @deprecated // Use TypeParameterElement.EMPTY_LIST
+ static const List<TypeParameterElement> EMPTY_ARRAY =
+ const <TypeParameterElement>[];
+
+ /**
+ * The type defined by this type parameter.
+ */
+ TypeParameterType type;
+
+ /**
+ * The type representing the bound associated with this parameter, or `null`
+ * if this parameter does not have an explicit bound.
+ */
+ DartType bound;
+
+ /**
+ * Initialize a newly created method element to have the given [name] and
+ * [offset].
+ */
+ TypeParameterElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created type parameter element to have the given [name].
+ */
+ TypeParameterElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ @override
+ ElementKind get kind => ElementKind.TYPE_PARAMETER;
+
+ @override
+ accept(ElementVisitor visitor) => visitor.visitTypeParameterElement(this);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ buffer.write(displayName);
+ if (bound != null) {
+ buffer.write(" extends ");
+ buffer.write(bound);
+ }
+ }
+}
+
+/**
+ * The type introduced by a type parameter.
+ */
+abstract class TypeParameterType implements DartType {
+ /**
+ * An empty list of type parameter types.
+ */
+ static const List<TypeParameterType> EMPTY_LIST = const <TypeParameterType>[];
+
+ @override
+ TypeParameterElement get element;
+}
+
+/**
+ * A concrete implementation of a [TypeParameterType].
+ */
+class TypeParameterTypeImpl extends TypeImpl implements TypeParameterType {
+ /**
+ * An empty list of type parameter types.
+ */
+ @deprecated // Use TypeParameterType.EMPTY_LIST
+ static const List<TypeParameterType> EMPTY_ARRAY =
+ const <TypeParameterType>[];
+
+ /**
+ * Initialize a newly created type parameter type to be declared by the given
+ * [element] and to have the given name.
+ */
+ TypeParameterTypeImpl(TypeParameterElement element)
+ : super(element, element.name);
+
+ @override
+ TypeParameterElement get element => super.element as TypeParameterElement;
+
+ @override
+ int get hashCode => element.hashCode;
+
+ @override
+ bool operator ==(Object object) =>
+ object is TypeParameterTypeImpl && (element == object.element);
+
+ @override
+ bool isMoreSpecificThan(DartType s,
+ [bool withDynamic = false, Set<Element> visitedElements]) {
+ //
+ // A type T is more specific than a type S, written T << S,
+ // if one of the following conditions is met:
+ //
+ // Reflexivity: T is S.
+ //
+ if (this == s) {
+ return true;
+ }
+ // S is dynamic.
+ //
+ if (s.isDynamic) {
+ return true;
+ }
+ //
+ // T is a type parameter and S is the upper bound of T.
+ //
+ TypeImpl bound = element.bound;
+ if (s == bound) {
+ return true;
+ }
+ //
+ // T is a type parameter and S is Object.
+ //
+ if (s.isObject) {
+ return true;
+ }
+ // We need upper bound to continue.
+ if (bound == null) {
+ return false;
+ }
+ //
+ // Transitivity: T << U and U << S.
+ //
+ // First check for infinite loops
+ if (element == null) {
+ return false;
+ }
+ if (visitedElements == null) {
+ visitedElements = new HashSet<Element>();
+ } else if (visitedElements.contains(element)) {
+ return false;
+ }
+ visitedElements.add(element);
+ try {
+ return bound.isMoreSpecificThan(s, withDynamic, visitedElements);
+ } finally {
+ visitedElements.remove(element);
+ }
+ }
+
+ @override
+ bool isSubtypeOf(DartType type) => isMoreSpecificThan(type, true);
+
+ @override
+ TypeImpl pruned(List<FunctionTypeAliasElement> prune) => this;
+
+ @override
+ DartType substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes,
+ [List<FunctionTypeAliasElement> prune]) {
+ int length = parameterTypes.length;
+ for (int i = 0; i < length; i++) {
+ if (parameterTypes[i] == this) {
+ return argumentTypes[i];
+ }
+ }
+ return this;
+ }
+
+ /**
+ * Return a list containing the type parameter types defined by the given
+ * array of type parameter elements ([typeParameters]).
+ */
+ static List<TypeParameterType> getTypes(
+ List<TypeParameterElement> typeParameters) {
+ int count = typeParameters.length;
+ if (count == 0) {
+ return TypeParameterType.EMPTY_LIST;
+ }
+ List<TypeParameterType> types = new List<TypeParameterType>(count);
+ for (int i = 0; i < count; i++) {
+ types[i] = typeParameters[i].type;
+ }
+ return types;
+ }
+}
+
+/**
+ * A pseudo-elements that represents names that are undefined. This situation is
+ * not allowed by the language, so objects implementing this interface always
+ * represent an error. As a result, most of the normal operations on elements do
+ * not make sense and will return useless results.
+ */
+abstract class UndefinedElement implements Element {}
+
+/**
+ * The unique instance of the class `UndefinedTypeImpl` implements the type of
+ * typenames that couldn't be resolved.
+ *
+ * This class behaves like DynamicTypeImpl in almost every respect, to reduce
+ * cascading errors.
+ */
+class UndefinedTypeImpl extends TypeImpl {
+ /**
+ * The unique instance of this class.
+ */
+ static UndefinedTypeImpl _INSTANCE = new UndefinedTypeImpl._();
+
+ /**
+ * Return the unique instance of this class.
+ */
+ static UndefinedTypeImpl get instance => _INSTANCE;
+
+ /**
+ * Prevent the creation of instances of this class.
+ */
+ UndefinedTypeImpl._()
+ : super(DynamicElementImpl.instance, Keyword.DYNAMIC.syntax);
+
+ @override
+ int get hashCode => 1;
+
+ @override
+ bool get isDynamic => true;
+
+ @override
+ bool get isUndefined => true;
+
+ @override
+ bool operator ==(Object object) => identical(object, this);
+
+ @override
+ bool isMoreSpecificThan(DartType type,
+ [bool withDynamic = false, Set<Element> visitedElements]) {
+ // T is S
+ if (identical(this, type)) {
+ return true;
+ }
+ // else
+ return withDynamic;
+ }
+
+ @override
+ bool isSubtypeOf(DartType type) => true;
+
+ @override
+ bool isSupertypeOf(DartType type) => true;
+
+ @override
+ TypeImpl pruned(List<FunctionTypeAliasElement> prune) => this;
+
+ @override
+ DartType substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes,
+ [List<FunctionTypeAliasElement> prune]) {
+ int length = parameterTypes.length;
+ for (int i = 0; i < length; i++) {
+ if (parameterTypes[i] == this) {
+ return argumentTypes[i];
+ }
+ }
+ return this;
+ }
+}
+
+/**
+ * An element included into a library using some URI.
+ */
+abstract class UriReferencedElement implements Element {
+ /**
+ * Return the URI that is used to include this element into the enclosing
+ * library, or `null` if this is the defining compilation unit of a library.
+ */
+ String get uri;
+
+ /**
+ * Return the offset of the character immediately following the last character
+ * of this node's URI, or `-1` for synthetic import.
+ */
+ int get uriEnd;
+
+ /**
+ * Return the offset of the URI in the file, or `-1` if this element is
+ * synthetic.
+ */
+ int get uriOffset;
+}
+
+/**
+ * A concrete implementation of a [UriReferencedElement].
+ */
+abstract class UriReferencedElementImpl extends ElementImpl
+ implements UriReferencedElement {
+ /**
+ * The offset of the URI in the file, may be `-1` if synthetic.
+ */
+ int uriOffset = -1;
+
+ /**
+ * The offset of the character immediately following the last character of
+ * this node's URI, may be `-1` if synthetic.
+ */
+ int uriEnd = -1;
+
+ /**
+ * The URI that is specified by this directive.
+ */
+ String uri;
+
+ /**
+ * Initialize a newly created import element to heve the given [name] and
+ * [offset]. The offset may be `-1` if the element is synthetic.
+ */
+ UriReferencedElementImpl(String name, int offset) : super(name, offset);
+}
+
+/**
+ * A variable. There are concrete subclasses for different kinds of variables.
+ */
+abstract class VariableElement implements Element, ConstantEvaluationTarget {
+ /**
+ * An empty list of variable elements.
+ */
+ static const List<VariableElement> EMPTY_LIST = const <VariableElement>[];
+
+ /**
+ * Return `true` if this variable element did not have an explicit type
+ * specified for it.
+ */
+ bool get hasImplicitType;
+
+ /**
+ * Return a synthetic function representing this variable's initializer, or
+ * `null` if this variable does not have an initializer. The function will
+ * have no parameters. The return type of the function will be the
+ * compile-time type of the initialization expression.
+ */
+ FunctionElement get initializer;
+
+ /**
+ * Return `true` if this variable was declared with the 'const' modifier.
+ */
+ bool get isConst;
+
+ /**
+ * Return `true` if this variable was declared with the 'final' modifier.
+ * Variables that are declared with the 'const' modifier will return `false`
+ * even though they are implicitly final.
+ */
+ bool get isFinal;
+
+ /**
+ * Return `true` if this variable is potentially mutated somewhere in a
+ * closure. This information is only available for local variables (including
+ * parameters) and only after the compilation unit containing the variable has
+ * been resolved.
+ */
+ bool get isPotentiallyMutatedInClosure;
+
+ /**
+ * Return `true` if this variable is potentially mutated somewhere in its
+ * scope. This information is only available for local variables (including
+ * parameters) and only after the compilation unit containing the variable has
+ * been resolved.
+ */
+ bool get isPotentiallyMutatedInScope;
+
+ /**
+ * Return `true` if this element is a static variable, as per section 8 of the
+ * Dart Language Specification:
+ *
+ * > A static variable is a variable that is not associated with a particular
+ * > instance, but rather with an entire library or class. Static variables
+ * > include library variables and class variables. Class variables are
+ * > variables whose declaration is immediately nested inside a class
+ * > declaration and includes the modifier static. A library variable is
+ * > implicitly static.
+ */
+ bool get isStatic;
+
+ /**
+ * Return the declared type of this variable, or `null` if the variable did
+ * not have a declared type (such as if it was declared using the keyword
+ * 'var').
+ */
+ DartType get type;
+}
+
+/**
+ * A concrete implementation of a [VariableElement].
+ */
+abstract class VariableElementImpl extends ElementImpl
+ implements VariableElement {
+ /**
+ * An empty list of variable elements.
+ */
+ @deprecated // Use VariableElement.EMPTY_LIST
+ static const List<VariableElement> EMPTY_ARRAY = const <VariableElement>[];
+
+ /**
+ * The declared type of this variable.
+ */
+ DartType type;
+
+ /**
+ * A synthetic function representing this variable's initializer, or `null` if
+ * this variable does not have an initializer.
+ */
+ FunctionElement _initializer;
+
+ /**
+ * Initialize a newly created variable element to have the given [name] and
+ * [offset].
+ */
+ VariableElementImpl(String name, int offset) : super(name, offset);
+
+ /**
+ * Initialize a newly created variable element to have the given [name].
+ */
+ VariableElementImpl.forNode(Identifier name) : super.forNode(name);
+
+ /**
+ * Set whether this variable is const.
+ */
+ void set const3(bool isConst) {
+ setModifier(Modifier.CONST, isConst);
+ }
+
+ /**
+ * Return the result of evaluating this variable's initializer as a
+ * compile-time constant expression, or `null` if this variable is not a
+ * 'const' variable, if it does not have an initializer, or if the compilation
+ * unit containing the variable has not been resolved.
+ */
+ EvaluationResultImpl get evaluationResult => null;
+
+ /**
+ * Set the result of evaluating this variable's initializer as a compile-time
+ * constant expression to the given [result].
+ */
+ void set evaluationResult(EvaluationResultImpl result) {
+ throw new IllegalStateException(
+ "Invalid attempt to set a compile-time constant result");
+ }
+
+ /**
+ * Set whether this variable is final.
+ */
+ void set final2(bool isFinal) {
+ setModifier(Modifier.FINAL, isFinal);
+ }
+
+ @override
+ bool get hasImplicitType => hasModifier(Modifier.IMPLICIT_TYPE);
+
+ /**
+ * Set whether this variable element has an implicit type.
+ */
+ void set hasImplicitType(bool hasImplicitType) {
+ setModifier(Modifier.IMPLICIT_TYPE, hasImplicitType);
+ }
+
+ @override
+ FunctionElement get initializer => _initializer;
+
+ /**
+ * Set the function representing this variable's initializer to the given
+ * [function].
+ */
+ void set initializer(FunctionElement function) {
+ if (function != null) {
+ (function as FunctionElementImpl).enclosingElement = this;
+ }
+ this._initializer = function;
+ }
+
+ @override
+ bool get isConst => hasModifier(Modifier.CONST);
+
+ @override
+ bool get isFinal => hasModifier(Modifier.FINAL);
+
+ @override
+ bool get isPotentiallyMutatedInClosure => false;
+
+ @override
+ bool get isPotentiallyMutatedInScope => false;
+
+ @override
+ bool get isStatic => hasModifier(Modifier.STATIC);
+
+ @override
+ void appendTo(StringBuffer buffer) {
+ buffer.write(type);
+ buffer.write(" ");
+ buffer.write(displayName);
+ }
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ super.visitChildren(visitor);
+ safelyVisitChild(_initializer, visitor);
+ }
+}
+
+/**
+ * A variable element defined in a parameterized type where the values of the
+ * type parameters are known.
+ */
+abstract class VariableMember extends Member implements VariableElement {
+ /**
+ * Initialize a newly created element to represent a constructor, based on the
+ * [baseElement], defined by the [definingType].
+ */
+ VariableMember(VariableElement baseElement, ParameterizedType definingType)
+ : super(baseElement, definingType);
+
+ @override
+ VariableElement get baseElement => super.baseElement as VariableElement;
+
+ @override
+ bool get hasImplicitType => baseElement.hasImplicitType;
+
+ @override
+ FunctionElement get initializer {
+ //
+ // Elements within this element should have type parameters substituted,
+ // just like this element.
+ //
+ throw new UnsupportedOperationException();
+ // return getBaseElement().getInitializer();
+ }
+
+ @override
+ bool get isConst => baseElement.isConst;
+
+ @override
+ bool get isFinal => baseElement.isFinal;
+
+ @override
+ bool get isPotentiallyMutatedInClosure =>
+ baseElement.isPotentiallyMutatedInClosure;
+
+ @override
+ bool get isPotentiallyMutatedInScope =>
+ baseElement.isPotentiallyMutatedInScope;
+
+ @override
+ bool get isStatic => baseElement.isStatic;
+
+ @override
+ DartType get type => substituteFor(baseElement.type);
+
+ @override
+ void visitChildren(ElementVisitor visitor) {
+ // TODO(brianwilkerson) We need to finish implementing the accessors used
+ // below so that we can safely invoke them.
+ super.visitChildren(visitor);
+ safelyVisitChild(baseElement.initializer, visitor);
+ }
+}
+
+/**
+ * The type `void`.
+ */
+abstract class VoidType implements DartType {
+ @override
+ VoidType substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes);
+}
+
+/**
+ * A concrete implementation of a [VoidType].
+ */
+class VoidTypeImpl extends TypeImpl implements VoidType {
+ /**
+ * The unique instance of this class.
+ */
+ static VoidTypeImpl _INSTANCE = new VoidTypeImpl();
+
+ /**
+ * Return the unique instance of this class.
+ */
+ static VoidTypeImpl get instance => _INSTANCE;
+
+ /**
+ * Prevent the creation of instances of this class.
+ */
+ VoidTypeImpl() : super(null, Keyword.VOID.syntax);
+
+ @override
+ int get hashCode => 2;
+
+ @override
+ bool get isVoid => true;
+
+ @override
+ bool operator ==(Object object) => identical(object, this);
+
+ @override
+ bool isMoreSpecificThan(DartType type,
+ [bool withDynamic = false, Set<Element> visitedElements]) =>
+ isSubtypeOf(type);
+
+ @override
+ bool isSubtypeOf(DartType type) {
+ // The only subtype relations that pertain to void are therefore:
+ // void <: void (by reflexivity)
+ // bottom <: void (as bottom is a subtype of all types).
+ // void <: dynamic (as dynamic is a supertype of all types)
+ return identical(type, this) || type.isDynamic;
+ }
+
+ @override
+ TypeImpl pruned(List<FunctionTypeAliasElement> prune) => this;
+
+ @override
+ VoidTypeImpl substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes,
+ [List<FunctionTypeAliasElement> prune]) =>
+ this;
+}
+
+/**
+ * A visitor that visit all the elements recursively and fill the given [map].
+ */
+class _BuildOffsetToElementMap extends GeneralizingElementVisitor {
+ final Map<int, Element> map;
+
+ _BuildOffsetToElementMap(this.map);
+
+ @override
+ void visitElement(Element element) {
+ int offset = element.nameOffset;
+ if (offset != -1) {
+ map[offset] = element;
+ }
+ super.visitElement(element);
+ }
+}

Powered by Google App Engine
This is Rietveld 408576698