Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(700)

Unified Diff: mojo/public/dart/third_party/analyzer/lib/src/generated/static_type_analyzer.dart

Issue 1346773002: Stop running pub get at gclient sync time and fix build bugs (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: Created 5 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: mojo/public/dart/third_party/analyzer/lib/src/generated/static_type_analyzer.dart
diff --git a/mojo/public/dart/third_party/analyzer/lib/src/generated/static_type_analyzer.dart b/mojo/public/dart/third_party/analyzer/lib/src/generated/static_type_analyzer.dart
new file mode 100644
index 0000000000000000000000000000000000000000..720f8bbd4f0e314e7688cc267ac2ef22bfab6c7f
--- /dev/null
+++ b/mojo/public/dart/third_party/analyzer/lib/src/generated/static_type_analyzer.dart
@@ -0,0 +1,1988 @@
+// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
+// for details. All rights reserved. Use of this source code is governed by a
+// BSD-style license that can be found in the LICENSE file.
+
+library engine.resolver.static_type_analyzer;
+
+import 'dart:collection';
+
+import 'package:analyzer/src/generated/scanner.dart';
+
+import 'ast.dart';
+import 'element.dart';
+import 'java_engine.dart';
+import 'resolver.dart';
+import 'scanner.dart' as sc;
+
+/**
+ * Instances of the class `StaticTypeAnalyzer` perform two type-related tasks. First, they
+ * compute the static type of every expression. Second, they look for any static type errors or
+ * warnings that might need to be generated. The requirements for the type analyzer are:
+ * <ol>
+ * * Every element that refers to types should be fully populated.
+ * * Every node representing an expression should be resolved to the Type of the expression.
+ * </ol>
+ */
+class StaticTypeAnalyzer extends SimpleAstVisitor<Object> {
+ /**
+ * A table mapping HTML tag names to the names of the classes (in 'dart:html') that implement
+ * those tags.
+ */
+ static HashMap<String, String> _HTML_ELEMENT_TO_CLASS_MAP =
+ _createHtmlTagToClassMap();
+
+ /**
+ * The resolver driving the resolution and type analysis.
+ */
+ final ResolverVisitor _resolver;
+
+ /**
+ * The object providing access to the types defined by the language.
+ */
+ TypeProvider _typeProvider;
+
+ /**
+ * The type system in use for static type analysis.
+ */
+ TypeSystem _typeSystem;
+
+ /**
+ * The type representing the type 'dynamic'.
+ */
+ DartType _dynamicType;
+
+ /**
+ * The type representing the class containing the nodes being analyzed,
+ * or `null` if the nodes are not within a class.
+ */
+ InterfaceType thisType;
+
+ /**
+ * The object keeping track of which elements have had their types overridden.
+ */
+ TypeOverrideManager _overrideManager;
+
+ /**
+ * The object keeping track of which elements have had their types promoted.
+ */
+ TypePromotionManager _promoteManager;
+
+ /**
+ * A table mapping [ExecutableElement]s to their propagated return types.
+ */
+ HashMap<ExecutableElement, DartType> _propagatedReturnTypes =
+ new HashMap<ExecutableElement, DartType>();
+
+ /**
+ * Initialize a newly created type analyzer.
+ *
+ * @param resolver the resolver driving this participant
+ */
+ StaticTypeAnalyzer(this._resolver) {
+ _typeProvider = _resolver.typeProvider;
+ _dynamicType = _typeProvider.dynamicType;
+ _overrideManager = _resolver.overrideManager;
+ _promoteManager = _resolver.promoteManager;
+ _typeSystem = new TypeSystemImpl(_typeProvider);
+ }
+
+ /**
+ * The Dart Language Specification, 12.5: <blockquote>The static type of a string literal is
+ * `String`.</blockquote>
+ */
+ @override
+ Object visitAdjacentStrings(AdjacentStrings node) {
+ _recordStaticType(node, _typeProvider.stringType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.32: <blockquote>... the cast expression <i>e as T</i> ...
+ *
+ * It is a static warning if <i>T</i> does not denote a type available in the current lexical
+ * scope.
+ *
+ * The static type of a cast expression <i>e as T</i> is <i>T</i>.</blockquote>
+ */
+ @override
+ Object visitAsExpression(AsExpression node) {
+ _recordStaticType(node, _getType(node.type));
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.18: <blockquote>... an assignment <i>a</i> of the form <i>v
+ * = e</i> ...
+ *
+ * It is a static type warning if the static type of <i>e</i> may not be assigned to the static
+ * type of <i>v</i>.
+ *
+ * The static type of the expression <i>v = e</i> is the static type of <i>e</i>.
+ *
+ * ... an assignment of the form <i>C.v = e</i> ...
+ *
+ * It is a static type warning if the static type of <i>e</i> may not be assigned to the static
+ * type of <i>C.v</i>.
+ *
+ * The static type of the expression <i>C.v = e</i> is the static type of <i>e</i>.
+ *
+ * ... an assignment of the form <i>e<sub>1</sub>.v = e<sub>2</sub></i> ...
+ *
+ * Let <i>T</i> be the static type of <i>e<sub>1</sub></i>. It is a static type warning if
+ * <i>T</i> does not have an accessible instance setter named <i>v=</i>. It is a static type
+ * warning if the static type of <i>e<sub>2</sub></i> may not be assigned to <i>T</i>.
+ *
+ * The static type of the expression <i>e<sub>1</sub>.v = e<sub>2</sub></i> is the static type of
+ * <i>e<sub>2</sub></i>.
+ *
+ * ... an assignment of the form <i>e<sub>1</sub>[e<sub>2</sub>] = e<sub>3</sub></i> ...
+ *
+ * The static type of the expression <i>e<sub>1</sub>[e<sub>2</sub>] = e<sub>3</sub></i> is the
+ * static type of <i>e<sub>3</sub></i>.
+ *
+ * A compound assignment of the form <i>v op= e</i> is equivalent to <i>v = v op e</i>. A compound
+ * assignment of the form <i>C.v op= e</i> is equivalent to <i>C.v = C.v op e</i>. A compound
+ * assignment of the form <i>e<sub>1</sub>.v op= e<sub>2</sub></i> is equivalent to <i>((x) => x.v
+ * = x.v op e<sub>2</sub>)(e<sub>1</sub>)</i> where <i>x</i> is a variable that is not used in
+ * <i>e<sub>2</sub></i>. A compound assignment of the form <i>e<sub>1</sub>[e<sub>2</sub>] op=
+ * e<sub>3</sub></i> is equivalent to <i>((a, i) => a[i] = a[i] op e<sub>3</sub>)(e<sub>1</sub>,
+ * e<sub>2</sub>)</i> where <i>a</i> and <i>i</i> are a variables that are not used in
+ * <i>e<sub>3</sub></i>.</blockquote>
+ */
+ @override
+ Object visitAssignmentExpression(AssignmentExpression node) {
+ sc.TokenType operator = node.operator.type;
+ if (operator == sc.TokenType.EQ) {
+ Expression rightHandSide = node.rightHandSide;
+ DartType staticType = _getStaticType(rightHandSide);
+ _recordStaticType(node, staticType);
+ DartType overrideType = staticType;
+ DartType propagatedType = rightHandSide.propagatedType;
+ if (propagatedType != null) {
+ _resolver.recordPropagatedTypeIfBetter(node, propagatedType);
+ overrideType = propagatedType;
+ }
+ _resolver.overrideExpression(node.leftHandSide, overrideType, true, true);
+ } else if (operator == sc.TokenType.QUESTION_QUESTION_EQ) {
+ // The static type of a compound assignment using ??= is the least upper
+ // bound of the static types of the LHS and RHS.
+ _analyzeLeastUpperBound(node, node.leftHandSide, node.rightHandSide);
+ return null;
+ } else {
+ ExecutableElement staticMethodElement = node.staticElement;
+ DartType staticType = _computeStaticReturnType(staticMethodElement);
+ _recordStaticType(node, staticType);
+ MethodElement propagatedMethodElement = node.propagatedElement;
+ if (!identical(propagatedMethodElement, staticMethodElement)) {
+ DartType propagatedType =
+ _computeStaticReturnType(propagatedMethodElement);
+ _resolver.recordPropagatedTypeIfBetter(node, propagatedType);
+ }
+ }
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 16.29 (Await Expressions):
+ *
+ * The static type of [the expression "await e"] is flatten(T) where T is
+ * the static type of e.
+ */
+ @override
+ Object visitAwaitExpression(AwaitExpression node) {
+ DartType staticExpressionType = _getStaticType(node.expression);
+ if (staticExpressionType == null) {
+ // TODO(brianwilkerson) Determine whether this can still happen.
+ staticExpressionType = _dynamicType;
+ }
+ DartType staticType = flattenFutures(_typeProvider, staticExpressionType);
+ _recordStaticType(node, staticType);
+ DartType propagatedExpressionType = node.expression.propagatedType;
+ DartType propagatedType =
+ flattenFutures(_typeProvider, propagatedExpressionType);
+ _resolver.recordPropagatedTypeIfBetter(node, propagatedType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.20: <blockquote>The static type of a logical boolean
+ * expression is `bool`.</blockquote>
+ *
+ * The Dart Language Specification, 12.21:<blockquote>A bitwise expression of the form
+ * <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
+ * <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A bitwise expression of the form <i>super op
+ * e<sub>2</sub></i> is equivalent to the method invocation
+ * <i>super.op(e<sub>2</sub>)</i>.</blockquote>
+ *
+ * The Dart Language Specification, 12.22: <blockquote>The static type of an equality expression
+ * is `bool`.</blockquote>
+ *
+ * The Dart Language Specification, 12.23: <blockquote>A relational expression of the form
+ * <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
+ * <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A relational expression of the form <i>super op
+ * e<sub>2</sub></i> is equivalent to the method invocation
+ * <i>super.op(e<sub>2</sub>)</i>.</blockquote>
+ *
+ * The Dart Language Specification, 12.24: <blockquote>A shift expression of the form
+ * <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
+ * <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A shift expression of the form <i>super op
+ * e<sub>2</sub></i> is equivalent to the method invocation
+ * <i>super.op(e<sub>2</sub>)</i>.</blockquote>
+ *
+ * The Dart Language Specification, 12.25: <blockquote>An additive expression of the form
+ * <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
+ * <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. An additive expression of the form <i>super op
+ * e<sub>2</sub></i> is equivalent to the method invocation
+ * <i>super.op(e<sub>2</sub>)</i>.</blockquote>
+ *
+ * The Dart Language Specification, 12.26: <blockquote>A multiplicative expression of the form
+ * <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
+ * <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A multiplicative expression of the form <i>super op
+ * e<sub>2</sub></i> is equivalent to the method invocation
+ * <i>super.op(e<sub>2</sub>)</i>.</blockquote>
+ */
+ @override
+ Object visitBinaryExpression(BinaryExpression node) {
+ if (node.operator.type == TokenType.QUESTION_QUESTION) {
+ // Evaluation of an if-null expresion e of the form e1 ?? e2 is
+ // equivalent to the evaluation of the expression
+ // ((x) => x == null ? e2 : x)(e1). The static type of e is the least
+ // upper bound of the static type of e1 and the static type of e2.
+ _analyzeLeastUpperBound(node, node.leftOperand, node.rightOperand);
+ return null;
+ }
+ ExecutableElement staticMethodElement = node.staticElement;
+ DartType staticType = _computeStaticReturnType(staticMethodElement);
+ staticType = _refineBinaryExpressionType(node, staticType, _getStaticType);
+ _recordStaticType(node, staticType);
+ MethodElement propagatedMethodElement = node.propagatedElement;
+ if (!identical(propagatedMethodElement, staticMethodElement)) {
+ DartType propagatedType =
+ _computeStaticReturnType(propagatedMethodElement);
+ propagatedType =
+ _refineBinaryExpressionType(node, propagatedType, _getBestType);
+ _resolver.recordPropagatedTypeIfBetter(node, propagatedType);
+ }
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.4: <blockquote>The static type of a boolean literal is
+ * bool.</blockquote>
+ */
+ @override
+ Object visitBooleanLiteral(BooleanLiteral node) {
+ _recordStaticType(node, _typeProvider.boolType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.15.2: <blockquote>A cascaded method invocation expression
+ * of the form <i>e..suffix</i> is equivalent to the expression <i>(t) {t.suffix; return
+ * t;}(e)</i>.</blockquote>
+ */
+ @override
+ Object visitCascadeExpression(CascadeExpression node) {
+ _recordStaticType(node, _getStaticType(node.target));
+ _resolver.recordPropagatedTypeIfBetter(node, node.target.propagatedType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.19: <blockquote> ... a conditional expression <i>c</i> of
+ * the form <i>e<sub>1</sub> ? e<sub>2</sub> : e<sub>3</sub></i> ...
+ *
+ * It is a static type warning if the type of e<sub>1</sub> may not be assigned to `bool`.
+ *
+ * The static type of <i>c</i> is the least upper bound of the static type of <i>e<sub>2</sub></i>
+ * and the static type of <i>e<sub>3</sub></i>.</blockquote>
+ */
+ @override
+ Object visitConditionalExpression(ConditionalExpression node) {
+ _analyzeLeastUpperBound(node, node.thenExpression, node.elseExpression);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.3: <blockquote>The static type of a literal double is
+ * double.</blockquote>
+ */
+ @override
+ Object visitDoubleLiteral(DoubleLiteral node) {
+ _recordStaticType(node, _typeProvider.doubleType);
+ return null;
+ }
+
+ @override
+ Object visitFunctionDeclaration(FunctionDeclaration node) {
+ FunctionExpression function = node.functionExpression;
+ ExecutableElementImpl functionElement =
+ node.element as ExecutableElementImpl;
+ functionElement.returnType =
+ _computeStaticReturnTypeOfFunctionDeclaration(node);
+ _recordPropagatedTypeOfFunction(functionElement, function.body);
+ _recordStaticType(function, functionElement.type);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.9: <blockquote>The static type of a function literal of the
+ * form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;, T<sub>n</sub> a<sub>n</sub>, [T<sub>n+1</sub>
+ * x<sub>n+1</sub> = d1, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub> = dk]) => e</i> is
+ * <i>(T<sub>1</sub>, &hellip;, Tn, [T<sub>n+1</sub> x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub>
+ * x<sub>n+k</sub>]) &rarr; T<sub>0</sub></i>, where <i>T<sub>0</sub></i> is the static type of
+ * <i>e</i>. In any case where <i>T<sub>i</sub>, 1 &lt;= i &lt;= n</i>, is not specified, it is
+ * considered to have been specified as dynamic.
+ *
+ * The static type of a function literal of the form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;,
+ * T<sub>n</sub> a<sub>n</sub>, {T<sub>n+1</sub> x<sub>n+1</sub> : d1, &hellip;, T<sub>n+k</sub>
+ * x<sub>n+k</sub> : dk}) => e</i> is <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, {T<sub>n+1</sub>
+ * x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub>}) &rarr; T<sub>0</sub></i>, where
+ * <i>T<sub>0</sub></i> is the static type of <i>e</i>. In any case where <i>T<sub>i</sub>, 1
+ * &lt;= i &lt;= n</i>, is not specified, it is considered to have been specified as dynamic.
+ *
+ * The static type of a function literal of the form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;,
+ * T<sub>n</sub> a<sub>n</sub>, [T<sub>n+1</sub> x<sub>n+1</sub> = d1, &hellip;, T<sub>n+k</sub>
+ * x<sub>n+k</sub> = dk]) {s}</i> is <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, [T<sub>n+1</sub>
+ * x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub>]) &rarr; dynamic</i>. In any case
+ * where <i>T<sub>i</sub>, 1 &lt;= i &lt;= n</i>, is not specified, it is considered to have been
+ * specified as dynamic.
+ *
+ * The static type of a function literal of the form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;,
+ * T<sub>n</sub> a<sub>n</sub>, {T<sub>n+1</sub> x<sub>n+1</sub> : d1, &hellip;, T<sub>n+k</sub>
+ * x<sub>n+k</sub> : dk}) {s}</i> is <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, {T<sub>n+1</sub>
+ * x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub>}) &rarr; dynamic</i>. In any case
+ * where <i>T<sub>i</sub>, 1 &lt;= i &lt;= n</i>, is not specified, it is considered to have been
+ * specified as dynamic.</blockquote>
+ */
+ @override
+ Object visitFunctionExpression(FunctionExpression node) {
+ if (node.parent is FunctionDeclaration) {
+ // The function type will be resolved and set when we visit the parent
+ // node.
+ return null;
+ }
+ ExecutableElementImpl functionElement =
+ node.element as ExecutableElementImpl;
+ functionElement.returnType =
+ _computeStaticReturnTypeOfFunctionExpression(node);
+ _recordPropagatedTypeOfFunction(functionElement, node.body);
+ _recordStaticType(node, node.element.type);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.14.4: <blockquote>A function expression invocation <i>i</i>
+ * has the form <i>e<sub>f</sub>(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>:
+ * a<sub>n+1</sub>, &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>, where <i>e<sub>f</sub></i> is
+ * an expression.
+ *
+ * It is a static type warning if the static type <i>F</i> of <i>e<sub>f</sub></i> may not be
+ * assigned to a function type.
+ *
+ * If <i>F</i> is not a function type, the static type of <i>i</i> is dynamic. Otherwise the
+ * static type of <i>i</i> is the declared return type of <i>F</i>.</blockquote>
+ */
+ @override
+ Object visitFunctionExpressionInvocation(FunctionExpressionInvocation node) {
+ DartType functionStaticType = _getStaticType(node.function);
+ DartType staticType;
+ if (functionStaticType is FunctionType) {
+ staticType = functionStaticType.returnType;
+ } else {
+ staticType = _dynamicType;
+ }
+ _recordStaticType(node, staticType);
+ DartType functionPropagatedType = node.function.propagatedType;
+ if (functionPropagatedType is FunctionType) {
+ DartType propagatedType = functionPropagatedType.returnType;
+ _resolver.recordPropagatedTypeIfBetter(node, propagatedType);
+ }
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.29: <blockquote>An assignable expression of the form
+ * <i>e<sub>1</sub>[e<sub>2</sub>]</i> is evaluated as a method invocation of the operator method
+ * <i>[]</i> on <i>e<sub>1</sub></i> with argument <i>e<sub>2</sub></i>.</blockquote>
+ */
+ @override
+ Object visitIndexExpression(IndexExpression node) {
+ if (node.inSetterContext()) {
+ ExecutableElement staticMethodElement = node.staticElement;
+ DartType staticType = _computeArgumentType(staticMethodElement);
+ _recordStaticType(node, staticType);
+ MethodElement propagatedMethodElement = node.propagatedElement;
+ if (!identical(propagatedMethodElement, staticMethodElement)) {
+ DartType propagatedType = _computeArgumentType(propagatedMethodElement);
+ _resolver.recordPropagatedTypeIfBetter(node, propagatedType);
+ }
+ } else {
+ ExecutableElement staticMethodElement = node.staticElement;
+ DartType staticType = _computeStaticReturnType(staticMethodElement);
+ _recordStaticType(node, staticType);
+ MethodElement propagatedMethodElement = node.propagatedElement;
+ if (!identical(propagatedMethodElement, staticMethodElement)) {
+ DartType propagatedType =
+ _computeStaticReturnType(propagatedMethodElement);
+ _resolver.recordPropagatedTypeIfBetter(node, propagatedType);
+ }
+ }
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.11.1: <blockquote>The static type of a new expression of
+ * either the form <i>new T.id(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> or the form <i>new
+ * T(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> is <i>T</i>.</blockquote>
+ *
+ * The Dart Language Specification, 12.11.2: <blockquote>The static type of a constant object
+ * expression of either the form <i>const T.id(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> or the
+ * form <i>const T(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> is <i>T</i>. </blockquote>
+ */
+ @override
+ Object visitInstanceCreationExpression(InstanceCreationExpression node) {
+ _recordStaticType(node, node.constructorName.type.type);
+ ConstructorElement element = node.staticElement;
+ if (element != null && "Element" == element.enclosingElement.name) {
+ LibraryElement library = element.library;
+ if (_isHtmlLibrary(library)) {
+ String constructorName = element.name;
+ if ("tag" == constructorName) {
+ DartType returnType = _getFirstArgumentAsTypeWithMap(
+ library, node.argumentList, _HTML_ELEMENT_TO_CLASS_MAP);
+ _resolver.recordPropagatedTypeIfBetter(node, returnType);
+ } else {
+ DartType returnType = _getElementNameAsType(
+ library, constructorName, _HTML_ELEMENT_TO_CLASS_MAP);
+ _resolver.recordPropagatedTypeIfBetter(node, returnType);
+ }
+ }
+ }
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.3: <blockquote>The static type of an integer literal is
+ * `int`.</blockquote>
+ */
+ @override
+ Object visitIntegerLiteral(IntegerLiteral node) {
+ _recordStaticType(node, _typeProvider.intType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.31: <blockquote>It is a static warning if <i>T</i> does not
+ * denote a type available in the current lexical scope.
+ *
+ * The static type of an is-expression is `bool`.</blockquote>
+ */
+ @override
+ Object visitIsExpression(IsExpression node) {
+ _recordStaticType(node, _typeProvider.boolType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.6: <blockquote>The static type of a list literal of the
+ * form <i><b>const</b> &lt;E&gt;[e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> or the form
+ * <i>&lt;E&gt;[e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> is `List&lt;E&gt;`. The static
+ * type a list literal of the form <i><b>const</b> [e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> or
+ * the form <i>[e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> is `List&lt;dynamic&gt;`
+ * .</blockquote>
+ */
+ @override
+ Object visitListLiteral(ListLiteral node) {
+ DartType staticType = _dynamicType;
+ TypeArgumentList typeArguments = node.typeArguments;
+ if (typeArguments != null) {
+ NodeList<TypeName> arguments = typeArguments.arguments;
+ if (arguments != null && arguments.length == 1) {
+ TypeName argumentTypeName = arguments[0];
+ DartType argumentType = _getType(argumentTypeName);
+ if (argumentType != null) {
+ staticType = argumentType;
+ }
+ }
+ }
+ _recordStaticType(
+ node, _typeProvider.listType.substitute4(<DartType>[staticType]));
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.7: <blockquote>The static type of a map literal of the form
+ * <i><b>const</b> &lt;K, V&gt; {k<sub>1</sub>:e<sub>1</sub>, &hellip;,
+ * k<sub>n</sub>:e<sub>n</sub>}</i> or the form <i>&lt;K, V&gt; {k<sub>1</sub>:e<sub>1</sub>,
+ * &hellip;, k<sub>n</sub>:e<sub>n</sub>}</i> is `Map&lt;K, V&gt;`. The static type a map
+ * literal of the form <i><b>const</b> {k<sub>1</sub>:e<sub>1</sub>, &hellip;,
+ * k<sub>n</sub>:e<sub>n</sub>}</i> or the form <i>{k<sub>1</sub>:e<sub>1</sub>, &hellip;,
+ * k<sub>n</sub>:e<sub>n</sub>}</i> is `Map&lt;dynamic, dynamic&gt;`.
+ *
+ * It is a compile-time error if the first type argument to a map literal is not
+ * <i>String</i>.</blockquote>
+ */
+ @override
+ Object visitMapLiteral(MapLiteral node) {
+ DartType staticKeyType = _dynamicType;
+ DartType staticValueType = _dynamicType;
+ TypeArgumentList typeArguments = node.typeArguments;
+ if (typeArguments != null) {
+ NodeList<TypeName> arguments = typeArguments.arguments;
+ if (arguments != null && arguments.length == 2) {
+ TypeName entryKeyTypeName = arguments[0];
+ DartType entryKeyType = _getType(entryKeyTypeName);
+ if (entryKeyType != null) {
+ staticKeyType = entryKeyType;
+ }
+ TypeName entryValueTypeName = arguments[1];
+ DartType entryValueType = _getType(entryValueTypeName);
+ if (entryValueType != null) {
+ staticValueType = entryValueType;
+ }
+ }
+ }
+ _recordStaticType(
+ node,
+ _typeProvider.mapType
+ .substitute4(<DartType>[staticKeyType, staticValueType]));
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.15.1: <blockquote>An ordinary method invocation <i>i</i>
+ * has the form <i>o.m(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>: a<sub>n+1</sub>,
+ * &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>.
+ *
+ * Let <i>T</i> be the static type of <i>o</i>. It is a static type warning if <i>T</i> does not
+ * have an accessible instance member named <i>m</i>. If <i>T.m</i> exists, it is a static warning
+ * if the type <i>F</i> of <i>T.m</i> may not be assigned to a function type.
+ *
+ * If <i>T.m</i> does not exist, or if <i>F</i> is not a function type, the static type of
+ * <i>i</i> is dynamic. Otherwise the static type of <i>i</i> is the declared return type of
+ * <i>F</i>.</blockquote>
+ *
+ * The Dart Language Specification, 11.15.3: <blockquote>A static method invocation <i>i</i> has
+ * the form <i>C.m(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>: a<sub>n+1</sub>,
+ * &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>.
+ *
+ * It is a static type warning if the type <i>F</i> of <i>C.m</i> may not be assigned to a
+ * function type.
+ *
+ * If <i>F</i> is not a function type, or if <i>C.m</i> does not exist, the static type of i is
+ * dynamic. Otherwise the static type of <i>i</i> is the declared return type of
+ * <i>F</i>.</blockquote>
+ *
+ * The Dart Language Specification, 11.15.4: <blockquote>A super method invocation <i>i</i> has
+ * the form <i>super.m(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>: a<sub>n+1</sub>,
+ * &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>.
+ *
+ * It is a static type warning if <i>S</i> does not have an accessible instance member named m. If
+ * <i>S.m</i> exists, it is a static warning if the type <i>F</i> of <i>S.m</i> may not be
+ * assigned to a function type.
+ *
+ * If <i>S.m</i> does not exist, or if <i>F</i> is not a function type, the static type of
+ * <i>i</i> is dynamic. Otherwise the static type of <i>i</i> is the declared return type of
+ * <i>F</i>.</blockquote>
+ */
+ @override
+ Object visitMethodInvocation(MethodInvocation node) {
+ SimpleIdentifier methodNameNode = node.methodName;
+ Element staticMethodElement = methodNameNode.staticElement;
+ // Record types of the variable invoked as a function.
+ if (staticMethodElement is VariableElement) {
+ VariableElement variable = staticMethodElement;
+ DartType staticType = variable.type;
+ _recordStaticType(methodNameNode, staticType);
+ DartType propagatedType = _overrideManager.getType(variable);
+ _resolver.recordPropagatedTypeIfBetter(methodNameNode, propagatedType);
+ }
+ // Record static return type of the static element.
+ DartType staticStaticType = _computeStaticReturnType(staticMethodElement);
+ _recordStaticType(node, staticStaticType);
+ // Record propagated return type of the static element.
+ DartType staticPropagatedType =
+ _computePropagatedReturnType(staticMethodElement);
+ _resolver.recordPropagatedTypeIfBetter(node, staticPropagatedType);
+ // Check for special cases.
+ bool needPropagatedType = true;
+ String methodName = methodNameNode.name;
+ if (methodName == "then") {
+ Expression target = node.realTarget;
+ if (target != null) {
+ DartType targetType = target.bestType;
+ if (_isAsyncFutureType(targetType)) {
+ // Future.then(closure) return type is:
+ // 1) the returned Future type, if the closure returns a Future;
+ // 2) Future<valueType>, if the closure returns a value.
+ NodeList<Expression> arguments = node.argumentList.arguments;
+ if (arguments.length == 1) {
+ // TODO(brianwilkerson) Handle the case where both arguments are
+ // provided.
+ Expression closureArg = arguments[0];
+ if (closureArg is FunctionExpression) {
+ FunctionExpression closureExpr = closureArg;
+ DartType returnType =
+ _computePropagatedReturnType(closureExpr.element);
+ if (returnType != null) {
+ // prepare the type of the returned Future
+ InterfaceTypeImpl newFutureType;
+ if (_isAsyncFutureType(returnType)) {
+ newFutureType = returnType as InterfaceTypeImpl;
+ } else {
+ InterfaceType futureType = targetType as InterfaceType;
+ newFutureType = new InterfaceTypeImpl(futureType.element);
+ newFutureType.typeArguments = <DartType>[returnType];
+ }
+ // set the 'then' invocation type
+ _recordPropagatedType(node, newFutureType);
+ needPropagatedType = false;
+ return null;
+ }
+ }
+ }
+ }
+ }
+ } else if (methodName == "\$dom_createEvent") {
+ Expression target = node.realTarget;
+ if (target != null) {
+ DartType targetType = target.bestType;
+ if (targetType is InterfaceType &&
+ (targetType.name == "HtmlDocument" ||
+ targetType.name == "Document")) {
+ LibraryElement library = targetType.element.library;
+ if (_isHtmlLibrary(library)) {
+ DartType returnType =
+ _getFirstArgumentAsType(library, node.argumentList);
+ if (returnType != null) {
+ _recordPropagatedType(node, returnType);
+ needPropagatedType = false;
+ }
+ }
+ }
+ }
+ } else if (methodName == "query") {
+ Expression target = node.realTarget;
+ if (target == null) {
+ Element methodElement = methodNameNode.bestElement;
+ if (methodElement != null) {
+ LibraryElement library = methodElement.library;
+ if (_isHtmlLibrary(library)) {
+ DartType returnType =
+ _getFirstArgumentAsQuery(library, node.argumentList);
+ if (returnType != null) {
+ _recordPropagatedType(node, returnType);
+ needPropagatedType = false;
+ }
+ }
+ }
+ } else {
+ DartType targetType = target.bestType;
+ if (targetType is InterfaceType &&
+ (targetType.name == "HtmlDocument" ||
+ targetType.name == "Document")) {
+ LibraryElement library = targetType.element.library;
+ if (_isHtmlLibrary(library)) {
+ DartType returnType =
+ _getFirstArgumentAsQuery(library, node.argumentList);
+ if (returnType != null) {
+ _recordPropagatedType(node, returnType);
+ needPropagatedType = false;
+ }
+ }
+ }
+ }
+ } else if (methodName == "\$dom_createElement") {
+ Expression target = node.realTarget;
+ if (target != null) {
+ DartType targetType = target.bestType;
+ if (targetType is InterfaceType &&
+ (targetType.name == "HtmlDocument" ||
+ targetType.name == "Document")) {
+ LibraryElement library = targetType.element.library;
+ if (_isHtmlLibrary(library)) {
+ DartType returnType =
+ _getFirstArgumentAsQuery(library, node.argumentList);
+ if (returnType != null) {
+ _recordPropagatedType(node, returnType);
+ needPropagatedType = false;
+ }
+ }
+ }
+ }
+ } else if (methodName == "JS") {
+ DartType returnType = _getFirstArgumentAsType(
+ _typeProvider.objectType.element.library, node.argumentList);
+ if (returnType != null) {
+ _recordPropagatedType(node, returnType);
+ needPropagatedType = false;
+ }
+ } else if (methodName == "getContext") {
+ Expression target = node.realTarget;
+ if (target != null) {
+ DartType targetType = target.bestType;
+ if (targetType is InterfaceType &&
+ (targetType.name == "CanvasElement")) {
+ NodeList<Expression> arguments = node.argumentList.arguments;
+ if (arguments.length == 1) {
+ Expression argument = arguments[0];
+ if (argument is StringLiteral) {
+ String value = argument.stringValue;
+ if ("2d" == value) {
+ PropertyAccessorElement getter =
+ targetType.element.getGetter("context2D");
+ if (getter != null) {
+ DartType returnType = getter.returnType;
+ if (returnType != null) {
+ _recordPropagatedType(node, returnType);
+ needPropagatedType = false;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ if (needPropagatedType) {
+ Element propagatedElement = methodNameNode.propagatedElement;
+ // HACK: special case for object methods ([toString]) on dynamic
+ // expressions. More special cases in [visitPrefixedIdentfier].
+ if (propagatedElement == null) {
+ propagatedElement =
+ _typeProvider.objectType.getMethod(methodNameNode.name);
+ }
+ if (!identical(propagatedElement, staticMethodElement)) {
+ // Record static return type of the propagated element.
+ DartType propagatedStaticType =
+ _computeStaticReturnType(propagatedElement);
+ _resolver.recordPropagatedTypeIfBetter(
+ node, propagatedStaticType, true);
+ // Record propagated return type of the propagated element.
+ DartType propagatedPropagatedType =
+ _computePropagatedReturnType(propagatedElement);
+ _resolver.recordPropagatedTypeIfBetter(
+ node, propagatedPropagatedType, true);
+ }
+ }
+ return null;
+ }
+
+ @override
+ Object visitNamedExpression(NamedExpression node) {
+ Expression expression = node.expression;
+ _recordStaticType(node, _getStaticType(expression));
+ _resolver.recordPropagatedTypeIfBetter(node, expression.propagatedType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.2: <blockquote>The static type of `null` is bottom.
+ * </blockquote>
+ */
+ @override
+ Object visitNullLiteral(NullLiteral node) {
+ _recordStaticType(node, _typeProvider.bottomType);
+ return null;
+ }
+
+ @override
+ Object visitParenthesizedExpression(ParenthesizedExpression node) {
+ Expression expression = node.expression;
+ _recordStaticType(node, _getStaticType(expression));
+ _resolver.recordPropagatedTypeIfBetter(node, expression.propagatedType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.28: <blockquote>A postfix expression of the form
+ * <i>v++</i>, where <i>v</i> is an identifier, is equivalent to <i>(){var r = v; v = r + 1;
+ * return r}()</i>.
+ *
+ * A postfix expression of the form <i>C.v++</i> is equivalent to <i>(){var r = C.v; C.v = r + 1;
+ * return r}()</i>.
+ *
+ * A postfix expression of the form <i>e1.v++</i> is equivalent to <i>(x){var r = x.v; x.v = r +
+ * 1; return r}(e1)</i>.
+ *
+ * A postfix expression of the form <i>e1[e2]++</i> is equivalent to <i>(a, i){var r = a[i]; a[i]
+ * = r + 1; return r}(e1, e2)</i>
+ *
+ * A postfix expression of the form <i>v--</i>, where <i>v</i> is an identifier, is equivalent to
+ * <i>(){var r = v; v = r - 1; return r}()</i>.
+ *
+ * A postfix expression of the form <i>C.v--</i> is equivalent to <i>(){var r = C.v; C.v = r - 1;
+ * return r}()</i>.
+ *
+ * A postfix expression of the form <i>e1.v--</i> is equivalent to <i>(x){var r = x.v; x.v = r -
+ * 1; return r}(e1)</i>.
+ *
+ * A postfix expression of the form <i>e1[e2]--</i> is equivalent to <i>(a, i){var r = a[i]; a[i]
+ * = r - 1; return r}(e1, e2)</i></blockquote>
+ */
+ @override
+ Object visitPostfixExpression(PostfixExpression node) {
+ Expression operand = node.operand;
+ DartType staticType = _getStaticType(operand);
+ sc.TokenType operator = node.operator.type;
+ if (operator == sc.TokenType.MINUS_MINUS ||
+ operator == sc.TokenType.PLUS_PLUS) {
+ DartType intType = _typeProvider.intType;
+ if (identical(_getStaticType(node.operand), intType)) {
+ staticType = intType;
+ }
+ }
+ _recordStaticType(node, staticType);
+ _resolver.recordPropagatedTypeIfBetter(node, operand.propagatedType);
+ return null;
+ }
+
+ /**
+ * See [visitSimpleIdentifier].
+ */
+ @override
+ Object visitPrefixedIdentifier(PrefixedIdentifier node) {
+ SimpleIdentifier prefixedIdentifier = node.identifier;
+ Element staticElement = prefixedIdentifier.staticElement;
+ DartType staticType = _dynamicType;
+ DartType propagatedType = null;
+ if (staticElement is ClassElement) {
+ if (_isNotTypeLiteral(node)) {
+ staticType = staticElement.type;
+ } else {
+ staticType = _typeProvider.typeType;
+ }
+ } else if (staticElement is FunctionTypeAliasElement) {
+ if (_isNotTypeLiteral(node)) {
+ staticType = staticElement.type;
+ } else {
+ staticType = _typeProvider.typeType;
+ }
+ } else if (staticElement is MethodElement) {
+ staticType = staticElement.type;
+ } else if (staticElement is PropertyAccessorElement) {
+ staticType = _getTypeOfProperty(staticElement, node.prefix.staticType);
+ propagatedType =
+ _getPropertyPropagatedType(staticElement, propagatedType);
+ } else if (staticElement is ExecutableElement) {
+ staticType = staticElement.type;
+ } else if (staticElement is TypeParameterElement) {
+ staticType = staticElement.type;
+ } else if (staticElement is VariableElement) {
+ staticType = staticElement.type;
+ }
+ _recordStaticType(prefixedIdentifier, staticType);
+ _recordStaticType(node, staticType);
+ Element propagatedElement = prefixedIdentifier.propagatedElement;
+ // HACK: special case for object getters ([hashCode] and [runtimeType]) on
+ // dynamic expressions. More special cases in [visitMethodInvocation].
+ if (propagatedElement == null) {
+ propagatedElement =
+ _typeProvider.objectType.getGetter(prefixedIdentifier.name);
+ }
+ if (propagatedElement is ClassElement) {
+ if (_isNotTypeLiteral(node)) {
+ propagatedType = propagatedElement.type;
+ } else {
+ propagatedType = _typeProvider.typeType;
+ }
+ } else if (propagatedElement is FunctionTypeAliasElement) {
+ propagatedType = propagatedElement.type;
+ } else if (propagatedElement is MethodElement) {
+ propagatedType = propagatedElement.type;
+ } else if (propagatedElement is PropertyAccessorElement) {
+ propagatedType =
+ _getTypeOfProperty(propagatedElement, node.prefix.staticType);
+ propagatedType =
+ _getPropertyPropagatedType(propagatedElement, propagatedType);
+ } else if (propagatedElement is ExecutableElement) {
+ propagatedType = propagatedElement.type;
+ } else if (propagatedElement is TypeParameterElement) {
+ propagatedType = propagatedElement.type;
+ } else if (propagatedElement is VariableElement) {
+ propagatedType = propagatedElement.type;
+ }
+ DartType overriddenType = _overrideManager.getType(propagatedElement);
+ if (propagatedType == null ||
+ (overriddenType != null &&
+ overriddenType.isMoreSpecificThan(propagatedType))) {
+ propagatedType = overriddenType;
+ }
+ _resolver.recordPropagatedTypeIfBetter(prefixedIdentifier, propagatedType);
+ _resolver.recordPropagatedTypeIfBetter(node, propagatedType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.27: <blockquote>A unary expression <i>u</i> of the form
+ * <i>op e</i> is equivalent to a method invocation <i>expression e.op()</i>. An expression of the
+ * form <i>op super</i> is equivalent to the method invocation <i>super.op()<i>.</blockquote>
+ */
+ @override
+ Object visitPrefixExpression(PrefixExpression node) {
+ sc.TokenType operator = node.operator.type;
+ if (operator == sc.TokenType.BANG) {
+ _recordStaticType(node, _typeProvider.boolType);
+ } else {
+ // The other cases are equivalent to invoking a method.
+ ExecutableElement staticMethodElement = node.staticElement;
+ DartType staticType = _computeStaticReturnType(staticMethodElement);
+ if (operator == sc.TokenType.MINUS_MINUS ||
+ operator == sc.TokenType.PLUS_PLUS) {
+ DartType intType = _typeProvider.intType;
+ if (identical(_getStaticType(node.operand), intType)) {
+ staticType = intType;
+ }
+ }
+ _recordStaticType(node, staticType);
+ MethodElement propagatedMethodElement = node.propagatedElement;
+ if (!identical(propagatedMethodElement, staticMethodElement)) {
+ DartType propagatedType =
+ _computeStaticReturnType(propagatedMethodElement);
+ _resolver.recordPropagatedTypeIfBetter(node, propagatedType);
+ }
+ }
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.13: <blockquote> Property extraction allows for a member of
+ * an object to be concisely extracted from the object. If <i>o</i> is an object, and if <i>m</i>
+ * is the name of a method member of <i>o</i>, then
+ * * <i>o.m</i> is defined to be equivalent to: <i>(r<sub>1</sub>, &hellip;, r<sub>n</sub>,
+ * {p<sub>1</sub> : d<sub>1</sub>, &hellip;, p<sub>k</sub> : d<sub>k</sub>}){return
+ * o.m(r<sub>1</sub>, &hellip;, r<sub>n</sub>, p<sub>1</sub>: p<sub>1</sub>, &hellip;,
+ * p<sub>k</sub>: p<sub>k</sub>);}</i> if <i>m</i> has required parameters <i>r<sub>1</sub>,
+ * &hellip;, r<sub>n</sub></i>, and named parameters <i>p<sub>1</sub> &hellip; p<sub>k</sub></i>
+ * with defaults <i>d<sub>1</sub>, &hellip;, d<sub>k</sub></i>.
+ * * <i>(r<sub>1</sub>, &hellip;, r<sub>n</sub>, [p<sub>1</sub> = d<sub>1</sub>, &hellip;,
+ * p<sub>k</sub> = d<sub>k</sub>]){return o.m(r<sub>1</sub>, &hellip;, r<sub>n</sub>,
+ * p<sub>1</sub>, &hellip;, p<sub>k</sub>);}</i> if <i>m</i> has required parameters
+ * <i>r<sub>1</sub>, &hellip;, r<sub>n</sub></i>, and optional positional parameters
+ * <i>p<sub>1</sub> &hellip; p<sub>k</sub></i> with defaults <i>d<sub>1</sub>, &hellip;,
+ * d<sub>k</sub></i>.
+ * Otherwise, if <i>m</i> is the name of a getter member of <i>o</i> (declared implicitly or
+ * explicitly) then <i>o.m</i> evaluates to the result of invoking the getter. </blockquote>
+ *
+ * The Dart Language Specification, 12.17: <blockquote> ... a getter invocation <i>i</i> of the
+ * form <i>e.m</i> ...
+ *
+ * Let <i>T</i> be the static type of <i>e</i>. It is a static type warning if <i>T</i> does not
+ * have a getter named <i>m</i>.
+ *
+ * The static type of <i>i</i> is the declared return type of <i>T.m</i>, if <i>T.m</i> exists;
+ * otherwise the static type of <i>i</i> is dynamic.
+ *
+ * ... a getter invocation <i>i</i> of the form <i>C.m</i> ...
+ *
+ * It is a static warning if there is no class <i>C</i> in the enclosing lexical scope of
+ * <i>i</i>, or if <i>C</i> does not declare, implicitly or explicitly, a getter named <i>m</i>.
+ *
+ * The static type of <i>i</i> is the declared return type of <i>C.m</i> if it exists or dynamic
+ * otherwise.
+ *
+ * ... a top-level getter invocation <i>i</i> of the form <i>m</i>, where <i>m</i> is an
+ * identifier ...
+ *
+ * The static type of <i>i</i> is the declared return type of <i>m</i>.</blockquote>
+ */
+ @override
+ Object visitPropertyAccess(PropertyAccess node) {
+ SimpleIdentifier propertyName = node.propertyName;
+ Element staticElement = propertyName.staticElement;
+ DartType staticType = _dynamicType;
+ if (staticElement is MethodElement) {
+ staticType = staticElement.type;
+ } else if (staticElement is PropertyAccessorElement) {
+ Expression realTarget = node.realTarget;
+ staticType = _getTypeOfProperty(staticElement,
+ realTarget != null ? _getStaticType(realTarget) : null);
+ } else {
+ // TODO(brianwilkerson) Report this internal error.
+ }
+ _recordStaticType(propertyName, staticType);
+ _recordStaticType(node, staticType);
+ Element propagatedElement = propertyName.propagatedElement;
+ DartType propagatedType = _overrideManager.getType(propagatedElement);
+ if (propagatedElement is MethodElement) {
+ propagatedType = propagatedElement.type;
+ } else if (propagatedElement is PropertyAccessorElement) {
+ Expression realTarget = node.realTarget;
+ propagatedType = _getTypeOfProperty(
+ propagatedElement, realTarget != null ? realTarget.bestType : null);
+ } else {
+ // TODO(brianwilkerson) Report this internal error.
+ }
+ _resolver.recordPropagatedTypeIfBetter(propertyName, propagatedType);
+ _resolver.recordPropagatedTypeIfBetter(node, propagatedType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.9: <blockquote>The static type of a rethrow expression is
+ * bottom.</blockquote>
+ */
+ @override
+ Object visitRethrowExpression(RethrowExpression node) {
+ _recordStaticType(node, _typeProvider.bottomType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.30: <blockquote>Evaluation of an identifier expression
+ * <i>e</i> of the form <i>id</i> proceeds as follows:
+ *
+ * Let <i>d</i> be the innermost declaration in the enclosing lexical scope whose name is
+ * <i>id</i>. If no such declaration exists in the lexical scope, let <i>d</i> be the declaration
+ * of the inherited member named <i>id</i> if it exists.
+ * * If <i>d</i> is a class or type alias <i>T</i>, the value of <i>e</i> is the unique instance
+ * of class `Type` reifying <i>T</i>.
+ * * If <i>d</i> is a type parameter <i>T</i>, then the value of <i>e</i> is the value of the
+ * actual type argument corresponding to <i>T</i> that was passed to the generative constructor
+ * that created the current binding of this. We are assured that this is well defined, because if
+ * we were in a static member the reference to <i>T</i> would be a compile-time error.
+ * * If <i>d</i> is a library variable then:
+ * * If <i>d</i> is of one of the forms <i>var v = e<sub>i</sub>;</i>, <i>T v =
+ * e<sub>i</sub>;</i>, <i>final v = e<sub>i</sub>;</i>, <i>final T v = e<sub>i</sub>;</i>, and no
+ * value has yet been stored into <i>v</i> then the initializer expression <i>e<sub>i</sub></i> is
+ * evaluated. If, during the evaluation of <i>e<sub>i</sub></i>, the getter for <i>v</i> is
+ * referenced, a CyclicInitializationError is thrown. If the evaluation succeeded yielding an
+ * object <i>o</i>, let <i>r = o</i>, otherwise let <i>r = null</i>. In any case, <i>r</i> is
+ * stored into <i>v</i>. The value of <i>e</i> is <i>r</i>.
+ * * If <i>d</i> is of one of the forms <i>const v = e;</i> or <i>const T v = e;</i> the result
+ * of the getter is the value of the compile time constant <i>e</i>. Otherwise
+ * * <i>e</i> evaluates to the current binding of <i>id</i>.
+ * * If <i>d</i> is a local variable or formal parameter then <i>e</i> evaluates to the current
+ * binding of <i>id</i>.
+ * * If <i>d</i> is a static method, top level function or local function then <i>e</i>
+ * evaluates to the function defined by <i>d</i>.
+ * * If <i>d</i> is the declaration of a static variable or static getter declared in class
+ * <i>C</i>, then <i>e</i> is equivalent to the getter invocation <i>C.id</i>.
+ * * If <i>d</i> is the declaration of a top level getter, then <i>e</i> is equivalent to the
+ * getter invocation <i>id</i>.
+ * * Otherwise, if <i>e</i> occurs inside a top level or static function (be it function,
+ * method, getter, or setter) or variable initializer, evaluation of e causes a NoSuchMethodError
+ * to be thrown.
+ * * Otherwise <i>e</i> is equivalent to the property extraction <i>this.id</i>.
+ * </blockquote>
+ */
+ @override
+ Object visitSimpleIdentifier(SimpleIdentifier node) {
+ Element element = node.staticElement;
+ DartType staticType = _dynamicType;
+ if (element is ClassElement) {
+ if (_isNotTypeLiteral(node)) {
+ staticType = element.type;
+ } else {
+ staticType = _typeProvider.typeType;
+ }
+ } else if (element is FunctionTypeAliasElement) {
+ if (_isNotTypeLiteral(node)) {
+ staticType = element.type;
+ } else {
+ staticType = _typeProvider.typeType;
+ }
+ } else if (element is MethodElement) {
+ staticType = element.type;
+ } else if (element is PropertyAccessorElement) {
+ staticType = _getTypeOfProperty(element, null);
+ } else if (element is ExecutableElement) {
+ staticType = element.type;
+ } else if (element is TypeParameterElement) {
+ staticType = _typeProvider.typeType;
+ } else if (element is VariableElement) {
+ VariableElement variable = element;
+ staticType = _promoteManager.getStaticType(variable);
+ } else if (element is PrefixElement) {
+ return null;
+ } else if (element is DynamicElementImpl) {
+ staticType = _typeProvider.typeType;
+ } else {
+ staticType = _dynamicType;
+ }
+ _recordStaticType(node, staticType);
+ // TODO(brianwilkerson) I think we want to repeat the logic above using the
+ // propagated element to get another candidate for the propagated type.
+ DartType propagatedType = _getPropertyPropagatedType(element, null);
+ if (propagatedType == null) {
+ DartType overriddenType = _overrideManager.getType(element);
+ if (propagatedType == null ||
+ overriddenType != null &&
+ overriddenType.isMoreSpecificThan(propagatedType)) {
+ propagatedType = overriddenType;
+ }
+ }
+ _resolver.recordPropagatedTypeIfBetter(node, propagatedType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.5: <blockquote>The static type of a string literal is
+ * `String`.</blockquote>
+ */
+ @override
+ Object visitSimpleStringLiteral(SimpleStringLiteral node) {
+ _recordStaticType(node, _typeProvider.stringType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.5: <blockquote>The static type of a string literal is
+ * `String`.</blockquote>
+ */
+ @override
+ Object visitStringInterpolation(StringInterpolation node) {
+ _recordStaticType(node, _typeProvider.stringType);
+ return null;
+ }
+
+ @override
+ Object visitSuperExpression(SuperExpression node) {
+ if (thisType == null) {
+ // TODO(brianwilkerson) Report this error if it hasn't already been
+ // reported.
+ _recordStaticType(node, _dynamicType);
+ } else {
+ _recordStaticType(node, thisType);
+ }
+ return null;
+ }
+
+ @override
+ Object visitSymbolLiteral(SymbolLiteral node) {
+ _recordStaticType(node, _typeProvider.symbolType);
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.10: <blockquote>The static type of `this` is the
+ * interface of the immediately enclosing class.</blockquote>
+ */
+ @override
+ Object visitThisExpression(ThisExpression node) {
+ if (thisType == null) {
+ // TODO(brianwilkerson) Report this error if it hasn't already been
+ // reported.
+ _recordStaticType(node, _dynamicType);
+ } else {
+ _recordStaticType(node, thisType);
+ }
+ return null;
+ }
+
+ /**
+ * The Dart Language Specification, 12.8: <blockquote>The static type of a throw expression is
+ * bottom.</blockquote>
+ */
+ @override
+ Object visitThrowExpression(ThrowExpression node) {
+ _recordStaticType(node, _typeProvider.bottomType);
+ return null;
+ }
+
+ void _inferLocalVariableType(
+ VariableDeclaration node, Expression initializer) {
+ if (initializer != null &&
+ (node.parent as VariableDeclarationList).type == null &&
+ (node.element is LocalVariableElementImpl) &&
+ (initializer.staticType != null) &&
+ (!initializer.staticType.isBottom)) {
+ LocalVariableElementImpl element = node.element;
+ element.type = initializer.staticType;
+ node.name.staticType = initializer.staticType;
+ }
+ }
+
+ @override
+ Object visitVariableDeclaration(VariableDeclaration node) {
+ Expression initializer = node.initializer;
+ if (_resolver.definingLibrary.context.analysisOptions.strongMode) {
+ _inferLocalVariableType(node, initializer);
+ }
+ if (initializer != null) {
+ DartType rightType = initializer.bestType;
+ SimpleIdentifier name = node.name;
+ _resolver.recordPropagatedTypeIfBetter(name, rightType);
+ VariableElement element = name.staticElement as VariableElement;
+ if (element != null) {
+ _resolver.overrideVariable(element, rightType, true);
+ }
+ }
+ return null;
+ }
+
+ /**
+ * Set the static (propagated) type of [node] to be the least upper bound
+ * of the static (propagated) types of subexpressions [expr1] and [expr2].
+ */
+ void _analyzeLeastUpperBound(
+ Expression node, Expression expr1, Expression expr2) {
+ DartType staticType1 = _getStaticType(expr1);
+ DartType staticType2 = _getStaticType(expr2);
+ if (staticType1 == null) {
+ // TODO(brianwilkerson) Determine whether this can still happen.
+ staticType1 = _dynamicType;
+ }
+ if (staticType2 == null) {
+ // TODO(brianwilkerson) Determine whether this can still happen.
+ staticType2 = _dynamicType;
+ }
+ DartType staticType =
+ _typeSystem.getLeastUpperBound(staticType1, staticType2);
+ if (staticType == null) {
+ staticType = _dynamicType;
+ }
+ _recordStaticType(node, staticType);
+ DartType propagatedType1 = expr1.propagatedType;
+ DartType propagatedType2 = expr2.propagatedType;
+ if (propagatedType1 != null || propagatedType2 != null) {
+ if (propagatedType1 == null) {
+ propagatedType1 = staticType1;
+ }
+ if (propagatedType2 == null) {
+ propagatedType2 = staticType2;
+ }
+ DartType propagatedType =
+ _typeSystem.getLeastUpperBound(propagatedType1, propagatedType2);
+ _resolver.recordPropagatedTypeIfBetter(node, propagatedType);
+ }
+ }
+
+ /**
+ * Record that the static type of the given node is the type of the second argument to the method
+ * represented by the given element.
+ *
+ * @param element the element representing the method invoked by the given node
+ */
+ DartType _computeArgumentType(ExecutableElement element) {
+ if (element != null) {
+ List<ParameterElement> parameters = element.parameters;
+ if (parameters != null && parameters.length == 2) {
+ return parameters[1].type;
+ }
+ }
+ return _dynamicType;
+ }
+
+ /**
+ * Compute the propagated return type of the method or function represented by the given element.
+ *
+ * @param element the element representing the method or function invoked by the given node
+ * @return the propagated return type that was computed
+ */
+ DartType _computePropagatedReturnType(Element element) {
+ if (element is ExecutableElement) {
+ return _propagatedReturnTypes[element];
+ }
+ return null;
+ }
+
+ /**
+ * Given a function body, compute the propagated return type of the function. The propagated
+ * return type of functions with a block body is the least upper bound of all
+ * [ReturnStatement] expressions, with an expression body it is the type of the expression.
+ *
+ * @param body the boy of the function whose propagated return type is to be computed
+ * @return the propagated return type that was computed
+ */
+ DartType _computePropagatedReturnTypeOfFunction(FunctionBody body) {
+ if (body is ExpressionFunctionBody) {
+ ExpressionFunctionBody expressionBody = body;
+ return expressionBody.expression.bestType;
+ }
+ if (body is BlockFunctionBody) {
+ _StaticTypeAnalyzer_computePropagatedReturnTypeOfFunction visitor =
+ new _StaticTypeAnalyzer_computePropagatedReturnTypeOfFunction(
+ _typeSystem);
+ body.accept(visitor);
+ return visitor.result;
+ }
+ return null;
+ }
+
+ /**
+ * Compute the static return type of the method or function represented by the given element.
+ *
+ * @param element the element representing the method or function invoked by the given node
+ * @return the static return type that was computed
+ */
+ DartType _computeStaticReturnType(Element element) {
+ if (element is PropertyAccessorElement) {
+ //
+ // This is a function invocation expression disguised as something else.
+ // We are invoking a getter and then invoking the returned function.
+ //
+ FunctionType propertyType = element.type;
+ if (propertyType != null) {
+ DartType returnType = propertyType.returnType;
+ if (returnType.isDartCoreFunction) {
+ return _dynamicType;
+ } else if (returnType is InterfaceType) {
+ MethodElement callMethod = returnType.lookUpMethod(
+ FunctionElement.CALL_METHOD_NAME, _resolver.definingLibrary);
+ if (callMethod != null) {
+ return callMethod.type.returnType;
+ }
+ } else if (returnType is FunctionType) {
+ DartType innerReturnType = returnType.returnType;
+ if (innerReturnType != null) {
+ return innerReturnType;
+ }
+ }
+ if (returnType != null) {
+ return returnType;
+ }
+ }
+ } else if (element is ExecutableElement) {
+ FunctionType type = element.type;
+ if (type != null) {
+ // TODO(brianwilkerson) Figure out the conditions under which the type
+ // is null.
+ return type.returnType;
+ }
+ } else if (element is VariableElement) {
+ VariableElement variable = element;
+ DartType variableType = _promoteManager.getStaticType(variable);
+ if (variableType is FunctionType) {
+ return variableType.returnType;
+ }
+ }
+ return _dynamicType;
+ }
+
+ /**
+ * Given a function declaration, compute the return static type of the function. The return type
+ * of functions with a block body is `dynamicType`, with an expression body it is the type
+ * of the expression.
+ *
+ * @param node the function expression whose static return type is to be computed
+ * @return the static return type that was computed
+ */
+ DartType _computeStaticReturnTypeOfFunctionDeclaration(
+ FunctionDeclaration node) {
+ TypeName returnType = node.returnType;
+ if (returnType == null) {
+ return _dynamicType;
+ }
+ return returnType.type;
+ }
+
+ /**
+ * Given a function expression, compute the return type of the function. The return type of
+ * functions with a block body is `dynamicType`, with an expression body it is the type of
+ * the expression.
+ *
+ * @param node the function expression whose return type is to be computed
+ * @return the return type that was computed
+ */
+ DartType _computeStaticReturnTypeOfFunctionExpression(
+ FunctionExpression node) {
+ FunctionBody body = node.body;
+ if (body.isGenerator) {
+ if (body.isAsynchronous) {
+ return _typeProvider.streamDynamicType;
+ } else {
+ return _typeProvider.iterableDynamicType;
+ }
+ }
+ DartType type;
+ if (body is ExpressionFunctionBody) {
+ type = _getStaticType(body.expression);
+ } else {
+ type = _dynamicType;
+ }
+ if (body.isAsynchronous) {
+ return _typeProvider.futureType
+ .substitute4(<DartType>[flattenFutures(_typeProvider, type)]);
+ } else {
+ return type;
+ }
+ }
+
+ /**
+ * Return the best type of the given [expression].
+ */
+ DartType _getBestType(Expression expression) {
+ return expression.bestType;
+ }
+
+ /**
+ * If the given element name can be mapped to the name of a class defined within the given
+ * library, return the type specified by the argument.
+ *
+ * @param library the library in which the specified type would be defined
+ * @param elementName the name of the element for which a type is being sought
+ * @param nameMap an optional map used to map the element name to a type name
+ * @return the type specified by the first argument in the argument list
+ */
+ DartType _getElementNameAsType(LibraryElement library, String elementName,
+ HashMap<String, String> nameMap) {
+ if (elementName != null) {
+ if (nameMap != null) {
+ elementName = nameMap[elementName.toLowerCase()];
+ }
+ ClassElement returnType = library.getType(elementName);
+ if (returnType != null) {
+ return returnType.type;
+ }
+ }
+ return null;
+ }
+
+ /**
+ * If the given argument list contains at least one argument, and if the argument is a simple
+ * string literal, then parse that argument as a query string and return the type specified by the
+ * argument.
+ *
+ * @param library the library in which the specified type would be defined
+ * @param argumentList the list of arguments from which a type is to be extracted
+ * @return the type specified by the first argument in the argument list
+ */
+ DartType _getFirstArgumentAsQuery(
+ LibraryElement library, ArgumentList argumentList) {
+ String argumentValue = _getFirstArgumentAsString(argumentList);
+ if (argumentValue != null) {
+ //
+ // If the query has spaces, full parsing is required because it might be:
+ // E[text='warning text']
+ //
+ if (StringUtilities.indexOf1(argumentValue, 0, 0x20) >= 0) {
+ return null;
+ }
+ //
+ // Otherwise, try to extract the tag based on
+ // http://www.w3.org/TR/CSS2/selector.html.
+ //
+ String tag = argumentValue;
+ tag = StringUtilities.substringBeforeChar(tag, 0x3A);
+ tag = StringUtilities.substringBeforeChar(tag, 0x5B);
+ tag = StringUtilities.substringBeforeChar(tag, 0x2E);
+ tag = StringUtilities.substringBeforeChar(tag, 0x23);
+ tag = _HTML_ELEMENT_TO_CLASS_MAP[tag.toLowerCase()];
+ ClassElement returnType = library.getType(tag);
+ if (returnType != null) {
+ return returnType.type;
+ }
+ }
+ return null;
+ }
+
+ /**
+ * If the given argument list contains at least one argument, and if the argument is a simple
+ * string literal, return the String value of the argument.
+ *
+ * @param argumentList the list of arguments from which a string value is to be extracted
+ * @return the string specified by the first argument in the argument list
+ */
+ String _getFirstArgumentAsString(ArgumentList argumentList) {
+ NodeList<Expression> arguments = argumentList.arguments;
+ if (arguments.length > 0) {
+ Expression argument = arguments[0];
+ if (argument is SimpleStringLiteral) {
+ return argument.value;
+ }
+ }
+ return null;
+ }
+
+ /**
+ * If the given argument list contains at least one argument, and if the argument is a simple
+ * string literal, and if the value of the argument is the name of a class defined within the
+ * given library, return the type specified by the argument.
+ *
+ * @param library the library in which the specified type would be defined
+ * @param argumentList the list of arguments from which a type is to be extracted
+ * @return the type specified by the first argument in the argument list
+ */
+ DartType _getFirstArgumentAsType(
+ LibraryElement library, ArgumentList argumentList) =>
+ _getFirstArgumentAsTypeWithMap(library, argumentList, null);
+
+ /**
+ * If the given argument list contains at least one argument, and if the argument is a simple
+ * string literal, and if the value of the argument is the name of a class defined within the
+ * given library, return the type specified by the argument.
+ *
+ * @param library the library in which the specified type would be defined
+ * @param argumentList the list of arguments from which a type is to be extracted
+ * @param nameMap an optional map used to map the element name to a type name
+ * @return the type specified by the first argument in the argument list
+ */
+ DartType _getFirstArgumentAsTypeWithMap(LibraryElement library,
+ ArgumentList argumentList, HashMap<String, String> nameMap) =>
+ _getElementNameAsType(
+ library, _getFirstArgumentAsString(argumentList), nameMap);
+
+ /**
+ * Return the propagated type of the given [Element], or `null`.
+ */
+ DartType _getPropertyPropagatedType(Element element, DartType currentType) {
+ if (element is PropertyAccessorElement) {
+ PropertyAccessorElement accessor = element;
+ if (accessor.isGetter) {
+ PropertyInducingElement variable = accessor.variable;
+ DartType propagatedType = variable.propagatedType;
+ if (currentType == null ||
+ propagatedType != null &&
+ propagatedType.isMoreSpecificThan(currentType)) {
+ return propagatedType;
+ }
+ }
+ }
+ return currentType;
+ }
+
+ /**
+ * Return the static type of the given [expression].
+ */
+ DartType _getStaticType(Expression expression) {
+ DartType type = expression.staticType;
+ if (type == null) {
+ // TODO(brianwilkerson) Determine the conditions for which the static type
+ // is null.
+ return _dynamicType;
+ }
+ return type;
+ }
+
+ /**
+ * Return the type represented by the given type name.
+ *
+ * @param typeName the type name representing the type to be returned
+ * @return the type represented by the type name
+ */
+ DartType _getType(TypeName typeName) {
+ DartType type = typeName.type;
+ if (type == null) {
+ //TODO(brianwilkerson) Determine the conditions for which the type is
+ // null.
+ return _dynamicType;
+ }
+ return type;
+ }
+
+ /**
+ * Return the type that should be recorded for a node that resolved to the given accessor.
+ *
+ * @param accessor the accessor that the node resolved to
+ * @param context if the accessor element has context [by being the RHS of a
+ * [PrefixedIdentifier] or [PropertyAccess]], and the return type of the
+ * accessor is a parameter type, then the type of the LHS can be used to get more
+ * specific type information
+ * @return the type that should be recorded for a node that resolved to the given accessor
+ */
+ DartType _getTypeOfProperty(
+ PropertyAccessorElement accessor, DartType context) {
+ FunctionType functionType = accessor.type;
+ if (functionType == null) {
+ // TODO(brianwilkerson) Report this internal error. This happens when we
+ // are analyzing a reference to a property before we have analyzed the
+ // declaration of the property or when the property does not have a
+ // defined type.
+ return _dynamicType;
+ }
+ if (accessor.isSetter) {
+ List<DartType> parameterTypes = functionType.normalParameterTypes;
+ if (parameterTypes != null && parameterTypes.length > 0) {
+ return parameterTypes[0];
+ }
+ PropertyAccessorElement getter = accessor.variable.getter;
+ if (getter != null) {
+ functionType = getter.type;
+ if (functionType != null) {
+ return functionType.returnType;
+ }
+ }
+ return _dynamicType;
+ }
+ DartType returnType = functionType.returnType;
+ if (returnType is TypeParameterType && context is InterfaceType) {
+ // if the return type is a TypeParameter, we try to use the context [that
+ // the function is being called on] to get a more accurate returnType type
+ InterfaceType interfaceTypeContext = context;
+ // Type[] argumentTypes = interfaceTypeContext.getTypeArguments();
+ List<TypeParameterElement> typeParameterElements =
+ interfaceTypeContext.element != null
+ ? interfaceTypeContext.element.typeParameters
+ : null;
+ if (typeParameterElements != null) {
+ for (int i = 0; i < typeParameterElements.length; i++) {
+ TypeParameterElement typeParameterElement = typeParameterElements[i];
+ if (returnType.name == typeParameterElement.name) {
+ return interfaceTypeContext.typeArguments[i];
+ }
+ }
+ // TODO(jwren) troubleshoot why call to substitute doesn't work
+// Type[] parameterTypes = TypeParameterTypeImpl.getTypes(parameterElements);
+// return returnType.substitute(argumentTypes, parameterTypes);
+ }
+ }
+ return returnType;
+ }
+
+ /**
+ * Return `true` if the given [Type] is the `Future` form the 'dart:async'
+ * library.
+ */
+ bool _isAsyncFutureType(DartType type) => type is InterfaceType &&
+ type.name == "Future" &&
+ _isAsyncLibrary(type.element.library);
+
+ /**
+ * Return `true` if the given library is the 'dart:async' library.
+ *
+ * @param library the library being tested
+ * @return `true` if the library is 'dart:async'
+ */
+ bool _isAsyncLibrary(LibraryElement library) => library.name == "dart.async";
+
+ /**
+ * Return `true` if the given library is the 'dart:html' library.
+ *
+ * @param library the library being tested
+ * @return `true` if the library is 'dart:html'
+ */
+ bool _isHtmlLibrary(LibraryElement library) =>
+ library != null && "dart.dom.html" == library.name;
+
+ /**
+ * Return `true` if the given node is not a type literal.
+ *
+ * @param node the node being tested
+ * @return `true` if the given node is not a type literal
+ */
+ bool _isNotTypeLiteral(Identifier node) {
+ AstNode parent = node.parent;
+ return parent is TypeName ||
+ (parent is PrefixedIdentifier &&
+ (parent.parent is TypeName || identical(parent.prefix, node))) ||
+ (parent is PropertyAccess &&
+ identical(parent.target, node) &&
+ parent.operator.type == TokenType.PERIOD) ||
+ (parent is MethodInvocation &&
+ identical(node, parent.target) &&
+ parent.operator.type == TokenType.PERIOD);
+ }
+
+ /**
+ * Record that the propagated type of the given node is the given type.
+ *
+ * @param expression the node whose type is to be recorded
+ * @param type the propagated type of the node
+ */
+ void _recordPropagatedType(Expression expression, DartType type) {
+ if (type != null && !type.isDynamic && !type.isBottom) {
+ expression.propagatedType = type;
+ }
+ }
+
+ /**
+ * Given a function element and its body, compute and record the propagated return type of the
+ * function.
+ *
+ * @param functionElement the function element to record propagated return type for
+ * @param body the boy of the function whose propagated return type is to be computed
+ * @return the propagated return type that was computed, may be `null` if it is not more
+ * specific than the static return type.
+ */
+ void _recordPropagatedTypeOfFunction(
+ ExecutableElement functionElement, FunctionBody body) {
+ DartType propagatedReturnType =
+ _computePropagatedReturnTypeOfFunction(body);
+ if (propagatedReturnType == null) {
+ return;
+ }
+ // Ignore 'bottom' type.
+ if (propagatedReturnType.isBottom) {
+ return;
+ }
+ // Record only if we inferred more specific type.
+ DartType staticReturnType = functionElement.returnType;
+ if (!propagatedReturnType.isMoreSpecificThan(staticReturnType)) {
+ return;
+ }
+ // OK, do record.
+ _propagatedReturnTypes[functionElement] = propagatedReturnType;
+ }
+
+ /**
+ * Record that the static type of the given node is the given type.
+ *
+ * @param expression the node whose type is to be recorded
+ * @param type the static type of the node
+ */
+ void _recordStaticType(Expression expression, DartType type) {
+ if (type == null) {
+ expression.staticType = _dynamicType;
+ } else {
+ expression.staticType = type;
+ }
+ }
+
+ /**
+ * Attempts to make a better guess for the type of the given binary
+ * [expression], given that resolution has so far produced the [currentType].
+ * The [typeAccessor] is used to access the corresponding type of the left
+ * and right operands.
+ */
+ DartType _refineBinaryExpressionType(
+ BinaryExpression expression, DartType currentType,
+ [DartType typeAccessor(Expression node)]) {
+ sc.TokenType operator = expression.operator.type;
+ // bool
+ if (operator == sc.TokenType.AMPERSAND_AMPERSAND ||
+ operator == sc.TokenType.BAR_BAR ||
+ operator == sc.TokenType.EQ_EQ ||
+ operator == sc.TokenType.BANG_EQ) {
+ return _typeProvider.boolType;
+ }
+ DartType intType = _typeProvider.intType;
+ if (typeAccessor(expression.leftOperand) == intType) {
+ // int op double
+ if (operator == sc.TokenType.MINUS ||
+ operator == sc.TokenType.PERCENT ||
+ operator == sc.TokenType.PLUS ||
+ operator == sc.TokenType.STAR) {
+ DartType doubleType = _typeProvider.doubleType;
+ if (typeAccessor(expression.rightOperand) == doubleType) {
+ return doubleType;
+ }
+ }
+ // int op int
+ if (operator == sc.TokenType.MINUS ||
+ operator == sc.TokenType.PERCENT ||
+ operator == sc.TokenType.PLUS ||
+ operator == sc.TokenType.STAR ||
+ operator == sc.TokenType.TILDE_SLASH) {
+ if (typeAccessor(expression.rightOperand) == intType) {
+ return intType;
+ }
+ }
+ }
+ // default
+ return currentType;
+ }
+
+ /**
+ * Implements the function "flatten" defined in the spec:
+ *
+ * If T = Future<S> then flatten(T) = flatten(S).
+ *
+ * Otherwise if T <: Future then let S be a type such that T << Future<S>
+ * and for all R, if T << Future<R> then S << R. Then flatten(T) = S.
+ *
+ * In any other circumstance, flatten(T) = T.
+ */
+ static DartType flattenFutures(TypeProvider typeProvider, DartType type) {
+ if (type is InterfaceType) {
+ // Implement the case: "If T = Future<S> then flatten(T) = flatten(S)."
+ if (type.element == typeProvider.futureType.element &&
+ type.typeArguments.length > 0) {
+ return flattenFutures(typeProvider, type.typeArguments[0]);
+ }
+
+ // Implement the case: "Otherwise if T <: Future then let S be a type
+ // such that T << Future<S> and for all R, if T << Future<R> then S << R.
+ // Then flatten(T) = S."
+ //
+ // In other words, given the set of all types R such that T << Future<R>,
+ // let S be the most specific of those types, if any such S exists.
+ //
+ // Since we only care about the most specific type, it is sufficent to
+ // look at the types appearing as a parameter to Future in the type
+ // hierarchy of T. We don't need to consider the supertypes of those
+ // types, since they are by definition less specific.
+ List<DartType> candidateTypes =
+ _searchTypeHierarchyForFutureParameters(typeProvider, type);
+ DartType flattenResult = _findMostSpecificType(candidateTypes);
+ if (flattenResult != null) {
+ return flattenResult;
+ }
+ }
+
+ // Implement the case: "In any other circumstance, flatten(T) = T."
+ return type;
+ }
+
+ /**
+ * Create a table mapping HTML tag names to the names of the classes (in 'dart:html') that
+ * implement those tags.
+ *
+ * @return the table that was created
+ */
+ static HashMap<String, String> _createHtmlTagToClassMap() {
+ HashMap<String, String> map = new HashMap<String, String>();
+ map["a"] = "AnchorElement";
+ map["area"] = "AreaElement";
+ map["br"] = "BRElement";
+ map["base"] = "BaseElement";
+ map["body"] = "BodyElement";
+ map["button"] = "ButtonElement";
+ map["canvas"] = "CanvasElement";
+ map["content"] = "ContentElement";
+ map["dl"] = "DListElement";
+ map["datalist"] = "DataListElement";
+ map["details"] = "DetailsElement";
+ map["div"] = "DivElement";
+ map["embed"] = "EmbedElement";
+ map["fieldset"] = "FieldSetElement";
+ map["form"] = "FormElement";
+ map["hr"] = "HRElement";
+ map["head"] = "HeadElement";
+ map["h1"] = "HeadingElement";
+ map["h2"] = "HeadingElement";
+ map["h3"] = "HeadingElement";
+ map["h4"] = "HeadingElement";
+ map["h5"] = "HeadingElement";
+ map["h6"] = "HeadingElement";
+ map["html"] = "HtmlElement";
+ map["iframe"] = "IFrameElement";
+ map["img"] = "ImageElement";
+ map["input"] = "InputElement";
+ map["keygen"] = "KeygenElement";
+ map["li"] = "LIElement";
+ map["label"] = "LabelElement";
+ map["legend"] = "LegendElement";
+ map["link"] = "LinkElement";
+ map["map"] = "MapElement";
+ map["menu"] = "MenuElement";
+ map["meter"] = "MeterElement";
+ map["ol"] = "OListElement";
+ map["object"] = "ObjectElement";
+ map["optgroup"] = "OptGroupElement";
+ map["output"] = "OutputElement";
+ map["p"] = "ParagraphElement";
+ map["param"] = "ParamElement";
+ map["pre"] = "PreElement";
+ map["progress"] = "ProgressElement";
+ map["script"] = "ScriptElement";
+ map["select"] = "SelectElement";
+ map["source"] = "SourceElement";
+ map["span"] = "SpanElement";
+ map["style"] = "StyleElement";
+ map["caption"] = "TableCaptionElement";
+ map["td"] = "TableCellElement";
+ map["col"] = "TableColElement";
+ map["table"] = "TableElement";
+ map["tr"] = "TableRowElement";
+ map["textarea"] = "TextAreaElement";
+ map["title"] = "TitleElement";
+ map["track"] = "TrackElement";
+ map["ul"] = "UListElement";
+ map["video"] = "VideoElement";
+ return map;
+ }
+
+ /**
+ * If there is a single type which is at least as specific as all of the
+ * types in [types], return it. Otherwise return `null`.
+ */
+ static DartType _findMostSpecificType(List<DartType> types) {
+ // The << relation ("more specific than") is a partial ordering on types,
+ // so to find the most specific type of a set, we keep a bucket of the most
+ // specific types seen so far such that no type in the bucket is more
+ // specific than any other type in the bucket.
+ List<DartType> bucket = <DartType>[];
+
+ // Then we consider each type in turn.
+ for (DartType type in types) {
+ // If any existing type in the bucket is more specific than this type,
+ // then we can ignore this type.
+ if (bucket.any((DartType t) => t.isMoreSpecificThan(type))) {
+ continue;
+ }
+ // Otherwise, we need to add this type to the bucket and remove any types
+ // that are less specific than it.
+ bool added = false;
+ int i = 0;
+ while (i < bucket.length) {
+ if (type.isMoreSpecificThan(bucket[i])) {
+ if (added) {
+ if (i < bucket.length - 1) {
+ bucket[i] = bucket.removeLast();
+ } else {
+ bucket.removeLast();
+ }
+ } else {
+ bucket[i] = type;
+ i++;
+ added = true;
+ }
+ } else {
+ i++;
+ }
+ }
+ if (!added) {
+ bucket.add(type);
+ }
+ }
+
+ // Now that we are finished, if there is exactly one type left in the
+ // bucket, it is the most specific type.
+ if (bucket.length == 1) {
+ return bucket[0];
+ }
+
+ // Otherwise, there is no single type that is more specific than the
+ // others.
+ return null;
+ }
+
+ /**
+ * Given a seed type [type], search its class hierarchy for types of the form
+ * Future<R>, and return a list of the resulting R's.
+ */
+ static List<DartType> _searchTypeHierarchyForFutureParameters(
+ TypeProvider typeProvider, InterfaceType type) {
+ List<DartType> result = <DartType>[];
+ HashSet<ClassElement> visitedClasses = new HashSet<ClassElement>();
+ void recurse(InterfaceType type) {
+ if (type.element == typeProvider.futureType.element &&
+ type.typeArguments.length > 0) {
+ result.add(type.typeArguments[0]);
+ }
+ if (visitedClasses.add(type.element)) {
+ if (type.superclass != null) {
+ recurse(type.superclass);
+ }
+ for (InterfaceType interface in type.interfaces) {
+ recurse(interface);
+ }
+ visitedClasses.remove(type.element);
+ }
+ }
+ recurse(type);
+ return result;
+ }
+}
+
+class _StaticTypeAnalyzer_computePropagatedReturnTypeOfFunction
+ extends GeneralizingAstVisitor<Object> {
+ final TypeSystem typeSystem;
+ DartType result = null;
+
+ _StaticTypeAnalyzer_computePropagatedReturnTypeOfFunction(this.typeSystem);
+
+ @override
+ Object visitExpression(Expression node) => null;
+
+ @override
+ Object visitReturnStatement(ReturnStatement node) {
+ // prepare this 'return' type
+ DartType type;
+ Expression expression = node.expression;
+ if (expression != null) {
+ type = expression.bestType;
+ } else {
+ type = BottomTypeImpl.instance;
+ }
+ // merge types
+ if (result == null) {
+ result = type;
+ } else {
+ result = typeSystem.getLeastUpperBound(result, type);
+ }
+ return null;
+ }
+}

Powered by Google App Engine
This is Rietveld 408576698