| Index: mojo/public/dart/third_party/analyzer/lib/src/generated/resolver.dart
|
| diff --git a/mojo/public/dart/third_party/analyzer/lib/src/generated/resolver.dart b/mojo/public/dart/third_party/analyzer/lib/src/generated/resolver.dart
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..bd316bf690e52de3d87940bf1c4c6195e540a2a2
|
| --- /dev/null
|
| +++ b/mojo/public/dart/third_party/analyzer/lib/src/generated/resolver.dart
|
| @@ -0,0 +1,15409 @@
|
| +// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
|
| +// for details. All rights reserved. Use of this source code is governed by a
|
| +// BSD-style license that can be found in the LICENSE file.
|
| +
|
| +library engine.resolver;
|
| +
|
| +import 'dart:collection';
|
| +
|
| +import 'ast.dart';
|
| +import 'constant.dart';
|
| +import 'element.dart';
|
| +import 'element_resolver.dart';
|
| +import 'engine.dart';
|
| +import 'error.dart';
|
| +import 'error_verifier.dart';
|
| +import 'html.dart' as ht;
|
| +import 'java_core.dart';
|
| +import 'java_engine.dart';
|
| +import 'scanner.dart' as sc;
|
| +import 'sdk.dart' show DartSdk, SdkLibrary;
|
| +import 'source.dart';
|
| +import 'static_type_analyzer.dart';
|
| +import 'utilities_dart.dart';
|
| +
|
| +/**
|
| + * Callback signature used by ImplicitConstructorBuilder to register
|
| + * computations to be performed, and their dependencies. A call to this
|
| + * callback indicates that [computation] may be used to compute implicit
|
| + * constructors for [classElement], but that the computation may not be invoked
|
| + * until after implicit constructors have been built for [superclassElement].
|
| + */
|
| +typedef void ImplicitConstructorBuilderCallback(ClassElement classElement,
|
| + ClassElement superclassElement, void computation());
|
| +
|
| +typedef LibraryResolver LibraryResolverFactory(AnalysisContext context);
|
| +
|
| +typedef ResolverVisitor ResolverVisitorFactory(
|
| + Library library, Source source, TypeProvider typeProvider);
|
| +
|
| +typedef StaticTypeAnalyzer StaticTypeAnalyzerFactory(ResolverVisitor visitor);
|
| +
|
| +typedef TypeResolverVisitor TypeResolverVisitorFactory(
|
| + Library library, Source source, TypeProvider typeProvider);
|
| +
|
| +typedef void VoidFunction();
|
| +
|
| +/**
|
| + * Instances of the class `BestPracticesVerifier` traverse an AST structure looking for
|
| + * violations of Dart best practices.
|
| + */
|
| +class BestPracticesVerifier extends RecursiveAstVisitor<Object> {
|
| +// static String _HASHCODE_GETTER_NAME = "hashCode";
|
| +
|
| + static String _NULL_TYPE_NAME = "Null";
|
| +
|
| + static String _TO_INT_METHOD_NAME = "toInt";
|
| +
|
| + /**
|
| + * The class containing the AST nodes being visited, or `null` if we are not in the scope of
|
| + * a class.
|
| + */
|
| + ClassElement _enclosingClass;
|
| +
|
| + /**
|
| + * The error reporter by which errors will be reported.
|
| + */
|
| + final ErrorReporter _errorReporter;
|
| +
|
| + /**
|
| + * The type Future<Null>, which is needed for determining whether it is safe
|
| + * to have a bare "return;" in an async method.
|
| + */
|
| + final InterfaceType _futureNullType;
|
| +
|
| + /**
|
| + * Create a new instance of the [BestPracticesVerifier].
|
| + *
|
| + * @param errorReporter the error reporter
|
| + */
|
| + BestPracticesVerifier(this._errorReporter, TypeProvider typeProvider)
|
| + : _futureNullType = typeProvider.futureNullType;
|
| +
|
| + @override
|
| + Object visitArgumentList(ArgumentList node) {
|
| + _checkForArgumentTypesNotAssignableInList(node);
|
| + return super.visitArgumentList(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitAsExpression(AsExpression node) {
|
| + _checkForUnnecessaryCast(node);
|
| + return super.visitAsExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitAssignmentExpression(AssignmentExpression node) {
|
| + sc.TokenType operatorType = node.operator.type;
|
| + if (operatorType == sc.TokenType.EQ) {
|
| + _checkForUseOfVoidResult(node.rightHandSide);
|
| + _checkForInvalidAssignment(node.leftHandSide, node.rightHandSide);
|
| + } else {
|
| + _checkForDeprecatedMemberUse(node.bestElement, node);
|
| + }
|
| + return super.visitAssignmentExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitBinaryExpression(BinaryExpression node) {
|
| + _checkForDivisionOptimizationHint(node);
|
| + _checkForDeprecatedMemberUse(node.bestElement, node);
|
| + return super.visitBinaryExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitClassDeclaration(ClassDeclaration node) {
|
| + ClassElement outerClass = _enclosingClass;
|
| + try {
|
| + _enclosingClass = node.element;
|
| + // Commented out until we decide that we want this hint in the analyzer
|
| + // checkForOverrideEqualsButNotHashCode(node);
|
| + return super.visitClassDeclaration(node);
|
| + } finally {
|
| + _enclosingClass = outerClass;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitExportDirective(ExportDirective node) {
|
| + _checkForDeprecatedMemberUse(node.uriElement, node);
|
| + return super.visitExportDirective(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| + _checkForMissingReturn(node.returnType, node.functionExpression.body);
|
| + return super.visitFunctionDeclaration(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitImportDirective(ImportDirective node) {
|
| + _checkForDeprecatedMemberUse(node.uriElement, node);
|
| + ImportElement importElement = node.element;
|
| + if (importElement != null) {
|
| + if (importElement.isDeferred) {
|
| + _checkForLoadLibraryFunction(node, importElement);
|
| + }
|
| + }
|
| + return super.visitImportDirective(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitIndexExpression(IndexExpression node) {
|
| + _checkForDeprecatedMemberUse(node.bestElement, node);
|
| + return super.visitIndexExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitInstanceCreationExpression(InstanceCreationExpression node) {
|
| + _checkForDeprecatedMemberUse(node.staticElement, node);
|
| + return super.visitInstanceCreationExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitIsExpression(IsExpression node) {
|
| + _checkAllTypeChecks(node);
|
| + return super.visitIsExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitMethodDeclaration(MethodDeclaration node) {
|
| + // This was determined to not be a good hint, see: dartbug.com/16029
|
| + //checkForOverridingPrivateMember(node);
|
| + _checkForMissingReturn(node.returnType, node.body);
|
| + return super.visitMethodDeclaration(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitPostfixExpression(PostfixExpression node) {
|
| + _checkForDeprecatedMemberUse(node.bestElement, node);
|
| + return super.visitPostfixExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitPrefixExpression(PrefixExpression node) {
|
| + _checkForDeprecatedMemberUse(node.bestElement, node);
|
| + return super.visitPrefixExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitRedirectingConstructorInvocation(
|
| + RedirectingConstructorInvocation node) {
|
| + _checkForDeprecatedMemberUse(node.staticElement, node);
|
| + return super.visitRedirectingConstructorInvocation(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitSimpleIdentifier(SimpleIdentifier node) {
|
| + _checkForDeprecatedMemberUseAtIdentifier(node);
|
| + return super.visitSimpleIdentifier(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitSuperConstructorInvocation(SuperConstructorInvocation node) {
|
| + _checkForDeprecatedMemberUse(node.staticElement, node);
|
| + return super.visitSuperConstructorInvocation(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitVariableDeclaration(VariableDeclaration node) {
|
| + _checkForUseOfVoidResult(node.initializer);
|
| + _checkForInvalidAssignment(node.name, node.initializer);
|
| + return super.visitVariableDeclaration(node);
|
| + }
|
| +
|
| + /**
|
| + * Check for the passed is expression for the unnecessary type check hint codes as well as null
|
| + * checks expressed using an is expression.
|
| + *
|
| + * @param node the is expression to check
|
| + * @return `true` if and only if a hint code is generated on the passed node
|
| + * See [HintCode.TYPE_CHECK_IS_NOT_NULL], [HintCode.TYPE_CHECK_IS_NULL],
|
| + * [HintCode.UNNECESSARY_TYPE_CHECK_TRUE], and
|
| + * [HintCode.UNNECESSARY_TYPE_CHECK_FALSE].
|
| + */
|
| + bool _checkAllTypeChecks(IsExpression node) {
|
| + Expression expression = node.expression;
|
| + TypeName typeName = node.type;
|
| + DartType lhsType = expression.staticType;
|
| + DartType rhsType = typeName.type;
|
| + if (lhsType == null || rhsType == null) {
|
| + return false;
|
| + }
|
| + String rhsNameStr = typeName.name.name;
|
| + // if x is dynamic
|
| + if (rhsType.isDynamic && rhsNameStr == sc.Keyword.DYNAMIC.syntax) {
|
| + if (node.notOperator == null) {
|
| + // the is case
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.UNNECESSARY_TYPE_CHECK_TRUE, node);
|
| + } else {
|
| + // the is not case
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.UNNECESSARY_TYPE_CHECK_FALSE, node);
|
| + }
|
| + return true;
|
| + }
|
| + Element rhsElement = rhsType.element;
|
| + LibraryElement libraryElement =
|
| + rhsElement != null ? rhsElement.library : null;
|
| + if (libraryElement != null && libraryElement.isDartCore) {
|
| + // if x is Object or null is Null
|
| + if (rhsType.isObject ||
|
| + (expression is NullLiteral && rhsNameStr == _NULL_TYPE_NAME)) {
|
| + if (node.notOperator == null) {
|
| + // the is case
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.UNNECESSARY_TYPE_CHECK_TRUE, node);
|
| + } else {
|
| + // the is not case
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.UNNECESSARY_TYPE_CHECK_FALSE, node);
|
| + }
|
| + return true;
|
| + } else if (rhsNameStr == _NULL_TYPE_NAME) {
|
| + if (node.notOperator == null) {
|
| + // the is case
|
| + _errorReporter.reportErrorForNode(HintCode.TYPE_CHECK_IS_NULL, node);
|
| + } else {
|
| + // the is not case
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.TYPE_CHECK_IS_NOT_NULL, node);
|
| + }
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * This verifies that the passed expression can be assigned to its corresponding parameters.
|
| + *
|
| + * This method corresponds to ErrorVerifier.checkForArgumentTypeNotAssignable.
|
| + *
|
| + * TODO (jwren) In the ErrorVerifier there are other warnings that we could have a corresponding
|
| + * hint for: see other callers of ErrorVerifier.checkForArgumentTypeNotAssignable(..).
|
| + *
|
| + * @param expression the expression to evaluate
|
| + * @param expectedStaticType the expected static type of the parameter
|
| + * @param actualStaticType the actual static type of the argument
|
| + * @param expectedPropagatedType the expected propagated type of the parameter, may be
|
| + * `null`
|
| + * @param actualPropagatedType the expected propagated type of the parameter, may be `null`
|
| + * @return `true` if and only if an hint code is generated on the passed node
|
| + * See [HintCode.ARGUMENT_TYPE_NOT_ASSIGNABLE].
|
| + */
|
| + bool _checkForArgumentTypeNotAssignable(
|
| + Expression expression,
|
| + DartType expectedStaticType,
|
| + DartType actualStaticType,
|
| + DartType expectedPropagatedType,
|
| + DartType actualPropagatedType,
|
| + ErrorCode hintCode) {
|
| + //
|
| + // Warning case: test static type information
|
| + //
|
| + if (actualStaticType != null && expectedStaticType != null) {
|
| + if (!actualStaticType.isAssignableTo(expectedStaticType)) {
|
| + // A warning was created in the ErrorVerifier, return false, don't
|
| + // create a hint when a warning has already been created.
|
| + return false;
|
| + }
|
| + }
|
| + //
|
| + // Hint case: test propagated type information
|
| + //
|
| + // Compute the best types to use.
|
| + DartType expectedBestType = expectedPropagatedType != null
|
| + ? expectedPropagatedType
|
| + : expectedStaticType;
|
| + DartType actualBestType =
|
| + actualPropagatedType != null ? actualPropagatedType : actualStaticType;
|
| + if (actualBestType != null && expectedBestType != null) {
|
| + if (!actualBestType.isAssignableTo(expectedBestType)) {
|
| + _errorReporter.reportTypeErrorForNode(
|
| + hintCode, expression, [actualBestType, expectedBestType]);
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * This verifies that the passed argument can be assigned to its corresponding parameter.
|
| + *
|
| + * This method corresponds to ErrorCode.checkForArgumentTypeNotAssignableForArgument.
|
| + *
|
| + * @param argument the argument to evaluate
|
| + * @return `true` if and only if an hint code is generated on the passed node
|
| + * See [HintCode.ARGUMENT_TYPE_NOT_ASSIGNABLE].
|
| + */
|
| + bool _checkForArgumentTypeNotAssignableForArgument(Expression argument) {
|
| + if (argument == null) {
|
| + return false;
|
| + }
|
| + ParameterElement staticParameterElement = argument.staticParameterElement;
|
| + DartType staticParameterType =
|
| + staticParameterElement == null ? null : staticParameterElement.type;
|
| + ParameterElement propagatedParameterElement =
|
| + argument.propagatedParameterElement;
|
| + DartType propagatedParameterType = propagatedParameterElement == null
|
| + ? null
|
| + : propagatedParameterElement.type;
|
| + return _checkForArgumentTypeNotAssignableWithExpectedTypes(
|
| + argument,
|
| + staticParameterType,
|
| + propagatedParameterType,
|
| + HintCode.ARGUMENT_TYPE_NOT_ASSIGNABLE);
|
| + }
|
| +
|
| + /**
|
| + * This verifies that the passed expression can be assigned to its corresponding parameters.
|
| + *
|
| + * This method corresponds to ErrorCode.checkForArgumentTypeNotAssignableWithExpectedTypes.
|
| + *
|
| + * @param expression the expression to evaluate
|
| + * @param expectedStaticType the expected static type
|
| + * @param expectedPropagatedType the expected propagated type, may be `null`
|
| + * @return `true` if and only if an hint code is generated on the passed node
|
| + * See [HintCode.ARGUMENT_TYPE_NOT_ASSIGNABLE].
|
| + */
|
| + bool _checkForArgumentTypeNotAssignableWithExpectedTypes(
|
| + Expression expression,
|
| + DartType expectedStaticType,
|
| + DartType expectedPropagatedType,
|
| + ErrorCode errorCode) =>
|
| + _checkForArgumentTypeNotAssignable(
|
| + expression,
|
| + expectedStaticType,
|
| + expression.staticType,
|
| + expectedPropagatedType,
|
| + expression.propagatedType,
|
| + errorCode);
|
| +
|
| + /**
|
| + * This verifies that the passed arguments can be assigned to their corresponding parameters.
|
| + *
|
| + * This method corresponds to ErrorCode.checkForArgumentTypesNotAssignableInList.
|
| + *
|
| + * @param node the arguments to evaluate
|
| + * @return `true` if and only if an hint code is generated on the passed node
|
| + * See [HintCode.ARGUMENT_TYPE_NOT_ASSIGNABLE].
|
| + */
|
| + bool _checkForArgumentTypesNotAssignableInList(ArgumentList argumentList) {
|
| + if (argumentList == null) {
|
| + return false;
|
| + }
|
| + bool problemReported = false;
|
| + for (Expression argument in argumentList.arguments) {
|
| + if (_checkForArgumentTypeNotAssignableForArgument(argument)) {
|
| + problemReported = true;
|
| + }
|
| + }
|
| + return problemReported;
|
| + }
|
| +
|
| + /**
|
| + * Given some [Element], look at the associated metadata and report the use of the member if
|
| + * it is declared as deprecated.
|
| + *
|
| + * @param element some element to check for deprecated use of
|
| + * @param node the node use for the location of the error
|
| + * @return `true` if and only if a hint code is generated on the passed node
|
| + * See [HintCode.DEPRECATED_MEMBER_USE].
|
| + */
|
| + bool _checkForDeprecatedMemberUse(Element element, AstNode node) {
|
| + if (element != null && element.isDeprecated) {
|
| + String displayName = element.displayName;
|
| + if (element is ConstructorElement) {
|
| + // TODO(jwren) We should modify ConstructorElement.getDisplayName(),
|
| + // or have the logic centralized elsewhere, instead of doing this logic
|
| + // here.
|
| + ConstructorElement constructorElement = element;
|
| + displayName = constructorElement.enclosingElement.displayName;
|
| + if (!constructorElement.displayName.isEmpty) {
|
| + displayName = "$displayName.${constructorElement.displayName}";
|
| + }
|
| + }
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.DEPRECATED_MEMBER_USE, node, [displayName]);
|
| + return true;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * For [SimpleIdentifier]s, only call [checkForDeprecatedMemberUse]
|
| + * if the node is not in a declaration context.
|
| + *
|
| + * Also, if the identifier is a constructor name in a constructor invocation, then calls to the
|
| + * deprecated constructor will be caught by
|
| + * [visitInstanceCreationExpression] and
|
| + * [visitSuperConstructorInvocation], and can be ignored by
|
| + * this visit method.
|
| + *
|
| + * @param identifier some simple identifier to check for deprecated use of
|
| + * @return `true` if and only if a hint code is generated on the passed node
|
| + * See [HintCode.DEPRECATED_MEMBER_USE].
|
| + */
|
| + bool _checkForDeprecatedMemberUseAtIdentifier(SimpleIdentifier identifier) {
|
| + if (identifier.inDeclarationContext()) {
|
| + return false;
|
| + }
|
| + AstNode parent = identifier.parent;
|
| + if ((parent is ConstructorName && identical(identifier, parent.name)) ||
|
| + (parent is SuperConstructorInvocation &&
|
| + identical(identifier, parent.constructorName)) ||
|
| + parent is HideCombinator) {
|
| + return false;
|
| + }
|
| + return _checkForDeprecatedMemberUse(identifier.bestElement, identifier);
|
| + }
|
| +
|
| + /**
|
| + * Check for the passed binary expression for the [HintCode.DIVISION_OPTIMIZATION].
|
| + *
|
| + * @param node the binary expression to check
|
| + * @return `true` if and only if a hint code is generated on the passed node
|
| + * See [HintCode.DIVISION_OPTIMIZATION].
|
| + */
|
| + bool _checkForDivisionOptimizationHint(BinaryExpression node) {
|
| + // Return if the operator is not '/'
|
| + if (node.operator.type != sc.TokenType.SLASH) {
|
| + return false;
|
| + }
|
| + // Return if the '/' operator is not defined in core, or if we don't know
|
| + // its static or propagated type
|
| + MethodElement methodElement = node.bestElement;
|
| + if (methodElement == null) {
|
| + return false;
|
| + }
|
| + LibraryElement libraryElement = methodElement.library;
|
| + if (libraryElement != null && !libraryElement.isDartCore) {
|
| + return false;
|
| + }
|
| + // Report error if the (x/y) has toInt() invoked on it
|
| + if (node.parent is ParenthesizedExpression) {
|
| + ParenthesizedExpression parenthesizedExpression =
|
| + _wrapParenthesizedExpression(node.parent as ParenthesizedExpression);
|
| + if (parenthesizedExpression.parent is MethodInvocation) {
|
| + MethodInvocation methodInvocation =
|
| + parenthesizedExpression.parent as MethodInvocation;
|
| + if (_TO_INT_METHOD_NAME == methodInvocation.methodName.name &&
|
| + methodInvocation.argumentList.arguments.isEmpty) {
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.DIVISION_OPTIMIZATION, methodInvocation);
|
| + return true;
|
| + }
|
| + }
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * This verifies that the passed left hand side and right hand side represent a valid assignment.
|
| + *
|
| + * This method corresponds to ErrorVerifier.checkForInvalidAssignment.
|
| + *
|
| + * @param lhs the left hand side expression
|
| + * @param rhs the right hand side expression
|
| + * @return `true` if and only if an error code is generated on the passed node
|
| + * See [HintCode.INVALID_ASSIGNMENT].
|
| + */
|
| + bool _checkForInvalidAssignment(Expression lhs, Expression rhs) {
|
| + if (lhs == null || rhs == null) {
|
| + return false;
|
| + }
|
| + VariableElement leftVariableElement = ErrorVerifier.getVariableElement(lhs);
|
| + DartType leftType = (leftVariableElement == null)
|
| + ? ErrorVerifier.getStaticType(lhs)
|
| + : leftVariableElement.type;
|
| + DartType staticRightType = ErrorVerifier.getStaticType(rhs);
|
| + if (!staticRightType.isAssignableTo(leftType)) {
|
| + // The warning was generated on this rhs
|
| + return false;
|
| + }
|
| + // Test for, and then generate the hint
|
| + DartType bestRightType = rhs.bestType;
|
| + if (leftType != null && bestRightType != null) {
|
| + if (!bestRightType.isAssignableTo(leftType)) {
|
| + _errorReporter.reportTypeErrorForNode(
|
| + HintCode.INVALID_ASSIGNMENT, rhs, [bestRightType, leftType]);
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Check that the imported library does not define a loadLibrary function. The import has already
|
| + * been determined to be deferred when this is called.
|
| + *
|
| + * @param node the import directive to evaluate
|
| + * @param importElement the [ImportElement] retrieved from the node
|
| + * @return `true` if and only if an error code is generated on the passed node
|
| + * See [CompileTimeErrorCode.IMPORT_DEFERRED_LIBRARY_WITH_LOAD_FUNCTION].
|
| + */
|
| + bool _checkForLoadLibraryFunction(
|
| + ImportDirective node, ImportElement importElement) {
|
| + LibraryElement importedLibrary = importElement.importedLibrary;
|
| + if (importedLibrary == null) {
|
| + return false;
|
| + }
|
| + if (importedLibrary.hasLoadLibraryFunction) {
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.IMPORT_DEFERRED_LIBRARY_WITH_LOAD_FUNCTION,
|
| + node,
|
| + [importedLibrary.name]);
|
| + return true;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Generate a hint for functions or methods that have a return type, but do not have a return
|
| + * statement on all branches. At the end of blocks with no return, Dart implicitly returns
|
| + * `null`, avoiding these implicit returns is considered a best practice.
|
| + *
|
| + * Note: for async functions/methods, this hint only applies when the
|
| + * function has a return type that Future<Null> is not assignable to.
|
| + *
|
| + * @param node the binary expression to check
|
| + * @param body the function body
|
| + * @return `true` if and only if a hint code is generated on the passed node
|
| + * See [HintCode.MISSING_RETURN].
|
| + */
|
| + bool _checkForMissingReturn(TypeName returnType, FunctionBody body) {
|
| + // Check that the method or function has a return type, and a function body
|
| + if (returnType == null || body == null) {
|
| + return false;
|
| + }
|
| + // Check that the body is a BlockFunctionBody
|
| + if (body is! BlockFunctionBody) {
|
| + return false;
|
| + }
|
| + // Generators are never required to have a return statement.
|
| + if (body.isGenerator) {
|
| + return false;
|
| + }
|
| + // Check that the type is resolvable, and is not "void"
|
| + DartType returnTypeType = returnType.type;
|
| + if (returnTypeType == null || returnTypeType.isVoid) {
|
| + return false;
|
| + }
|
| + // For async, give no hint if Future<Null> is assignable to the return
|
| + // type.
|
| + if (body.isAsynchronous && _futureNullType.isAssignableTo(returnTypeType)) {
|
| + return false;
|
| + }
|
| + // Check the block for a return statement, if not, create the hint
|
| + BlockFunctionBody blockFunctionBody = body as BlockFunctionBody;
|
| + if (!ExitDetector.exits(blockFunctionBody)) {
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.MISSING_RETURN, returnType, [returnTypeType.displayName]);
|
| + return true;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Check for the passed class declaration for the
|
| + * [HintCode.OVERRIDE_EQUALS_BUT_NOT_HASH_CODE] hint code.
|
| + *
|
| + * @param node the class declaration to check
|
| + * @return `true` if and only if a hint code is generated on the passed node
|
| + * See [HintCode.OVERRIDE_EQUALS_BUT_NOT_HASH_CODE].
|
| + */
|
| +// bool _checkForOverrideEqualsButNotHashCode(ClassDeclaration node) {
|
| +// ClassElement classElement = node.element;
|
| +// if (classElement == null) {
|
| +// return false;
|
| +// }
|
| +// MethodElement equalsOperatorMethodElement =
|
| +// classElement.getMethod(sc.TokenType.EQ_EQ.lexeme);
|
| +// if (equalsOperatorMethodElement != null) {
|
| +// PropertyAccessorElement hashCodeElement =
|
| +// classElement.getGetter(_HASHCODE_GETTER_NAME);
|
| +// if (hashCodeElement == null) {
|
| +// _errorReporter.reportErrorForNode(
|
| +// HintCode.OVERRIDE_EQUALS_BUT_NOT_HASH_CODE,
|
| +// node.name,
|
| +// [classElement.displayName]);
|
| +// return true;
|
| +// }
|
| +// }
|
| +// return false;
|
| +// }
|
| +
|
| + /**
|
| + * Check for the passed as expression for the [HintCode.UNNECESSARY_CAST] hint code.
|
| + *
|
| + * @param node the as expression to check
|
| + * @return `true` if and only if a hint code is generated on the passed node
|
| + * See [HintCode.UNNECESSARY_CAST].
|
| + */
|
| + bool _checkForUnnecessaryCast(AsExpression node) {
|
| + // TODO(jwren) After dartbug.com/13732, revisit this, we should be able to
|
| + // remove the (x is! TypeParameterType) checks.
|
| + AstNode parent = node.parent;
|
| + if (parent is ConditionalExpression &&
|
| + (node == parent.thenExpression || node == parent.elseExpression)) {
|
| + Expression thenExpression = parent.thenExpression;
|
| + DartType thenType;
|
| + if (thenExpression is AsExpression) {
|
| + thenType = thenExpression.expression.staticType;
|
| + } else {
|
| + thenType = thenExpression.staticType;
|
| + }
|
| + Expression elseExpression = parent.elseExpression;
|
| + DartType elseType;
|
| + if (elseExpression is AsExpression) {
|
| + elseType = elseExpression.expression.staticType;
|
| + } else {
|
| + elseType = elseExpression.staticType;
|
| + }
|
| + if (thenType != null &&
|
| + elseType != null &&
|
| + !thenType.isDynamic &&
|
| + !elseType.isDynamic &&
|
| + !thenType.isMoreSpecificThan(elseType) &&
|
| + !elseType.isMoreSpecificThan(thenType)) {
|
| + return false;
|
| + }
|
| + }
|
| + DartType lhsType = node.expression.staticType;
|
| + DartType rhsType = node.type.type;
|
| + if (lhsType != null &&
|
| + rhsType != null &&
|
| + !lhsType.isDynamic &&
|
| + !rhsType.isDynamic &&
|
| + lhsType.isMoreSpecificThan(rhsType)) {
|
| + _errorReporter.reportErrorForNode(HintCode.UNNECESSARY_CAST, node);
|
| + return true;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Check for situations where the result of a method or function is used, when it returns 'void'.
|
| + *
|
| + * TODO(jwren) Many other situations of use could be covered. We currently cover the cases var x =
|
| + * m() and x = m(), but we could also cover cases such as m().x, m()[k], a + m(), f(m()), return
|
| + * m().
|
| + *
|
| + * @param node expression on the RHS of some assignment
|
| + * @return `true` if and only if a hint code is generated on the passed node
|
| + * See [HintCode.USE_OF_VOID_RESULT].
|
| + */
|
| + bool _checkForUseOfVoidResult(Expression expression) {
|
| + if (expression == null || expression is! MethodInvocation) {
|
| + return false;
|
| + }
|
| + MethodInvocation methodInvocation = expression as MethodInvocation;
|
| + if (identical(methodInvocation.staticType, VoidTypeImpl.instance)) {
|
| + SimpleIdentifier methodName = methodInvocation.methodName;
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.USE_OF_VOID_RESULT, methodName, [methodName.name]);
|
| + return true;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Given a parenthesized expression, this returns the parent (or recursively grand-parent) of the
|
| + * expression that is a parenthesized expression, but whose parent is not a parenthesized
|
| + * expression.
|
| + *
|
| + * For example given the code `(((e)))`: `(e) -> (((e)))`.
|
| + *
|
| + * @param parenthesizedExpression some expression whose parent is a parenthesized expression
|
| + * @return the first parent or grand-parent that is a parenthesized expression, that does not have
|
| + * a parenthesized expression parent
|
| + */
|
| + static ParenthesizedExpression _wrapParenthesizedExpression(
|
| + ParenthesizedExpression parenthesizedExpression) {
|
| + if (parenthesizedExpression.parent is ParenthesizedExpression) {
|
| + return _wrapParenthesizedExpression(
|
| + parenthesizedExpression.parent as ParenthesizedExpression);
|
| + }
|
| + return parenthesizedExpression;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `ClassScope` implement the scope defined by a class.
|
| + */
|
| +class ClassScope extends EnclosedScope {
|
| + /**
|
| + * Initialize a newly created scope enclosed within another scope.
|
| + *
|
| + * @param enclosingScope the scope in which this scope is lexically enclosed
|
| + * @param typeElement the element representing the type represented by this scope
|
| + */
|
| + ClassScope(Scope enclosingScope, ClassElement typeElement)
|
| + : super(enclosingScope) {
|
| + if (typeElement == null) {
|
| + throw new IllegalArgumentException("class element cannot be null");
|
| + }
|
| + _defineMembers(typeElement);
|
| + }
|
| +
|
| + @override
|
| + AnalysisError getErrorForDuplicate(Element existing, Element duplicate) {
|
| + if (existing is PropertyAccessorElement && duplicate is MethodElement) {
|
| + if (existing.nameOffset < duplicate.nameOffset) {
|
| + return new AnalysisError(
|
| + duplicate.source,
|
| + duplicate.nameOffset,
|
| + duplicate.displayName.length,
|
| + CompileTimeErrorCode.METHOD_AND_GETTER_WITH_SAME_NAME,
|
| + [existing.displayName]);
|
| + } else {
|
| + return new AnalysisError(
|
| + existing.source,
|
| + existing.nameOffset,
|
| + existing.displayName.length,
|
| + CompileTimeErrorCode.GETTER_AND_METHOD_WITH_SAME_NAME,
|
| + [existing.displayName]);
|
| + }
|
| + }
|
| + return super.getErrorForDuplicate(existing, duplicate);
|
| + }
|
| +
|
| + /**
|
| + * Define the instance members defined by the class.
|
| + *
|
| + * @param typeElement the element representing the type represented by this scope
|
| + */
|
| + void _defineMembers(ClassElement typeElement) {
|
| + for (PropertyAccessorElement accessor in typeElement.accessors) {
|
| + define(accessor);
|
| + }
|
| + for (MethodElement method in typeElement.methods) {
|
| + define(method);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * A `CompilationUnitBuilder` builds an element model for a single compilation
|
| + * unit.
|
| + */
|
| +class CompilationUnitBuilder {
|
| + /**
|
| + * Build the compilation unit element for the given [source] based on the
|
| + * compilation [unit] associated with the source. Throw an AnalysisException
|
| + * if the element could not be built. [librarySource] is the source for the
|
| + * containing library.
|
| + */
|
| + CompilationUnitElementImpl buildCompilationUnit(
|
| + Source source, CompilationUnit unit, Source librarySource) {
|
| + return PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| + if (unit == null) {
|
| + return null;
|
| + }
|
| + ElementHolder holder = new ElementHolder();
|
| + ElementBuilder builder = new ElementBuilder(holder);
|
| + unit.accept(builder);
|
| + CompilationUnitElementImpl element =
|
| + new CompilationUnitElementImpl(source.shortName);
|
| + element.accessors = holder.accessors;
|
| + element.enums = holder.enums;
|
| + element.functions = holder.functions;
|
| + element.source = source;
|
| + element.librarySource = librarySource;
|
| + element.typeAliases = holder.typeAliases;
|
| + element.types = holder.types;
|
| + element.topLevelVariables = holder.topLevelVariables;
|
| + unit.element = element;
|
| + holder.validate();
|
| + return element;
|
| + });
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `ConstantVerifier` traverse an AST structure looking for additional
|
| + * errors and warnings not covered by the parser and resolver. In particular, it looks for errors
|
| + * and warnings related to constant expressions.
|
| + */
|
| +class ConstantVerifier extends RecursiveAstVisitor<Object> {
|
| + /**
|
| + * The error reporter by which errors will be reported.
|
| + */
|
| + final ErrorReporter _errorReporter;
|
| +
|
| + /**
|
| + * The type provider used to access the known types.
|
| + */
|
| + final TypeProvider _typeProvider;
|
| +
|
| + /**
|
| + * The set of variables declared using '-D' on the command line.
|
| + */
|
| + final DeclaredVariables declaredVariables;
|
| +
|
| + /**
|
| + * The type representing the type 'bool'.
|
| + */
|
| + InterfaceType _boolType;
|
| +
|
| + /**
|
| + * The type representing the type 'int'.
|
| + */
|
| + InterfaceType _intType;
|
| +
|
| + /**
|
| + * The type representing the type 'num'.
|
| + */
|
| + InterfaceType _numType;
|
| +
|
| + /**
|
| + * The type representing the type 'string'.
|
| + */
|
| + InterfaceType _stringType;
|
| +
|
| + /**
|
| + * The current library that is being analyzed.
|
| + */
|
| + final LibraryElement _currentLibrary;
|
| +
|
| + /**
|
| + * Initialize a newly created constant verifier.
|
| + *
|
| + * @param errorReporter the error reporter by which errors will be reported
|
| + */
|
| + ConstantVerifier(this._errorReporter, this._currentLibrary,
|
| + this._typeProvider, this.declaredVariables) {
|
| + this._boolType = _typeProvider.boolType;
|
| + this._intType = _typeProvider.intType;
|
| + this._numType = _typeProvider.numType;
|
| + this._stringType = _typeProvider.stringType;
|
| + }
|
| +
|
| + @override
|
| + Object visitAnnotation(Annotation node) {
|
| + super.visitAnnotation(node);
|
| + // check annotation creation
|
| + Element element = node.element;
|
| + if (element is ConstructorElement) {
|
| + ConstructorElement constructorElement = element;
|
| + // should 'const' constructor
|
| + if (!constructorElement.isConst) {
|
| + _errorReporter.reportErrorForNode(
|
| + CompileTimeErrorCode.NON_CONSTANT_ANNOTATION_CONSTRUCTOR, node);
|
| + return null;
|
| + }
|
| + // should have arguments
|
| + ArgumentList argumentList = node.arguments;
|
| + if (argumentList == null) {
|
| + _errorReporter.reportErrorForNode(
|
| + CompileTimeErrorCode.NO_ANNOTATION_CONSTRUCTOR_ARGUMENTS, node);
|
| + return null;
|
| + }
|
| + // arguments should be constants
|
| + _validateConstantArguments(argumentList);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| + if (node.constKeyword != null) {
|
| + _validateConstructorInitializers(node);
|
| + _validateFieldInitializers(node.parent as ClassDeclaration, node);
|
| + }
|
| + _validateDefaultValues(node.parameters);
|
| + return super.visitConstructorDeclaration(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionExpression(FunctionExpression node) {
|
| + super.visitFunctionExpression(node);
|
| + _validateDefaultValues(node.parameters);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitInstanceCreationExpression(InstanceCreationExpression node) {
|
| + if (node.isConst) {
|
| + // We need to evaluate the constant to see if any errors occur during its
|
| + // evaluation.
|
| + ConstructorElement constructor = node.staticElement;
|
| + if (constructor != null) {
|
| + ConstantEvaluationEngine evaluationEngine =
|
| + new ConstantEvaluationEngine(_typeProvider, declaredVariables);
|
| + ConstantVisitor constantVisitor =
|
| + new ConstantVisitor(evaluationEngine, _errorReporter);
|
| + evaluationEngine.evaluateConstructorCall(
|
| + node,
|
| + node.argumentList.arguments,
|
| + constructor,
|
| + constantVisitor,
|
| + _errorReporter);
|
| + }
|
| + }
|
| + _validateInstanceCreationArguments(node);
|
| + return super.visitInstanceCreationExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitListLiteral(ListLiteral node) {
|
| + super.visitListLiteral(node);
|
| + if (node.constKeyword != null) {
|
| + DartObjectImpl result;
|
| + for (Expression element in node.elements) {
|
| + result =
|
| + _validate(element, CompileTimeErrorCode.NON_CONSTANT_LIST_ELEMENT);
|
| + if (result != null) {
|
| + _reportErrorIfFromDeferredLibrary(element,
|
| + CompileTimeErrorCode.NON_CONSTANT_LIST_ELEMENT_FROM_DEFERRED_LIBRARY);
|
| + }
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitMapLiteral(MapLiteral node) {
|
| + super.visitMapLiteral(node);
|
| + bool isConst = node.constKeyword != null;
|
| + bool reportEqualKeys = true;
|
| + HashSet<DartObject> keys = new HashSet<DartObject>();
|
| + List<Expression> invalidKeys = new List<Expression>();
|
| + for (MapLiteralEntry entry in node.entries) {
|
| + Expression key = entry.key;
|
| + if (isConst) {
|
| + DartObjectImpl keyResult =
|
| + _validate(key, CompileTimeErrorCode.NON_CONSTANT_MAP_KEY);
|
| + Expression valueExpression = entry.value;
|
| + DartObjectImpl valueResult = _validate(
|
| + valueExpression, CompileTimeErrorCode.NON_CONSTANT_MAP_VALUE);
|
| + if (valueResult != null) {
|
| + _reportErrorIfFromDeferredLibrary(valueExpression,
|
| + CompileTimeErrorCode.NON_CONSTANT_MAP_VALUE_FROM_DEFERRED_LIBRARY);
|
| + }
|
| + if (keyResult != null) {
|
| + _reportErrorIfFromDeferredLibrary(key,
|
| + CompileTimeErrorCode.NON_CONSTANT_MAP_KEY_FROM_DEFERRED_LIBRARY);
|
| + if (keys.contains(keyResult)) {
|
| + invalidKeys.add(key);
|
| + } else {
|
| + keys.add(keyResult);
|
| + }
|
| + DartType type = keyResult.type;
|
| + if (_implementsEqualsWhenNotAllowed(type)) {
|
| + _errorReporter.reportErrorForNode(
|
| + CompileTimeErrorCode.CONST_MAP_KEY_EXPRESSION_TYPE_IMPLEMENTS_EQUALS,
|
| + key,
|
| + [type.displayName]);
|
| + }
|
| + }
|
| + } else {
|
| + // Note: we throw the errors away because this isn't actually a const.
|
| + AnalysisErrorListener errorListener =
|
| + AnalysisErrorListener.NULL_LISTENER;
|
| + ErrorReporter subErrorReporter =
|
| + new ErrorReporter(errorListener, _errorReporter.source);
|
| + DartObjectImpl result = key.accept(new ConstantVisitor(
|
| + new ConstantEvaluationEngine(_typeProvider, declaredVariables),
|
| + subErrorReporter));
|
| + if (result != null) {
|
| + if (keys.contains(result)) {
|
| + invalidKeys.add(key);
|
| + } else {
|
| + keys.add(result);
|
| + }
|
| + } else {
|
| + reportEqualKeys = false;
|
| + }
|
| + }
|
| + }
|
| + if (reportEqualKeys) {
|
| + for (Expression key in invalidKeys) {
|
| + _errorReporter.reportErrorForNode(
|
| + StaticWarningCode.EQUAL_KEYS_IN_MAP, key);
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitMethodDeclaration(MethodDeclaration node) {
|
| + super.visitMethodDeclaration(node);
|
| + _validateDefaultValues(node.parameters);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitSwitchStatement(SwitchStatement node) {
|
| + // TODO(paulberry): to minimize error messages, it would be nice to
|
| + // compare all types with the most popular type rather than the first
|
| + // type.
|
| + NodeList<SwitchMember> switchMembers = node.members;
|
| + bool foundError = false;
|
| + DartType firstType = null;
|
| + for (SwitchMember switchMember in switchMembers) {
|
| + if (switchMember is SwitchCase) {
|
| + SwitchCase switchCase = switchMember;
|
| + Expression expression = switchCase.expression;
|
| + DartObjectImpl caseResult = _validate(
|
| + expression, CompileTimeErrorCode.NON_CONSTANT_CASE_EXPRESSION);
|
| + if (caseResult != null) {
|
| + _reportErrorIfFromDeferredLibrary(expression,
|
| + CompileTimeErrorCode.NON_CONSTANT_CASE_EXPRESSION_FROM_DEFERRED_LIBRARY);
|
| + DartObject value = caseResult;
|
| + if (firstType == null) {
|
| + firstType = value.type;
|
| + } else {
|
| + DartType nType = value.type;
|
| + if (firstType != nType) {
|
| + _errorReporter.reportErrorForNode(
|
| + CompileTimeErrorCode.INCONSISTENT_CASE_EXPRESSION_TYPES,
|
| + expression,
|
| + [expression.toSource(), firstType.displayName]);
|
| + foundError = true;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| + if (!foundError) {
|
| + _checkForCaseExpressionTypeImplementsEquals(node, firstType);
|
| + }
|
| + return super.visitSwitchStatement(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitVariableDeclaration(VariableDeclaration node) {
|
| + super.visitVariableDeclaration(node);
|
| + Expression initializer = node.initializer;
|
| + if (initializer != null && (node.isConst || node.isFinal)) {
|
| + VariableElementImpl element = node.element as VariableElementImpl;
|
| + EvaluationResultImpl result = element.evaluationResult;
|
| + if (result == null) {
|
| + // Variables marked "const" should have had their values computed by
|
| + // ConstantValueComputer. Other variables will only have had their
|
| + // values computed if the value was needed (e.g. final variables in a
|
| + // class containing const constructors).
|
| + assert(!node.isConst);
|
| + return null;
|
| + }
|
| + _reportErrors(result.errors,
|
| + CompileTimeErrorCode.CONST_INITIALIZED_WITH_NON_CONSTANT_VALUE);
|
| + _reportErrorIfFromDeferredLibrary(initializer,
|
| + CompileTimeErrorCode.CONST_INITIALIZED_WITH_NON_CONSTANT_VALUE_FROM_DEFERRED_LIBRARY);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * This verifies that the passed switch statement does not have a case expression with the
|
| + * operator '==' overridden.
|
| + *
|
| + * @param node the switch statement to evaluate
|
| + * @param type the common type of all 'case' expressions
|
| + * @return `true` if and only if an error code is generated on the passed node
|
| + * See [CompileTimeErrorCode.CASE_EXPRESSION_TYPE_IMPLEMENTS_EQUALS].
|
| + */
|
| + bool _checkForCaseExpressionTypeImplementsEquals(
|
| + SwitchStatement node, DartType type) {
|
| + if (!_implementsEqualsWhenNotAllowed(type)) {
|
| + return false;
|
| + }
|
| + // report error
|
| + _errorReporter.reportErrorForToken(
|
| + CompileTimeErrorCode.CASE_EXPRESSION_TYPE_IMPLEMENTS_EQUALS,
|
| + node.switchKeyword,
|
| + [type.displayName]);
|
| + return true;
|
| + }
|
| +
|
| + /**
|
| + * @return `true` if given [Type] implements operator <i>==</i>, and it is not
|
| + * <i>int</i> or <i>String</i>.
|
| + */
|
| + bool _implementsEqualsWhenNotAllowed(DartType type) {
|
| + // ignore int or String
|
| + if (type == null || type == _intType || type == _typeProvider.stringType) {
|
| + return false;
|
| + } else if (type == _typeProvider.doubleType) {
|
| + return true;
|
| + }
|
| + // prepare ClassElement
|
| + Element element = type.element;
|
| + if (element is! ClassElement) {
|
| + return false;
|
| + }
|
| + ClassElement classElement = element as ClassElement;
|
| + // lookup for ==
|
| + MethodElement method =
|
| + classElement.lookUpConcreteMethod("==", _currentLibrary);
|
| + if (method == null || method.enclosingElement.type.isObject) {
|
| + return false;
|
| + }
|
| + // there is == that we don't like
|
| + return true;
|
| + }
|
| +
|
| + /**
|
| + * Given some computed [Expression], this method generates the passed [ErrorCode] on
|
| + * the node if its' value consists of information from a deferred library.
|
| + *
|
| + * @param expression the expression to be tested for a deferred library reference
|
| + * @param errorCode the error code to be used if the expression is or consists of a reference to a
|
| + * deferred library
|
| + */
|
| + void _reportErrorIfFromDeferredLibrary(
|
| + Expression expression, ErrorCode errorCode) {
|
| + DeferredLibraryReferenceDetector referenceDetector =
|
| + new DeferredLibraryReferenceDetector();
|
| + expression.accept(referenceDetector);
|
| + if (referenceDetector.result) {
|
| + _errorReporter.reportErrorForNode(errorCode, expression);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Report any errors in the given list. Except for special cases, use the given error code rather
|
| + * than the one reported in the error.
|
| + *
|
| + * @param errors the errors that need to be reported
|
| + * @param errorCode the error code to be used
|
| + */
|
| + void _reportErrors(List<AnalysisError> errors, ErrorCode errorCode) {
|
| + for (AnalysisError data in errors) {
|
| + ErrorCode dataErrorCode = data.errorCode;
|
| + if (identical(dataErrorCode,
|
| + CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION) ||
|
| + identical(
|
| + dataErrorCode, CompileTimeErrorCode.CONST_EVAL_THROWS_IDBZE) ||
|
| + identical(dataErrorCode,
|
| + CompileTimeErrorCode.CONST_EVAL_TYPE_BOOL_NUM_STRING) ||
|
| + identical(dataErrorCode, CompileTimeErrorCode.CONST_EVAL_TYPE_BOOL) ||
|
| + identical(dataErrorCode, CompileTimeErrorCode.CONST_EVAL_TYPE_INT) ||
|
| + identical(dataErrorCode, CompileTimeErrorCode.CONST_EVAL_TYPE_NUM) ||
|
| + identical(dataErrorCode,
|
| + CompileTimeErrorCode.RECURSIVE_COMPILE_TIME_CONSTANT) ||
|
| + identical(dataErrorCode,
|
| + CheckedModeCompileTimeErrorCode.CONST_CONSTRUCTOR_FIELD_TYPE_MISMATCH) ||
|
| + identical(dataErrorCode,
|
| + CheckedModeCompileTimeErrorCode.CONST_CONSTRUCTOR_PARAM_TYPE_MISMATCH) ||
|
| + identical(dataErrorCode,
|
| + CheckedModeCompileTimeErrorCode.VARIABLE_TYPE_MISMATCH)) {
|
| + _errorReporter.reportError(data);
|
| + } else if (errorCode != null) {
|
| + _errorReporter.reportError(new AnalysisError(
|
| + data.source, data.offset, data.length, errorCode));
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Validate that the given expression is a compile time constant. Return the value of the compile
|
| + * time constant, or `null` if the expression is not a compile time constant.
|
| + *
|
| + * @param expression the expression to be validated
|
| + * @param errorCode the error code to be used if the expression is not a compile time constant
|
| + * @return the value of the compile time constant
|
| + */
|
| + DartObjectImpl _validate(Expression expression, ErrorCode errorCode) {
|
| + RecordingErrorListener errorListener = new RecordingErrorListener();
|
| + ErrorReporter subErrorReporter =
|
| + new ErrorReporter(errorListener, _errorReporter.source);
|
| + DartObjectImpl result = expression.accept(new ConstantVisitor(
|
| + new ConstantEvaluationEngine(_typeProvider, declaredVariables),
|
| + subErrorReporter));
|
| + _reportErrors(errorListener.errors, errorCode);
|
| + return result;
|
| + }
|
| +
|
| + /**
|
| + * Validate that if the passed arguments are constant expressions.
|
| + *
|
| + * @param argumentList the argument list to evaluate
|
| + */
|
| + void _validateConstantArguments(ArgumentList argumentList) {
|
| + for (Expression argument in argumentList.arguments) {
|
| + if (argument is NamedExpression) {
|
| + argument = (argument as NamedExpression).expression;
|
| + }
|
| + _validate(
|
| + argument, CompileTimeErrorCode.CONST_WITH_NON_CONSTANT_ARGUMENT);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Validates that the expressions of the given initializers (of a constant constructor) are all
|
| + * compile time constants.
|
| + *
|
| + * @param constructor the constant constructor declaration to validate
|
| + */
|
| + void _validateConstructorInitializers(ConstructorDeclaration constructor) {
|
| + List<ParameterElement> parameterElements =
|
| + constructor.parameters.parameterElements;
|
| + NodeList<ConstructorInitializer> initializers = constructor.initializers;
|
| + for (ConstructorInitializer initializer in initializers) {
|
| + if (initializer is ConstructorFieldInitializer) {
|
| + ConstructorFieldInitializer fieldInitializer = initializer;
|
| + _validateInitializerExpression(
|
| + parameterElements, fieldInitializer.expression);
|
| + }
|
| + if (initializer is RedirectingConstructorInvocation) {
|
| + RedirectingConstructorInvocation invocation = initializer;
|
| + _validateInitializerInvocationArguments(
|
| + parameterElements, invocation.argumentList);
|
| + }
|
| + if (initializer is SuperConstructorInvocation) {
|
| + SuperConstructorInvocation invocation = initializer;
|
| + _validateInitializerInvocationArguments(
|
| + parameterElements, invocation.argumentList);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Validate that the default value associated with each of the parameters in the given list is a
|
| + * compile time constant.
|
| + *
|
| + * @param parameters the list of parameters to be validated
|
| + */
|
| + void _validateDefaultValues(FormalParameterList parameters) {
|
| + if (parameters == null) {
|
| + return;
|
| + }
|
| + for (FormalParameter parameter in parameters.parameters) {
|
| + if (parameter is DefaultFormalParameter) {
|
| + DefaultFormalParameter defaultParameter = parameter;
|
| + Expression defaultValue = defaultParameter.defaultValue;
|
| + DartObjectImpl result;
|
| + if (defaultValue == null) {
|
| + result =
|
| + new DartObjectImpl(_typeProvider.nullType, NullState.NULL_STATE);
|
| + } else {
|
| + result = _validate(
|
| + defaultValue, CompileTimeErrorCode.NON_CONSTANT_DEFAULT_VALUE);
|
| + if (result != null) {
|
| + _reportErrorIfFromDeferredLibrary(defaultValue,
|
| + CompileTimeErrorCode.NON_CONSTANT_DEFAULT_VALUE_FROM_DEFERRED_LIBRARY);
|
| + }
|
| + }
|
| + VariableElementImpl element = parameter.element as VariableElementImpl;
|
| + element.evaluationResult = new EvaluationResultImpl(result);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Validates that the expressions of any field initializers in the class declaration are all
|
| + * compile time constants. Since this is only required if the class has a constant constructor,
|
| + * the error is reported at the constructor site.
|
| + *
|
| + * @param classDeclaration the class which should be validated
|
| + * @param errorSite the site at which errors should be reported.
|
| + */
|
| + void _validateFieldInitializers(
|
| + ClassDeclaration classDeclaration, ConstructorDeclaration errorSite) {
|
| + NodeList<ClassMember> members = classDeclaration.members;
|
| + for (ClassMember member in members) {
|
| + if (member is FieldDeclaration) {
|
| + FieldDeclaration fieldDeclaration = member;
|
| + if (!fieldDeclaration.isStatic) {
|
| + for (VariableDeclaration variableDeclaration
|
| + in fieldDeclaration.fields.variables) {
|
| + Expression initializer = variableDeclaration.initializer;
|
| + if (initializer != null) {
|
| + // Ignore any errors produced during validation--if the constant
|
| + // can't be eavluated we'll just report a single error.
|
| + AnalysisErrorListener errorListener =
|
| + AnalysisErrorListener.NULL_LISTENER;
|
| + ErrorReporter subErrorReporter =
|
| + new ErrorReporter(errorListener, _errorReporter.source);
|
| + DartObjectImpl result = initializer.accept(new ConstantVisitor(
|
| + new ConstantEvaluationEngine(
|
| + _typeProvider, declaredVariables),
|
| + subErrorReporter));
|
| + if (result == null) {
|
| + _errorReporter.reportErrorForNode(
|
| + CompileTimeErrorCode.CONST_CONSTRUCTOR_WITH_FIELD_INITIALIZED_BY_NON_CONST,
|
| + errorSite,
|
| + [variableDeclaration.name.name]);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Validates that the given expression is a compile time constant.
|
| + *
|
| + * @param parameterElements the elements of parameters of constant constructor, they are
|
| + * considered as a valid potentially constant expressions
|
| + * @param expression the expression to validate
|
| + */
|
| + void _validateInitializerExpression(
|
| + List<ParameterElement> parameterElements, Expression expression) {
|
| + RecordingErrorListener errorListener = new RecordingErrorListener();
|
| + ErrorReporter subErrorReporter =
|
| + new ErrorReporter(errorListener, _errorReporter.source);
|
| + DartObjectImpl result = expression.accept(
|
| + new _ConstantVerifier_validateInitializerExpression(_typeProvider,
|
| + subErrorReporter, this, parameterElements, declaredVariables));
|
| + _reportErrors(errorListener.errors,
|
| + CompileTimeErrorCode.NON_CONSTANT_VALUE_IN_INITIALIZER);
|
| + if (result != null) {
|
| + _reportErrorIfFromDeferredLibrary(expression,
|
| + CompileTimeErrorCode.NON_CONSTANT_VALUE_IN_INITIALIZER_FROM_DEFERRED_LIBRARY);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Validates that all of the arguments of a constructor initializer are compile time constants.
|
| + *
|
| + * @param parameterElements the elements of parameters of constant constructor, they are
|
| + * considered as a valid potentially constant expressions
|
| + * @param argumentList the argument list to validate
|
| + */
|
| + void _validateInitializerInvocationArguments(
|
| + List<ParameterElement> parameterElements, ArgumentList argumentList) {
|
| + if (argumentList == null) {
|
| + return;
|
| + }
|
| + for (Expression argument in argumentList.arguments) {
|
| + _validateInitializerExpression(parameterElements, argument);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Validate that if the passed instance creation is 'const' then all its arguments are constant
|
| + * expressions.
|
| + *
|
| + * @param node the instance creation evaluate
|
| + */
|
| + void _validateInstanceCreationArguments(InstanceCreationExpression node) {
|
| + if (!node.isConst) {
|
| + return;
|
| + }
|
| + ArgumentList argumentList = node.argumentList;
|
| + if (argumentList == null) {
|
| + return;
|
| + }
|
| + _validateConstantArguments(argumentList);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `Dart2JSVerifier` traverse an AST structure looking for hints for
|
| + * code that will be compiled to JS, such as [HintCode.IS_DOUBLE].
|
| + */
|
| +class Dart2JSVerifier extends RecursiveAstVisitor<Object> {
|
| + /**
|
| + * The name of the `double` type.
|
| + */
|
| + static String _DOUBLE_TYPE_NAME = "double";
|
| +
|
| + /**
|
| + * The error reporter by which errors will be reported.
|
| + */
|
| + final ErrorReporter _errorReporter;
|
| +
|
| + /**
|
| + * Create a new instance of the [Dart2JSVerifier].
|
| + *
|
| + * @param errorReporter the error reporter
|
| + */
|
| + Dart2JSVerifier(this._errorReporter);
|
| +
|
| + @override
|
| + Object visitIsExpression(IsExpression node) {
|
| + _checkForIsDoubleHints(node);
|
| + return super.visitIsExpression(node);
|
| + }
|
| +
|
| + /**
|
| + * Check for instances of `x is double`, `x is int`, `x is! double` and
|
| + * `x is! int`.
|
| + *
|
| + * @param node the is expression to check
|
| + * @return `true` if and only if a hint code is generated on the passed node
|
| + * See [HintCode.IS_DOUBLE],
|
| + * [HintCode.IS_INT],
|
| + * [HintCode.IS_NOT_DOUBLE], and
|
| + * [HintCode.IS_NOT_INT].
|
| + */
|
| + bool _checkForIsDoubleHints(IsExpression node) {
|
| + TypeName typeName = node.type;
|
| + DartType type = typeName.type;
|
| + if (type != null && type.element != null) {
|
| + Element element = type.element;
|
| + String typeNameStr = element.name;
|
| + LibraryElement libraryElement = element.library;
|
| + // if (typeNameStr.equals(INT_TYPE_NAME) && libraryElement != null
|
| + // && libraryElement.isDartCore()) {
|
| + // if (node.getNotOperator() == null) {
|
| + // errorReporter.reportError(HintCode.IS_INT, node);
|
| + // } else {
|
| + // errorReporter.reportError(HintCode.IS_NOT_INT, node);
|
| + // }
|
| + // return true;
|
| + // } else
|
| + if (typeNameStr == _DOUBLE_TYPE_NAME &&
|
| + libraryElement != null &&
|
| + libraryElement.isDartCore) {
|
| + if (node.notOperator == null) {
|
| + _errorReporter.reportErrorForNode(HintCode.IS_DOUBLE, node);
|
| + } else {
|
| + _errorReporter.reportErrorForNode(HintCode.IS_NOT_DOUBLE, node);
|
| + }
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `DeadCodeVerifier` traverse an AST structure looking for cases of
|
| + * [HintCode.DEAD_CODE].
|
| + */
|
| +class DeadCodeVerifier extends RecursiveAstVisitor<Object> {
|
| + /**
|
| + * The error reporter by which errors will be reported.
|
| + */
|
| + final ErrorReporter _errorReporter;
|
| +
|
| + /**
|
| + * Create a new instance of the [DeadCodeVerifier].
|
| + *
|
| + * @param errorReporter the error reporter
|
| + */
|
| + DeadCodeVerifier(this._errorReporter);
|
| +
|
| + @override
|
| + Object visitBinaryExpression(BinaryExpression node) {
|
| + sc.Token operator = node.operator;
|
| + bool isAmpAmp = operator.type == sc.TokenType.AMPERSAND_AMPERSAND;
|
| + bool isBarBar = operator.type == sc.TokenType.BAR_BAR;
|
| + if (isAmpAmp || isBarBar) {
|
| + Expression lhsCondition = node.leftOperand;
|
| + if (!_isDebugConstant(lhsCondition)) {
|
| + EvaluationResultImpl lhsResult = _getConstantBooleanValue(lhsCondition);
|
| + if (lhsResult != null) {
|
| + if (lhsResult.value.isTrue && isBarBar) {
|
| + // report error on else block: true || !e!
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.DEAD_CODE, node.rightOperand);
|
| + // only visit the LHS:
|
| + _safelyVisit(lhsCondition);
|
| + return null;
|
| + } else if (lhsResult.value.isFalse && isAmpAmp) {
|
| + // report error on if block: false && !e!
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.DEAD_CODE, node.rightOperand);
|
| + // only visit the LHS:
|
| + _safelyVisit(lhsCondition);
|
| + return null;
|
| + }
|
| + }
|
| + }
|
| + // How do we want to handle the RHS? It isn't dead code, but "pointless"
|
| + // or "obscure"...
|
| +// Expression rhsCondition = node.getRightOperand();
|
| +// ValidResult rhsResult = getConstantBooleanValue(rhsCondition);
|
| +// if (rhsResult != null) {
|
| +// if (rhsResult == ValidResult.RESULT_TRUE && isBarBar) {
|
| +// // report error on else block: !e! || true
|
| +// errorReporter.reportError(HintCode.DEAD_CODE, node.getRightOperand());
|
| +// // only visit the RHS:
|
| +// safelyVisit(rhsCondition);
|
| +// return null;
|
| +// } else if (rhsResult == ValidResult.RESULT_FALSE && isAmpAmp) {
|
| +// // report error on if block: !e! && false
|
| +// errorReporter.reportError(HintCode.DEAD_CODE, node.getRightOperand());
|
| +// // only visit the RHS:
|
| +// safelyVisit(rhsCondition);
|
| +// return null;
|
| +// }
|
| +// }
|
| + }
|
| + return super.visitBinaryExpression(node);
|
| + }
|
| +
|
| + /**
|
| + * For each [Block], this method reports and error on all statements between the end of the
|
| + * block and the first return statement (assuming there it is not at the end of the block.)
|
| + *
|
| + * @param node the block to evaluate
|
| + */
|
| + @override
|
| + Object visitBlock(Block node) {
|
| + NodeList<Statement> statements = node.statements;
|
| + _checkForDeadStatementsInNodeList(statements);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitConditionalExpression(ConditionalExpression node) {
|
| + Expression conditionExpression = node.condition;
|
| + _safelyVisit(conditionExpression);
|
| + if (!_isDebugConstant(conditionExpression)) {
|
| + EvaluationResultImpl result =
|
| + _getConstantBooleanValue(conditionExpression);
|
| + if (result != null) {
|
| + if (result.value.isTrue) {
|
| + // report error on else block: true ? 1 : !2!
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.DEAD_CODE, node.elseExpression);
|
| + _safelyVisit(node.thenExpression);
|
| + return null;
|
| + } else {
|
| + // report error on if block: false ? !1! : 2
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.DEAD_CODE, node.thenExpression);
|
| + _safelyVisit(node.elseExpression);
|
| + return null;
|
| + }
|
| + }
|
| + }
|
| + return super.visitConditionalExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitIfStatement(IfStatement node) {
|
| + Expression conditionExpression = node.condition;
|
| + _safelyVisit(conditionExpression);
|
| + if (!_isDebugConstant(conditionExpression)) {
|
| + EvaluationResultImpl result =
|
| + _getConstantBooleanValue(conditionExpression);
|
| + if (result != null) {
|
| + if (result.value.isTrue) {
|
| + // report error on else block: if(true) {} else {!}
|
| + Statement elseStatement = node.elseStatement;
|
| + if (elseStatement != null) {
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.DEAD_CODE, elseStatement);
|
| + _safelyVisit(node.thenStatement);
|
| + return null;
|
| + }
|
| + } else {
|
| + // report error on if block: if (false) {!} else {}
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.DEAD_CODE, node.thenStatement);
|
| + _safelyVisit(node.elseStatement);
|
| + return null;
|
| + }
|
| + }
|
| + }
|
| + return super.visitIfStatement(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitSwitchCase(SwitchCase node) {
|
| + _checkForDeadStatementsInNodeList(node.statements);
|
| + return super.visitSwitchCase(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitSwitchDefault(SwitchDefault node) {
|
| + _checkForDeadStatementsInNodeList(node.statements);
|
| + return super.visitSwitchDefault(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitTryStatement(TryStatement node) {
|
| + _safelyVisit(node.body);
|
| + _safelyVisit(node.finallyBlock);
|
| + NodeList<CatchClause> catchClauses = node.catchClauses;
|
| + int numOfCatchClauses = catchClauses.length;
|
| + List<DartType> visitedTypes = new List<DartType>();
|
| + for (int i = 0; i < numOfCatchClauses; i++) {
|
| + CatchClause catchClause = catchClauses[i];
|
| + if (catchClause.onKeyword != null) {
|
| + // on-catch clause found, verify that the exception type is not a
|
| + // subtype of a previous on-catch exception type
|
| + TypeName typeName = catchClause.exceptionType;
|
| + if (typeName != null && typeName.type != null) {
|
| + DartType currentType = typeName.type;
|
| + if (currentType.isObject) {
|
| + // Found catch clause clause that has Object as an exception type,
|
| + // this is equivalent to having a catch clause that doesn't have an
|
| + // exception type, visit the block, but generate an error on any
|
| + // following catch clauses (and don't visit them).
|
| + _safelyVisit(catchClause);
|
| + if (i + 1 != numOfCatchClauses) {
|
| + // this catch clause is not the last in the try statement
|
| + CatchClause nextCatchClause = catchClauses[i + 1];
|
| + CatchClause lastCatchClause = catchClauses[numOfCatchClauses - 1];
|
| + int offset = nextCatchClause.offset;
|
| + int length = lastCatchClause.end - offset;
|
| + _errorReporter.reportErrorForOffset(
|
| + HintCode.DEAD_CODE_CATCH_FOLLOWING_CATCH, offset, length);
|
| + return null;
|
| + }
|
| + }
|
| + for (DartType type in visitedTypes) {
|
| + if (currentType.isSubtypeOf(type)) {
|
| + CatchClause lastCatchClause = catchClauses[numOfCatchClauses - 1];
|
| + int offset = catchClause.offset;
|
| + int length = lastCatchClause.end - offset;
|
| + _errorReporter.reportErrorForOffset(
|
| + HintCode.DEAD_CODE_ON_CATCH_SUBTYPE,
|
| + offset,
|
| + length,
|
| + [currentType.displayName, type.displayName]);
|
| + return null;
|
| + }
|
| + }
|
| + visitedTypes.add(currentType);
|
| + }
|
| + _safelyVisit(catchClause);
|
| + } else {
|
| + // Found catch clause clause that doesn't have an exception type,
|
| + // visit the block, but generate an error on any following catch clauses
|
| + // (and don't visit them).
|
| + _safelyVisit(catchClause);
|
| + if (i + 1 != numOfCatchClauses) {
|
| + // this catch clause is not the last in the try statement
|
| + CatchClause nextCatchClause = catchClauses[i + 1];
|
| + CatchClause lastCatchClause = catchClauses[numOfCatchClauses - 1];
|
| + int offset = nextCatchClause.offset;
|
| + int length = lastCatchClause.end - offset;
|
| + _errorReporter.reportErrorForOffset(
|
| + HintCode.DEAD_CODE_CATCH_FOLLOWING_CATCH, offset, length);
|
| + return null;
|
| + }
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitWhileStatement(WhileStatement node) {
|
| + Expression conditionExpression = node.condition;
|
| + _safelyVisit(conditionExpression);
|
| + if (!_isDebugConstant(conditionExpression)) {
|
| + EvaluationResultImpl result =
|
| + _getConstantBooleanValue(conditionExpression);
|
| + if (result != null) {
|
| + if (result.value.isFalse) {
|
| + // report error on if block: while (false) {!}
|
| + _errorReporter.reportErrorForNode(HintCode.DEAD_CODE, node.body);
|
| + return null;
|
| + }
|
| + }
|
| + }
|
| + _safelyVisit(node.body);
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Given some [NodeList] of [Statement]s, from either a [Block] or
|
| + * [SwitchMember], this loops through the list in reverse order searching for statements
|
| + * after a return, unlabeled break or unlabeled continue statement to mark them as dead code.
|
| + *
|
| + * @param statements some ordered list of statements in a [Block] or [SwitchMember]
|
| + */
|
| + void _checkForDeadStatementsInNodeList(NodeList<Statement> statements) {
|
| + int size = statements.length;
|
| + for (int i = 0; i < size; i++) {
|
| + Statement currentStatement = statements[i];
|
| + _safelyVisit(currentStatement);
|
| + bool returnOrBreakingStatement = currentStatement is ReturnStatement ||
|
| + (currentStatement is BreakStatement &&
|
| + currentStatement.label == null) ||
|
| + (currentStatement is ContinueStatement &&
|
| + currentStatement.label == null);
|
| + if (returnOrBreakingStatement && i != size - 1) {
|
| + Statement nextStatement = statements[i + 1];
|
| + Statement lastStatement = statements[size - 1];
|
| + int offset = nextStatement.offset;
|
| + int length = lastStatement.end - offset;
|
| + _errorReporter.reportErrorForOffset(HintCode.DEAD_CODE, offset, length);
|
| + return;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Given some [Expression], this method returns [ValidResult.RESULT_TRUE] if it is
|
| + * `true`, [ValidResult.RESULT_FALSE] if it is `false`, or `null` if the
|
| + * expression is not a constant boolean value.
|
| + *
|
| + * @param expression the expression to evaluate
|
| + * @return [ValidResult.RESULT_TRUE] if it is `true`, [ValidResult.RESULT_FALSE]
|
| + * if it is `false`, or `null` if the expression is not a constant boolean
|
| + * value
|
| + */
|
| + EvaluationResultImpl _getConstantBooleanValue(Expression expression) {
|
| + if (expression is BooleanLiteral) {
|
| + if (expression.value) {
|
| + return new EvaluationResultImpl(
|
| + new DartObjectImpl(null, BoolState.from(true)));
|
| + } else {
|
| + return new EvaluationResultImpl(
|
| + new DartObjectImpl(null, BoolState.from(false)));
|
| + }
|
| + }
|
| + // Don't consider situations where we could evaluate to a constant boolean
|
| + // expression with the ConstantVisitor
|
| + // else {
|
| + // EvaluationResultImpl result = expression.accept(new ConstantVisitor());
|
| + // if (result == ValidResult.RESULT_TRUE) {
|
| + // return ValidResult.RESULT_TRUE;
|
| + // } else if (result == ValidResult.RESULT_FALSE) {
|
| + // return ValidResult.RESULT_FALSE;
|
| + // }
|
| + // return null;
|
| + // }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if and only if the passed expression is resolved to a constant variable.
|
| + *
|
| + * @param expression some conditional expression
|
| + * @return `true` if and only if the passed expression is resolved to a constant variable
|
| + */
|
| + bool _isDebugConstant(Expression expression) {
|
| + Element element = null;
|
| + if (expression is Identifier) {
|
| + Identifier identifier = expression;
|
| + element = identifier.staticElement;
|
| + } else if (expression is PropertyAccess) {
|
| + PropertyAccess propertyAccess = expression;
|
| + element = propertyAccess.propertyName.staticElement;
|
| + }
|
| + if (element is PropertyAccessorElement) {
|
| + PropertyInducingElement variable = element.variable;
|
| + return variable != null && variable.isConst;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * If the given node is not `null`, visit this instance of the dead code verifier.
|
| + *
|
| + * @param node the node to be visited
|
| + */
|
| + void _safelyVisit(AstNode node) {
|
| + if (node != null) {
|
| + node.accept(this);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `DeclarationResolver` are used to resolve declarations in an AST
|
| + * structure to already built elements.
|
| + */
|
| +class DeclarationResolver extends RecursiveAstVisitor<Object> {
|
| + /**
|
| + * The compilation unit containing the AST nodes being visited.
|
| + */
|
| + CompilationUnitElement _enclosingUnit;
|
| +
|
| + /**
|
| + * The function type alias containing the AST nodes being visited, or `null` if we are not
|
| + * in the scope of a function type alias.
|
| + */
|
| + FunctionTypeAliasElement _enclosingAlias;
|
| +
|
| + /**
|
| + * The class containing the AST nodes being visited, or `null` if we are not in the scope of
|
| + * a class.
|
| + */
|
| + ClassElement _enclosingClass;
|
| +
|
| + /**
|
| + * The method or function containing the AST nodes being visited, or `null` if we are not in
|
| + * the scope of a method or function.
|
| + */
|
| + ExecutableElement _enclosingExecutable;
|
| +
|
| + /**
|
| + * The parameter containing the AST nodes being visited, or `null` if we are not in the
|
| + * scope of a parameter.
|
| + */
|
| + ParameterElement _enclosingParameter;
|
| +
|
| + /**
|
| + * Resolve the declarations within the given compilation unit to the elements rooted at the given
|
| + * element.
|
| + *
|
| + * @param unit the compilation unit to be resolved
|
| + * @param element the root of the element model used to resolve the AST nodes
|
| + */
|
| + void resolve(CompilationUnit unit, CompilationUnitElement element) {
|
| + _enclosingUnit = element;
|
| + unit.element = element;
|
| + unit.accept(this);
|
| + }
|
| +
|
| + @override
|
| + Object visitCatchClause(CatchClause node) {
|
| + SimpleIdentifier exceptionParameter = node.exceptionParameter;
|
| + if (exceptionParameter != null) {
|
| + List<LocalVariableElement> localVariables =
|
| + _enclosingExecutable.localVariables;
|
| + _findIdentifier(localVariables, exceptionParameter);
|
| + SimpleIdentifier stackTraceParameter = node.stackTraceParameter;
|
| + if (stackTraceParameter != null) {
|
| + _findIdentifier(localVariables, stackTraceParameter);
|
| + }
|
| + }
|
| + return super.visitCatchClause(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitClassDeclaration(ClassDeclaration node) {
|
| + ClassElement outerClass = _enclosingClass;
|
| + try {
|
| + SimpleIdentifier className = node.name;
|
| + _enclosingClass = _findIdentifier(_enclosingUnit.types, className);
|
| + return super.visitClassDeclaration(node);
|
| + } finally {
|
| + _enclosingClass = outerClass;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitClassTypeAlias(ClassTypeAlias node) {
|
| + ClassElement outerClass = _enclosingClass;
|
| + try {
|
| + SimpleIdentifier className = node.name;
|
| + _enclosingClass = _findIdentifier(_enclosingUnit.types, className);
|
| + return super.visitClassTypeAlias(node);
|
| + } finally {
|
| + _enclosingClass = outerClass;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| + ExecutableElement outerExecutable = _enclosingExecutable;
|
| + try {
|
| + SimpleIdentifier constructorName = node.name;
|
| + if (constructorName == null) {
|
| + _enclosingExecutable = _enclosingClass.unnamedConstructor;
|
| + } else {
|
| + _enclosingExecutable =
|
| + _enclosingClass.getNamedConstructor(constructorName.name);
|
| + constructorName.staticElement = _enclosingExecutable;
|
| + }
|
| + node.element = _enclosingExecutable as ConstructorElement;
|
| + return super.visitConstructorDeclaration(node);
|
| + } finally {
|
| + _enclosingExecutable = outerExecutable;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitDeclaredIdentifier(DeclaredIdentifier node) {
|
| + SimpleIdentifier variableName = node.identifier;
|
| + _findIdentifier(_enclosingExecutable.localVariables, variableName);
|
| + return super.visitDeclaredIdentifier(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitDefaultFormalParameter(DefaultFormalParameter node) {
|
| + SimpleIdentifier parameterName = node.parameter.identifier;
|
| + ParameterElement element = _getElementForParameter(node, parameterName);
|
| + Expression defaultValue = node.defaultValue;
|
| + if (defaultValue != null) {
|
| + ExecutableElement outerExecutable = _enclosingExecutable;
|
| + try {
|
| + if (element == null) {
|
| + // TODO(brianwilkerson) Report this internal error.
|
| + } else {
|
| + _enclosingExecutable = element.initializer;
|
| + }
|
| + defaultValue.accept(this);
|
| + } finally {
|
| + _enclosingExecutable = outerExecutable;
|
| + }
|
| + }
|
| + ParameterElement outerParameter = _enclosingParameter;
|
| + try {
|
| + _enclosingParameter = element;
|
| + return super.visitDefaultFormalParameter(node);
|
| + } finally {
|
| + _enclosingParameter = outerParameter;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitEnumDeclaration(EnumDeclaration node) {
|
| + ClassElement enclosingEnum =
|
| + _findIdentifier(_enclosingUnit.enums, node.name);
|
| + List<FieldElement> constants = enclosingEnum.fields;
|
| + for (EnumConstantDeclaration constant in node.constants) {
|
| + _findIdentifier(constants, constant.name);
|
| + }
|
| + return super.visitEnumDeclaration(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitExportDirective(ExportDirective node) {
|
| + String uri = _getStringValue(node.uri);
|
| + if (uri != null) {
|
| + LibraryElement library = _enclosingUnit.library;
|
| + ExportElement exportElement = _findExport(
|
| + library.exports,
|
| + _enclosingUnit.context.sourceFactory
|
| + .resolveUri(_enclosingUnit.source, uri));
|
| + node.element = exportElement;
|
| + }
|
| + return super.visitExportDirective(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitFieldFormalParameter(FieldFormalParameter node) {
|
| + if (node.parent is! DefaultFormalParameter) {
|
| + SimpleIdentifier parameterName = node.identifier;
|
| + ParameterElement element = _getElementForParameter(node, parameterName);
|
| + ParameterElement outerParameter = _enclosingParameter;
|
| + try {
|
| + _enclosingParameter = element;
|
| + return super.visitFieldFormalParameter(node);
|
| + } finally {
|
| + _enclosingParameter = outerParameter;
|
| + }
|
| + } else {
|
| + return super.visitFieldFormalParameter(node);
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| + ExecutableElement outerExecutable = _enclosingExecutable;
|
| + try {
|
| + SimpleIdentifier functionName = node.name;
|
| + sc.Token property = node.propertyKeyword;
|
| + if (property == null) {
|
| + if (_enclosingExecutable != null) {
|
| + _enclosingExecutable =
|
| + _findIdentifier(_enclosingExecutable.functions, functionName);
|
| + } else {
|
| + _enclosingExecutable =
|
| + _findIdentifier(_enclosingUnit.functions, functionName);
|
| + }
|
| + } else {
|
| + PropertyAccessorElement accessor =
|
| + _findIdentifier(_enclosingUnit.accessors, functionName);
|
| + if ((property as sc.KeywordToken).keyword == sc.Keyword.SET) {
|
| + accessor = accessor.variable.setter;
|
| + functionName.staticElement = accessor;
|
| + }
|
| + _enclosingExecutable = accessor;
|
| + }
|
| + node.functionExpression.element = _enclosingExecutable;
|
| + return super.visitFunctionDeclaration(node);
|
| + } finally {
|
| + _enclosingExecutable = outerExecutable;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionExpression(FunctionExpression node) {
|
| + if (node.parent is! FunctionDeclaration) {
|
| + FunctionElement element =
|
| + _findAtOffset(_enclosingExecutable.functions, node.beginToken.offset);
|
| + node.element = element;
|
| + }
|
| + ExecutableElement outerExecutable = _enclosingExecutable;
|
| + try {
|
| + _enclosingExecutable = node.element;
|
| + return super.visitFunctionExpression(node);
|
| + } finally {
|
| + _enclosingExecutable = outerExecutable;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionTypeAlias(FunctionTypeAlias node) {
|
| + FunctionTypeAliasElement outerAlias = _enclosingAlias;
|
| + try {
|
| + SimpleIdentifier aliasName = node.name;
|
| + _enclosingAlias =
|
| + _findIdentifier(_enclosingUnit.functionTypeAliases, aliasName);
|
| + return super.visitFunctionTypeAlias(node);
|
| + } finally {
|
| + _enclosingAlias = outerAlias;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
|
| + if (node.parent is! DefaultFormalParameter) {
|
| + SimpleIdentifier parameterName = node.identifier;
|
| + ParameterElement element = _getElementForParameter(node, parameterName);
|
| + ParameterElement outerParameter = _enclosingParameter;
|
| + try {
|
| + _enclosingParameter = element;
|
| + return super.visitFunctionTypedFormalParameter(node);
|
| + } finally {
|
| + _enclosingParameter = outerParameter;
|
| + }
|
| + } else {
|
| + return super.visitFunctionTypedFormalParameter(node);
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitImportDirective(ImportDirective node) {
|
| + String uri = _getStringValue(node.uri);
|
| + if (uri != null) {
|
| + LibraryElement library = _enclosingUnit.library;
|
| + ImportElement importElement = _findImport(
|
| + library.imports,
|
| + _enclosingUnit.context.sourceFactory
|
| + .resolveUri(_enclosingUnit.source, uri),
|
| + node.prefix);
|
| + node.element = importElement;
|
| + }
|
| + return super.visitImportDirective(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitLabeledStatement(LabeledStatement node) {
|
| + for (Label label in node.labels) {
|
| + SimpleIdentifier labelName = label.label;
|
| + _findIdentifier(_enclosingExecutable.labels, labelName);
|
| + }
|
| + return super.visitLabeledStatement(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitLibraryDirective(LibraryDirective node) {
|
| + node.element = _enclosingUnit.library;
|
| + return super.visitLibraryDirective(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitMethodDeclaration(MethodDeclaration node) {
|
| + ExecutableElement outerExecutable = _enclosingExecutable;
|
| + try {
|
| + sc.Token property = node.propertyKeyword;
|
| + SimpleIdentifier methodName = node.name;
|
| + String nameOfMethod = methodName.name;
|
| + if (property == null) {
|
| + _enclosingExecutable = _findWithNameAndOffset(
|
| + _enclosingClass.methods, nameOfMethod, methodName.offset);
|
| + methodName.staticElement = _enclosingExecutable;
|
| + } else {
|
| + PropertyAccessorElement accessor =
|
| + _findIdentifier(_enclosingClass.accessors, methodName);
|
| + if ((property as sc.KeywordToken).keyword == sc.Keyword.SET) {
|
| + accessor = accessor.variable.setter;
|
| + methodName.staticElement = accessor;
|
| + }
|
| + _enclosingExecutable = accessor;
|
| + }
|
| + return super.visitMethodDeclaration(node);
|
| + } finally {
|
| + _enclosingExecutable = outerExecutable;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitPartDirective(PartDirective node) {
|
| + String uri = _getStringValue(node.uri);
|
| + if (uri != null) {
|
| + Source partSource = _enclosingUnit.context.sourceFactory
|
| + .resolveUri(_enclosingUnit.source, uri);
|
| + node.element = _findPart(_enclosingUnit.library.parts, partSource);
|
| + }
|
| + return super.visitPartDirective(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitPartOfDirective(PartOfDirective node) {
|
| + node.element = _enclosingUnit.library;
|
| + return super.visitPartOfDirective(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitSimpleFormalParameter(SimpleFormalParameter node) {
|
| + if (node.parent is! DefaultFormalParameter) {
|
| + SimpleIdentifier parameterName = node.identifier;
|
| + ParameterElement element = _getElementForParameter(node, parameterName);
|
| + ParameterElement outerParameter = _enclosingParameter;
|
| + try {
|
| + _enclosingParameter = element;
|
| + return super.visitSimpleFormalParameter(node);
|
| + } finally {
|
| + _enclosingParameter = outerParameter;
|
| + }
|
| + } else {}
|
| + return super.visitSimpleFormalParameter(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitSwitchCase(SwitchCase node) {
|
| + for (Label label in node.labels) {
|
| + SimpleIdentifier labelName = label.label;
|
| + _findIdentifier(_enclosingExecutable.labels, labelName);
|
| + }
|
| + return super.visitSwitchCase(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitSwitchDefault(SwitchDefault node) {
|
| + for (Label label in node.labels) {
|
| + SimpleIdentifier labelName = label.label;
|
| + _findIdentifier(_enclosingExecutable.labels, labelName);
|
| + }
|
| + return super.visitSwitchDefault(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitTypeParameter(TypeParameter node) {
|
| + SimpleIdentifier parameterName = node.name;
|
| + if (_enclosingClass != null) {
|
| + _findIdentifier(_enclosingClass.typeParameters, parameterName);
|
| + } else if (_enclosingAlias != null) {
|
| + _findIdentifier(_enclosingAlias.typeParameters, parameterName);
|
| + }
|
| + return super.visitTypeParameter(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitVariableDeclaration(VariableDeclaration node) {
|
| + VariableElement element = null;
|
| + SimpleIdentifier variableName = node.name;
|
| + if (_enclosingExecutable != null) {
|
| + element =
|
| + _findIdentifier(_enclosingExecutable.localVariables, variableName);
|
| + }
|
| + if (element == null && _enclosingClass != null) {
|
| + element = _findIdentifier(_enclosingClass.fields, variableName);
|
| + }
|
| + if (element == null && _enclosingUnit != null) {
|
| + element = _findIdentifier(_enclosingUnit.topLevelVariables, variableName);
|
| + }
|
| + Expression initializer = node.initializer;
|
| + if (initializer != null) {
|
| + ExecutableElement outerExecutable = _enclosingExecutable;
|
| + try {
|
| + if (element == null) {
|
| + // TODO(brianwilkerson) Report this internal error.
|
| + } else {
|
| + _enclosingExecutable = element.initializer;
|
| + }
|
| + return super.visitVariableDeclaration(node);
|
| + } finally {
|
| + _enclosingExecutable = outerExecutable;
|
| + }
|
| + }
|
| + return super.visitVariableDeclaration(node);
|
| + }
|
| +
|
| + /**
|
| + * Return the element in the given array of elements that was created for the declaration at the
|
| + * given offset. This method should only be used when there is no name
|
| + *
|
| + * @param elements the elements of the appropriate kind that exist in the current context
|
| + * @param offset the offset of the name of the element to be returned
|
| + * @return the element at the given offset
|
| + */
|
| + Element _findAtOffset(List<Element> elements, int offset) =>
|
| + _findWithNameAndOffset(elements, "", offset);
|
| +
|
| + /**
|
| + * Return the export element from the given array whose library has the given source, or
|
| + * `null` if there is no such export.
|
| + *
|
| + * @param exports the export elements being searched
|
| + * @param source the source of the library associated with the export element to being searched
|
| + * for
|
| + * @return the export element whose library has the given source
|
| + */
|
| + ExportElement _findExport(List<ExportElement> exports, Source source) {
|
| + for (ExportElement export in exports) {
|
| + if (export.exportedLibrary.source == source) {
|
| + return export;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Return the element in the given array of elements that was created for the declaration with the
|
| + * given name.
|
| + *
|
| + * @param elements the elements of the appropriate kind that exist in the current context
|
| + * @param identifier the name node in the declaration of the element to be returned
|
| + * @return the element created for the declaration with the given name
|
| + */
|
| + Element _findIdentifier(List<Element> elements, SimpleIdentifier identifier) {
|
| + Element element =
|
| + _findWithNameAndOffset(elements, identifier.name, identifier.offset);
|
| + identifier.staticElement = element;
|
| + return element;
|
| + }
|
| +
|
| + /**
|
| + * Return the import element from the given array whose library has the given source and that has
|
| + * the given prefix, or `null` if there is no such import.
|
| + *
|
| + * @param imports the import elements being searched
|
| + * @param source the source of the library associated with the import element to being searched
|
| + * for
|
| + * @param prefix the prefix with which the library was imported
|
| + * @return the import element whose library has the given source and prefix
|
| + */
|
| + ImportElement _findImport(
|
| + List<ImportElement> imports, Source source, SimpleIdentifier prefix) {
|
| + for (ImportElement element in imports) {
|
| + if (element.importedLibrary.source == source) {
|
| + PrefixElement prefixElement = element.prefix;
|
| + if (prefix == null) {
|
| + if (prefixElement == null) {
|
| + return element;
|
| + }
|
| + } else {
|
| + if (prefixElement != null &&
|
| + prefix.name == prefixElement.displayName) {
|
| + return element;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Return the element for the part with the given source, or `null` if there is no element
|
| + * for the given source.
|
| + *
|
| + * @param parts the elements for the parts
|
| + * @param partSource the source for the part whose element is to be returned
|
| + * @return the element for the part with the given source
|
| + */
|
| + CompilationUnitElement _findPart(
|
| + List<CompilationUnitElement> parts, Source partSource) {
|
| + for (CompilationUnitElement part in parts) {
|
| + if (part.source == partSource) {
|
| + return part;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Return the element in the given array of elements that was created for the declaration with the
|
| + * given name at the given offset.
|
| + *
|
| + * @param elements the elements of the appropriate kind that exist in the current context
|
| + * @param name the name of the element to be returned
|
| + * @param offset the offset of the name of the element to be returned
|
| + * @return the element with the given name and offset
|
| + */
|
| + Element _findWithNameAndOffset(
|
| + List<Element> elements, String name, int offset) {
|
| + for (Element element in elements) {
|
| + if (element.nameOffset == offset && element.displayName == name) {
|
| + return element;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Search the most closely enclosing list of parameters for a parameter with the given name.
|
| + *
|
| + * @param node the node defining the parameter with the given name
|
| + * @param parameterName the name of the parameter being searched for
|
| + * @return the element representing the parameter with that name
|
| + */
|
| + ParameterElement _getElementForParameter(
|
| + FormalParameter node, SimpleIdentifier parameterName) {
|
| + List<ParameterElement> parameters = null;
|
| + if (_enclosingParameter != null) {
|
| + parameters = _enclosingParameter.parameters;
|
| + }
|
| + if (parameters == null && _enclosingExecutable != null) {
|
| + parameters = _enclosingExecutable.parameters;
|
| + }
|
| + if (parameters == null && _enclosingAlias != null) {
|
| + parameters = _enclosingAlias.parameters;
|
| + }
|
| + ParameterElement element =
|
| + parameters == null ? null : _findIdentifier(parameters, parameterName);
|
| + if (element == null) {
|
| + StringBuffer buffer = new StringBuffer();
|
| + buffer.writeln("Invalid state found in the Analysis Engine:");
|
| + buffer.writeln(
|
| + "DeclarationResolver.getElementForParameter() is visiting a parameter that does not appear to be in a method or function.");
|
| + buffer.writeln("Ancestors:");
|
| + AstNode parent = node.parent;
|
| + while (parent != null) {
|
| + buffer.writeln(parent.runtimeType.toString());
|
| + buffer.writeln("---------");
|
| + parent = parent.parent;
|
| + }
|
| + AnalysisEngine.instance.logger.logError(buffer.toString(),
|
| + new CaughtException(new AnalysisException(), null));
|
| + }
|
| + return element;
|
| + }
|
| +
|
| + /**
|
| + * Return the value of the given string literal, or `null` if the string is not a constant
|
| + * string without any string interpolation.
|
| + *
|
| + * @param literal the string literal whose value is to be returned
|
| + * @return the value of the given string literal
|
| + */
|
| + String _getStringValue(StringLiteral literal) {
|
| + if (literal is StringInterpolation) {
|
| + return null;
|
| + }
|
| + return literal.stringValue;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `ElementBuilder` traverse an AST structure and build the element
|
| + * model representing the AST structure.
|
| + */
|
| +class ElementBuilder extends RecursiveAstVisitor<Object> {
|
| + /**
|
| + * The element holder associated with the element that is currently being built.
|
| + */
|
| + ElementHolder _currentHolder;
|
| +
|
| + /**
|
| + * A flag indicating whether a variable declaration is in the context of a field declaration.
|
| + */
|
| + bool _inFieldContext = false;
|
| +
|
| + /**
|
| + * A flag indicating whether a variable declaration is within the body of a method or function.
|
| + */
|
| + bool _inFunction = false;
|
| +
|
| + /**
|
| + * A flag indicating whether the class currently being visited can be used as a mixin.
|
| + */
|
| + bool _isValidMixin = false;
|
| +
|
| + /**
|
| + * A collection holding the function types defined in a class that need to have their type
|
| + * arguments set to the types of the type parameters for the class, or `null` if we are not
|
| + * currently processing nodes within a class.
|
| + */
|
| + List<FunctionTypeImpl> _functionTypesToFix = null;
|
| +
|
| + /**
|
| + * A table mapping field names to field elements for the fields defined in the current class, or
|
| + * `null` if we are not in the scope of a class.
|
| + */
|
| + HashMap<String, FieldElement> _fieldMap;
|
| +
|
| + /**
|
| + * Initialize a newly created element builder to build the elements for a compilation unit.
|
| + *
|
| + * @param initialHolder the element holder associated with the compilation unit being built
|
| + */
|
| + ElementBuilder(ElementHolder initialHolder) {
|
| + _currentHolder = initialHolder;
|
| + }
|
| +
|
| + @override
|
| + Object visitBlock(Block node) {
|
| + bool wasInField = _inFieldContext;
|
| + _inFieldContext = false;
|
| + try {
|
| + node.visitChildren(this);
|
| + } finally {
|
| + _inFieldContext = wasInField;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitCatchClause(CatchClause node) {
|
| + SimpleIdentifier exceptionParameter = node.exceptionParameter;
|
| + if (exceptionParameter != null) {
|
| + // exception
|
| + LocalVariableElementImpl exception =
|
| + new LocalVariableElementImpl.forNode(exceptionParameter);
|
| + if (node.exceptionType == null) {
|
| + exception.hasImplicitType = true;
|
| + }
|
| + _currentHolder.addLocalVariable(exception);
|
| + exceptionParameter.staticElement = exception;
|
| + // stack trace
|
| + SimpleIdentifier stackTraceParameter = node.stackTraceParameter;
|
| + if (stackTraceParameter != null) {
|
| + LocalVariableElementImpl stackTrace =
|
| + new LocalVariableElementImpl.forNode(stackTraceParameter);
|
| + _currentHolder.addLocalVariable(stackTrace);
|
| + stackTraceParameter.staticElement = stackTrace;
|
| + }
|
| + }
|
| + return super.visitCatchClause(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitClassDeclaration(ClassDeclaration node) {
|
| + ElementHolder holder = new ElementHolder();
|
| + _isValidMixin = true;
|
| + _functionTypesToFix = new List<FunctionTypeImpl>();
|
| + //
|
| + // Process field declarations before constructors and methods so that field
|
| + // formal parameters can be correctly resolved to their fields.
|
| + //
|
| + ElementHolder previousHolder = _currentHolder;
|
| + _currentHolder = holder;
|
| + try {
|
| + List<ClassMember> nonFields = new List<ClassMember>();
|
| + node.visitChildren(
|
| + new _ElementBuilder_visitClassDeclaration(this, nonFields));
|
| + _buildFieldMap(holder.fieldsWithoutFlushing);
|
| + int count = nonFields.length;
|
| + for (int i = 0; i < count; i++) {
|
| + nonFields[i].accept(this);
|
| + }
|
| + } finally {
|
| + _currentHolder = previousHolder;
|
| + }
|
| + SimpleIdentifier className = node.name;
|
| + ClassElementImpl element = new ClassElementImpl.forNode(className);
|
| + List<TypeParameterElement> typeParameters = holder.typeParameters;
|
| + List<DartType> typeArguments = _createTypeParameterTypes(typeParameters);
|
| + InterfaceTypeImpl interfaceType = new InterfaceTypeImpl(element);
|
| + interfaceType.typeArguments = typeArguments;
|
| + element.type = interfaceType;
|
| + List<ConstructorElement> constructors = holder.constructors;
|
| + if (constructors.length == 0) {
|
| + //
|
| + // Create the default constructor.
|
| + //
|
| + constructors = _createDefaultConstructors(interfaceType);
|
| + }
|
| + element.abstract = node.isAbstract;
|
| + element.accessors = holder.accessors;
|
| + element.constructors = constructors;
|
| + element.fields = holder.fields;
|
| + element.methods = holder.methods;
|
| + element.typeParameters = typeParameters;
|
| + element.validMixin = _isValidMixin;
|
| + int functionTypeCount = _functionTypesToFix.length;
|
| + for (int i = 0; i < functionTypeCount; i++) {
|
| + _functionTypesToFix[i].typeArguments = typeArguments;
|
| + }
|
| + _functionTypesToFix = null;
|
| + _currentHolder.addType(element);
|
| + className.staticElement = element;
|
| + _fieldMap = null;
|
| + holder.validate();
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Implementation of this method should be synchronized with
|
| + * [visitClassDeclaration].
|
| + */
|
| + void visitClassDeclarationIncrementally(ClassDeclaration node) {
|
| + //
|
| + // Process field declarations before constructors and methods so that field
|
| + // formal parameters can be correctly resolved to their fields.
|
| + //
|
| + ClassElement classElement = node.element;
|
| + _buildFieldMap(classElement.fields);
|
| + }
|
| +
|
| + @override
|
| + Object visitClassTypeAlias(ClassTypeAlias node) {
|
| + ElementHolder holder = new ElementHolder();
|
| + _functionTypesToFix = new List<FunctionTypeImpl>();
|
| + _visitChildren(holder, node);
|
| + SimpleIdentifier className = node.name;
|
| + ClassElementImpl element = new ClassElementImpl.forNode(className);
|
| + element.abstract = node.abstractKeyword != null;
|
| + element.mixinApplication = true;
|
| + List<TypeParameterElement> typeParameters = holder.typeParameters;
|
| + element.typeParameters = typeParameters;
|
| + List<DartType> typeArguments = _createTypeParameterTypes(typeParameters);
|
| + InterfaceTypeImpl interfaceType = new InterfaceTypeImpl(element);
|
| + interfaceType.typeArguments = typeArguments;
|
| + element.type = interfaceType;
|
| + // set default constructor
|
| + for (FunctionTypeImpl functionType in _functionTypesToFix) {
|
| + functionType.typeArguments = typeArguments;
|
| + }
|
| + _functionTypesToFix = null;
|
| + _currentHolder.addType(element);
|
| + className.staticElement = element;
|
| + holder.validate();
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| + _isValidMixin = false;
|
| + ElementHolder holder = new ElementHolder();
|
| + bool wasInFunction = _inFunction;
|
| + _inFunction = true;
|
| + try {
|
| + _visitChildren(holder, node);
|
| + } finally {
|
| + _inFunction = wasInFunction;
|
| + }
|
| + FunctionBody body = node.body;
|
| + SimpleIdentifier constructorName = node.name;
|
| + ConstructorElementImpl element =
|
| + new ConstructorElementImpl.forNode(constructorName);
|
| + if (node.externalKeyword != null) {
|
| + element.external = true;
|
| + }
|
| + if (node.factoryKeyword != null) {
|
| + element.factory = true;
|
| + }
|
| + element.functions = holder.functions;
|
| + element.labels = holder.labels;
|
| + element.localVariables = holder.localVariables;
|
| + element.parameters = holder.parameters;
|
| + element.const2 = node.constKeyword != null;
|
| + if (body.isAsynchronous) {
|
| + element.asynchronous = true;
|
| + }
|
| + if (body.isGenerator) {
|
| + element.generator = true;
|
| + }
|
| + _currentHolder.addConstructor(element);
|
| + node.element = element;
|
| + if (constructorName == null) {
|
| + Identifier returnType = node.returnType;
|
| + if (returnType != null) {
|
| + element.nameOffset = returnType.offset;
|
| + element.nameEnd = returnType.end;
|
| + }
|
| + } else {
|
| + constructorName.staticElement = element;
|
| + element.periodOffset = node.period.offset;
|
| + element.nameEnd = constructorName.end;
|
| + }
|
| + holder.validate();
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitDeclaredIdentifier(DeclaredIdentifier node) {
|
| + SimpleIdentifier variableName = node.identifier;
|
| + LocalVariableElementImpl element =
|
| + new LocalVariableElementImpl.forNode(variableName);
|
| + ForEachStatement statement = node.parent as ForEachStatement;
|
| + int declarationEnd = node.offset + node.length;
|
| + int statementEnd = statement.offset + statement.length;
|
| + element.setVisibleRange(declarationEnd, statementEnd - declarationEnd - 1);
|
| + element.const3 = node.isConst;
|
| + element.final2 = node.isFinal;
|
| + if (node.type == null) {
|
| + element.hasImplicitType = true;
|
| + }
|
| + _currentHolder.addLocalVariable(element);
|
| + variableName.staticElement = element;
|
| + return super.visitDeclaredIdentifier(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitDefaultFormalParameter(DefaultFormalParameter node) {
|
| + ElementHolder holder = new ElementHolder();
|
| + NormalFormalParameter normalParameter = node.parameter;
|
| + SimpleIdentifier parameterName = normalParameter.identifier;
|
| + ParameterElementImpl parameter;
|
| + if (normalParameter is FieldFormalParameter) {
|
| + parameter = new DefaultFieldFormalParameterElementImpl(parameterName);
|
| + FieldElement field =
|
| + _fieldMap == null ? null : _fieldMap[parameterName.name];
|
| + if (field != null) {
|
| + (parameter as DefaultFieldFormalParameterElementImpl).field = field;
|
| + }
|
| + } else {
|
| + parameter = new DefaultParameterElementImpl(parameterName);
|
| + }
|
| + parameter.const3 = node.isConst;
|
| + parameter.final2 = node.isFinal;
|
| + parameter.parameterKind = node.kind;
|
| + // set initializer, default value range
|
| + Expression defaultValue = node.defaultValue;
|
| + if (defaultValue != null) {
|
| + _visit(holder, defaultValue);
|
| + FunctionElementImpl initializer =
|
| + new FunctionElementImpl.forOffset(defaultValue.beginToken.offset);
|
| + initializer.functions = holder.functions;
|
| + initializer.labels = holder.labels;
|
| + initializer.localVariables = holder.localVariables;
|
| + initializer.parameters = holder.parameters;
|
| + initializer.synthetic = true;
|
| + parameter.initializer = initializer;
|
| + parameter.defaultValueCode = defaultValue.toSource();
|
| + }
|
| + // visible range
|
| + _setParameterVisibleRange(node, parameter);
|
| + if (normalParameter is SimpleFormalParameter &&
|
| + normalParameter.type == null) {
|
| + parameter.hasImplicitType = true;
|
| + }
|
| + _currentHolder.addParameter(parameter);
|
| + parameterName.staticElement = parameter;
|
| + normalParameter.accept(this);
|
| + holder.validate();
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitEnumDeclaration(EnumDeclaration node) {
|
| + SimpleIdentifier enumName = node.name;
|
| + ClassElementImpl enumElement = new ClassElementImpl.forNode(enumName);
|
| + enumElement.enum2 = true;
|
| + InterfaceTypeImpl enumType = new InterfaceTypeImpl(enumElement);
|
| + enumElement.type = enumType;
|
| + // The equivalent code for enums in the spec shows a single constructor,
|
| + // but that constructor is not callable (since it is a compile-time error
|
| + // to subclass, mix-in, implement, or explicitly instantiate an enum). So
|
| + // we represent this as having no constructors.
|
| + enumElement.constructors = ConstructorElement.EMPTY_LIST;
|
| + _currentHolder.addEnum(enumElement);
|
| + enumName.staticElement = enumElement;
|
| + return super.visitEnumDeclaration(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitFieldDeclaration(FieldDeclaration node) {
|
| + bool wasInField = _inFieldContext;
|
| + _inFieldContext = true;
|
| + try {
|
| + node.visitChildren(this);
|
| + } finally {
|
| + _inFieldContext = wasInField;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFieldFormalParameter(FieldFormalParameter node) {
|
| + if (node.parent is! DefaultFormalParameter) {
|
| + SimpleIdentifier parameterName = node.identifier;
|
| + FieldElement field =
|
| + _fieldMap == null ? null : _fieldMap[parameterName.name];
|
| + FieldFormalParameterElementImpl parameter =
|
| + new FieldFormalParameterElementImpl(parameterName);
|
| + parameter.const3 = node.isConst;
|
| + parameter.final2 = node.isFinal;
|
| + parameter.parameterKind = node.kind;
|
| + if (field != null) {
|
| + parameter.field = field;
|
| + }
|
| + _currentHolder.addParameter(parameter);
|
| + parameterName.staticElement = parameter;
|
| + }
|
| + //
|
| + // The children of this parameter include any parameters defined on the type
|
| + // of this parameter.
|
| + //
|
| + ElementHolder holder = new ElementHolder();
|
| + _visitChildren(holder, node);
|
| + ParameterElementImpl element = node.element;
|
| + element.parameters = holder.parameters;
|
| + element.typeParameters = holder.typeParameters;
|
| + holder.validate();
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| + FunctionExpression expression = node.functionExpression;
|
| + if (expression != null) {
|
| + ElementHolder holder = new ElementHolder();
|
| + bool wasInFunction = _inFunction;
|
| + _inFunction = true;
|
| + try {
|
| + _visitChildren(holder, node);
|
| + } finally {
|
| + _inFunction = wasInFunction;
|
| + }
|
| + FunctionBody body = expression.body;
|
| + sc.Token property = node.propertyKeyword;
|
| + if (property == null || _inFunction) {
|
| + SimpleIdentifier functionName = node.name;
|
| + FunctionElementImpl element =
|
| + new FunctionElementImpl.forNode(functionName);
|
| + if (node.externalKeyword != null) {
|
| + element.external = true;
|
| + }
|
| + element.functions = holder.functions;
|
| + element.labels = holder.labels;
|
| + element.localVariables = holder.localVariables;
|
| + element.parameters = holder.parameters;
|
| + element.typeParameters = holder.typeParameters;
|
| + if (body.isAsynchronous) {
|
| + element.asynchronous = true;
|
| + }
|
| + if (body.isGenerator) {
|
| + element.generator = true;
|
| + }
|
| + if (_inFunction) {
|
| + Block enclosingBlock = node.getAncestor((node) => node is Block);
|
| + if (enclosingBlock != null) {
|
| + int functionEnd = node.offset + node.length;
|
| + int blockEnd = enclosingBlock.offset + enclosingBlock.length;
|
| + element.setVisibleRange(functionEnd, blockEnd - functionEnd - 1);
|
| + }
|
| + }
|
| + if (node.returnType == null) {
|
| + element.hasImplicitReturnType = true;
|
| + }
|
| + _currentHolder.addFunction(element);
|
| + expression.element = element;
|
| + functionName.staticElement = element;
|
| + } else {
|
| + SimpleIdentifier propertyNameNode = node.name;
|
| + if (propertyNameNode == null) {
|
| + // TODO(brianwilkerson) Report this internal error.
|
| + return null;
|
| + }
|
| + String propertyName = propertyNameNode.name;
|
| + TopLevelVariableElementImpl variable = _currentHolder
|
| + .getTopLevelVariable(propertyName) as TopLevelVariableElementImpl;
|
| + if (variable == null) {
|
| + variable = new TopLevelVariableElementImpl(node.name.name, -1);
|
| + variable.final2 = true;
|
| + variable.synthetic = true;
|
| + _currentHolder.addTopLevelVariable(variable);
|
| + }
|
| + if (node.isGetter) {
|
| + PropertyAccessorElementImpl getter =
|
| + new PropertyAccessorElementImpl.forNode(propertyNameNode);
|
| + if (node.externalKeyword != null) {
|
| + getter.external = true;
|
| + }
|
| + getter.functions = holder.functions;
|
| + getter.labels = holder.labels;
|
| + getter.localVariables = holder.localVariables;
|
| + if (body.isAsynchronous) {
|
| + getter.asynchronous = true;
|
| + }
|
| + if (body.isGenerator) {
|
| + getter.generator = true;
|
| + }
|
| + getter.variable = variable;
|
| + getter.getter = true;
|
| + getter.static = true;
|
| + variable.getter = getter;
|
| + if (node.returnType == null) {
|
| + getter.hasImplicitReturnType = true;
|
| + }
|
| + _currentHolder.addAccessor(getter);
|
| + expression.element = getter;
|
| + propertyNameNode.staticElement = getter;
|
| + } else {
|
| + PropertyAccessorElementImpl setter =
|
| + new PropertyAccessorElementImpl.forNode(propertyNameNode);
|
| + if (node.externalKeyword != null) {
|
| + setter.external = true;
|
| + }
|
| + setter.functions = holder.functions;
|
| + setter.labels = holder.labels;
|
| + setter.localVariables = holder.localVariables;
|
| + setter.parameters = holder.parameters;
|
| + if (body.isAsynchronous) {
|
| + setter.asynchronous = true;
|
| + }
|
| + if (body.isGenerator) {
|
| + setter.generator = true;
|
| + }
|
| + setter.variable = variable;
|
| + setter.setter = true;
|
| + setter.static = true;
|
| + variable.setter = setter;
|
| + variable.final2 = false;
|
| + _currentHolder.addAccessor(setter);
|
| + expression.element = setter;
|
| + propertyNameNode.staticElement = setter;
|
| + }
|
| + }
|
| + holder.validate();
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionExpression(FunctionExpression node) {
|
| + if (node.parent is FunctionDeclaration) {
|
| + // visitFunctionDeclaration has already created the element for the
|
| + // declaration. We just need to visit children.
|
| + return super.visitFunctionExpression(node);
|
| + }
|
| + ElementHolder holder = new ElementHolder();
|
| + bool wasInFunction = _inFunction;
|
| + _inFunction = true;
|
| + try {
|
| + _visitChildren(holder, node);
|
| + } finally {
|
| + _inFunction = wasInFunction;
|
| + }
|
| + FunctionBody body = node.body;
|
| + FunctionElementImpl element =
|
| + new FunctionElementImpl.forOffset(node.beginToken.offset);
|
| + element.functions = holder.functions;
|
| + element.labels = holder.labels;
|
| + element.localVariables = holder.localVariables;
|
| + element.parameters = holder.parameters;
|
| + element.typeParameters = holder.typeParameters;
|
| + if (body.isAsynchronous) {
|
| + element.asynchronous = true;
|
| + }
|
| + if (body.isGenerator) {
|
| + element.generator = true;
|
| + }
|
| + if (_inFunction) {
|
| + Block enclosingBlock = node.getAncestor((node) => node is Block);
|
| + if (enclosingBlock != null) {
|
| + int functionEnd = node.offset + node.length;
|
| + int blockEnd = enclosingBlock.offset + enclosingBlock.length;
|
| + element.setVisibleRange(functionEnd, blockEnd - functionEnd - 1);
|
| + }
|
| + }
|
| + FunctionTypeImpl type = new FunctionTypeImpl(element);
|
| + if (_functionTypesToFix != null) {
|
| + _functionTypesToFix.add(type);
|
| + }
|
| + element.type = type;
|
| + element.hasImplicitReturnType = true;
|
| + _currentHolder.addFunction(element);
|
| + node.element = element;
|
| + holder.validate();
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionTypeAlias(FunctionTypeAlias node) {
|
| + ElementHolder holder = new ElementHolder();
|
| + _visitChildren(holder, node);
|
| + SimpleIdentifier aliasName = node.name;
|
| + List<ParameterElement> parameters = holder.parameters;
|
| + List<TypeParameterElement> typeParameters = holder.typeParameters;
|
| + FunctionTypeAliasElementImpl element =
|
| + new FunctionTypeAliasElementImpl.forNode(aliasName);
|
| + element.parameters = parameters;
|
| + element.typeParameters = typeParameters;
|
| + FunctionTypeImpl type = new FunctionTypeImpl.forTypedef(element);
|
| + type.typeArguments = _createTypeParameterTypes(typeParameters);
|
| + element.type = type;
|
| + _currentHolder.addTypeAlias(element);
|
| + aliasName.staticElement = element;
|
| + holder.validate();
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
|
| + if (node.parent is! DefaultFormalParameter) {
|
| + SimpleIdentifier parameterName = node.identifier;
|
| + ParameterElementImpl parameter =
|
| + new ParameterElementImpl.forNode(parameterName);
|
| + parameter.parameterKind = node.kind;
|
| + _setParameterVisibleRange(node, parameter);
|
| + _currentHolder.addParameter(parameter);
|
| + parameterName.staticElement = parameter;
|
| + }
|
| + //
|
| + // The children of this parameter include any parameters defined on the type
|
| + //of this parameter.
|
| + //
|
| + ElementHolder holder = new ElementHolder();
|
| + _visitChildren(holder, node);
|
| + ParameterElementImpl element = node.element;
|
| + element.parameters = holder.parameters;
|
| + element.typeParameters = holder.typeParameters;
|
| + holder.validate();
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitLabeledStatement(LabeledStatement node) {
|
| + bool onSwitchStatement = node.statement is SwitchStatement;
|
| + for (Label label in node.labels) {
|
| + SimpleIdentifier labelName = label.label;
|
| + LabelElementImpl element =
|
| + new LabelElementImpl(labelName, onSwitchStatement, false);
|
| + _currentHolder.addLabel(element);
|
| + labelName.staticElement = element;
|
| + }
|
| + return super.visitLabeledStatement(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitMethodDeclaration(MethodDeclaration node) {
|
| + try {
|
| + ElementHolder holder = new ElementHolder();
|
| + bool wasInFunction = _inFunction;
|
| + _inFunction = true;
|
| + try {
|
| + _visitChildren(holder, node);
|
| + } finally {
|
| + _inFunction = wasInFunction;
|
| + }
|
| + bool isStatic = node.isStatic;
|
| + sc.Token property = node.propertyKeyword;
|
| + FunctionBody body = node.body;
|
| + if (property == null) {
|
| + SimpleIdentifier methodName = node.name;
|
| + String nameOfMethod = methodName.name;
|
| + if (nameOfMethod == sc.TokenType.MINUS.lexeme &&
|
| + node.parameters.parameters.length == 0) {
|
| + nameOfMethod = "unary-";
|
| + }
|
| + MethodElementImpl element =
|
| + new MethodElementImpl(nameOfMethod, methodName.offset);
|
| + element.abstract = node.isAbstract;
|
| + if (node.externalKeyword != null) {
|
| + element.external = true;
|
| + }
|
| + element.functions = holder.functions;
|
| + element.labels = holder.labels;
|
| + element.localVariables = holder.localVariables;
|
| + element.parameters = holder.parameters;
|
| + element.static = isStatic;
|
| + element.typeParameters = holder.typeParameters;
|
| + if (body.isAsynchronous) {
|
| + element.asynchronous = true;
|
| + }
|
| + if (body.isGenerator) {
|
| + element.generator = true;
|
| + }
|
| + if (node.returnType == null) {
|
| + element.hasImplicitReturnType = true;
|
| + }
|
| + _currentHolder.addMethod(element);
|
| + methodName.staticElement = element;
|
| + } else {
|
| + SimpleIdentifier propertyNameNode = node.name;
|
| + String propertyName = propertyNameNode.name;
|
| + FieldElementImpl field =
|
| + _currentHolder.getField(propertyName) as FieldElementImpl;
|
| + if (field == null) {
|
| + field = new FieldElementImpl(node.name.name, -1);
|
| + field.final2 = true;
|
| + field.static = isStatic;
|
| + field.synthetic = true;
|
| + _currentHolder.addField(field);
|
| + }
|
| + if (node.isGetter) {
|
| + PropertyAccessorElementImpl getter =
|
| + new PropertyAccessorElementImpl.forNode(propertyNameNode);
|
| + if (node.externalKeyword != null) {
|
| + getter.external = true;
|
| + }
|
| + getter.functions = holder.functions;
|
| + getter.labels = holder.labels;
|
| + getter.localVariables = holder.localVariables;
|
| + if (body.isAsynchronous) {
|
| + getter.asynchronous = true;
|
| + }
|
| + if (body.isGenerator) {
|
| + getter.generator = true;
|
| + }
|
| + getter.variable = field;
|
| + getter.abstract = node.isAbstract;
|
| + getter.getter = true;
|
| + getter.static = isStatic;
|
| + field.getter = getter;
|
| + if (node.returnType == null) {
|
| + getter.hasImplicitReturnType = true;
|
| + }
|
| + _currentHolder.addAccessor(getter);
|
| + propertyNameNode.staticElement = getter;
|
| + } else {
|
| + PropertyAccessorElementImpl setter =
|
| + new PropertyAccessorElementImpl.forNode(propertyNameNode);
|
| + if (node.externalKeyword != null) {
|
| + setter.external = true;
|
| + }
|
| + setter.functions = holder.functions;
|
| + setter.labels = holder.labels;
|
| + setter.localVariables = holder.localVariables;
|
| + setter.parameters = holder.parameters;
|
| + if (body.isAsynchronous) {
|
| + setter.asynchronous = true;
|
| + }
|
| + if (body.isGenerator) {
|
| + setter.generator = true;
|
| + }
|
| + setter.variable = field;
|
| + setter.abstract = node.isAbstract;
|
| + setter.setter = true;
|
| + setter.static = isStatic;
|
| + field.setter = setter;
|
| + field.final2 = false;
|
| + _currentHolder.addAccessor(setter);
|
| + propertyNameNode.staticElement = setter;
|
| + }
|
| + }
|
| + holder.validate();
|
| + } catch (exception, stackTrace) {
|
| + if (node.name.staticElement == null) {
|
| + ClassDeclaration classNode =
|
| + node.getAncestor((node) => node is ClassDeclaration);
|
| + StringBuffer buffer = new StringBuffer();
|
| + buffer.write("The element for the method ");
|
| + buffer.write(node.name);
|
| + buffer.write(" in ");
|
| + buffer.write(classNode.name);
|
| + buffer.write(" was not set while trying to build the element model.");
|
| + AnalysisEngine.instance.logger.logError(
|
| + buffer.toString(), new CaughtException(exception, stackTrace));
|
| + } else {
|
| + String message =
|
| + "Exception caught in ElementBuilder.visitMethodDeclaration()";
|
| + AnalysisEngine.instance.logger
|
| + .logError(message, new CaughtException(exception, stackTrace));
|
| + }
|
| + } finally {
|
| + if (node.name.staticElement == null) {
|
| + ClassDeclaration classNode =
|
| + node.getAncestor((node) => node is ClassDeclaration);
|
| + StringBuffer buffer = new StringBuffer();
|
| + buffer.write("The element for the method ");
|
| + buffer.write(node.name);
|
| + buffer.write(" in ");
|
| + buffer.write(classNode.name);
|
| + buffer.write(" was not set while trying to resolve types.");
|
| + AnalysisEngine.instance.logger.logError(
|
| + buffer.toString(),
|
| + new CaughtException(
|
| + new AnalysisException(buffer.toString()), null));
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitSimpleFormalParameter(SimpleFormalParameter node) {
|
| + if (node.parent is! DefaultFormalParameter) {
|
| + SimpleIdentifier parameterName = node.identifier;
|
| + ParameterElementImpl parameter =
|
| + new ParameterElementImpl.forNode(parameterName);
|
| + parameter.const3 = node.isConst;
|
| + parameter.final2 = node.isFinal;
|
| + parameter.parameterKind = node.kind;
|
| + _setParameterVisibleRange(node, parameter);
|
| + if (node.type == null) {
|
| + parameter.hasImplicitType = true;
|
| + }
|
| + _currentHolder.addParameter(parameter);
|
| + parameterName.staticElement = parameter;
|
| + }
|
| + return super.visitSimpleFormalParameter(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitSuperExpression(SuperExpression node) {
|
| + _isValidMixin = false;
|
| + return super.visitSuperExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitSwitchCase(SwitchCase node) {
|
| + for (Label label in node.labels) {
|
| + SimpleIdentifier labelName = label.label;
|
| + LabelElementImpl element = new LabelElementImpl(labelName, false, true);
|
| + _currentHolder.addLabel(element);
|
| + labelName.staticElement = element;
|
| + }
|
| + return super.visitSwitchCase(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitSwitchDefault(SwitchDefault node) {
|
| + for (Label label in node.labels) {
|
| + SimpleIdentifier labelName = label.label;
|
| + LabelElementImpl element = new LabelElementImpl(labelName, false, true);
|
| + _currentHolder.addLabel(element);
|
| + labelName.staticElement = element;
|
| + }
|
| + return super.visitSwitchDefault(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitTypeParameter(TypeParameter node) {
|
| + SimpleIdentifier parameterName = node.name;
|
| + TypeParameterElementImpl typeParameter =
|
| + new TypeParameterElementImpl.forNode(parameterName);
|
| + TypeParameterTypeImpl typeParameterType =
|
| + new TypeParameterTypeImpl(typeParameter);
|
| + typeParameter.type = typeParameterType;
|
| + _currentHolder.addTypeParameter(typeParameter);
|
| + parameterName.staticElement = typeParameter;
|
| + return super.visitTypeParameter(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitVariableDeclaration(VariableDeclaration node) {
|
| + bool isConst = node.isConst;
|
| + bool isFinal = node.isFinal;
|
| + bool hasInitializer = node.initializer != null;
|
| + VariableElementImpl element;
|
| + if (_inFieldContext) {
|
| + SimpleIdentifier fieldName = node.name;
|
| + FieldElementImpl field;
|
| + if ((isConst || isFinal) && hasInitializer) {
|
| + field = new ConstFieldElementImpl.forNode(fieldName);
|
| + } else {
|
| + field = new FieldElementImpl.forNode(fieldName);
|
| + }
|
| + element = field;
|
| + if ((node.parent as VariableDeclarationList).type == null) {
|
| + field.hasImplicitType = true;
|
| + }
|
| + _currentHolder.addField(field);
|
| + fieldName.staticElement = field;
|
| + } else if (_inFunction) {
|
| + SimpleIdentifier variableName = node.name;
|
| + LocalVariableElementImpl variable;
|
| + if (isConst && hasInitializer) {
|
| + variable = new ConstLocalVariableElementImpl.forNode(variableName);
|
| + } else {
|
| + variable = new LocalVariableElementImpl.forNode(variableName);
|
| + }
|
| + element = variable;
|
| + Block enclosingBlock = node.getAncestor((node) => node is Block);
|
| + // TODO(brianwilkerson) This isn't right for variables declared in a for
|
| + // loop.
|
| + variable.setVisibleRange(enclosingBlock.offset, enclosingBlock.length);
|
| + if ((node.parent as VariableDeclarationList).type == null) {
|
| + variable.hasImplicitType = true;
|
| + }
|
| + _currentHolder.addLocalVariable(variable);
|
| + variableName.staticElement = element;
|
| + } else {
|
| + SimpleIdentifier variableName = node.name;
|
| + TopLevelVariableElementImpl variable;
|
| + if (isConst && hasInitializer) {
|
| + variable = new ConstTopLevelVariableElementImpl(variableName);
|
| + } else {
|
| + variable = new TopLevelVariableElementImpl.forNode(variableName);
|
| + }
|
| + element = variable;
|
| + if ((node.parent as VariableDeclarationList).type == null) {
|
| + variable.hasImplicitType = true;
|
| + }
|
| + _currentHolder.addTopLevelVariable(variable);
|
| + variableName.staticElement = element;
|
| + }
|
| + element.const3 = isConst;
|
| + element.final2 = isFinal;
|
| + if (hasInitializer) {
|
| + ElementHolder holder = new ElementHolder();
|
| + bool wasInFieldContext = _inFieldContext;
|
| + _inFieldContext = false;
|
| + try {
|
| + _visit(holder, node.initializer);
|
| + } finally {
|
| + _inFieldContext = wasInFieldContext;
|
| + }
|
| + FunctionElementImpl initializer =
|
| + new FunctionElementImpl.forOffset(node.initializer.beginToken.offset);
|
| + initializer.functions = holder.functions;
|
| + initializer.labels = holder.labels;
|
| + initializer.localVariables = holder.localVariables;
|
| + initializer.synthetic = true;
|
| + element.initializer = initializer;
|
| + holder.validate();
|
| + }
|
| + if (element is PropertyInducingElementImpl) {
|
| + if (_inFieldContext) {
|
| + (element as FieldElementImpl).static =
|
| + (node.parent.parent as FieldDeclaration).isStatic;
|
| + }
|
| + PropertyAccessorElementImpl getter =
|
| + new PropertyAccessorElementImpl.forVariable(element);
|
| + getter.getter = true;
|
| + if (element.hasImplicitType) {
|
| + getter.hasImplicitReturnType = true;
|
| + }
|
| + _currentHolder.addAccessor(getter);
|
| + element.getter = getter;
|
| + if (!isConst && !isFinal) {
|
| + PropertyAccessorElementImpl setter =
|
| + new PropertyAccessorElementImpl.forVariable(element);
|
| + setter.setter = true;
|
| + ParameterElementImpl parameter =
|
| + new ParameterElementImpl("_${element.name}", element.nameOffset);
|
| + parameter.synthetic = true;
|
| + parameter.parameterKind = ParameterKind.REQUIRED;
|
| + setter.parameters = <ParameterElement>[parameter];
|
| + _currentHolder.addAccessor(setter);
|
| + element.setter = setter;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Build the table mapping field names to field elements for the fields defined in the current
|
| + * class.
|
| + *
|
| + * @param fields the field elements defined in the current class
|
| + */
|
| + void _buildFieldMap(List<FieldElement> fields) {
|
| + _fieldMap = new HashMap<String, FieldElement>();
|
| + int count = fields.length;
|
| + for (int i = 0; i < count; i++) {
|
| + FieldElement field = fields[i];
|
| + _fieldMap[field.name] = field;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Creates the [ConstructorElement]s array with the single default constructor element.
|
| + *
|
| + * @param interfaceType the interface type for which to create a default constructor
|
| + * @return the [ConstructorElement]s array with the single default constructor element
|
| + */
|
| + List<ConstructorElement> _createDefaultConstructors(
|
| + InterfaceTypeImpl interfaceType) {
|
| + ConstructorElementImpl constructor =
|
| + new ConstructorElementImpl.forNode(null);
|
| + constructor.synthetic = true;
|
| + constructor.returnType = interfaceType;
|
| + FunctionTypeImpl type = new FunctionTypeImpl(constructor);
|
| + _functionTypesToFix.add(type);
|
| + constructor.type = type;
|
| + return <ConstructorElement>[constructor];
|
| + }
|
| +
|
| + /**
|
| + * Create the types associated with the given type parameters, setting the type of each type
|
| + * parameter, and return an array of types corresponding to the given parameters.
|
| + *
|
| + * @param typeParameters the type parameters for which types are to be created
|
| + * @return an array of types corresponding to the given parameters
|
| + */
|
| + List<DartType> _createTypeParameterTypes(
|
| + List<TypeParameterElement> typeParameters) {
|
| + int typeParameterCount = typeParameters.length;
|
| + List<DartType> typeArguments = new List<DartType>(typeParameterCount);
|
| + for (int i = 0; i < typeParameterCount; i++) {
|
| + TypeParameterElementImpl typeParameter =
|
| + typeParameters[i] as TypeParameterElementImpl;
|
| + TypeParameterTypeImpl typeParameterType =
|
| + new TypeParameterTypeImpl(typeParameter);
|
| + typeParameter.type = typeParameterType;
|
| + typeArguments[i] = typeParameterType;
|
| + }
|
| + return typeArguments;
|
| + }
|
| +
|
| + /**
|
| + * Return the body of the function that contains the given parameter, or `null` if no
|
| + * function body could be found.
|
| + *
|
| + * @param node the parameter contained in the function whose body is to be returned
|
| + * @return the body of the function that contains the given parameter
|
| + */
|
| + FunctionBody _getFunctionBody(FormalParameter node) {
|
| + AstNode parent = node.parent;
|
| + while (parent != null) {
|
| + if (parent is ConstructorDeclaration) {
|
| + return parent.body;
|
| + } else if (parent is FunctionExpression) {
|
| + return parent.body;
|
| + } else if (parent is MethodDeclaration) {
|
| + return parent.body;
|
| + }
|
| + parent = parent.parent;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Sets the visible source range for formal parameter.
|
| + */
|
| + void _setParameterVisibleRange(
|
| + FormalParameter node, ParameterElementImpl element) {
|
| + FunctionBody body = _getFunctionBody(node);
|
| + if (body != null) {
|
| + element.setVisibleRange(body.offset, body.length);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Make the given holder be the current holder while visiting the given node.
|
| + *
|
| + * @param holder the holder that will gather elements that are built while visiting the children
|
| + * @param node the node to be visited
|
| + */
|
| + void _visit(ElementHolder holder, AstNode node) {
|
| + if (node != null) {
|
| + ElementHolder previousHolder = _currentHolder;
|
| + _currentHolder = holder;
|
| + try {
|
| + node.accept(this);
|
| + } finally {
|
| + _currentHolder = previousHolder;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Make the given holder be the current holder while visiting the children of the given node.
|
| + *
|
| + * @param holder the holder that will gather elements that are built while visiting the children
|
| + * @param node the node whose children are to be visited
|
| + */
|
| + void _visitChildren(ElementHolder holder, AstNode node) {
|
| + if (node != null) {
|
| + ElementHolder previousHolder = _currentHolder;
|
| + _currentHolder = holder;
|
| + try {
|
| + node.visitChildren(this);
|
| + } finally {
|
| + _currentHolder = previousHolder;
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `ElementHolder` hold on to elements created while traversing an AST
|
| + * structure so that they can be accessed when creating their enclosing element.
|
| + */
|
| +class ElementHolder {
|
| + List<PropertyAccessorElement> _accessors;
|
| +
|
| + List<ConstructorElement> _constructors;
|
| +
|
| + List<ClassElement> _enums;
|
| +
|
| + List<FieldElement> _fields;
|
| +
|
| + List<FunctionElement> _functions;
|
| +
|
| + List<LabelElement> _labels;
|
| +
|
| + List<LocalVariableElement> _localVariables;
|
| +
|
| + List<MethodElement> _methods;
|
| +
|
| + List<ParameterElement> _parameters;
|
| +
|
| + List<TopLevelVariableElement> _topLevelVariables;
|
| +
|
| + List<ClassElement> _types;
|
| +
|
| + List<FunctionTypeAliasElement> _typeAliases;
|
| +
|
| + List<TypeParameterElement> _typeParameters;
|
| +
|
| + List<PropertyAccessorElement> get accessors {
|
| + if (_accessors == null) {
|
| + return PropertyAccessorElement.EMPTY_LIST;
|
| + }
|
| + List<PropertyAccessorElement> result = _accessors;
|
| + _accessors = null;
|
| + return result;
|
| + }
|
| +
|
| + List<ConstructorElement> get constructors {
|
| + if (_constructors == null) {
|
| + return ConstructorElement.EMPTY_LIST;
|
| + }
|
| + List<ConstructorElement> result = _constructors;
|
| + _constructors = null;
|
| + return result;
|
| + }
|
| +
|
| + List<ClassElement> get enums {
|
| + if (_enums == null) {
|
| + return ClassElement.EMPTY_LIST;
|
| + }
|
| + List<ClassElement> result = _enums;
|
| + _enums = null;
|
| + return result;
|
| + }
|
| +
|
| + List<FieldElement> get fields {
|
| + if (_fields == null) {
|
| + return FieldElement.EMPTY_LIST;
|
| + }
|
| + List<FieldElement> result = _fields;
|
| + _fields = null;
|
| + return result;
|
| + }
|
| +
|
| + List<FieldElement> get fieldsWithoutFlushing {
|
| + if (_fields == null) {
|
| + return FieldElement.EMPTY_LIST;
|
| + }
|
| + List<FieldElement> result = _fields;
|
| + return result;
|
| + }
|
| +
|
| + List<FunctionElement> get functions {
|
| + if (_functions == null) {
|
| + return FunctionElement.EMPTY_LIST;
|
| + }
|
| + List<FunctionElement> result = _functions;
|
| + _functions = null;
|
| + return result;
|
| + }
|
| +
|
| + List<LabelElement> get labels {
|
| + if (_labels == null) {
|
| + return LabelElement.EMPTY_LIST;
|
| + }
|
| + List<LabelElement> result = _labels;
|
| + _labels = null;
|
| + return result;
|
| + }
|
| +
|
| + List<LocalVariableElement> get localVariables {
|
| + if (_localVariables == null) {
|
| + return LocalVariableElement.EMPTY_LIST;
|
| + }
|
| + List<LocalVariableElement> result = _localVariables;
|
| + _localVariables = null;
|
| + return result;
|
| + }
|
| +
|
| + List<MethodElement> get methods {
|
| + if (_methods == null) {
|
| + return MethodElement.EMPTY_LIST;
|
| + }
|
| + List<MethodElement> result = _methods;
|
| + _methods = null;
|
| + return result;
|
| + }
|
| +
|
| + List<ParameterElement> get parameters {
|
| + if (_parameters == null) {
|
| + return ParameterElement.EMPTY_LIST;
|
| + }
|
| + List<ParameterElement> result = _parameters;
|
| + _parameters = null;
|
| + return result;
|
| + }
|
| +
|
| + List<TopLevelVariableElement> get topLevelVariables {
|
| + if (_topLevelVariables == null) {
|
| + return TopLevelVariableElement.EMPTY_LIST;
|
| + }
|
| + List<TopLevelVariableElement> result = _topLevelVariables;
|
| + _topLevelVariables = null;
|
| + return result;
|
| + }
|
| +
|
| + List<FunctionTypeAliasElement> get typeAliases {
|
| + if (_typeAliases == null) {
|
| + return FunctionTypeAliasElement.EMPTY_LIST;
|
| + }
|
| + List<FunctionTypeAliasElement> result = _typeAliases;
|
| + _typeAliases = null;
|
| + return result;
|
| + }
|
| +
|
| + List<TypeParameterElement> get typeParameters {
|
| + if (_typeParameters == null) {
|
| + return TypeParameterElement.EMPTY_LIST;
|
| + }
|
| + List<TypeParameterElement> result = _typeParameters;
|
| + _typeParameters = null;
|
| + return result;
|
| + }
|
| +
|
| + List<ClassElement> get types {
|
| + if (_types == null) {
|
| + return ClassElement.EMPTY_LIST;
|
| + }
|
| + List<ClassElement> result = _types;
|
| + _types = null;
|
| + return result;
|
| + }
|
| +
|
| + void addAccessor(PropertyAccessorElement element) {
|
| + if (_accessors == null) {
|
| + _accessors = new List<PropertyAccessorElement>();
|
| + }
|
| + _accessors.add(element);
|
| + }
|
| +
|
| + void addConstructor(ConstructorElement element) {
|
| + if (_constructors == null) {
|
| + _constructors = new List<ConstructorElement>();
|
| + }
|
| + _constructors.add(element);
|
| + }
|
| +
|
| + void addEnum(ClassElement element) {
|
| + if (_enums == null) {
|
| + _enums = new List<ClassElement>();
|
| + }
|
| + _enums.add(element);
|
| + }
|
| +
|
| + void addField(FieldElement element) {
|
| + if (_fields == null) {
|
| + _fields = new List<FieldElement>();
|
| + }
|
| + _fields.add(element);
|
| + }
|
| +
|
| + void addFunction(FunctionElement element) {
|
| + if (_functions == null) {
|
| + _functions = new List<FunctionElement>();
|
| + }
|
| + _functions.add(element);
|
| + }
|
| +
|
| + void addLabel(LabelElement element) {
|
| + if (_labels == null) {
|
| + _labels = new List<LabelElement>();
|
| + }
|
| + _labels.add(element);
|
| + }
|
| +
|
| + void addLocalVariable(LocalVariableElement element) {
|
| + if (_localVariables == null) {
|
| + _localVariables = new List<LocalVariableElement>();
|
| + }
|
| + _localVariables.add(element);
|
| + }
|
| +
|
| + void addMethod(MethodElement element) {
|
| + if (_methods == null) {
|
| + _methods = new List<MethodElement>();
|
| + }
|
| + _methods.add(element);
|
| + }
|
| +
|
| + void addParameter(ParameterElement element) {
|
| + if (_parameters == null) {
|
| + _parameters = new List<ParameterElement>();
|
| + }
|
| + _parameters.add(element);
|
| + }
|
| +
|
| + void addTopLevelVariable(TopLevelVariableElement element) {
|
| + if (_topLevelVariables == null) {
|
| + _topLevelVariables = new List<TopLevelVariableElement>();
|
| + }
|
| + _topLevelVariables.add(element);
|
| + }
|
| +
|
| + void addType(ClassElement element) {
|
| + if (_types == null) {
|
| + _types = new List<ClassElement>();
|
| + }
|
| + _types.add(element);
|
| + }
|
| +
|
| + void addTypeAlias(FunctionTypeAliasElement element) {
|
| + if (_typeAliases == null) {
|
| + _typeAliases = new List<FunctionTypeAliasElement>();
|
| + }
|
| + _typeAliases.add(element);
|
| + }
|
| +
|
| + void addTypeParameter(TypeParameterElement element) {
|
| + if (_typeParameters == null) {
|
| + _typeParameters = new List<TypeParameterElement>();
|
| + }
|
| + _typeParameters.add(element);
|
| + }
|
| +
|
| + FieldElement getField(String fieldName) {
|
| + if (_fields == null) {
|
| + return null;
|
| + }
|
| + for (FieldElement field in _fields) {
|
| + if (field.name == fieldName) {
|
| + return field;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + TopLevelVariableElement getTopLevelVariable(String variableName) {
|
| + if (_topLevelVariables == null) {
|
| + return null;
|
| + }
|
| + for (TopLevelVariableElement variable in _topLevelVariables) {
|
| + if (variable.name == variableName) {
|
| + return variable;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + void validate() {
|
| + StringBuffer buffer = new StringBuffer();
|
| + if (_accessors != null) {
|
| + buffer.write(_accessors.length);
|
| + buffer.write(" accessors");
|
| + }
|
| + if (_constructors != null) {
|
| + if (buffer.length > 0) {
|
| + buffer.write("; ");
|
| + }
|
| + buffer.write(_constructors.length);
|
| + buffer.write(" constructors");
|
| + }
|
| + if (_fields != null) {
|
| + if (buffer.length > 0) {
|
| + buffer.write("; ");
|
| + }
|
| + buffer.write(_fields.length);
|
| + buffer.write(" fields");
|
| + }
|
| + if (_functions != null) {
|
| + if (buffer.length > 0) {
|
| + buffer.write("; ");
|
| + }
|
| + buffer.write(_functions.length);
|
| + buffer.write(" functions");
|
| + }
|
| + if (_labels != null) {
|
| + if (buffer.length > 0) {
|
| + buffer.write("; ");
|
| + }
|
| + buffer.write(_labels.length);
|
| + buffer.write(" labels");
|
| + }
|
| + if (_localVariables != null) {
|
| + if (buffer.length > 0) {
|
| + buffer.write("; ");
|
| + }
|
| + buffer.write(_localVariables.length);
|
| + buffer.write(" local variables");
|
| + }
|
| + if (_methods != null) {
|
| + if (buffer.length > 0) {
|
| + buffer.write("; ");
|
| + }
|
| + buffer.write(_methods.length);
|
| + buffer.write(" methods");
|
| + }
|
| + if (_parameters != null) {
|
| + if (buffer.length > 0) {
|
| + buffer.write("; ");
|
| + }
|
| + buffer.write(_parameters.length);
|
| + buffer.write(" parameters");
|
| + }
|
| + if (_topLevelVariables != null) {
|
| + if (buffer.length > 0) {
|
| + buffer.write("; ");
|
| + }
|
| + buffer.write(_topLevelVariables.length);
|
| + buffer.write(" top-level variables");
|
| + }
|
| + if (_types != null) {
|
| + if (buffer.length > 0) {
|
| + buffer.write("; ");
|
| + }
|
| + buffer.write(_types.length);
|
| + buffer.write(" types");
|
| + }
|
| + if (_typeAliases != null) {
|
| + if (buffer.length > 0) {
|
| + buffer.write("; ");
|
| + }
|
| + buffer.write(_typeAliases.length);
|
| + buffer.write(" type aliases");
|
| + }
|
| + if (_typeParameters != null) {
|
| + if (buffer.length > 0) {
|
| + buffer.write("; ");
|
| + }
|
| + buffer.write(_typeParameters.length);
|
| + buffer.write(" type parameters");
|
| + }
|
| + if (buffer.length > 0) {
|
| + AnalysisEngine.instance.logger
|
| + .logError("Failed to capture elements: $buffer");
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `EnclosedScope` implement a scope that is lexically enclosed in
|
| + * another scope.
|
| + */
|
| +class EnclosedScope extends Scope {
|
| + /**
|
| + * The scope in which this scope is lexically enclosed.
|
| + */
|
| + final Scope enclosingScope;
|
| +
|
| + /**
|
| + * A table mapping names that will be defined in this scope, but right now are not initialized.
|
| + * According to the scoping rules these names are hidden, even if they were defined in an outer
|
| + * scope.
|
| + */
|
| + HashMap<String, Element> _hiddenElements = new HashMap<String, Element>();
|
| +
|
| + /**
|
| + * A flag indicating whether there are any names defined in this scope.
|
| + */
|
| + bool _hasHiddenName = false;
|
| +
|
| + /**
|
| + * Initialize a newly created scope enclosed within another scope.
|
| + *
|
| + * @param enclosingScope the scope in which this scope is lexically enclosed
|
| + */
|
| + EnclosedScope(this.enclosingScope);
|
| +
|
| + @override
|
| + AnalysisErrorListener get errorListener => enclosingScope.errorListener;
|
| +
|
| + /**
|
| + * Record that given element is declared in this scope, but hasn't been initialized yet, so it is
|
| + * error to use. If there is already an element with the given name defined in an outer scope,
|
| + * then it will become unavailable.
|
| + *
|
| + * @param element the element declared, but not initialized in this scope
|
| + */
|
| + void hide(Element element) {
|
| + if (element != null) {
|
| + String name = element.name;
|
| + if (name != null && !name.isEmpty) {
|
| + _hiddenElements[name] = element;
|
| + _hasHiddenName = true;
|
| + }
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Element internalLookup(
|
| + Identifier identifier, String name, LibraryElement referencingLibrary) {
|
| + Element element = localLookup(name, referencingLibrary);
|
| + if (element != null) {
|
| + return element;
|
| + }
|
| + // May be there is a hidden Element.
|
| + if (_hasHiddenName) {
|
| + Element hiddenElement = _hiddenElements[name];
|
| + if (hiddenElement != null) {
|
| + errorListener.onError(new AnalysisError(
|
| + getSource(identifier),
|
| + identifier.offset,
|
| + identifier.length,
|
| + CompileTimeErrorCode.REFERENCED_BEFORE_DECLARATION, []));
|
| + return hiddenElement;
|
| + }
|
| + }
|
| + // Check enclosing scope.
|
| + return enclosingScope.internalLookup(identifier, name, referencingLibrary);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `EnumMemberBuilder` build the members in enum declarations.
|
| + */
|
| +class EnumMemberBuilder extends RecursiveAstVisitor<Object> {
|
| + /**
|
| + * The type provider used to access the types needed to build an element model for enum
|
| + * declarations.
|
| + */
|
| + final TypeProvider _typeProvider;
|
| +
|
| + /**
|
| + * Initialize a newly created enum member builder.
|
| + *
|
| + * @param typeProvider the type provider used to access the types needed to build an element model
|
| + * for enum declarations
|
| + */
|
| + EnumMemberBuilder(this._typeProvider);
|
| +
|
| + @override
|
| + Object visitEnumDeclaration(EnumDeclaration node) {
|
| + //
|
| + // Finish building the enum.
|
| + //
|
| + ClassElementImpl enumElement = node.name.staticElement as ClassElementImpl;
|
| + InterfaceType enumType = enumElement.type;
|
| + enumElement.supertype = _typeProvider.objectType;
|
| + //
|
| + // Populate the fields.
|
| + //
|
| + List<FieldElement> fields = new List<FieldElement>();
|
| + List<PropertyAccessorElement> getters = new List<PropertyAccessorElement>();
|
| + InterfaceType intType = _typeProvider.intType;
|
| + String indexFieldName = "index";
|
| + FieldElementImpl indexField = new FieldElementImpl(indexFieldName, -1);
|
| + indexField.final2 = true;
|
| + indexField.synthetic = true;
|
| + indexField.type = intType;
|
| + fields.add(indexField);
|
| + getters.add(_createGetter(indexField));
|
| + ConstFieldElementImpl valuesField = new ConstFieldElementImpl("values", -1);
|
| + valuesField.static = true;
|
| + valuesField.const3 = true;
|
| + valuesField.synthetic = true;
|
| + valuesField.type = _typeProvider.listType.substitute4(<DartType>[enumType]);
|
| + fields.add(valuesField);
|
| + getters.add(_createGetter(valuesField));
|
| + //
|
| + // Build the enum constants.
|
| + //
|
| + NodeList<EnumConstantDeclaration> constants = node.constants;
|
| + List<DartObjectImpl> constantValues = new List<DartObjectImpl>();
|
| + int constantCount = constants.length;
|
| + for (int i = 0; i < constantCount; i++) {
|
| + SimpleIdentifier constantName = constants[i].name;
|
| + FieldElementImpl constantField =
|
| + new ConstFieldElementImpl.forNode(constantName);
|
| + constantField.static = true;
|
| + constantField.const3 = true;
|
| + constantField.type = enumType;
|
| + //
|
| + // Create a value for the constant.
|
| + //
|
| + HashMap<String, DartObjectImpl> fieldMap =
|
| + new HashMap<String, DartObjectImpl>();
|
| + fieldMap[indexFieldName] = new DartObjectImpl(intType, new IntState(i));
|
| + DartObjectImpl value =
|
| + new DartObjectImpl(enumType, new GenericState(fieldMap));
|
| + constantValues.add(value);
|
| + constantField.evaluationResult = new EvaluationResultImpl(value);
|
| + fields.add(constantField);
|
| + getters.add(_createGetter(constantField));
|
| + constantName.staticElement = constantField;
|
| + }
|
| + //
|
| + // Build the value of the 'values' field.
|
| + //
|
| + valuesField.evaluationResult = new EvaluationResultImpl(
|
| + new DartObjectImpl(valuesField.type, new ListState(constantValues)));
|
| + //
|
| + // Finish building the enum.
|
| + //
|
| + enumElement.fields = fields;
|
| + enumElement.accessors = getters;
|
| + // Client code isn't allowed to invoke the constructor, so we do not model
|
| + // it.
|
| + return super.visitEnumDeclaration(node);
|
| + }
|
| +
|
| + /**
|
| + * Create a getter that corresponds to the given field.
|
| + *
|
| + * @param field the field for which a getter is to be created
|
| + * @return the getter that was created
|
| + */
|
| + PropertyAccessorElement _createGetter(FieldElementImpl field) {
|
| + PropertyAccessorElementImpl getter =
|
| + new PropertyAccessorElementImpl.forVariable(field);
|
| + getter.getter = true;
|
| + getter.returnType = field.type;
|
| + getter.type = new FunctionTypeImpl(getter);
|
| + field.getter = getter;
|
| + return getter;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `ExitDetector` determine whether the visited AST node is guaranteed
|
| + * to terminate by executing a `return` statement, `throw` expression, `rethrow`
|
| + * expression, or simple infinite loop such as `while(true)`.
|
| + */
|
| +class ExitDetector extends GeneralizingAstVisitor<bool> {
|
| + /**
|
| + * Set to `true` when a `break` is encountered, and reset to `false` when a
|
| + * `do`, `while`, `for` or `switch` block is entered.
|
| + */
|
| + bool _enclosingBlockContainsBreak = false;
|
| +
|
| + @override
|
| + bool visitArgumentList(ArgumentList node) =>
|
| + _visitExpressions(node.arguments);
|
| +
|
| + @override
|
| + bool visitAsExpression(AsExpression node) => _nodeExits(node.expression);
|
| +
|
| + @override
|
| + bool visitAssertStatement(AssertStatement node) => _nodeExits(node.condition);
|
| +
|
| + @override
|
| + bool visitAssignmentExpression(AssignmentExpression node) =>
|
| + _nodeExits(node.leftHandSide) || _nodeExits(node.rightHandSide);
|
| +
|
| + @override
|
| + bool visitAwaitExpression(AwaitExpression node) =>
|
| + _nodeExits(node.expression);
|
| +
|
| + @override
|
| + bool visitBinaryExpression(BinaryExpression node) {
|
| + Expression lhsExpression = node.leftOperand;
|
| + sc.TokenType operatorType = node.operator.type;
|
| + // If the operator is || and the left hand side is false literal, don't
|
| + // consider the RHS of the binary expression.
|
| + // TODO(jwren) Do we want to take constant expressions into account,
|
| + // evaluate if(false) {} differently than if(<condition>), when <condition>
|
| + // evaluates to a constant false value?
|
| + if (operatorType == sc.TokenType.BAR_BAR) {
|
| + if (lhsExpression is BooleanLiteral) {
|
| + BooleanLiteral booleanLiteral = lhsExpression;
|
| + if (!booleanLiteral.value) {
|
| + return false;
|
| + }
|
| + }
|
| + }
|
| + // If the operator is && and the left hand side is true literal, don't
|
| + // consider the RHS of the binary expression.
|
| + if (operatorType == sc.TokenType.AMPERSAND_AMPERSAND) {
|
| + if (lhsExpression is BooleanLiteral) {
|
| + BooleanLiteral booleanLiteral = lhsExpression;
|
| + if (booleanLiteral.value) {
|
| + return false;
|
| + }
|
| + }
|
| + }
|
| + Expression rhsExpression = node.rightOperand;
|
| + return _nodeExits(lhsExpression) || _nodeExits(rhsExpression);
|
| + }
|
| +
|
| + @override
|
| + bool visitBlock(Block node) => _visitStatements(node.statements);
|
| +
|
| + @override
|
| + bool visitBlockFunctionBody(BlockFunctionBody node) => _nodeExits(node.block);
|
| +
|
| + @override
|
| + bool visitBreakStatement(BreakStatement node) {
|
| + _enclosingBlockContainsBreak = true;
|
| + return false;
|
| + }
|
| +
|
| + @override
|
| + bool visitCascadeExpression(CascadeExpression node) =>
|
| + _nodeExits(node.target) || _visitExpressions(node.cascadeSections);
|
| +
|
| + @override
|
| + bool visitConditionalExpression(ConditionalExpression node) {
|
| + Expression conditionExpression = node.condition;
|
| + Expression thenStatement = node.thenExpression;
|
| + Expression elseStatement = node.elseExpression;
|
| + // TODO(jwren) Do we want to take constant expressions into account,
|
| + // evaluate if(false) {} differently than if(<condition>), when <condition>
|
| + // evaluates to a constant false value?
|
| + if (_nodeExits(conditionExpression)) {
|
| + return true;
|
| + }
|
| + if (thenStatement == null || elseStatement == null) {
|
| + return false;
|
| + }
|
| + return thenStatement.accept(this) && elseStatement.accept(this);
|
| + }
|
| +
|
| + @override
|
| + bool visitContinueStatement(ContinueStatement node) => false;
|
| +
|
| + @override
|
| + bool visitDoStatement(DoStatement node) {
|
| + bool outerBreakValue = _enclosingBlockContainsBreak;
|
| + _enclosingBlockContainsBreak = false;
|
| + try {
|
| + Expression conditionExpression = node.condition;
|
| + if (_nodeExits(conditionExpression)) {
|
| + return true;
|
| + }
|
| + // TODO(jwren) Do we want to take all constant expressions into account?
|
| + if (conditionExpression is BooleanLiteral) {
|
| + BooleanLiteral booleanLiteral = conditionExpression;
|
| + // If do {} while (true), and the body doesn't return or the body
|
| + // doesn't have a break, then return true.
|
| + bool blockReturns = _nodeExits(node.body);
|
| + if (booleanLiteral.value &&
|
| + (blockReturns || !_enclosingBlockContainsBreak)) {
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| + } finally {
|
| + _enclosingBlockContainsBreak = outerBreakValue;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + bool visitEmptyStatement(EmptyStatement node) => false;
|
| +
|
| + @override
|
| + bool visitExpressionStatement(ExpressionStatement node) =>
|
| + _nodeExits(node.expression);
|
| +
|
| + @override
|
| + bool visitForEachStatement(ForEachStatement node) {
|
| + bool outerBreakValue = _enclosingBlockContainsBreak;
|
| + _enclosingBlockContainsBreak = false;
|
| + try {
|
| + return _nodeExits(node.iterable);
|
| + } finally {
|
| + _enclosingBlockContainsBreak = outerBreakValue;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + bool visitForStatement(ForStatement node) {
|
| + bool outerBreakValue = _enclosingBlockContainsBreak;
|
| + _enclosingBlockContainsBreak = false;
|
| + try {
|
| + if (node.variables != null &&
|
| + _visitVariableDeclarations(node.variables.variables)) {
|
| + return true;
|
| + }
|
| + if (node.initialization != null && _nodeExits(node.initialization)) {
|
| + return true;
|
| + }
|
| + Expression conditionExpression = node.condition;
|
| + if (conditionExpression != null && _nodeExits(conditionExpression)) {
|
| + return true;
|
| + }
|
| + if (_visitExpressions(node.updaters)) {
|
| + return true;
|
| + }
|
| + // TODO(jwren) Do we want to take all constant expressions into account?
|
| + // If for(; true; ) (or for(;;)), and the body doesn't return or the body
|
| + // doesn't have a break, then return true.
|
| + bool implicitOrExplictTrue = conditionExpression == null ||
|
| + (conditionExpression is BooleanLiteral && conditionExpression.value);
|
| + if (implicitOrExplictTrue) {
|
| + bool blockReturns = _nodeExits(node.body);
|
| + if (blockReturns || !_enclosingBlockContainsBreak) {
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| + } finally {
|
| + _enclosingBlockContainsBreak = outerBreakValue;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + bool visitFunctionDeclarationStatement(FunctionDeclarationStatement node) =>
|
| + false;
|
| +
|
| + @override
|
| + bool visitFunctionExpression(FunctionExpression node) => false;
|
| +
|
| + @override
|
| + bool visitFunctionExpressionInvocation(FunctionExpressionInvocation node) {
|
| + if (_nodeExits(node.function)) {
|
| + return true;
|
| + }
|
| + return node.argumentList.accept(this);
|
| + }
|
| +
|
| + @override
|
| + bool visitIdentifier(Identifier node) => false;
|
| +
|
| + @override
|
| + bool visitIfStatement(IfStatement node) {
|
| + Expression conditionExpression = node.condition;
|
| + Statement thenStatement = node.thenStatement;
|
| + Statement elseStatement = node.elseStatement;
|
| + if (_nodeExits(conditionExpression)) {
|
| + return true;
|
| + }
|
| + // TODO(jwren) Do we want to take all constant expressions into account?
|
| + if (conditionExpression is BooleanLiteral) {
|
| + BooleanLiteral booleanLiteral = conditionExpression;
|
| + if (booleanLiteral.value) {
|
| + // if(true) ...
|
| + return _nodeExits(thenStatement);
|
| + } else if (elseStatement != null) {
|
| + // if (false) ...
|
| + return _nodeExits(elseStatement);
|
| + }
|
| + }
|
| + if (thenStatement == null || elseStatement == null) {
|
| + return false;
|
| + }
|
| + return _nodeExits(thenStatement) && _nodeExits(elseStatement);
|
| + }
|
| +
|
| + @override
|
| + bool visitIndexExpression(IndexExpression node) {
|
| + Expression target = node.realTarget;
|
| + if (_nodeExits(target)) {
|
| + return true;
|
| + }
|
| + if (_nodeExits(node.index)) {
|
| + return true;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + @override
|
| + bool visitInstanceCreationExpression(InstanceCreationExpression node) =>
|
| + _nodeExits(node.argumentList);
|
| +
|
| + @override
|
| + bool visitIsExpression(IsExpression node) => node.expression.accept(this);
|
| +
|
| + @override
|
| + bool visitLabel(Label node) => false;
|
| +
|
| + @override
|
| + bool visitLabeledStatement(LabeledStatement node) =>
|
| + node.statement.accept(this);
|
| +
|
| + @override
|
| + bool visitLiteral(Literal node) => false;
|
| +
|
| + @override
|
| + bool visitMethodInvocation(MethodInvocation node) {
|
| + Expression target = node.realTarget;
|
| + if (target != null && target.accept(this)) {
|
| + return true;
|
| + }
|
| + return _nodeExits(node.argumentList);
|
| + }
|
| +
|
| + @override
|
| + bool visitNamedExpression(NamedExpression node) =>
|
| + node.expression.accept(this);
|
| +
|
| + @override
|
| + bool visitParenthesizedExpression(ParenthesizedExpression node) =>
|
| + node.expression.accept(this);
|
| +
|
| + @override
|
| + bool visitPostfixExpression(PostfixExpression node) => false;
|
| +
|
| + @override
|
| + bool visitPrefixExpression(PrefixExpression node) => false;
|
| +
|
| + @override
|
| + bool visitPropertyAccess(PropertyAccess node) {
|
| + Expression target = node.realTarget;
|
| + if (target != null && target.accept(this)) {
|
| + return true;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + @override
|
| + bool visitRethrowExpression(RethrowExpression node) => true;
|
| +
|
| + @override
|
| + bool visitReturnStatement(ReturnStatement node) => true;
|
| +
|
| + @override
|
| + bool visitSuperExpression(SuperExpression node) => false;
|
| +
|
| + @override
|
| + bool visitSwitchCase(SwitchCase node) => _visitStatements(node.statements);
|
| +
|
| + @override
|
| + bool visitSwitchDefault(SwitchDefault node) =>
|
| + _visitStatements(node.statements);
|
| +
|
| + @override
|
| + bool visitSwitchStatement(SwitchStatement node) {
|
| + bool outerBreakValue = _enclosingBlockContainsBreak;
|
| + _enclosingBlockContainsBreak = false;
|
| + try {
|
| + bool hasDefault = false;
|
| + List<SwitchMember> members = node.members;
|
| + for (int i = 0; i < members.length; i++) {
|
| + SwitchMember switchMember = members[i];
|
| + if (switchMember is SwitchDefault) {
|
| + hasDefault = true;
|
| + // If this is the last member and there are no statements, return
|
| + // false
|
| + if (switchMember.statements.isEmpty && i + 1 == members.length) {
|
| + return false;
|
| + }
|
| + }
|
| + // For switch members with no statements, don't visit the children,
|
| + // otherwise, return false if no return is found in the children
|
| + // statements.
|
| + if (!switchMember.statements.isEmpty && !switchMember.accept(this)) {
|
| + return false;
|
| + }
|
| + }
|
| + // All of the members exit, determine whether there are possible cases
|
| + // that are not caught by the members.
|
| + DartType type = node.expression == null ? null : node.expression.bestType;
|
| + if (type is InterfaceType) {
|
| + ClassElement element = type.element;
|
| + if (element != null && element.isEnum) {
|
| + // If some of the enum values are not covered, then a warning will
|
| + // have already been generated, so there's no point in generating a
|
| + // hint.
|
| + return true;
|
| + }
|
| + }
|
| + return hasDefault;
|
| + } finally {
|
| + _enclosingBlockContainsBreak = outerBreakValue;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + bool visitThisExpression(ThisExpression node) => false;
|
| +
|
| + @override
|
| + bool visitThrowExpression(ThrowExpression node) => true;
|
| +
|
| + @override
|
| + bool visitTryStatement(TryStatement node) {
|
| + if (_nodeExits(node.body)) {
|
| + return true;
|
| + }
|
| + Block finallyBlock = node.finallyBlock;
|
| + if (_nodeExits(finallyBlock)) {
|
| + return true;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + @override
|
| + bool visitTypeName(TypeName node) => false;
|
| +
|
| + @override
|
| + bool visitVariableDeclaration(VariableDeclaration node) {
|
| + Expression initializer = node.initializer;
|
| + if (initializer != null) {
|
| + return initializer.accept(this);
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + @override
|
| + bool visitVariableDeclarationList(VariableDeclarationList node) =>
|
| + _visitVariableDeclarations(node.variables);
|
| +
|
| + @override
|
| + bool visitVariableDeclarationStatement(VariableDeclarationStatement node) {
|
| + NodeList<VariableDeclaration> variables = node.variables.variables;
|
| + for (int i = 0; i < variables.length; i++) {
|
| + if (variables[i].accept(this)) {
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + @override
|
| + bool visitWhileStatement(WhileStatement node) {
|
| + bool outerBreakValue = _enclosingBlockContainsBreak;
|
| + _enclosingBlockContainsBreak = false;
|
| + try {
|
| + Expression conditionExpression = node.condition;
|
| + if (conditionExpression.accept(this)) {
|
| + return true;
|
| + }
|
| + // TODO(jwren) Do we want to take all constant expressions into account?
|
| + if (conditionExpression is BooleanLiteral) {
|
| + BooleanLiteral booleanLiteral = conditionExpression;
|
| + // If while(true), and the body doesn't return or the body doesn't have
|
| + // a break, then return true.
|
| + bool blockReturns = node.body.accept(this);
|
| + if (booleanLiteral.value &&
|
| + (blockReturns || !_enclosingBlockContainsBreak)) {
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| + } finally {
|
| + _enclosingBlockContainsBreak = outerBreakValue;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given node exits.
|
| + *
|
| + * @param node the node being tested
|
| + * @return `true` if the given node exits
|
| + */
|
| + bool _nodeExits(AstNode node) {
|
| + if (node == null) {
|
| + return false;
|
| + }
|
| + return node.accept(this);
|
| + }
|
| +
|
| + bool _visitExpressions(NodeList<Expression> expressions) {
|
| + for (int i = expressions.length - 1; i >= 0; i--) {
|
| + if (expressions[i].accept(this)) {
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + bool _visitStatements(NodeList<Statement> statements) {
|
| + for (int i = statements.length - 1; i >= 0; i--) {
|
| + if (statements[i].accept(this)) {
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + bool _visitVariableDeclarations(
|
| + NodeList<VariableDeclaration> variableDeclarations) {
|
| + for (int i = variableDeclarations.length - 1; i >= 0; i--) {
|
| + if (variableDeclarations[i].accept(this)) {
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given [node] exits.
|
| + */
|
| + static bool exits(AstNode node) {
|
| + return new ExitDetector()._nodeExits(node);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * The scope defined by a function.
|
| + */
|
| +class FunctionScope extends EnclosedScope {
|
| + /**
|
| + * The element representing the function that defines this scope.
|
| + */
|
| + final ExecutableElement _functionElement;
|
| +
|
| + /**
|
| + * A flag indicating whether the parameters have already been defined, used to
|
| + * prevent the parameters from being defined multiple times.
|
| + */
|
| + bool _parametersDefined = false;
|
| +
|
| + /**
|
| + * Initialize a newly created scope enclosed within the [enclosingScope] that
|
| + * represents the given [_functionElement].
|
| + */
|
| + FunctionScope(Scope enclosingScope, this._functionElement)
|
| + : super(new EnclosedScope(new EnclosedScope(enclosingScope))) {
|
| + if (_functionElement == null) {
|
| + throw new IllegalArgumentException("function element cannot be null");
|
| + }
|
| + _defineTypeParameters();
|
| + }
|
| +
|
| + /**
|
| + * Define the parameters for the given function in the scope that encloses
|
| + * this function.
|
| + */
|
| + void defineParameters() {
|
| + if (_parametersDefined) {
|
| + return;
|
| + }
|
| + _parametersDefined = true;
|
| + Scope parameterScope = enclosingScope;
|
| + for (ParameterElement parameter in _functionElement.parameters) {
|
| + if (!parameter.isInitializingFormal) {
|
| + parameterScope.define(parameter);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Define the type parameters for the function.
|
| + */
|
| + void _defineTypeParameters() {
|
| + Scope typeParameterScope = enclosingScope.enclosingScope;
|
| + for (TypeParameterElement typeParameter
|
| + in _functionElement.typeParameters) {
|
| + typeParameterScope.define(typeParameter);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * The scope defined by a function type alias.
|
| + */
|
| +class FunctionTypeScope extends EnclosedScope {
|
| + final FunctionTypeAliasElement _typeElement;
|
| +
|
| + bool _parametersDefined = false;
|
| +
|
| + /**
|
| + * Initialize a newly created scope enclosed within the [enclosingScope] that
|
| + * represents the given [_typeElement].
|
| + */
|
| + FunctionTypeScope(Scope enclosingScope, this._typeElement)
|
| + : super(new EnclosedScope(enclosingScope)) {
|
| + _defineTypeParameters();
|
| + }
|
| +
|
| + /**
|
| + * Define the parameters for the function type alias.
|
| + */
|
| + void defineParameters() {
|
| + if (_parametersDefined) {
|
| + return;
|
| + }
|
| + _parametersDefined = true;
|
| + for (ParameterElement parameter in _typeElement.parameters) {
|
| + define(parameter);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Define the type parameters for the function type alias.
|
| + */
|
| + void _defineTypeParameters() {
|
| + Scope typeParameterScope = enclosingScope;
|
| + for (TypeParameterElement typeParameter in _typeElement.typeParameters) {
|
| + typeParameterScope.define(typeParameter);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * A visitor that visits ASTs and fills [UsedImportedElements].
|
| + */
|
| +class GatherUsedImportedElementsVisitor extends RecursiveAstVisitor {
|
| + final LibraryElement library;
|
| + final UsedImportedElements usedElements = new UsedImportedElements();
|
| +
|
| + GatherUsedImportedElementsVisitor(this.library);
|
| +
|
| + @override
|
| + void visitExportDirective(ExportDirective node) {
|
| + _visitMetadata(node.metadata);
|
| + }
|
| +
|
| + @override
|
| + void visitImportDirective(ImportDirective node) {
|
| + _visitMetadata(node.metadata);
|
| + }
|
| +
|
| + @override
|
| + void visitLibraryDirective(LibraryDirective node) {
|
| + _visitMetadata(node.metadata);
|
| + }
|
| +
|
| + @override
|
| + void visitPrefixedIdentifier(PrefixedIdentifier node) {
|
| + // If the prefixed identifier references some A.B, where A is a library
|
| + // prefix, then we can lookup the associated ImportDirective in
|
| + // prefixElementMap and remove it from the unusedImports list.
|
| + SimpleIdentifier prefixIdentifier = node.prefix;
|
| + Element element = prefixIdentifier.staticElement;
|
| + if (element is PrefixElement) {
|
| + usedElements.prefixes.add(element);
|
| + return;
|
| + }
|
| + // Otherwise, pass the prefixed identifier element and name onto
|
| + // visitIdentifier.
|
| + _visitIdentifier(element, prefixIdentifier.name);
|
| + }
|
| +
|
| + @override
|
| + void visitSimpleIdentifier(SimpleIdentifier node) {
|
| + _visitIdentifier(node.staticElement, node.name);
|
| + }
|
| +
|
| + void _visitIdentifier(Element element, String name) {
|
| + if (element == null) {
|
| + return;
|
| + }
|
| + // If the element is multiply defined then call this method recursively for
|
| + // each of the conflicting elements.
|
| + if (element is MultiplyDefinedElement) {
|
| + MultiplyDefinedElement multiplyDefinedElement = element;
|
| + for (Element elt in multiplyDefinedElement.conflictingElements) {
|
| + _visitIdentifier(elt, name);
|
| + }
|
| + return;
|
| + } else if (element is PrefixElement) {
|
| + usedElements.prefixes.add(element);
|
| + return;
|
| + } else if (element.enclosingElement is! CompilationUnitElement) {
|
| + // Identifiers that aren't a prefix element and whose enclosing element
|
| + // isn't a CompilationUnit are ignored- this covers the case the
|
| + // identifier is a relative-reference, a reference to an identifier not
|
| + // imported by this library.
|
| + return;
|
| + }
|
| + // Ignore if an unknown library.
|
| + LibraryElement containingLibrary = element.library;
|
| + if (containingLibrary == null) {
|
| + return;
|
| + }
|
| + // Ignore if a local element.
|
| + if (library == containingLibrary) {
|
| + return;
|
| + }
|
| + // Remember the element.
|
| + usedElements.elements.add(element);
|
| + }
|
| +
|
| + /**
|
| + * Given some [NodeList] of [Annotation]s, ensure that the identifiers are visited by
|
| + * this visitor. Specifically, this covers the cases where AST nodes don't have their identifiers
|
| + * visited by this visitor, but still need their annotations visited.
|
| + *
|
| + * @param annotations the list of annotations to visit
|
| + */
|
| + void _visitMetadata(NodeList<Annotation> annotations) {
|
| + int count = annotations.length;
|
| + for (int i = 0; i < count; i++) {
|
| + annotations[i].accept(this);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * An [AstVisitor] that fills [UsedLocalElements].
|
| + */
|
| +class GatherUsedLocalElementsVisitor extends RecursiveAstVisitor {
|
| + final UsedLocalElements usedElements = new UsedLocalElements();
|
| +
|
| + final LibraryElement _enclosingLibrary;
|
| + ClassElement _enclosingClass;
|
| + ExecutableElement _enclosingExec;
|
| +
|
| + GatherUsedLocalElementsVisitor(this._enclosingLibrary);
|
| +
|
| + @override
|
| + visitCatchClause(CatchClause node) {
|
| + SimpleIdentifier exceptionParameter = node.exceptionParameter;
|
| + SimpleIdentifier stackTraceParameter = node.stackTraceParameter;
|
| + if (exceptionParameter != null) {
|
| + Element element = exceptionParameter.staticElement;
|
| + usedElements.addCatchException(element);
|
| + if (stackTraceParameter != null || node.onKeyword == null) {
|
| + usedElements.addElement(element);
|
| + }
|
| + }
|
| + if (stackTraceParameter != null) {
|
| + Element element = stackTraceParameter.staticElement;
|
| + usedElements.addCatchStackTrace(element);
|
| + }
|
| + super.visitCatchClause(node);
|
| + }
|
| +
|
| + @override
|
| + visitClassDeclaration(ClassDeclaration node) {
|
| + ClassElement enclosingClassOld = _enclosingClass;
|
| + try {
|
| + _enclosingClass = node.element;
|
| + super.visitClassDeclaration(node);
|
| + } finally {
|
| + _enclosingClass = enclosingClassOld;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + visitFunctionDeclaration(FunctionDeclaration node) {
|
| + ExecutableElement enclosingExecOld = _enclosingExec;
|
| + try {
|
| + _enclosingExec = node.element;
|
| + super.visitFunctionDeclaration(node);
|
| + } finally {
|
| + _enclosingExec = enclosingExecOld;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + visitFunctionExpression(FunctionExpression node) {
|
| + if (node.parent is! FunctionDeclaration) {
|
| + usedElements.addElement(node.element);
|
| + }
|
| + super.visitFunctionExpression(node);
|
| + }
|
| +
|
| + @override
|
| + visitMethodDeclaration(MethodDeclaration node) {
|
| + ExecutableElement enclosingExecOld = _enclosingExec;
|
| + try {
|
| + _enclosingExec = node.element;
|
| + super.visitMethodDeclaration(node);
|
| + } finally {
|
| + _enclosingExec = enclosingExecOld;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + visitSimpleIdentifier(SimpleIdentifier node) {
|
| + if (node.inDeclarationContext()) {
|
| + return;
|
| + }
|
| + Element element = node.staticElement;
|
| + bool isIdentifierRead = _isReadIdentifier(node);
|
| + if (element is LocalVariableElement) {
|
| + if (isIdentifierRead) {
|
| + usedElements.addElement(element);
|
| + }
|
| + } else {
|
| + _useIdentifierElement(node);
|
| + if (element == null ||
|
| + element.enclosingElement is ClassElement &&
|
| + !identical(element, _enclosingExec)) {
|
| + usedElements.members.add(node.name);
|
| + if (isIdentifierRead) {
|
| + usedElements.readMembers.add(node.name);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Marks an [Element] of [node] as used in the library.
|
| + */
|
| + void _useIdentifierElement(Identifier node) {
|
| + Element element = node.staticElement;
|
| + if (element == null) {
|
| + return;
|
| + }
|
| + // check if a local element
|
| + if (!identical(element.library, _enclosingLibrary)) {
|
| + return;
|
| + }
|
| + // ignore references to an element from itself
|
| + if (identical(element, _enclosingClass)) {
|
| + return;
|
| + }
|
| + if (identical(element, _enclosingExec)) {
|
| + return;
|
| + }
|
| + // ignore places where the element is not actually used
|
| + if (node.parent is TypeName) {
|
| + if (element is ClassElement) {
|
| + AstNode parent2 = node.parent.parent;
|
| + if (parent2 is IsExpression) {
|
| + return;
|
| + }
|
| + if (parent2 is VariableDeclarationList) {
|
| + return;
|
| + }
|
| + }
|
| + }
|
| + // OK
|
| + usedElements.addElement(element);
|
| + }
|
| +
|
| + static bool _isReadIdentifier(SimpleIdentifier node) {
|
| + // not reading at all
|
| + if (!node.inGetterContext()) {
|
| + return false;
|
| + }
|
| + // check if useless reading
|
| + AstNode parent = node.parent;
|
| + if (parent.parent is ExpressionStatement &&
|
| + (parent is PrefixExpression ||
|
| + parent is PostfixExpression ||
|
| + parent is AssignmentExpression && parent.leftHandSide == node)) {
|
| + // v++;
|
| + // ++v;
|
| + // v += 2;
|
| + return false;
|
| + }
|
| + // OK
|
| + return true;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `HintGenerator` traverse a library's worth of dart code at a time to
|
| + * generate hints over the set of sources.
|
| + *
|
| + * See [HintCode].
|
| + */
|
| +class HintGenerator {
|
| + final List<CompilationUnit> _compilationUnits;
|
| +
|
| + final InternalAnalysisContext _context;
|
| +
|
| + final AnalysisErrorListener _errorListener;
|
| +
|
| + LibraryElement _library;
|
| +
|
| + GatherUsedImportedElementsVisitor _usedImportedElementsVisitor;
|
| +
|
| + bool _enableDart2JSHints = false;
|
| +
|
| + /**
|
| + * The inheritance manager used to find overridden methods.
|
| + */
|
| + InheritanceManager _manager;
|
| +
|
| + GatherUsedLocalElementsVisitor _usedLocalElementsVisitor;
|
| +
|
| + HintGenerator(this._compilationUnits, this._context, this._errorListener) {
|
| + _library = _compilationUnits[0].element.library;
|
| + _usedImportedElementsVisitor =
|
| + new GatherUsedImportedElementsVisitor(_library);
|
| + _enableDart2JSHints = _context.analysisOptions.dart2jsHint;
|
| + _manager = new InheritanceManager(_compilationUnits[0].element.library);
|
| + _usedLocalElementsVisitor = new GatherUsedLocalElementsVisitor(_library);
|
| + }
|
| +
|
| + void generateForLibrary() {
|
| + PerformanceStatistics.hints.makeCurrentWhile(() {
|
| + for (CompilationUnit unit in _compilationUnits) {
|
| + CompilationUnitElement element = unit.element;
|
| + if (element != null) {
|
| + _generateForCompilationUnit(unit, element.source);
|
| + }
|
| + }
|
| + CompilationUnit definingUnit = _compilationUnits[0];
|
| + ErrorReporter definingUnitErrorReporter =
|
| + new ErrorReporter(_errorListener, definingUnit.element.source);
|
| + {
|
| + ImportsVerifier importsVerifier = new ImportsVerifier();
|
| + importsVerifier.addImports(definingUnit);
|
| + importsVerifier
|
| + .removeUsedElements(_usedImportedElementsVisitor.usedElements);
|
| + importsVerifier.generateDuplicateImportHints(definingUnitErrorReporter);
|
| + importsVerifier.generateUnusedImportHints(definingUnitErrorReporter);
|
| + }
|
| + _library.accept(new UnusedLocalElementsVerifier(
|
| + _errorListener, _usedLocalElementsVisitor.usedElements));
|
| + });
|
| + }
|
| +
|
| + void _generateForCompilationUnit(CompilationUnit unit, Source source) {
|
| + ErrorReporter errorReporter = new ErrorReporter(_errorListener, source);
|
| + unit.accept(_usedImportedElementsVisitor);
|
| + // dead code analysis
|
| + unit.accept(new DeadCodeVerifier(errorReporter));
|
| + unit.accept(_usedLocalElementsVisitor);
|
| + // dart2js analysis
|
| + if (_enableDart2JSHints) {
|
| + unit.accept(new Dart2JSVerifier(errorReporter));
|
| + }
|
| + // Dart best practices
|
| + unit.accept(
|
| + new BestPracticesVerifier(errorReporter, _context.typeProvider));
|
| + unit.accept(new OverrideVerifier(errorReporter, _manager));
|
| + // Find to-do comments
|
| + new ToDoFinder(errorReporter).findIn(unit);
|
| + // pub analysis
|
| + // TODO(danrubel/jwren) Commented out until bugs in the pub verifier are
|
| + // fixed
|
| + // unit.accept(new PubVerifier(context, errorReporter));
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class {@code HtmlTagInfo} record information about the tags used in an HTML
|
| + * file.
|
| + */
|
| +class HtmlTagInfo {
|
| + /**
|
| + * An array containing all of the tags used in the HTML file.
|
| + */
|
| + List<String> allTags;
|
| +
|
| + /**
|
| + * A table mapping the id's defined in the HTML file to an array containing the names of tags with
|
| + * that identifier.
|
| + */
|
| + HashMap<String, String> idToTagMap;
|
| +
|
| + /**
|
| + * A table mapping the classes defined in the HTML file to an array containing the names of tags
|
| + * with that class.
|
| + */
|
| + HashMap<String, List<String>> classToTagsMap;
|
| +
|
| + /**
|
| + * Initialize a newly created information holder to hold the given information about the tags in
|
| + * an HTML file.
|
| + *
|
| + * @param allTags an array containing all of the tags used in the HTML file
|
| + * @param idToTagMap a table mapping the id's defined in the HTML file to an array containing the
|
| + * names of tags with that identifier
|
| + * @param classToTagsMap a table mapping the classes defined in the HTML file to an array
|
| + * containing the names of tags with that class
|
| + */
|
| + HtmlTagInfo(this.allTags, this.idToTagMap, this.classToTagsMap);
|
| +
|
| + /**
|
| + * Return an array containing the tags that have the given class, or {@code null} if there are no
|
| + * such tags.
|
| + *
|
| + * @return an array containing the tags that have the given class
|
| + */
|
| + List<String> getTagsWithClass(String identifier) {
|
| + return classToTagsMap[identifier];
|
| + }
|
| +
|
| + /**
|
| + * Return the tag that has the given identifier, or {@code null} if there is no such tag (the
|
| + * identifier is not defined).
|
| + *
|
| + * @return the tag that has the given identifier
|
| + */
|
| + String getTagWithId(String identifier) {
|
| + return idToTagMap[identifier];
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class {@code HtmlTagInfoBuilder} gather information about the tags used in one
|
| + * or more HTML structures.
|
| + */
|
| +class HtmlTagInfoBuilder implements ht.XmlVisitor {
|
| + /**
|
| + * The name of the 'id' attribute.
|
| + */
|
| + static final String ID_ATTRIBUTE = "id";
|
| +
|
| + /**
|
| + * The name of the 'class' attribute.
|
| + */
|
| + static final String ID_CLASS = "class";
|
| +
|
| + /**
|
| + * A set containing all of the tag names used in the HTML.
|
| + */
|
| + HashSet<String> tagSet = new HashSet<String>();
|
| +
|
| + /**
|
| + * A table mapping the id's that are defined to the tag name with that id.
|
| + */
|
| + HashMap<String, String> idMap = new HashMap<String, String>();
|
| +
|
| + /**
|
| + * A table mapping the classes that are defined to a set of the tag names with that class.
|
| + */
|
| + HashMap<String, HashSet<String>> classMap =
|
| + new HashMap<String, HashSet<String>>();
|
| +
|
| + /**
|
| + * Initialize a newly created HTML tag info builder.
|
| + */
|
| + HtmlTagInfoBuilder();
|
| +
|
| + /**
|
| + * Create a tag information holder holding all of the information gathered about the tags in the
|
| + * HTML structures that were visited.
|
| + *
|
| + * @return the information gathered about the tags in the visited HTML structures
|
| + */
|
| + HtmlTagInfo getTagInfo() {
|
| + List<String> allTags = tagSet.toList();
|
| + HashMap<String, List<String>> classToTagsMap =
|
| + new HashMap<String, List<String>>();
|
| + classMap.forEach((String key, Set<String> tags) {
|
| + classToTagsMap[key] = tags.toList();
|
| + });
|
| + return new HtmlTagInfo(allTags, idMap, classToTagsMap);
|
| + }
|
| +
|
| + @override
|
| + visitHtmlScriptTagNode(ht.HtmlScriptTagNode node) {
|
| + visitXmlTagNode(node);
|
| + }
|
| +
|
| + @override
|
| + visitHtmlUnit(ht.HtmlUnit node) {
|
| + node.visitChildren(this);
|
| + }
|
| +
|
| + @override
|
| + visitXmlAttributeNode(ht.XmlAttributeNode node) {}
|
| +
|
| + @override
|
| + visitXmlTagNode(ht.XmlTagNode node) {
|
| + node.visitChildren(this);
|
| + String tagName = node.tag;
|
| + tagSet.add(tagName);
|
| + for (ht.XmlAttributeNode attribute in node.attributes) {
|
| + String attributeName = attribute.name;
|
| + if (attributeName == ID_ATTRIBUTE) {
|
| + String attributeValue = attribute.text;
|
| + if (attributeValue != null) {
|
| + String tag = idMap[attributeValue];
|
| + if (tag == null) {
|
| + idMap[attributeValue] = tagName;
|
| + } else {
|
| +// reportError(HtmlWarningCode.MULTIPLY_DEFINED_ID, valueToken);
|
| + }
|
| + }
|
| + } else if (attributeName == ID_CLASS) {
|
| + String attributeValue = attribute.text;
|
| + if (attributeValue != null) {
|
| + HashSet<String> tagList = classMap[attributeValue];
|
| + if (tagList == null) {
|
| + tagList = new HashSet<String>();
|
| + classMap[attributeValue] = tagList;
|
| + } else {
|
| +// reportError(HtmlWarningCode.MULTIPLY_DEFINED_ID, valueToken);
|
| + }
|
| + tagList.add(tagName);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| +// /**
|
| +// * Report an error with the given error code at the given location. Use the given arguments to
|
| +// * compose the error message.
|
| +// *
|
| +// * @param errorCode the error code of the error to be reported
|
| +// * @param offset the offset of the first character to be highlighted
|
| +// * @param length the number of characters to be highlighted
|
| +// * @param arguments the arguments used to compose the error message
|
| +// */
|
| +// private void reportError(ErrorCode errorCode, Token token, Object... arguments) {
|
| +// errorListener.onError(new AnalysisError(
|
| +// htmlElement.getSource(),
|
| +// token.getOffset(),
|
| +// token.getLength(),
|
| +// errorCode,
|
| +// arguments));
|
| +// }
|
| +//
|
| +// /**
|
| +// * Report an error with the given error code at the given location. Use the given arguments to
|
| +// * compose the error message.
|
| +// *
|
| +// * @param errorCode the error code of the error to be reported
|
| +// * @param offset the offset of the first character to be highlighted
|
| +// * @param length the number of characters to be highlighted
|
| +// * @param arguments the arguments used to compose the error message
|
| +// */
|
| +// private void reportError(ErrorCode errorCode, int offset, int length, Object... arguments) {
|
| +// errorListener.onError(new AnalysisError(
|
| +// htmlElement.getSource(),
|
| +// offset,
|
| +// length,
|
| +// errorCode,
|
| +// arguments));
|
| +// }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `HtmlUnitBuilder` build an element model for a single HTML unit.
|
| + */
|
| +class HtmlUnitBuilder implements ht.XmlVisitor<Object> {
|
| + static String _SRC = "src";
|
| +
|
| + /**
|
| + * The analysis context in which the element model will be built.
|
| + */
|
| + final InternalAnalysisContext _context;
|
| +
|
| + /**
|
| + * The error listener to which errors will be reported.
|
| + */
|
| + RecordingErrorListener _errorListener;
|
| +
|
| + /**
|
| + * The HTML element being built.
|
| + */
|
| + HtmlElementImpl _htmlElement;
|
| +
|
| + /**
|
| + * The elements in the path from the HTML unit to the current tag node.
|
| + */
|
| + List<ht.XmlTagNode> _parentNodes;
|
| +
|
| + /**
|
| + * The script elements being built.
|
| + */
|
| + List<HtmlScriptElement> _scripts;
|
| +
|
| + /**
|
| + * A set of the libraries that were resolved while resolving the HTML unit.
|
| + */
|
| + Set<Library> _resolvedLibraries = new HashSet<Library>();
|
| +
|
| + /**
|
| + * Initialize a newly created HTML unit builder.
|
| + *
|
| + * @param context the analysis context in which the element model will be built
|
| + */
|
| + HtmlUnitBuilder(this._context) {
|
| + this._errorListener = new RecordingErrorListener();
|
| + }
|
| +
|
| + /**
|
| + * Return the listener to which analysis errors will be reported.
|
| + *
|
| + * @return the listener to which analysis errors will be reported
|
| + */
|
| + RecordingErrorListener get errorListener => _errorListener;
|
| +
|
| + /**
|
| + * Return an array containing information about all of the libraries that were resolved.
|
| + *
|
| + * @return an array containing the libraries that were resolved
|
| + */
|
| + Set<Library> get resolvedLibraries => _resolvedLibraries;
|
| +
|
| + /**
|
| + * Build the HTML element for the given source.
|
| + *
|
| + * @param source the source describing the compilation unit
|
| + * @param unit the AST structure representing the HTML
|
| + * @throws AnalysisException if the analysis could not be performed
|
| + */
|
| + HtmlElementImpl buildHtmlElement(Source source, ht.HtmlUnit unit) {
|
| + HtmlElementImpl result = new HtmlElementImpl(_context, source.shortName);
|
| + result.source = source;
|
| + _htmlElement = result;
|
| + unit.accept(this);
|
| + _htmlElement = null;
|
| + unit.element = result;
|
| + return result;
|
| + }
|
| +
|
| + @override
|
| + Object visitHtmlScriptTagNode(ht.HtmlScriptTagNode node) {
|
| + if (_parentNodes.contains(node)) {
|
| + return _reportCircularity(node);
|
| + }
|
| + _parentNodes.add(node);
|
| + try {
|
| + Source htmlSource = _htmlElement.source;
|
| + ht.XmlAttributeNode scriptAttribute = _getScriptSourcePath(node);
|
| + String scriptSourcePath =
|
| + scriptAttribute == null ? null : scriptAttribute.text;
|
| + if (node.attributeEnd.type == ht.TokenType.GT &&
|
| + scriptSourcePath == null) {
|
| + EmbeddedHtmlScriptElementImpl script =
|
| + new EmbeddedHtmlScriptElementImpl(node);
|
| + try {
|
| + LibraryResolver resolver = new LibraryResolver(_context);
|
| + LibraryElementImpl library =
|
| + resolver.resolveEmbeddedLibrary(htmlSource, node.script, true);
|
| + script.scriptLibrary = library;
|
| + _resolvedLibraries.addAll(resolver.resolvedLibraries);
|
| + _errorListener.addAll(resolver.errorListener);
|
| + } on AnalysisException catch (exception, stackTrace) {
|
| + //TODO (danrubel): Handle or forward the exception
|
| + AnalysisEngine.instance.logger.logError(
|
| + "Could not resolve script tag",
|
| + new CaughtException(exception, stackTrace));
|
| + }
|
| + node.scriptElement = script;
|
| + _scripts.add(script);
|
| + } else {
|
| + ExternalHtmlScriptElementImpl script =
|
| + new ExternalHtmlScriptElementImpl(node);
|
| + if (scriptSourcePath != null) {
|
| + try {
|
| + scriptSourcePath = Uri.encodeFull(scriptSourcePath);
|
| + // Force an exception to be thrown if the URI is invalid so that we
|
| + // can report the problem.
|
| + parseUriWithException(scriptSourcePath);
|
| + Source scriptSource =
|
| + _context.sourceFactory.resolveUri(htmlSource, scriptSourcePath);
|
| + script.scriptSource = scriptSource;
|
| + if (!_context.exists(scriptSource)) {
|
| + _reportValueError(HtmlWarningCode.URI_DOES_NOT_EXIST,
|
| + scriptAttribute, [scriptSourcePath]);
|
| + }
|
| + } on URISyntaxException {
|
| + _reportValueError(HtmlWarningCode.INVALID_URI, scriptAttribute,
|
| + [scriptSourcePath]);
|
| + }
|
| + }
|
| + node.scriptElement = script;
|
| + _scripts.add(script);
|
| + }
|
| + } finally {
|
| + _parentNodes.remove(node);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitHtmlUnit(ht.HtmlUnit node) {
|
| + _parentNodes = new List<ht.XmlTagNode>();
|
| + _scripts = new List<HtmlScriptElement>();
|
| + try {
|
| + node.visitChildren(this);
|
| + _htmlElement.scripts = new List.from(_scripts);
|
| + } finally {
|
| + _scripts = null;
|
| + _parentNodes = null;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitXmlAttributeNode(ht.XmlAttributeNode node) => null;
|
| +
|
| + @override
|
| + Object visitXmlTagNode(ht.XmlTagNode node) {
|
| + if (_parentNodes.contains(node)) {
|
| + return _reportCircularity(node);
|
| + }
|
| + _parentNodes.add(node);
|
| + try {
|
| + node.visitChildren(this);
|
| + } finally {
|
| + _parentNodes.remove(node);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Return the first source attribute for the given tag node, or `null` if it does not exist.
|
| + *
|
| + * @param node the node containing attributes
|
| + * @return the source attribute contained in the given tag
|
| + */
|
| + ht.XmlAttributeNode _getScriptSourcePath(ht.XmlTagNode node) {
|
| + for (ht.XmlAttributeNode attribute in node.attributes) {
|
| + if (attribute.name == _SRC) {
|
| + return attribute;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + Object _reportCircularity(ht.XmlTagNode node) {
|
| + //
|
| + // This should not be possible, but we have an error report that suggests
|
| + // that it happened at least once. This code will guard against infinite
|
| + // recursion and might help us identify the cause of the issue.
|
| + //
|
| + StringBuffer buffer = new StringBuffer();
|
| + buffer.write("Found circularity in XML nodes: ");
|
| + bool first = true;
|
| + for (ht.XmlTagNode pathNode in _parentNodes) {
|
| + if (first) {
|
| + first = false;
|
| + } else {
|
| + buffer.write(", ");
|
| + }
|
| + String tagName = pathNode.tag;
|
| + if (identical(pathNode, node)) {
|
| + buffer.write("*");
|
| + buffer.write(tagName);
|
| + buffer.write("*");
|
| + } else {
|
| + buffer.write(tagName);
|
| + }
|
| + }
|
| + AnalysisEngine.instance.logger.logError(buffer.toString());
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Report an error with the given error code at the given location. Use the given arguments to
|
| + * compose the error message.
|
| + *
|
| + * @param errorCode the error code of the error to be reported
|
| + * @param offset the offset of the first character to be highlighted
|
| + * @param length the number of characters to be highlighted
|
| + * @param arguments the arguments used to compose the error message
|
| + */
|
| + void _reportErrorForOffset(
|
| + ErrorCode errorCode, int offset, int length, List<Object> arguments) {
|
| + _errorListener.onError(new AnalysisError(
|
| + _htmlElement.source, offset, length, errorCode, arguments));
|
| + }
|
| +
|
| + /**
|
| + * Report an error with the given error code at the location of the value of the given attribute.
|
| + * Use the given arguments to compose the error message.
|
| + *
|
| + * @param errorCode the error code of the error to be reported
|
| + * @param offset the offset of the first character to be highlighted
|
| + * @param length the number of characters to be highlighted
|
| + * @param arguments the arguments used to compose the error message
|
| + */
|
| + void _reportValueError(ErrorCode errorCode, ht.XmlAttributeNode attribute,
|
| + List<Object> arguments) {
|
| + int offset = attribute.valueToken.offset + 1;
|
| + int length = attribute.valueToken.length - 2;
|
| + _reportErrorForOffset(errorCode, offset, length, arguments);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `ImplicitLabelScope` represent the scope statements
|
| + * that can be the target of unlabeled break and continue statements.
|
| + */
|
| +class ImplicitLabelScope {
|
| + /**
|
| + * The implicit label scope associated with the top level of a function.
|
| + */
|
| + static const ImplicitLabelScope ROOT = const ImplicitLabelScope._(null, null);
|
| +
|
| + /**
|
| + * The implicit label scope enclosing this implicit label scope.
|
| + */
|
| + final ImplicitLabelScope outerScope;
|
| +
|
| + /**
|
| + * The statement that acts as a target for break and/or continue statements
|
| + * at this scoping level.
|
| + */
|
| + final Statement statement;
|
| +
|
| + /**
|
| + * Private constructor.
|
| + */
|
| + const ImplicitLabelScope._(this.outerScope, this.statement);
|
| +
|
| + /**
|
| + * Get the statement which should be the target of an unlabeled `break` or
|
| + * `continue` statement, or `null` if there is no appropriate target.
|
| + */
|
| + Statement getTarget(bool isContinue) {
|
| + if (outerScope == null) {
|
| + // This scope represents the toplevel of a function body, so it doesn't
|
| + // match either break or continue.
|
| + return null;
|
| + }
|
| + if (isContinue && statement is SwitchStatement) {
|
| + return outerScope.getTarget(isContinue);
|
| + }
|
| + return statement;
|
| + }
|
| +
|
| + /**
|
| + * Initialize a newly created scope to represent a switch statement or loop
|
| + * nested within the current scope. [statement] is the statement associated
|
| + * with the newly created scope.
|
| + */
|
| + ImplicitLabelScope nest(Statement statement) =>
|
| + new ImplicitLabelScope._(this, statement);
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `ImportsVerifier` visit all of the referenced libraries in the
|
| + * source code verifying that all of the imports are used, otherwise a
|
| + * [HintCode.UNUSED_IMPORT] is generated with
|
| + * [generateUnusedImportHints].
|
| + *
|
| + * While this class does not yet have support for an "Organize Imports" action, this logic built up
|
| + * in this class could be used for such an action in the future.
|
| + */
|
| +class ImportsVerifier /*extends RecursiveAstVisitor<Object>*/ {
|
| + /**
|
| + * A list of [ImportDirective]s that the current library imports, as identifiers are visited
|
| + * by this visitor and an import has been identified as being used by the library, the
|
| + * [ImportDirective] is removed from this list. After all the sources in the library have
|
| + * been evaluated, this list represents the set of unused imports.
|
| + *
|
| + * See [ImportsVerifier.generateUnusedImportErrors].
|
| + */
|
| + final List<ImportDirective> _unusedImports = <ImportDirective>[];
|
| +
|
| + /**
|
| + * After the list of [unusedImports] has been computed, this list is a proper subset of the
|
| + * unused imports that are listed more than once.
|
| + */
|
| + final List<ImportDirective> _duplicateImports = <ImportDirective>[];
|
| +
|
| + /**
|
| + * This is a map between the set of [LibraryElement]s that the current library imports, and
|
| + * a list of [ImportDirective]s that imports the library. In cases where the current library
|
| + * imports a library with a single directive (such as `import lib1.dart;`), the library
|
| + * element will map to a list of one [ImportDirective], which will then be removed from the
|
| + * [unusedImports] list. In cases where the current library imports a library with multiple
|
| + * directives (such as `import lib1.dart; import lib1.dart show C;`), the
|
| + * [LibraryElement] will be mapped to a list of the import directives, and the namespace
|
| + * will need to be used to compute the correct [ImportDirective] being used, see
|
| + * [namespaceMap].
|
| + */
|
| + final HashMap<LibraryElement, List<ImportDirective>> _libraryMap =
|
| + new HashMap<LibraryElement, List<ImportDirective>>();
|
| +
|
| + /**
|
| + * In cases where there is more than one import directive per library element, this mapping is
|
| + * used to determine which of the multiple import directives are used by generating a
|
| + * [Namespace] for each of the imports to do lookups in the same way that they are done from
|
| + * the [ElementResolver].
|
| + */
|
| + final HashMap<ImportDirective, Namespace> _namespaceMap =
|
| + new HashMap<ImportDirective, Namespace>();
|
| +
|
| + /**
|
| + * This is a map between prefix elements and the import directives from which they are derived. In
|
| + * cases where a type is referenced via a prefix element, the import directive can be marked as
|
| + * used (removed from the unusedImports) by looking at the resolved `lib` in `lib.X`,
|
| + * instead of looking at which library the `lib.X` resolves.
|
| + *
|
| + * TODO (jwren) Since multiple [ImportDirective]s can share the same [PrefixElement],
|
| + * it is possible to have an unreported unused import in situations where two imports use the same
|
| + * prefix and at least one import directive is used.
|
| + */
|
| + final HashMap<PrefixElement, List<ImportDirective>> _prefixElementMap =
|
| + new HashMap<PrefixElement, List<ImportDirective>>();
|
| +
|
| + void addImports(CompilationUnit node) {
|
| + for (Directive directive in node.directives) {
|
| + if (directive is ImportDirective) {
|
| + ImportDirective importDirective = directive;
|
| + LibraryElement libraryElement = importDirective.uriElement;
|
| + if (libraryElement != null) {
|
| + _unusedImports.add(importDirective);
|
| + //
|
| + // Initialize prefixElementMap
|
| + //
|
| + if (importDirective.asKeyword != null) {
|
| + SimpleIdentifier prefixIdentifier = importDirective.prefix;
|
| + if (prefixIdentifier != null) {
|
| + Element element = prefixIdentifier.staticElement;
|
| + if (element is PrefixElement) {
|
| + PrefixElement prefixElementKey = element;
|
| + List<ImportDirective> list =
|
| + _prefixElementMap[prefixElementKey];
|
| + if (list == null) {
|
| + list = new List<ImportDirective>();
|
| + _prefixElementMap[prefixElementKey] = list;
|
| + }
|
| + list.add(importDirective);
|
| + }
|
| + // TODO (jwren) Can the element ever not be a PrefixElement?
|
| + }
|
| + }
|
| + //
|
| + // Initialize libraryMap: libraryElement -> importDirective
|
| + //
|
| + _putIntoLibraryMap(libraryElement, importDirective);
|
| + //
|
| + // For this new addition to the libraryMap, also recursively add any
|
| + // exports from the libraryElement.
|
| + //
|
| + _addAdditionalLibrariesForExports(
|
| + libraryElement, importDirective, new List<LibraryElement>());
|
| + }
|
| + }
|
| + }
|
| + if (_unusedImports.length > 1) {
|
| + // order the list of unusedImports to find duplicates in faster than
|
| + // O(n^2) time
|
| + List<ImportDirective> importDirectiveArray =
|
| + new List<ImportDirective>.from(_unusedImports);
|
| + importDirectiveArray.sort(ImportDirective.COMPARATOR);
|
| + ImportDirective currentDirective = importDirectiveArray[0];
|
| + for (int i = 1; i < importDirectiveArray.length; i++) {
|
| + ImportDirective nextDirective = importDirectiveArray[i];
|
| + if (ImportDirective.COMPARATOR(currentDirective, nextDirective) == 0) {
|
| + // Add either the currentDirective or nextDirective depending on which
|
| + // comes second, this guarantees that the first of the duplicates
|
| + // won't be highlighted.
|
| + if (currentDirective.offset < nextDirective.offset) {
|
| + _duplicateImports.add(nextDirective);
|
| + } else {
|
| + _duplicateImports.add(currentDirective);
|
| + }
|
| + }
|
| + currentDirective = nextDirective;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Any time after the defining compilation unit has been visited by this visitor, this method can
|
| + * be called to report an [HintCode.DUPLICATE_IMPORT] hint for each of the import directives
|
| + * in the [duplicateImports] list.
|
| + *
|
| + * @param errorReporter the error reporter to report the set of [HintCode.DUPLICATE_IMPORT]
|
| + * hints to
|
| + */
|
| + void generateDuplicateImportHints(ErrorReporter errorReporter) {
|
| + for (ImportDirective duplicateImport in _duplicateImports) {
|
| + errorReporter.reportErrorForNode(
|
| + HintCode.DUPLICATE_IMPORT, duplicateImport.uri);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * After all of the compilation units have been visited by this visitor, this method can be called
|
| + * to report an [HintCode.UNUSED_IMPORT] hint for each of the import directives in the
|
| + * [unusedImports] list.
|
| + *
|
| + * @param errorReporter the error reporter to report the set of [HintCode.UNUSED_IMPORT]
|
| + * hints to
|
| + */
|
| + void generateUnusedImportHints(ErrorReporter errorReporter) {
|
| + for (ImportDirective unusedImport in _unusedImports) {
|
| + // Check that the import isn't dart:core
|
| + ImportElement importElement = unusedImport.element;
|
| + if (importElement != null) {
|
| + LibraryElement libraryElement = importElement.importedLibrary;
|
| + if (libraryElement != null && libraryElement.isDartCore) {
|
| + continue;
|
| + }
|
| + }
|
| + errorReporter.reportErrorForNode(
|
| + HintCode.UNUSED_IMPORT, unusedImport.uri);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Remove elements from [_unusedImports] using the given [usedElements].
|
| + */
|
| + void removeUsedElements(UsedImportedElements usedElements) {
|
| + // Stop if all the imports are known to be used.
|
| + if (_unusedImports.isEmpty) {
|
| + return;
|
| + }
|
| + // Process import prefixes.
|
| + for (PrefixElement prefix in usedElements.prefixes) {
|
| + List<ImportDirective> importDirectives = _prefixElementMap[prefix];
|
| + if (importDirectives != null) {
|
| + for (ImportDirective importDirective in importDirectives) {
|
| + _unusedImports.remove(importDirective);
|
| + }
|
| + }
|
| + }
|
| + // Process top-level elements.
|
| + for (Element element in usedElements.elements) {
|
| + // Stop if all the imports are known to be used.
|
| + if (_unusedImports.isEmpty) {
|
| + return;
|
| + }
|
| + // Prepare import directives for this library.
|
| + LibraryElement library = element.library;
|
| + List<ImportDirective> importsLibrary = _libraryMap[library];
|
| + if (importsLibrary == null) {
|
| + continue;
|
| + }
|
| + // If there is only one import directive for this library, then it must be
|
| + // the directive that this element is imported with, remove it from the
|
| + // unusedImports list.
|
| + if (importsLibrary.length == 1) {
|
| + ImportDirective usedImportDirective = importsLibrary[0];
|
| + _unusedImports.remove(usedImportDirective);
|
| + continue;
|
| + }
|
| + // Otherwise, find import directives using namespaces.
|
| + String name = element.displayName;
|
| + for (ImportDirective importDirective in importsLibrary) {
|
| + Namespace namespace = _computeNamespace(importDirective);
|
| + if (namespace != null && namespace.get(name) != null) {
|
| + _unusedImports.remove(importDirective);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Recursively add any exported library elements into the [libraryMap].
|
| + */
|
| + void _addAdditionalLibrariesForExports(LibraryElement library,
|
| + ImportDirective importDirective, List<LibraryElement> exportPath) {
|
| + if (exportPath.contains(library)) {
|
| + return;
|
| + }
|
| + exportPath.add(library);
|
| + for (LibraryElement exportedLibraryElt in library.exportedLibraries) {
|
| + _putIntoLibraryMap(exportedLibraryElt, importDirective);
|
| + _addAdditionalLibrariesForExports(
|
| + exportedLibraryElt, importDirective, exportPath);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Lookup and return the [Namespace] from the [namespaceMap], if the map does not
|
| + * have the computed namespace, compute it and cache it in the map. If the import directive is not
|
| + * resolved or is not resolvable, `null` is returned.
|
| + *
|
| + * @param importDirective the import directive used to compute the returned namespace
|
| + * @return the computed or looked up [Namespace]
|
| + */
|
| + Namespace _computeNamespace(ImportDirective importDirective) {
|
| + Namespace namespace = _namespaceMap[importDirective];
|
| + if (namespace == null) {
|
| + // If the namespace isn't in the namespaceMap, then compute and put it in
|
| + // the map.
|
| + ImportElement importElement = importDirective.element;
|
| + if (importElement != null) {
|
| + NamespaceBuilder builder = new NamespaceBuilder();
|
| + namespace = builder.createImportNamespaceForDirective(importElement);
|
| + _namespaceMap[importDirective] = namespace;
|
| + }
|
| + }
|
| + return namespace;
|
| + }
|
| +
|
| + /**
|
| + * The [libraryMap] is a mapping between a library elements and a list of import
|
| + * directives, but when adding these mappings into the [libraryMap], this method can be
|
| + * used to simply add the mapping between the library element an an import directive without
|
| + * needing to check to see if a list needs to be created.
|
| + */
|
| + void _putIntoLibraryMap(
|
| + LibraryElement libraryElement, ImportDirective importDirective) {
|
| + List<ImportDirective> importList = _libraryMap[libraryElement];
|
| + if (importList == null) {
|
| + importList = new List<ImportDirective>();
|
| + _libraryMap[libraryElement] = importList;
|
| + }
|
| + importList.add(importDirective);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `InheritanceManager` manage the knowledge of where class members
|
| + * (methods, getters & setters) are inherited from.
|
| + */
|
| +class InheritanceManager {
|
| + /**
|
| + * The [LibraryElement] that is managed by this manager.
|
| + */
|
| + LibraryElement _library;
|
| +
|
| + /**
|
| + * This is a mapping between each [ClassElement] and a map between the [String] member
|
| + * names and the associated [ExecutableElement] in the mixin and superclass chain.
|
| + */
|
| + HashMap<ClassElement, MemberMap> _classLookup;
|
| +
|
| + /**
|
| + * This is a mapping between each [ClassElement] and a map between the [String] member
|
| + * names and the associated [ExecutableElement] in the interface set.
|
| + */
|
| + HashMap<ClassElement, MemberMap> _interfaceLookup;
|
| +
|
| + /**
|
| + * A map between each visited [ClassElement] and the set of [AnalysisError]s found on
|
| + * the class element.
|
| + */
|
| + HashMap<ClassElement, HashSet<AnalysisError>> _errorsInClassElement =
|
| + new HashMap<ClassElement, HashSet<AnalysisError>>();
|
| +
|
| + /**
|
| + * Initialize a newly created inheritance manager.
|
| + *
|
| + * @param library the library element context that the inheritance mappings are being generated
|
| + */
|
| + InheritanceManager(LibraryElement library) {
|
| + this._library = library;
|
| + _classLookup = new HashMap<ClassElement, MemberMap>();
|
| + _interfaceLookup = new HashMap<ClassElement, MemberMap>();
|
| + }
|
| +
|
| + /**
|
| + * Set the new library element context.
|
| + *
|
| + * @param library the new library element
|
| + */
|
| + void set libraryElement(LibraryElement library) {
|
| + this._library = library;
|
| + }
|
| +
|
| + /**
|
| + * Return the set of [AnalysisError]s found on the passed [ClassElement], or
|
| + * `null` if there are none.
|
| + *
|
| + * @param classElt the class element to query
|
| + * @return the set of [AnalysisError]s found on the passed [ClassElement], or
|
| + * `null` if there are none
|
| + */
|
| + HashSet<AnalysisError> getErrors(ClassElement classElt) =>
|
| + _errorsInClassElement[classElt];
|
| +
|
| + /**
|
| + * Get and return a mapping between the set of all string names of the members inherited from the
|
| + * passed [ClassElement] superclass hierarchy, and the associated [ExecutableElement].
|
| + *
|
| + * @param classElt the class element to query
|
| + * @return a mapping between the set of all members inherited from the passed [ClassElement]
|
| + * superclass hierarchy, and the associated [ExecutableElement]
|
| + */
|
| + MemberMap getMapOfMembersInheritedFromClasses(ClassElement classElt) =>
|
| + _computeClassChainLookupMap(classElt, new HashSet<ClassElement>());
|
| +
|
| + /**
|
| + * Get and return a mapping between the set of all string names of the members inherited from the
|
| + * passed [ClassElement] interface hierarchy, and the associated [ExecutableElement].
|
| + *
|
| + * @param classElt the class element to query
|
| + * @return a mapping between the set of all string names of the members inherited from the passed
|
| + * [ClassElement] interface hierarchy, and the associated [ExecutableElement].
|
| + */
|
| + MemberMap getMapOfMembersInheritedFromInterfaces(ClassElement classElt) =>
|
| + _computeInterfaceLookupMap(classElt, new HashSet<ClassElement>());
|
| +
|
| + /**
|
| + * Given some [ClassElement] and some member name, this returns the
|
| + * [ExecutableElement] that the class inherits from the mixins,
|
| + * superclasses or interfaces, that has the member name, if no member is inherited `null` is
|
| + * returned.
|
| + *
|
| + * @param classElt the class element to query
|
| + * @param memberName the name of the executable element to find and return
|
| + * @return the inherited executable element with the member name, or `null` if no such
|
| + * member exists
|
| + */
|
| + ExecutableElement lookupInheritance(
|
| + ClassElement classElt, String memberName) {
|
| + if (memberName == null || memberName.isEmpty) {
|
| + return null;
|
| + }
|
| + ExecutableElement executable = _computeClassChainLookupMap(
|
| + classElt, new HashSet<ClassElement>()).get(memberName);
|
| + if (executable == null) {
|
| + return _computeInterfaceLookupMap(classElt, new HashSet<ClassElement>())
|
| + .get(memberName);
|
| + }
|
| + return executable;
|
| + }
|
| +
|
| + /**
|
| + * Given some [ClassElement] and some member name, this returns the
|
| + * [ExecutableElement] that the class either declares itself, or
|
| + * inherits, that has the member name, if no member is inherited `null` is returned.
|
| + *
|
| + * @param classElt the class element to query
|
| + * @param memberName the name of the executable element to find and return
|
| + * @return the inherited executable element with the member name, or `null` if no such
|
| + * member exists
|
| + */
|
| + ExecutableElement lookupMember(ClassElement classElt, String memberName) {
|
| + ExecutableElement element = _lookupMemberInClass(classElt, memberName);
|
| + if (element != null) {
|
| + return element;
|
| + }
|
| + return lookupInheritance(classElt, memberName);
|
| + }
|
| +
|
| + /**
|
| + * Given some [InterfaceType] and some member name, this returns the
|
| + * [FunctionType] of the [ExecutableElement] that the
|
| + * class either declares itself, or inherits, that has the member name, if no member is inherited
|
| + * `null` is returned. The returned [FunctionType] has all type
|
| + * parameters substituted with corresponding type arguments from the given [InterfaceType].
|
| + *
|
| + * @param interfaceType the interface type to query
|
| + * @param memberName the name of the executable element to find and return
|
| + * @return the member's function type, or `null` if no such member exists
|
| + */
|
| + FunctionType lookupMemberType(
|
| + InterfaceType interfaceType, String memberName) {
|
| + ExecutableElement iteratorMember =
|
| + lookupMember(interfaceType.element, memberName);
|
| + if (iteratorMember == null) {
|
| + return null;
|
| + }
|
| + return substituteTypeArgumentsInMemberFromInheritance(
|
| + iteratorMember.type, memberName, interfaceType);
|
| + }
|
| +
|
| + /**
|
| + * Determine the set of methods which is overridden by the given class member. If no member is
|
| + * inherited, an empty list is returned. If one of the inherited members is a
|
| + * [MultiplyInheritedExecutableElement], then it is expanded into its constituent inherited
|
| + * elements.
|
| + *
|
| + * @param classElt the class to query
|
| + * @param memberName the name of the class member to query
|
| + * @return a list of overridden methods
|
| + */
|
| + List<ExecutableElement> lookupOverrides(
|
| + ClassElement classElt, String memberName) {
|
| + List<ExecutableElement> result = new List<ExecutableElement>();
|
| + if (memberName == null || memberName.isEmpty) {
|
| + return result;
|
| + }
|
| + List<MemberMap> interfaceMaps =
|
| + _gatherInterfaceLookupMaps(classElt, new HashSet<ClassElement>());
|
| + if (interfaceMaps != null) {
|
| + for (MemberMap interfaceMap in interfaceMaps) {
|
| + ExecutableElement overriddenElement = interfaceMap.get(memberName);
|
| + if (overriddenElement != null) {
|
| + if (overriddenElement is MultiplyInheritedExecutableElement) {
|
| + MultiplyInheritedExecutableElement multiplyInheritedElement =
|
| + overriddenElement;
|
| + for (ExecutableElement element
|
| + in multiplyInheritedElement.inheritedElements) {
|
| + result.add(element);
|
| + }
|
| + } else {
|
| + result.add(overriddenElement);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + return result;
|
| + }
|
| +
|
| + /**
|
| + * This method takes some inherited [FunctionType], and resolves all the parameterized types
|
| + * in the function type, dependent on the class in which it is being overridden.
|
| + *
|
| + * @param baseFunctionType the function type that is being overridden
|
| + * @param memberName the name of the member, this is used to lookup the inheritance path of the
|
| + * override
|
| + * @param definingType the type that is overriding the member
|
| + * @return the passed function type with any parameterized types substituted
|
| + */
|
| + FunctionType substituteTypeArgumentsInMemberFromInheritance(
|
| + FunctionType baseFunctionType,
|
| + String memberName,
|
| + InterfaceType definingType) {
|
| + // if the baseFunctionType is null, or does not have any parameters,
|
| + // return it.
|
| + if (baseFunctionType == null ||
|
| + baseFunctionType.typeArguments.length == 0) {
|
| + return baseFunctionType;
|
| + }
|
| + // First, generate the path from the defining type to the overridden member
|
| + Queue<InterfaceType> inheritancePath = new Queue<InterfaceType>();
|
| + _computeInheritancePath(inheritancePath, definingType, memberName);
|
| + if (inheritancePath == null || inheritancePath.isEmpty) {
|
| + // TODO(jwren) log analysis engine error
|
| + return baseFunctionType;
|
| + }
|
| + FunctionType functionTypeToReturn = baseFunctionType;
|
| + // loop backward through the list substituting as we go:
|
| + while (!inheritancePath.isEmpty) {
|
| + InterfaceType lastType = inheritancePath.removeLast();
|
| + List<DartType> parameterTypes = lastType.element.type.typeArguments;
|
| + List<DartType> argumentTypes = lastType.typeArguments;
|
| + functionTypeToReturn =
|
| + functionTypeToReturn.substitute2(argumentTypes, parameterTypes);
|
| + }
|
| + return functionTypeToReturn;
|
| + }
|
| +
|
| + /**
|
| + * Compute and return a mapping between the set of all string names of the members inherited from
|
| + * the passed [ClassElement] superclass hierarchy, and the associated
|
| + * [ExecutableElement].
|
| + *
|
| + * @param classElt the class element to query
|
| + * @param visitedClasses a set of visited classes passed back into this method when it calls
|
| + * itself recursively
|
| + * @return a mapping between the set of all string names of the members inherited from the passed
|
| + * [ClassElement] superclass hierarchy, and the associated [ExecutableElement]
|
| + */
|
| + MemberMap _computeClassChainLookupMap(
|
| + ClassElement classElt, HashSet<ClassElement> visitedClasses) {
|
| + MemberMap resultMap = _classLookup[classElt];
|
| + if (resultMap != null) {
|
| + return resultMap;
|
| + } else {
|
| + resultMap = new MemberMap();
|
| + }
|
| + ClassElement superclassElt = null;
|
| + InterfaceType supertype = classElt.supertype;
|
| + if (supertype != null) {
|
| + superclassElt = supertype.element;
|
| + } else {
|
| + // classElt is Object
|
| + _classLookup[classElt] = resultMap;
|
| + return resultMap;
|
| + }
|
| + if (superclassElt != null) {
|
| + if (!visitedClasses.contains(superclassElt)) {
|
| + visitedClasses.add(superclassElt);
|
| + try {
|
| + resultMap = new MemberMap.from(
|
| + _computeClassChainLookupMap(superclassElt, visitedClasses));
|
| + //
|
| + // Substitute the super types down the hierarchy.
|
| + //
|
| + _substituteTypeParametersDownHierarchy(supertype, resultMap);
|
| + //
|
| + // Include the members from the superclass in the resultMap.
|
| + //
|
| + _recordMapWithClassMembers(resultMap, supertype, false);
|
| + } finally {
|
| + visitedClasses.remove(superclassElt);
|
| + }
|
| + } else {
|
| + // This case happens only when the superclass was previously visited and
|
| + // not in the lookup, meaning this is meant to shorten the compute for
|
| + // recursive cases.
|
| + _classLookup[superclassElt] = resultMap;
|
| + return resultMap;
|
| + }
|
| + }
|
| + //
|
| + // Include the members from the mixins in the resultMap. If there are
|
| + // multiple mixins, visit them in the order listed so that methods in later
|
| + // mixins will overwrite identically-named methods in earlier mixins.
|
| + //
|
| + List<InterfaceType> mixins = classElt.mixins;
|
| + for (InterfaceType mixin in mixins) {
|
| + ClassElement mixinElement = mixin.element;
|
| + if (mixinElement != null) {
|
| + if (!visitedClasses.contains(mixinElement)) {
|
| + visitedClasses.add(mixinElement);
|
| + try {
|
| + MemberMap map = new MemberMap.from(
|
| + _computeClassChainLookupMap(mixinElement, visitedClasses));
|
| + //
|
| + // Substitute the super types down the hierarchy.
|
| + //
|
| + _substituteTypeParametersDownHierarchy(mixin, map);
|
| + //
|
| + // Include the members from the superclass in the resultMap.
|
| + //
|
| + _recordMapWithClassMembers(map, mixin, false);
|
| + //
|
| + // Add the members from map into result map.
|
| + //
|
| + for (int j = 0; j < map.size; j++) {
|
| + String key = map.getKey(j);
|
| + ExecutableElement value = map.getValue(j);
|
| + if (key != null) {
|
| + ClassElement definingClass = value
|
| + .getAncestor((Element element) => element is ClassElement);
|
| + if (!definingClass.type.isObject) {
|
| + ExecutableElement existingValue = resultMap.get(key);
|
| + if (existingValue == null ||
|
| + (existingValue != null && !_isAbstract(value))) {
|
| + resultMap.put(key, value);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + } finally {
|
| + visitedClasses.remove(mixinElement);
|
| + }
|
| + } else {
|
| + // This case happens only when the superclass was previously visited
|
| + // and not in the lookup, meaning this is meant to shorten the compute
|
| + // for recursive cases.
|
| + _classLookup[mixinElement] = resultMap;
|
| + return resultMap;
|
| + }
|
| + }
|
| + }
|
| + _classLookup[classElt] = resultMap;
|
| + return resultMap;
|
| + }
|
| +
|
| + /**
|
| + * Compute and return the inheritance path given the context of a type and a member that is
|
| + * overridden in the inheritance path (for which the type is in the path).
|
| + *
|
| + * @param chain the inheritance path that is built up as this method calls itself recursively,
|
| + * when this method is called an empty [LinkedList] should be provided
|
| + * @param currentType the current type in the inheritance path
|
| + * @param memberName the name of the member that is being looked up the inheritance path
|
| + */
|
| + void _computeInheritancePath(Queue<InterfaceType> chain,
|
| + InterfaceType currentType, String memberName) {
|
| + // TODO (jwren) create a public version of this method which doesn't require
|
| + // the initial chain to be provided, then provided tests for this
|
| + // functionality in InheritanceManagerTest
|
| + chain.add(currentType);
|
| + ClassElement classElt = currentType.element;
|
| + InterfaceType supertype = classElt.supertype;
|
| + // Base case- reached Object
|
| + if (supertype == null) {
|
| + // Looked up the chain all the way to Object, return null.
|
| + // This should never happen.
|
| + return;
|
| + }
|
| + // If we are done, return the chain
|
| + // We are not done if this is the first recursive call on this method.
|
| + if (chain.length != 1) {
|
| + // We are done however if the member is in this classElt
|
| + if (_lookupMemberInClass(classElt, memberName) != null) {
|
| + return;
|
| + }
|
| + }
|
| + // Mixins- note that mixins call lookupMemberInClass, not lookupMember
|
| + List<InterfaceType> mixins = classElt.mixins;
|
| + for (int i = mixins.length - 1; i >= 0; i--) {
|
| + ClassElement mixinElement = mixins[i].element;
|
| + if (mixinElement != null) {
|
| + ExecutableElement elt = _lookupMemberInClass(mixinElement, memberName);
|
| + if (elt != null) {
|
| + // this is equivalent (but faster than) calling this method
|
| + // recursively
|
| + // (return computeInheritancePath(chain, mixins[i], memberName);)
|
| + chain.add(mixins[i]);
|
| + return;
|
| + }
|
| + }
|
| + }
|
| + // Superclass
|
| + ClassElement superclassElt = supertype.element;
|
| + if (lookupMember(superclassElt, memberName) != null) {
|
| + _computeInheritancePath(chain, supertype, memberName);
|
| + return;
|
| + }
|
| + // Interfaces
|
| + List<InterfaceType> interfaces = classElt.interfaces;
|
| + for (InterfaceType interfaceType in interfaces) {
|
| + ClassElement interfaceElement = interfaceType.element;
|
| + if (interfaceElement != null &&
|
| + lookupMember(interfaceElement, memberName) != null) {
|
| + _computeInheritancePath(chain, interfaceType, memberName);
|
| + return;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Compute and return a mapping between the set of all string names of the members inherited from
|
| + * the passed [ClassElement] interface hierarchy, and the associated
|
| + * [ExecutableElement].
|
| + *
|
| + * @param classElt the class element to query
|
| + * @param visitedInterfaces a set of visited classes passed back into this method when it calls
|
| + * itself recursively
|
| + * @return a mapping between the set of all string names of the members inherited from the passed
|
| + * [ClassElement] interface hierarchy, and the associated [ExecutableElement]
|
| + */
|
| + MemberMap _computeInterfaceLookupMap(
|
| + ClassElement classElt, HashSet<ClassElement> visitedInterfaces) {
|
| + MemberMap resultMap = _interfaceLookup[classElt];
|
| + if (resultMap != null) {
|
| + return resultMap;
|
| + }
|
| + List<MemberMap> lookupMaps =
|
| + _gatherInterfaceLookupMaps(classElt, visitedInterfaces);
|
| + if (lookupMaps == null) {
|
| + resultMap = new MemberMap();
|
| + } else {
|
| + HashMap<String, List<ExecutableElement>> unionMap =
|
| + _unionInterfaceLookupMaps(lookupMaps);
|
| + resultMap = _resolveInheritanceLookup(classElt, unionMap);
|
| + }
|
| + _interfaceLookup[classElt] = resultMap;
|
| + return resultMap;
|
| + }
|
| +
|
| + /**
|
| + * Collect a list of interface lookup maps whose elements correspond to all of the classes
|
| + * directly above [classElt] in the class hierarchy (the direct superclass if any, all
|
| + * mixins, and all direct superinterfaces). Each item in the list is the interface lookup map
|
| + * returned by [computeInterfaceLookupMap] for the corresponding super, except with type
|
| + * parameters appropriately substituted.
|
| + *
|
| + * @param classElt the class element to query
|
| + * @param visitedInterfaces a set of visited classes passed back into this method when it calls
|
| + * itself recursively
|
| + * @return `null` if there was a problem (such as a loop in the class hierarchy) or if there
|
| + * are no classes above this one in the class hierarchy. Otherwise, a list of interface
|
| + * lookup maps.
|
| + */
|
| + List<MemberMap> _gatherInterfaceLookupMaps(
|
| + ClassElement classElt, HashSet<ClassElement> visitedInterfaces) {
|
| + InterfaceType supertype = classElt.supertype;
|
| + ClassElement superclassElement =
|
| + supertype != null ? supertype.element : null;
|
| + List<InterfaceType> mixins = classElt.mixins;
|
| + List<InterfaceType> interfaces = classElt.interfaces;
|
| + // Recursively collect the list of mappings from all of the interface types
|
| + List<MemberMap> lookupMaps = new List<MemberMap>();
|
| + //
|
| + // Superclass element
|
| + //
|
| + if (superclassElement != null) {
|
| + if (!visitedInterfaces.contains(superclassElement)) {
|
| + try {
|
| + visitedInterfaces.add(superclassElement);
|
| + //
|
| + // Recursively compute the map for the super type.
|
| + //
|
| + MemberMap map =
|
| + _computeInterfaceLookupMap(superclassElement, visitedInterfaces);
|
| + map = new MemberMap.from(map);
|
| + //
|
| + // Substitute the super type down the hierarchy.
|
| + //
|
| + _substituteTypeParametersDownHierarchy(supertype, map);
|
| + //
|
| + // Add any members from the super type into the map as well.
|
| + //
|
| + _recordMapWithClassMembers(map, supertype, true);
|
| + lookupMaps.add(map);
|
| + } finally {
|
| + visitedInterfaces.remove(superclassElement);
|
| + }
|
| + } else {
|
| + return null;
|
| + }
|
| + }
|
| + //
|
| + // Mixin elements
|
| + //
|
| + for (int i = mixins.length - 1; i >= 0; i--) {
|
| + InterfaceType mixinType = mixins[i];
|
| + ClassElement mixinElement = mixinType.element;
|
| + if (mixinElement != null) {
|
| + if (!visitedInterfaces.contains(mixinElement)) {
|
| + try {
|
| + visitedInterfaces.add(mixinElement);
|
| + //
|
| + // Recursively compute the map for the mixin.
|
| + //
|
| + MemberMap map =
|
| + _computeInterfaceLookupMap(mixinElement, visitedInterfaces);
|
| + map = new MemberMap.from(map);
|
| + //
|
| + // Substitute the mixin type down the hierarchy.
|
| + //
|
| + _substituteTypeParametersDownHierarchy(mixinType, map);
|
| + //
|
| + // Add any members from the mixin type into the map as well.
|
| + //
|
| + _recordMapWithClassMembers(map, mixinType, true);
|
| + lookupMaps.add(map);
|
| + } finally {
|
| + visitedInterfaces.remove(mixinElement);
|
| + }
|
| + } else {
|
| + return null;
|
| + }
|
| + }
|
| + }
|
| + //
|
| + // Interface elements
|
| + //
|
| + for (InterfaceType interfaceType in interfaces) {
|
| + ClassElement interfaceElement = interfaceType.element;
|
| + if (interfaceElement != null) {
|
| + if (!visitedInterfaces.contains(interfaceElement)) {
|
| + try {
|
| + visitedInterfaces.add(interfaceElement);
|
| + //
|
| + // Recursively compute the map for the interfaces.
|
| + //
|
| + MemberMap map =
|
| + _computeInterfaceLookupMap(interfaceElement, visitedInterfaces);
|
| + map = new MemberMap.from(map);
|
| + //
|
| + // Substitute the supertypes down the hierarchy
|
| + //
|
| + _substituteTypeParametersDownHierarchy(interfaceType, map);
|
| + //
|
| + // And add any members from the interface into the map as well.
|
| + //
|
| + _recordMapWithClassMembers(map, interfaceType, true);
|
| + lookupMaps.add(map);
|
| + } finally {
|
| + visitedInterfaces.remove(interfaceElement);
|
| + }
|
| + } else {
|
| + return null;
|
| + }
|
| + }
|
| + }
|
| + if (lookupMaps.length == 0) {
|
| + return null;
|
| + }
|
| + return lookupMaps;
|
| + }
|
| +
|
| + /**
|
| + * Given some [ClassElement], this method finds and returns the [ExecutableElement] of
|
| + * the passed name in the class element. Static members, members in super types and members not
|
| + * accessible from the current library are not considered.
|
| + *
|
| + * @param classElt the class element to query
|
| + * @param memberName the name of the member to lookup in the class
|
| + * @return the found [ExecutableElement], or `null` if no such member was found
|
| + */
|
| + ExecutableElement _lookupMemberInClass(
|
| + ClassElement classElt, String memberName) {
|
| + List<MethodElement> methods = classElt.methods;
|
| + for (MethodElement method in methods) {
|
| + if (memberName == method.name &&
|
| + method.isAccessibleIn(_library) &&
|
| + !method.isStatic) {
|
| + return method;
|
| + }
|
| + }
|
| + List<PropertyAccessorElement> accessors = classElt.accessors;
|
| + for (PropertyAccessorElement accessor in accessors) {
|
| + if (memberName == accessor.name &&
|
| + accessor.isAccessibleIn(_library) &&
|
| + !accessor.isStatic) {
|
| + return accessor;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Record the passed map with the set of all members (methods, getters and setters) in the type
|
| + * into the passed map.
|
| + *
|
| + * @param map some non-`null` map to put the methods and accessors from the passed
|
| + * [ClassElement] into
|
| + * @param type the type that will be recorded into the passed map
|
| + * @param doIncludeAbstract `true` if abstract members will be put into the map
|
| + */
|
| + void _recordMapWithClassMembers(
|
| + MemberMap map, InterfaceType type, bool doIncludeAbstract) {
|
| + List<MethodElement> methods = type.methods;
|
| + for (MethodElement method in methods) {
|
| + if (method.isAccessibleIn(_library) &&
|
| + !method.isStatic &&
|
| + (doIncludeAbstract || !method.isAbstract)) {
|
| + map.put(method.name, method);
|
| + }
|
| + }
|
| + List<PropertyAccessorElement> accessors = type.accessors;
|
| + for (PropertyAccessorElement accessor in accessors) {
|
| + if (accessor.isAccessibleIn(_library) &&
|
| + !accessor.isStatic &&
|
| + (doIncludeAbstract || !accessor.isAbstract)) {
|
| + map.put(accessor.name, accessor);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * This method is used to report errors on when they are found computing inheritance information.
|
| + * See [ErrorVerifier.checkForInconsistentMethodInheritance] to see where these generated
|
| + * error codes are reported back into the analysis engine.
|
| + *
|
| + * @param classElt the location of the source for which the exception occurred
|
| + * @param offset the offset of the location of the error
|
| + * @param length the length of the location of the error
|
| + * @param errorCode the error code to be associated with this error
|
| + * @param arguments the arguments used to build the error message
|
| + */
|
| + void _reportError(ClassElement classElt, int offset, int length,
|
| + ErrorCode errorCode, List<Object> arguments) {
|
| + HashSet<AnalysisError> errorSet = _errorsInClassElement[classElt];
|
| + if (errorSet == null) {
|
| + errorSet = new HashSet<AnalysisError>();
|
| + _errorsInClassElement[classElt] = errorSet;
|
| + }
|
| + errorSet.add(new AnalysisError(
|
| + classElt.source, offset, length, errorCode, arguments));
|
| + }
|
| +
|
| + /**
|
| + * Given the set of methods defined by classes above [classElt] in the class hierarchy,
|
| + * apply the appropriate inheritance rules to determine those methods inherited by or overridden
|
| + * by [classElt]. Also report static warnings
|
| + * [StaticTypeWarningCode.INCONSISTENT_METHOD_INHERITANCE] and
|
| + * [StaticWarningCode.INCONSISTENT_METHOD_INHERITANCE_GETTER_AND_METHOD] if appropriate.
|
| + *
|
| + * @param classElt the class element to query.
|
| + * @param unionMap a mapping from method name to the set of unique (in terms of signature) methods
|
| + * defined in superclasses of [classElt].
|
| + * @return the inheritance lookup map for [classElt].
|
| + */
|
| + MemberMap _resolveInheritanceLookup(ClassElement classElt,
|
| + HashMap<String, List<ExecutableElement>> unionMap) {
|
| + MemberMap resultMap = new MemberMap();
|
| + unionMap.forEach((String key, List<ExecutableElement> list) {
|
| + int numOfEltsWithMatchingNames = list.length;
|
| + if (numOfEltsWithMatchingNames == 1) {
|
| + //
|
| + // Example: class A inherits only 1 method named 'm'.
|
| + // Since it is the only such method, it is inherited.
|
| + // Another example: class A inherits 2 methods named 'm' from 2
|
| + // different interfaces, but they both have the same signature, so it is
|
| + // the method inherited.
|
| + //
|
| + resultMap.put(key, list[0]);
|
| + } else {
|
| + //
|
| + // Then numOfEltsWithMatchingNames > 1, check for the warning cases.
|
| + //
|
| + bool allMethods = true;
|
| + bool allSetters = true;
|
| + bool allGetters = true;
|
| + for (ExecutableElement executableElement in list) {
|
| + if (executableElement is PropertyAccessorElement) {
|
| + allMethods = false;
|
| + if (executableElement.isSetter) {
|
| + allGetters = false;
|
| + } else {
|
| + allSetters = false;
|
| + }
|
| + } else {
|
| + allGetters = false;
|
| + allSetters = false;
|
| + }
|
| + }
|
| + //
|
| + // If there isn't a mixture of methods with getters, then continue,
|
| + // otherwise create a warning.
|
| + //
|
| + if (allMethods || allGetters || allSetters) {
|
| + //
|
| + // Compute the element whose type is the subtype of all of the other
|
| + // types.
|
| + //
|
| + List<ExecutableElement> elements = new List.from(list);
|
| + List<FunctionType> executableElementTypes =
|
| + new List<FunctionType>(numOfEltsWithMatchingNames);
|
| + for (int i = 0; i < numOfEltsWithMatchingNames; i++) {
|
| + executableElementTypes[i] = elements[i].type;
|
| + }
|
| + List<int> subtypesOfAllOtherTypesIndexes = new List<int>();
|
| + for (int i = 0; i < numOfEltsWithMatchingNames; i++) {
|
| + FunctionType subtype = executableElementTypes[i];
|
| + if (subtype == null) {
|
| + continue;
|
| + }
|
| + bool subtypeOfAllTypes = true;
|
| + for (int j = 0;
|
| + j < numOfEltsWithMatchingNames && subtypeOfAllTypes;
|
| + j++) {
|
| + if (i != j) {
|
| + if (!subtype.isSubtypeOf(executableElementTypes[j])) {
|
| + subtypeOfAllTypes = false;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + if (subtypeOfAllTypes) {
|
| + subtypesOfAllOtherTypesIndexes.add(i);
|
| + }
|
| + }
|
| + //
|
| + // The following is split into three cases determined by the number of
|
| + // elements in subtypesOfAllOtherTypes
|
| + //
|
| + if (subtypesOfAllOtherTypesIndexes.length == 1) {
|
| + //
|
| + // Example: class A inherited only 2 method named 'm'.
|
| + // One has the function type '() -> dynamic' and one has the
|
| + // function type '([int]) -> dynamic'. Since the second method is a
|
| + // subtype of all the others, it is the inherited method.
|
| + // Tests: InheritanceManagerTest.
|
| + // test_getMapOfMembersInheritedFromInterfaces_union_oneSubtype_*
|
| + //
|
| + resultMap.put(key, elements[subtypesOfAllOtherTypesIndexes[0]]);
|
| + } else {
|
| + if (subtypesOfAllOtherTypesIndexes.isEmpty) {
|
| + //
|
| + // Determine if the current class has a method or accessor with
|
| + // the member name, if it does then then this class does not
|
| + // "inherit" from any of the supertypes. See issue 16134.
|
| + //
|
| + bool classHasMember = false;
|
| + if (allMethods) {
|
| + classHasMember = classElt.getMethod(key) != null;
|
| + } else {
|
| + List<PropertyAccessorElement> accessors = classElt.accessors;
|
| + for (int i = 0; i < accessors.length; i++) {
|
| + if (accessors[i].name == key) {
|
| + classHasMember = true;
|
| + }
|
| + }
|
| + }
|
| + //
|
| + // Example: class A inherited only 2 method named 'm'.
|
| + // One has the function type '() -> int' and one has the function
|
| + // type '() -> String'. Since neither is a subtype of the other,
|
| + // we create a warning, and have this class inherit nothing.
|
| + //
|
| + if (!classHasMember) {
|
| + String firstTwoFuntionTypesStr =
|
| + "${executableElementTypes[0]}, ${executableElementTypes[1]}";
|
| + _reportError(
|
| + classElt,
|
| + classElt.nameOffset,
|
| + classElt.displayName.length,
|
| + StaticTypeWarningCode.INCONSISTENT_METHOD_INHERITANCE,
|
| + [key, firstTwoFuntionTypesStr]);
|
| + }
|
| + } else {
|
| + //
|
| + // Example: class A inherits 2 methods named 'm'.
|
| + // One has the function type '(int) -> dynamic' and one has the
|
| + // function type '(num) -> dynamic'. Since they are both a subtype
|
| + // of the other, a synthetic function '(dynamic) -> dynamic' is
|
| + // inherited.
|
| + // Tests: test_getMapOfMembersInheritedFromInterfaces_
|
| + // union_multipleSubtypes_*
|
| + //
|
| + List<ExecutableElement> elementArrayToMerge = new List<
|
| + ExecutableElement>(subtypesOfAllOtherTypesIndexes.length);
|
| + for (int i = 0; i < elementArrayToMerge.length; i++) {
|
| + elementArrayToMerge[i] =
|
| + elements[subtypesOfAllOtherTypesIndexes[i]];
|
| + }
|
| + ExecutableElement mergedExecutableElement =
|
| + _computeMergedExecutableElement(elementArrayToMerge);
|
| + resultMap.put(key, mergedExecutableElement);
|
| + }
|
| + }
|
| + } else {
|
| + _reportError(
|
| + classElt,
|
| + classElt.nameOffset,
|
| + classElt.displayName.length,
|
| + StaticWarningCode.INCONSISTENT_METHOD_INHERITANCE_GETTER_AND_METHOD,
|
| + [key]);
|
| + }
|
| + }
|
| + });
|
| + return resultMap;
|
| + }
|
| +
|
| + /**
|
| + * Loop through all of the members in some [MemberMap], performing type parameter
|
| + * substitutions using a passed supertype.
|
| + *
|
| + * @param superType the supertype to substitute into the members of the [MemberMap]
|
| + * @param map the MemberMap to perform the substitutions on
|
| + */
|
| + void _substituteTypeParametersDownHierarchy(
|
| + InterfaceType superType, MemberMap map) {
|
| + for (int i = 0; i < map.size; i++) {
|
| + ExecutableElement executableElement = map.getValue(i);
|
| + if (executableElement is MethodMember) {
|
| + executableElement =
|
| + MethodMember.from(executableElement as MethodMember, superType);
|
| + map.setValue(i, executableElement);
|
| + } else if (executableElement is PropertyAccessorMember) {
|
| + executableElement = PropertyAccessorMember.from(
|
| + executableElement as PropertyAccessorMember, superType);
|
| + map.setValue(i, executableElement);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Union all of the [lookupMaps] together into a single map, grouping the ExecutableElements
|
| + * into a list where none of the elements are equal where equality is determined by having equal
|
| + * function types. (We also take note too of the kind of the element: ()->int and () -> int may
|
| + * not be equal if one is a getter and the other is a method.)
|
| + *
|
| + * @param lookupMaps the maps to be unioned together.
|
| + * @return the resulting union map.
|
| + */
|
| + HashMap<String, List<ExecutableElement>> _unionInterfaceLookupMaps(
|
| + List<MemberMap> lookupMaps) {
|
| + HashMap<String, List<ExecutableElement>> unionMap =
|
| + new HashMap<String, List<ExecutableElement>>();
|
| + for (MemberMap lookupMap in lookupMaps) {
|
| + int lookupMapSize = lookupMap.size;
|
| + for (int i = 0; i < lookupMapSize; i++) {
|
| + // Get the string key, if null, break.
|
| + String key = lookupMap.getKey(i);
|
| + if (key == null) {
|
| + break;
|
| + }
|
| + // Get the list value out of the unionMap
|
| + List<ExecutableElement> list = unionMap[key];
|
| + // If we haven't created such a map for this key yet, do create it and
|
| + // put the list entry into the unionMap.
|
| + if (list == null) {
|
| + list = new List<ExecutableElement>();
|
| + unionMap[key] = list;
|
| + }
|
| + // Fetch the entry out of this lookupMap
|
| + ExecutableElement newExecutableElementEntry = lookupMap.getValue(i);
|
| + if (list.isEmpty) {
|
| + // If the list is empty, just the new value
|
| + list.add(newExecutableElementEntry);
|
| + } else {
|
| + // Otherwise, only add the newExecutableElementEntry if it isn't
|
| + // already in the list, this covers situation where a class inherits
|
| + // two methods (or two getters) that are identical.
|
| + bool alreadyInList = false;
|
| + bool isMethod1 = newExecutableElementEntry is MethodElement;
|
| + for (ExecutableElement executableElementInList in list) {
|
| + bool isMethod2 = executableElementInList is MethodElement;
|
| + if (isMethod1 == isMethod2 &&
|
| + executableElementInList.type ==
|
| + newExecutableElementEntry.type) {
|
| + alreadyInList = true;
|
| + break;
|
| + }
|
| + }
|
| + if (!alreadyInList) {
|
| + list.add(newExecutableElementEntry);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + return unionMap;
|
| + }
|
| +
|
| + /**
|
| + * Given some array of [ExecutableElement]s, this method creates a synthetic element as
|
| + * described in 8.1.1:
|
| + *
|
| + * Let <i>numberOfPositionals</i>(<i>f</i>) denote the number of positional parameters of a
|
| + * function <i>f</i>, and let <i>numberOfRequiredParams</i>(<i>f</i>) denote the number of
|
| + * required parameters of a function <i>f</i>. Furthermore, let <i>s</i> denote the set of all
|
| + * named parameters of the <i>m<sub>1</sub>, …, m<sub>k</sub></i>. Then let
|
| + * * <i>h = max(numberOfPositionals(m<sub>i</sub>)),</i>
|
| + * * <i>r = min(numberOfRequiredParams(m<sub>i</sub>)), for all <i>i</i>, 1 <= i <= k.</i>
|
| + * Then <i>I</i> has a method named <i>n</i>, with <i>r</i> required parameters of type
|
| + * <b>dynamic</b>, <i>h</i> positional parameters of type <b>dynamic</b>, named parameters
|
| + * <i>s</i> of type <b>dynamic</b> and return type <b>dynamic</b>.
|
| + *
|
| + */
|
| + static ExecutableElement _computeMergedExecutableElement(
|
| + List<ExecutableElement> elementArrayToMerge) {
|
| + int h = _getNumOfPositionalParameters(elementArrayToMerge[0]);
|
| + int r = _getNumOfRequiredParameters(elementArrayToMerge[0]);
|
| + Set<String> namedParametersList = new HashSet<String>();
|
| + for (int i = 1; i < elementArrayToMerge.length; i++) {
|
| + ExecutableElement element = elementArrayToMerge[i];
|
| + int numOfPositionalParams = _getNumOfPositionalParameters(element);
|
| + if (h < numOfPositionalParams) {
|
| + h = numOfPositionalParams;
|
| + }
|
| + int numOfRequiredParams = _getNumOfRequiredParameters(element);
|
| + if (r > numOfRequiredParams) {
|
| + r = numOfRequiredParams;
|
| + }
|
| + namedParametersList.addAll(_getNamedParameterNames(element));
|
| + }
|
| + return _createSyntheticExecutableElement(
|
| + elementArrayToMerge,
|
| + elementArrayToMerge[0].displayName,
|
| + r,
|
| + h - r,
|
| + new List.from(namedParametersList));
|
| + }
|
| +
|
| + /**
|
| + * Used by [computeMergedExecutableElement] to actually create the
|
| + * synthetic element.
|
| + *
|
| + * @param elementArrayToMerge the array used to create the synthetic element
|
| + * @param name the name of the method, getter or setter
|
| + * @param numOfRequiredParameters the number of required parameters
|
| + * @param numOfPositionalParameters the number of positional parameters
|
| + * @param namedParameters the list of [String]s that are the named parameters
|
| + * @return the created synthetic element
|
| + */
|
| + static ExecutableElement _createSyntheticExecutableElement(
|
| + List<ExecutableElement> elementArrayToMerge,
|
| + String name,
|
| + int numOfRequiredParameters,
|
| + int numOfPositionalParameters,
|
| + List<String> namedParameters) {
|
| + DynamicTypeImpl dynamicType = DynamicTypeImpl.instance;
|
| + SimpleIdentifier nameIdentifier = new SimpleIdentifier(
|
| + new sc.StringToken(sc.TokenType.IDENTIFIER, name, 0));
|
| + ExecutableElementImpl executable;
|
| + if (elementArrayToMerge[0] is MethodElement) {
|
| + MultiplyInheritedMethodElementImpl unionedMethod =
|
| + new MultiplyInheritedMethodElementImpl(nameIdentifier);
|
| + unionedMethod.inheritedElements = elementArrayToMerge;
|
| + executable = unionedMethod;
|
| + } else {
|
| + MultiplyInheritedPropertyAccessorElementImpl unionedPropertyAccessor =
|
| + new MultiplyInheritedPropertyAccessorElementImpl(nameIdentifier);
|
| + unionedPropertyAccessor.getter =
|
| + (elementArrayToMerge[0] as PropertyAccessorElement).isGetter;
|
| + unionedPropertyAccessor.setter =
|
| + (elementArrayToMerge[0] as PropertyAccessorElement).isSetter;
|
| + unionedPropertyAccessor.inheritedElements = elementArrayToMerge;
|
| + executable = unionedPropertyAccessor;
|
| + }
|
| + int numOfParameters = numOfRequiredParameters +
|
| + numOfPositionalParameters +
|
| + namedParameters.length;
|
| + List<ParameterElement> parameters =
|
| + new List<ParameterElement>(numOfParameters);
|
| + int i = 0;
|
| + for (int j = 0; j < numOfRequiredParameters; j++, i++) {
|
| + ParameterElementImpl parameter = new ParameterElementImpl("", 0);
|
| + parameter.type = dynamicType;
|
| + parameter.parameterKind = ParameterKind.REQUIRED;
|
| + parameters[i] = parameter;
|
| + }
|
| + for (int k = 0; k < numOfPositionalParameters; k++, i++) {
|
| + ParameterElementImpl parameter = new ParameterElementImpl("", 0);
|
| + parameter.type = dynamicType;
|
| + parameter.parameterKind = ParameterKind.POSITIONAL;
|
| + parameters[i] = parameter;
|
| + }
|
| + for (int m = 0; m < namedParameters.length; m++, i++) {
|
| + ParameterElementImpl parameter =
|
| + new ParameterElementImpl(namedParameters[m], 0);
|
| + parameter.type = dynamicType;
|
| + parameter.parameterKind = ParameterKind.NAMED;
|
| + parameters[i] = parameter;
|
| + }
|
| + executable.returnType = dynamicType;
|
| + executable.parameters = parameters;
|
| + FunctionTypeImpl methodType = new FunctionTypeImpl(executable);
|
| + executable.type = methodType;
|
| + return executable;
|
| + }
|
| +
|
| + /**
|
| + * Given some [ExecutableElement], return the list of named parameters.
|
| + */
|
| + static List<String> _getNamedParameterNames(
|
| + ExecutableElement executableElement) {
|
| + List<String> namedParameterNames = new List<String>();
|
| + List<ParameterElement> parameters = executableElement.parameters;
|
| + for (int i = 0; i < parameters.length; i++) {
|
| + ParameterElement parameterElement = parameters[i];
|
| + if (parameterElement.parameterKind == ParameterKind.NAMED) {
|
| + namedParameterNames.add(parameterElement.name);
|
| + }
|
| + }
|
| + return namedParameterNames;
|
| + }
|
| +
|
| + /**
|
| + * Given some [ExecutableElement] return the number of parameters of the specified kind.
|
| + */
|
| + static int _getNumOfParameters(
|
| + ExecutableElement executableElement, ParameterKind parameterKind) {
|
| + int parameterCount = 0;
|
| + List<ParameterElement> parameters = executableElement.parameters;
|
| + for (int i = 0; i < parameters.length; i++) {
|
| + ParameterElement parameterElement = parameters[i];
|
| + if (parameterElement.parameterKind == parameterKind) {
|
| + parameterCount++;
|
| + }
|
| + }
|
| + return parameterCount;
|
| + }
|
| +
|
| + /**
|
| + * Given some [ExecutableElement] return the number of positional parameters.
|
| + *
|
| + * Note: by positional we mean [ParameterKind.REQUIRED] or [ParameterKind.POSITIONAL].
|
| + */
|
| + static int _getNumOfPositionalParameters(
|
| + ExecutableElement executableElement) =>
|
| + _getNumOfParameters(executableElement, ParameterKind.REQUIRED) +
|
| + _getNumOfParameters(executableElement, ParameterKind.POSITIONAL);
|
| +
|
| + /**
|
| + * Given some [ExecutableElement] return the number of required parameters.
|
| + */
|
| + static int _getNumOfRequiredParameters(ExecutableElement executableElement) =>
|
| + _getNumOfParameters(executableElement, ParameterKind.REQUIRED);
|
| +
|
| + /**
|
| + * Given some [ExecutableElement] returns `true` if it is an abstract member of a
|
| + * class.
|
| + *
|
| + * @param executableElement some [ExecutableElement] to evaluate
|
| + * @return `true` if the given element is an abstract member of a class
|
| + */
|
| + static bool _isAbstract(ExecutableElement executableElement) {
|
| + if (executableElement is MethodElement) {
|
| + return executableElement.isAbstract;
|
| + } else if (executableElement is PropertyAccessorElement) {
|
| + return executableElement.isAbstract;
|
| + }
|
| + return false;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * This enum holds one of four states of a field initialization state through a constructor
|
| + * signature, not initialized, initialized in the field declaration, initialized in the field
|
| + * formal, and finally, initialized in the initializers list.
|
| + */
|
| +class INIT_STATE extends Enum<INIT_STATE> {
|
| + static const INIT_STATE NOT_INIT = const INIT_STATE('NOT_INIT', 0);
|
| +
|
| + static const INIT_STATE INIT_IN_DECLARATION =
|
| + const INIT_STATE('INIT_IN_DECLARATION', 1);
|
| +
|
| + static const INIT_STATE INIT_IN_FIELD_FORMAL =
|
| + const INIT_STATE('INIT_IN_FIELD_FORMAL', 2);
|
| +
|
| + static const INIT_STATE INIT_IN_INITIALIZERS =
|
| + const INIT_STATE('INIT_IN_INITIALIZERS', 3);
|
| +
|
| + static const List<INIT_STATE> values = const [
|
| + NOT_INIT,
|
| + INIT_IN_DECLARATION,
|
| + INIT_IN_FIELD_FORMAL,
|
| + INIT_IN_INITIALIZERS
|
| + ];
|
| +
|
| + const INIT_STATE(String name, int ordinal) : super(name, ordinal);
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `LabelScope` represent a scope in which a single label is defined.
|
| + */
|
| +class LabelScope {
|
| + /**
|
| + * The label scope enclosing this label scope.
|
| + */
|
| + final LabelScope _outerScope;
|
| +
|
| + /**
|
| + * The label defined in this scope.
|
| + */
|
| + final String _label;
|
| +
|
| + /**
|
| + * The element to which the label resolves.
|
| + */
|
| + final LabelElement element;
|
| +
|
| + /**
|
| + * The AST node to which the label resolves.
|
| + */
|
| + final AstNode node;
|
| +
|
| + /**
|
| + * Initialize a newly created scope to represent the label [_label].
|
| + * [_outerScope] is the scope enclosing the new label scope. [node] is the
|
| + * AST node the label resolves to. [element] is the element the label
|
| + * resolves to.
|
| + */
|
| + LabelScope(this._outerScope, this._label, this.node, this.element);
|
| +
|
| + /**
|
| + * Return the LabelScope which defines [targetLabel], or `null` if it is not
|
| + * defined in this scope.
|
| + */
|
| + LabelScope lookup(String targetLabel) {
|
| + if (_label == targetLabel) {
|
| + return this;
|
| + } else if (_outerScope != null) {
|
| + return _outerScope.lookup(targetLabel);
|
| + } else {
|
| + return null;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `Library` represent the data about a single library during the
|
| + * resolution of some (possibly different) library. They are not intended to be used except during
|
| + * the resolution process.
|
| + */
|
| +class Library {
|
| + /**
|
| + * An empty list that can be used to initialize lists of libraries.
|
| + */
|
| + static const List<Library> _EMPTY_ARRAY = const <Library>[];
|
| +
|
| + /**
|
| + * The prefix of a URI using the dart-ext scheme to reference a native code library.
|
| + */
|
| + static String _DART_EXT_SCHEME = "dart-ext:";
|
| +
|
| + /**
|
| + * The analysis context in which this library is being analyzed.
|
| + */
|
| + final InternalAnalysisContext _analysisContext;
|
| +
|
| + /**
|
| + * The inheritance manager which is used for this member lookups in this library.
|
| + */
|
| + InheritanceManager _inheritanceManager;
|
| +
|
| + /**
|
| + * The listener to which analysis errors will be reported.
|
| + */
|
| + final AnalysisErrorListener errorListener;
|
| +
|
| + /**
|
| + * The source specifying the defining compilation unit of this library.
|
| + */
|
| + final Source librarySource;
|
| +
|
| + /**
|
| + * The library element representing this library.
|
| + */
|
| + LibraryElementImpl _libraryElement;
|
| +
|
| + /**
|
| + * A list containing all of the libraries that are imported into this library.
|
| + */
|
| + List<Library> _importedLibraries = _EMPTY_ARRAY;
|
| +
|
| + /**
|
| + * A table mapping URI-based directive to the actual URI value.
|
| + */
|
| + HashMap<UriBasedDirective, String> _directiveUris =
|
| + new HashMap<UriBasedDirective, String>();
|
| +
|
| + /**
|
| + * A flag indicating whether this library explicitly imports core.
|
| + */
|
| + bool explicitlyImportsCore = false;
|
| +
|
| + /**
|
| + * A list containing all of the libraries that are exported from this library.
|
| + */
|
| + List<Library> _exportedLibraries = _EMPTY_ARRAY;
|
| +
|
| + /**
|
| + * A table mapping the sources for the compilation units in this library to their corresponding
|
| + * AST structures.
|
| + */
|
| + HashMap<Source, CompilationUnit> _astMap =
|
| + new HashMap<Source, CompilationUnit>();
|
| +
|
| + /**
|
| + * The library scope used when resolving elements within this library's compilation units.
|
| + */
|
| + LibraryScope _libraryScope;
|
| +
|
| + /**
|
| + * Initialize a newly created data holder that can maintain the data associated with a library.
|
| + *
|
| + * @param analysisContext the analysis context in which this library is being analyzed
|
| + * @param errorListener the listener to which analysis errors will be reported
|
| + * @param librarySource the source specifying the defining compilation unit of this library
|
| + */
|
| + Library(this._analysisContext, this.errorListener, this.librarySource) {
|
| + this._libraryElement =
|
| + _analysisContext.getLibraryElement(librarySource) as LibraryElementImpl;
|
| + }
|
| +
|
| + /**
|
| + * Return an array of the [CompilationUnit]s that make up the library. The first unit is
|
| + * always the defining unit.
|
| + *
|
| + * @return an array of the [CompilationUnit]s that make up the library. The first unit is
|
| + * always the defining unit
|
| + */
|
| + List<CompilationUnit> get compilationUnits {
|
| + List<CompilationUnit> unitArrayList = new List<CompilationUnit>();
|
| + unitArrayList.add(definingCompilationUnit);
|
| + for (Source source in _astMap.keys.toSet()) {
|
| + if (librarySource != source) {
|
| + unitArrayList.add(getAST(source));
|
| + }
|
| + }
|
| + return unitArrayList;
|
| + }
|
| +
|
| + /**
|
| + * Return a collection containing the sources for the compilation units in this library, including
|
| + * the defining compilation unit.
|
| + *
|
| + * @return the sources for the compilation units in this library
|
| + */
|
| + Set<Source> get compilationUnitSources => _astMap.keys.toSet();
|
| +
|
| + /**
|
| + * Return the AST structure associated with the defining compilation unit for this library.
|
| + *
|
| + * @return the AST structure associated with the defining compilation unit for this library
|
| + * @throws AnalysisException if an AST structure could not be created for the defining compilation
|
| + * unit
|
| + */
|
| + CompilationUnit get definingCompilationUnit => getAST(librarySource);
|
| +
|
| + /**
|
| + * Set the libraries that are exported by this library to be those in the given array.
|
| + *
|
| + * @param exportedLibraries the libraries that are exported by this library
|
| + */
|
| + void set exportedLibraries(List<Library> exportedLibraries) {
|
| + this._exportedLibraries = exportedLibraries;
|
| + }
|
| +
|
| + /**
|
| + * Return an array containing the libraries that are exported from this library.
|
| + *
|
| + * @return an array containing the libraries that are exported from this library
|
| + */
|
| + List<Library> get exports => _exportedLibraries;
|
| +
|
| + /**
|
| + * Set the libraries that are imported into this library to be those in the given array.
|
| + *
|
| + * @param importedLibraries the libraries that are imported into this library
|
| + */
|
| + void set importedLibraries(List<Library> importedLibraries) {
|
| + this._importedLibraries = importedLibraries;
|
| + }
|
| +
|
| + /**
|
| + * Return an array containing the libraries that are imported into this library.
|
| + *
|
| + * @return an array containing the libraries that are imported into this library
|
| + */
|
| + List<Library> get imports => _importedLibraries;
|
| +
|
| + /**
|
| + * Return an array containing the libraries that are either imported or exported from this
|
| + * library.
|
| + *
|
| + * @return the libraries that are either imported or exported from this library
|
| + */
|
| + List<Library> get importsAndExports {
|
| + HashSet<Library> libraries = new HashSet<Library>();
|
| + for (Library library in _importedLibraries) {
|
| + libraries.add(library);
|
| + }
|
| + for (Library library in _exportedLibraries) {
|
| + libraries.add(library);
|
| + }
|
| + return new List.from(libraries);
|
| + }
|
| +
|
| + /**
|
| + * Return the inheritance manager for this library.
|
| + *
|
| + * @return the inheritance manager for this library
|
| + */
|
| + InheritanceManager get inheritanceManager {
|
| + if (_inheritanceManager == null) {
|
| + return _inheritanceManager = new InheritanceManager(_libraryElement);
|
| + }
|
| + return _inheritanceManager;
|
| + }
|
| +
|
| + /**
|
| + * Return the library element representing this library, creating it if necessary.
|
| + *
|
| + * @return the library element representing this library
|
| + */
|
| + LibraryElementImpl get libraryElement {
|
| + if (_libraryElement == null) {
|
| + try {
|
| + _libraryElement = _analysisContext.computeLibraryElement(librarySource)
|
| + as LibraryElementImpl;
|
| + } on AnalysisException catch (exception, stackTrace) {
|
| + AnalysisEngine.instance.logger.logError(
|
| + "Could not compute library element for ${librarySource.fullName}",
|
| + new CaughtException(exception, stackTrace));
|
| + }
|
| + }
|
| + return _libraryElement;
|
| + }
|
| +
|
| + /**
|
| + * Set the library element representing this library to the given library element.
|
| + *
|
| + * @param libraryElement the library element representing this library
|
| + */
|
| + void set libraryElement(LibraryElementImpl libraryElement) {
|
| + this._libraryElement = libraryElement;
|
| + if (_inheritanceManager != null) {
|
| + _inheritanceManager.libraryElement = libraryElement;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Return the library scope used when resolving elements within this library's compilation units.
|
| + *
|
| + * @return the library scope used when resolving elements within this library's compilation units
|
| + */
|
| + LibraryScope get libraryScope {
|
| + if (_libraryScope == null) {
|
| + _libraryScope = new LibraryScope(_libraryElement, errorListener);
|
| + }
|
| + return _libraryScope;
|
| + }
|
| +
|
| + /**
|
| + * Return the AST structure associated with the given source.
|
| + *
|
| + * @param source the source representing the compilation unit whose AST is to be returned
|
| + * @return the AST structure associated with the given source
|
| + * @throws AnalysisException if an AST structure could not be created for the compilation unit
|
| + */
|
| + CompilationUnit getAST(Source source) {
|
| + CompilationUnit unit = _astMap[source];
|
| + if (unit == null) {
|
| + unit = _analysisContext.computeResolvableCompilationUnit(source);
|
| + _astMap[source] = unit;
|
| + }
|
| + return unit;
|
| + }
|
| +
|
| + /**
|
| + * Return the result of resolving the URI of the given URI-based directive against the URI of the
|
| + * library, or `null` if the URI is not valid. If the URI is not valid, report the error.
|
| + *
|
| + * @param directive the directive which URI should be resolved
|
| + * @return the result of resolving the URI against the URI of the library
|
| + */
|
| + Source getSource(UriBasedDirective directive) {
|
| + StringLiteral uriLiteral = directive.uri;
|
| + if (uriLiteral is StringInterpolation) {
|
| + errorListener.onError(new AnalysisError(librarySource, uriLiteral.offset,
|
| + uriLiteral.length, CompileTimeErrorCode.URI_WITH_INTERPOLATION));
|
| + return null;
|
| + }
|
| + String uriContent = uriLiteral.stringValue.trim();
|
| + _directiveUris[directive] = uriContent;
|
| + uriContent = Uri.encodeFull(uriContent);
|
| + if (directive is ImportDirective &&
|
| + uriContent.startsWith(_DART_EXT_SCHEME)) {
|
| + _libraryElement.hasExtUri = true;
|
| + return null;
|
| + }
|
| + try {
|
| + parseUriWithException(uriContent);
|
| + Source source =
|
| + _analysisContext.sourceFactory.resolveUri(librarySource, uriContent);
|
| + if (!_analysisContext.exists(source)) {
|
| + errorListener.onError(new AnalysisError(
|
| + librarySource,
|
| + uriLiteral.offset,
|
| + uriLiteral.length,
|
| + CompileTimeErrorCode.URI_DOES_NOT_EXIST,
|
| + [uriContent]));
|
| + }
|
| + return source;
|
| + } on URISyntaxException {
|
| + errorListener.onError(new AnalysisError(librarySource, uriLiteral.offset,
|
| + uriLiteral.length, CompileTimeErrorCode.INVALID_URI, [uriContent]));
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Returns the URI value of the given directive.
|
| + */
|
| + String getUri(UriBasedDirective directive) => _directiveUris[directive];
|
| +
|
| + /**
|
| + * Set the AST structure associated with the defining compilation unit for this library to the
|
| + * given AST structure.
|
| + *
|
| + * @param unit the AST structure associated with the defining compilation unit for this library
|
| + */
|
| + void setDefiningCompilationUnit(CompilationUnit unit) {
|
| + _astMap[librarySource] = unit;
|
| + }
|
| +
|
| + @override
|
| + String toString() => librarySource.shortName;
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `LibraryElementBuilder` build an element model for a single library.
|
| + */
|
| +class LibraryElementBuilder {
|
| + /**
|
| + * The analysis context in which the element model will be built.
|
| + */
|
| + final InternalAnalysisContext _analysisContext;
|
| +
|
| + /**
|
| + * The listener to which errors will be reported.
|
| + */
|
| + final AnalysisErrorListener _errorListener;
|
| +
|
| + /**
|
| + * Initialize a newly created library element builder.
|
| + *
|
| + * @param analysisContext the analysis context in which the element model will be built
|
| + * @param errorListener the listener to which errors will be reported
|
| + */
|
| + LibraryElementBuilder(this._analysisContext, this._errorListener);
|
| +
|
| + /**
|
| + * Build the library element for the given library.
|
| + *
|
| + * @param library the library for which an element model is to be built
|
| + * @return the library element that was built
|
| + * @throws AnalysisException if the analysis could not be performed
|
| + */
|
| + LibraryElementImpl buildLibrary(Library library) {
|
| + CompilationUnitBuilder builder = new CompilationUnitBuilder();
|
| + Source librarySource = library.librarySource;
|
| + CompilationUnit definingCompilationUnit = library.definingCompilationUnit;
|
| + CompilationUnitElementImpl definingCompilationUnitElement = builder
|
| + .buildCompilationUnit(
|
| + librarySource, definingCompilationUnit, librarySource);
|
| + NodeList<Directive> directives = definingCompilationUnit.directives;
|
| + LibraryIdentifier libraryNameNode = null;
|
| + bool hasPartDirective = false;
|
| + FunctionElement entryPoint =
|
| + _findEntryPoint(definingCompilationUnitElement);
|
| + List<Directive> directivesToResolve = new List<Directive>();
|
| + List<CompilationUnitElementImpl> sourcedCompilationUnits =
|
| + new List<CompilationUnitElementImpl>();
|
| + for (Directive directive in directives) {
|
| + //
|
| + // We do not build the elements representing the import and export
|
| + // directives at this point. That is not done until we get to
|
| + // LibraryResolver.buildDirectiveModels() because we need the
|
| + // LibraryElements for the referenced libraries, which might not exist at
|
| + // this point (due to the possibility of circular references).
|
| + //
|
| + if (directive is LibraryDirective) {
|
| + if (libraryNameNode == null) {
|
| + libraryNameNode = directive.name;
|
| + directivesToResolve.add(directive);
|
| + }
|
| + } else if (directive is PartDirective) {
|
| + PartDirective partDirective = directive;
|
| + StringLiteral partUri = partDirective.uri;
|
| + Source partSource = partDirective.source;
|
| + if (_analysisContext.exists(partSource)) {
|
| + hasPartDirective = true;
|
| + CompilationUnit partUnit = library.getAST(partSource);
|
| + CompilationUnitElementImpl part =
|
| + builder.buildCompilationUnit(partSource, partUnit, librarySource);
|
| + part.uriOffset = partUri.offset;
|
| + part.uriEnd = partUri.end;
|
| + part.uri = partDirective.uriContent;
|
| + //
|
| + // Validate that the part contains a part-of directive with the same
|
| + // name as the library.
|
| + //
|
| + String partLibraryName =
|
| + _getPartLibraryName(partSource, partUnit, directivesToResolve);
|
| + if (partLibraryName == null) {
|
| + _errorListener.onError(new AnalysisError(
|
| + librarySource,
|
| + partUri.offset,
|
| + partUri.length,
|
| + CompileTimeErrorCode.PART_OF_NON_PART,
|
| + [partUri.toSource()]));
|
| + } else if (libraryNameNode == null) {
|
| + // TODO(brianwilkerson) Collect the names declared by the part.
|
| + // If they are all the same then we can use that name as the
|
| + // inferred name of the library and present it in a quick-fix.
|
| + // partLibraryNames.add(partLibraryName);
|
| + } else if (libraryNameNode.name != partLibraryName) {
|
| + _errorListener.onError(new AnalysisError(
|
| + librarySource,
|
| + partUri.offset,
|
| + partUri.length,
|
| + StaticWarningCode.PART_OF_DIFFERENT_LIBRARY,
|
| + [libraryNameNode.name, partLibraryName]));
|
| + }
|
| + if (entryPoint == null) {
|
| + entryPoint = _findEntryPoint(part);
|
| + }
|
| + directive.element = part;
|
| + sourcedCompilationUnits.add(part);
|
| + }
|
| + }
|
| + }
|
| + if (hasPartDirective && libraryNameNode == null) {
|
| + _errorListener.onError(new AnalysisError(librarySource, 0, 0,
|
| + ResolverErrorCode.MISSING_LIBRARY_DIRECTIVE_WITH_PART));
|
| + }
|
| + //
|
| + // Create and populate the library element.
|
| + //
|
| + LibraryElementImpl libraryElement = new LibraryElementImpl.forNode(
|
| + _analysisContext.getContextFor(librarySource), libraryNameNode);
|
| + libraryElement.definingCompilationUnit = definingCompilationUnitElement;
|
| + if (entryPoint != null) {
|
| + libraryElement.entryPoint = entryPoint;
|
| + }
|
| + int sourcedUnitCount = sourcedCompilationUnits.length;
|
| + libraryElement.parts = sourcedCompilationUnits;
|
| + for (Directive directive in directivesToResolve) {
|
| + directive.element = libraryElement;
|
| + }
|
| + library.libraryElement = libraryElement;
|
| + if (sourcedUnitCount > 0) {
|
| + _patchTopLevelAccessors(libraryElement);
|
| + }
|
| + return libraryElement;
|
| + }
|
| +
|
| + /**
|
| + * Build the library element for the given library. The resulting element is
|
| + * stored in the [ResolvableLibrary] structure.
|
| + *
|
| + * @param library the library for which an element model is to be built
|
| + * @throws AnalysisException if the analysis could not be performed
|
| + */
|
| + void buildLibrary2(ResolvableLibrary library) {
|
| + CompilationUnitBuilder builder = new CompilationUnitBuilder();
|
| + Source librarySource = library.librarySource;
|
| + CompilationUnit definingCompilationUnit = library.definingCompilationUnit;
|
| + CompilationUnitElementImpl definingCompilationUnitElement = builder
|
| + .buildCompilationUnit(
|
| + librarySource, definingCompilationUnit, librarySource);
|
| + NodeList<Directive> directives = definingCompilationUnit.directives;
|
| + LibraryIdentifier libraryNameNode = null;
|
| + bool hasPartDirective = false;
|
| + FunctionElement entryPoint =
|
| + _findEntryPoint(definingCompilationUnitElement);
|
| + List<Directive> directivesToResolve = new List<Directive>();
|
| + List<CompilationUnitElementImpl> sourcedCompilationUnits =
|
| + new List<CompilationUnitElementImpl>();
|
| + for (Directive directive in directives) {
|
| + //
|
| + // We do not build the elements representing the import and export
|
| + // directives at this point. That is not done until we get to
|
| + // LibraryResolver.buildDirectiveModels() because we need the
|
| + // LibraryElements for the referenced libraries, which might not exist at
|
| + // this point (due to the possibility of circular references).
|
| + //
|
| + if (directive is LibraryDirective) {
|
| + if (libraryNameNode == null) {
|
| + libraryNameNode = directive.name;
|
| + directivesToResolve.add(directive);
|
| + }
|
| + } else if (directive is PartDirective) {
|
| + PartDirective partDirective = directive;
|
| + StringLiteral partUri = partDirective.uri;
|
| + Source partSource = partDirective.source;
|
| + if (_analysisContext.exists(partSource)) {
|
| + hasPartDirective = true;
|
| + CompilationUnit partUnit = library.getAST(partSource);
|
| + if (partUnit != null) {
|
| + CompilationUnitElementImpl part = builder.buildCompilationUnit(
|
| + partSource, partUnit, librarySource);
|
| + part.uriOffset = partUri.offset;
|
| + part.uriEnd = partUri.end;
|
| + part.uri = partDirective.uriContent;
|
| + //
|
| + // Validate that the part contains a part-of directive with the same
|
| + // name as the library.
|
| + //
|
| + String partLibraryName =
|
| + _getPartLibraryName(partSource, partUnit, directivesToResolve);
|
| + if (partLibraryName == null) {
|
| + _errorListener.onError(new AnalysisError(
|
| + librarySource,
|
| + partUri.offset,
|
| + partUri.length,
|
| + CompileTimeErrorCode.PART_OF_NON_PART,
|
| + [partUri.toSource()]));
|
| + } else if (libraryNameNode == null) {
|
| + // TODO(brianwilkerson) Collect the names declared by the part.
|
| + // If they are all the same then we can use that name as the
|
| + // inferred name of the library and present it in a quick-fix.
|
| + // partLibraryNames.add(partLibraryName);
|
| + } else if (libraryNameNode.name != partLibraryName) {
|
| + _errorListener.onError(new AnalysisError(
|
| + librarySource,
|
| + partUri.offset,
|
| + partUri.length,
|
| + StaticWarningCode.PART_OF_DIFFERENT_LIBRARY,
|
| + [libraryNameNode.name, partLibraryName]));
|
| + }
|
| + if (entryPoint == null) {
|
| + entryPoint = _findEntryPoint(part);
|
| + }
|
| + directive.element = part;
|
| + sourcedCompilationUnits.add(part);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + if (hasPartDirective && libraryNameNode == null) {
|
| + _errorListener.onError(new AnalysisError(librarySource, 0, 0,
|
| + ResolverErrorCode.MISSING_LIBRARY_DIRECTIVE_WITH_PART));
|
| + }
|
| + //
|
| + // Create and populate the library element.
|
| + //
|
| + LibraryElementImpl libraryElement = new LibraryElementImpl.forNode(
|
| + _analysisContext.getContextFor(librarySource), libraryNameNode);
|
| + libraryElement.definingCompilationUnit = definingCompilationUnitElement;
|
| + if (entryPoint != null) {
|
| + libraryElement.entryPoint = entryPoint;
|
| + }
|
| + int sourcedUnitCount = sourcedCompilationUnits.length;
|
| + libraryElement.parts = sourcedCompilationUnits;
|
| + for (Directive directive in directivesToResolve) {
|
| + directive.element = libraryElement;
|
| + }
|
| + library.libraryElement = libraryElement;
|
| + if (sourcedUnitCount > 0) {
|
| + _patchTopLevelAccessors(libraryElement);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Add all of the non-synthetic getters and setters defined in the given compilation unit that
|
| + * have no corresponding accessor to one of the given collections.
|
| + *
|
| + * @param getters the map to which getters are to be added
|
| + * @param setters the list to which setters are to be added
|
| + * @param unit the compilation unit defining the accessors that are potentially being added
|
| + */
|
| + void _collectAccessors(HashMap<String, PropertyAccessorElement> getters,
|
| + List<PropertyAccessorElement> setters, CompilationUnitElement unit) {
|
| + for (PropertyAccessorElement accessor in unit.accessors) {
|
| + if (accessor.isGetter) {
|
| + if (!accessor.isSynthetic && accessor.correspondingSetter == null) {
|
| + getters[accessor.displayName] = accessor;
|
| + }
|
| + } else {
|
| + if (!accessor.isSynthetic && accessor.correspondingGetter == null) {
|
| + setters.add(accessor);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Search the top-level functions defined in the given compilation unit for the entry point.
|
| + *
|
| + * @param element the compilation unit to be searched
|
| + * @return the entry point that was found, or `null` if the compilation unit does not define
|
| + * an entry point
|
| + */
|
| + FunctionElement _findEntryPoint(CompilationUnitElementImpl element) {
|
| + for (FunctionElement function in element.functions) {
|
| + if (function.isEntryPoint) {
|
| + return function;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Return the name of the library that the given part is declared to be a part of, or `null`
|
| + * if the part does not contain a part-of directive.
|
| + *
|
| + * @param partSource the source representing the part
|
| + * @param partUnit the AST structure of the part
|
| + * @param directivesToResolve a list of directives that should be resolved to the library being
|
| + * built
|
| + * @return the name of the library that the given part is declared to be a part of
|
| + */
|
| + String _getPartLibraryName(Source partSource, CompilationUnit partUnit,
|
| + List<Directive> directivesToResolve) {
|
| + for (Directive directive in partUnit.directives) {
|
| + if (directive is PartOfDirective) {
|
| + directivesToResolve.add(directive);
|
| + LibraryIdentifier libraryName = directive.libraryName;
|
| + if (libraryName != null) {
|
| + return libraryName.name;
|
| + }
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Look through all of the compilation units defined for the given library, looking for getters
|
| + * and setters that are defined in different compilation units but that have the same names. If
|
| + * any are found, make sure that they have the same variable element.
|
| + *
|
| + * @param libraryElement the library defining the compilation units to be processed
|
| + */
|
| + void _patchTopLevelAccessors(LibraryElementImpl libraryElement) {
|
| + HashMap<String, PropertyAccessorElement> getters =
|
| + new HashMap<String, PropertyAccessorElement>();
|
| + List<PropertyAccessorElement> setters = new List<PropertyAccessorElement>();
|
| + _collectAccessors(getters, setters, libraryElement.definingCompilationUnit);
|
| + for (CompilationUnitElement unit in libraryElement.parts) {
|
| + _collectAccessors(getters, setters, unit);
|
| + }
|
| + for (PropertyAccessorElement setter in setters) {
|
| + PropertyAccessorElement getter = getters[setter.displayName];
|
| + if (getter != null) {
|
| + PropertyInducingElementImpl variable =
|
| + getter.variable as PropertyInducingElementImpl;
|
| + variable.setter = setter;
|
| + (setter as PropertyAccessorElementImpl).variable = variable;
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `LibraryImportScope` represent the scope containing all of the names
|
| + * available from imported libraries.
|
| + */
|
| +class LibraryImportScope extends Scope {
|
| + /**
|
| + * The element representing the library in which this scope is enclosed.
|
| + */
|
| + final LibraryElement _definingLibrary;
|
| +
|
| + /**
|
| + * The listener that is to be informed when an error is encountered.
|
| + */
|
| + final AnalysisErrorListener errorListener;
|
| +
|
| + /**
|
| + * A list of the namespaces representing the names that are available in this scope from imported
|
| + * libraries.
|
| + */
|
| + List<Namespace> _importedNamespaces;
|
| +
|
| + /**
|
| + * Initialize a newly created scope representing the names imported into the given library.
|
| + *
|
| + * @param definingLibrary the element representing the library that imports the names defined in
|
| + * this scope
|
| + * @param errorListener the listener that is to be informed when an error is encountered
|
| + */
|
| + LibraryImportScope(this._definingLibrary, this.errorListener) {
|
| + _createImportedNamespaces();
|
| + }
|
| +
|
| + @override
|
| + void define(Element element) {
|
| + if (!Scope.isPrivateName(element.displayName)) {
|
| + super.define(element);
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Source getSource(AstNode node) {
|
| + Source source = super.getSource(node);
|
| + if (source == null) {
|
| + source = _definingLibrary.definingCompilationUnit.source;
|
| + }
|
| + return source;
|
| + }
|
| +
|
| + @override
|
| + Element internalLookup(
|
| + Identifier identifier, String name, LibraryElement referencingLibrary) {
|
| + Element foundElement = localLookup(name, referencingLibrary);
|
| + if (foundElement != null) {
|
| + return foundElement;
|
| + }
|
| + for (int i = 0; i < _importedNamespaces.length; i++) {
|
| + Namespace nameSpace = _importedNamespaces[i];
|
| + Element element = nameSpace.get(name);
|
| + if (element != null) {
|
| + if (foundElement == null) {
|
| + foundElement = element;
|
| + } else if (!identical(foundElement, element)) {
|
| + foundElement = MultiplyDefinedElementImpl.fromElements(
|
| + _definingLibrary.context, foundElement, element);
|
| + }
|
| + }
|
| + }
|
| + if (foundElement is MultiplyDefinedElementImpl) {
|
| + foundElement = _removeSdkElements(
|
| + identifier, name, foundElement as MultiplyDefinedElementImpl);
|
| + }
|
| + if (foundElement is MultiplyDefinedElementImpl) {
|
| + String foundEltName = foundElement.displayName;
|
| + List<Element> conflictingMembers = foundElement.conflictingElements;
|
| + int count = conflictingMembers.length;
|
| + List<String> libraryNames = new List<String>(count);
|
| + for (int i = 0; i < count; i++) {
|
| + libraryNames[i] = _getLibraryName(conflictingMembers[i]);
|
| + }
|
| + libraryNames.sort();
|
| + errorListener.onError(new AnalysisError(
|
| + getSource(identifier),
|
| + identifier.offset,
|
| + identifier.length,
|
| + StaticWarningCode.AMBIGUOUS_IMPORT, [
|
| + foundEltName,
|
| + StringUtilities.printListOfQuotedNames(libraryNames)
|
| + ]));
|
| + return foundElement;
|
| + }
|
| + if (foundElement != null) {
|
| + defineNameWithoutChecking(name, foundElement);
|
| + }
|
| + return foundElement;
|
| + }
|
| +
|
| + /**
|
| + * Create all of the namespaces associated with the libraries imported into this library. The
|
| + * names are not added to this scope, but are stored for later reference.
|
| + *
|
| + * @param definingLibrary the element representing the library that imports the libraries for
|
| + * which namespaces will be created
|
| + */
|
| + void _createImportedNamespaces() {
|
| + NamespaceBuilder builder = new NamespaceBuilder();
|
| + List<ImportElement> imports = _definingLibrary.imports;
|
| + int count = imports.length;
|
| + _importedNamespaces = new List<Namespace>(count);
|
| + for (int i = 0; i < count; i++) {
|
| + _importedNamespaces[i] =
|
| + builder.createImportNamespaceForDirective(imports[i]);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Returns the name of the library that defines given element.
|
| + *
|
| + * @param element the element to get library name
|
| + * @return the name of the library that defines given element
|
| + */
|
| + String _getLibraryName(Element element) {
|
| + if (element == null) {
|
| + return StringUtilities.EMPTY;
|
| + }
|
| + LibraryElement library = element.library;
|
| + if (library == null) {
|
| + return StringUtilities.EMPTY;
|
| + }
|
| + List<ImportElement> imports = _definingLibrary.imports;
|
| + int count = imports.length;
|
| + for (int i = 0; i < count; i++) {
|
| + if (identical(imports[i].importedLibrary, library)) {
|
| + return library.definingCompilationUnit.displayName;
|
| + }
|
| + }
|
| + List<String> indirectSources = new List<String>();
|
| + for (int i = 0; i < count; i++) {
|
| + LibraryElement importedLibrary = imports[i].importedLibrary;
|
| + if (importedLibrary != null) {
|
| + for (LibraryElement exportedLibrary
|
| + in importedLibrary.exportedLibraries) {
|
| + if (identical(exportedLibrary, library)) {
|
| + indirectSources
|
| + .add(importedLibrary.definingCompilationUnit.displayName);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + int indirectCount = indirectSources.length;
|
| + StringBuffer buffer = new StringBuffer();
|
| + buffer.write(library.definingCompilationUnit.displayName);
|
| + if (indirectCount > 0) {
|
| + buffer.write(" (via ");
|
| + if (indirectCount > 1) {
|
| + indirectSources.sort();
|
| + buffer.write(StringUtilities.printListOfQuotedNames(indirectSources));
|
| + } else {
|
| + buffer.write(indirectSources[0]);
|
| + }
|
| + buffer.write(")");
|
| + }
|
| + return buffer.toString();
|
| + }
|
| +
|
| + /**
|
| + * Given a collection of elements (captured by the [foundElement]) that the
|
| + * [identifier] (with the given [name]) resolved to, remove from the list all
|
| + * of the names defined in the SDK and return the element(s) that remain.
|
| + */
|
| + Element _removeSdkElements(Identifier identifier, String name,
|
| + MultiplyDefinedElementImpl foundElement) {
|
| + List<Element> conflictingElements = foundElement.conflictingElements;
|
| + List<Element> nonSdkElements = new List<Element>();
|
| + Element sdkElement = null;
|
| + for (Element member in conflictingElements) {
|
| + if (member.library.isInSdk) {
|
| + sdkElement = member;
|
| + } else {
|
| + nonSdkElements.add(member);
|
| + }
|
| + }
|
| + if (sdkElement != null && nonSdkElements.length > 0) {
|
| + String sdkLibName = _getLibraryName(sdkElement);
|
| + String otherLibName = _getLibraryName(nonSdkElements[0]);
|
| + errorListener.onError(new AnalysisError(
|
| + getSource(identifier),
|
| + identifier.offset,
|
| + identifier.length,
|
| + StaticWarningCode.CONFLICTING_DART_IMPORT,
|
| + [name, sdkLibName, otherLibName]));
|
| + }
|
| + if (nonSdkElements.length == conflictingElements.length) {
|
| + // None of the members were removed
|
| + return foundElement;
|
| + } else if (nonSdkElements.length == 1) {
|
| + // All but one member was removed
|
| + return nonSdkElements[0];
|
| + } else if (nonSdkElements.length == 0) {
|
| + // All members were removed
|
| + AnalysisEngine.instance.logger
|
| + .logInformation("Multiply defined SDK element: $foundElement");
|
| + return foundElement;
|
| + }
|
| + return new MultiplyDefinedElementImpl(
|
| + _definingLibrary.context, nonSdkElements);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `LibraryResolver` are used to resolve one or more mutually dependent
|
| + * libraries within a single context.
|
| + */
|
| +class LibraryResolver {
|
| + /**
|
| + * The analysis context in which the libraries are being analyzed.
|
| + */
|
| + final InternalAnalysisContext analysisContext;
|
| +
|
| + /**
|
| + * The listener to which analysis errors will be reported, this error listener is either
|
| + * references [recordingErrorListener], or it unions the passed
|
| + * [AnalysisErrorListener] with the [recordingErrorListener].
|
| + */
|
| + RecordingErrorListener _errorListener;
|
| +
|
| + /**
|
| + * A source object representing the core library (dart:core).
|
| + */
|
| + Source _coreLibrarySource;
|
| +
|
| + /**
|
| + * A Source object representing the async library (dart:async).
|
| + */
|
| + Source _asyncLibrarySource;
|
| +
|
| + /**
|
| + * The object representing the core library.
|
| + */
|
| + Library _coreLibrary;
|
| +
|
| + /**
|
| + * The object representing the async library.
|
| + */
|
| + Library _asyncLibrary;
|
| +
|
| + /**
|
| + * The object used to access the types from the core library.
|
| + */
|
| + TypeProvider _typeProvider;
|
| +
|
| + /**
|
| + * A table mapping library sources to the information being maintained for those libraries.
|
| + */
|
| + HashMap<Source, Library> _libraryMap = new HashMap<Source, Library>();
|
| +
|
| + /**
|
| + * A collection containing the libraries that are being resolved together.
|
| + */
|
| + Set<Library> _librariesInCycles;
|
| +
|
| + /**
|
| + * Initialize a newly created library resolver to resolve libraries within the given context.
|
| + *
|
| + * @param analysisContext the analysis context in which the library is being analyzed
|
| + */
|
| + LibraryResolver(this.analysisContext) {
|
| + this._errorListener = new RecordingErrorListener();
|
| + _coreLibrarySource =
|
| + analysisContext.sourceFactory.forUri(DartSdk.DART_CORE);
|
| + _asyncLibrarySource =
|
| + analysisContext.sourceFactory.forUri(DartSdk.DART_ASYNC);
|
| + }
|
| +
|
| + /**
|
| + * Return the listener to which analysis errors will be reported.
|
| + *
|
| + * @return the listener to which analysis errors will be reported
|
| + */
|
| + RecordingErrorListener get errorListener => _errorListener;
|
| +
|
| + /**
|
| + * Return an array containing information about all of the libraries that were resolved.
|
| + *
|
| + * @return an array containing the libraries that were resolved
|
| + */
|
| + Set<Library> get resolvedLibraries => _librariesInCycles;
|
| +
|
| + /**
|
| + * The object used to access the types from the core library.
|
| + */
|
| + TypeProvider get typeProvider => _typeProvider;
|
| +
|
| + /**
|
| + * Create an object to represent the information about the library defined by the compilation unit
|
| + * with the given source.
|
| + *
|
| + * @param librarySource the source of the library's defining compilation unit
|
| + * @return the library object that was created
|
| + * @throws AnalysisException if the library source is not valid
|
| + */
|
| + Library createLibrary(Source librarySource) {
|
| + Library library =
|
| + new Library(analysisContext, _errorListener, librarySource);
|
| + _libraryMap[librarySource] = library;
|
| + return library;
|
| + }
|
| +
|
| + /**
|
| + * Resolve the library specified by the given source in the given context. The library is assumed
|
| + * to be embedded in the given source.
|
| + *
|
| + * @param librarySource the source specifying the defining compilation unit of the library to be
|
| + * resolved
|
| + * @param unit the compilation unit representing the embedded library
|
| + * @param fullAnalysis `true` if a full analysis should be performed
|
| + * @return the element representing the resolved library
|
| + * @throws AnalysisException if the library could not be resolved for some reason
|
| + */
|
| + LibraryElement resolveEmbeddedLibrary(
|
| + Source librarySource, CompilationUnit unit, bool fullAnalysis) {
|
| + //
|
| + // Create the objects representing the library being resolved and the core
|
| + // library.
|
| + //
|
| + Library targetLibrary = _createLibraryWithUnit(librarySource, unit);
|
| + _coreLibrary = _libraryMap[_coreLibrarySource];
|
| + if (_coreLibrary == null) {
|
| + // This will only happen if the library being analyzed is the core
|
| + // library.
|
| + _coreLibrary = createLibrary(_coreLibrarySource);
|
| + if (_coreLibrary == null) {
|
| + LibraryResolver2.missingCoreLibrary(
|
| + analysisContext, _coreLibrarySource);
|
| + }
|
| + }
|
| + _asyncLibrary = _libraryMap[_asyncLibrarySource];
|
| + if (_asyncLibrary == null) {
|
| + // This will only happen if the library being analyzed is the async
|
| + // library.
|
| + _asyncLibrary = createLibrary(_asyncLibrarySource);
|
| + if (_asyncLibrary == null) {
|
| + LibraryResolver2.missingAsyncLibrary(
|
| + analysisContext, _asyncLibrarySource);
|
| + }
|
| + }
|
| + //
|
| + // Compute the set of libraries that need to be resolved together.
|
| + //
|
| + _computeEmbeddedLibraryDependencies(targetLibrary, unit);
|
| + _librariesInCycles = _computeLibrariesInCycles(targetLibrary);
|
| + //
|
| + // Build the element models representing the libraries being resolved.
|
| + // This is done in three steps:
|
| + //
|
| + // 1. Build the basic element models without making any connections
|
| + // between elements other than the basic parent/child relationships.
|
| + // This includes building the elements representing the libraries.
|
| + // 2. Build the elements for the import and export directives. This
|
| + // requires that we have the elements built for the referenced
|
| + // libraries, but because of the possibility of circular references
|
| + // needs to happen after all of the library elements have been created.
|
| + // 3. Build the rest of the type model by connecting superclasses, mixins,
|
| + // and interfaces. This requires that we be able to compute the names
|
| + // visible in the libraries being resolved, which in turn requires that
|
| + // we have resolved the import directives.
|
| + //
|
| + _buildElementModels();
|
| + LibraryElement coreElement = _coreLibrary.libraryElement;
|
| + if (coreElement == null) {
|
| + throw new AnalysisException("Could not resolve dart:core");
|
| + }
|
| + LibraryElement asyncElement = _asyncLibrary.libraryElement;
|
| + if (asyncElement == null) {
|
| + throw new AnalysisException("Could not resolve dart:async");
|
| + }
|
| + _buildDirectiveModels();
|
| + _typeProvider = new TypeProviderImpl(coreElement, asyncElement);
|
| + _buildTypeHierarchies();
|
| + //
|
| + // Perform resolution and type analysis.
|
| + //
|
| + // TODO(brianwilkerson) Decide whether we want to resolve all of the
|
| + // libraries or whether we want to only resolve the target library.
|
| + // The advantage to resolving everything is that we have already done part
|
| + // of the work so we'll avoid duplicated effort. The disadvantage of
|
| + // resolving everything is that we might do extra work that we don't
|
| + // really care about. Another possibility is to add a parameter to this
|
| + // method and punt the decision to the clients.
|
| + //
|
| + //if (analyzeAll) {
|
| + resolveReferencesAndTypes();
|
| + //} else {
|
| + // resolveReferencesAndTypes(targetLibrary);
|
| + //}
|
| + _performConstantEvaluation();
|
| + return targetLibrary.libraryElement;
|
| + }
|
| +
|
| + /**
|
| + * Resolve the library specified by the given source in the given context.
|
| + *
|
| + * Note that because Dart allows circular imports between libraries, it is possible that more than
|
| + * one library will need to be resolved. In such cases the error listener can receive errors from
|
| + * multiple libraries.
|
| + *
|
| + * @param librarySource the source specifying the defining compilation unit of the library to be
|
| + * resolved
|
| + * @param fullAnalysis `true` if a full analysis should be performed
|
| + * @return the element representing the resolved library
|
| + * @throws AnalysisException if the library could not be resolved for some reason
|
| + */
|
| + LibraryElement resolveLibrary(Source librarySource, bool fullAnalysis) {
|
| + //
|
| + // Create the object representing the library being resolved and compute
|
| + // the dependency relationship. Note that all libraries depend implicitly
|
| + // on core, and we inject an ersatz dependency on async, so once this is
|
| + // done the core and async library elements will have been created.
|
| + //
|
| + Library targetLibrary = createLibrary(librarySource);
|
| + _computeLibraryDependencies(targetLibrary);
|
| + _coreLibrary = _libraryMap[_coreLibrarySource];
|
| + _asyncLibrary = _libraryMap[_asyncLibrarySource];
|
| + //
|
| + // Compute the set of libraries that need to be resolved together.
|
| + //
|
| + _librariesInCycles = _computeLibrariesInCycles(targetLibrary);
|
| + //
|
| + // Build the element models representing the libraries being resolved.
|
| + // This is done in three steps:
|
| + //
|
| + // 1. Build the basic element models without making any connections
|
| + // between elements other than the basic parent/child relationships.
|
| + // This includes building the elements representing the libraries, but
|
| + // excludes members defined in enums.
|
| + // 2. Build the elements for the import and export directives. This
|
| + // requires that we have the elements built for the referenced
|
| + // libraries, but because of the possibility of circular references
|
| + // needs to happen after all of the library elements have been created.
|
| + // 3. Build the members in enum declarations.
|
| + // 4. Build the rest of the type model by connecting superclasses, mixins,
|
| + // and interfaces. This requires that we be able to compute the names
|
| + // visible in the libraries being resolved, which in turn requires that
|
| + // we have resolved the import directives.
|
| + //
|
| + _buildElementModels();
|
| + LibraryElement coreElement = _coreLibrary.libraryElement;
|
| + if (coreElement == null) {
|
| + throw new AnalysisException("Could not resolve dart:core");
|
| + }
|
| + LibraryElement asyncElement = _asyncLibrary.libraryElement;
|
| + if (asyncElement == null) {
|
| + throw new AnalysisException("Could not resolve dart:async");
|
| + }
|
| + _buildDirectiveModels();
|
| + _typeProvider = new TypeProviderImpl(coreElement, asyncElement);
|
| + _buildEnumMembers();
|
| + _buildTypeHierarchies();
|
| + //
|
| + // Perform resolution and type analysis.
|
| + //
|
| + // TODO(brianwilkerson) Decide whether we want to resolve all of the
|
| + // libraries or whether we want to only resolve the target library. The
|
| + // advantage to resolving everything is that we have already done part of
|
| + // the work so we'll avoid duplicated effort. The disadvantage of
|
| + // resolving everything is that we might do extra work that we don't
|
| + // really care about. Another possibility is to add a parameter to this
|
| + // method and punt the decision to the clients.
|
| + //
|
| + //if (analyzeAll) {
|
| + resolveReferencesAndTypes();
|
| + //} else {
|
| + // resolveReferencesAndTypes(targetLibrary);
|
| + //}
|
| + _performConstantEvaluation();
|
| + return targetLibrary.libraryElement;
|
| + }
|
| +
|
| + /**
|
| + * Resolve the identifiers and perform type analysis in the libraries in the current cycle.
|
| + *
|
| + * @throws AnalysisException if any of the identifiers could not be resolved or if any of the
|
| + * libraries could not have their types analyzed
|
| + */
|
| + void resolveReferencesAndTypes() {
|
| + for (Library library in _librariesInCycles) {
|
| + _resolveReferencesAndTypesInLibrary(library);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Add a dependency to the given map from the referencing library to the referenced library.
|
| + *
|
| + * @param dependencyMap the map to which the dependency is to be added
|
| + * @param referencingLibrary the library that references the referenced library
|
| + * @param referencedLibrary the library referenced by the referencing library
|
| + */
|
| + void _addDependencyToMap(HashMap<Library, List<Library>> dependencyMap,
|
| + Library referencingLibrary, Library referencedLibrary) {
|
| + List<Library> dependentLibraries = dependencyMap[referencedLibrary];
|
| + if (dependentLibraries == null) {
|
| + dependentLibraries = new List<Library>();
|
| + dependencyMap[referencedLibrary] = dependentLibraries;
|
| + }
|
| + dependentLibraries.add(referencingLibrary);
|
| + }
|
| +
|
| + /**
|
| + * Given a library that is part of a cycle that includes the root library, add to the given set of
|
| + * libraries all of the libraries reachable from the root library that are also included in the
|
| + * cycle.
|
| + *
|
| + * @param library the library to be added to the collection of libraries in cycles
|
| + * @param librariesInCycle a collection of the libraries that are in the cycle
|
| + * @param dependencyMap a table mapping libraries to the collection of libraries from which those
|
| + * libraries are referenced
|
| + */
|
| + void _addLibrariesInCycle(Library library, Set<Library> librariesInCycle,
|
| + HashMap<Library, List<Library>> dependencyMap) {
|
| + if (librariesInCycle.add(library)) {
|
| + List<Library> dependentLibraries = dependencyMap[library];
|
| + if (dependentLibraries != null) {
|
| + for (Library dependentLibrary in dependentLibraries) {
|
| + _addLibrariesInCycle(
|
| + dependentLibrary, librariesInCycle, dependencyMap);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Add the given library, and all libraries reachable from it that have not already been visited,
|
| + * to the given dependency map.
|
| + *
|
| + * @param library the library currently being added to the dependency map
|
| + * @param dependencyMap the dependency map being computed
|
| + * @param visitedLibraries the libraries that have already been visited, used to prevent infinite
|
| + * recursion
|
| + */
|
| + void _addToDependencyMap(
|
| + Library library,
|
| + HashMap<Library, List<Library>> dependencyMap,
|
| + Set<Library> visitedLibraries) {
|
| + if (visitedLibraries.add(library)) {
|
| + bool asyncFound = false;
|
| + for (Library referencedLibrary in library.importsAndExports) {
|
| + _addDependencyToMap(dependencyMap, library, referencedLibrary);
|
| + _addToDependencyMap(referencedLibrary, dependencyMap, visitedLibraries);
|
| + if (identical(referencedLibrary, _asyncLibrary)) {
|
| + asyncFound = true;
|
| + }
|
| + }
|
| + if (!library.explicitlyImportsCore && !identical(library, _coreLibrary)) {
|
| + _addDependencyToMap(dependencyMap, library, _coreLibrary);
|
| + }
|
| + if (!asyncFound && !identical(library, _asyncLibrary)) {
|
| + _addDependencyToMap(dependencyMap, library, _asyncLibrary);
|
| + _addToDependencyMap(_asyncLibrary, dependencyMap, visitedLibraries);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Build the element model representing the combinators declared by the given directive.
|
| + *
|
| + * @param directive the directive that declares the combinators
|
| + * @return an array containing the import combinators that were built
|
| + */
|
| + List<NamespaceCombinator> _buildCombinators(NamespaceDirective directive) {
|
| + List<NamespaceCombinator> combinators = new List<NamespaceCombinator>();
|
| + for (Combinator combinator in directive.combinators) {
|
| + if (combinator is HideCombinator) {
|
| + HideElementCombinatorImpl hide = new HideElementCombinatorImpl();
|
| + hide.hiddenNames = _getIdentifiers(combinator.hiddenNames);
|
| + combinators.add(hide);
|
| + } else {
|
| + ShowElementCombinatorImpl show = new ShowElementCombinatorImpl();
|
| + show.offset = combinator.offset;
|
| + show.end = combinator.end;
|
| + show.shownNames =
|
| + _getIdentifiers((combinator as ShowCombinator).shownNames);
|
| + combinators.add(show);
|
| + }
|
| + }
|
| + return combinators;
|
| + }
|
| +
|
| + /**
|
| + * Every library now has a corresponding [LibraryElement], so it is now possible to resolve
|
| + * the import and export directives.
|
| + *
|
| + * @throws AnalysisException if the defining compilation unit for any of the libraries could not
|
| + * be accessed
|
| + */
|
| + void _buildDirectiveModels() {
|
| + for (Library library in _librariesInCycles) {
|
| + HashMap<String, PrefixElementImpl> nameToPrefixMap =
|
| + new HashMap<String, PrefixElementImpl>();
|
| + List<ImportElement> imports = new List<ImportElement>();
|
| + List<ExportElement> exports = new List<ExportElement>();
|
| + for (Directive directive in library.definingCompilationUnit.directives) {
|
| + if (directive is ImportDirective) {
|
| + ImportDirective importDirective = directive;
|
| + String uriContent = importDirective.uriContent;
|
| + if (DartUriResolver.isDartExtUri(uriContent)) {
|
| + library.libraryElement.hasExtUri = true;
|
| + }
|
| + Source importedSource = importDirective.source;
|
| + if (importedSource != null) {
|
| + // The imported source will be null if the URI in the import
|
| + // directive was invalid.
|
| + Library importedLibrary = _libraryMap[importedSource];
|
| + if (importedLibrary != null) {
|
| + ImportElementImpl importElement =
|
| + new ImportElementImpl(directive.offset);
|
| + StringLiteral uriLiteral = importDirective.uri;
|
| + importElement.uriOffset = uriLiteral.offset;
|
| + importElement.uriEnd = uriLiteral.end;
|
| + importElement.uri = uriContent;
|
| + importElement.deferred = importDirective.deferredKeyword != null;
|
| + importElement.combinators = _buildCombinators(importDirective);
|
| + LibraryElement importedLibraryElement =
|
| + importedLibrary.libraryElement;
|
| + if (importedLibraryElement != null) {
|
| + importElement.importedLibrary = importedLibraryElement;
|
| + }
|
| + SimpleIdentifier prefixNode = directive.prefix;
|
| + if (prefixNode != null) {
|
| + importElement.prefixOffset = prefixNode.offset;
|
| + String prefixName = prefixNode.name;
|
| + PrefixElementImpl prefix = nameToPrefixMap[prefixName];
|
| + if (prefix == null) {
|
| + prefix = new PrefixElementImpl.forNode(prefixNode);
|
| + nameToPrefixMap[prefixName] = prefix;
|
| + }
|
| + importElement.prefix = prefix;
|
| + prefixNode.staticElement = prefix;
|
| + }
|
| + directive.element = importElement;
|
| + imports.add(importElement);
|
| + if (analysisContext.computeKindOf(importedSource) !=
|
| + SourceKind.LIBRARY) {
|
| + ErrorCode errorCode = (importElement.isDeferred
|
| + ? StaticWarningCode.IMPORT_OF_NON_LIBRARY
|
| + : CompileTimeErrorCode.IMPORT_OF_NON_LIBRARY);
|
| + _errorListener.onError(new AnalysisError(
|
| + library.librarySource,
|
| + uriLiteral.offset,
|
| + uriLiteral.length,
|
| + errorCode,
|
| + [uriLiteral.toSource()]));
|
| + }
|
| + }
|
| + }
|
| + } else if (directive is ExportDirective) {
|
| + ExportDirective exportDirective = directive;
|
| + Source exportedSource = exportDirective.source;
|
| + if (exportedSource != null) {
|
| + // The exported source will be null if the URI in the export
|
| + // directive was invalid.
|
| + Library exportedLibrary = _libraryMap[exportedSource];
|
| + if (exportedLibrary != null) {
|
| + ExportElementImpl exportElement =
|
| + new ExportElementImpl(directive.offset);
|
| + StringLiteral uriLiteral = exportDirective.uri;
|
| + exportElement.uriOffset = uriLiteral.offset;
|
| + exportElement.uriEnd = uriLiteral.end;
|
| + exportElement.uri = exportDirective.uriContent;
|
| + exportElement.combinators = _buildCombinators(exportDirective);
|
| + LibraryElement exportedLibraryElement =
|
| + exportedLibrary.libraryElement;
|
| + if (exportedLibraryElement != null) {
|
| + exportElement.exportedLibrary = exportedLibraryElement;
|
| + }
|
| + directive.element = exportElement;
|
| + exports.add(exportElement);
|
| + if (analysisContext.computeKindOf(exportedSource) !=
|
| + SourceKind.LIBRARY) {
|
| + _errorListener.onError(new AnalysisError(
|
| + library.librarySource,
|
| + uriLiteral.offset,
|
| + uriLiteral.length,
|
| + CompileTimeErrorCode.EXPORT_OF_NON_LIBRARY,
|
| + [uriLiteral.toSource()]));
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| + Source librarySource = library.librarySource;
|
| + if (!library.explicitlyImportsCore &&
|
| + _coreLibrarySource != librarySource) {
|
| + ImportElementImpl importElement = new ImportElementImpl(-1);
|
| + importElement.importedLibrary = _coreLibrary.libraryElement;
|
| + importElement.synthetic = true;
|
| + imports.add(importElement);
|
| + }
|
| + LibraryElementImpl libraryElement = library.libraryElement;
|
| + libraryElement.imports = imports;
|
| + libraryElement.exports = exports;
|
| + if (libraryElement.entryPoint == null) {
|
| + Namespace namespace = new NamespaceBuilder()
|
| + .createExportNamespaceForLibrary(libraryElement);
|
| + Element element = namespace.get(FunctionElement.MAIN_FUNCTION_NAME);
|
| + if (element is FunctionElement) {
|
| + libraryElement.entryPoint = element;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Build element models for all of the libraries in the current cycle.
|
| + *
|
| + * @throws AnalysisException if any of the element models cannot be built
|
| + */
|
| + void _buildElementModels() {
|
| + for (Library library in _librariesInCycles) {
|
| + LibraryElementBuilder builder =
|
| + new LibraryElementBuilder(analysisContext, errorListener);
|
| + LibraryElementImpl libraryElement = builder.buildLibrary(library);
|
| + library.libraryElement = libraryElement;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Build the members in enum declarations. This cannot be done while building the rest of the
|
| + * element model because it depends on being able to access core types, which cannot happen until
|
| + * the rest of the element model has been built (when resolving the core library).
|
| + *
|
| + * @throws AnalysisException if any of the enum members could not be built
|
| + */
|
| + void _buildEnumMembers() {
|
| + PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| + for (Library library in _librariesInCycles) {
|
| + for (Source source in library.compilationUnitSources) {
|
| + EnumMemberBuilder builder = new EnumMemberBuilder(_typeProvider);
|
| + library.getAST(source).accept(builder);
|
| + }
|
| + }
|
| + });
|
| + }
|
| +
|
| + /**
|
| + * Resolve the type hierarchy across all of the types declared in the libraries in the current
|
| + * cycle.
|
| + *
|
| + * @throws AnalysisException if any of the type hierarchies could not be resolved
|
| + */
|
| + void _buildTypeHierarchies() {
|
| + PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| + for (Library library in _librariesInCycles) {
|
| + for (Source source in library.compilationUnitSources) {
|
| + TypeResolverVisitorFactory typeResolverVisitorFactory =
|
| + analysisContext.typeResolverVisitorFactory;
|
| + TypeResolverVisitor visitor = (typeResolverVisitorFactory == null)
|
| + ? new TypeResolverVisitor(library.libraryElement, source,
|
| + _typeProvider, library.errorListener,
|
| + nameScope: library.libraryScope)
|
| + : typeResolverVisitorFactory(library, source, _typeProvider);
|
| + library.getAST(source).accept(visitor);
|
| + }
|
| + }
|
| + });
|
| + }
|
| +
|
| + /**
|
| + * Compute a dependency map of libraries reachable from the given library. A dependency map is a
|
| + * table that maps individual libraries to a list of the libraries that either import or export
|
| + * those libraries.
|
| + *
|
| + * This map is used to compute all of the libraries involved in a cycle that include the root
|
| + * library. Given that we only add libraries that are reachable from the root library, when we
|
| + * work backward we are guaranteed to only get libraries in the cycle.
|
| + *
|
| + * @param library the library currently being added to the dependency map
|
| + */
|
| + HashMap<Library, List<Library>> _computeDependencyMap(Library library) {
|
| + HashMap<Library, List<Library>> dependencyMap =
|
| + new HashMap<Library, List<Library>>();
|
| + _addToDependencyMap(library, dependencyMap, new HashSet<Library>());
|
| + return dependencyMap;
|
| + }
|
| +
|
| + /**
|
| + * Recursively traverse the libraries reachable from the given library, creating instances of the
|
| + * class [Library] to represent them, and record the references in the library objects.
|
| + *
|
| + * @param library the library to be processed to find libraries that have not yet been traversed
|
| + * @throws AnalysisException if some portion of the library graph could not be traversed
|
| + */
|
| + void _computeEmbeddedLibraryDependencies(
|
| + Library library, CompilationUnit unit) {
|
| + Source librarySource = library.librarySource;
|
| + HashSet<Source> exportedSources = new HashSet<Source>();
|
| + HashSet<Source> importedSources = new HashSet<Source>();
|
| + for (Directive directive in unit.directives) {
|
| + if (directive is ExportDirective) {
|
| + Source exportSource = _resolveSource(librarySource, directive);
|
| + if (exportSource != null) {
|
| + exportedSources.add(exportSource);
|
| + }
|
| + } else if (directive is ImportDirective) {
|
| + Source importSource = _resolveSource(librarySource, directive);
|
| + if (importSource != null) {
|
| + importedSources.add(importSource);
|
| + }
|
| + }
|
| + }
|
| + _computeLibraryDependenciesFromDirectives(library,
|
| + new List.from(importedSources), new List.from(exportedSources));
|
| + }
|
| +
|
| + /**
|
| + * Return a collection containing all of the libraries reachable from the given library that are
|
| + * contained in a cycle that includes the given library.
|
| + *
|
| + * @param library the library that must be included in any cycles whose members are to be returned
|
| + * @return all of the libraries referenced by the given library that have a circular reference
|
| + * back to the given library
|
| + */
|
| + Set<Library> _computeLibrariesInCycles(Library library) {
|
| + HashMap<Library, List<Library>> dependencyMap =
|
| + _computeDependencyMap(library);
|
| + Set<Library> librariesInCycle = new HashSet<Library>();
|
| + _addLibrariesInCycle(library, librariesInCycle, dependencyMap);
|
| + return librariesInCycle;
|
| + }
|
| +
|
| + /**
|
| + * Recursively traverse the libraries reachable from the given library, creating instances of the
|
| + * class [Library] to represent them, and record the references in the library objects.
|
| + *
|
| + * @param library the library to be processed to find libraries that have not yet been traversed
|
| + * @throws AnalysisException if some portion of the library graph could not be traversed
|
| + */
|
| + void _computeLibraryDependencies(Library library) {
|
| + Source librarySource = library.librarySource;
|
| + _computeLibraryDependenciesFromDirectives(
|
| + library,
|
| + analysisContext.computeImportedLibraries(librarySource),
|
| + analysisContext.computeExportedLibraries(librarySource));
|
| + }
|
| +
|
| + /**
|
| + * Recursively traverse the libraries reachable from the given library, creating instances of the
|
| + * class [Library] to represent them, and record the references in the library objects.
|
| + *
|
| + * @param library the library to be processed to find libraries that have not yet been traversed
|
| + * @param importedSources an array containing the sources that are imported into the given library
|
| + * @param exportedSources an array containing the sources that are exported from the given library
|
| + * @throws AnalysisException if some portion of the library graph could not be traversed
|
| + */
|
| + void _computeLibraryDependenciesFromDirectives(Library library,
|
| + List<Source> importedSources, List<Source> exportedSources) {
|
| + List<Library> importedLibraries = new List<Library>();
|
| + bool explicitlyImportsCore = false;
|
| + bool importsAsync = false;
|
| + for (Source importedSource in importedSources) {
|
| + if (importedSource == _coreLibrarySource) {
|
| + explicitlyImportsCore = true;
|
| + }
|
| + if (importedSource == _asyncLibrarySource) {
|
| + importsAsync = true;
|
| + }
|
| + Library importedLibrary = _libraryMap[importedSource];
|
| + if (importedLibrary == null) {
|
| + importedLibrary = _createLibraryOrNull(importedSource);
|
| + if (importedLibrary != null) {
|
| + _computeLibraryDependencies(importedLibrary);
|
| + }
|
| + }
|
| + if (importedLibrary != null) {
|
| + importedLibraries.add(importedLibrary);
|
| + }
|
| + }
|
| + library.importedLibraries = importedLibraries;
|
| + List<Library> exportedLibraries = new List<Library>();
|
| + for (Source exportedSource in exportedSources) {
|
| + Library exportedLibrary = _libraryMap[exportedSource];
|
| + if (exportedLibrary == null) {
|
| + exportedLibrary = _createLibraryOrNull(exportedSource);
|
| + if (exportedLibrary != null) {
|
| + _computeLibraryDependencies(exportedLibrary);
|
| + }
|
| + }
|
| + if (exportedLibrary != null) {
|
| + exportedLibraries.add(exportedLibrary);
|
| + }
|
| + }
|
| + library.exportedLibraries = exportedLibraries;
|
| + library.explicitlyImportsCore = explicitlyImportsCore;
|
| + if (!explicitlyImportsCore && _coreLibrarySource != library.librarySource) {
|
| + Library importedLibrary = _libraryMap[_coreLibrarySource];
|
| + if (importedLibrary == null) {
|
| + importedLibrary = _createLibraryOrNull(_coreLibrarySource);
|
| + if (importedLibrary != null) {
|
| + _computeLibraryDependencies(importedLibrary);
|
| + }
|
| + }
|
| + }
|
| + if (!importsAsync && _asyncLibrarySource != library.librarySource) {
|
| + Library importedLibrary = _libraryMap[_asyncLibrarySource];
|
| + if (importedLibrary == null) {
|
| + importedLibrary = _createLibraryOrNull(_asyncLibrarySource);
|
| + if (importedLibrary != null) {
|
| + _computeLibraryDependencies(importedLibrary);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Create an object to represent the information about the library defined by the compilation unit
|
| + * with the given source. Return the library object that was created, or `null` if the
|
| + * source is not valid.
|
| + *
|
| + * @param librarySource the source of the library's defining compilation unit
|
| + * @return the library object that was created
|
| + */
|
| + Library _createLibraryOrNull(Source librarySource) {
|
| + if (!analysisContext.exists(librarySource)) {
|
| + return null;
|
| + }
|
| + Library library =
|
| + new Library(analysisContext, _errorListener, librarySource);
|
| + _libraryMap[librarySource] = library;
|
| + return library;
|
| + }
|
| +
|
| + /**
|
| + * Create an object to represent the information about the library defined by the compilation unit
|
| + * with the given source.
|
| + *
|
| + * @param librarySource the source of the library's defining compilation unit
|
| + * @param unit the compilation unit that defines the library
|
| + * @return the library object that was created
|
| + * @throws AnalysisException if the library source is not valid
|
| + */
|
| + Library _createLibraryWithUnit(Source librarySource, CompilationUnit unit) {
|
| + Library library =
|
| + new Library(analysisContext, _errorListener, librarySource);
|
| + library.setDefiningCompilationUnit(unit);
|
| + _libraryMap[librarySource] = library;
|
| + return library;
|
| + }
|
| +
|
| + /**
|
| + * Return an array containing the lexical identifiers associated with the nodes in the given list.
|
| + *
|
| + * @param names the AST nodes representing the identifiers
|
| + * @return the lexical identifiers associated with the nodes in the list
|
| + */
|
| + List<String> _getIdentifiers(NodeList<SimpleIdentifier> names) {
|
| + int count = names.length;
|
| + List<String> identifiers = new List<String>(count);
|
| + for (int i = 0; i < count; i++) {
|
| + identifiers[i] = names[i].name;
|
| + }
|
| + return identifiers;
|
| + }
|
| +
|
| + /**
|
| + * Compute a value for all of the constants in the libraries being analyzed.
|
| + */
|
| + void _performConstantEvaluation() {
|
| + PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| + ConstantValueComputer computer = new ConstantValueComputer(
|
| + analysisContext, _typeProvider, analysisContext.declaredVariables);
|
| + for (Library library in _librariesInCycles) {
|
| + for (Source source in library.compilationUnitSources) {
|
| + try {
|
| + CompilationUnit unit = library.getAST(source);
|
| + if (unit != null) {
|
| + computer.add(unit, source, library.librarySource);
|
| + }
|
| + } on AnalysisException catch (exception, stackTrace) {
|
| + AnalysisEngine.instance.logger.logError(
|
| + "Internal Error: Could not access AST for ${source.fullName} during constant evaluation",
|
| + new CaughtException(exception, stackTrace));
|
| + }
|
| + }
|
| + }
|
| + computer.computeValues();
|
| + // As a temporary workaround for issue 21572, run ConstantVerifier now.
|
| + // TODO(paulberry): remove this workaround once issue 21572 is fixed.
|
| + for (Library library in _librariesInCycles) {
|
| + for (Source source in library.compilationUnitSources) {
|
| + try {
|
| + CompilationUnit unit = library.getAST(source);
|
| + ErrorReporter errorReporter =
|
| + new ErrorReporter(_errorListener, source);
|
| + ConstantVerifier constantVerifier = new ConstantVerifier(
|
| + errorReporter,
|
| + library.libraryElement,
|
| + _typeProvider,
|
| + analysisContext.declaredVariables);
|
| + unit.accept(constantVerifier);
|
| + } on AnalysisException catch (exception, stackTrace) {
|
| + AnalysisEngine.instance.logger.logError(
|
| + "Internal Error: Could not access AST for ${source.fullName} "
|
| + "during constant verification",
|
| + new CaughtException(exception, stackTrace));
|
| + }
|
| + }
|
| + }
|
| + });
|
| + }
|
| +
|
| + /**
|
| + * Resolve the identifiers and perform type analysis in the given library.
|
| + *
|
| + * @param library the library to be resolved
|
| + * @throws AnalysisException if any of the identifiers could not be resolved or if the types in
|
| + * the library cannot be analyzed
|
| + */
|
| + void _resolveReferencesAndTypesInLibrary(Library library) {
|
| + PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| + for (Source source in library.compilationUnitSources) {
|
| + CompilationUnit ast = library.getAST(source);
|
| + ast.accept(new VariableResolverVisitor(library.libraryElement, source,
|
| + _typeProvider, library.errorListener,
|
| + nameScope: library.libraryScope));
|
| + ResolverVisitorFactory visitorFactory =
|
| + analysisContext.resolverVisitorFactory;
|
| + ResolverVisitor visitor = visitorFactory != null
|
| + ? visitorFactory(library, source, _typeProvider)
|
| + : new ResolverVisitor(library.libraryElement, source, _typeProvider,
|
| + library.errorListener,
|
| + nameScope: library.libraryScope,
|
| + inheritanceManager: library.inheritanceManager);
|
| + ast.accept(visitor);
|
| + }
|
| + });
|
| + }
|
| +
|
| + /**
|
| + * Return the result of resolving the URI of the given URI-based directive against the URI of the
|
| + * given library, or `null` if the URI is not valid.
|
| + *
|
| + * @param librarySource the source representing the library containing the directive
|
| + * @param directive the directive which URI should be resolved
|
| + * @return the result of resolving the URI against the URI of the library
|
| + */
|
| + Source _resolveSource(Source librarySource, UriBasedDirective directive) {
|
| + StringLiteral uriLiteral = directive.uri;
|
| + if (uriLiteral is StringInterpolation) {
|
| + return null;
|
| + }
|
| + String uriContent = uriLiteral.stringValue.trim();
|
| + if (uriContent == null || uriContent.isEmpty) {
|
| + return null;
|
| + }
|
| + uriContent = Uri.encodeFull(uriContent);
|
| + return analysisContext.sourceFactory.resolveUri(librarySource, uriContent);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `LibraryResolver` are used to resolve one or more mutually dependent
|
| + * libraries within a single context.
|
| + */
|
| +class LibraryResolver2 {
|
| + /**
|
| + * The analysis context in which the libraries are being analyzed.
|
| + */
|
| + final InternalAnalysisContext analysisContext;
|
| +
|
| + /**
|
| + * The listener to which analysis errors will be reported, this error listener is either
|
| + * references [recordingErrorListener], or it unions the passed
|
| + * [AnalysisErrorListener] with the [recordingErrorListener].
|
| + */
|
| + RecordingErrorListener _errorListener;
|
| +
|
| + /**
|
| + * A source object representing the core library (dart:core).
|
| + */
|
| + Source _coreLibrarySource;
|
| +
|
| + /**
|
| + * A source object representing the async library (dart:async).
|
| + */
|
| + Source _asyncLibrarySource;
|
| +
|
| + /**
|
| + * The object representing the core library.
|
| + */
|
| + ResolvableLibrary _coreLibrary;
|
| +
|
| + /**
|
| + * The object representing the async library.
|
| + */
|
| + ResolvableLibrary _asyncLibrary;
|
| +
|
| + /**
|
| + * The object used to access the types from the core library.
|
| + */
|
| + TypeProvider _typeProvider;
|
| +
|
| + /**
|
| + * A table mapping library sources to the information being maintained for those libraries.
|
| + */
|
| + HashMap<Source, ResolvableLibrary> _libraryMap =
|
| + new HashMap<Source, ResolvableLibrary>();
|
| +
|
| + /**
|
| + * A collection containing the libraries that are being resolved together.
|
| + */
|
| + List<ResolvableLibrary> _librariesInCycle;
|
| +
|
| + /**
|
| + * Initialize a newly created library resolver to resolve libraries within the given context.
|
| + *
|
| + * @param analysisContext the analysis context in which the library is being analyzed
|
| + */
|
| + LibraryResolver2(this.analysisContext) {
|
| + this._errorListener = new RecordingErrorListener();
|
| + _coreLibrarySource =
|
| + analysisContext.sourceFactory.forUri(DartSdk.DART_CORE);
|
| + _asyncLibrarySource =
|
| + analysisContext.sourceFactory.forUri(DartSdk.DART_ASYNC);
|
| + }
|
| +
|
| + /**
|
| + * Return the listener to which analysis errors will be reported.
|
| + *
|
| + * @return the listener to which analysis errors will be reported
|
| + */
|
| + RecordingErrorListener get errorListener => _errorListener;
|
| +
|
| + /**
|
| + * Return an array containing information about all of the libraries that were resolved.
|
| + *
|
| + * @return an array containing the libraries that were resolved
|
| + */
|
| + List<ResolvableLibrary> get resolvedLibraries => _librariesInCycle;
|
| +
|
| + /**
|
| + * Resolve the library specified by the given source in the given context.
|
| + *
|
| + * Note that because Dart allows circular imports between libraries, it is possible that more than
|
| + * one library will need to be resolved. In such cases the error listener can receive errors from
|
| + * multiple libraries.
|
| + *
|
| + * @param librarySource the source specifying the defining compilation unit of the library to be
|
| + * resolved
|
| + * @param fullAnalysis `true` if a full analysis should be performed
|
| + * @return the element representing the resolved library
|
| + * @throws AnalysisException if the library could not be resolved for some reason
|
| + */
|
| + LibraryElement resolveLibrary(
|
| + Source librarySource, List<ResolvableLibrary> librariesInCycle) {
|
| + //
|
| + // Build the map of libraries that are known.
|
| + //
|
| + this._librariesInCycle = librariesInCycle;
|
| + _libraryMap = _buildLibraryMap();
|
| + ResolvableLibrary targetLibrary = _libraryMap[librarySource];
|
| + _coreLibrary = _libraryMap[_coreLibrarySource];
|
| + _asyncLibrary = _libraryMap[_asyncLibrarySource];
|
| + //
|
| + // Build the element models representing the libraries being resolved.
|
| + // This is done in three steps:
|
| + //
|
| + // 1. Build the basic element models without making any connections
|
| + // between elements other than the basic parent/child relationships.
|
| + // This includes building the elements representing the libraries, but
|
| + // excludes members defined in enums.
|
| + // 2. Build the elements for the import and export directives. This
|
| + // requires that we have the elements built for the referenced
|
| + // libraries, but because of the possibility of circular references
|
| + // needs to happen after all of the library elements have been created.
|
| + // 3. Build the members in enum declarations.
|
| + // 4. Build the rest of the type model by connecting superclasses, mixins,
|
| + // and interfaces. This requires that we be able to compute the names
|
| + // visible in the libraries being resolved, which in turn requires that
|
| + // we have resolved the import directives.
|
| + //
|
| + _buildElementModels();
|
| + LibraryElement coreElement = _coreLibrary.libraryElement;
|
| + if (coreElement == null) {
|
| + missingCoreLibrary(analysisContext, _coreLibrarySource);
|
| + }
|
| + LibraryElement asyncElement = _asyncLibrary.libraryElement;
|
| + if (asyncElement == null) {
|
| + missingAsyncLibrary(analysisContext, _asyncLibrarySource);
|
| + }
|
| + _buildDirectiveModels();
|
| + _typeProvider = new TypeProviderImpl(coreElement, asyncElement);
|
| + _buildEnumMembers();
|
| + _buildTypeHierarchies();
|
| + //
|
| + // Perform resolution and type analysis.
|
| + //
|
| + // TODO(brianwilkerson) Decide whether we want to resolve all of the
|
| + // libraries or whether we want to only resolve the target library. The
|
| + // advantage to resolving everything is that we have already done part of
|
| + // the work so we'll avoid duplicated effort. The disadvantage of
|
| + // resolving everything is that we might do extra work that we don't
|
| + // really care about. Another possibility is to add a parameter to this
|
| + // method and punt the decision to the clients.
|
| + //
|
| + //if (analyzeAll) {
|
| + _resolveReferencesAndTypes();
|
| + //} else {
|
| + // resolveReferencesAndTypes(targetLibrary);
|
| + //}
|
| + _performConstantEvaluation();
|
| + return targetLibrary.libraryElement;
|
| + }
|
| +
|
| + /**
|
| + * Build the element model representing the combinators declared by the given directive.
|
| + *
|
| + * @param directive the directive that declares the combinators
|
| + * @return an array containing the import combinators that were built
|
| + */
|
| + List<NamespaceCombinator> _buildCombinators(NamespaceDirective directive) {
|
| + List<NamespaceCombinator> combinators = new List<NamespaceCombinator>();
|
| + for (Combinator combinator in directive.combinators) {
|
| + if (combinator is HideCombinator) {
|
| + HideElementCombinatorImpl hide = new HideElementCombinatorImpl();
|
| + hide.hiddenNames = _getIdentifiers(combinator.hiddenNames);
|
| + combinators.add(hide);
|
| + } else {
|
| + ShowElementCombinatorImpl show = new ShowElementCombinatorImpl();
|
| + show.offset = combinator.offset;
|
| + show.end = combinator.end;
|
| + show.shownNames =
|
| + _getIdentifiers((combinator as ShowCombinator).shownNames);
|
| + combinators.add(show);
|
| + }
|
| + }
|
| + return combinators;
|
| + }
|
| +
|
| + /**
|
| + * Every library now has a corresponding [LibraryElement], so it is now possible to resolve
|
| + * the import and export directives.
|
| + *
|
| + * @throws AnalysisException if the defining compilation unit for any of the libraries could not
|
| + * be accessed
|
| + */
|
| + void _buildDirectiveModels() {
|
| + for (ResolvableLibrary library in _librariesInCycle) {
|
| + HashMap<String, PrefixElementImpl> nameToPrefixMap =
|
| + new HashMap<String, PrefixElementImpl>();
|
| + List<ImportElement> imports = new List<ImportElement>();
|
| + List<ExportElement> exports = new List<ExportElement>();
|
| + for (Directive directive in library.definingCompilationUnit.directives) {
|
| + if (directive is ImportDirective) {
|
| + ImportDirective importDirective = directive;
|
| + String uriContent = importDirective.uriContent;
|
| + if (DartUriResolver.isDartExtUri(uriContent)) {
|
| + library.libraryElement.hasExtUri = true;
|
| + }
|
| + Source importedSource = importDirective.source;
|
| + if (importedSource != null &&
|
| + analysisContext.exists(importedSource)) {
|
| + // The imported source will be null if the URI in the import
|
| + // directive was invalid.
|
| + ResolvableLibrary importedLibrary = _libraryMap[importedSource];
|
| + if (importedLibrary != null) {
|
| + ImportElementImpl importElement =
|
| + new ImportElementImpl(directive.offset);
|
| + StringLiteral uriLiteral = importDirective.uri;
|
| + if (uriLiteral != null) {
|
| + importElement.uriOffset = uriLiteral.offset;
|
| + importElement.uriEnd = uriLiteral.end;
|
| + }
|
| + importElement.uri = uriContent;
|
| + importElement.deferred = importDirective.deferredKeyword != null;
|
| + importElement.combinators = _buildCombinators(importDirective);
|
| + LibraryElement importedLibraryElement =
|
| + importedLibrary.libraryElement;
|
| + if (importedLibraryElement != null) {
|
| + importElement.importedLibrary = importedLibraryElement;
|
| + }
|
| + SimpleIdentifier prefixNode = directive.prefix;
|
| + if (prefixNode != null) {
|
| + importElement.prefixOffset = prefixNode.offset;
|
| + String prefixName = prefixNode.name;
|
| + PrefixElementImpl prefix = nameToPrefixMap[prefixName];
|
| + if (prefix == null) {
|
| + prefix = new PrefixElementImpl.forNode(prefixNode);
|
| + nameToPrefixMap[prefixName] = prefix;
|
| + }
|
| + importElement.prefix = prefix;
|
| + prefixNode.staticElement = prefix;
|
| + }
|
| + directive.element = importElement;
|
| + imports.add(importElement);
|
| + if (analysisContext.computeKindOf(importedSource) !=
|
| + SourceKind.LIBRARY) {
|
| + ErrorCode errorCode = (importElement.isDeferred
|
| + ? StaticWarningCode.IMPORT_OF_NON_LIBRARY
|
| + : CompileTimeErrorCode.IMPORT_OF_NON_LIBRARY);
|
| + _errorListener.onError(new AnalysisError(
|
| + library.librarySource,
|
| + uriLiteral.offset,
|
| + uriLiteral.length,
|
| + errorCode,
|
| + [uriLiteral.toSource()]));
|
| + }
|
| + }
|
| + }
|
| + } else if (directive is ExportDirective) {
|
| + ExportDirective exportDirective = directive;
|
| + Source exportedSource = exportDirective.source;
|
| + if (exportedSource != null &&
|
| + analysisContext.exists(exportedSource)) {
|
| + // The exported source will be null if the URI in the export
|
| + // directive was invalid.
|
| + ResolvableLibrary exportedLibrary = _libraryMap[exportedSource];
|
| + if (exportedLibrary != null) {
|
| + ExportElementImpl exportElement =
|
| + new ExportElementImpl(directive.offset);
|
| + StringLiteral uriLiteral = exportDirective.uri;
|
| + if (uriLiteral != null) {
|
| + exportElement.uriOffset = uriLiteral.offset;
|
| + exportElement.uriEnd = uriLiteral.end;
|
| + }
|
| + exportElement.uri = exportDirective.uriContent;
|
| + exportElement.combinators = _buildCombinators(exportDirective);
|
| + LibraryElement exportedLibraryElement =
|
| + exportedLibrary.libraryElement;
|
| + if (exportedLibraryElement != null) {
|
| + exportElement.exportedLibrary = exportedLibraryElement;
|
| + }
|
| + directive.element = exportElement;
|
| + exports.add(exportElement);
|
| + if (analysisContext.computeKindOf(exportedSource) !=
|
| + SourceKind.LIBRARY) {
|
| + _errorListener.onError(new AnalysisError(
|
| + library.librarySource,
|
| + uriLiteral.offset,
|
| + uriLiteral.length,
|
| + CompileTimeErrorCode.EXPORT_OF_NON_LIBRARY,
|
| + [uriLiteral.toSource()]));
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| + Source librarySource = library.librarySource;
|
| + if (!library.explicitlyImportsCore &&
|
| + _coreLibrarySource != librarySource) {
|
| + ImportElementImpl importElement = new ImportElementImpl(-1);
|
| + importElement.importedLibrary = _coreLibrary.libraryElement;
|
| + importElement.synthetic = true;
|
| + imports.add(importElement);
|
| + }
|
| + LibraryElementImpl libraryElement = library.libraryElement;
|
| + libraryElement.imports = imports;
|
| + libraryElement.exports = exports;
|
| + if (libraryElement.entryPoint == null) {
|
| + Namespace namespace = new NamespaceBuilder()
|
| + .createExportNamespaceForLibrary(libraryElement);
|
| + Element element = namespace.get(FunctionElement.MAIN_FUNCTION_NAME);
|
| + if (element is FunctionElement) {
|
| + libraryElement.entryPoint = element;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Build element models for all of the libraries in the current cycle.
|
| + *
|
| + * @throws AnalysisException if any of the element models cannot be built
|
| + */
|
| + void _buildElementModels() {
|
| + for (ResolvableLibrary library in _librariesInCycle) {
|
| + LibraryElementBuilder builder =
|
| + new LibraryElementBuilder(analysisContext, errorListener);
|
| + builder.buildLibrary2(library);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Build the members in enum declarations. This cannot be done while building the rest of the
|
| + * element model because it depends on being able to access core types, which cannot happen until
|
| + * the rest of the element model has been built (when resolving the core library).
|
| + *
|
| + * @throws AnalysisException if any of the enum members could not be built
|
| + */
|
| + void _buildEnumMembers() {
|
| + PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| + for (ResolvableLibrary library in _librariesInCycle) {
|
| + for (Source source in library.compilationUnitSources) {
|
| + EnumMemberBuilder builder = new EnumMemberBuilder(_typeProvider);
|
| + library.getAST(source).accept(builder);
|
| + }
|
| + }
|
| + });
|
| + }
|
| +
|
| + HashMap<Source, ResolvableLibrary> _buildLibraryMap() {
|
| + HashMap<Source, ResolvableLibrary> libraryMap =
|
| + new HashMap<Source, ResolvableLibrary>();
|
| + int libraryCount = _librariesInCycle.length;
|
| + for (int i = 0; i < libraryCount; i++) {
|
| + ResolvableLibrary library = _librariesInCycle[i];
|
| + library.errorListener = _errorListener;
|
| + libraryMap[library.librarySource] = library;
|
| + List<ResolvableLibrary> dependencies = library.importsAndExports;
|
| + int dependencyCount = dependencies.length;
|
| + for (int j = 0; j < dependencyCount; j++) {
|
| + ResolvableLibrary dependency = dependencies[j];
|
| + //dependency.setErrorListener(errorListener);
|
| + libraryMap[dependency.librarySource] = dependency;
|
| + }
|
| + }
|
| + return libraryMap;
|
| + }
|
| +
|
| + /**
|
| + * Resolve the type hierarchy across all of the types declared in the libraries in the current
|
| + * cycle.
|
| + *
|
| + * @throws AnalysisException if any of the type hierarchies could not be resolved
|
| + */
|
| + void _buildTypeHierarchies() {
|
| + PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| + for (ResolvableLibrary library in _librariesInCycle) {
|
| + for (ResolvableCompilationUnit unit
|
| + in library.resolvableCompilationUnits) {
|
| + Source source = unit.source;
|
| + CompilationUnit ast = unit.compilationUnit;
|
| + TypeResolverVisitor visitor = new TypeResolverVisitor(
|
| + library.libraryElement,
|
| + source,
|
| + _typeProvider,
|
| + library.libraryScope.errorListener,
|
| + nameScope: library.libraryScope);
|
| + ast.accept(visitor);
|
| + }
|
| + }
|
| + });
|
| + }
|
| +
|
| + /**
|
| + * Return an array containing the lexical identifiers associated with the nodes in the given list.
|
| + *
|
| + * @param names the AST nodes representing the identifiers
|
| + * @return the lexical identifiers associated with the nodes in the list
|
| + */
|
| + List<String> _getIdentifiers(NodeList<SimpleIdentifier> names) {
|
| + int count = names.length;
|
| + List<String> identifiers = new List<String>(count);
|
| + for (int i = 0; i < count; i++) {
|
| + identifiers[i] = names[i].name;
|
| + }
|
| + return identifiers;
|
| + }
|
| +
|
| + /**
|
| + * Compute a value for all of the constants in the libraries being analyzed.
|
| + */
|
| + void _performConstantEvaluation() {
|
| + PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| + ConstantValueComputer computer = new ConstantValueComputer(
|
| + analysisContext, _typeProvider, analysisContext.declaredVariables);
|
| + for (ResolvableLibrary library in _librariesInCycle) {
|
| + for (ResolvableCompilationUnit unit
|
| + in library.resolvableCompilationUnits) {
|
| + CompilationUnit ast = unit.compilationUnit;
|
| + if (ast != null) {
|
| + computer.add(ast, unit.source, library.librarySource);
|
| + }
|
| + }
|
| + }
|
| + computer.computeValues();
|
| + // As a temporary workaround for issue 21572, run ConstantVerifier now.
|
| + // TODO(paulberry): remove this workaround once issue 21572 is fixed.
|
| + for (ResolvableLibrary library in _librariesInCycle) {
|
| + for (ResolvableCompilationUnit unit
|
| + in library.resolvableCompilationUnits) {
|
| + CompilationUnit ast = unit.compilationUnit;
|
| + ErrorReporter errorReporter =
|
| + new ErrorReporter(_errorListener, unit.source);
|
| + ConstantVerifier constantVerifier = new ConstantVerifier(
|
| + errorReporter,
|
| + library.libraryElement,
|
| + _typeProvider,
|
| + analysisContext.declaredVariables);
|
| + ast.accept(constantVerifier);
|
| + }
|
| + }
|
| + });
|
| + }
|
| +
|
| + /**
|
| + * Resolve the identifiers and perform type analysis in the libraries in the current cycle.
|
| + *
|
| + * @throws AnalysisException if any of the identifiers could not be resolved or if any of the
|
| + * libraries could not have their types analyzed
|
| + */
|
| + void _resolveReferencesAndTypes() {
|
| + for (ResolvableLibrary library in _librariesInCycle) {
|
| + _resolveReferencesAndTypesInLibrary(library);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Resolve the identifiers and perform type analysis in the given library.
|
| + *
|
| + * @param library the library to be resolved
|
| + * @throws AnalysisException if any of the identifiers could not be resolved or if the types in
|
| + * the library cannot be analyzed
|
| + */
|
| + void _resolveReferencesAndTypesInLibrary(ResolvableLibrary library) {
|
| + PerformanceStatistics.resolve.makeCurrentWhile(() {
|
| + for (ResolvableCompilationUnit unit
|
| + in library.resolvableCompilationUnits) {
|
| + Source source = unit.source;
|
| + CompilationUnit ast = unit.compilationUnit;
|
| + ast.accept(new VariableResolverVisitor(library.libraryElement, source,
|
| + _typeProvider, library.libraryScope.errorListener,
|
| + nameScope: library.libraryScope));
|
| + ResolverVisitor visitor = new ResolverVisitor(library.libraryElement,
|
| + source, _typeProvider, library._libraryScope.errorListener,
|
| + nameScope: library._libraryScope,
|
| + inheritanceManager: library.inheritanceManager);
|
| + ast.accept(visitor);
|
| + }
|
| + });
|
| + }
|
| +
|
| + /**
|
| + * Report that the async library could not be resolved in the given
|
| + * [analysisContext] and throw an exception. [asyncLibrarySource] is the source
|
| + * representing the async library.
|
| + */
|
| + static void missingAsyncLibrary(
|
| + AnalysisContext analysisContext, Source asyncLibrarySource) {
|
| + throw new AnalysisException("Could not resolve dart:async");
|
| + }
|
| +
|
| + /**
|
| + * Report that the core library could not be resolved in the given analysis context and throw an
|
| + * exception.
|
| + *
|
| + * @param analysisContext the analysis context in which the failure occurred
|
| + * @param coreLibrarySource the source representing the core library
|
| + * @throws AnalysisException always
|
| + */
|
| + static void missingCoreLibrary(
|
| + AnalysisContext analysisContext, Source coreLibrarySource) {
|
| + throw new AnalysisException("Could not resolve dart:core");
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `TypeAliasInfo` hold information about a [TypeAlias].
|
| + */
|
| +class LibraryResolver2_TypeAliasInfo {
|
| + final ResolvableLibrary _library;
|
| +
|
| + final Source _source;
|
| +
|
| + final FunctionTypeAlias _typeAlias;
|
| +
|
| + /**
|
| + * Initialize a newly created information holder with the given information.
|
| + *
|
| + * @param library the library containing the type alias
|
| + * @param source the source of the file containing the type alias
|
| + * @param typeAlias the type alias being remembered
|
| + */
|
| + LibraryResolver2_TypeAliasInfo(this._library, this._source, this._typeAlias);
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `TypeAliasInfo` hold information about a [TypeAlias].
|
| + */
|
| +class LibraryResolver_TypeAliasInfo {
|
| + final Library _library;
|
| +
|
| + final Source _source;
|
| +
|
| + final FunctionTypeAlias _typeAlias;
|
| +
|
| + /**
|
| + * Initialize a newly created information holder with the given information.
|
| + *
|
| + * @param library the library containing the type alias
|
| + * @param source the source of the file containing the type alias
|
| + * @param typeAlias the type alias being remembered
|
| + */
|
| + LibraryResolver_TypeAliasInfo(this._library, this._source, this._typeAlias);
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `LibraryScope` implement a scope containing all of the names defined
|
| + * in a given library.
|
| + */
|
| +class LibraryScope extends EnclosedScope {
|
| + /**
|
| + * Initialize a newly created scope representing the names defined in the given library.
|
| + *
|
| + * @param definingLibrary the element representing the library represented by this scope
|
| + * @param errorListener the listener that is to be informed when an error is encountered
|
| + */
|
| + LibraryScope(
|
| + LibraryElement definingLibrary, AnalysisErrorListener errorListener)
|
| + : super(new LibraryImportScope(definingLibrary, errorListener)) {
|
| + _defineTopLevelNames(definingLibrary);
|
| + }
|
| +
|
| + @override
|
| + AnalysisError getErrorForDuplicate(Element existing, Element duplicate) {
|
| + if (existing is PrefixElement) {
|
| + // TODO(scheglov) consider providing actual 'nameOffset' from the
|
| + // synthetic accessor
|
| + int offset = duplicate.nameOffset;
|
| + if (duplicate is PropertyAccessorElement) {
|
| + PropertyAccessorElement accessor = duplicate;
|
| + if (accessor.isSynthetic) {
|
| + offset = accessor.variable.nameOffset;
|
| + }
|
| + }
|
| + return new AnalysisError(
|
| + duplicate.source,
|
| + offset,
|
| + duplicate.displayName.length,
|
| + CompileTimeErrorCode.PREFIX_COLLIDES_WITH_TOP_LEVEL_MEMBER,
|
| + [existing.displayName]);
|
| + }
|
| + return super.getErrorForDuplicate(existing, duplicate);
|
| + }
|
| +
|
| + /**
|
| + * Add to this scope all of the public top-level names that are defined in the given compilation
|
| + * unit.
|
| + *
|
| + * @param compilationUnit the compilation unit defining the top-level names to be added to this
|
| + * scope
|
| + */
|
| + void _defineLocalNames(CompilationUnitElement compilationUnit) {
|
| + for (PropertyAccessorElement element in compilationUnit.accessors) {
|
| + define(element);
|
| + }
|
| + for (ClassElement element in compilationUnit.enums) {
|
| + define(element);
|
| + }
|
| + for (FunctionElement element in compilationUnit.functions) {
|
| + define(element);
|
| + }
|
| + for (FunctionTypeAliasElement element
|
| + in compilationUnit.functionTypeAliases) {
|
| + define(element);
|
| + }
|
| + for (ClassElement element in compilationUnit.types) {
|
| + define(element);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Add to this scope all of the names that are explicitly defined in the given library.
|
| + *
|
| + * @param definingLibrary the element representing the library that defines the names in this
|
| + * scope
|
| + */
|
| + void _defineTopLevelNames(LibraryElement definingLibrary) {
|
| + for (PrefixElement prefix in definingLibrary.prefixes) {
|
| + define(prefix);
|
| + }
|
| + _defineLocalNames(definingLibrary.definingCompilationUnit);
|
| + for (CompilationUnitElement compilationUnit in definingLibrary.parts) {
|
| + _defineLocalNames(compilationUnit);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * This class is used to replace uses of `HashMap<String, ExecutableElement>`
|
| + * which are not as performant as this class.
|
| + */
|
| +class MemberMap {
|
| + /**
|
| + * The current size of this map.
|
| + */
|
| + int _size = 0;
|
| +
|
| + /**
|
| + * The array of keys.
|
| + */
|
| + List<String> _keys;
|
| +
|
| + /**
|
| + * The array of ExecutableElement values.
|
| + */
|
| + List<ExecutableElement> _values;
|
| +
|
| + /**
|
| + * Initialize a newly created member map to have the given [initialCapacity].
|
| + * The map will grow if needed.
|
| + */
|
| + MemberMap([int initialCapacity = 10]) {
|
| + _initArrays(initialCapacity);
|
| + }
|
| +
|
| + /**
|
| + * This constructor takes an initial capacity of the map.
|
| + *
|
| + * @param initialCapacity the initial capacity
|
| + */
|
| + @deprecated // Use new MemberMap(initialCapacity)
|
| + MemberMap.con1(int initialCapacity) {
|
| + _initArrays(initialCapacity);
|
| + }
|
| +
|
| + /**
|
| + * Copy constructor.
|
| + */
|
| + @deprecated // Use new MemberMap.from(memberMap)
|
| + MemberMap.con2(MemberMap memberMap) {
|
| + _initArrays(memberMap._size + 5);
|
| + for (int i = 0; i < memberMap._size; i++) {
|
| + _keys[i] = memberMap._keys[i];
|
| + _values[i] = memberMap._values[i];
|
| + }
|
| + _size = memberMap._size;
|
| + }
|
| +
|
| + /**
|
| + * Initialize a newly created member map to contain the same members as the
|
| + * given [memberMap].
|
| + */
|
| + MemberMap.from(MemberMap memberMap) {
|
| + _initArrays(memberMap._size + 5);
|
| + for (int i = 0; i < memberMap._size; i++) {
|
| + _keys[i] = memberMap._keys[i];
|
| + _values[i] = memberMap._values[i];
|
| + }
|
| + _size = memberMap._size;
|
| + }
|
| +
|
| + /**
|
| + * The size of the map.
|
| + *
|
| + * @return the size of the map.
|
| + */
|
| + int get size => _size;
|
| +
|
| + /**
|
| + * Given some key, return the ExecutableElement value from the map, if the key does not exist in
|
| + * the map, `null` is returned.
|
| + *
|
| + * @param key some key to look up in the map
|
| + * @return the associated ExecutableElement value from the map, if the key does not exist in the
|
| + * map, `null` is returned
|
| + */
|
| + ExecutableElement get(String key) {
|
| + for (int i = 0; i < _size; i++) {
|
| + if (_keys[i] != null && _keys[i] == key) {
|
| + return _values[i];
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Get and return the key at the specified location. If the key/value pair has been removed from
|
| + * the set, then `null` is returned.
|
| + *
|
| + * @param i some non-zero value less than size
|
| + * @return the key at the passed index
|
| + * @throw ArrayIndexOutOfBoundsException this exception is thrown if the passed index is less than
|
| + * zero or greater than or equal to the capacity of the arrays
|
| + */
|
| + String getKey(int i) => _keys[i];
|
| +
|
| + /**
|
| + * Get and return the ExecutableElement at the specified location. If the key/value pair has been
|
| + * removed from the set, then then `null` is returned.
|
| + *
|
| + * @param i some non-zero value less than size
|
| + * @return the key at the passed index
|
| + * @throw ArrayIndexOutOfBoundsException this exception is thrown if the passed index is less than
|
| + * zero or greater than or equal to the capacity of the arrays
|
| + */
|
| + ExecutableElement getValue(int i) => _values[i];
|
| +
|
| + /**
|
| + * Given some key/value pair, store the pair in the map. If the key exists already, then the new
|
| + * value overrides the old value.
|
| + *
|
| + * @param key the key to store in the map
|
| + * @param value the ExecutableElement value to store in the map
|
| + */
|
| + void put(String key, ExecutableElement value) {
|
| + // If we already have a value with this key, override the value
|
| + for (int i = 0; i < _size; i++) {
|
| + if (_keys[i] != null && _keys[i] == key) {
|
| + _values[i] = value;
|
| + return;
|
| + }
|
| + }
|
| + // If needed, double the size of our arrays and copy values over in both
|
| + // arrays
|
| + if (_size == _keys.length) {
|
| + int newArrayLength = _size * 2;
|
| + List<String> keys_new_array = new List<String>(newArrayLength);
|
| + List<ExecutableElement> values_new_array =
|
| + new List<ExecutableElement>(newArrayLength);
|
| + for (int i = 0; i < _size; i++) {
|
| + keys_new_array[i] = _keys[i];
|
| + }
|
| + for (int i = 0; i < _size; i++) {
|
| + values_new_array[i] = _values[i];
|
| + }
|
| + _keys = keys_new_array;
|
| + _values = values_new_array;
|
| + }
|
| + // Put new value at end of array
|
| + _keys[_size] = key;
|
| + _values[_size] = value;
|
| + _size++;
|
| + }
|
| +
|
| + /**
|
| + * Given some [String] key, this method replaces the associated key and value pair with
|
| + * `null`. The size is not decremented with this call, instead it is expected that the users
|
| + * check for `null`.
|
| + *
|
| + * @param key the key of the key/value pair to remove from the map
|
| + */
|
| + void remove(String key) {
|
| + for (int i = 0; i < _size; i++) {
|
| + if (_keys[i] == key) {
|
| + _keys[i] = null;
|
| + _values[i] = null;
|
| + return;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Sets the ExecutableElement at the specified location.
|
| + *
|
| + * @param i some non-zero value less than size
|
| + * @param value the ExecutableElement value to store in the map
|
| + */
|
| + void setValue(int i, ExecutableElement value) {
|
| + _values[i] = value;
|
| + }
|
| +
|
| + /**
|
| + * Initializes [keys] and [values].
|
| + */
|
| + void _initArrays(int initialCapacity) {
|
| + _keys = new List<String>(initialCapacity);
|
| + _values = new List<ExecutableElement>(initialCapacity);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `Namespace` implement a mapping of identifiers to the elements
|
| + * represented by those identifiers. Namespaces are the building blocks for scopes.
|
| + */
|
| +class Namespace {
|
| + /**
|
| + * An empty namespace.
|
| + */
|
| + static Namespace EMPTY = new Namespace(new HashMap<String, Element>());
|
| +
|
| + /**
|
| + * A table mapping names that are defined in this namespace to the element representing the thing
|
| + * declared with that name.
|
| + */
|
| + final HashMap<String, Element> _definedNames;
|
| +
|
| + /**
|
| + * Initialize a newly created namespace to have the given defined names.
|
| + *
|
| + * @param definedNames the mapping from names that are defined in this namespace to the
|
| + * corresponding elements
|
| + */
|
| + Namespace(this._definedNames);
|
| +
|
| + /**
|
| + * Return a table containing the same mappings as those defined by this namespace.
|
| + *
|
| + * @return a table containing the same mappings as those defined by this namespace
|
| + */
|
| + Map<String, Element> get definedNames =>
|
| + new HashMap<String, Element>.from(_definedNames);
|
| +
|
| + /**
|
| + * Return the element in this namespace that is available to the containing scope using the given
|
| + * name.
|
| + *
|
| + * @param name the name used to reference the
|
| + * @return the element represented by the given identifier
|
| + */
|
| + Element get(String name) => _definedNames[name];
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `NamespaceBuilder` are used to build a `Namespace`. Namespace
|
| + * builders are thread-safe and re-usable.
|
| + */
|
| +class NamespaceBuilder {
|
| + /**
|
| + * Create a namespace representing the export namespace of the given [ExportElement].
|
| + *
|
| + * @param element the export element whose export namespace is to be created
|
| + * @return the export namespace that was created
|
| + */
|
| + Namespace createExportNamespaceForDirective(ExportElement element) {
|
| + LibraryElement exportedLibrary = element.exportedLibrary;
|
| + if (exportedLibrary == null) {
|
| + //
|
| + // The exported library will be null if the URI does not reference a valid
|
| + // library.
|
| + //
|
| + return Namespace.EMPTY;
|
| + }
|
| + HashMap<String, Element> definedNames =
|
| + _createExportMapping(exportedLibrary, new HashSet<LibraryElement>());
|
| + definedNames = _applyCombinators(definedNames, element.combinators);
|
| + return new Namespace(definedNames);
|
| + }
|
| +
|
| + /**
|
| + * Create a namespace representing the export namespace of the given library.
|
| + *
|
| + * @param library the library whose export namespace is to be created
|
| + * @return the export namespace that was created
|
| + */
|
| + Namespace createExportNamespaceForLibrary(LibraryElement library) =>
|
| + new Namespace(
|
| + _createExportMapping(library, new HashSet<LibraryElement>()));
|
| +
|
| + /**
|
| + * Create a namespace representing the import namespace of the given library.
|
| + *
|
| + * @param library the library whose import namespace is to be created
|
| + * @return the import namespace that was created
|
| + */
|
| + Namespace createImportNamespaceForDirective(ImportElement element) {
|
| + LibraryElement importedLibrary = element.importedLibrary;
|
| + if (importedLibrary == null) {
|
| + //
|
| + // The imported library will be null if the URI does not reference a valid
|
| + // library.
|
| + //
|
| + return Namespace.EMPTY;
|
| + }
|
| + HashMap<String, Element> definedNames =
|
| + _createExportMapping(importedLibrary, new HashSet<LibraryElement>());
|
| + definedNames = _applyCombinators(definedNames, element.combinators);
|
| + definedNames = _applyPrefix(definedNames, element.prefix);
|
| + return new Namespace(definedNames);
|
| + }
|
| +
|
| + /**
|
| + * Create a namespace representing the public namespace of the given library.
|
| + *
|
| + * @param library the library whose public namespace is to be created
|
| + * @return the public namespace that was created
|
| + */
|
| + Namespace createPublicNamespaceForLibrary(LibraryElement library) {
|
| + HashMap<String, Element> definedNames = new HashMap<String, Element>();
|
| + _addPublicNames(definedNames, library.definingCompilationUnit);
|
| + for (CompilationUnitElement compilationUnit in library.parts) {
|
| + _addPublicNames(definedNames, compilationUnit);
|
| + }
|
| + return new Namespace(definedNames);
|
| + }
|
| +
|
| + /**
|
| + * Add all of the names in the given namespace to the given mapping table.
|
| + *
|
| + * @param definedNames the mapping table to which the names in the given namespace are to be added
|
| + * @param namespace the namespace containing the names to be added to this namespace
|
| + */
|
| + void _addAllFromNamespace(
|
| + Map<String, Element> definedNames, Namespace namespace) {
|
| + if (namespace != null) {
|
| + definedNames.addAll(namespace.definedNames);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Add the given element to the given mapping table if it has a publicly visible name.
|
| + *
|
| + * @param definedNames the mapping table to which the public name is to be added
|
| + * @param element the element to be added
|
| + */
|
| + void _addIfPublic(Map<String, Element> definedNames, Element element) {
|
| + String name = element.name;
|
| + if (name != null && !Scope.isPrivateName(name)) {
|
| + definedNames[name] = element;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Add to the given mapping table all of the public top-level names that are defined in the given
|
| + * compilation unit.
|
| + *
|
| + * @param definedNames the mapping table to which the public names are to be added
|
| + * @param compilationUnit the compilation unit defining the top-level names to be added to this
|
| + * namespace
|
| + */
|
| + void _addPublicNames(Map<String, Element> definedNames,
|
| + CompilationUnitElement compilationUnit) {
|
| + for (PropertyAccessorElement element in compilationUnit.accessors) {
|
| + _addIfPublic(definedNames, element);
|
| + }
|
| + for (ClassElement element in compilationUnit.enums) {
|
| + _addIfPublic(definedNames, element);
|
| + }
|
| + for (FunctionElement element in compilationUnit.functions) {
|
| + _addIfPublic(definedNames, element);
|
| + }
|
| + for (FunctionTypeAliasElement element
|
| + in compilationUnit.functionTypeAliases) {
|
| + _addIfPublic(definedNames, element);
|
| + }
|
| + for (ClassElement element in compilationUnit.types) {
|
| + _addIfPublic(definedNames, element);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Apply the given combinators to all of the names in the given mapping table.
|
| + *
|
| + * @param definedNames the mapping table to which the namespace operations are to be applied
|
| + * @param combinators the combinators to be applied
|
| + */
|
| + HashMap<String, Element> _applyCombinators(
|
| + HashMap<String, Element> definedNames,
|
| + List<NamespaceCombinator> combinators) {
|
| + for (NamespaceCombinator combinator in combinators) {
|
| + if (combinator is HideElementCombinator) {
|
| + _hide(definedNames, combinator.hiddenNames);
|
| + } else if (combinator is ShowElementCombinator) {
|
| + definedNames = _show(definedNames, combinator.shownNames);
|
| + } else {
|
| + // Internal error.
|
| + AnalysisEngine.instance.logger
|
| + .logError("Unknown type of combinator: ${combinator.runtimeType}");
|
| + }
|
| + }
|
| + return definedNames;
|
| + }
|
| +
|
| + /**
|
| + * Apply the given prefix to all of the names in the table of defined names.
|
| + *
|
| + * @param definedNames the names that were defined before this operation
|
| + * @param prefixElement the element defining the prefix to be added to the names
|
| + */
|
| + HashMap<String, Element> _applyPrefix(
|
| + HashMap<String, Element> definedNames, PrefixElement prefixElement) {
|
| + if (prefixElement != null) {
|
| + String prefix = prefixElement.name;
|
| + HashMap<String, Element> newNames = new HashMap<String, Element>();
|
| + definedNames.forEach((String name, Element element) {
|
| + newNames["$prefix.$name"] = element;
|
| + });
|
| + return newNames;
|
| + } else {
|
| + return definedNames;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Create a mapping table representing the export namespace of the given library.
|
| + *
|
| + * @param library the library whose public namespace is to be created
|
| + * @param visitedElements a set of libraries that do not need to be visited when processing the
|
| + * export directives of the given library because all of the names defined by them will
|
| + * be added by another library
|
| + * @return the mapping table that was created
|
| + */
|
| + HashMap<String, Element> _createExportMapping(
|
| + LibraryElement library, HashSet<LibraryElement> visitedElements) {
|
| + // Check if the export namespace has been already computed.
|
| + {
|
| + Namespace exportNamespace = library.exportNamespace;
|
| + if (exportNamespace != null) {
|
| + return exportNamespace.definedNames;
|
| + }
|
| + }
|
| + // TODO(scheglov) Remove this after switching to the new task model.
|
| + visitedElements.add(library);
|
| + try {
|
| + HashMap<String, Element> definedNames = new HashMap<String, Element>();
|
| + for (ExportElement element in library.exports) {
|
| + LibraryElement exportedLibrary = element.exportedLibrary;
|
| + if (exportedLibrary != null &&
|
| + !visitedElements.contains(exportedLibrary)) {
|
| + //
|
| + // The exported library will be null if the URI does not reference a
|
| + // valid library.
|
| + //
|
| + HashMap<String, Element> exportedNames =
|
| + _createExportMapping(exportedLibrary, visitedElements);
|
| + exportedNames = _applyCombinators(exportedNames, element.combinators);
|
| + definedNames.addAll(exportedNames);
|
| + }
|
| + }
|
| + _addAllFromNamespace(
|
| + definedNames,
|
| + (library.context as InternalAnalysisContext)
|
| + .getPublicNamespace(library));
|
| + return definedNames;
|
| + } finally {
|
| + visitedElements.remove(library);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Hide all of the given names by removing them from the given collection of defined names.
|
| + *
|
| + * @param definedNames the names that were defined before this operation
|
| + * @param hiddenNames the names to be hidden
|
| + */
|
| + void _hide(HashMap<String, Element> definedNames, List<String> hiddenNames) {
|
| + for (String name in hiddenNames) {
|
| + definedNames.remove(name);
|
| + definedNames.remove("$name=");
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Show only the given names by removing all other names from the given collection of defined
|
| + * names.
|
| + *
|
| + * @param definedNames the names that were defined before this operation
|
| + * @param shownNames the names to be shown
|
| + */
|
| + HashMap<String, Element> _show(
|
| + HashMap<String, Element> definedNames, List<String> shownNames) {
|
| + HashMap<String, Element> newNames = new HashMap<String, Element>();
|
| + for (String name in shownNames) {
|
| + Element element = definedNames[name];
|
| + if (element != null) {
|
| + newNames[name] = element;
|
| + }
|
| + String setterName = "$name=";
|
| + element = definedNames[setterName];
|
| + if (element != null) {
|
| + newNames[setterName] = element;
|
| + }
|
| + }
|
| + return newNames;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `OverrideVerifier` visit all of the declarations in a compilation
|
| + * unit to verify that if they have an override annotation it is being used correctly.
|
| + */
|
| +class OverrideVerifier extends RecursiveAstVisitor<Object> {
|
| + /**
|
| + * The error reporter used to report errors.
|
| + */
|
| + final ErrorReporter _errorReporter;
|
| +
|
| + /**
|
| + * The inheritance manager used to find overridden methods.
|
| + */
|
| + final InheritanceManager _manager;
|
| +
|
| + /**
|
| + * Initialize a newly created verifier to look for inappropriate uses of the override annotation.
|
| + *
|
| + * @param errorReporter the error reporter used to report errors
|
| + * @param manager the inheritance manager used to find overridden methods
|
| + */
|
| + OverrideVerifier(this._errorReporter, this._manager);
|
| +
|
| + @override
|
| + Object visitMethodDeclaration(MethodDeclaration node) {
|
| + ExecutableElement element = node.element;
|
| + if (_isOverride(element)) {
|
| + if (_getOverriddenMember(element) == null) {
|
| + if (element is MethodElement) {
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.OVERRIDE_ON_NON_OVERRIDING_METHOD, node.name);
|
| + } else if (element is PropertyAccessorElement) {
|
| + if (element.isGetter) {
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.OVERRIDE_ON_NON_OVERRIDING_GETTER, node.name);
|
| + } else {
|
| + _errorReporter.reportErrorForNode(
|
| + HintCode.OVERRIDE_ON_NON_OVERRIDING_SETTER, node.name);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + return super.visitMethodDeclaration(node);
|
| + }
|
| +
|
| + /**
|
| + * Return the member that overrides the given member.
|
| + *
|
| + * @param member the member that overrides the returned member
|
| + * @return the member that overrides the given member
|
| + */
|
| + ExecutableElement _getOverriddenMember(ExecutableElement member) {
|
| + LibraryElement library = member.library;
|
| + if (library == null) {
|
| + return null;
|
| + }
|
| + ClassElement classElement =
|
| + member.getAncestor((element) => element is ClassElement);
|
| + if (classElement == null) {
|
| + return null;
|
| + }
|
| + return _manager.lookupInheritance(classElement, member.name);
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given element has an override annotation associated with it.
|
| + *
|
| + * @param element the element being tested
|
| + * @return `true` if the element has an override annotation associated with it
|
| + */
|
| + bool _isOverride(Element element) => element != null && element.isOverride;
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `PubVerifier` traverse an AST structure looking for deviations from
|
| + * pub best practices.
|
| + */
|
| +class PubVerifier extends RecursiveAstVisitor<Object> {
|
| +// static String _PUBSPEC_YAML = "pubspec.yaml";
|
| +
|
| + /**
|
| + * The analysis context containing the sources to be analyzed
|
| + */
|
| + final AnalysisContext _context;
|
| +
|
| + /**
|
| + * The error reporter by which errors will be reported.
|
| + */
|
| + final ErrorReporter _errorReporter;
|
| +
|
| + PubVerifier(this._context, this._errorReporter);
|
| +
|
| + @override
|
| + Object visitImportDirective(ImportDirective directive) {
|
| + return null;
|
| + }
|
| +
|
| +// /**
|
| +// * This verifies that the passed file import directive is not contained in a source inside a
|
| +// * package "lib" directory hierarchy referencing a source outside that package "lib" directory
|
| +// * hierarchy.
|
| +// *
|
| +// * @param uriLiteral the import URL (not `null`)
|
| +// * @param path the file path being verified (not `null`)
|
| +// * @return `true` if and only if an error code is generated on the passed node
|
| +// * See [PubSuggestionCode.FILE_IMPORT_INSIDE_LIB_REFERENCES_FILE_OUTSIDE].
|
| +// */
|
| +// bool
|
| +// _checkForFileImportInsideLibReferencesFileOutside(StringLiteral uriLiteral,
|
| +// String path) {
|
| +// Source source = _getSource(uriLiteral);
|
| +// String fullName = _getSourceFullName(source);
|
| +// if (fullName != null) {
|
| +// int pathIndex = 0;
|
| +// int fullNameIndex = fullName.length;
|
| +// while (pathIndex < path.length &&
|
| +// StringUtilities.startsWith3(path, pathIndex, 0x2E, 0x2E, 0x2F)) {
|
| +// fullNameIndex = JavaString.lastIndexOf(fullName, '/', fullNameIndex);
|
| +// if (fullNameIndex < 4) {
|
| +// return false;
|
| +// }
|
| +// // Check for "/lib" at a specified place in the fullName
|
| +// if (StringUtilities.startsWith4(
|
| +// fullName,
|
| +// fullNameIndex - 4,
|
| +// 0x2F,
|
| +// 0x6C,
|
| +// 0x69,
|
| +// 0x62)) {
|
| +// String relativePubspecPath =
|
| +// path.substring(0, pathIndex + 3) +
|
| +// _PUBSPEC_YAML;
|
| +// Source pubspecSource =
|
| +// _context.sourceFactory.resolveUri(source, relativePubspecPath);
|
| +// if (_context.exists(pubspecSource)) {
|
| +// // Files inside the lib directory hierarchy should not reference
|
| +// // files outside
|
| +// _errorReporter.reportErrorForNode(
|
| +// HintCode.FILE_IMPORT_INSIDE_LIB_REFERENCES_FILE_OUTSIDE,
|
| +// uriLiteral);
|
| +// }
|
| +// return true;
|
| +// }
|
| +// pathIndex += 3;
|
| +// }
|
| +// }
|
| +// return false;
|
| +// }
|
| +
|
| +// /**
|
| +// * This verifies that the passed file import directive is not contained in a source outside a
|
| +// * package "lib" directory hierarchy referencing a source inside that package "lib" directory
|
| +// * hierarchy.
|
| +// *
|
| +// * @param uriLiteral the import URL (not `null`)
|
| +// * @param path the file path being verified (not `null`)
|
| +// * @return `true` if and only if an error code is generated on the passed node
|
| +// * See [PubSuggestionCode.FILE_IMPORT_OUTSIDE_LIB_REFERENCES_FILE_INSIDE].
|
| +// */
|
| +// bool
|
| +// _checkForFileImportOutsideLibReferencesFileInside(StringLiteral uriLiteral,
|
| +// String path) {
|
| +// if (StringUtilities.startsWith4(path, 0, 0x6C, 0x69, 0x62, 0x2F)) {
|
| +// if (_checkForFileImportOutsideLibReferencesFileInsideAtIndex(
|
| +// uriLiteral,
|
| +// path,
|
| +// 0)) {
|
| +// return true;
|
| +// }
|
| +// }
|
| +// int pathIndex =
|
| +// StringUtilities.indexOf5(path, 0, 0x2F, 0x6C, 0x69, 0x62, 0x2F);
|
| +// while (pathIndex != -1) {
|
| +// if (_checkForFileImportOutsideLibReferencesFileInsideAtIndex(
|
| +// uriLiteral,
|
| +// path,
|
| +// pathIndex + 1)) {
|
| +// return true;
|
| +// }
|
| +// pathIndex =
|
| +// StringUtilities.indexOf5(path, pathIndex + 4, 0x2F, 0x6C, 0x69, 0x62, 0x2F);
|
| +// }
|
| +// return false;
|
| +// }
|
| +
|
| +// bool
|
| +// _checkForFileImportOutsideLibReferencesFileInsideAtIndex(StringLiteral uriLiteral,
|
| +// String path, int pathIndex) {
|
| +// Source source = _getSource(uriLiteral);
|
| +// String relativePubspecPath = path.substring(0, pathIndex) + _PUBSPEC_YAML;
|
| +// Source pubspecSource =
|
| +// _context.sourceFactory.resolveUri(source, relativePubspecPath);
|
| +// if (!_context.exists(pubspecSource)) {
|
| +// return false;
|
| +// }
|
| +// String fullName = _getSourceFullName(source);
|
| +// if (fullName != null) {
|
| +// if (StringUtilities.indexOf5(fullName, 0, 0x2F, 0x6C, 0x69, 0x62, 0x2F) <
|
| +// 0) {
|
| +// // Files outside the lib directory hierarchy should not reference files
|
| +// // inside ... use package: url instead
|
| +// _errorReporter.reportErrorForNode(
|
| +// HintCode.FILE_IMPORT_OUTSIDE_LIB_REFERENCES_FILE_INSIDE,
|
| +// uriLiteral);
|
| +// return true;
|
| +// }
|
| +// }
|
| +// return false;
|
| +// }
|
| +
|
| +// /**
|
| +// * This verifies that the passed package import directive does not contain ".."
|
| +// *
|
| +// * @param uriLiteral the import URL (not `null`)
|
| +// * @param path the path to be validated (not `null`)
|
| +// * @return `true` if and only if an error code is generated on the passed node
|
| +// * See [PubSuggestionCode.PACKAGE_IMPORT_CONTAINS_DOT_DOT].
|
| +// */
|
| +// bool _checkForPackageImportContainsDotDot(StringLiteral uriLiteral,
|
| +// String path) {
|
| +// if (StringUtilities.startsWith3(path, 0, 0x2E, 0x2E, 0x2F) ||
|
| +// StringUtilities.indexOf4(path, 0, 0x2F, 0x2E, 0x2E, 0x2F) >= 0) {
|
| +// // Package import should not to contain ".."
|
| +// _errorReporter.reportErrorForNode(
|
| +// HintCode.PACKAGE_IMPORT_CONTAINS_DOT_DOT,
|
| +// uriLiteral);
|
| +// return true;
|
| +// }
|
| +// return false;
|
| +// }
|
| +
|
| +// /**
|
| +// * Answer the source associated with the compilation unit containing the given AST node.
|
| +// *
|
| +// * @param node the node (not `null`)
|
| +// * @return the source or `null` if it could not be determined
|
| +// */
|
| +// Source _getSource(AstNode node) {
|
| +// Source source = null;
|
| +// CompilationUnit unit = node.getAncestor((node) => node is CompilationUnit);
|
| +// if (unit != null) {
|
| +// CompilationUnitElement element = unit.element;
|
| +// if (element != null) {
|
| +// source = element.source;
|
| +// }
|
| +// }
|
| +// return source;
|
| +// }
|
| +
|
| +// /**
|
| +// * Answer the full name of the given source. The returned value will have all
|
| +// * [File.separatorChar] replace by '/'.
|
| +// *
|
| +// * @param source the source
|
| +// * @return the full name or `null` if it could not be determined
|
| +// */
|
| +// String _getSourceFullName(Source source) {
|
| +// if (source != null) {
|
| +// String fullName = source.fullName;
|
| +// if (fullName != null) {
|
| +// return fullName.replaceAll(r'\', '/');
|
| +// }
|
| +// }
|
| +// return null;
|
| +// }
|
| +}
|
| +
|
| +/**
|
| + * Kind of the redirecting constructor.
|
| + */
|
| +class RedirectingConstructorKind extends Enum<RedirectingConstructorKind> {
|
| + static const RedirectingConstructorKind CONST =
|
| + const RedirectingConstructorKind('CONST', 0);
|
| +
|
| + static const RedirectingConstructorKind NORMAL =
|
| + const RedirectingConstructorKind('NORMAL', 1);
|
| +
|
| + static const List<RedirectingConstructorKind> values = const [CONST, NORMAL];
|
| +
|
| + const RedirectingConstructorKind(String name, int ordinal)
|
| + : super(name, ordinal);
|
| +}
|
| +
|
| +/**
|
| + * A `ResolvableLibrary` represents a single library during the resolution of
|
| + * some (possibly different) library. They are not intended to be used except
|
| + * during the resolution process.
|
| + */
|
| +class ResolvableLibrary {
|
| + /**
|
| + * An empty array that can be used to initialize lists of libraries.
|
| + */
|
| + static List<ResolvableLibrary> _EMPTY_ARRAY = new List<ResolvableLibrary>(0);
|
| +
|
| + /**
|
| + * The next artificial hash code.
|
| + */
|
| + static int _NEXT_HASH_CODE = 0;
|
| +
|
| + /**
|
| + * The artifitial hash code for this object.
|
| + */
|
| + final int _hashCode = _nextHashCode();
|
| +
|
| + /**
|
| + * The source specifying the defining compilation unit of this library.
|
| + */
|
| + final Source librarySource;
|
| +
|
| + /**
|
| + * A list containing all of the libraries that are imported into this library.
|
| + */
|
| + List<ResolvableLibrary> _importedLibraries = _EMPTY_ARRAY;
|
| +
|
| + /**
|
| + * A flag indicating whether this library explicitly imports core.
|
| + */
|
| + bool explicitlyImportsCore = false;
|
| +
|
| + /**
|
| + * An array containing all of the libraries that are exported from this library.
|
| + */
|
| + List<ResolvableLibrary> _exportedLibraries = _EMPTY_ARRAY;
|
| +
|
| + /**
|
| + * An array containing the compilation units that comprise this library. The
|
| + * defining compilation unit is always first.
|
| + */
|
| + List<ResolvableCompilationUnit> _compilationUnits;
|
| +
|
| + /**
|
| + * The library element representing this library.
|
| + */
|
| + LibraryElementImpl _libraryElement;
|
| +
|
| + /**
|
| + * The listener to which analysis errors will be reported.
|
| + */
|
| + AnalysisErrorListener _errorListener;
|
| +
|
| + /**
|
| + * The inheritance manager which is used for member lookups in this library.
|
| + */
|
| + InheritanceManager _inheritanceManager;
|
| +
|
| + /**
|
| + * The library scope used when resolving elements within this library's compilation units.
|
| + */
|
| + LibraryScope _libraryScope;
|
| +
|
| + /**
|
| + * Initialize a newly created data holder that can maintain the data associated with a library.
|
| + *
|
| + * @param librarySource the source specifying the defining compilation unit of this library
|
| + * @param errorListener the listener to which analysis errors will be reported
|
| + */
|
| + ResolvableLibrary(this.librarySource);
|
| +
|
| + /**
|
| + * Return an array of the [CompilationUnit]s that make up the library. The first unit is
|
| + * always the defining unit.
|
| + *
|
| + * @return an array of the [CompilationUnit]s that make up the library. The first unit is
|
| + * always the defining unit
|
| + */
|
| + List<CompilationUnit> get compilationUnits {
|
| + int count = _compilationUnits.length;
|
| + List<CompilationUnit> units = new List<CompilationUnit>(count);
|
| + for (int i = 0; i < count; i++) {
|
| + units[i] = _compilationUnits[i].compilationUnit;
|
| + }
|
| + return units;
|
| + }
|
| +
|
| + /**
|
| + * Return an array containing the sources for the compilation units in this library, including the
|
| + * defining compilation unit.
|
| + *
|
| + * @return the sources for the compilation units in this library
|
| + */
|
| + List<Source> get compilationUnitSources {
|
| + int count = _compilationUnits.length;
|
| + List<Source> sources = new List<Source>(count);
|
| + for (int i = 0; i < count; i++) {
|
| + sources[i] = _compilationUnits[i].source;
|
| + }
|
| + return sources;
|
| + }
|
| +
|
| + /**
|
| + * Return the AST structure associated with the defining compilation unit for this library.
|
| + *
|
| + * @return the AST structure associated with the defining compilation unit for this library
|
| + * @throws AnalysisException if an AST structure could not be created for the defining compilation
|
| + * unit
|
| + */
|
| + CompilationUnit get definingCompilationUnit =>
|
| + _compilationUnits[0].compilationUnit;
|
| +
|
| + /**
|
| + * Set the listener to which analysis errors will be reported to be the given listener.
|
| + *
|
| + * @param errorListener the listener to which analysis errors will be reported
|
| + */
|
| + void set errorListener(AnalysisErrorListener errorListener) {
|
| + this._errorListener = errorListener;
|
| + }
|
| +
|
| + /**
|
| + * Set the libraries that are exported by this library to be those in the given array.
|
| + *
|
| + * @param exportedLibraries the libraries that are exported by this library
|
| + */
|
| + void set exportedLibraries(List<ResolvableLibrary> exportedLibraries) {
|
| + this._exportedLibraries = exportedLibraries;
|
| + }
|
| +
|
| + /**
|
| + * Return an array containing the libraries that are exported from this library.
|
| + *
|
| + * @return an array containing the libraries that are exported from this library
|
| + */
|
| + List<ResolvableLibrary> get exports => _exportedLibraries;
|
| +
|
| + @override
|
| + int get hashCode => _hashCode;
|
| +
|
| + /**
|
| + * Set the libraries that are imported into this library to be those in the given array.
|
| + *
|
| + * @param importedLibraries the libraries that are imported into this library
|
| + */
|
| + void set importedLibraries(List<ResolvableLibrary> importedLibraries) {
|
| + this._importedLibraries = importedLibraries;
|
| + }
|
| +
|
| + /**
|
| + * Return an array containing the libraries that are imported into this library.
|
| + *
|
| + * @return an array containing the libraries that are imported into this library
|
| + */
|
| + List<ResolvableLibrary> get imports => _importedLibraries;
|
| +
|
| + /**
|
| + * Return an array containing the libraries that are either imported or exported from this
|
| + * library.
|
| + *
|
| + * @return the libraries that are either imported or exported from this library
|
| + */
|
| + List<ResolvableLibrary> get importsAndExports {
|
| + HashSet<ResolvableLibrary> libraries = new HashSet<ResolvableLibrary>();
|
| + for (ResolvableLibrary library in _importedLibraries) {
|
| + libraries.add(library);
|
| + }
|
| + for (ResolvableLibrary library in _exportedLibraries) {
|
| + libraries.add(library);
|
| + }
|
| + return new List.from(libraries);
|
| + }
|
| +
|
| + /**
|
| + * Return the inheritance manager for this library.
|
| + *
|
| + * @return the inheritance manager for this library
|
| + */
|
| + InheritanceManager get inheritanceManager {
|
| + if (_inheritanceManager == null) {
|
| + return _inheritanceManager = new InheritanceManager(_libraryElement);
|
| + }
|
| + return _inheritanceManager;
|
| + }
|
| +
|
| + /**
|
| + * Return the library element representing this library, creating it if necessary.
|
| + *
|
| + * @return the library element representing this library
|
| + */
|
| + LibraryElementImpl get libraryElement => _libraryElement;
|
| +
|
| + /**
|
| + * Set the library element representing this library to the given library element.
|
| + *
|
| + * @param libraryElement the library element representing this library
|
| + */
|
| + void set libraryElement(LibraryElementImpl libraryElement) {
|
| + this._libraryElement = libraryElement;
|
| + if (_inheritanceManager != null) {
|
| + _inheritanceManager.libraryElement = libraryElement;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Return the library scope used when resolving elements within this library's compilation units.
|
| + *
|
| + * @return the library scope used when resolving elements within this library's compilation units
|
| + */
|
| + LibraryScope get libraryScope {
|
| + if (_libraryScope == null) {
|
| + _libraryScope = new LibraryScope(_libraryElement, _errorListener);
|
| + }
|
| + return _libraryScope;
|
| + }
|
| +
|
| + /**
|
| + * Return an array containing the compilation units that comprise this library. The defining
|
| + * compilation unit is always first.
|
| + *
|
| + * @return the compilation units that comprise this library
|
| + */
|
| + List<ResolvableCompilationUnit> get resolvableCompilationUnits =>
|
| + _compilationUnits;
|
| +
|
| + /**
|
| + * Set the compilation unit in this library to the given compilation units. The defining
|
| + * compilation unit must be the first element of the array.
|
| + *
|
| + * @param units the compilation units in this library
|
| + */
|
| + void set resolvableCompilationUnits(List<ResolvableCompilationUnit> units) {
|
| + _compilationUnits = units;
|
| + }
|
| +
|
| + /**
|
| + * Return the AST structure associated with the given source, or `null` if the source does
|
| + * not represent a compilation unit that is included in this library.
|
| + *
|
| + * @param source the source representing the compilation unit whose AST is to be returned
|
| + * @return the AST structure associated with the given source
|
| + * @throws AnalysisException if an AST structure could not be created for the compilation unit
|
| + */
|
| + CompilationUnit getAST(Source source) {
|
| + int count = _compilationUnits.length;
|
| + for (int i = 0; i < count; i++) {
|
| + if (_compilationUnits[i].source == source) {
|
| + return _compilationUnits[i].compilationUnit;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + String toString() => librarySource.shortName;
|
| +
|
| + static int _nextHashCode() {
|
| + int next = (_NEXT_HASH_CODE + 1) & 0xFFFFFF;
|
| + _NEXT_HASH_CODE = next;
|
| + return next;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * The enumeration `ResolverErrorCode` defines the error codes used for errors
|
| + * detected by the resolver. The convention for this class is for the name of
|
| + * the error code to indicate the problem that caused the error to be generated
|
| + * and for the error message to explain what is wrong and, when appropriate, how
|
| + * the problem can be corrected.
|
| + */
|
| +class ResolverErrorCode extends ErrorCode {
|
| + static const ResolverErrorCode BREAK_LABEL_ON_SWITCH_MEMBER =
|
| + const ResolverErrorCode('BREAK_LABEL_ON_SWITCH_MEMBER',
|
| + "Break label resolves to case or default statement");
|
| +
|
| + static const ResolverErrorCode CONTINUE_LABEL_ON_SWITCH =
|
| + const ResolverErrorCode('CONTINUE_LABEL_ON_SWITCH',
|
| + "A continue label resolves to switch, must be loop or switch member");
|
| +
|
| + static const ResolverErrorCode MISSING_LIBRARY_DIRECTIVE_WITH_PART =
|
| + const ResolverErrorCode('MISSING_LIBRARY_DIRECTIVE_WITH_PART',
|
| + "Libraries that have parts must have a library directive");
|
| +
|
| + /**
|
| + * Initialize a newly created error code to have the given [name]. The message
|
| + * associated with the error will be created from the given [message]
|
| + * template. The correction associated with the error will be created from the
|
| + * given [correction] template.
|
| + */
|
| + const ResolverErrorCode(String name, String message, [String correction])
|
| + : super(name, message, correction);
|
| +
|
| + @override
|
| + ErrorSeverity get errorSeverity => type.severity;
|
| +
|
| + @override
|
| + ErrorType get type => ErrorType.COMPILE_TIME_ERROR;
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `ResolverVisitor` are used to resolve the nodes within a single
|
| + * compilation unit.
|
| + */
|
| +class ResolverVisitor extends ScopedVisitor {
|
| + /**
|
| + * The manager for the inheritance mappings.
|
| + */
|
| + InheritanceManager _inheritanceManager;
|
| +
|
| + /**
|
| + * The object used to resolve the element associated with the current node.
|
| + */
|
| + ElementResolver elementResolver;
|
| +
|
| + /**
|
| + * The object used to compute the type associated with the current node.
|
| + */
|
| + StaticTypeAnalyzer typeAnalyzer;
|
| +
|
| + /**
|
| + * The class element representing the class containing the current node,
|
| + * or `null` if the current node is not contained in a class.
|
| + */
|
| + ClassElement enclosingClass = null;
|
| +
|
| + /**
|
| + * The class declaration representing the class containing the current node, or `null` if
|
| + * the current node is not contained in a class.
|
| + */
|
| + ClassDeclaration _enclosingClassDeclaration = null;
|
| +
|
| + /**
|
| + * The function type alias representing the function type containing the current node, or
|
| + * `null` if the current node is not contained in a function type alias.
|
| + */
|
| + FunctionTypeAlias _enclosingFunctionTypeAlias = null;
|
| +
|
| + /**
|
| + * The element representing the function containing the current node, or `null` if the
|
| + * current node is not contained in a function.
|
| + */
|
| + ExecutableElement _enclosingFunction = null;
|
| +
|
| + /**
|
| + * The [Comment] before a [FunctionDeclaration] or a [MethodDeclaration] that
|
| + * cannot be resolved where we visited it, because it should be resolved in the scope of the body.
|
| + */
|
| + Comment _commentBeforeFunction = null;
|
| +
|
| + /**
|
| + * The object keeping track of which elements have had their types overridden.
|
| + */
|
| + TypeOverrideManager _overrideManager = new TypeOverrideManager();
|
| +
|
| + /**
|
| + * The object keeping track of which elements have had their types promoted.
|
| + */
|
| + TypePromotionManager _promoteManager = new TypePromotionManager();
|
| +
|
| + /**
|
| + * A comment before a function should be resolved in the context of the
|
| + * function. But when we incrementally resolve a comment, we don't want to
|
| + * resolve the whole function.
|
| + *
|
| + * So, this flag is set to `true`, when just context of the function should
|
| + * be built and the comment resolved.
|
| + */
|
| + bool resolveOnlyCommentInFunctionBody = false;
|
| +
|
| + /**
|
| + * Initialize a newly created visitor to resolve the nodes in an AST node.
|
| + *
|
| + * [definingLibrary] is the element for the library containing the node being
|
| + * visited.
|
| + * [source] is the source representing the compilation unit containing the
|
| + * node being visited.
|
| + * [typeProvider] the object used to access the types from the core library.
|
| + * [errorListener] the error listener that will be informed of any errors
|
| + * that are found during resolution.
|
| + * [nameScope] is the scope used to resolve identifiers in the node that will
|
| + * first be visited. If `null` or unspecified, a new [LibraryScope] will be
|
| + * created based on [definingLibrary] and [typeProvider].
|
| + * [inheritanceManager] is used to perform inheritance lookups. If `null` or
|
| + * unspecified, a new [InheritanceManager] will be created based on
|
| + * [definingLibrary].
|
| + * [typeAnalyzerFactory] is used to create the type analyzer. If `null` or
|
| + * unspecified, a type analyzer of type [StaticTypeAnalyzer] will be created.
|
| + */
|
| + ResolverVisitor(LibraryElement definingLibrary, Source source,
|
| + TypeProvider typeProvider, AnalysisErrorListener errorListener,
|
| + {Scope nameScope,
|
| + InheritanceManager inheritanceManager,
|
| + StaticTypeAnalyzerFactory typeAnalyzerFactory})
|
| + : super(definingLibrary, source, typeProvider, errorListener,
|
| + nameScope: nameScope) {
|
| + if (inheritanceManager == null) {
|
| + this._inheritanceManager = new InheritanceManager(definingLibrary);
|
| + } else {
|
| + this._inheritanceManager = inheritanceManager;
|
| + }
|
| + this.elementResolver = new ElementResolver(this);
|
| + if (typeAnalyzerFactory == null) {
|
| + this.typeAnalyzer = new StaticTypeAnalyzer(this);
|
| + } else {
|
| + this.typeAnalyzer = typeAnalyzerFactory(this);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Initialize a newly created visitor to resolve the nodes in a compilation unit.
|
| + *
|
| + * @param library the library containing the compilation unit being resolved
|
| + * @param source the source representing the compilation unit being visited
|
| + * @param typeProvider the object used to access the types from the core library
|
| + *
|
| + * Deprecated. Please use unnamed constructor instead.
|
| + */
|
| + @deprecated
|
| + ResolverVisitor.con1(
|
| + Library library, Source source, TypeProvider typeProvider,
|
| + {StaticTypeAnalyzerFactory typeAnalyzerFactory})
|
| + : this(
|
| + library.libraryElement, source, typeProvider, library.errorListener,
|
| + nameScope: library.libraryScope,
|
| + inheritanceManager: library.inheritanceManager,
|
| + typeAnalyzerFactory: typeAnalyzerFactory);
|
| +
|
| + /**
|
| + * Return the element representing the function containing the current node, or `null` if
|
| + * the current node is not contained in a function.
|
| + *
|
| + * @return the element representing the function containing the current node
|
| + */
|
| + ExecutableElement get enclosingFunction => _enclosingFunction;
|
| +
|
| + /**
|
| + * Return the object keeping track of which elements have had their types overridden.
|
| + *
|
| + * @return the object keeping track of which elements have had their types overridden
|
| + */
|
| + TypeOverrideManager get overrideManager => _overrideManager;
|
| +
|
| + /**
|
| + * Return the object keeping track of which elements have had their types promoted.
|
| + *
|
| + * @return the object keeping track of which elements have had their types promoted
|
| + */
|
| + TypePromotionManager get promoteManager => _promoteManager;
|
| +
|
| + /**
|
| + * Return the propagated element associated with the given expression whose type can be
|
| + * overridden, or `null` if there is no element whose type can be overridden.
|
| + *
|
| + * @param expression the expression with which the element is associated
|
| + * @return the element associated with the given expression
|
| + */
|
| + VariableElement getOverridablePropagatedElement(Expression expression) {
|
| + Element element = null;
|
| + if (expression is SimpleIdentifier) {
|
| + element = expression.propagatedElement;
|
| + } else if (expression is PrefixedIdentifier) {
|
| + element = expression.propagatedElement;
|
| + } else if (expression is PropertyAccess) {
|
| + element = expression.propertyName.propagatedElement;
|
| + }
|
| + if (element is VariableElement) {
|
| + return element;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Return the static element associated with the given expression whose type can be overridden, or
|
| + * `null` if there is no element whose type can be overridden.
|
| + *
|
| + * @param expression the expression with which the element is associated
|
| + * @return the element associated with the given expression
|
| + */
|
| + VariableElement getOverridableStaticElement(Expression expression) {
|
| + Element element = null;
|
| + if (expression is SimpleIdentifier) {
|
| + element = expression.staticElement;
|
| + } else if (expression is PrefixedIdentifier) {
|
| + element = expression.staticElement;
|
| + } else if (expression is PropertyAccess) {
|
| + element = expression.propertyName.staticElement;
|
| + }
|
| + if (element is VariableElement) {
|
| + return element;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Return the static element associated with the given expression whose type can be promoted, or
|
| + * `null` if there is no element whose type can be promoted.
|
| + *
|
| + * @param expression the expression with which the element is associated
|
| + * @return the element associated with the given expression
|
| + */
|
| + VariableElement getPromotionStaticElement(Expression expression) {
|
| + while (expression is ParenthesizedExpression) {
|
| + expression = (expression as ParenthesizedExpression).expression;
|
| + }
|
| + if (expression is! SimpleIdentifier) {
|
| + return null;
|
| + }
|
| + SimpleIdentifier identifier = expression as SimpleIdentifier;
|
| + Element element = identifier.staticElement;
|
| + if (element is! VariableElement) {
|
| + return null;
|
| + }
|
| + ElementKind kind = element.kind;
|
| + if (kind == ElementKind.LOCAL_VARIABLE) {
|
| + return element as VariableElement;
|
| + }
|
| + if (kind == ElementKind.PARAMETER) {
|
| + return element as VariableElement;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Prepares this [ResolverVisitor] to using it for incremental resolution.
|
| + */
|
| + void initForIncrementalResolution() {
|
| + _overrideManager.enterScope();
|
| + }
|
| +
|
| + /**
|
| + * If it is appropriate to do so, override the current type of the static and propagated elements
|
| + * associated with the given expression with the given type. Generally speaking, it is appropriate
|
| + * if the given type is more specific than the current type.
|
| + *
|
| + * @param expression the expression used to access the static and propagated elements whose types
|
| + * might be overridden
|
| + * @param potentialType the potential type of the elements
|
| + * @param allowPrecisionLoss see @{code overrideVariable} docs
|
| + */
|
| + void overrideExpression(Expression expression, DartType potentialType,
|
| + bool allowPrecisionLoss, bool setExpressionType) {
|
| + VariableElement element = getOverridableStaticElement(expression);
|
| + if (element != null) {
|
| + DartType newBestType =
|
| + overrideVariable(element, potentialType, allowPrecisionLoss);
|
| + if (setExpressionType) {
|
| + recordPropagatedTypeIfBetter(expression, newBestType);
|
| + }
|
| + }
|
| + element = getOverridablePropagatedElement(expression);
|
| + if (element != null) {
|
| + overrideVariable(element, potentialType, allowPrecisionLoss);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * If it is appropriate to do so, override the current type of the given element with the given
|
| + * type.
|
| + *
|
| + * @param element the element whose type might be overridden
|
| + * @param potentialType the potential type of the element
|
| + * @param allowPrecisionLoss true if `potentialType` is allowed to be less precise than the
|
| + * current best type
|
| + *
|
| + * Return a new better [DartType], or `null` if [potentialType] is not better
|
| + * than the current [element] type.
|
| + */
|
| + DartType overrideVariable(VariableElement element, DartType potentialType,
|
| + bool allowPrecisionLoss) {
|
| + if (potentialType == null || potentialType.isBottom) {
|
| + return null;
|
| + }
|
| + DartType currentType = _overrideManager.getBestType(element);
|
| +
|
| + if (potentialType == currentType) {
|
| + return null;
|
| + }
|
| +
|
| + // If we aren't allowing precision loss then the third and fourth conditions
|
| + // check that we aren't losing precision.
|
| + //
|
| + // Let [C] be the current type and [P] be the potential type. When we
|
| + // aren't allowing precision loss -- which is the case for is-checks -- we
|
| + // check that [! (C << P)] or [P << C]. The second check, that [P << C], is
|
| + // analogous to part of the Dart Language Spec rule for type promotion under
|
| + // is-checks (in the analogy [T] is [P] and [S] is [C]):
|
| + //
|
| + // An is-expression of the form [v is T] shows that [v] has type [T] iff
|
| + // [T] is more specific than the type [S] of the expression [v] and both
|
| + // [T != dynamic] and [S != dynamic].
|
| + //
|
| + // It also covers an important case that is not applicable in the spec:
|
| + // for union types, we want an is-check to promote from an union type to
|
| + // (a subtype of) any of its members.
|
| + //
|
| + // The first check, that [! (C << P)], covers the case where [P] and [C] are
|
| + // unrelated types; This case is not addressed in the spec for static types.
|
| + if (currentType == null ||
|
| + allowPrecisionLoss ||
|
| + !currentType.isMoreSpecificThan(potentialType) ||
|
| + potentialType.isMoreSpecificThan(currentType)) {
|
| + // TODO(scheglov) type propagation for instance/top-level fields
|
| + // was disabled because it depends on the order or visiting.
|
| + // If both field and its client are in the same unit, and we visit
|
| + // the client before the field, then propagated type is not set yet.
|
| +// if (element is PropertyInducingElement) {
|
| +// PropertyInducingElement variable = element;
|
| +// if (!variable.isConst && !variable.isFinal) {
|
| +// return;
|
| +// }
|
| +// (variable as PropertyInducingElementImpl).propagatedType =
|
| +// potentialType;
|
| +// }
|
| + _overrideManager.setType(element, potentialType);
|
| + return potentialType;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * A client is about to resolve a member in the given class declaration.
|
| + */
|
| + void prepareToResolveMembersInClass(ClassDeclaration node) {
|
| + _enclosingClassDeclaration = node;
|
| + enclosingClass = node.element;
|
| + typeAnalyzer.thisType = enclosingClass == null ? null : enclosingClass.type;
|
| + }
|
| +
|
| + /**
|
| + * If the given [type] is valid, strongly more specific than the
|
| + * existing static type of the given [expression], record it as a propagated
|
| + * type of the given [expression]. Otherwise, reset it to `null`.
|
| + *
|
| + * If [hasOldPropagatedType] is `true` then the existing propagated type
|
| + * should also is checked.
|
| + */
|
| + void recordPropagatedTypeIfBetter(Expression expression, DartType type,
|
| + [bool hasOldPropagatedType = false]) {
|
| + // Ensure that propagated type invalid.
|
| + if (type == null || type.isDynamic || type.isBottom) {
|
| + if (!hasOldPropagatedType) {
|
| + expression.propagatedType = null;
|
| + }
|
| + return;
|
| + }
|
| + // Ensure that propagated type is more specific than the static type.
|
| + DartType staticType = expression.staticType;
|
| + if (type == staticType || !type.isMoreSpecificThan(staticType)) {
|
| + expression.propagatedType = null;
|
| + return;
|
| + }
|
| + // Ensure that the new propagated type is more specific than the old one.
|
| + if (hasOldPropagatedType) {
|
| + DartType oldPropagatedType = expression.propagatedType;
|
| + if (oldPropagatedType != null &&
|
| + !type.isMoreSpecificThan(oldPropagatedType)) {
|
| + return;
|
| + }
|
| + }
|
| + // OK
|
| + expression.propagatedType = type;
|
| + }
|
| +
|
| + @override
|
| + Object visitAnnotation(Annotation node) {
|
| + AstNode parent = node.parent;
|
| + if (identical(parent, _enclosingClassDeclaration) ||
|
| + identical(parent, _enclosingFunctionTypeAlias)) {
|
| + return null;
|
| + }
|
| + return super.visitAnnotation(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitAsExpression(AsExpression node) {
|
| + super.visitAsExpression(node);
|
| + // Since an as-statement doesn't actually change the type, we don't
|
| + // let it affect the propagated type when it would result in a loss
|
| + // of precision.
|
| + overrideExpression(node.expression, node.type.type, false, false);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitAssertStatement(AssertStatement node) {
|
| + super.visitAssertStatement(node);
|
| + _propagateTrueState(node.condition);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitBinaryExpression(BinaryExpression node) {
|
| + sc.TokenType operatorType = node.operator.type;
|
| + Expression leftOperand = node.leftOperand;
|
| + Expression rightOperand = node.rightOperand;
|
| + if (operatorType == sc.TokenType.AMPERSAND_AMPERSAND) {
|
| + safelyVisit(leftOperand);
|
| + if (rightOperand != null) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + _promoteManager.enterScope();
|
| + try {
|
| + _propagateTrueState(leftOperand);
|
| + // Type promotion.
|
| + _promoteTypes(leftOperand);
|
| + _clearTypePromotionsIfPotentiallyMutatedIn(leftOperand);
|
| + _clearTypePromotionsIfPotentiallyMutatedIn(rightOperand);
|
| + _clearTypePromotionsIfAccessedInClosureAndProtentiallyMutated(
|
| + rightOperand);
|
| + // Visit right operand.
|
| + rightOperand.accept(this);
|
| + } finally {
|
| + _promoteManager.exitScope();
|
| + }
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + }
|
| + } else if (operatorType == sc.TokenType.BAR_BAR) {
|
| + safelyVisit(leftOperand);
|
| + if (rightOperand != null) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + _propagateFalseState(leftOperand);
|
| + rightOperand.accept(this);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + }
|
| + } else {
|
| + safelyVisit(leftOperand);
|
| + safelyVisit(rightOperand);
|
| + }
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitBlockFunctionBody(BlockFunctionBody node) {
|
| + safelyVisit(_commentBeforeFunction);
|
| + _overrideManager.enterScope();
|
| + try {
|
| + super.visitBlockFunctionBody(node);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitBreakStatement(BreakStatement node) {
|
| + //
|
| + // We do not visit the label because it needs to be visited in the context
|
| + // of the statement.
|
| + //
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitClassDeclaration(ClassDeclaration node) {
|
| + //
|
| + // Resolve the metadata in the library scope.
|
| + //
|
| + if (node.metadata != null) {
|
| + node.metadata.accept(this);
|
| + }
|
| + _enclosingClassDeclaration = node;
|
| + //
|
| + // Continue the class resolution.
|
| + //
|
| + ClassElement outerType = enclosingClass;
|
| + try {
|
| + enclosingClass = node.element;
|
| + typeAnalyzer.thisType =
|
| + enclosingClass == null ? null : enclosingClass.type;
|
| + super.visitClassDeclaration(node);
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + } finally {
|
| + typeAnalyzer.thisType = outerType == null ? null : outerType.type;
|
| + enclosingClass = outerType;
|
| + _enclosingClassDeclaration = null;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Implementation of this method should be synchronized with
|
| + * [visitClassDeclaration].
|
| + */
|
| + visitClassDeclarationIncrementally(ClassDeclaration node) {
|
| + //
|
| + // Resolve the metadata in the library scope.
|
| + //
|
| + if (node.metadata != null) {
|
| + node.metadata.accept(this);
|
| + }
|
| + _enclosingClassDeclaration = node;
|
| + //
|
| + // Continue the class resolution.
|
| + //
|
| + enclosingClass = node.element;
|
| + typeAnalyzer.thisType = enclosingClass == null ? null : enclosingClass.type;
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + }
|
| +
|
| + @override
|
| + Object visitComment(Comment node) {
|
| + if (node.parent is FunctionDeclaration ||
|
| + node.parent is ConstructorDeclaration ||
|
| + node.parent is MethodDeclaration) {
|
| + if (!identical(node, _commentBeforeFunction)) {
|
| + _commentBeforeFunction = node;
|
| + return null;
|
| + }
|
| + }
|
| + super.visitComment(node);
|
| + _commentBeforeFunction = null;
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitCommentReference(CommentReference node) {
|
| + //
|
| + // We do not visit the identifier because it needs to be visited in the
|
| + // context of the reference.
|
| + //
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitCompilationUnit(CompilationUnit node) {
|
| + //
|
| + // TODO(brianwilkerson) The goal of the code below is to visit the
|
| + // declarations in such an order that we can infer type information for
|
| + // top-level variables before we visit references to them. This is better
|
| + // than making no effort, but still doesn't completely satisfy that goal
|
| + // (consider for example "final var a = b; final var b = 0;"; we'll infer a
|
| + // type of 'int' for 'b', but not for 'a' because of the order of the
|
| + // visits). Ideally we would create a dependency graph, but that would
|
| + // require references to be resolved, which they are not.
|
| + //
|
| + _overrideManager.enterScope();
|
| + try {
|
| + NodeList<Directive> directives = node.directives;
|
| + int directiveCount = directives.length;
|
| + for (int i = 0; i < directiveCount; i++) {
|
| + directives[i].accept(this);
|
| + }
|
| + NodeList<CompilationUnitMember> declarations = node.declarations;
|
| + int declarationCount = declarations.length;
|
| + for (int i = 0; i < declarationCount; i++) {
|
| + CompilationUnitMember declaration = declarations[i];
|
| + if (declaration is! ClassDeclaration) {
|
| + declaration.accept(this);
|
| + }
|
| + }
|
| + for (int i = 0; i < declarationCount; i++) {
|
| + CompilationUnitMember declaration = declarations[i];
|
| + if (declaration is ClassDeclaration) {
|
| + declaration.accept(this);
|
| + }
|
| + }
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitConditionalExpression(ConditionalExpression node) {
|
| + Expression condition = node.condition;
|
| + safelyVisit(condition);
|
| + Expression thenExpression = node.thenExpression;
|
| + if (thenExpression != null) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + _promoteManager.enterScope();
|
| + try {
|
| + _propagateTrueState(condition);
|
| + // Type promotion.
|
| + _promoteTypes(condition);
|
| + _clearTypePromotionsIfPotentiallyMutatedIn(thenExpression);
|
| + _clearTypePromotionsIfAccessedInClosureAndProtentiallyMutated(
|
| + thenExpression);
|
| + // Visit "then" expression.
|
| + thenExpression.accept(this);
|
| + } finally {
|
| + _promoteManager.exitScope();
|
| + }
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + }
|
| + Expression elseExpression = node.elseExpression;
|
| + if (elseExpression != null) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + _propagateFalseState(condition);
|
| + elseExpression.accept(this);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + }
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + bool thenIsAbrupt = _isAbruptTerminationExpression(thenExpression);
|
| + bool elseIsAbrupt = _isAbruptTerminationExpression(elseExpression);
|
| + if (elseIsAbrupt && !thenIsAbrupt) {
|
| + _propagateTrueState(condition);
|
| + _propagateState(thenExpression);
|
| + } else if (thenIsAbrupt && !elseIsAbrupt) {
|
| + _propagateFalseState(condition);
|
| + _propagateState(elseExpression);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| + ExecutableElement outerFunction = _enclosingFunction;
|
| + try {
|
| + _enclosingFunction = node.element;
|
| + super.visitConstructorDeclaration(node);
|
| + } finally {
|
| + _enclosingFunction = outerFunction;
|
| + }
|
| + ConstructorElementImpl constructor = node.element;
|
| + constructor.constantInitializers =
|
| + new ConstantAstCloner().cloneNodeList(node.initializers);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitConstructorFieldInitializer(ConstructorFieldInitializer node) {
|
| + //
|
| + // We visit the expression, but do not visit the field name because it needs
|
| + // to be visited in the context of the constructor field initializer node.
|
| + //
|
| + safelyVisit(node.expression);
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitConstructorName(ConstructorName node) {
|
| + //
|
| + // We do not visit either the type name, because it won't be visited anyway,
|
| + // or the name, because it needs to be visited in the context of the
|
| + // constructor name.
|
| + //
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitContinueStatement(ContinueStatement node) {
|
| + //
|
| + // We do not visit the label because it needs to be visited in the context
|
| + // of the statement.
|
| + //
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitDefaultFormalParameter(DefaultFormalParameter node) {
|
| + super.visitDefaultFormalParameter(node);
|
| + ParameterElement element = node.element;
|
| + if (element.initializer != null && node.defaultValue != null) {
|
| + (element.initializer as FunctionElementImpl).returnType =
|
| + node.defaultValue.staticType;
|
| + }
|
| + FormalParameterList parent = node.parent;
|
| + AstNode grandparent = parent.parent;
|
| + if (grandparent is ConstructorDeclaration &&
|
| + grandparent.constKeyword != null) {
|
| + // For const constructors, we need to clone the ASTs for default formal
|
| + // parameters, so that we can use them during constant evaluation.
|
| + ParameterElement element = node.element;
|
| + (element as ConstVariableElement).constantInitializer =
|
| + new ConstantAstCloner().cloneNode(node.defaultValue);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitDoStatement(DoStatement node) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + super.visitDoStatement(node);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + // TODO(brianwilkerson) If the loop can only be exited because the condition
|
| + // is false, then propagateFalseState(node.getCondition());
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitEmptyFunctionBody(EmptyFunctionBody node) {
|
| + safelyVisit(_commentBeforeFunction);
|
| + if (resolveOnlyCommentInFunctionBody) {
|
| + return null;
|
| + }
|
| + return super.visitEmptyFunctionBody(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitEnumDeclaration(EnumDeclaration node) {
|
| + //
|
| + // Resolve the metadata in the library scope
|
| + // and associate the annotations with the element.
|
| + //
|
| + if (node.metadata != null) {
|
| + node.metadata.accept(this);
|
| + ElementResolver.setMetadata(node.element, node);
|
| + }
|
| + //
|
| + // Continue the enum resolution.
|
| + //
|
| + ClassElement outerType = enclosingClass;
|
| + try {
|
| + enclosingClass = node.element;
|
| + typeAnalyzer.thisType =
|
| + enclosingClass == null ? null : enclosingClass.type;
|
| + super.visitEnumDeclaration(node);
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + } finally {
|
| + typeAnalyzer.thisType = outerType == null ? null : outerType.type;
|
| + enclosingClass = outerType;
|
| + _enclosingClassDeclaration = null;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitExpressionFunctionBody(ExpressionFunctionBody node) {
|
| + safelyVisit(_commentBeforeFunction);
|
| + if (resolveOnlyCommentInFunctionBody) {
|
| + return null;
|
| + }
|
| + _overrideManager.enterScope();
|
| + try {
|
| + super.visitExpressionFunctionBody(node);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFieldDeclaration(FieldDeclaration node) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + super.visitFieldDeclaration(node);
|
| + } finally {
|
| + Map<VariableElement, DartType> overrides =
|
| + _overrideManager.captureOverrides(node.fields);
|
| + _overrideManager.exitScope();
|
| + _overrideManager.applyOverrides(overrides);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitForEachStatement(ForEachStatement node) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + super.visitForEachStatement(node);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + void visitForEachStatementInScope(ForEachStatement node) {
|
| + //
|
| + // We visit the iterator before the loop variable because the loop variable
|
| + // cannot be in scope while visiting the iterator.
|
| + //
|
| + Expression iterable = node.iterable;
|
| + safelyVisit(iterable);
|
| + DeclaredIdentifier loopVariable = node.loopVariable;
|
| + SimpleIdentifier identifier = node.identifier;
|
| + safelyVisit(loopVariable);
|
| + safelyVisit(identifier);
|
| + Statement body = node.body;
|
| + if (body != null) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + if (loopVariable != null && iterable != null) {
|
| + LocalVariableElement loopElement = loopVariable.element;
|
| + if (loopElement != null) {
|
| + DartType propagatedType = null;
|
| + if (node.awaitKeyword == null) {
|
| + propagatedType = _getIteratorElementType(iterable);
|
| + } else {
|
| + propagatedType = _getStreamElementType(iterable);
|
| + }
|
| + if (propagatedType != null) {
|
| + overrideVariable(loopElement, propagatedType, true);
|
| + _recordPropagatedType(loopVariable.identifier, propagatedType);
|
| + }
|
| + }
|
| + } else if (identifier != null && iterable != null) {
|
| + Element identifierElement = identifier.staticElement;
|
| + if (identifierElement is VariableElement) {
|
| + DartType iteratorElementType = _getIteratorElementType(iterable);
|
| + overrideVariable(identifierElement, iteratorElementType, true);
|
| + _recordPropagatedType(identifier, iteratorElementType);
|
| + }
|
| + }
|
| + visitStatementInScope(body);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + }
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + }
|
| +
|
| + @override
|
| + Object visitForStatement(ForStatement node) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + super.visitForStatement(node);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + void visitForStatementInScope(ForStatement node) {
|
| + safelyVisit(node.variables);
|
| + safelyVisit(node.initialization);
|
| + safelyVisit(node.condition);
|
| + _overrideManager.enterScope();
|
| + try {
|
| + _propagateTrueState(node.condition);
|
| + visitStatementInScope(node.body);
|
| + node.updaters.accept(this);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + // TODO(brianwilkerson) If the loop can only be exited because the condition
|
| + // is false, then propagateFalseState(condition);
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| + ExecutableElement outerFunction = _enclosingFunction;
|
| + try {
|
| + SimpleIdentifier functionName = node.name;
|
| + _enclosingFunction = functionName.staticElement as ExecutableElement;
|
| + super.visitFunctionDeclaration(node);
|
| + } finally {
|
| + _enclosingFunction = outerFunction;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionExpression(FunctionExpression node) {
|
| + ExecutableElement outerFunction = _enclosingFunction;
|
| + try {
|
| + _enclosingFunction = node.element;
|
| + _overrideManager.enterScope();
|
| + try {
|
| + super.visitFunctionExpression(node);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + } finally {
|
| + _enclosingFunction = outerFunction;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionExpressionInvocation(FunctionExpressionInvocation node) {
|
| + safelyVisit(node.function);
|
| + node.accept(elementResolver);
|
| + _inferFunctionExpressionsParametersTypes(node.argumentList);
|
| + safelyVisit(node.argumentList);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionTypeAlias(FunctionTypeAlias node) {
|
| + // Resolve the metadata in the library scope.
|
| + if (node.metadata != null) {
|
| + node.metadata.accept(this);
|
| + }
|
| + FunctionTypeAlias outerAlias = _enclosingFunctionTypeAlias;
|
| + _enclosingFunctionTypeAlias = node;
|
| + try {
|
| + super.visitFunctionTypeAlias(node);
|
| + } finally {
|
| + _enclosingFunctionTypeAlias = outerAlias;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitHideCombinator(HideCombinator node) => null;
|
| +
|
| + @override
|
| + Object visitIfStatement(IfStatement node) {
|
| + Expression condition = node.condition;
|
| + safelyVisit(condition);
|
| + Map<VariableElement, DartType> thenOverrides =
|
| + new HashMap<VariableElement, DartType>();
|
| + Statement thenStatement = node.thenStatement;
|
| + if (thenStatement != null) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + _promoteManager.enterScope();
|
| + try {
|
| + _propagateTrueState(condition);
|
| + // Type promotion.
|
| + _promoteTypes(condition);
|
| + _clearTypePromotionsIfPotentiallyMutatedIn(thenStatement);
|
| + _clearTypePromotionsIfAccessedInClosureAndProtentiallyMutated(
|
| + thenStatement);
|
| + // Visit "then".
|
| + visitStatementInScope(thenStatement);
|
| + } finally {
|
| + _promoteManager.exitScope();
|
| + }
|
| + } finally {
|
| + thenOverrides = _overrideManager.captureLocalOverrides();
|
| + _overrideManager.exitScope();
|
| + }
|
| + }
|
| + Map<VariableElement, DartType> elseOverrides =
|
| + new HashMap<VariableElement, DartType>();
|
| + Statement elseStatement = node.elseStatement;
|
| + if (elseStatement != null) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + _propagateFalseState(condition);
|
| + visitStatementInScope(elseStatement);
|
| + } finally {
|
| + elseOverrides = _overrideManager.captureLocalOverrides();
|
| + _overrideManager.exitScope();
|
| + }
|
| + }
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + // Join overrides.
|
| + bool thenIsAbrupt = _isAbruptTerminationStatement(thenStatement);
|
| + bool elseIsAbrupt = _isAbruptTerminationStatement(elseStatement);
|
| + if (elseIsAbrupt && !thenIsAbrupt) {
|
| + _propagateTrueState(condition);
|
| + _overrideManager.applyOverrides(thenOverrides);
|
| + } else if (thenIsAbrupt && !elseIsAbrupt) {
|
| + _propagateFalseState(condition);
|
| + _overrideManager.applyOverrides(elseOverrides);
|
| + } else if (!thenIsAbrupt && !elseIsAbrupt) {
|
| + List<Map<VariableElement, DartType>> perBranchOverrides =
|
| + new List<Map<VariableElement, DartType>>();
|
| + perBranchOverrides.add(thenOverrides);
|
| + perBranchOverrides.add(elseOverrides);
|
| + _overrideManager.mergeOverrides(perBranchOverrides);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitLabel(Label node) => null;
|
| +
|
| + @override
|
| + Object visitLibraryIdentifier(LibraryIdentifier node) => null;
|
| +
|
| + @override
|
| + Object visitMethodDeclaration(MethodDeclaration node) {
|
| + ExecutableElement outerFunction = _enclosingFunction;
|
| + try {
|
| + _enclosingFunction = node.element;
|
| + super.visitMethodDeclaration(node);
|
| + } finally {
|
| + _enclosingFunction = outerFunction;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitMethodInvocation(MethodInvocation node) {
|
| + //
|
| + // We visit the target and argument list, but do not visit the method name
|
| + // because it needs to be visited in the context of the invocation.
|
| + //
|
| + safelyVisit(node.target);
|
| + node.accept(elementResolver);
|
| + _inferFunctionExpressionsParametersTypes(node.argumentList);
|
| + safelyVisit(node.argumentList);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitNode(AstNode node) {
|
| + node.visitChildren(this);
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitPrefixedIdentifier(PrefixedIdentifier node) {
|
| + //
|
| + // We visit the prefix, but do not visit the identifier because it needs to
|
| + // be visited in the context of the prefix.
|
| + //
|
| + safelyVisit(node.prefix);
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitPropertyAccess(PropertyAccess node) {
|
| + //
|
| + // We visit the target, but do not visit the property name because it needs
|
| + // to be visited in the context of the property access node.
|
| + //
|
| + safelyVisit(node.target);
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitRedirectingConstructorInvocation(
|
| + RedirectingConstructorInvocation node) {
|
| + //
|
| + // We visit the argument list, but do not visit the optional identifier
|
| + // because it needs to be visited in the context of the constructor
|
| + // invocation.
|
| + //
|
| + safelyVisit(node.argumentList);
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitShowCombinator(ShowCombinator node) => null;
|
| +
|
| + @override
|
| + Object visitSuperConstructorInvocation(SuperConstructorInvocation node) {
|
| + //
|
| + // We visit the argument list, but do not visit the optional identifier
|
| + // because it needs to be visited in the context of the constructor
|
| + // invocation.
|
| + //
|
| + safelyVisit(node.argumentList);
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitSwitchCase(SwitchCase node) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + super.visitSwitchCase(node);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitSwitchDefault(SwitchDefault node) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + super.visitSwitchDefault(node);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitTopLevelVariableDeclaration(TopLevelVariableDeclaration node) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + super.visitTopLevelVariableDeclaration(node);
|
| + } finally {
|
| + Map<VariableElement, DartType> overrides =
|
| + _overrideManager.captureOverrides(node.variables);
|
| + _overrideManager.exitScope();
|
| + _overrideManager.applyOverrides(overrides);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitTypeName(TypeName node) => null;
|
| +
|
| + @override
|
| + Object visitVariableDeclaration(VariableDeclaration node) {
|
| + super.visitVariableDeclaration(node);
|
| + VariableElement element = node.element;
|
| + if (element.initializer != null && node.initializer != null) {
|
| + (element.initializer as FunctionElementImpl).returnType =
|
| + node.initializer.staticType;
|
| + }
|
| + // Note: in addition to cloning the initializers for const variables, we
|
| + // have to clone the initializers for non-static final fields (because if
|
| + // they occur in a class with a const constructor, they will be needed to
|
| + // evaluate the const constructor).
|
| + if ((element.isConst ||
|
| + (element is FieldElement &&
|
| + element.isFinal &&
|
| + !element.isStatic)) &&
|
| + node.initializer != null) {
|
| + (element as ConstVariableElement).constantInitializer =
|
| + new ConstantAstCloner().cloneNode(node.initializer);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitWhileStatement(WhileStatement node) {
|
| + // Note: since we don't call the base class, we have to maintain
|
| + // _implicitLabelScope ourselves.
|
| + ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
|
| + try {
|
| + _implicitLabelScope = _implicitLabelScope.nest(node);
|
| + Expression condition = node.condition;
|
| + safelyVisit(condition);
|
| + Statement body = node.body;
|
| + if (body != null) {
|
| + _overrideManager.enterScope();
|
| + try {
|
| + _propagateTrueState(condition);
|
| + visitStatementInScope(body);
|
| + } finally {
|
| + _overrideManager.exitScope();
|
| + }
|
| + }
|
| + } finally {
|
| + _implicitLabelScope = outerImplicitScope;
|
| + }
|
| + // TODO(brianwilkerson) If the loop can only be exited because the condition
|
| + // is false, then propagateFalseState(condition);
|
| + node.accept(elementResolver);
|
| + node.accept(typeAnalyzer);
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Checks each promoted variable in the current scope for compliance with the following
|
| + * specification statement:
|
| + *
|
| + * If the variable <i>v</i> is accessed by a closure in <i>s<sub>1</sub></i> then the variable
|
| + * <i>v</i> is not potentially mutated anywhere in the scope of <i>v</i>.
|
| + */
|
| + void _clearTypePromotionsIfAccessedInClosureAndProtentiallyMutated(
|
| + AstNode target) {
|
| + for (Element element in _promoteManager.promotedElements) {
|
| + if ((element as VariableElementImpl).isPotentiallyMutatedInScope) {
|
| + if (_isVariableAccessedInClosure(element, target)) {
|
| + _promoteManager.setType(element, null);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Checks each promoted variable in the current scope for compliance with the following
|
| + * specification statement:
|
| + *
|
| + * <i>v</i> is not potentially mutated in <i>s<sub>1</sub></i> or within a closure.
|
| + */
|
| + void _clearTypePromotionsIfPotentiallyMutatedIn(AstNode target) {
|
| + for (Element element in _promoteManager.promotedElements) {
|
| + if (_isVariablePotentiallyMutatedIn(element, target)) {
|
| + _promoteManager.setType(element, null);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * The given expression is the expression used to compute the iterator for a
|
| + * for-each statement. Attempt to compute the type of objects that will be
|
| + * assigned to the loop variable and return that type. Return `null` if the
|
| + * type could not be determined. The [iteratorExpression] is the expression
|
| + * that will return the Iterable being iterated over.
|
| + */
|
| + DartType _getIteratorElementType(Expression iteratorExpression) {
|
| + DartType expressionType = iteratorExpression.bestType;
|
| + if (expressionType is InterfaceType) {
|
| + InterfaceType interfaceType = expressionType;
|
| + FunctionType iteratorFunction =
|
| + _inheritanceManager.lookupMemberType(interfaceType, "iterator");
|
| + if (iteratorFunction == null) {
|
| + // TODO(brianwilkerson) Should we report this error?
|
| + return null;
|
| + }
|
| + DartType iteratorType = iteratorFunction.returnType;
|
| + if (iteratorType is InterfaceType) {
|
| + InterfaceType iteratorInterfaceType = iteratorType;
|
| + FunctionType currentFunction = _inheritanceManager.lookupMemberType(
|
| + iteratorInterfaceType, "current");
|
| + if (currentFunction == null) {
|
| + // TODO(brianwilkerson) Should we report this error?
|
| + return null;
|
| + }
|
| + return currentFunction.returnType;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * The given expression is the expression used to compute the stream for an
|
| + * asyncronous for-each statement. Attempt to compute the type of objects that
|
| + * will be assigned to the loop variable and return that type. Return `null`
|
| + * if the type could not be determined. The [streamExpression] is the
|
| + * expression that will return the stream being iterated over.
|
| + */
|
| + DartType _getStreamElementType(Expression streamExpression) {
|
| + DartType streamType = streamExpression.bestType;
|
| + if (streamType is InterfaceType) {
|
| + FunctionType listenFunction =
|
| + _inheritanceManager.lookupMemberType(streamType, "listen");
|
| + if (listenFunction == null) {
|
| + return null;
|
| + }
|
| + List<ParameterElement> listenParameters = listenFunction.parameters;
|
| + if (listenParameters == null || listenParameters.length < 1) {
|
| + return null;
|
| + }
|
| + DartType onDataType = listenParameters[0].type;
|
| + if (onDataType is FunctionType) {
|
| + List<ParameterElement> onDataParameters = onDataType.parameters;
|
| + if (onDataParameters == null || onDataParameters.length < 1) {
|
| + return null;
|
| + }
|
| + DartType eventType = onDataParameters[0].type;
|
| + // TODO(paulberry): checking that typeParameters.isNotEmpty is a
|
| + // band-aid fix for dartbug.com/24191. Figure out what the correct
|
| + // logic should be.
|
| + if (streamType.typeParameters.isNotEmpty &&
|
| + eventType.element == streamType.typeParameters[0]) {
|
| + return streamType.typeArguments[0];
|
| + }
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * If given "mayBeClosure" is [FunctionExpression] without explicit parameters types and its
|
| + * required type is [FunctionType], then infer parameters types from [FunctionType].
|
| + */
|
| + void _inferFunctionExpressionParametersTypes(
|
| + Expression mayBeClosure, DartType mayByFunctionType) {
|
| + // prepare closure
|
| + if (mayBeClosure is! FunctionExpression) {
|
| + return;
|
| + }
|
| + FunctionExpression closure = mayBeClosure as FunctionExpression;
|
| + // prepare expected closure type
|
| + if (mayByFunctionType is! FunctionType) {
|
| + return;
|
| + }
|
| + FunctionType expectedClosureType = mayByFunctionType as FunctionType;
|
| + // If the expectedClosureType is not more specific than the static type,
|
| + // return.
|
| + DartType staticClosureType =
|
| + closure.element != null ? closure.element.type : null;
|
| + if (staticClosureType != null &&
|
| + !expectedClosureType.isMoreSpecificThan(staticClosureType)) {
|
| + return;
|
| + }
|
| + // set propagated type for the closure
|
| + closure.propagatedType = expectedClosureType;
|
| + // set inferred types for parameters
|
| + NodeList<FormalParameter> parameters = closure.parameters.parameters;
|
| + List<ParameterElement> expectedParameters = expectedClosureType.parameters;
|
| + for (int i = 0;
|
| + i < parameters.length && i < expectedParameters.length;
|
| + i++) {
|
| + FormalParameter parameter = parameters[i];
|
| + ParameterElement element = parameter.element;
|
| + DartType currentType = _overrideManager.getBestType(element);
|
| + // may be override the type
|
| + DartType expectedType = expectedParameters[i].type;
|
| + if (currentType == null || expectedType.isMoreSpecificThan(currentType)) {
|
| + _overrideManager.setType(element, expectedType);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Try to infer types of parameters of the [FunctionExpression] arguments.
|
| + */
|
| + void _inferFunctionExpressionsParametersTypes(ArgumentList argumentList) {
|
| + for (Expression argument in argumentList.arguments) {
|
| + ParameterElement parameter = argument.propagatedParameterElement;
|
| + if (parameter == null) {
|
| + parameter = argument.staticParameterElement;
|
| + }
|
| + if (parameter != null) {
|
| + _inferFunctionExpressionParametersTypes(argument, parameter.type);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given expression terminates abruptly (that is, if any expression
|
| + * following the given expression will not be reached).
|
| + *
|
| + * @param expression the expression being tested
|
| + * @return `true` if the given expression terminates abruptly
|
| + */
|
| + bool _isAbruptTerminationExpression(Expression expression) {
|
| + // TODO(brianwilkerson) This needs to be significantly improved. Ideally we
|
| + // would eventually turn this into a method on Expression that returns a
|
| + // termination indication (normal, abrupt with no exception, abrupt with an
|
| + // exception).
|
| + while (expression is ParenthesizedExpression) {
|
| + expression = (expression as ParenthesizedExpression).expression;
|
| + }
|
| + return expression is ThrowExpression || expression is RethrowExpression;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given statement terminates abruptly (that is, if any statement
|
| + * following the given statement will not be reached).
|
| + *
|
| + * @param statement the statement being tested
|
| + * @return `true` if the given statement terminates abruptly
|
| + */
|
| + bool _isAbruptTerminationStatement(Statement statement) {
|
| + // TODO(brianwilkerson) This needs to be significantly improved. Ideally we
|
| + // would eventually turn this into a method on Statement that returns a
|
| + // termination indication (normal, abrupt with no exception, abrupt with an
|
| + // exception).
|
| + //
|
| + // collinsn: it is unsound to assume that [break] and [continue] are
|
| + // "abrupt". See: https://code.google.com/p/dart/issues/detail?id=19929#c4
|
| + // (tests are included in TypePropagationTest.java).
|
| + // In general, the difficulty is loopy control flow.
|
| + //
|
| + // In the presence of exceptions things become much more complicated, but
|
| + // while we only use this to propagate at [if]-statement join points,
|
| + // checking for [return] may work well enough in the common case.
|
| + if (statement is ReturnStatement) {
|
| + return true;
|
| + } else if (statement is ExpressionStatement) {
|
| + return _isAbruptTerminationExpression(statement.expression);
|
| + } else if (statement is Block) {
|
| + NodeList<Statement> statements = statement.statements;
|
| + int size = statements.length;
|
| + if (size == 0) {
|
| + return false;
|
| + }
|
| +
|
| + // This last-statement-is-return heuristic is unsound for adversarial
|
| + // code, but probably works well in the common case:
|
| + //
|
| + // var x = 123;
|
| + // var c = true;
|
| + // L: if (c) {
|
| + // x = "hello";
|
| + // c = false;
|
| + // break L;
|
| + // return;
|
| + // }
|
| + // print(x);
|
| + //
|
| + // Unsound to assume that [x = "hello";] never executed after the
|
| + // if-statement. Of course, a dead-code analysis could point out that
|
| + // [return] here is dead.
|
| + return _isAbruptTerminationStatement(statements[size - 1]);
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given variable is accessed within a closure in the given
|
| + * [AstNode] and also mutated somewhere in variable scope. This information is only
|
| + * available for local variables (including parameters).
|
| + *
|
| + * @param variable the variable to check
|
| + * @param target the [AstNode] to check within
|
| + * @return `true` if this variable is potentially mutated somewhere in the given ASTNode
|
| + */
|
| + bool _isVariableAccessedInClosure(Element variable, AstNode target) {
|
| + _ResolverVisitor_isVariableAccessedInClosure visitor =
|
| + new _ResolverVisitor_isVariableAccessedInClosure(variable);
|
| + target.accept(visitor);
|
| + return visitor.result;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given variable is potentially mutated somewhere in the given
|
| + * [AstNode]. This information is only available for local variables (including parameters).
|
| + *
|
| + * @param variable the variable to check
|
| + * @param target the [AstNode] to check within
|
| + * @return `true` if this variable is potentially mutated somewhere in the given ASTNode
|
| + */
|
| + bool _isVariablePotentiallyMutatedIn(Element variable, AstNode target) {
|
| + _ResolverVisitor_isVariablePotentiallyMutatedIn visitor =
|
| + new _ResolverVisitor_isVariablePotentiallyMutatedIn(variable);
|
| + target.accept(visitor);
|
| + return visitor.result;
|
| + }
|
| +
|
| + /**
|
| + * If it is appropriate to do so, promotes the current type of the static element associated with
|
| + * the given expression with the given type. Generally speaking, it is appropriate if the given
|
| + * type is more specific than the current type.
|
| + *
|
| + * @param expression the expression used to access the static element whose types might be
|
| + * promoted
|
| + * @param potentialType the potential type of the elements
|
| + */
|
| + void _promote(Expression expression, DartType potentialType) {
|
| + VariableElement element = getPromotionStaticElement(expression);
|
| + if (element != null) {
|
| + // may be mutated somewhere in closure
|
| + if (element.isPotentiallyMutatedInClosure) {
|
| + return;
|
| + }
|
| + // prepare current variable type
|
| + DartType type = _promoteManager.getType(element);
|
| + if (type == null) {
|
| + type = expression.staticType;
|
| + }
|
| + // Declared type should not be "dynamic".
|
| + if (type == null || type.isDynamic) {
|
| + return;
|
| + }
|
| + // Promoted type should not be "dynamic".
|
| + if (potentialType == null || potentialType.isDynamic) {
|
| + return;
|
| + }
|
| + // Promoted type should be more specific than declared.
|
| + if (!potentialType.isMoreSpecificThan(type)) {
|
| + return;
|
| + }
|
| + // Do promote type of variable.
|
| + _promoteManager.setType(element, potentialType);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Promotes type information using given condition.
|
| + */
|
| + void _promoteTypes(Expression condition) {
|
| + if (condition is BinaryExpression) {
|
| + BinaryExpression binary = condition;
|
| + if (binary.operator.type == sc.TokenType.AMPERSAND_AMPERSAND) {
|
| + Expression left = binary.leftOperand;
|
| + Expression right = binary.rightOperand;
|
| + _promoteTypes(left);
|
| + _promoteTypes(right);
|
| + _clearTypePromotionsIfPotentiallyMutatedIn(right);
|
| + }
|
| + } else if (condition is IsExpression) {
|
| + IsExpression is2 = condition;
|
| + if (is2.notOperator == null) {
|
| + _promote(is2.expression, is2.type.type);
|
| + }
|
| + } else if (condition is ParenthesizedExpression) {
|
| + _promoteTypes(condition.expression);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Propagate any type information that results from knowing that the given condition will have
|
| + * been evaluated to 'false'.
|
| + *
|
| + * @param condition the condition that will have evaluated to 'false'
|
| + */
|
| + void _propagateFalseState(Expression condition) {
|
| + if (condition is BinaryExpression) {
|
| + BinaryExpression binary = condition;
|
| + if (binary.operator.type == sc.TokenType.BAR_BAR) {
|
| + _propagateFalseState(binary.leftOperand);
|
| + _propagateFalseState(binary.rightOperand);
|
| + }
|
| + } else if (condition is IsExpression) {
|
| + IsExpression is2 = condition;
|
| + if (is2.notOperator != null) {
|
| + // Since an is-statement doesn't actually change the type, we don't
|
| + // let it affect the propagated type when it would result in a loss
|
| + // of precision.
|
| + overrideExpression(is2.expression, is2.type.type, false, false);
|
| + }
|
| + } else if (condition is PrefixExpression) {
|
| + PrefixExpression prefix = condition;
|
| + if (prefix.operator.type == sc.TokenType.BANG) {
|
| + _propagateTrueState(prefix.operand);
|
| + }
|
| + } else if (condition is ParenthesizedExpression) {
|
| + _propagateFalseState(condition.expression);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Propagate any type information that results from knowing that the given expression will have
|
| + * been evaluated without altering the flow of execution.
|
| + *
|
| + * @param expression the expression that will have been evaluated
|
| + */
|
| + void _propagateState(Expression expression) {
|
| + // TODO(brianwilkerson) Implement this.
|
| + }
|
| +
|
| + /**
|
| + * Propagate any type information that results from knowing that the given condition will have
|
| + * been evaluated to 'true'.
|
| + *
|
| + * @param condition the condition that will have evaluated to 'true'
|
| + */
|
| + void _propagateTrueState(Expression condition) {
|
| + if (condition is BinaryExpression) {
|
| + BinaryExpression binary = condition;
|
| + if (binary.operator.type == sc.TokenType.AMPERSAND_AMPERSAND) {
|
| + _propagateTrueState(binary.leftOperand);
|
| + _propagateTrueState(binary.rightOperand);
|
| + }
|
| + } else if (condition is IsExpression) {
|
| + IsExpression is2 = condition;
|
| + if (is2.notOperator == null) {
|
| + // Since an is-statement doesn't actually change the type, we don't
|
| + // let it affect the propagated type when it would result in a loss
|
| + // of precision.
|
| + overrideExpression(is2.expression, is2.type.type, false, false);
|
| + }
|
| + } else if (condition is PrefixExpression) {
|
| + PrefixExpression prefix = condition;
|
| + if (prefix.operator.type == sc.TokenType.BANG) {
|
| + _propagateFalseState(prefix.operand);
|
| + }
|
| + } else if (condition is ParenthesizedExpression) {
|
| + _propagateTrueState(condition.expression);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Record that the propagated type of the given node is the given type.
|
| + *
|
| + * @param expression the node whose type is to be recorded
|
| + * @param type the propagated type of the node
|
| + */
|
| + void _recordPropagatedType(Expression expression, DartType type) {
|
| + if (type != null && !type.isDynamic) {
|
| + expression.propagatedType = type;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * The abstract class `Scope` defines the behavior common to name scopes used by the resolver
|
| + * to determine which names are visible at any given point in the code.
|
| + */
|
| +abstract class Scope {
|
| + /**
|
| + * The prefix used to mark an identifier as being private to its library.
|
| + */
|
| + static int PRIVATE_NAME_PREFIX = 0x5F;
|
| +
|
| + /**
|
| + * The suffix added to the declared name of a setter when looking up the setter. Used to
|
| + * disambiguate between a getter and a setter that have the same name.
|
| + */
|
| + static String SETTER_SUFFIX = "=";
|
| +
|
| + /**
|
| + * The name used to look up the method used to implement the unary minus operator. Used to
|
| + * disambiguate between the unary and binary operators.
|
| + */
|
| + static String UNARY_MINUS = "unary-";
|
| +
|
| + /**
|
| + * A table mapping names that are defined in this scope to the element representing the thing
|
| + * declared with that name.
|
| + */
|
| + HashMap<String, Element> _definedNames = new HashMap<String, Element>();
|
| +
|
| + /**
|
| + * A flag indicating whether there are any names defined in this scope.
|
| + */
|
| + bool _hasName = false;
|
| +
|
| + /**
|
| + * Return the scope in which this scope is lexically enclosed.
|
| + *
|
| + * @return the scope in which this scope is lexically enclosed
|
| + */
|
| + Scope get enclosingScope => null;
|
| +
|
| + /**
|
| + * Return the listener that is to be informed when an error is encountered.
|
| + *
|
| + * @return the listener that is to be informed when an error is encountered
|
| + */
|
| + AnalysisErrorListener get errorListener;
|
| +
|
| + /**
|
| + * Add the given element to this scope. If there is already an element with the given name defined
|
| + * in this scope, then an error will be generated and the original element will continue to be
|
| + * mapped to the name. If there is an element with the given name in an enclosing scope, then a
|
| + * warning will be generated but the given element will hide the inherited element.
|
| + *
|
| + * @param element the element to be added to this scope
|
| + */
|
| + void define(Element element) {
|
| + String name = _getName(element);
|
| + if (name != null && !name.isEmpty) {
|
| + if (_definedNames.containsKey(name)) {
|
| + errorListener
|
| + .onError(getErrorForDuplicate(_definedNames[name], element));
|
| + } else {
|
| + _definedNames[name] = element;
|
| + _hasName = true;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Add the given element to this scope without checking for duplication or hiding.
|
| + *
|
| + * @param name the name of the element to be added
|
| + * @param element the element to be added to this scope
|
| + */
|
| + void defineNameWithoutChecking(String name, Element element) {
|
| + _definedNames[name] = element;
|
| + _hasName = true;
|
| + }
|
| +
|
| + /**
|
| + * Add the given element to this scope without checking for duplication or hiding.
|
| + *
|
| + * @param element the element to be added to this scope
|
| + */
|
| + void defineWithoutChecking(Element element) {
|
| + _definedNames[_getName(element)] = element;
|
| + _hasName = true;
|
| + }
|
| +
|
| + /**
|
| + * Return the error code to be used when reporting that a name being defined locally conflicts
|
| + * with another element of the same name in the local scope.
|
| + *
|
| + * @param existing the first element to be declared with the conflicting name
|
| + * @param duplicate another element declared with the conflicting name
|
| + * @return the error code used to report duplicate names within a scope
|
| + */
|
| + AnalysisError getErrorForDuplicate(Element existing, Element duplicate) {
|
| + // TODO(brianwilkerson) Customize the error message based on the types of
|
| + // elements that share the same name.
|
| + // TODO(jwren) There are 4 error codes for duplicate, but only 1 is being
|
| + // generated.
|
| + Source source = duplicate.source;
|
| + return new AnalysisError(
|
| + source,
|
| + duplicate.nameOffset,
|
| + duplicate.displayName.length,
|
| + CompileTimeErrorCode.DUPLICATE_DEFINITION,
|
| + [existing.displayName]);
|
| + }
|
| +
|
| + /**
|
| + * Return the source that contains the given identifier, or the source associated with this scope
|
| + * if the source containing the identifier could not be determined.
|
| + *
|
| + * @param identifier the identifier whose source is to be returned
|
| + * @return the source that contains the given identifier
|
| + */
|
| + Source getSource(AstNode node) {
|
| + CompilationUnit unit = node.getAncestor((node) => node is CompilationUnit);
|
| + if (unit != null) {
|
| + CompilationUnitElement unitElement = unit.element;
|
| + if (unitElement != null) {
|
| + return unitElement.source;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Return the element with which the given name is associated, or `null` if the name is not
|
| + * defined within this scope.
|
| + *
|
| + * @param identifier the identifier node to lookup element for, used to report correct kind of a
|
| + * problem and associate problem with
|
| + * @param name the name associated with the element to be returned
|
| + * @param referencingLibrary the library that contains the reference to the name, used to
|
| + * implement library-level privacy
|
| + * @return the element with which the given name is associated
|
| + */
|
| + Element internalLookup(
|
| + Identifier identifier, String name, LibraryElement referencingLibrary);
|
| +
|
| + /**
|
| + * Return the element with which the given name is associated, or `null` if the name is not
|
| + * defined within this scope. This method only returns elements that are directly defined within
|
| + * this scope, not elements that are defined in an enclosing scope.
|
| + *
|
| + * @param name the name associated with the element to be returned
|
| + * @param referencingLibrary the library that contains the reference to the name, used to
|
| + * implement library-level privacy
|
| + * @return the element with which the given name is associated
|
| + */
|
| + Element localLookup(String name, LibraryElement referencingLibrary) {
|
| + if (_hasName) {
|
| + return _definedNames[name];
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Return the element with which the given identifier is associated, or `null` if the name
|
| + * is not defined within this scope.
|
| + *
|
| + * @param identifier the identifier associated with the element to be returned
|
| + * @param referencingLibrary the library that contains the reference to the name, used to
|
| + * implement library-level privacy
|
| + * @return the element with which the given identifier is associated
|
| + */
|
| + Element lookup(Identifier identifier, LibraryElement referencingLibrary) =>
|
| + internalLookup(identifier, identifier.name, referencingLibrary);
|
| +
|
| + /**
|
| + * Return the name that will be used to look up the given element.
|
| + *
|
| + * @param element the element whose look-up name is to be returned
|
| + * @return the name that will be used to look up the given element
|
| + */
|
| + String _getName(Element element) {
|
| + if (element is MethodElement) {
|
| + MethodElement method = element;
|
| + if (method.name == "-" && method.parameters.length == 0) {
|
| + return UNARY_MINUS;
|
| + }
|
| + }
|
| + return element.name;
|
| + }
|
| +
|
| + /**
|
| + * Return `true` if the given name is a library-private name.
|
| + *
|
| + * @param name the name being tested
|
| + * @return `true` if the given name is a library-private name
|
| + */
|
| + static bool isPrivateName(String name) =>
|
| + name != null && StringUtilities.startsWithChar(name, PRIVATE_NAME_PREFIX);
|
| +}
|
| +
|
| +/**
|
| + * The abstract class `ScopedVisitor` maintains name and label scopes as an AST structure is
|
| + * being visited.
|
| + */
|
| +abstract class ScopedVisitor extends UnifyingAstVisitor<Object> {
|
| + /**
|
| + * The element for the library containing the compilation unit being visited.
|
| + */
|
| + final LibraryElement definingLibrary;
|
| +
|
| + /**
|
| + * The source representing the compilation unit being visited.
|
| + */
|
| + final Source source;
|
| +
|
| + /**
|
| + * The error listener that will be informed of any errors that are found during resolution.
|
| + */
|
| + final AnalysisErrorListener errorListener;
|
| +
|
| + /**
|
| + * The scope used to resolve identifiers.
|
| + */
|
| + Scope nameScope;
|
| +
|
| + /**
|
| + * The object used to access the types from the core library.
|
| + */
|
| + final TypeProvider typeProvider;
|
| +
|
| + /**
|
| + * The scope used to resolve unlabeled `break` and `continue` statements.
|
| + */
|
| + ImplicitLabelScope _implicitLabelScope = ImplicitLabelScope.ROOT;
|
| +
|
| + /**
|
| + * The scope used to resolve labels for `break` and `continue` statements, or
|
| + * `null` if no labels have been defined in the current context.
|
| + */
|
| + LabelScope labelScope;
|
| +
|
| + /**
|
| + * The class containing the AST nodes being visited,
|
| + * or `null` if we are not in the scope of a class.
|
| + */
|
| + ClassElement enclosingClass;
|
| +
|
| + /**
|
| + * Initialize a newly created visitor to resolve the nodes in a compilation
|
| + * unit.
|
| + *
|
| + * [definingLibrary] is the element for the library containing the
|
| + * compilation unit being visited.
|
| + * [source] is the source representing the compilation unit being visited.
|
| + * [typeProvider] is the object used to access the types from the core
|
| + * library.
|
| + * [errorListener] is the error listener that will be informed of any errors
|
| + * that are found during resolution.
|
| + * [nameScope] is the scope used to resolve identifiers in the node that will
|
| + * first be visited. If `null` or unspecified, a new [LibraryScope] will be
|
| + * created based on [definingLibrary] and [typeProvider].
|
| + */
|
| + ScopedVisitor(
|
| + this.definingLibrary, this.source, this.typeProvider, this.errorListener,
|
| + {Scope nameScope}) {
|
| + if (nameScope == null) {
|
| + this.nameScope = new LibraryScope(definingLibrary, errorListener);
|
| + } else {
|
| + this.nameScope = nameScope;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Return the implicit label scope in which the current node is being
|
| + * resolved.
|
| + */
|
| + ImplicitLabelScope get implicitLabelScope => _implicitLabelScope;
|
| +
|
| + /**
|
| + * Replaces the current [Scope] with the enclosing [Scope].
|
| + *
|
| + * @return the enclosing [Scope].
|
| + */
|
| + Scope popNameScope() {
|
| + nameScope = nameScope.enclosingScope;
|
| + return nameScope;
|
| + }
|
| +
|
| + /**
|
| + * Pushes a new [Scope] into the visitor.
|
| + *
|
| + * @return the new [Scope].
|
| + */
|
| + Scope pushNameScope() {
|
| + Scope newScope = new EnclosedScope(nameScope);
|
| + nameScope = newScope;
|
| + return nameScope;
|
| + }
|
| +
|
| + /**
|
| + * Report an error with the given error code and arguments.
|
| + *
|
| + * @param errorCode the error code of the error to be reported
|
| + * @param node the node specifying the location of the error
|
| + * @param arguments the arguments to the error, used to compose the error message
|
| + */
|
| + void reportErrorForNode(ErrorCode errorCode, AstNode node,
|
| + [List<Object> arguments]) {
|
| + errorListener.onError(new AnalysisError(
|
| + source, node.offset, node.length, errorCode, arguments));
|
| + }
|
| +
|
| + /**
|
| + * Report an error with the given error code and arguments.
|
| + *
|
| + * @param errorCode the error code of the error to be reported
|
| + * @param offset the offset of the location of the error
|
| + * @param length the length of the location of the error
|
| + * @param arguments the arguments to the error, used to compose the error message
|
| + */
|
| + void reportErrorForOffset(ErrorCode errorCode, int offset, int length,
|
| + [List<Object> arguments]) {
|
| + errorListener.onError(
|
| + new AnalysisError(source, offset, length, errorCode, arguments));
|
| + }
|
| +
|
| + /**
|
| + * Report an error with the given error code and arguments.
|
| + *
|
| + * @param errorCode the error code of the error to be reported
|
| + * @param token the token specifying the location of the error
|
| + * @param arguments the arguments to the error, used to compose the error message
|
| + */
|
| + void reportErrorForToken(ErrorCode errorCode, sc.Token token,
|
| + [List<Object> arguments]) {
|
| + errorListener.onError(new AnalysisError(
|
| + source, token.offset, token.length, errorCode, arguments));
|
| + }
|
| +
|
| + /**
|
| + * Visit the given AST node if it is not null.
|
| + *
|
| + * @param node the node to be visited
|
| + */
|
| + void safelyVisit(AstNode node) {
|
| + if (node != null) {
|
| + node.accept(this);
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitBlock(Block node) {
|
| + Scope outerScope = nameScope;
|
| + try {
|
| + EnclosedScope enclosedScope = new EnclosedScope(nameScope);
|
| + _hideNamesDefinedInBlock(enclosedScope, node);
|
| + nameScope = enclosedScope;
|
| + super.visitBlock(node);
|
| + } finally {
|
| + nameScope = outerScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitBlockFunctionBody(BlockFunctionBody node) {
|
| + ImplicitLabelScope implicitOuterScope = _implicitLabelScope;
|
| + try {
|
| + _implicitLabelScope = ImplicitLabelScope.ROOT;
|
| + super.visitBlockFunctionBody(node);
|
| + } finally {
|
| + _implicitLabelScope = implicitOuterScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitCatchClause(CatchClause node) {
|
| + SimpleIdentifier exception = node.exceptionParameter;
|
| + if (exception != null) {
|
| + Scope outerScope = nameScope;
|
| + try {
|
| + nameScope = new EnclosedScope(nameScope);
|
| + nameScope.define(exception.staticElement);
|
| + SimpleIdentifier stackTrace = node.stackTraceParameter;
|
| + if (stackTrace != null) {
|
| + nameScope.define(stackTrace.staticElement);
|
| + }
|
| + super.visitCatchClause(node);
|
| + } finally {
|
| + nameScope = outerScope;
|
| + }
|
| + } else {
|
| + super.visitCatchClause(node);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitClassDeclaration(ClassDeclaration node) {
|
| + ClassElement classElement = node.element;
|
| + Scope outerScope = nameScope;
|
| + try {
|
| + if (classElement == null) {
|
| + AnalysisEngine.instance.logger.logInformation(
|
| + "Missing element for class declaration ${node.name.name} in ${definingLibrary.source.fullName}",
|
| + new CaughtException(new AnalysisException(), null));
|
| + super.visitClassDeclaration(node);
|
| + } else {
|
| + ClassElement outerClass = enclosingClass;
|
| + try {
|
| + enclosingClass = node.element;
|
| + nameScope = new TypeParameterScope(nameScope, classElement);
|
| + visitClassDeclarationInScope(node);
|
| + nameScope = new ClassScope(nameScope, classElement);
|
| + visitClassMembersInScope(node);
|
| + } finally {
|
| + enclosingClass = outerClass;
|
| + }
|
| + }
|
| + } finally {
|
| + nameScope = outerScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + void visitClassDeclarationInScope(ClassDeclaration node) {
|
| + safelyVisit(node.name);
|
| + safelyVisit(node.typeParameters);
|
| + safelyVisit(node.extendsClause);
|
| + safelyVisit(node.withClause);
|
| + safelyVisit(node.implementsClause);
|
| + safelyVisit(node.nativeClause);
|
| + }
|
| +
|
| + void visitClassMembersInScope(ClassDeclaration node) {
|
| + safelyVisit(node.documentationComment);
|
| + node.metadata.accept(this);
|
| + node.members.accept(this);
|
| + }
|
| +
|
| + @override
|
| + Object visitClassTypeAlias(ClassTypeAlias node) {
|
| + Scope outerScope = nameScope;
|
| + try {
|
| + ClassElement element = node.element;
|
| + nameScope =
|
| + new ClassScope(new TypeParameterScope(nameScope, element), element);
|
| + super.visitClassTypeAlias(node);
|
| + } finally {
|
| + nameScope = outerScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| + ConstructorElement constructorElement = node.element;
|
| + Scope outerScope = nameScope;
|
| + try {
|
| + if (constructorElement == null) {
|
| + StringBuffer buffer = new StringBuffer();
|
| + buffer.write("Missing element for constructor ");
|
| + buffer.write(node.returnType.name);
|
| + if (node.name != null) {
|
| + buffer.write(".");
|
| + buffer.write(node.name.name);
|
| + }
|
| + buffer.write(" in ");
|
| + buffer.write(definingLibrary.source.fullName);
|
| + AnalysisEngine.instance.logger.logInformation(buffer.toString(),
|
| + new CaughtException(new AnalysisException(), null));
|
| + } else {
|
| + nameScope = new FunctionScope(nameScope, constructorElement);
|
| + }
|
| + super.visitConstructorDeclaration(node);
|
| + } finally {
|
| + nameScope = outerScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitDeclaredIdentifier(DeclaredIdentifier node) {
|
| + VariableElement element = node.element;
|
| + if (element != null) {
|
| + nameScope.define(element);
|
| + }
|
| + super.visitDeclaredIdentifier(node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitDoStatement(DoStatement node) {
|
| + ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
|
| + try {
|
| + _implicitLabelScope = _implicitLabelScope.nest(node);
|
| + visitStatementInScope(node.body);
|
| + safelyVisit(node.condition);
|
| + } finally {
|
| + _implicitLabelScope = outerImplicitScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitEnumDeclaration(EnumDeclaration node) {
|
| + ClassElement classElement = node.element;
|
| + Scope outerScope = nameScope;
|
| + try {
|
| + if (classElement == null) {
|
| + AnalysisEngine.instance.logger.logInformation(
|
| + "Missing element for enum declaration ${node.name.name} in ${definingLibrary.source.fullName}",
|
| + new CaughtException(new AnalysisException(), null));
|
| + super.visitEnumDeclaration(node);
|
| + } else {
|
| + ClassElement outerClass = enclosingClass;
|
| + try {
|
| + enclosingClass = node.element;
|
| + nameScope = new ClassScope(nameScope, classElement);
|
| + visitEnumMembersInScope(node);
|
| + } finally {
|
| + enclosingClass = outerClass;
|
| + }
|
| + }
|
| + } finally {
|
| + nameScope = outerScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + void visitEnumMembersInScope(EnumDeclaration node) {
|
| + safelyVisit(node.documentationComment);
|
| + node.metadata.accept(this);
|
| + node.constants.accept(this);
|
| + }
|
| +
|
| + @override
|
| + Object visitForEachStatement(ForEachStatement node) {
|
| + Scope outerNameScope = nameScope;
|
| + ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
|
| + try {
|
| + nameScope = new EnclosedScope(nameScope);
|
| + _implicitLabelScope = _implicitLabelScope.nest(node);
|
| + visitForEachStatementInScope(node);
|
| + } finally {
|
| + nameScope = outerNameScope;
|
| + _implicitLabelScope = outerImplicitScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Visit the given statement after it's scope has been created. This replaces the normal call to
|
| + * the inherited visit method so that ResolverVisitor can intervene when type propagation is
|
| + * enabled.
|
| + *
|
| + * @param node the statement to be visited
|
| + */
|
| + void visitForEachStatementInScope(ForEachStatement node) {
|
| + //
|
| + // We visit the iterator before the loop variable because the loop variable
|
| + // cannot be in scope while visiting the iterator.
|
| + //
|
| + safelyVisit(node.identifier);
|
| + safelyVisit(node.iterable);
|
| + safelyVisit(node.loopVariable);
|
| + visitStatementInScope(node.body);
|
| + }
|
| +
|
| + @override
|
| + Object visitFormalParameterList(FormalParameterList node) {
|
| + super.visitFormalParameterList(node);
|
| + // We finished resolving function signature, now include formal parameters
|
| + // scope. Note: we must not do this if the parent is a
|
| + // FunctionTypedFormalParameter, because in that case we aren't finished
|
| + // resolving the full function signature, just a part of it.
|
| + if (nameScope is FunctionScope &&
|
| + node.parent is! FunctionTypedFormalParameter) {
|
| + (nameScope as FunctionScope).defineParameters();
|
| + }
|
| + if (nameScope is FunctionTypeScope) {
|
| + (nameScope as FunctionTypeScope).defineParameters();
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitForStatement(ForStatement node) {
|
| + Scope outerNameScope = nameScope;
|
| + ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
|
| + try {
|
| + nameScope = new EnclosedScope(nameScope);
|
| + _implicitLabelScope = _implicitLabelScope.nest(node);
|
| + visitForStatementInScope(node);
|
| + } finally {
|
| + nameScope = outerNameScope;
|
| + _implicitLabelScope = outerImplicitScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Visit the given statement after it's scope has been created. This replaces the normal call to
|
| + * the inherited visit method so that ResolverVisitor can intervene when type propagation is
|
| + * enabled.
|
| + *
|
| + * @param node the statement to be visited
|
| + */
|
| + void visitForStatementInScope(ForStatement node) {
|
| + safelyVisit(node.variables);
|
| + safelyVisit(node.initialization);
|
| + safelyVisit(node.condition);
|
| + node.updaters.accept(this);
|
| + visitStatementInScope(node.body);
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| + ExecutableElement functionElement = node.element;
|
| + if (functionElement != null &&
|
| + functionElement.enclosingElement is! CompilationUnitElement) {
|
| + nameScope.define(functionElement);
|
| + }
|
| + Scope outerScope = nameScope;
|
| + try {
|
| + if (functionElement == null) {
|
| + AnalysisEngine.instance.logger.logInformation(
|
| + "Missing element for top-level function ${node.name.name} in ${definingLibrary.source.fullName}",
|
| + new CaughtException(new AnalysisException(), null));
|
| + } else {
|
| + nameScope = new FunctionScope(nameScope, functionElement);
|
| + }
|
| + super.visitFunctionDeclaration(node);
|
| + } finally {
|
| + nameScope = outerScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionExpression(FunctionExpression node) {
|
| + if (node.parent is FunctionDeclaration) {
|
| + // We have already created a function scope and don't need to do so again.
|
| + super.visitFunctionExpression(node);
|
| + } else {
|
| + Scope outerScope = nameScope;
|
| + try {
|
| + ExecutableElement functionElement = node.element;
|
| + if (functionElement == null) {
|
| + StringBuffer buffer = new StringBuffer();
|
| + buffer.write("Missing element for function ");
|
| + AstNode parent = node.parent;
|
| + while (parent != null) {
|
| + if (parent is Declaration) {
|
| + Element parentElement = parent.element;
|
| + buffer.write(parentElement == null
|
| + ? "<unknown> "
|
| + : "${parentElement.name} ");
|
| + }
|
| + parent = parent.parent;
|
| + }
|
| + buffer.write("in ");
|
| + buffer.write(definingLibrary.source.fullName);
|
| + AnalysisEngine.instance.logger.logInformation(buffer.toString(),
|
| + new CaughtException(new AnalysisException(), null));
|
| + } else {
|
| + nameScope = new FunctionScope(nameScope, functionElement);
|
| + }
|
| + super.visitFunctionExpression(node);
|
| + } finally {
|
| + nameScope = outerScope;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionTypeAlias(FunctionTypeAlias node) {
|
| + Scope outerScope = nameScope;
|
| + try {
|
| + nameScope = new FunctionTypeScope(nameScope, node.element);
|
| + super.visitFunctionTypeAlias(node);
|
| + } finally {
|
| + nameScope = outerScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
|
| + Scope outerScope = nameScope;
|
| + try {
|
| + ParameterElement parameterElement = node.element;
|
| + if (parameterElement == null) {
|
| + AnalysisEngine.instance.logger.logInformation(
|
| + "Missing element for function typed formal parameter ${node.identifier.name} in ${definingLibrary.source.fullName}",
|
| + new CaughtException(new AnalysisException(), null));
|
| + } else {
|
| + nameScope = new EnclosedScope(nameScope);
|
| + for (TypeParameterElement typeParameter
|
| + in parameterElement.typeParameters) {
|
| + nameScope.define(typeParameter);
|
| + }
|
| + }
|
| + super.visitFunctionTypedFormalParameter(node);
|
| + } finally {
|
| + nameScope = outerScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitIfStatement(IfStatement node) {
|
| + safelyVisit(node.condition);
|
| + visitStatementInScope(node.thenStatement);
|
| + visitStatementInScope(node.elseStatement);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitLabeledStatement(LabeledStatement node) {
|
| + LabelScope outerScope = _addScopesFor(node.labels, node.unlabeled);
|
| + try {
|
| + super.visitLabeledStatement(node);
|
| + } finally {
|
| + labelScope = outerScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitMethodDeclaration(MethodDeclaration node) {
|
| + Scope outerScope = nameScope;
|
| + try {
|
| + ExecutableElement methodElement = node.element;
|
| + if (methodElement == null) {
|
| + AnalysisEngine.instance.logger.logInformation(
|
| + "Missing element for method ${node.name.name} in ${definingLibrary.source.fullName}",
|
| + new CaughtException(new AnalysisException(), null));
|
| + } else {
|
| + nameScope = new FunctionScope(nameScope, methodElement);
|
| + }
|
| + super.visitMethodDeclaration(node);
|
| + } finally {
|
| + nameScope = outerScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Visit the given statement after it's scope has been created. This is used by ResolverVisitor to
|
| + * correctly visit the 'then' and 'else' statements of an 'if' statement.
|
| + *
|
| + * @param node the statement to be visited
|
| + */
|
| + void visitStatementInScope(Statement node) {
|
| + if (node is Block) {
|
| + // Don't create a scope around a block because the block will create it's
|
| + // own scope.
|
| + visitBlock(node);
|
| + } else if (node != null) {
|
| + Scope outerNameScope = nameScope;
|
| + try {
|
| + nameScope = new EnclosedScope(nameScope);
|
| + node.accept(this);
|
| + } finally {
|
| + nameScope = outerNameScope;
|
| + }
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitSwitchCase(SwitchCase node) {
|
| + node.expression.accept(this);
|
| + Scope outerNameScope = nameScope;
|
| + try {
|
| + nameScope = new EnclosedScope(nameScope);
|
| + node.statements.accept(this);
|
| + } finally {
|
| + nameScope = outerNameScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitSwitchDefault(SwitchDefault node) {
|
| + Scope outerNameScope = nameScope;
|
| + try {
|
| + nameScope = new EnclosedScope(nameScope);
|
| + node.statements.accept(this);
|
| + } finally {
|
| + nameScope = outerNameScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitSwitchStatement(SwitchStatement node) {
|
| + LabelScope outerScope = labelScope;
|
| + ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
|
| + try {
|
| + _implicitLabelScope = _implicitLabelScope.nest(node);
|
| + for (SwitchMember member in node.members) {
|
| + for (Label label in member.labels) {
|
| + SimpleIdentifier labelName = label.label;
|
| + LabelElement labelElement = labelName.staticElement as LabelElement;
|
| + labelScope =
|
| + new LabelScope(labelScope, labelName.name, member, labelElement);
|
| + }
|
| + }
|
| + super.visitSwitchStatement(node);
|
| + } finally {
|
| + labelScope = outerScope;
|
| + _implicitLabelScope = outerImplicitScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitVariableDeclaration(VariableDeclaration node) {
|
| + super.visitVariableDeclaration(node);
|
| + if (node.parent.parent is! TopLevelVariableDeclaration &&
|
| + node.parent.parent is! FieldDeclaration) {
|
| + VariableElement element = node.element;
|
| + if (element != null) {
|
| + nameScope.define(element);
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitWhileStatement(WhileStatement node) {
|
| + safelyVisit(node.condition);
|
| + ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
|
| + try {
|
| + _implicitLabelScope = _implicitLabelScope.nest(node);
|
| + visitStatementInScope(node.body);
|
| + } finally {
|
| + _implicitLabelScope = outerImplicitScope;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Add scopes for each of the given labels.
|
| + *
|
| + * @param labels the labels for which new scopes are to be added
|
| + * @return the scope that was in effect before the new scopes were added
|
| + */
|
| + LabelScope _addScopesFor(NodeList<Label> labels, AstNode node) {
|
| + LabelScope outerScope = labelScope;
|
| + for (Label label in labels) {
|
| + SimpleIdentifier labelNameNode = label.label;
|
| + String labelName = labelNameNode.name;
|
| + LabelElement labelElement = labelNameNode.staticElement as LabelElement;
|
| + labelScope = new LabelScope(labelScope, labelName, node, labelElement);
|
| + }
|
| + return outerScope;
|
| + }
|
| +
|
| + /**
|
| + * Marks the local declarations of the given [Block] hidden in the enclosing scope.
|
| + * According to the scoping rules name is hidden if block defines it, but name is defined after
|
| + * its declaration statement.
|
| + */
|
| + void _hideNamesDefinedInBlock(EnclosedScope scope, Block block) {
|
| + NodeList<Statement> statements = block.statements;
|
| + int statementCount = statements.length;
|
| + for (int i = 0; i < statementCount; i++) {
|
| + Statement statement = statements[i];
|
| + if (statement is VariableDeclarationStatement) {
|
| + VariableDeclarationStatement vds = statement;
|
| + NodeList<VariableDeclaration> variables = vds.variables.variables;
|
| + int variableCount = variables.length;
|
| + for (int j = 0; j < variableCount; j++) {
|
| + scope.hide(variables[j].element);
|
| + }
|
| + } else if (statement is FunctionDeclarationStatement) {
|
| + FunctionDeclarationStatement fds = statement;
|
| + scope.hide(fds.functionDeclaration.element);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of this class manage the knowledge of what the set of subtypes are for a given type.
|
| + */
|
| +class SubtypeManager {
|
| + /**
|
| + * A map between [ClassElement]s and a set of [ClassElement]s that are subtypes of the
|
| + * key.
|
| + */
|
| + HashMap<ClassElement, HashSet<ClassElement>> _subtypeMap =
|
| + new HashMap<ClassElement, HashSet<ClassElement>>();
|
| +
|
| + /**
|
| + * The set of all [LibraryElement]s that have been visited by the manager. This is used both
|
| + * to prevent infinite loops in the recursive methods, and also as a marker for the scope of the
|
| + * libraries visited by this manager.
|
| + */
|
| + HashSet<LibraryElement> _visitedLibraries = new HashSet<LibraryElement>();
|
| +
|
| + /**
|
| + * Given some [ClassElement], return the set of all subtypes, and subtypes of subtypes.
|
| + *
|
| + * @param classElement the class to recursively return the set of subtypes of
|
| + */
|
| + HashSet<ClassElement> computeAllSubtypes(ClassElement classElement) {
|
| + // Ensure that we have generated the subtype map for the library
|
| + _computeSubtypesInLibrary(classElement.library);
|
| + // use the subtypeMap to compute the set of all subtypes and subtype's
|
| + // subtypes
|
| + HashSet<ClassElement> allSubtypes = new HashSet<ClassElement>();
|
| + _safelyComputeAllSubtypes(
|
| + classElement, new HashSet<ClassElement>(), allSubtypes);
|
| + return allSubtypes;
|
| + }
|
| +
|
| + /**
|
| + * Given some [LibraryElement], visit all of the types in the library, the passed library,
|
| + * and any imported libraries, will be in the [visitedLibraries] set.
|
| + *
|
| + * @param libraryElement the library to visit, it it hasn't been visited already
|
| + */
|
| + void ensureLibraryVisited(LibraryElement libraryElement) {
|
| + _computeSubtypesInLibrary(libraryElement);
|
| + }
|
| +
|
| + /**
|
| + * Given some [ClassElement], this method adds all of the pairs combinations of itself and
|
| + * all of its supertypes to the [subtypeMap] map.
|
| + *
|
| + * @param classElement the class element
|
| + */
|
| + void _computeSubtypesInClass(ClassElement classElement) {
|
| + InterfaceType supertypeType = classElement.supertype;
|
| + if (supertypeType != null) {
|
| + ClassElement supertypeElement = supertypeType.element;
|
| + if (supertypeElement != null) {
|
| + _putInSubtypeMap(supertypeElement, classElement);
|
| + }
|
| + }
|
| + List<InterfaceType> interfaceTypes = classElement.interfaces;
|
| + for (InterfaceType interfaceType in interfaceTypes) {
|
| + ClassElement interfaceElement = interfaceType.element;
|
| + if (interfaceElement != null) {
|
| + _putInSubtypeMap(interfaceElement, classElement);
|
| + }
|
| + }
|
| + List<InterfaceType> mixinTypes = classElement.mixins;
|
| + for (InterfaceType mixinType in mixinTypes) {
|
| + ClassElement mixinElement = mixinType.element;
|
| + if (mixinElement != null) {
|
| + _putInSubtypeMap(mixinElement, classElement);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Given some [CompilationUnitElement], this method calls
|
| + * [computeAllSubtypes] on all of the [ClassElement]s in the
|
| + * compilation unit.
|
| + *
|
| + * @param unitElement the compilation unit element
|
| + */
|
| + void _computeSubtypesInCompilationUnit(CompilationUnitElement unitElement) {
|
| + List<ClassElement> classElements = unitElement.types;
|
| + for (ClassElement classElement in classElements) {
|
| + _computeSubtypesInClass(classElement);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Given some [LibraryElement], this method calls
|
| + * [computeAllSubtypes] on all of the [ClassElement]s in the
|
| + * compilation unit, and itself for all imported and exported libraries. All visited libraries are
|
| + * added to the [visitedLibraries] set.
|
| + *
|
| + * @param libraryElement the library element
|
| + */
|
| + void _computeSubtypesInLibrary(LibraryElement libraryElement) {
|
| + if (libraryElement == null || _visitedLibraries.contains(libraryElement)) {
|
| + return;
|
| + }
|
| + _visitedLibraries.add(libraryElement);
|
| + _computeSubtypesInCompilationUnit(libraryElement.definingCompilationUnit);
|
| + List<CompilationUnitElement> parts = libraryElement.parts;
|
| + for (CompilationUnitElement part in parts) {
|
| + _computeSubtypesInCompilationUnit(part);
|
| + }
|
| + List<LibraryElement> imports = libraryElement.importedLibraries;
|
| + for (LibraryElement importElt in imports) {
|
| + _computeSubtypesInLibrary(importElt.library);
|
| + }
|
| + List<LibraryElement> exports = libraryElement.exportedLibraries;
|
| + for (LibraryElement exportElt in exports) {
|
| + _computeSubtypesInLibrary(exportElt.library);
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Add some key/ value pair into the [subtypeMap] map.
|
| + *
|
| + * @param supertypeElement the key for the [subtypeMap] map
|
| + * @param subtypeElement the value for the [subtypeMap] map
|
| + */
|
| + void _putInSubtypeMap(
|
| + ClassElement supertypeElement, ClassElement subtypeElement) {
|
| + HashSet<ClassElement> subtypes = _subtypeMap[supertypeElement];
|
| + if (subtypes == null) {
|
| + subtypes = new HashSet<ClassElement>();
|
| + _subtypeMap[supertypeElement] = subtypes;
|
| + }
|
| + subtypes.add(subtypeElement);
|
| + }
|
| +
|
| + /**
|
| + * Given some [ClassElement] and a [HashSet<ClassElement>], this method recursively
|
| + * adds all of the subtypes of the [ClassElement] to the passed array.
|
| + *
|
| + * @param classElement the type to compute the set of subtypes of
|
| + * @param visitedClasses the set of class elements that this method has already recursively seen
|
| + * @param allSubtypes the computed set of subtypes of the passed class element
|
| + */
|
| + void _safelyComputeAllSubtypes(ClassElement classElement,
|
| + HashSet<ClassElement> visitedClasses, HashSet<ClassElement> allSubtypes) {
|
| + if (!visitedClasses.add(classElement)) {
|
| + // if this class has already been called on this class element
|
| + return;
|
| + }
|
| + HashSet<ClassElement> subtypes = _subtypeMap[classElement];
|
| + if (subtypes == null) {
|
| + return;
|
| + }
|
| + for (ClassElement subtype in subtypes) {
|
| + _safelyComputeAllSubtypes(subtype, visitedClasses, allSubtypes);
|
| + }
|
| + allSubtypes.addAll(subtypes);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `ToDoFinder` find to-do comments in Dart code.
|
| + */
|
| +class ToDoFinder {
|
| + /**
|
| + * The error reporter by which to-do comments will be reported.
|
| + */
|
| + final ErrorReporter _errorReporter;
|
| +
|
| + /**
|
| + * Initialize a newly created to-do finder to report to-do comments to the given reporter.
|
| + *
|
| + * @param errorReporter the error reporter by which to-do comments will be reported
|
| + */
|
| + ToDoFinder(this._errorReporter);
|
| +
|
| + /**
|
| + * Search the comments in the given compilation unit for to-do comments and report an error for
|
| + * each.
|
| + *
|
| + * @param unit the compilation unit containing the to-do comments
|
| + */
|
| + void findIn(CompilationUnit unit) {
|
| + _gatherTodoComments(unit.beginToken);
|
| + }
|
| +
|
| + /**
|
| + * Search the comment tokens reachable from the given token and create errors for each to-do
|
| + * comment.
|
| + *
|
| + * @param token the head of the list of tokens being searched
|
| + */
|
| + void _gatherTodoComments(sc.Token token) {
|
| + while (token != null && token.type != sc.TokenType.EOF) {
|
| + sc.Token commentToken = token.precedingComments;
|
| + while (commentToken != null) {
|
| + if (commentToken.type == sc.TokenType.SINGLE_LINE_COMMENT ||
|
| + commentToken.type == sc.TokenType.MULTI_LINE_COMMENT) {
|
| + _scrapeTodoComment(commentToken);
|
| + }
|
| + commentToken = commentToken.next;
|
| + }
|
| + token = token.next;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Look for user defined tasks in comments and convert them into info level analysis issues.
|
| + *
|
| + * @param commentToken the comment token to analyze
|
| + */
|
| + void _scrapeTodoComment(sc.Token commentToken) {
|
| + JavaPatternMatcher matcher =
|
| + new JavaPatternMatcher(TodoCode.TODO_REGEX, commentToken.lexeme);
|
| + if (matcher.find()) {
|
| + int offset =
|
| + commentToken.offset + matcher.start() + matcher.group(1).length;
|
| + int length = matcher.group(2).length;
|
| + _errorReporter.reportErrorForOffset(
|
| + TodoCode.TODO, offset, length, [matcher.group(2)]);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `TypeOverrideManager` manage the ability to override the type of an
|
| + * element within a given context.
|
| + */
|
| +class TypeOverrideManager {
|
| + /**
|
| + * The current override scope, or `null` if no scope has been entered.
|
| + */
|
| + TypeOverrideManager_TypeOverrideScope currentScope;
|
| +
|
| + /**
|
| + * Apply a set of overrides that were previously captured.
|
| + *
|
| + * @param overrides the overrides to be applied
|
| + */
|
| + void applyOverrides(Map<VariableElement, DartType> overrides) {
|
| + if (currentScope == null) {
|
| + throw new IllegalStateException("Cannot apply overrides without a scope");
|
| + }
|
| + currentScope.applyOverrides(overrides);
|
| + }
|
| +
|
| + /**
|
| + * Return a table mapping the elements whose type is overridden in the current scope to the
|
| + * overriding type.
|
| + *
|
| + * @return the overrides in the current scope
|
| + */
|
| + Map<VariableElement, DartType> captureLocalOverrides() {
|
| + if (currentScope == null) {
|
| + throw new IllegalStateException(
|
| + "Cannot capture local overrides without a scope");
|
| + }
|
| + return currentScope.captureLocalOverrides();
|
| + }
|
| +
|
| + /**
|
| + * Return a map from the elements for the variables in the given list that have their types
|
| + * overridden to the overriding type.
|
| + *
|
| + * @param variableList the list of variables whose overriding types are to be captured
|
| + * @return a table mapping elements to their overriding types
|
| + */
|
| + Map<VariableElement, DartType> captureOverrides(
|
| + VariableDeclarationList variableList) {
|
| + if (currentScope == null) {
|
| + throw new IllegalStateException(
|
| + "Cannot capture overrides without a scope");
|
| + }
|
| + return currentScope.captureOverrides(variableList);
|
| + }
|
| +
|
| + /**
|
| + * Enter a new override scope.
|
| + */
|
| + void enterScope() {
|
| + currentScope = new TypeOverrideManager_TypeOverrideScope(currentScope);
|
| + }
|
| +
|
| + /**
|
| + * Exit the current override scope.
|
| + */
|
| + void exitScope() {
|
| + if (currentScope == null) {
|
| + throw new IllegalStateException("No scope to exit");
|
| + }
|
| + currentScope = currentScope._outerScope;
|
| + }
|
| +
|
| + /**
|
| + * Return the best type information available for the given element. If the type of the element
|
| + * has been overridden, then return the overriding type. Otherwise, return the static type.
|
| + *
|
| + * @param element the element for which type information is to be returned
|
| + * @return the best type information available for the given element
|
| + */
|
| + DartType getBestType(VariableElement element) {
|
| + DartType bestType = getType(element);
|
| + return bestType == null ? element.type : bestType;
|
| + }
|
| +
|
| + /**
|
| + * Return the overridden type of the given element, or `null` if the type of the element has
|
| + * not been overridden.
|
| + *
|
| + * @param element the element whose type might have been overridden
|
| + * @return the overridden type of the given element
|
| + */
|
| + DartType getType(Element element) {
|
| + if (currentScope == null) {
|
| + return null;
|
| + }
|
| + return currentScope.getType(element);
|
| + }
|
| +
|
| + /**
|
| + * Update overrides assuming [perBranchOverrides] is the collection of
|
| + * per-branch overrides for *all* branches flowing into a join point.
|
| + *
|
| + * If a variable type in any of branches is not the same as its type before
|
| + * the branching, then its propagated type is reset to `null`.
|
| + */
|
| + void mergeOverrides(List<Map<VariableElement, DartType>> perBranchOverrides) {
|
| + for (Map<VariableElement, DartType> branch in perBranchOverrides) {
|
| + branch.forEach((VariableElement variable, DartType branchType) {
|
| + DartType currentType = currentScope.getType(variable);
|
| + if (currentType != branchType) {
|
| + currentScope.resetType(variable);
|
| + }
|
| + });
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Set the overridden type of the given element to the given type
|
| + *
|
| + * @param element the element whose type might have been overridden
|
| + * @param type the overridden type of the given element
|
| + */
|
| + void setType(VariableElement element, DartType type) {
|
| + if (currentScope == null) {
|
| + throw new IllegalStateException("Cannot override without a scope");
|
| + }
|
| + currentScope.setType(element, type);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `TypeOverrideScope` represent a scope in which the types of
|
| + * elements can be overridden.
|
| + */
|
| +class TypeOverrideManager_TypeOverrideScope {
|
| + /**
|
| + * The outer scope in which types might be overridden.
|
| + */
|
| + final TypeOverrideManager_TypeOverrideScope _outerScope;
|
| +
|
| + /**
|
| + * A table mapping elements to the overridden type of that element.
|
| + */
|
| + Map<VariableElement, DartType> _overridenTypes =
|
| + new HashMap<VariableElement, DartType>();
|
| +
|
| + /**
|
| + * Initialize a newly created scope to be an empty child of the given scope.
|
| + *
|
| + * @param outerScope the outer scope in which types might be overridden
|
| + */
|
| + TypeOverrideManager_TypeOverrideScope(this._outerScope);
|
| +
|
| + /**
|
| + * Apply a set of overrides that were previously captured.
|
| + *
|
| + * @param overrides the overrides to be applied
|
| + */
|
| + void applyOverrides(Map<VariableElement, DartType> overrides) {
|
| + _overridenTypes.addAll(overrides);
|
| + }
|
| +
|
| + /**
|
| + * Return a table mapping the elements whose type is overridden in the current scope to the
|
| + * overriding type.
|
| + *
|
| + * @return the overrides in the current scope
|
| + */
|
| + Map<VariableElement, DartType> captureLocalOverrides() => _overridenTypes;
|
| +
|
| + /**
|
| + * Return a map from the elements for the variables in the given list that have their types
|
| + * overridden to the overriding type.
|
| + *
|
| + * @param variableList the list of variables whose overriding types are to be captured
|
| + * @return a table mapping elements to their overriding types
|
| + */
|
| + Map<VariableElement, DartType> captureOverrides(
|
| + VariableDeclarationList variableList) {
|
| + Map<VariableElement, DartType> overrides =
|
| + new HashMap<VariableElement, DartType>();
|
| + if (variableList.isConst || variableList.isFinal) {
|
| + for (VariableDeclaration variable in variableList.variables) {
|
| + VariableElement element = variable.element;
|
| + if (element != null) {
|
| + DartType type = _overridenTypes[element];
|
| + if (type != null) {
|
| + overrides[element] = type;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + return overrides;
|
| + }
|
| +
|
| + /**
|
| + * Return the overridden type of the given element, or `null` if the type of the element
|
| + * has not been overridden.
|
| + *
|
| + * @param element the element whose type might have been overridden
|
| + * @return the overridden type of the given element
|
| + */
|
| + DartType getType(Element element) {
|
| + if (element is PropertyAccessorElement) {
|
| + element = (element as PropertyAccessorElement).variable;
|
| + }
|
| + DartType type = _overridenTypes[element];
|
| + if (_overridenTypes.containsKey(element)) {
|
| + return type;
|
| + }
|
| + if (type != null) {
|
| + return type;
|
| + } else if (_outerScope != null) {
|
| + return _outerScope.getType(element);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Clears the overridden type of the given [element].
|
| + */
|
| + void resetType(VariableElement element) {
|
| + _overridenTypes[element] = null;
|
| + }
|
| +
|
| + /**
|
| + * Set the overridden type of the given element to the given type
|
| + *
|
| + * @param element the element whose type might have been overridden
|
| + * @param type the overridden type of the given element
|
| + */
|
| + void setType(VariableElement element, DartType type) {
|
| + _overridenTypes[element] = type;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `TypeParameterScope` implement the scope defined by the type
|
| + * parameters in a class.
|
| + */
|
| +class TypeParameterScope extends EnclosedScope {
|
| + /**
|
| + * Initialize a newly created scope enclosed within another scope.
|
| + *
|
| + * @param enclosingScope the scope in which this scope is lexically enclosed
|
| + * @param typeElement the element representing the type represented by this scope
|
| + */
|
| + TypeParameterScope(Scope enclosingScope, ClassElement typeElement)
|
| + : super(enclosingScope) {
|
| + if (typeElement == null) {
|
| + throw new IllegalArgumentException("class element cannot be null");
|
| + }
|
| + _defineTypeParameters(typeElement);
|
| + }
|
| +
|
| + /**
|
| + * Define the type parameters for the class.
|
| + *
|
| + * @param typeElement the element representing the type represented by this scope
|
| + */
|
| + void _defineTypeParameters(ClassElement typeElement) {
|
| + for (TypeParameterElement typeParameter in typeElement.typeParameters) {
|
| + define(typeParameter);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `TypePromotionManager` manage the ability to promote types of local
|
| + * variables and formal parameters from their declared types based on control flow.
|
| + */
|
| +class TypePromotionManager {
|
| + /**
|
| + * The current promotion scope, or `null` if no scope has been entered.
|
| + */
|
| + TypePromotionManager_TypePromoteScope currentScope;
|
| +
|
| + /**
|
| + * Returns the elements with promoted types.
|
| + */
|
| + Iterable<Element> get promotedElements => currentScope.promotedElements;
|
| +
|
| + /**
|
| + * Enter a new promotions scope.
|
| + */
|
| + void enterScope() {
|
| + currentScope = new TypePromotionManager_TypePromoteScope(currentScope);
|
| + }
|
| +
|
| + /**
|
| + * Exit the current promotion scope.
|
| + */
|
| + void exitScope() {
|
| + if (currentScope == null) {
|
| + throw new IllegalStateException("No scope to exit");
|
| + }
|
| + currentScope = currentScope._outerScope;
|
| + }
|
| +
|
| + /**
|
| + * Returns static type of the given variable - declared or promoted.
|
| + *
|
| + * @return the static type of the given variable - declared or promoted
|
| + */
|
| + DartType getStaticType(VariableElement variable) {
|
| + DartType staticType = getType(variable);
|
| + if (staticType == null) {
|
| + staticType = variable.type;
|
| + }
|
| + return staticType;
|
| + }
|
| +
|
| + /**
|
| + * Return the promoted type of the given element, or `null` if the type of the element has
|
| + * not been promoted.
|
| + *
|
| + * @param element the element whose type might have been promoted
|
| + * @return the promoted type of the given element
|
| + */
|
| + DartType getType(Element element) {
|
| + if (currentScope == null) {
|
| + return null;
|
| + }
|
| + return currentScope.getType(element);
|
| + }
|
| +
|
| + /**
|
| + * Set the promoted type of the given element to the given type.
|
| + *
|
| + * @param element the element whose type might have been promoted
|
| + * @param type the promoted type of the given element
|
| + */
|
| + void setType(Element element, DartType type) {
|
| + if (currentScope == null) {
|
| + throw new IllegalStateException("Cannot promote without a scope");
|
| + }
|
| + currentScope.setType(element, type);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `TypePromoteScope` represent a scope in which the types of
|
| + * elements can be promoted.
|
| + */
|
| +class TypePromotionManager_TypePromoteScope {
|
| + /**
|
| + * The outer scope in which types might be promoter.
|
| + */
|
| + final TypePromotionManager_TypePromoteScope _outerScope;
|
| +
|
| + /**
|
| + * A table mapping elements to the promoted type of that element.
|
| + */
|
| + HashMap<Element, DartType> _promotedTypes = new HashMap<Element, DartType>();
|
| +
|
| + /**
|
| + * Initialize a newly created scope to be an empty child of the given scope.
|
| + *
|
| + * @param outerScope the outer scope in which types might be promoted
|
| + */
|
| + TypePromotionManager_TypePromoteScope(this._outerScope);
|
| +
|
| + /**
|
| + * Returns the elements with promoted types.
|
| + */
|
| + Iterable<Element> get promotedElements => _promotedTypes.keys.toSet();
|
| +
|
| + /**
|
| + * Return the promoted type of the given element, or `null` if the type of the element has
|
| + * not been promoted.
|
| + *
|
| + * @param element the element whose type might have been promoted
|
| + * @return the promoted type of the given element
|
| + */
|
| + DartType getType(Element element) {
|
| + DartType type = _promotedTypes[element];
|
| + if (type == null && element is PropertyAccessorElement) {
|
| + type = _promotedTypes[element.variable];
|
| + }
|
| + if (type != null) {
|
| + return type;
|
| + } else if (_outerScope != null) {
|
| + return _outerScope.getType(element);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Set the promoted type of the given element to the given type.
|
| + *
|
| + * @param element the element whose type might have been promoted
|
| + * @param type the promoted type of the given element
|
| + */
|
| + void setType(Element element, DartType type) {
|
| + _promotedTypes[element] = type;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * The interface `TypeProvider` defines the behavior of objects that provide access to types
|
| + * defined by the language.
|
| + */
|
| +abstract class TypeProvider {
|
| + /**
|
| + * Return the type representing the built-in type 'bool'.
|
| + */
|
| + InterfaceType get boolType;
|
| +
|
| + /**
|
| + * Return the type representing the type 'bottom'.
|
| + */
|
| + DartType get bottomType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'Deprecated'.
|
| + */
|
| + InterfaceType get deprecatedType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'double'.
|
| + */
|
| + InterfaceType get doubleType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'dynamic'.
|
| + */
|
| + DartType get dynamicType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'Function'.
|
| + */
|
| + InterfaceType get functionType;
|
| +
|
| + /**
|
| + * Return the type representing 'Future<dynamic>'.
|
| + */
|
| + InterfaceType get futureDynamicType;
|
| +
|
| + /**
|
| + * Return the type representing 'Future<Null>'.
|
| + */
|
| + InterfaceType get futureNullType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'Future'.
|
| + */
|
| + InterfaceType get futureType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'int'.
|
| + */
|
| + InterfaceType get intType;
|
| +
|
| + /**
|
| + * Return the type representing the type 'Iterable<dynamic>'.
|
| + */
|
| + InterfaceType get iterableDynamicType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'Iterable'.
|
| + */
|
| + InterfaceType get iterableType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'List'.
|
| + */
|
| + InterfaceType get listType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'Map'.
|
| + */
|
| + InterfaceType get mapType;
|
| +
|
| + /**
|
| + * Return a list containing all of the types that cannot be either extended or
|
| + * implemented.
|
| + */
|
| + List<InterfaceType> get nonSubtypableTypes;
|
| +
|
| + /**
|
| + * Return a [DartObjectImpl] representing the `null` object.
|
| + */
|
| + DartObjectImpl get nullObject;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'Null'.
|
| + */
|
| + InterfaceType get nullType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'num'.
|
| + */
|
| + InterfaceType get numType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'Object'.
|
| + */
|
| + InterfaceType get objectType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'StackTrace'.
|
| + */
|
| + InterfaceType get stackTraceType;
|
| +
|
| + /**
|
| + * Return the type representing 'Stream<dynamic>'.
|
| + */
|
| + InterfaceType get streamDynamicType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'Stream'.
|
| + */
|
| + InterfaceType get streamType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'String'.
|
| + */
|
| + InterfaceType get stringType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'Symbol'.
|
| + */
|
| + InterfaceType get symbolType;
|
| +
|
| + /**
|
| + * Return the type representing the built-in type 'Type'.
|
| + */
|
| + InterfaceType get typeType;
|
| +
|
| + /**
|
| + * Return the type representing typenames that can't be resolved.
|
| + */
|
| + DartType get undefinedType;
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `TypeProviderImpl` provide access to types defined by the language
|
| + * by looking for those types in the element model for the core library.
|
| + */
|
| +class TypeProviderImpl implements TypeProvider {
|
| + /**
|
| + * The type representing the built-in type 'bool'.
|
| + */
|
| + InterfaceType _boolType;
|
| +
|
| + /**
|
| + * The type representing the type 'bottom'.
|
| + */
|
| + DartType _bottomType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'double'.
|
| + */
|
| + InterfaceType _doubleType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'Deprecated'.
|
| + */
|
| + InterfaceType _deprecatedType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'dynamic'.
|
| + */
|
| + DartType _dynamicType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'Function'.
|
| + */
|
| + InterfaceType _functionType;
|
| +
|
| + /**
|
| + * The type representing 'Future<dynamic>'.
|
| + */
|
| + InterfaceType _futureDynamicType;
|
| +
|
| + /**
|
| + * The type representing 'Future<Null>'.
|
| + */
|
| + InterfaceType _futureNullType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'Future'.
|
| + */
|
| + InterfaceType _futureType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'int'.
|
| + */
|
| + InterfaceType _intType;
|
| +
|
| + /**
|
| + * The type representing 'Iterable<dynamic>'.
|
| + */
|
| + InterfaceType _iterableDynamicType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'Iterable'.
|
| + */
|
| + InterfaceType _iterableType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'List'.
|
| + */
|
| + InterfaceType _listType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'Map'.
|
| + */
|
| + InterfaceType _mapType;
|
| +
|
| + /**
|
| + * An shared object representing the value 'null'.
|
| + */
|
| + DartObjectImpl _nullObject;
|
| +
|
| + /**
|
| + * The type representing the type 'Null'.
|
| + */
|
| + InterfaceType _nullType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'num'.
|
| + */
|
| + InterfaceType _numType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'Object'.
|
| + */
|
| + InterfaceType _objectType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'StackTrace'.
|
| + */
|
| + InterfaceType _stackTraceType;
|
| +
|
| + /**
|
| + * The type representing 'Stream<dynamic>'.
|
| + */
|
| + InterfaceType _streamDynamicType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'Stream'.
|
| + */
|
| + InterfaceType _streamType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'String'.
|
| + */
|
| + InterfaceType _stringType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'Symbol'.
|
| + */
|
| + InterfaceType _symbolType;
|
| +
|
| + /**
|
| + * The type representing the built-in type 'Type'.
|
| + */
|
| + InterfaceType _typeType;
|
| +
|
| + /**
|
| + * The type representing typenames that can't be resolved.
|
| + */
|
| + DartType _undefinedType;
|
| +
|
| + /**
|
| + * Initialize a newly created type provider to provide the types defined in
|
| + * the given [coreLibrary] and [asyncLibrary].
|
| + */
|
| + TypeProviderImpl(LibraryElement coreLibrary, LibraryElement asyncLibrary) {
|
| + Namespace coreNamespace =
|
| + new NamespaceBuilder().createPublicNamespaceForLibrary(coreLibrary);
|
| + Namespace asyncNamespace =
|
| + new NamespaceBuilder().createPublicNamespaceForLibrary(asyncLibrary);
|
| + _initializeFrom(coreNamespace, asyncNamespace);
|
| + }
|
| +
|
| + /**
|
| + * Initialize a newly created type provider to provide the types defined in
|
| + * the given [Namespace]s.
|
| + */
|
| + TypeProviderImpl.forNamespaces(
|
| + Namespace coreNamespace, Namespace asyncNamespace) {
|
| + _initializeFrom(coreNamespace, asyncNamespace);
|
| + }
|
| +
|
| + @override
|
| + InterfaceType get boolType => _boolType;
|
| +
|
| + @override
|
| + DartType get bottomType => _bottomType;
|
| +
|
| + @override
|
| + InterfaceType get deprecatedType => _deprecatedType;
|
| +
|
| + @override
|
| + InterfaceType get doubleType => _doubleType;
|
| +
|
| + @override
|
| + DartType get dynamicType => _dynamicType;
|
| +
|
| + @override
|
| + InterfaceType get functionType => _functionType;
|
| +
|
| + @override
|
| + InterfaceType get futureDynamicType => _futureDynamicType;
|
| +
|
| + @override
|
| + InterfaceType get futureNullType => _futureNullType;
|
| +
|
| + @override
|
| + InterfaceType get futureType => _futureType;
|
| +
|
| + @override
|
| + InterfaceType get intType => _intType;
|
| +
|
| + @override
|
| + InterfaceType get iterableDynamicType => _iterableDynamicType;
|
| +
|
| + @override
|
| + InterfaceType get iterableType => _iterableType;
|
| +
|
| + @override
|
| + InterfaceType get listType => _listType;
|
| +
|
| + @override
|
| + InterfaceType get mapType => _mapType;
|
| +
|
| + @override
|
| + List<InterfaceType> get nonSubtypableTypes => <InterfaceType>[
|
| + nullType,
|
| + numType,
|
| + intType,
|
| + doubleType,
|
| + boolType,
|
| + stringType
|
| + ];
|
| +
|
| + @override
|
| + DartObjectImpl get nullObject {
|
| + if (_nullObject == null) {
|
| + _nullObject = new DartObjectImpl(nullType, NullState.NULL_STATE);
|
| + }
|
| + return _nullObject;
|
| + }
|
| +
|
| + @override
|
| + InterfaceType get nullType => _nullType;
|
| +
|
| + @override
|
| + InterfaceType get numType => _numType;
|
| +
|
| + @override
|
| + InterfaceType get objectType => _objectType;
|
| +
|
| + @override
|
| + InterfaceType get stackTraceType => _stackTraceType;
|
| +
|
| + @override
|
| + InterfaceType get streamDynamicType => _streamDynamicType;
|
| +
|
| + @override
|
| + InterfaceType get streamType => _streamType;
|
| +
|
| + @override
|
| + InterfaceType get stringType => _stringType;
|
| +
|
| + @override
|
| + InterfaceType get symbolType => _symbolType;
|
| +
|
| + @override
|
| + InterfaceType get typeType => _typeType;
|
| +
|
| + @override
|
| + DartType get undefinedType => _undefinedType;
|
| +
|
| + /**
|
| + * Return the type with the given name from the given namespace, or `null` if there is no
|
| + * class with the given name.
|
| + *
|
| + * @param namespace the namespace in which to search for the given name
|
| + * @param typeName the name of the type being searched for
|
| + * @return the type that was found
|
| + */
|
| + InterfaceType _getType(Namespace namespace, String typeName) {
|
| + Element element = namespace.get(typeName);
|
| + if (element == null) {
|
| + AnalysisEngine.instance.logger
|
| + .logInformation("No definition of type $typeName");
|
| + return null;
|
| + }
|
| + return (element as ClassElement).type;
|
| + }
|
| +
|
| + /**
|
| + * Initialize the types provided by this type provider from the given
|
| + * [Namespace]s.
|
| + */
|
| + void _initializeFrom(Namespace coreNamespace, Namespace asyncNamespace) {
|
| + _boolType = _getType(coreNamespace, "bool");
|
| + _bottomType = BottomTypeImpl.instance;
|
| + _deprecatedType = _getType(coreNamespace, "Deprecated");
|
| + _doubleType = _getType(coreNamespace, "double");
|
| + _dynamicType = DynamicTypeImpl.instance;
|
| + _functionType = _getType(coreNamespace, "Function");
|
| + _futureType = _getType(asyncNamespace, "Future");
|
| + _intType = _getType(coreNamespace, "int");
|
| + _iterableType = _getType(coreNamespace, "Iterable");
|
| + _listType = _getType(coreNamespace, "List");
|
| + _mapType = _getType(coreNamespace, "Map");
|
| + _nullType = _getType(coreNamespace, "Null");
|
| + _numType = _getType(coreNamespace, "num");
|
| + _objectType = _getType(coreNamespace, "Object");
|
| + _stackTraceType = _getType(coreNamespace, "StackTrace");
|
| + _streamType = _getType(asyncNamespace, "Stream");
|
| + _stringType = _getType(coreNamespace, "String");
|
| + _symbolType = _getType(coreNamespace, "Symbol");
|
| + _typeType = _getType(coreNamespace, "Type");
|
| + _undefinedType = UndefinedTypeImpl.instance;
|
| + _futureDynamicType = _futureType.substitute4(<DartType>[_dynamicType]);
|
| + _futureNullType = _futureType.substitute4(<DartType>[_nullType]);
|
| + _iterableDynamicType = _iterableType.substitute4(<DartType>[_dynamicType]);
|
| + _streamDynamicType = _streamType.substitute4(<DartType>[_dynamicType]);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `TypeResolverVisitor` are used to resolve the types associated with
|
| + * the elements in the element model. This includes the types of superclasses, mixins, interfaces,
|
| + * fields, methods, parameters, and local variables. As a side-effect, this also finishes building
|
| + * the type hierarchy.
|
| + */
|
| +class TypeResolverVisitor extends ScopedVisitor {
|
| + /**
|
| + * The type representing the type 'dynamic'.
|
| + */
|
| + DartType _dynamicType;
|
| +
|
| + /**
|
| + * The type representing typenames that can't be resolved.
|
| + */
|
| + DartType _undefinedType;
|
| +
|
| + /**
|
| + * The flag specifying if currently visited class references 'super' expression.
|
| + */
|
| + bool _hasReferenceToSuper = false;
|
| +
|
| + /**
|
| + * Initialize a newly created visitor to resolve the nodes in an AST node.
|
| + *
|
| + * [definingLibrary] is the element for the library containing the node being
|
| + * visited.
|
| + * [source] is the source representing the compilation unit containing the
|
| + * node being visited.
|
| + * [typeProvider] is the object used to access the types from the core
|
| + * library.
|
| + * [errorListener] is the error listener that will be informed of any errors
|
| + * that are found during resolution.
|
| + * [nameScope] is the scope used to resolve identifiers in the node that will
|
| + * first be visited. If `null` or unspecified, a new [LibraryScope] will be
|
| + * created based on [definingLibrary] and [typeProvider].
|
| + */
|
| + TypeResolverVisitor(LibraryElement definingLibrary, Source source,
|
| + TypeProvider typeProvider, AnalysisErrorListener errorListener,
|
| + {Scope nameScope})
|
| + : super(definingLibrary, source, typeProvider, errorListener,
|
| + nameScope: nameScope) {
|
| + _dynamicType = typeProvider.dynamicType;
|
| + _undefinedType = typeProvider.undefinedType;
|
| + }
|
| +
|
| + @override
|
| + Object visitAnnotation(Annotation node) {
|
| + //
|
| + // Visit annotations, if the annotation is @proxy, on a class, and "proxy"
|
| + // resolves to the proxy annotation in dart.core, then create create the
|
| + // ElementAnnotationImpl and set it as the metadata on the enclosing class.
|
| + //
|
| + // Element resolution is done in the ElementResolver, and this work will be
|
| + // done in the general case for all annotations in the ElementResolver.
|
| + // The reason we resolve this particular element early is so that
|
| + // ClassElement.isProxy() returns the correct information during all
|
| + // phases of the ElementResolver.
|
| + //
|
| + super.visitAnnotation(node);
|
| + Identifier identifier = node.name;
|
| + if (identifier.name.endsWith(ElementAnnotationImpl.PROXY_VARIABLE_NAME) &&
|
| + node.parent is ClassDeclaration) {
|
| + Element element = nameScope.lookup(identifier, definingLibrary);
|
| + if (element != null &&
|
| + element.library.isDartCore &&
|
| + element is PropertyAccessorElement) {
|
| + // This is the @proxy from dart.core
|
| + ClassDeclaration classDeclaration = node.parent as ClassDeclaration;
|
| + ElementAnnotationImpl elementAnnotation =
|
| + new ElementAnnotationImpl(element);
|
| + node.elementAnnotation = elementAnnotation;
|
| + (classDeclaration.element as ClassElementImpl).metadata =
|
| + <ElementAnnotationImpl>[elementAnnotation];
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitCatchClause(CatchClause node) {
|
| + super.visitCatchClause(node);
|
| + SimpleIdentifier exception = node.exceptionParameter;
|
| + if (exception != null) {
|
| + // If an 'on' clause is provided the type of the exception parameter is
|
| + // the type in the 'on' clause. Otherwise, the type of the exception
|
| + // parameter is 'Object'.
|
| + TypeName exceptionTypeName = node.exceptionType;
|
| + DartType exceptionType;
|
| + if (exceptionTypeName == null) {
|
| + exceptionType = typeProvider.dynamicType;
|
| + } else {
|
| + exceptionType = _getType(exceptionTypeName);
|
| + }
|
| + _recordType(exception, exceptionType);
|
| + Element element = exception.staticElement;
|
| + if (element is VariableElementImpl) {
|
| + element.type = exceptionType;
|
| + } else {
|
| + // TODO(brianwilkerson) Report the internal error
|
| + }
|
| + }
|
| + SimpleIdentifier stackTrace = node.stackTraceParameter;
|
| + if (stackTrace != null) {
|
| + _recordType(stackTrace, typeProvider.stackTraceType);
|
| + Element element = stackTrace.staticElement;
|
| + if (element is VariableElementImpl) {
|
| + element.type = typeProvider.stackTraceType;
|
| + } else {
|
| + // TODO(brianwilkerson) Report the internal error
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitClassDeclaration(ClassDeclaration node) {
|
| + _hasReferenceToSuper = false;
|
| + super.visitClassDeclaration(node);
|
| + ClassElementImpl classElement = _getClassElement(node.name);
|
| + if (classElement != null) {
|
| + classElement.hasReferenceToSuper = _hasReferenceToSuper;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + void visitClassDeclarationInScope(ClassDeclaration node) {
|
| + super.visitClassDeclarationInScope(node);
|
| + ExtendsClause extendsClause = node.extendsClause;
|
| + WithClause withClause = node.withClause;
|
| + ImplementsClause implementsClause = node.implementsClause;
|
| + ClassElementImpl classElement = _getClassElement(node.name);
|
| + InterfaceType superclassType = null;
|
| + if (extendsClause != null) {
|
| + ErrorCode errorCode = (withClause == null
|
| + ? CompileTimeErrorCode.EXTENDS_NON_CLASS
|
| + : CompileTimeErrorCode.MIXIN_WITH_NON_CLASS_SUPERCLASS);
|
| + superclassType = _resolveType(extendsClause.superclass, errorCode,
|
| + CompileTimeErrorCode.EXTENDS_ENUM, errorCode);
|
| + if (!identical(superclassType, typeProvider.objectType)) {
|
| + classElement.validMixin = false;
|
| + }
|
| + }
|
| + if (classElement != null) {
|
| + if (superclassType == null) {
|
| + InterfaceType objectType = typeProvider.objectType;
|
| + if (!identical(classElement.type, objectType)) {
|
| + superclassType = objectType;
|
| + }
|
| + }
|
| + classElement.supertype = superclassType;
|
| + }
|
| + _resolve(classElement, withClause, implementsClause);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + void visitClassMembersInScope(ClassDeclaration node) {
|
| + //
|
| + // Process field declarations before constructors and methods so that the
|
| + // types of field formal parameters can be correctly resolved.
|
| + //
|
| + List<ClassMember> nonFields = new List<ClassMember>();
|
| + node.visitChildren(
|
| + new _TypeResolverVisitor_visitClassMembersInScope(this, nonFields));
|
| + int count = nonFields.length;
|
| + for (int i = 0; i < count; i++) {
|
| + nonFields[i].accept(this);
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitClassTypeAlias(ClassTypeAlias node) {
|
| + super.visitClassTypeAlias(node);
|
| + ErrorCode errorCode = CompileTimeErrorCode.MIXIN_WITH_NON_CLASS_SUPERCLASS;
|
| + InterfaceType superclassType = _resolveType(node.superclass, errorCode,
|
| + CompileTimeErrorCode.EXTENDS_ENUM, errorCode);
|
| + if (superclassType == null) {
|
| + superclassType = typeProvider.objectType;
|
| + }
|
| + ClassElementImpl classElement = _getClassElement(node.name);
|
| + if (classElement != null) {
|
| + classElement.supertype = superclassType;
|
| + }
|
| + _resolve(classElement, node.withClause, node.implementsClause);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| + super.visitConstructorDeclaration(node);
|
| + ExecutableElementImpl element = node.element as ExecutableElementImpl;
|
| + if (element == null) {
|
| + ClassDeclaration classNode =
|
| + node.getAncestor((node) => node is ClassDeclaration);
|
| + StringBuffer buffer = new StringBuffer();
|
| + buffer.write("The element for the constructor ");
|
| + buffer.write(node.name == null ? "<unnamed>" : node.name.name);
|
| + buffer.write(" in ");
|
| + if (classNode == null) {
|
| + buffer.write("<unknown class>");
|
| + } else {
|
| + buffer.write(classNode.name.name);
|
| + }
|
| + buffer.write(" in ");
|
| + buffer.write(source.fullName);
|
| + buffer.write(" was not set while trying to resolve types.");
|
| + AnalysisEngine.instance.logger.logError(buffer.toString(),
|
| + new CaughtException(new AnalysisException(), null));
|
| + } else {
|
| + ClassElement definingClass = element.enclosingElement as ClassElement;
|
| + element.returnType = definingClass.type;
|
| + FunctionTypeImpl type = new FunctionTypeImpl(element);
|
| + type.typeArguments = definingClass.type.typeArguments;
|
| + element.type = type;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitDeclaredIdentifier(DeclaredIdentifier node) {
|
| + super.visitDeclaredIdentifier(node);
|
| + DartType declaredType;
|
| + TypeName typeName = node.type;
|
| + if (typeName == null) {
|
| + declaredType = _dynamicType;
|
| + } else {
|
| + declaredType = _getType(typeName);
|
| + }
|
| + LocalVariableElementImpl element = node.element as LocalVariableElementImpl;
|
| + element.type = declaredType;
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFieldFormalParameter(FieldFormalParameter node) {
|
| + super.visitFieldFormalParameter(node);
|
| + Element element = node.identifier.staticElement;
|
| + if (element is ParameterElementImpl) {
|
| + ParameterElementImpl parameter = element;
|
| + FormalParameterList parameterList = node.parameters;
|
| + if (parameterList == null) {
|
| + DartType type;
|
| + TypeName typeName = node.type;
|
| + if (typeName == null) {
|
| + type = _dynamicType;
|
| + if (parameter is FieldFormalParameterElement) {
|
| + FieldElement fieldElement =
|
| + (parameter as FieldFormalParameterElement).field;
|
| + if (fieldElement != null) {
|
| + type = fieldElement.type;
|
| + }
|
| + }
|
| + } else {
|
| + type = _getType(typeName);
|
| + }
|
| + parameter.type = type;
|
| + } else {
|
| + _setFunctionTypedParameterType(parameter, node.type, node.parameters);
|
| + }
|
| + } else {
|
| + // TODO(brianwilkerson) Report this internal error
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| + super.visitFunctionDeclaration(node);
|
| + ExecutableElementImpl element = node.element as ExecutableElementImpl;
|
| + if (element == null) {
|
| + StringBuffer buffer = new StringBuffer();
|
| + buffer.write("The element for the top-level function ");
|
| + buffer.write(node.name);
|
| + buffer.write(" in ");
|
| + buffer.write(source.fullName);
|
| + buffer.write(" was not set while trying to resolve types.");
|
| + AnalysisEngine.instance.logger.logError(buffer.toString(),
|
| + new CaughtException(new AnalysisException(), null));
|
| + }
|
| + element.returnType = _computeReturnType(node.returnType);
|
| + FunctionTypeImpl type = new FunctionTypeImpl(element);
|
| + ClassElement definingClass =
|
| + element.getAncestor((element) => element is ClassElement);
|
| + if (definingClass != null) {
|
| + type.typeArguments = definingClass.type.typeArguments;
|
| + }
|
| + element.type = type;
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionTypeAlias(FunctionTypeAlias node) {
|
| + FunctionTypeAliasElementImpl element =
|
| + node.element as FunctionTypeAliasElementImpl;
|
| + super.visitFunctionTypeAlias(node);
|
| + element.returnType = _computeReturnType(node.returnType);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
|
| + super.visitFunctionTypedFormalParameter(node);
|
| + Element element = node.identifier.staticElement;
|
| + if (element is ParameterElementImpl) {
|
| + _setFunctionTypedParameterType(element, node.returnType, node.parameters);
|
| + } else {
|
| + // TODO(brianwilkerson) Report this internal error
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitMethodDeclaration(MethodDeclaration node) {
|
| + super.visitMethodDeclaration(node);
|
| + ExecutableElementImpl element = node.element as ExecutableElementImpl;
|
| + if (element == null) {
|
| + ClassDeclaration classNode =
|
| + node.getAncestor((node) => node is ClassDeclaration);
|
| + StringBuffer buffer = new StringBuffer();
|
| + buffer.write("The element for the method ");
|
| + buffer.write(node.name.name);
|
| + buffer.write(" in ");
|
| + if (classNode == null) {
|
| + buffer.write("<unknown class>");
|
| + } else {
|
| + buffer.write(classNode.name.name);
|
| + }
|
| + buffer.write(" in ");
|
| + buffer.write(source.fullName);
|
| + buffer.write(" was not set while trying to resolve types.");
|
| + AnalysisEngine.instance.logger.logError(buffer.toString(),
|
| + new CaughtException(new AnalysisException(), null));
|
| + }
|
| + element.returnType = _computeReturnType(node.returnType);
|
| + FunctionTypeImpl type = new FunctionTypeImpl(element);
|
| + ClassElement definingClass =
|
| + element.getAncestor((element) => element is ClassElement);
|
| + if (definingClass != null) {
|
| + type.typeArguments = definingClass.type.typeArguments;
|
| + }
|
| + element.type = type;
|
| + if (element is PropertyAccessorElement) {
|
| + PropertyAccessorElement accessor = element as PropertyAccessorElement;
|
| + PropertyInducingElementImpl variable =
|
| + accessor.variable as PropertyInducingElementImpl;
|
| + if (accessor.isGetter) {
|
| + variable.type = type.returnType;
|
| + } else if (variable.type == null) {
|
| + List<DartType> parameterTypes = type.normalParameterTypes;
|
| + if (parameterTypes != null && parameterTypes.length > 0) {
|
| + variable.type = parameterTypes[0];
|
| + }
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitSimpleFormalParameter(SimpleFormalParameter node) {
|
| + super.visitSimpleFormalParameter(node);
|
| + DartType declaredType;
|
| + TypeName typeName = node.type;
|
| + if (typeName == null) {
|
| + declaredType = _dynamicType;
|
| + } else {
|
| + declaredType = _getType(typeName);
|
| + }
|
| + Element element = node.identifier.staticElement;
|
| + if (element is ParameterElement) {
|
| + (element as ParameterElementImpl).type = declaredType;
|
| + } else {
|
| + // TODO(brianwilkerson) Report the internal error.
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitSuperExpression(SuperExpression node) {
|
| + _hasReferenceToSuper = true;
|
| + return super.visitSuperExpression(node);
|
| + }
|
| +
|
| + @override
|
| + Object visitTypeName(TypeName node) {
|
| + super.visitTypeName(node);
|
| + Identifier typeName = node.name;
|
| + TypeArgumentList argumentList = node.typeArguments;
|
| + Element element = nameScope.lookup(typeName, definingLibrary);
|
| + if (element == null) {
|
| + //
|
| + // Check to see whether the type name is either 'dynamic' or 'void',
|
| + // neither of which are in the name scope and hence will not be found by
|
| + // normal means.
|
| + //
|
| + if (typeName.name == _dynamicType.name) {
|
| + _setElement(typeName, _dynamicType.element);
|
| + if (argumentList != null) {
|
| + // TODO(brianwilkerson) Report this error
|
| +// reporter.reportError(StaticTypeWarningCode.WRONG_NUMBER_OF_TYPE_ARGUMENTS, node, dynamicType.getName(), 0, argumentList.getArguments().size());
|
| + }
|
| + typeName.staticType = _dynamicType;
|
| + node.type = _dynamicType;
|
| + return null;
|
| + }
|
| + VoidTypeImpl voidType = VoidTypeImpl.instance;
|
| + if (typeName.name == voidType.name) {
|
| + // There is no element for 'void'.
|
| + if (argumentList != null) {
|
| + // TODO(brianwilkerson) Report this error
|
| +// reporter.reportError(StaticTypeWarningCode.WRONG_NUMBER_OF_TYPE_ARGUMENTS, node, voidType.getName(), 0, argumentList.getArguments().size());
|
| + }
|
| + typeName.staticType = voidType;
|
| + node.type = voidType;
|
| + return null;
|
| + }
|
| + //
|
| + // If not, the look to see whether we might have created the wrong AST
|
| + // structure for a constructor name. If so, fix the AST structure and then
|
| + // proceed.
|
| + //
|
| + AstNode parent = node.parent;
|
| + if (typeName is PrefixedIdentifier &&
|
| + parent is ConstructorName &&
|
| + argumentList == null) {
|
| + ConstructorName name = parent;
|
| + if (name.name == null) {
|
| + PrefixedIdentifier prefixedIdentifier =
|
| + typeName as PrefixedIdentifier;
|
| + SimpleIdentifier prefix = prefixedIdentifier.prefix;
|
| + element = nameScope.lookup(prefix, definingLibrary);
|
| + if (element is PrefixElement) {
|
| + if (parent.parent is InstanceCreationExpression &&
|
| + (parent.parent as InstanceCreationExpression).isConst) {
|
| + // If, if this is a const expression, then generate a
|
| + // CompileTimeErrorCode.CONST_WITH_NON_TYPE error.
|
| + reportErrorForNode(
|
| + CompileTimeErrorCode.CONST_WITH_NON_TYPE,
|
| + prefixedIdentifier.identifier,
|
| + [prefixedIdentifier.identifier.name]);
|
| + } else {
|
| + // Else, if this expression is a new expression, report a
|
| + // NEW_WITH_NON_TYPE warning.
|
| + reportErrorForNode(
|
| + StaticWarningCode.NEW_WITH_NON_TYPE,
|
| + prefixedIdentifier.identifier,
|
| + [prefixedIdentifier.identifier.name]);
|
| + }
|
| + _setElement(prefix, element);
|
| + return null;
|
| + } else if (element != null) {
|
| + //
|
| + // Rewrite the constructor name. The parser, when it sees a
|
| + // constructor named "a.b", cannot tell whether "a" is a prefix and
|
| + // "b" is a class name, or whether "a" is a class name and "b" is a
|
| + // constructor name. It arbitrarily chooses the former, but in this
|
| + // case was wrong.
|
| + //
|
| + name.name = prefixedIdentifier.identifier;
|
| + name.period = prefixedIdentifier.period;
|
| + node.name = prefix;
|
| + typeName = prefix;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + // check element
|
| + bool elementValid = element is! MultiplyDefinedElement;
|
| + if (elementValid &&
|
| + element is! ClassElement &&
|
| + _isTypeNameInInstanceCreationExpression(node)) {
|
| + SimpleIdentifier typeNameSimple = _getTypeSimpleIdentifier(typeName);
|
| + InstanceCreationExpression creation =
|
| + node.parent.parent as InstanceCreationExpression;
|
| + if (creation.isConst) {
|
| + if (element == null) {
|
| + reportErrorForNode(
|
| + CompileTimeErrorCode.UNDEFINED_CLASS, typeNameSimple, [typeName]);
|
| + } else {
|
| + reportErrorForNode(CompileTimeErrorCode.CONST_WITH_NON_TYPE,
|
| + typeNameSimple, [typeName]);
|
| + }
|
| + elementValid = false;
|
| + } else {
|
| + if (element != null) {
|
| + reportErrorForNode(
|
| + StaticWarningCode.NEW_WITH_NON_TYPE, typeNameSimple, [typeName]);
|
| + elementValid = false;
|
| + }
|
| + }
|
| + }
|
| + if (elementValid && element == null) {
|
| + // We couldn't resolve the type name.
|
| + // TODO(jwren) Consider moving the check for
|
| + // CompileTimeErrorCode.BUILT_IN_IDENTIFIER_AS_TYPE from the
|
| + // ErrorVerifier, so that we don't have two errors on a built in
|
| + // identifier being used as a class name.
|
| + // See CompileTimeErrorCodeTest.test_builtInIdentifierAsType().
|
| + SimpleIdentifier typeNameSimple = _getTypeSimpleIdentifier(typeName);
|
| + RedirectingConstructorKind redirectingConstructorKind;
|
| + if (_isBuiltInIdentifier(node) && _isTypeAnnotation(node)) {
|
| + reportErrorForNode(CompileTimeErrorCode.BUILT_IN_IDENTIFIER_AS_TYPE,
|
| + typeName, [typeName.name]);
|
| + } else if (typeNameSimple.name == "boolean") {
|
| + reportErrorForNode(
|
| + StaticWarningCode.UNDEFINED_CLASS_BOOLEAN, typeNameSimple, []);
|
| + } else if (_isTypeNameInCatchClause(node)) {
|
| + reportErrorForNode(StaticWarningCode.NON_TYPE_IN_CATCH_CLAUSE, typeName,
|
| + [typeName.name]);
|
| + } else if (_isTypeNameInAsExpression(node)) {
|
| + reportErrorForNode(
|
| + StaticWarningCode.CAST_TO_NON_TYPE, typeName, [typeName.name]);
|
| + } else if (_isTypeNameInIsExpression(node)) {
|
| + reportErrorForNode(StaticWarningCode.TYPE_TEST_WITH_UNDEFINED_NAME,
|
| + typeName, [typeName.name]);
|
| + } else if ((redirectingConstructorKind =
|
| + _getRedirectingConstructorKind(node)) !=
|
| + null) {
|
| + ErrorCode errorCode = (redirectingConstructorKind ==
|
| + RedirectingConstructorKind.CONST
|
| + ? CompileTimeErrorCode.REDIRECT_TO_NON_CLASS
|
| + : StaticWarningCode.REDIRECT_TO_NON_CLASS);
|
| + reportErrorForNode(errorCode, typeName, [typeName.name]);
|
| + } else if (_isTypeNameInTypeArgumentList(node)) {
|
| + reportErrorForNode(StaticTypeWarningCode.NON_TYPE_AS_TYPE_ARGUMENT,
|
| + typeName, [typeName.name]);
|
| + } else {
|
| + reportErrorForNode(
|
| + StaticWarningCode.UNDEFINED_CLASS, typeName, [typeName.name]);
|
| + }
|
| + elementValid = false;
|
| + }
|
| + if (!elementValid) {
|
| + if (element is MultiplyDefinedElement) {
|
| + _setElement(typeName, element);
|
| + } else {
|
| + _setElement(typeName, _dynamicType.element);
|
| + }
|
| + typeName.staticType = _undefinedType;
|
| + node.type = _undefinedType;
|
| + return null;
|
| + }
|
| + DartType type = null;
|
| + if (element is ClassElement) {
|
| + _setElement(typeName, element);
|
| + type = element.type;
|
| + } else if (element is FunctionTypeAliasElement) {
|
| + _setElement(typeName, element);
|
| + type = element.type;
|
| + } else if (element is TypeParameterElement) {
|
| + _setElement(typeName, element);
|
| + type = element.type;
|
| + if (argumentList != null) {
|
| + // Type parameters cannot have type arguments.
|
| + // TODO(brianwilkerson) Report this error.
|
| + // resolver.reportError(ResolverErrorCode.?, keyType);
|
| + }
|
| + } else if (element is MultiplyDefinedElement) {
|
| + List<Element> elements = element.conflictingElements;
|
| + type = _getTypeWhenMultiplyDefined(elements);
|
| + if (type != null) {
|
| + node.type = type;
|
| + }
|
| + } else {
|
| + // The name does not represent a type.
|
| + RedirectingConstructorKind redirectingConstructorKind;
|
| + if (_isTypeNameInCatchClause(node)) {
|
| + reportErrorForNode(StaticWarningCode.NON_TYPE_IN_CATCH_CLAUSE, typeName,
|
| + [typeName.name]);
|
| + } else if (_isTypeNameInAsExpression(node)) {
|
| + reportErrorForNode(
|
| + StaticWarningCode.CAST_TO_NON_TYPE, typeName, [typeName.name]);
|
| + } else if (_isTypeNameInIsExpression(node)) {
|
| + reportErrorForNode(StaticWarningCode.TYPE_TEST_WITH_NON_TYPE, typeName,
|
| + [typeName.name]);
|
| + } else if ((redirectingConstructorKind =
|
| + _getRedirectingConstructorKind(node)) !=
|
| + null) {
|
| + ErrorCode errorCode = (redirectingConstructorKind ==
|
| + RedirectingConstructorKind.CONST
|
| + ? CompileTimeErrorCode.REDIRECT_TO_NON_CLASS
|
| + : StaticWarningCode.REDIRECT_TO_NON_CLASS);
|
| + reportErrorForNode(errorCode, typeName, [typeName.name]);
|
| + } else if (_isTypeNameInTypeArgumentList(node)) {
|
| + reportErrorForNode(StaticTypeWarningCode.NON_TYPE_AS_TYPE_ARGUMENT,
|
| + typeName, [typeName.name]);
|
| + } else {
|
| + AstNode parent = typeName.parent;
|
| + while (parent is TypeName) {
|
| + parent = parent.parent;
|
| + }
|
| + if (parent is ExtendsClause ||
|
| + parent is ImplementsClause ||
|
| + parent is WithClause ||
|
| + parent is ClassTypeAlias) {
|
| + // Ignored. The error will be reported elsewhere.
|
| + } else {
|
| + reportErrorForNode(
|
| + StaticWarningCode.NOT_A_TYPE, typeName, [typeName.name]);
|
| + }
|
| + }
|
| + _setElement(typeName, _dynamicType.element);
|
| + typeName.staticType = _dynamicType;
|
| + node.type = _dynamicType;
|
| + return null;
|
| + }
|
| + if (argumentList != null) {
|
| + NodeList<TypeName> arguments = argumentList.arguments;
|
| + int argumentCount = arguments.length;
|
| + List<DartType> parameters = _getTypeArguments(type);
|
| + int parameterCount = parameters.length;
|
| + List<DartType> typeArguments = new List<DartType>(parameterCount);
|
| + if (argumentCount == parameterCount) {
|
| + for (int i = 0; i < parameterCount; i++) {
|
| + TypeName argumentTypeName = arguments[i];
|
| + DartType argumentType = _getType(argumentTypeName);
|
| + if (argumentType == null) {
|
| + argumentType = _dynamicType;
|
| + }
|
| + typeArguments[i] = argumentType;
|
| + }
|
| + } else {
|
| + reportErrorForNode(_getInvalidTypeParametersErrorCode(node), node,
|
| + [typeName.name, parameterCount, argumentCount]);
|
| + for (int i = 0; i < parameterCount; i++) {
|
| + typeArguments[i] = _dynamicType;
|
| + }
|
| + }
|
| + if (type is InterfaceTypeImpl) {
|
| + InterfaceTypeImpl interfaceType = type as InterfaceTypeImpl;
|
| + type = interfaceType.substitute4(typeArguments);
|
| + } else if (type is FunctionTypeImpl) {
|
| + FunctionTypeImpl functionType = type as FunctionTypeImpl;
|
| + type = functionType.substitute3(typeArguments);
|
| + } else {
|
| + // TODO(brianwilkerson) Report this internal error.
|
| + }
|
| + } else {
|
| + //
|
| + // Check for the case where there are no type arguments given for a
|
| + // parameterized type.
|
| + //
|
| + List<DartType> parameters = _getTypeArguments(type);
|
| + int parameterCount = parameters.length;
|
| + if (parameterCount > 0) {
|
| + DynamicTypeImpl dynamicType = DynamicTypeImpl.instance;
|
| + List<DartType> arguments = new List<DartType>(parameterCount);
|
| + for (int i = 0; i < parameterCount; i++) {
|
| + arguments[i] = dynamicType;
|
| + }
|
| + type = type.substitute2(arguments, parameters);
|
| + }
|
| + }
|
| + typeName.staticType = type;
|
| + node.type = type;
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitTypeParameter(TypeParameter node) {
|
| + super.visitTypeParameter(node);
|
| + TypeName bound = node.bound;
|
| + if (bound != null) {
|
| + TypeParameterElementImpl typeParameter =
|
| + node.name.staticElement as TypeParameterElementImpl;
|
| + if (typeParameter != null) {
|
| + typeParameter.bound = bound.type;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitVariableDeclaration(VariableDeclaration node) {
|
| + super.visitVariableDeclaration(node);
|
| + DartType declaredType;
|
| + TypeName typeName = (node.parent as VariableDeclarationList).type;
|
| + if (typeName == null) {
|
| + declaredType = _dynamicType;
|
| + } else {
|
| + declaredType = _getType(typeName);
|
| + }
|
| + Element element = node.name.staticElement;
|
| + if (element is VariableElement) {
|
| + (element as VariableElementImpl).type = declaredType;
|
| + if (element is PropertyInducingElement) {
|
| + PropertyInducingElement variableElement = element;
|
| + PropertyAccessorElementImpl getter =
|
| + variableElement.getter as PropertyAccessorElementImpl;
|
| + getter.returnType = declaredType;
|
| + FunctionTypeImpl getterType = new FunctionTypeImpl(getter);
|
| + ClassElement definingClass =
|
| + element.getAncestor((element) => element is ClassElement);
|
| + if (definingClass != null) {
|
| + getterType.typeArguments = definingClass.type.typeArguments;
|
| + }
|
| + getter.type = getterType;
|
| + PropertyAccessorElementImpl setter =
|
| + variableElement.setter as PropertyAccessorElementImpl;
|
| + if (setter != null) {
|
| + List<ParameterElement> parameters = setter.parameters;
|
| + if (parameters.length > 0) {
|
| + (parameters[0] as ParameterElementImpl).type = declaredType;
|
| + }
|
| + setter.returnType = VoidTypeImpl.instance;
|
| + FunctionTypeImpl setterType = new FunctionTypeImpl(setter);
|
| + if (definingClass != null) {
|
| + setterType.typeArguments = definingClass.type.typeArguments;
|
| + }
|
| + setter.type = setterType;
|
| + }
|
| + }
|
| + } else {
|
| + // TODO(brianwilkerson) Report the internal error.
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Given a type name representing the return type of a function, compute the return type of the
|
| + * function.
|
| + *
|
| + * @param returnType the type name representing the return type of the function
|
| + * @return the return type that was computed
|
| + */
|
| + DartType _computeReturnType(TypeName returnType) {
|
| + if (returnType == null) {
|
| + return _dynamicType;
|
| + } else {
|
| + return returnType.type;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Return the class element that represents the class whose name was provided.
|
| + *
|
| + * @param identifier the name from the declaration of a class
|
| + * @return the class element that represents the class
|
| + */
|
| + ClassElementImpl _getClassElement(SimpleIdentifier identifier) {
|
| + // TODO(brianwilkerson) Seems like we should be using
|
| + // ClassDeclaration.getElement().
|
| + if (identifier == null) {
|
| + // TODO(brianwilkerson) Report this
|
| + // Internal error: We should never build a class declaration without a
|
| + // name.
|
| + return null;
|
| + }
|
| + Element element = identifier.staticElement;
|
| + if (element is! ClassElementImpl) {
|
| + // TODO(brianwilkerson) Report this
|
| + // Internal error: Failed to create an element for a class declaration.
|
| + return null;
|
| + }
|
| + return element as ClassElementImpl;
|
| + }
|
| +
|
| + /**
|
| + * Return an array containing all of the elements associated with the parameters in the given
|
| + * list.
|
| + *
|
| + * @param parameterList the list of parameters whose elements are to be returned
|
| + * @return the elements associated with the parameters
|
| + */
|
| + List<ParameterElement> _getElements(FormalParameterList parameterList) {
|
| + List<ParameterElement> elements = new List<ParameterElement>();
|
| + for (FormalParameter parameter in parameterList.parameters) {
|
| + ParameterElement element =
|
| + parameter.identifier.staticElement as ParameterElement;
|
| + // TODO(brianwilkerson) Understand why the element would be null.
|
| + if (element != null) {
|
| + elements.add(element);
|
| + }
|
| + }
|
| + return elements;
|
| + }
|
| +
|
| + /**
|
| + * The number of type arguments in the given type name does not match the number of parameters in
|
| + * the corresponding class element. Return the error code that should be used to report this
|
| + * error.
|
| + *
|
| + * @param node the type name with the wrong number of type arguments
|
| + * @return the error code that should be used to report that the wrong number of type arguments
|
| + * were provided
|
| + */
|
| + ErrorCode _getInvalidTypeParametersErrorCode(TypeName node) {
|
| + AstNode parent = node.parent;
|
| + if (parent is ConstructorName) {
|
| + parent = parent.parent;
|
| + if (parent is InstanceCreationExpression) {
|
| + if (parent.isConst) {
|
| + return CompileTimeErrorCode.CONST_WITH_INVALID_TYPE_PARAMETERS;
|
| + } else {
|
| + return StaticWarningCode.NEW_WITH_INVALID_TYPE_PARAMETERS;
|
| + }
|
| + }
|
| + }
|
| + return StaticTypeWarningCode.WRONG_NUMBER_OF_TYPE_ARGUMENTS;
|
| + }
|
| +
|
| + /**
|
| + * Checks if the given type name is the target in a redirected constructor.
|
| + *
|
| + * @param typeName the type name to analyze
|
| + * @return some [RedirectingConstructorKind] if the given type name is used as the type in a
|
| + * redirected constructor, or `null` otherwise
|
| + */
|
| + RedirectingConstructorKind _getRedirectingConstructorKind(TypeName typeName) {
|
| + AstNode parent = typeName.parent;
|
| + if (parent is ConstructorName) {
|
| + ConstructorName constructorName = parent as ConstructorName;
|
| + parent = constructorName.parent;
|
| + if (parent is ConstructorDeclaration) {
|
| + if (identical(parent.redirectedConstructor, constructorName)) {
|
| + if (parent.constKeyword != null) {
|
| + return RedirectingConstructorKind.CONST;
|
| + }
|
| + return RedirectingConstructorKind.NORMAL;
|
| + }
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Return the type represented by the given type name.
|
| + *
|
| + * @param typeName the type name representing the type to be returned
|
| + * @return the type represented by the type name
|
| + */
|
| + DartType _getType(TypeName typeName) {
|
| + DartType type = typeName.type;
|
| + if (type == null) {
|
| + return _undefinedType;
|
| + }
|
| + return type;
|
| + }
|
| +
|
| + /**
|
| + * Return the type arguments associated with the given type.
|
| + *
|
| + * @param type the type whole type arguments are to be returned
|
| + * @return the type arguments associated with the given type
|
| + */
|
| + List<DartType> _getTypeArguments(DartType type) {
|
| + if (type is InterfaceType) {
|
| + return type.typeArguments;
|
| + } else if (type is FunctionType) {
|
| + return type.typeArguments;
|
| + }
|
| + return DartType.EMPTY_LIST;
|
| + }
|
| +
|
| + /**
|
| + * Returns the simple identifier of the given (may be qualified) type name.
|
| + *
|
| + * @param typeName the (may be qualified) qualified type name
|
| + * @return the simple identifier of the given (may be qualified) type name.
|
| + */
|
| + SimpleIdentifier _getTypeSimpleIdentifier(Identifier typeName) {
|
| + if (typeName is SimpleIdentifier) {
|
| + return typeName;
|
| + } else {
|
| + return (typeName as PrefixedIdentifier).identifier;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Given the multiple elements to which a single name could potentially be resolved, return the
|
| + * single interface type that should be used, or `null` if there is no clear choice.
|
| + *
|
| + * @param elements the elements to which a single name could potentially be resolved
|
| + * @return the single interface type that should be used for the type name
|
| + */
|
| + InterfaceType _getTypeWhenMultiplyDefined(List<Element> elements) {
|
| + InterfaceType type = null;
|
| + for (Element element in elements) {
|
| + if (element is ClassElement) {
|
| + if (type != null) {
|
| + return null;
|
| + }
|
| + type = element.type;
|
| + }
|
| + }
|
| + return type;
|
| + }
|
| +
|
| + /**
|
| + * Checks if the given type name is used as the type in an as expression.
|
| + *
|
| + * @param typeName the type name to analyzer
|
| + * @return `true` if the given type name is used as the type in an as expression
|
| + */
|
| + bool _isTypeNameInAsExpression(TypeName typeName) {
|
| + AstNode parent = typeName.parent;
|
| + if (parent is AsExpression) {
|
| + AsExpression asExpression = parent;
|
| + return identical(asExpression.type, typeName);
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Checks if the given type name is used as the exception type in a catch clause.
|
| + *
|
| + * @param typeName the type name to analyzer
|
| + * @return `true` if the given type name is used as the exception type in a catch clause
|
| + */
|
| + bool _isTypeNameInCatchClause(TypeName typeName) {
|
| + AstNode parent = typeName.parent;
|
| + if (parent is CatchClause) {
|
| + CatchClause catchClause = parent;
|
| + return identical(catchClause.exceptionType, typeName);
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Checks if the given type name is used as the type in an instance creation expression.
|
| + *
|
| + * @param typeName the type name to analyzer
|
| + * @return `true` if the given type name is used as the type in an instance creation
|
| + * expression
|
| + */
|
| + bool _isTypeNameInInstanceCreationExpression(TypeName typeName) {
|
| + AstNode parent = typeName.parent;
|
| + if (parent is ConstructorName &&
|
| + parent.parent is InstanceCreationExpression) {
|
| + ConstructorName constructorName = parent;
|
| + return constructorName != null &&
|
| + identical(constructorName.type, typeName);
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Checks if the given type name is used as the type in an is expression.
|
| + *
|
| + * @param typeName the type name to analyzer
|
| + * @return `true` if the given type name is used as the type in an is expression
|
| + */
|
| + bool _isTypeNameInIsExpression(TypeName typeName) {
|
| + AstNode parent = typeName.parent;
|
| + if (parent is IsExpression) {
|
| + IsExpression isExpression = parent;
|
| + return identical(isExpression.type, typeName);
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /**
|
| + * Checks if the given type name used in a type argument list.
|
| + *
|
| + * @param typeName the type name to analyzer
|
| + * @return `true` if the given type name is in a type argument list
|
| + */
|
| + bool _isTypeNameInTypeArgumentList(TypeName typeName) =>
|
| + typeName.parent is TypeArgumentList;
|
| +
|
| + /**
|
| + * Record that the static type of the given node is the given type.
|
| + *
|
| + * @param expression the node whose type is to be recorded
|
| + * @param type the static type of the node
|
| + */
|
| + Object _recordType(Expression expression, DartType type) {
|
| + if (type == null) {
|
| + expression.staticType = _dynamicType;
|
| + } else {
|
| + expression.staticType = type;
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Resolve the types in the given with and implements clauses and associate those types with the
|
| + * given class element.
|
| + *
|
| + * @param classElement the class element with which the mixin and interface types are to be
|
| + * associated
|
| + * @param withClause the with clause to be resolved
|
| + * @param implementsClause the implements clause to be resolved
|
| + */
|
| + void _resolve(ClassElementImpl classElement, WithClause withClause,
|
| + ImplementsClause implementsClause) {
|
| + if (withClause != null) {
|
| + List<InterfaceType> mixinTypes = _resolveTypes(
|
| + withClause.mixinTypes,
|
| + CompileTimeErrorCode.MIXIN_OF_NON_CLASS,
|
| + CompileTimeErrorCode.MIXIN_OF_ENUM,
|
| + CompileTimeErrorCode.MIXIN_OF_NON_CLASS);
|
| + if (classElement != null) {
|
| + classElement.mixins = mixinTypes;
|
| + classElement.withClauseRange =
|
| + new SourceRange(withClause.offset, withClause.length);
|
| + }
|
| + }
|
| + if (implementsClause != null) {
|
| + NodeList<TypeName> interfaces = implementsClause.interfaces;
|
| + List<InterfaceType> interfaceTypes = _resolveTypes(
|
| + interfaces,
|
| + CompileTimeErrorCode.IMPLEMENTS_NON_CLASS,
|
| + CompileTimeErrorCode.IMPLEMENTS_ENUM,
|
| + CompileTimeErrorCode.IMPLEMENTS_DYNAMIC);
|
| + if (classElement != null) {
|
| + classElement.interfaces = interfaceTypes;
|
| + }
|
| + // TODO(brianwilkerson) Move the following checks to ErrorVerifier.
|
| + int count = interfaces.length;
|
| + List<bool> detectedRepeatOnIndex = new List<bool>.filled(count, false);
|
| + for (int i = 0; i < detectedRepeatOnIndex.length; i++) {
|
| + detectedRepeatOnIndex[i] = false;
|
| + }
|
| + for (int i = 0; i < count; i++) {
|
| + TypeName typeName = interfaces[i];
|
| + if (!detectedRepeatOnIndex[i]) {
|
| + Element element = typeName.name.staticElement;
|
| + for (int j = i + 1; j < count; j++) {
|
| + TypeName typeName2 = interfaces[j];
|
| + Identifier identifier2 = typeName2.name;
|
| + String name2 = identifier2.name;
|
| + Element element2 = identifier2.staticElement;
|
| + if (element != null && element == element2) {
|
| + detectedRepeatOnIndex[j] = true;
|
| + reportErrorForNode(
|
| + CompileTimeErrorCode.IMPLEMENTS_REPEATED, typeName2, [name2]);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Return the type specified by the given name.
|
| + *
|
| + * @param typeName the type name specifying the type to be returned
|
| + * @param nonTypeError the error to produce if the type name is defined to be something other than
|
| + * a type
|
| + * @param enumTypeError the error to produce if the type name is defined to be an enum
|
| + * @param dynamicTypeError the error to produce if the type name is "dynamic"
|
| + * @return the type specified by the type name
|
| + */
|
| + InterfaceType _resolveType(TypeName typeName, ErrorCode nonTypeError,
|
| + ErrorCode enumTypeError, ErrorCode dynamicTypeError) {
|
| + DartType type = typeName.type;
|
| + if (type is InterfaceType) {
|
| + ClassElement element = type.element;
|
| + if (element != null && element.isEnum) {
|
| + reportErrorForNode(enumTypeError, typeName);
|
| + return null;
|
| + }
|
| + return type;
|
| + }
|
| + // If the type is not an InterfaceType, then visitTypeName() sets the type
|
| + // to be a DynamicTypeImpl
|
| + Identifier name = typeName.name;
|
| + if (name.name == sc.Keyword.DYNAMIC.syntax) {
|
| + reportErrorForNode(dynamicTypeError, name, [name.name]);
|
| + } else {
|
| + reportErrorForNode(nonTypeError, name, [name.name]);
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /**
|
| + * Resolve the types in the given list of type names.
|
| + *
|
| + * @param typeNames the type names to be resolved
|
| + * @param nonTypeError the error to produce if the type name is defined to be something other than
|
| + * a type
|
| + * @param enumTypeError the error to produce if the type name is defined to be an enum
|
| + * @param dynamicTypeError the error to produce if the type name is "dynamic"
|
| + * @return an array containing all of the types that were resolved.
|
| + */
|
| + List<InterfaceType> _resolveTypes(
|
| + NodeList<TypeName> typeNames,
|
| + ErrorCode nonTypeError,
|
| + ErrorCode enumTypeError,
|
| + ErrorCode dynamicTypeError) {
|
| + List<InterfaceType> types = new List<InterfaceType>();
|
| + for (TypeName typeName in typeNames) {
|
| + InterfaceType type =
|
| + _resolveType(typeName, nonTypeError, enumTypeError, dynamicTypeError);
|
| + if (type != null) {
|
| + types.add(type);
|
| + }
|
| + }
|
| + return types;
|
| + }
|
| +
|
| + void _setElement(Identifier typeName, Element element) {
|
| + if (element != null) {
|
| + if (typeName is SimpleIdentifier) {
|
| + typeName.staticElement = element;
|
| + } else if (typeName is PrefixedIdentifier) {
|
| + PrefixedIdentifier identifier = typeName;
|
| + identifier.identifier.staticElement = element;
|
| + SimpleIdentifier prefix = identifier.prefix;
|
| + Element prefixElement = nameScope.lookup(prefix, definingLibrary);
|
| + if (prefixElement != null) {
|
| + prefix.staticElement = prefixElement;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Given a parameter element, create a function type based on the given return type and parameter
|
| + * list and associate the created type with the element.
|
| + *
|
| + * @param element the parameter element whose type is to be set
|
| + * @param returnType the (possibly `null`) return type of the function
|
| + * @param parameterList the list of parameters to the function
|
| + */
|
| + void _setFunctionTypedParameterType(ParameterElementImpl element,
|
| + TypeName returnType, FormalParameterList parameterList) {
|
| + List<ParameterElement> parameters = _getElements(parameterList);
|
| + FunctionTypeAliasElementImpl aliasElement =
|
| + new FunctionTypeAliasElementImpl.forNode(null);
|
| + aliasElement.synthetic = true;
|
| + aliasElement.shareParameters(parameters);
|
| + aliasElement.returnType = _computeReturnType(returnType);
|
| + // FunctionTypeAliasElementImpl assumes the enclosing element is a
|
| + // CompilationUnitElement (because non-synthetic function types can only be
|
| + // declared at top level), so to avoid breaking things, go find the
|
| + // compilation unit element.
|
| + aliasElement.enclosingElement =
|
| + element.getAncestor((element) => element is CompilationUnitElement);
|
| + FunctionTypeImpl type = new FunctionTypeImpl.forTypedef(aliasElement);
|
| + ClassElement definingClass =
|
| + element.getAncestor((element) => element is ClassElement);
|
| + if (definingClass != null) {
|
| + aliasElement.shareTypeParameters(definingClass.typeParameters);
|
| + type.typeArguments = definingClass.type.typeArguments;
|
| + } else {
|
| + FunctionTypeAliasElement alias =
|
| + element.getAncestor((element) => element is FunctionTypeAliasElement);
|
| + while (alias != null && alias.isSynthetic) {
|
| + alias =
|
| + alias.getAncestor((element) => element is FunctionTypeAliasElement);
|
| + }
|
| + if (alias != null) {
|
| + aliasElement.typeParameters = alias.typeParameters;
|
| + type.typeArguments = alias.type.typeArguments;
|
| + } else {
|
| + type.typeArguments = DartType.EMPTY_LIST;
|
| + }
|
| + }
|
| + element.type = type;
|
| + }
|
| +
|
| + /**
|
| + * @return `true` if the name of the given [TypeName] is an built-in identifier.
|
| + */
|
| + static bool _isBuiltInIdentifier(TypeName node) {
|
| + sc.Token token = node.name.beginToken;
|
| + return token.type == sc.TokenType.KEYWORD;
|
| + }
|
| +
|
| + /**
|
| + * @return `true` if given [TypeName] is used as a type annotation.
|
| + */
|
| + static bool _isTypeAnnotation(TypeName node) {
|
| + AstNode parent = node.parent;
|
| + if (parent is VariableDeclarationList) {
|
| + return identical(parent.type, node);
|
| + }
|
| + if (parent is FieldFormalParameter) {
|
| + return identical(parent.type, node);
|
| + }
|
| + if (parent is SimpleFormalParameter) {
|
| + return identical(parent.type, node);
|
| + }
|
| + return false;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * The interface `TypeSystem` defines the behavior of an object representing
|
| + * the type system. This provides a common location to put methods that act on
|
| + * types but may need access to more global data structures, and it paves the
|
| + * way for a possible future where we may wish to make the type system
|
| + * pluggable.
|
| + */
|
| +abstract class TypeSystem {
|
| + /**
|
| + * Return the [TypeProvider] associated with this [TypeSystem].
|
| + */
|
| + TypeProvider get typeProvider;
|
| +
|
| + /**
|
| + * Compute the least upper bound of two types.
|
| + */
|
| + DartType getLeastUpperBound(DartType type1, DartType type2);
|
| +
|
| + /**
|
| + * Return `true` if the [leftType] is a subtype of the [rightType] (that is,
|
| + * if leftType <: rightType).
|
| + */
|
| + bool isSubtypeOf(DartType leftType, DartType rightType);
|
| +}
|
| +
|
| +/**
|
| + * Implementation of [TypeSystem] using the rules in the Dart specification.
|
| + */
|
| +class TypeSystemImpl implements TypeSystem {
|
| + @override
|
| + final TypeProvider typeProvider;
|
| +
|
| + TypeSystemImpl(this.typeProvider);
|
| +
|
| + @override
|
| + DartType getLeastUpperBound(DartType type1, DartType type2) {
|
| + // The least upper bound relation is reflexive.
|
| + if (identical(type1, type2)) {
|
| + return type1;
|
| + }
|
| + // The least upper bound of dynamic and any type T is dynamic.
|
| + if (type1.isDynamic) {
|
| + return type1;
|
| + }
|
| + if (type2.isDynamic) {
|
| + return type2;
|
| + }
|
| + // The least upper bound of void and any type T != dynamic is void.
|
| + if (type1.isVoid) {
|
| + return type1;
|
| + }
|
| + if (type2.isVoid) {
|
| + return type2;
|
| + }
|
| + // The least upper bound of bottom and any type T is T.
|
| + if (type1.isBottom) {
|
| + return type2;
|
| + }
|
| + if (type2.isBottom) {
|
| + return type1;
|
| + }
|
| + // Let U be a type variable with upper bound B. The least upper bound of U
|
| + // and a type T is the least upper bound of B and T.
|
| + while (type1 is TypeParameterType) {
|
| + // TODO(paulberry): is this correct in the complex of F-bounded
|
| + // polymorphism?
|
| + DartType bound = (type1 as TypeParameterType).element.bound;
|
| + if (bound == null) {
|
| + bound = typeProvider.objectType;
|
| + }
|
| + type1 = bound;
|
| + }
|
| + while (type2 is TypeParameterType) {
|
| + // TODO(paulberry): is this correct in the context of F-bounded
|
| + // polymorphism?
|
| + DartType bound = (type2 as TypeParameterType).element.bound;
|
| + if (bound == null) {
|
| + bound = typeProvider.objectType;
|
| + }
|
| + type2 = bound;
|
| + }
|
| + // The least upper bound of a function type and an interface type T is the
|
| + // least upper bound of Function and T.
|
| + if (type1 is FunctionType && type2 is InterfaceType) {
|
| + type1 = typeProvider.functionType;
|
| + }
|
| + if (type2 is FunctionType && type1 is InterfaceType) {
|
| + type2 = typeProvider.functionType;
|
| + }
|
| +
|
| + // At this point type1 and type2 should both either be interface types or
|
| + // function types.
|
| + if (type1 is InterfaceType && type2 is InterfaceType) {
|
| + InterfaceType result =
|
| + InterfaceTypeImpl.computeLeastUpperBound(type1, type2);
|
| + if (result == null) {
|
| + return typeProvider.dynamicType;
|
| + }
|
| + return result;
|
| + } else if (type1 is FunctionType && type2 is FunctionType) {
|
| + FunctionType result =
|
| + FunctionTypeImpl.computeLeastUpperBound(type1, type2);
|
| + if (result == null) {
|
| + return typeProvider.functionType;
|
| + }
|
| + return result;
|
| + } else {
|
| + // Should never happen. As a defensive measure, return the dynamic type.
|
| + assert(false);
|
| + return typeProvider.dynamicType;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + bool isSubtypeOf(DartType leftType, DartType rightType) {
|
| + return leftType.isSubtypeOf(rightType);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class [UnusedLocalElementsVerifier] traverse an element
|
| + * structure looking for cases of [HintCode.UNUSED_ELEMENT],
|
| + * [HintCode.UNUSED_FIELD], [HintCode.UNUSED_LOCAL_VARIABLE], etc.
|
| + */
|
| +class UnusedLocalElementsVerifier extends RecursiveElementVisitor {
|
| + /**
|
| + * The error listener to which errors will be reported.
|
| + */
|
| + final AnalysisErrorListener _errorListener;
|
| +
|
| + /**
|
| + * The elements know to be used.
|
| + */
|
| + final UsedLocalElements _usedElements;
|
| +
|
| + /**
|
| + * Create a new instance of the [UnusedLocalElementsVerifier].
|
| + */
|
| + UnusedLocalElementsVerifier(this._errorListener, this._usedElements);
|
| +
|
| + @override
|
| + visitClassElement(ClassElement element) {
|
| + if (!_isUsedElement(element)) {
|
| + _reportErrorForElement(HintCode.UNUSED_ELEMENT, element,
|
| + [element.kind.displayName, element.displayName]);
|
| + }
|
| + super.visitClassElement(element);
|
| + }
|
| +
|
| + @override
|
| + visitFieldElement(FieldElement element) {
|
| + if (!_isReadMember(element)) {
|
| + _reportErrorForElement(
|
| + HintCode.UNUSED_FIELD, element, [element.displayName]);
|
| + }
|
| + super.visitFieldElement(element);
|
| + }
|
| +
|
| + @override
|
| + visitFunctionElement(FunctionElement element) {
|
| + if (!_isUsedElement(element)) {
|
| + _reportErrorForElement(HintCode.UNUSED_ELEMENT, element,
|
| + [element.kind.displayName, element.displayName]);
|
| + }
|
| + super.visitFunctionElement(element);
|
| + }
|
| +
|
| + @override
|
| + visitFunctionTypeAliasElement(FunctionTypeAliasElement element) {
|
| + if (!_isUsedElement(element)) {
|
| + _reportErrorForElement(HintCode.UNUSED_ELEMENT, element,
|
| + [element.kind.displayName, element.displayName]);
|
| + }
|
| + super.visitFunctionTypeAliasElement(element);
|
| + }
|
| +
|
| + @override
|
| + visitLocalVariableElement(LocalVariableElement element) {
|
| + if (!_isUsedElement(element) && !_isNamedUnderscore(element)) {
|
| + HintCode errorCode;
|
| + if (_usedElements.isCatchException(element)) {
|
| + errorCode = HintCode.UNUSED_CATCH_CLAUSE;
|
| + } else if (_usedElements.isCatchStackTrace(element)) {
|
| + errorCode = HintCode.UNUSED_CATCH_STACK;
|
| + } else {
|
| + errorCode = HintCode.UNUSED_LOCAL_VARIABLE;
|
| + }
|
| + _reportErrorForElement(errorCode, element, [element.displayName]);
|
| + }
|
| + }
|
| +
|
| + @override
|
| + visitMethodElement(MethodElement element) {
|
| + if (!_isUsedMember(element)) {
|
| + _reportErrorForElement(HintCode.UNUSED_ELEMENT, element,
|
| + [element.kind.displayName, element.displayName]);
|
| + }
|
| + super.visitMethodElement(element);
|
| + }
|
| +
|
| + @override
|
| + visitPropertyAccessorElement(PropertyAccessorElement element) {
|
| + if (!_isUsedMember(element)) {
|
| + _reportErrorForElement(HintCode.UNUSED_ELEMENT, element,
|
| + [element.kind.displayName, element.displayName]);
|
| + }
|
| + super.visitPropertyAccessorElement(element);
|
| + }
|
| +
|
| + bool _isNamedUnderscore(LocalVariableElement element) {
|
| + String name = element.name;
|
| + if (name != null) {
|
| + for (int index = name.length - 1; index >= 0; --index) {
|
| + if (name.codeUnitAt(index) != 0x5F) {
|
| + // 0x5F => '_'
|
| + return false;
|
| + }
|
| + }
|
| + return true;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + bool _isReadMember(Element element) {
|
| + if (element.isPublic) {
|
| + return true;
|
| + }
|
| + if (element.isSynthetic) {
|
| + return true;
|
| + }
|
| + return _usedElements.readMembers.contains(element.displayName);
|
| + }
|
| +
|
| + bool _isUsedElement(Element element) {
|
| + if (element.isSynthetic) {
|
| + return true;
|
| + }
|
| + if (element is LocalVariableElement ||
|
| + element is FunctionElement && !element.isStatic) {
|
| + // local variable or function
|
| + } else {
|
| + if (element.isPublic) {
|
| + return true;
|
| + }
|
| + }
|
| + return _usedElements.elements.contains(element);
|
| + }
|
| +
|
| + bool _isUsedMember(Element element) {
|
| + if (element.isPublic) {
|
| + return true;
|
| + }
|
| + if (element.isSynthetic) {
|
| + return true;
|
| + }
|
| + if (_usedElements.members.contains(element.displayName)) {
|
| + return true;
|
| + }
|
| + return _usedElements.elements.contains(element);
|
| + }
|
| +
|
| + void _reportErrorForElement(
|
| + ErrorCode errorCode, Element element, List<Object> arguments) {
|
| + if (element != null) {
|
| + _errorListener.onError(new AnalysisError(
|
| + element.source,
|
| + element.nameOffset,
|
| + element.displayName.length,
|
| + errorCode,
|
| + arguments));
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * A container with information about used imports prefixes and used imported
|
| + * elements.
|
| + */
|
| +class UsedImportedElements {
|
| + /**
|
| + * The set of referenced [PrefixElement]s.
|
| + */
|
| + final Set<PrefixElement> prefixes = new HashSet<PrefixElement>();
|
| +
|
| + /**
|
| + * The set of referenced top-level [Element]s.
|
| + */
|
| + final Set<Element> elements = new HashSet<Element>();
|
| +}
|
| +
|
| +/**
|
| + * A container with sets of used [Element]s.
|
| + * All these elements are defined in a single compilation unit or a library.
|
| + */
|
| +class UsedLocalElements {
|
| + /**
|
| + * Resolved, locally defined elements that are used or potentially can be
|
| + * used.
|
| + */
|
| + final HashSet<Element> elements = new HashSet<Element>();
|
| +
|
| + /**
|
| + * [LocalVariableElement]s that represent exceptions in [CatchClause]s.
|
| + */
|
| + final HashSet<LocalVariableElement> catchExceptionElements =
|
| + new HashSet<LocalVariableElement>();
|
| +
|
| + /**
|
| + * [LocalVariableElement]s that represent stack traces in [CatchClause]s.
|
| + */
|
| + final HashSet<LocalVariableElement> catchStackTraceElements =
|
| + new HashSet<LocalVariableElement>();
|
| +
|
| + /**
|
| + * Names of resolved or unresolved class members that are referenced in the
|
| + * library.
|
| + */
|
| + final HashSet<String> members = new HashSet<String>();
|
| +
|
| + /**
|
| + * Names of resolved or unresolved class members that are read in the
|
| + * library.
|
| + */
|
| + final HashSet<String> readMembers = new HashSet<String>();
|
| +
|
| + UsedLocalElements();
|
| +
|
| + factory UsedLocalElements.merge(List<UsedLocalElements> parts) {
|
| + UsedLocalElements result = new UsedLocalElements();
|
| + for (UsedLocalElements part in parts) {
|
| + result.elements.addAll(part.elements);
|
| + result.catchExceptionElements.addAll(part.catchExceptionElements);
|
| + result.catchStackTraceElements.addAll(part.catchStackTraceElements);
|
| + result.members.addAll(part.members);
|
| + result.readMembers.addAll(part.readMembers);
|
| + }
|
| + return result;
|
| + }
|
| +
|
| + void addCatchException(LocalVariableElement element) {
|
| + if (element != null) {
|
| + catchExceptionElements.add(element);
|
| + }
|
| + }
|
| +
|
| + void addCatchStackTrace(LocalVariableElement element) {
|
| + if (element != null) {
|
| + catchStackTraceElements.add(element);
|
| + }
|
| + }
|
| +
|
| + void addElement(Element element) {
|
| + if (element != null) {
|
| + elements.add(element);
|
| + }
|
| + }
|
| +
|
| + bool isCatchException(LocalVariableElement element) {
|
| + return catchExceptionElements.contains(element);
|
| + }
|
| +
|
| + bool isCatchStackTrace(LocalVariableElement element) {
|
| + return catchStackTraceElements.contains(element);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Instances of the class `VariableResolverVisitor` are used to resolve
|
| + * [SimpleIdentifier]s to local variables and formal parameters.
|
| + */
|
| +class VariableResolverVisitor extends ScopedVisitor {
|
| + /**
|
| + * The method or function that we are currently visiting, or `null` if we are not inside a
|
| + * method or function.
|
| + */
|
| + ExecutableElement _enclosingFunction;
|
| +
|
| + /**
|
| + * Initialize a newly created visitor to resolve the nodes in an AST node.
|
| + *
|
| + * [definingLibrary] is the element for the library containing the node being
|
| + * visited.
|
| + * [source] is the source representing the compilation unit containing the
|
| + * node being visited
|
| + * [typeProvider] is the object used to access the types from the core
|
| + * library.
|
| + * [errorListener] is the error listener that will be informed of any errors
|
| + * that are found during resolution.
|
| + * [nameScope] is the scope used to resolve identifiers in the node that will
|
| + * first be visited. If `null` or unspecified, a new [LibraryScope] will be
|
| + * created based on [definingLibrary] and [typeProvider].
|
| + */
|
| + VariableResolverVisitor(LibraryElement definingLibrary, Source source,
|
| + TypeProvider typeProvider, AnalysisErrorListener errorListener,
|
| + {Scope nameScope})
|
| + : super(definingLibrary, source, typeProvider, errorListener,
|
| + nameScope: nameScope);
|
| +
|
| + /**
|
| + * Initialize a newly created visitor to resolve the nodes in a compilation unit.
|
| + *
|
| + * @param library the library containing the compilation unit being resolved
|
| + * @param source the source representing the compilation unit being visited
|
| + * @param typeProvider the object used to access the types from the core library
|
| + *
|
| + * Deprecated. Please use unnamed constructor instead.
|
| + */
|
| + @deprecated
|
| + VariableResolverVisitor.con1(
|
| + Library library, Source source, TypeProvider typeProvider)
|
| + : this(
|
| + library.libraryElement, source, typeProvider, library.errorListener,
|
| + nameScope: library.libraryScope);
|
| +
|
| + @override
|
| + Object visitExportDirective(ExportDirective node) => null;
|
| +
|
| + @override
|
| + Object visitFunctionDeclaration(FunctionDeclaration node) {
|
| + ExecutableElement outerFunction = _enclosingFunction;
|
| + try {
|
| + _enclosingFunction = node.element;
|
| + return super.visitFunctionDeclaration(node);
|
| + } finally {
|
| + _enclosingFunction = outerFunction;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitFunctionExpression(FunctionExpression node) {
|
| + if (node.parent is! FunctionDeclaration) {
|
| + ExecutableElement outerFunction = _enclosingFunction;
|
| + try {
|
| + _enclosingFunction = node.element;
|
| + return super.visitFunctionExpression(node);
|
| + } finally {
|
| + _enclosingFunction = outerFunction;
|
| + }
|
| + } else {
|
| + return super.visitFunctionExpression(node);
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitImportDirective(ImportDirective node) => null;
|
| +
|
| + @override
|
| + Object visitMethodDeclaration(MethodDeclaration node) {
|
| + ExecutableElement outerFunction = _enclosingFunction;
|
| + try {
|
| + _enclosingFunction = node.element;
|
| + return super.visitMethodDeclaration(node);
|
| + } finally {
|
| + _enclosingFunction = outerFunction;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitSimpleIdentifier(SimpleIdentifier node) {
|
| + // Ignore if already resolved - declaration or type.
|
| + if (node.staticElement != null) {
|
| + return null;
|
| + }
|
| + // Ignore if qualified.
|
| + AstNode parent = node.parent;
|
| + if (parent is PrefixedIdentifier && identical(parent.identifier, node)) {
|
| + return null;
|
| + }
|
| + if (parent is PropertyAccess && identical(parent.propertyName, node)) {
|
| + return null;
|
| + }
|
| + if (parent is MethodInvocation &&
|
| + identical(parent.methodName, node) &&
|
| + parent.realTarget != null) {
|
| + return null;
|
| + }
|
| + if (parent is ConstructorName) {
|
| + return null;
|
| + }
|
| + if (parent is Label) {
|
| + return null;
|
| + }
|
| + // Prepare VariableElement.
|
| + Element element = nameScope.lookup(node, definingLibrary);
|
| + if (element is! VariableElement) {
|
| + return null;
|
| + }
|
| + // Must be local or parameter.
|
| + ElementKind kind = element.kind;
|
| + if (kind == ElementKind.LOCAL_VARIABLE) {
|
| + node.staticElement = element;
|
| + LocalVariableElementImpl variableImpl =
|
| + element as LocalVariableElementImpl;
|
| + if (node.inSetterContext()) {
|
| + variableImpl.markPotentiallyMutatedInScope();
|
| + if (element.enclosingElement != _enclosingFunction) {
|
| + variableImpl.markPotentiallyMutatedInClosure();
|
| + }
|
| + }
|
| + } else if (kind == ElementKind.PARAMETER) {
|
| + node.staticElement = element;
|
| + if (node.inSetterContext()) {
|
| + ParameterElementImpl parameterImpl = element as ParameterElementImpl;
|
| + parameterImpl.markPotentiallyMutatedInScope();
|
| + // If we are in some closure, check if it is not the same as where
|
| + // variable is declared.
|
| + if (_enclosingFunction != null &&
|
| + (element.enclosingElement != _enclosingFunction)) {
|
| + parameterImpl.markPotentiallyMutatedInClosure();
|
| + }
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +}
|
| +
|
| +class _ConstantVerifier_validateInitializerExpression extends ConstantVisitor {
|
| + final ConstantVerifier verifier;
|
| +
|
| + List<ParameterElement> parameterElements;
|
| +
|
| + _ConstantVerifier_validateInitializerExpression(
|
| + TypeProvider typeProvider,
|
| + ErrorReporter errorReporter,
|
| + this.verifier,
|
| + this.parameterElements,
|
| + DeclaredVariables declaredVariables)
|
| + : super(new ConstantEvaluationEngine(typeProvider, declaredVariables),
|
| + errorReporter);
|
| +
|
| + @override
|
| + DartObjectImpl visitSimpleIdentifier(SimpleIdentifier node) {
|
| + Element element = node.staticElement;
|
| + for (ParameterElement parameterElement in parameterElements) {
|
| + if (identical(parameterElement, element) && parameterElement != null) {
|
| + DartType type = parameterElement.type;
|
| + if (type != null) {
|
| + if (type.isDynamic) {
|
| + return new DartObjectImpl(
|
| + verifier._typeProvider.objectType, DynamicState.DYNAMIC_STATE);
|
| + } else if (type.isSubtypeOf(verifier._boolType)) {
|
| + return new DartObjectImpl(
|
| + verifier._typeProvider.boolType, BoolState.UNKNOWN_VALUE);
|
| + } else if (type.isSubtypeOf(verifier._typeProvider.doubleType)) {
|
| + return new DartObjectImpl(
|
| + verifier._typeProvider.doubleType, DoubleState.UNKNOWN_VALUE);
|
| + } else if (type.isSubtypeOf(verifier._intType)) {
|
| + return new DartObjectImpl(
|
| + verifier._typeProvider.intType, IntState.UNKNOWN_VALUE);
|
| + } else if (type.isSubtypeOf(verifier._numType)) {
|
| + return new DartObjectImpl(
|
| + verifier._typeProvider.numType, NumState.UNKNOWN_VALUE);
|
| + } else if (type.isSubtypeOf(verifier._stringType)) {
|
| + return new DartObjectImpl(
|
| + verifier._typeProvider.stringType, StringState.UNKNOWN_VALUE);
|
| + }
|
| + //
|
| + // We don't test for other types of objects (such as List, Map,
|
| + // Function or Type) because there are no operations allowed on such
|
| + // types other than '==' and '!=', which means that we don't need to
|
| + // know the type when there is no specific data about the state of
|
| + // such objects.
|
| + //
|
| + }
|
| + return new DartObjectImpl(
|
| + type is InterfaceType ? type : verifier._typeProvider.objectType,
|
| + GenericState.UNKNOWN_VALUE);
|
| + }
|
| + }
|
| + return super.visitSimpleIdentifier(node);
|
| + }
|
| +}
|
| +
|
| +class _ElementBuilder_visitClassDeclaration extends UnifyingAstVisitor<Object> {
|
| + final ElementBuilder builder;
|
| +
|
| + List<ClassMember> nonFields;
|
| +
|
| + _ElementBuilder_visitClassDeclaration(this.builder, this.nonFields) : super();
|
| +
|
| + @override
|
| + Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| + nonFields.add(node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitMethodDeclaration(MethodDeclaration node) {
|
| + nonFields.add(node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitNode(AstNode node) => node.accept(builder);
|
| +}
|
| +
|
| +class _ResolverVisitor_isVariableAccessedInClosure
|
| + extends RecursiveAstVisitor<Object> {
|
| + final Element variable;
|
| +
|
| + bool result = false;
|
| +
|
| + bool _inClosure = false;
|
| +
|
| + _ResolverVisitor_isVariableAccessedInClosure(this.variable);
|
| +
|
| + @override
|
| + Object visitFunctionExpression(FunctionExpression node) {
|
| + bool inClosure = this._inClosure;
|
| + try {
|
| + this._inClosure = true;
|
| + return super.visitFunctionExpression(node);
|
| + } finally {
|
| + this._inClosure = inClosure;
|
| + }
|
| + }
|
| +
|
| + @override
|
| + Object visitSimpleIdentifier(SimpleIdentifier node) {
|
| + if (result) {
|
| + return null;
|
| + }
|
| + if (_inClosure && identical(node.staticElement, variable)) {
|
| + result = true;
|
| + }
|
| + return null;
|
| + }
|
| +}
|
| +
|
| +class _ResolverVisitor_isVariablePotentiallyMutatedIn
|
| + extends RecursiveAstVisitor<Object> {
|
| + final Element variable;
|
| +
|
| + bool result = false;
|
| +
|
| + _ResolverVisitor_isVariablePotentiallyMutatedIn(this.variable);
|
| +
|
| + @override
|
| + Object visitSimpleIdentifier(SimpleIdentifier node) {
|
| + if (result) {
|
| + return null;
|
| + }
|
| + if (identical(node.staticElement, variable)) {
|
| + if (node.inSetterContext()) {
|
| + result = true;
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +}
|
| +
|
| +class _TypeResolverVisitor_visitClassMembersInScope
|
| + extends UnifyingAstVisitor<Object> {
|
| + final TypeResolverVisitor TypeResolverVisitor_this;
|
| +
|
| + List<ClassMember> nonFields;
|
| +
|
| + _TypeResolverVisitor_visitClassMembersInScope(
|
| + this.TypeResolverVisitor_this, this.nonFields)
|
| + : super();
|
| +
|
| + @override
|
| + Object visitConstructorDeclaration(ConstructorDeclaration node) {
|
| + nonFields.add(node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitExtendsClause(ExtendsClause node) => null;
|
| +
|
| + @override
|
| + Object visitImplementsClause(ImplementsClause node) => null;
|
| +
|
| + @override
|
| + Object visitMethodDeclaration(MethodDeclaration node) {
|
| + nonFields.add(node);
|
| + return null;
|
| + }
|
| +
|
| + @override
|
| + Object visitNode(AstNode node) => node.accept(TypeResolverVisitor_this);
|
| +
|
| + @override
|
| + Object visitWithClause(WithClause node) => null;
|
| +}
|
|
|