OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file |
| 2 // for details. All rights reserved. Use of this source code is governed by a |
| 3 // BSD-style license that can be found in the LICENSE file. |
| 4 |
| 5 library analyzer.src.task.strong_mode; |
| 6 |
| 7 import 'dart:collection'; |
| 8 |
| 9 import 'package:analyzer/src/generated/ast.dart'; |
| 10 import 'package:analyzer/src/generated/element.dart'; |
| 11 import 'package:analyzer/src/generated/resolver.dart'; |
| 12 import 'package:analyzer/src/generated/utilities_dart.dart'; |
| 13 |
| 14 /** |
| 15 * Set the type of the sole parameter of the given [element] to the given [type]
. |
| 16 */ |
| 17 void setParameterType(PropertyAccessorElement element, DartType type) { |
| 18 if (element is PropertyAccessorElementImpl) { |
| 19 ParameterElement parameter = _getParameter(element); |
| 20 if (parameter is ParameterElementImpl) { |
| 21 // |
| 22 // Update the type of the parameter. |
| 23 // |
| 24 parameter.type = type; |
| 25 // |
| 26 // Update the type of the setter to reflect the new parameter type. |
| 27 // |
| 28 FunctionType functionType = element.type; |
| 29 if (functionType is FunctionTypeImpl) { |
| 30 element.type = |
| 31 new FunctionTypeImpl(element, functionType.prunedTypedefs); |
| 32 } else { |
| 33 assert(false); |
| 34 } |
| 35 } else { |
| 36 assert(false); |
| 37 } |
| 38 } else { |
| 39 throw new StateError('element is an instance of ${element.runtimeType}'); |
| 40 assert(false); |
| 41 } |
| 42 } |
| 43 |
| 44 /** |
| 45 * Set the return type of the given [element] to the given [type]. |
| 46 */ |
| 47 void setReturnType(ExecutableElement element, DartType type) { |
| 48 if (element is ExecutableElementImpl) { |
| 49 // |
| 50 // Update the return type of the element, which is stored in two places: |
| 51 // directly in the element and indirectly in the type of the element. |
| 52 // |
| 53 element.returnType = type; |
| 54 FunctionType functionType = element.type; |
| 55 if (functionType is FunctionTypeImpl) { |
| 56 element.type = new FunctionTypeImpl(element, functionType.prunedTypedefs); |
| 57 } else { |
| 58 assert(false); |
| 59 } |
| 60 } else { |
| 61 assert(false); |
| 62 } |
| 63 } |
| 64 |
| 65 /** |
| 66 * Return the element for the single parameter of the given [setter], or `null` |
| 67 * if the executable element is not a setter or does not have a single |
| 68 * parameter. |
| 69 */ |
| 70 ParameterElement _getParameter(ExecutableElement setter) { |
| 71 if (setter is PropertyAccessorElement && setter.isSetter) { |
| 72 List<ParameterElement> parameters = setter.parameters; |
| 73 if (parameters.length == 1) { |
| 74 return parameters[0]; |
| 75 } |
| 76 } |
| 77 return null; |
| 78 } |
| 79 |
| 80 /** |
| 81 * A function that returns `true` if the given [variable] passes the filter. |
| 82 */ |
| 83 typedef bool VariableFilter(VariableElement element); |
| 84 |
| 85 /** |
| 86 * An object used to find static variables whose types should be inferred and |
| 87 * classes whose members should have types inferred. Clients are expected to |
| 88 * visit a [CompilationUnit]. |
| 89 */ |
| 90 class InferrenceFinder extends SimpleAstVisitor { |
| 91 /** |
| 92 * The static variables that should have types inferred for them. |
| 93 */ |
| 94 final List<VariableElement> staticVariables = <VariableElement>[]; |
| 95 |
| 96 /** |
| 97 * The classes defined in the unit. |
| 98 * |
| 99 * TODO(brianwilkerson) We don't currently remove classes whose members do not |
| 100 * need to be processed, but we potentially could. |
| 101 */ |
| 102 final List<ClassElement> classes = <ClassElement>[]; |
| 103 |
| 104 /** |
| 105 * Initialize a newly created finder. |
| 106 */ |
| 107 InferrenceFinder(); |
| 108 |
| 109 @override |
| 110 void visitClassDeclaration(ClassDeclaration node) { |
| 111 classes.add(node.element); |
| 112 for (ClassMember member in node.members) { |
| 113 member.accept(this); |
| 114 } |
| 115 } |
| 116 |
| 117 @override |
| 118 void visitClassTypeAlias(ClassTypeAlias node) { |
| 119 classes.add(node.element); |
| 120 } |
| 121 |
| 122 @override |
| 123 void visitCompilationUnit(CompilationUnit node) { |
| 124 for (CompilationUnitMember declaration in node.declarations) { |
| 125 declaration.accept(this); |
| 126 } |
| 127 } |
| 128 |
| 129 @override |
| 130 void visitFieldDeclaration(FieldDeclaration node) { |
| 131 if (node.isStatic && node.fields.type == null) { |
| 132 _addVariables(node.fields.variables); |
| 133 } |
| 134 } |
| 135 |
| 136 @override |
| 137 void visitTopLevelVariableDeclaration(TopLevelVariableDeclaration node) { |
| 138 if (node.variables.type == null) { |
| 139 _addVariables(node.variables.variables); |
| 140 } |
| 141 } |
| 142 |
| 143 /** |
| 144 * Add all of the [variables] with initializers to the list of variables whose |
| 145 * type can be inferred. Technically, we only infer the types of variables |
| 146 * that do not have a static type, but all variables with initializers |
| 147 * potentially need to be re-resolved after inference because they might |
| 148 * refer to fields whose type was inferred. |
| 149 */ |
| 150 void _addVariables(NodeList<VariableDeclaration> variables) { |
| 151 for (VariableDeclaration variable in variables) { |
| 152 if (variable.initializer != null) { |
| 153 VariableElement element = variable.element; |
| 154 if (element.hasImplicitType) { |
| 155 staticVariables.add(element); |
| 156 } |
| 157 } |
| 158 } |
| 159 } |
| 160 } |
| 161 |
| 162 /** |
| 163 * An object used to infer the type of instance fields and the return types of |
| 164 * instance methods within a single compilation unit. |
| 165 */ |
| 166 class InstanceMemberInferrer { |
| 167 /** |
| 168 * The type provider used to look up types. |
| 169 */ |
| 170 final TypeProvider typeProvider; |
| 171 |
| 172 /** |
| 173 * The type system used to compute the least upper bound of types. |
| 174 */ |
| 175 TypeSystem typeSystem; |
| 176 |
| 177 /** |
| 178 * The inheritance manager used to find overridden method. |
| 179 */ |
| 180 InheritanceManager inheritanceManager; |
| 181 |
| 182 /** |
| 183 * The classes that have been visited while attempting to infer the types of |
| 184 * instance members of some base class. |
| 185 */ |
| 186 HashSet<ClassElementImpl> elementsBeingInferred = |
| 187 new HashSet<ClassElementImpl>(); |
| 188 |
| 189 /** |
| 190 * Initialize a newly create inferrer. |
| 191 */ |
| 192 InstanceMemberInferrer(this.typeProvider) { |
| 193 typeSystem = new TypeSystemImpl(typeProvider); |
| 194 } |
| 195 |
| 196 /** |
| 197 * Infer type information for all of the instance members in the given |
| 198 * compilation [unit]. |
| 199 */ |
| 200 void inferCompilationUnit(CompilationUnitElement unit) { |
| 201 inheritanceManager = new InheritanceManager(unit.library); |
| 202 unit.types.forEach((ClassElement classElement) { |
| 203 try { |
| 204 _inferClass(classElement); |
| 205 } on _CycleException { |
| 206 // This is a short circuit return to prevent types that inherit from |
| 207 // types containing a circular reference from being inferred. |
| 208 } |
| 209 }); |
| 210 } |
| 211 |
| 212 /** |
| 213 * Compute the best type for the [parameter] at the given [index] that must be |
| 214 * compatible with the types of the corresponding parameters of the given |
| 215 * [overriddenMethods]. |
| 216 * |
| 217 * At the moment, this method will only return a type other than 'dynamic' if |
| 218 * the types of all of the parameters are the same. In the future we might |
| 219 * want to be smarter about it, such as by returning the least upper bound of |
| 220 * the parameter types. |
| 221 */ |
| 222 DartType _computeParameterType(ParameterElement parameter, int index, |
| 223 List<ExecutableElement> overriddenMethods) { |
| 224 DartType parameterType = null; |
| 225 int length = overriddenMethods.length; |
| 226 for (int i = 0; i < length; i++) { |
| 227 DartType type = _getTypeOfCorrespondingParameter( |
| 228 parameter, index, overriddenMethods[i]); |
| 229 if (parameterType == null) { |
| 230 parameterType = type; |
| 231 } else if (parameterType != type) { |
| 232 return typeProvider.dynamicType; |
| 233 } |
| 234 } |
| 235 return parameterType == null ? typeProvider.dynamicType : parameterType; |
| 236 } |
| 237 |
| 238 /** |
| 239 * Compute the best return type for a method that must be compatible with the |
| 240 * return types of each of the given [overriddenMethods]. |
| 241 * |
| 242 * At the moment, this method will only return a type other than 'dynamic' if |
| 243 * the return types of all of the methods are the same. In the future we might |
| 244 * want to be smarter about it. |
| 245 */ |
| 246 DartType _computeReturnType(List<ExecutableElement> overriddenMethods) { |
| 247 DartType returnType = null; |
| 248 int length = overriddenMethods.length; |
| 249 for (int i = 0; i < length; i++) { |
| 250 DartType type = _getReturnType(overriddenMethods[i]); |
| 251 if (returnType == null) { |
| 252 returnType = type; |
| 253 } else if (returnType != type) { |
| 254 return typeProvider.dynamicType; |
| 255 } |
| 256 } |
| 257 return returnType == null ? typeProvider.dynamicType : returnType; |
| 258 } |
| 259 |
| 260 DartType _getReturnType(ExecutableElement element) { |
| 261 DartType returnType = element.returnType; |
| 262 if (returnType == null) { |
| 263 return typeProvider.dynamicType; |
| 264 } |
| 265 return returnType; |
| 266 } |
| 267 |
| 268 /** |
| 269 * Given a [method], return the type of the parameter in the method that |
| 270 * corresponds to the given [parameter]. If the parameter is positional, then |
| 271 * it appears at the given [index] in its enclosing element's list of |
| 272 * parameters. |
| 273 */ |
| 274 DartType _getTypeOfCorrespondingParameter( |
| 275 ParameterElement parameter, int index, ExecutableElement method) { |
| 276 // |
| 277 // Find the corresponding parameter. |
| 278 // |
| 279 List<ParameterElement> methodParameters = method.parameters; |
| 280 ParameterElement matchingParameter = null; |
| 281 if (parameter.parameterKind == ParameterKind.NAMED) { |
| 282 // |
| 283 // If we're looking for a named parameter, only a named parameter with |
| 284 // the same name will be matched. |
| 285 // |
| 286 matchingParameter = methodParameters.lastWhere( |
| 287 (ParameterElement methodParameter) => |
| 288 methodParameter.parameterKind == ParameterKind.NAMED && |
| 289 methodParameter.name == parameter.name, |
| 290 orElse: () => null); |
| 291 } else { |
| 292 // |
| 293 // If we're looking for a positional parameter we ignore the difference |
| 294 // between required and optional parameters. |
| 295 // |
| 296 if (index < methodParameters.length) { |
| 297 matchingParameter = methodParameters[index]; |
| 298 if (matchingParameter.parameterKind == ParameterKind.NAMED) { |
| 299 matchingParameter = null; |
| 300 } |
| 301 } |
| 302 } |
| 303 // |
| 304 // Then return the type of the parameter. |
| 305 // |
| 306 return matchingParameter == null |
| 307 ? typeProvider.dynamicType |
| 308 : matchingParameter.type; |
| 309 } |
| 310 |
| 311 /** |
| 312 * If the given [accessorElement] represents a non-synthetic instance getter |
| 313 * for which no return type was provided, infer the return type of the getter. |
| 314 */ |
| 315 void _inferAccessor(PropertyAccessorElement accessorElement) { |
| 316 if (!accessorElement.isSynthetic && |
| 317 accessorElement.isGetter && |
| 318 !accessorElement.isStatic && |
| 319 accessorElement.hasImplicitReturnType) { |
| 320 List<ExecutableElement> overriddenGetters = inheritanceManager |
| 321 .lookupOverrides( |
| 322 accessorElement.enclosingElement, accessorElement.name); |
| 323 if (overriddenGetters.isNotEmpty && _onlyGetters(overriddenGetters)) { |
| 324 DartType newType = _computeReturnType(overriddenGetters); |
| 325 List<ExecutableElement> overriddenSetters = inheritanceManager |
| 326 .lookupOverrides( |
| 327 accessorElement.enclosingElement, accessorElement.name + '='); |
| 328 PropertyAccessorElement setter = (accessorElement.enclosingElement |
| 329 as ClassElement).getSetter(accessorElement.name); |
| 330 if (setter != null) { |
| 331 overriddenSetters.add(setter); |
| 332 } |
| 333 if (!_isCompatible(newType, overriddenSetters)) { |
| 334 newType = typeProvider.dynamicType; |
| 335 } |
| 336 setReturnType(accessorElement, newType); |
| 337 (accessorElement.variable as FieldElementImpl).type = newType; |
| 338 } |
| 339 } |
| 340 } |
| 341 |
| 342 /** |
| 343 * Infer type information for all of the instance members in the given |
| 344 * [classElement]. |
| 345 */ |
| 346 void _inferClass(ClassElement classElement) { |
| 347 if (classElement is ClassElementImpl) { |
| 348 if (classElement.hasBeenInferred) { |
| 349 return; |
| 350 } |
| 351 if (!elementsBeingInferred.add(classElement)) { |
| 352 // We have found a circularity in the class hierarchy. For now we just |
| 353 // stop trying to infer any type information for any classes that |
| 354 // inherit from any class in the cycle. We could potentially limit the |
| 355 // algorithm to only not inferring types in the classes in the cycle, |
| 356 // but it isn't clear that the results would be significantly better. |
| 357 throw new _CycleException(); |
| 358 } |
| 359 try { |
| 360 // |
| 361 // Ensure that all of instance members in the supertypes have had types |
| 362 // inferred for them. |
| 363 // |
| 364 _inferType(classElement.supertype); |
| 365 classElement.mixins.forEach(_inferType); |
| 366 classElement.interfaces.forEach(_inferType); |
| 367 // |
| 368 // Then infer the types for the members. |
| 369 // |
| 370 classElement.fields.forEach(_inferField); |
| 371 classElement.accessors.forEach(_inferAccessor); |
| 372 classElement.methods.forEach(_inferMethod); |
| 373 classElement.hasBeenInferred = true; |
| 374 } finally { |
| 375 elementsBeingInferred.remove(classElement); |
| 376 } |
| 377 } |
| 378 } |
| 379 |
| 380 /** |
| 381 * If the given [fieldElement] represents a non-synthetic instance field for |
| 382 * which no type was provided, infer the type of the field. |
| 383 */ |
| 384 void _inferField(FieldElement fieldElement) { |
| 385 if (!fieldElement.isSynthetic && |
| 386 !fieldElement.isStatic && |
| 387 fieldElement.hasImplicitType) { |
| 388 // |
| 389 // First look for overridden getters with the same name as the field. |
| 390 // |
| 391 List<ExecutableElement> overriddenGetters = inheritanceManager |
| 392 .lookupOverrides(fieldElement.enclosingElement, fieldElement.name); |
| 393 DartType newType = null; |
| 394 if (overriddenGetters.isNotEmpty && _onlyGetters(overriddenGetters)) { |
| 395 newType = _computeReturnType(overriddenGetters); |
| 396 List<ExecutableElement> overriddenSetters = inheritanceManager |
| 397 .lookupOverrides( |
| 398 fieldElement.enclosingElement, fieldElement.name + '='); |
| 399 if (!_isCompatible(newType, overriddenSetters)) { |
| 400 newType = null; |
| 401 } |
| 402 } |
| 403 // |
| 404 // Then, if none was found, infer the type from the initialization |
| 405 // expression. |
| 406 // |
| 407 if (newType == null) { |
| 408 if (fieldElement.initializer != null && |
| 409 (fieldElement.isFinal || overriddenGetters.isEmpty)) { |
| 410 newType = fieldElement.initializer.returnType; |
| 411 } |
| 412 } |
| 413 if (newType == null || newType.isBottom) { |
| 414 newType = typeProvider.dynamicType; |
| 415 } |
| 416 (fieldElement as FieldElementImpl).type = newType; |
| 417 setReturnType(fieldElement.getter, newType); |
| 418 if (!fieldElement.isFinal && !fieldElement.isConst) { |
| 419 setParameterType(fieldElement.setter, newType); |
| 420 } |
| 421 } |
| 422 } |
| 423 |
| 424 /** |
| 425 * If the given [methodElement] represents a non-synthetic instance method |
| 426 * for which no return type was provided, infer the return type of the method. |
| 427 */ |
| 428 void _inferMethod(MethodElement methodElement) { |
| 429 if (methodElement.isSynthetic || methodElement.isStatic) { |
| 430 return; |
| 431 } |
| 432 List<ExecutableElement> overriddenMethods = null; |
| 433 // |
| 434 // Infer the return type. |
| 435 // |
| 436 if (methodElement.hasImplicitReturnType) { |
| 437 overriddenMethods = inheritanceManager.lookupOverrides( |
| 438 methodElement.enclosingElement, methodElement.name); |
| 439 if (overriddenMethods.isEmpty || !_onlyMethods(overriddenMethods)) { |
| 440 return; |
| 441 } |
| 442 MethodElementImpl element = methodElement as MethodElementImpl; |
| 443 setReturnType(element, _computeReturnType(overriddenMethods)); |
| 444 } |
| 445 // |
| 446 // Infer the parameter types. |
| 447 // |
| 448 List<ParameterElement> parameters = methodElement.parameters; |
| 449 int length = parameters.length; |
| 450 for (int i = 0; i < length; ++i) { |
| 451 ParameterElement parameter = parameters[i]; |
| 452 if (parameter is ParameterElementImpl && parameter.hasImplicitType) { |
| 453 if (overriddenMethods == null) { |
| 454 overriddenMethods = inheritanceManager.lookupOverrides( |
| 455 methodElement.enclosingElement, methodElement.name); |
| 456 } |
| 457 if (overriddenMethods.isEmpty || !_onlyMethods(overriddenMethods)) { |
| 458 return; |
| 459 } |
| 460 parameter.type = _computeParameterType(parameter, i, overriddenMethods); |
| 461 } |
| 462 } |
| 463 } |
| 464 |
| 465 /** |
| 466 * Infer type information for all of the instance members in the given |
| 467 * interface [type]. |
| 468 */ |
| 469 void _inferType(InterfaceType type) { |
| 470 if (type != null) { |
| 471 ClassElement element = type.element; |
| 472 if (element != null) { |
| 473 _inferClass(element); |
| 474 } |
| 475 } |
| 476 } |
| 477 |
| 478 /** |
| 479 * Return `true` if the given [type] is compatible with the argument types of |
| 480 * all of the given [setters]. |
| 481 */ |
| 482 bool _isCompatible(DartType type, List<ExecutableElement> setters) { |
| 483 for (ExecutableElement setter in setters) { |
| 484 ParameterElement parameter = _getParameter(setter); |
| 485 if (parameter != null && !typeSystem.isSubtypeOf(parameter.type, type)) { |
| 486 return false; |
| 487 } |
| 488 } |
| 489 return true; |
| 490 } |
| 491 |
| 492 /** |
| 493 * Return `true` if the list of [elements] contains only getters. |
| 494 */ |
| 495 bool _onlyGetters(List<ExecutableElement> elements) { |
| 496 for (ExecutableElement element in elements) { |
| 497 if (!(element is PropertyAccessorElement && element.isGetter)) { |
| 498 return false; |
| 499 } |
| 500 } |
| 501 return true; |
| 502 } |
| 503 |
| 504 /** |
| 505 * Return `true` if the list of [elements] contains only methods. |
| 506 */ |
| 507 bool _onlyMethods(List<ExecutableElement> elements) { |
| 508 for (ExecutableElement element in elements) { |
| 509 if (element is! MethodElement) { |
| 510 return false; |
| 511 } |
| 512 } |
| 513 return true; |
| 514 } |
| 515 } |
| 516 |
| 517 /** |
| 518 * A visitor that will gather all of the variables referenced within a given |
| 519 * AST structure. The collection can be restricted to contain only those |
| 520 * variables that pass a specified filter. |
| 521 */ |
| 522 class VariableGatherer extends RecursiveAstVisitor { |
| 523 /** |
| 524 * The filter used to limit which variables are gathered, or `null` if no |
| 525 * filtering is to be performed. |
| 526 */ |
| 527 final VariableFilter filter; |
| 528 |
| 529 /** |
| 530 * The variables that were found. |
| 531 */ |
| 532 final Set<VariableElement> results = new HashSet<VariableElement>(); |
| 533 |
| 534 /** |
| 535 * Initialize a newly created gatherer to gather all of the variables that |
| 536 * pass the given [filter] (or all variables if no filter is provided). |
| 537 */ |
| 538 VariableGatherer([this.filter = null]); |
| 539 |
| 540 @override |
| 541 void visitSimpleIdentifier(SimpleIdentifier node) { |
| 542 if (!node.inDeclarationContext()) { |
| 543 Element element = node.staticElement; |
| 544 if (element is PropertyAccessorElement && element.isSynthetic) { |
| 545 element = (element as PropertyAccessorElement).variable; |
| 546 } |
| 547 if (element is VariableElement && (filter == null || filter(element))) { |
| 548 results.add(element); |
| 549 } |
| 550 } |
| 551 } |
| 552 } |
| 553 |
| 554 /** |
| 555 * A class of exception that is not used anywhere else. |
| 556 */ |
| 557 class _CycleException implements Exception {} |
OLD | NEW |