Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(5)

Side by Side Diff: src/ia32/lithium-codegen-ia32.cc

Issue 13426006: Improvements for x87 stack handling (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Last comments Created 7 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/ia32/lithium-codegen-ia32.h ('k') | src/ia32/lithium-gap-resolver-ia32.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 348 matching lines...) Expand 10 before | Expand all | Expand 10 after
359 changed_value->id(), changed_value->Mnemonic(), 359 changed_value->id(), changed_value->Mnemonic(),
360 use_id, use_mnemo); 360 use_id, use_mnemo);
361 } else { 361 } else {
362 Comment(";;; @%d: %s. <#%d>", current_instruction_, 362 Comment(";;; @%d: %s. <#%d>", current_instruction_,
363 instr->Mnemonic(), hydrogen->id()); 363 instr->Mnemonic(), hydrogen->id());
364 } 364 }
365 } else { 365 } else {
366 Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic()); 366 Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
367 } 367 }
368 } 368 }
369
370 if (!CpuFeatures::IsSupported(SSE2)) {
371 FlushX87StackIfNecessary(instr);
372 }
373
369 instr->CompileToNative(this); 374 instr->CompileToNative(this);
375
376 if (!CpuFeatures::IsSupported(SSE2)) {
377 ASSERT(!instr->HasDoubleRegisterResult() || x87_stack_depth_ == 1);
378
379 if (FLAG_debug_code && FLAG_enable_slow_asserts) {
380 __ VerifyX87StackDepth(x87_stack_depth_);
381 }
382 }
370 } 383 }
371 } 384 }
372 EnsureSpaceForLazyDeopt(); 385 EnsureSpaceForLazyDeopt();
373 return !is_aborted(); 386 return !is_aborted();
374 } 387 }
375 388
376 389
377 bool LCodeGen::GenerateJumpTable() { 390 bool LCodeGen::GenerateJumpTable() {
378 Label needs_frame_not_call; 391 Label needs_frame_not_call;
379 Label needs_frame_is_call; 392 Label needs_frame_is_call;
(...skipping 134 matching lines...) Expand 10 before | Expand all | Expand 10 after
514 XMMRegister LCodeGen::ToDoubleRegister(int index) const { 527 XMMRegister LCodeGen::ToDoubleRegister(int index) const {
515 return XMMRegister::FromAllocationIndex(index); 528 return XMMRegister::FromAllocationIndex(index);
516 } 529 }
517 530
518 531
519 bool LCodeGen::IsX87TopOfStack(LOperand* op) const { 532 bool LCodeGen::IsX87TopOfStack(LOperand* op) const {
520 return op->IsDoubleRegister(); 533 return op->IsDoubleRegister();
521 } 534 }
522 535
523 536
537 void LCodeGen::ReadX87Operand(Operand dst) {
538 ASSERT(x87_stack_depth_ == 1);
539 __ fst_d(dst);
540 }
541
542
543 void LCodeGen::PushX87DoubleOperand(Operand src) {
544 ASSERT(x87_stack_depth_ == 0);
545 x87_stack_depth_++;
546 __ fld_d(src);
547 }
548
549
550 void LCodeGen::PushX87FloatOperand(Operand src) {
551 ASSERT(x87_stack_depth_ == 0);
552 x87_stack_depth_++;
553 __ fld_s(src);
554 }
555
556
557 void LCodeGen::PopX87() {
558 ASSERT(x87_stack_depth_ == 1);
559 x87_stack_depth_--;
560 __ fstp(0);
561 }
562
563
564 void LCodeGen::CurrentInstructionReturnsX87Result() {
565 ASSERT(x87_stack_depth_ <= 1);
566 if (x87_stack_depth_ == 0) {
567 x87_stack_depth_ = 1;
568 }
569 }
570
571
572 void LCodeGen::FlushX87StackIfNecessary(LInstruction* instr) {
573 if (x87_stack_depth_ > 0) {
574 if ((instr->ClobbersDoubleRegisters() ||
575 instr->HasDoubleRegisterResult()) &&
576 !instr->HasDoubleRegisterInput()) {
577 PopX87();
578 }
579 }
580 }
581
582
524 Register LCodeGen::ToRegister(LOperand* op) const { 583 Register LCodeGen::ToRegister(LOperand* op) const {
525 ASSERT(op->IsRegister()); 584 ASSERT(op->IsRegister());
526 return ToRegister(op->index()); 585 return ToRegister(op->index());
527 } 586 }
528 587
529 588
530 XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const { 589 XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
531 ASSERT(op->IsDoubleRegister()); 590 ASSERT(op->IsDoubleRegister());
532 return ToDoubleRegister(op->index()); 591 return ToDoubleRegister(op->index());
533 } 592 }
(...skipping 305 matching lines...) Expand 10 before | Expand all | Expand 10 after
839 translation.index(), 898 translation.index(),
840 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); 899 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
841 deoptimizations_.Add(environment, zone()); 900 deoptimizations_.Add(environment, zone());
842 } 901 }
843 } 902 }
844 903
845 904
846 void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) { 905 void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) {
847 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); 906 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
848 ASSERT(environment->HasBeenRegistered()); 907 ASSERT(environment->HasBeenRegistered());
908 // It's an error to deoptimize with the x87 fp stack in use.
909 ASSERT(x87_stack_depth_ == 0);
849 int id = environment->deoptimization_index(); 910 int id = environment->deoptimization_index();
850 ASSERT(info()->IsOptimizing() || info()->IsStub()); 911 ASSERT(info()->IsOptimizing() || info()->IsStub());
851 Deoptimizer::BailoutType bailout_type = info()->IsStub() 912 Deoptimizer::BailoutType bailout_type = info()->IsStub()
852 ? Deoptimizer::LAZY 913 ? Deoptimizer::LAZY
853 : Deoptimizer::EAGER; 914 : Deoptimizer::EAGER;
854 Address entry = 915 Address entry =
855 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); 916 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
856 if (entry == NULL) { 917 if (entry == NULL) {
857 Abort("bailout was not prepared"); 918 Abort("bailout was not prepared");
858 return; 919 return;
(...skipping 823 matching lines...) Expand 10 before | Expand all | Expand 10 after
1682 } 1743 }
1683 1744
1684 1745
1685 void LCodeGen::DoConstantI(LConstantI* instr) { 1746 void LCodeGen::DoConstantI(LConstantI* instr) {
1686 ASSERT(instr->result()->IsRegister()); 1747 ASSERT(instr->result()->IsRegister());
1687 __ Set(ToRegister(instr->result()), Immediate(instr->value())); 1748 __ Set(ToRegister(instr->result()), Immediate(instr->value()));
1688 } 1749 }
1689 1750
1690 1751
1691 void LCodeGen::DoConstantD(LConstantD* instr) { 1752 void LCodeGen::DoConstantD(LConstantD* instr) {
1692 ASSERT(instr->result()->IsDoubleRegister());
1693 XMMRegister res = ToDoubleRegister(instr->result());
1694 double v = instr->value(); 1753 double v = instr->value();
1695 // Use xor to produce +0.0 in a fast and compact way, but avoid to 1754 uint64_t int_val = BitCast<uint64_t, double>(v);
1696 // do so if the constant is -0.0. 1755 int32_t lower = static_cast<int32_t>(int_val);
1697 if (BitCast<uint64_t, double>(v) == 0) { 1756 int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
1698 __ xorps(res, res); 1757
1758 if (!CpuFeatures::IsSafeForSnapshot(SSE2)) {
1759 __ push(Immediate(lower));
1760 __ push(Immediate(upper));
1761 PushX87DoubleOperand(Operand(esp, 0));
1762 __ add(Operand(esp), Immediate(kDoubleSize));
1763 CurrentInstructionReturnsX87Result();
1699 } else { 1764 } else {
1700 Register temp = ToRegister(instr->temp()); 1765 CpuFeatureScope scope1(masm(), SSE2);
1701 uint64_t int_val = BitCast<uint64_t, double>(v); 1766 ASSERT(instr->result()->IsDoubleRegister());
1702 int32_t lower = static_cast<int32_t>(int_val); 1767 XMMRegister res = ToDoubleRegister(instr->result());
1703 int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt)); 1768 if (int_val == 0) {
1704 if (CpuFeatures::IsSupported(SSE4_1)) { 1769 __ xorps(res, res);
1705 CpuFeatureScope scope1(masm(), SSE2); 1770 } else {
1706 CpuFeatureScope scope2(masm(), SSE4_1); 1771 Register temp = ToRegister(instr->temp());
1707 if (lower != 0) { 1772 if (CpuFeatures::IsSupported(SSE4_1)) {
1708 __ Set(temp, Immediate(lower)); 1773 CpuFeatureScope scope2(masm(), SSE4_1);
1774 if (lower != 0) {
1775 __ Set(temp, Immediate(lower));
1776 __ movd(res, Operand(temp));
1777 __ Set(temp, Immediate(upper));
1778 __ pinsrd(res, Operand(temp), 1);
1779 } else {
1780 __ xorps(res, res);
1781 __ Set(temp, Immediate(upper));
1782 __ pinsrd(res, Operand(temp), 1);
1783 }
1784 } else {
1785 __ Set(temp, Immediate(upper));
1709 __ movd(res, Operand(temp)); 1786 __ movd(res, Operand(temp));
1710 __ Set(temp, Immediate(upper)); 1787 __ psllq(res, 32);
1711 __ pinsrd(res, Operand(temp), 1); 1788 if (lower != 0) {
1712 } else { 1789 __ Set(temp, Immediate(lower));
1713 __ xorps(res, res); 1790 __ movd(xmm0, Operand(temp));
1714 __ Set(temp, Immediate(upper)); 1791 __ por(res, xmm0);
1715 __ pinsrd(res, Operand(temp), 1); 1792 }
1716 }
1717 } else {
1718 CpuFeatureScope scope(masm(), SSE2);
1719 __ Set(temp, Immediate(upper));
1720 __ movd(res, Operand(temp));
1721 __ psllq(res, 32);
1722 if (lower != 0) {
1723 __ Set(temp, Immediate(lower));
1724 __ movd(xmm0, Operand(temp));
1725 __ por(res, xmm0);
1726 } 1793 }
1727 } 1794 }
1728 } 1795 }
1729 } 1796 }
1730 1797
1731 1798
1732 void LCodeGen::DoConstantT(LConstantT* instr) { 1799 void LCodeGen::DoConstantT(LConstantT* instr) {
1733 Register reg = ToRegister(instr->result()); 1800 Register reg = ToRegister(instr->result());
1734 Handle<Object> handle = instr->value(); 1801 Handle<Object> handle = instr->value();
1735 if (handle->IsHeapObject()) { 1802 if (handle->IsHeapObject()) {
(...skipping 1415 matching lines...) Expand 10 before | Expand all | Expand 10 after
3151 elements_kind, 3218 elements_kind,
3152 0, 3219 0,
3153 instr->additional_index())); 3220 instr->additional_index()));
3154 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { 3221 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
3155 if (CpuFeatures::IsSupported(SSE2)) { 3222 if (CpuFeatures::IsSupported(SSE2)) {
3156 CpuFeatureScope scope(masm(), SSE2); 3223 CpuFeatureScope scope(masm(), SSE2);
3157 XMMRegister result(ToDoubleRegister(instr->result())); 3224 XMMRegister result(ToDoubleRegister(instr->result()));
3158 __ movss(result, operand); 3225 __ movss(result, operand);
3159 __ cvtss2sd(result, result); 3226 __ cvtss2sd(result, result);
3160 } else { 3227 } else {
3161 __ fld_s(operand); 3228 PushX87FloatOperand(operand);
3162 HandleX87FPReturnValue(instr); 3229 CurrentInstructionReturnsX87Result();
3163 } 3230 }
3164 } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { 3231 } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
3165 if (CpuFeatures::IsSupported(SSE2)) { 3232 if (CpuFeatures::IsSupported(SSE2)) {
3166 CpuFeatureScope scope(masm(), SSE2); 3233 CpuFeatureScope scope(masm(), SSE2);
3167 __ movdbl(ToDoubleRegister(instr->result()), operand); 3234 __ movdbl(ToDoubleRegister(instr->result()), operand);
3168 } else { 3235 } else {
3169 __ fld_d(operand); 3236 PushX87DoubleOperand(operand);
3170 HandleX87FPReturnValue(instr); 3237 CurrentInstructionReturnsX87Result();
3171 } 3238 }
3172 } else { 3239 } else {
3173 Register result(ToRegister(instr->result())); 3240 Register result(ToRegister(instr->result()));
3174 switch (elements_kind) { 3241 switch (elements_kind) {
3175 case EXTERNAL_BYTE_ELEMENTS: 3242 case EXTERNAL_BYTE_ELEMENTS:
3176 __ movsx_b(result, operand); 3243 __ movsx_b(result, operand);
3177 break; 3244 break;
3178 case EXTERNAL_PIXEL_ELEMENTS: 3245 case EXTERNAL_PIXEL_ELEMENTS:
3179 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: 3246 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
3180 __ movzx_b(result, operand); 3247 __ movzx_b(result, operand);
(...skipping 24 matching lines...) Expand all
3205 case FAST_HOLEY_DOUBLE_ELEMENTS: 3272 case FAST_HOLEY_DOUBLE_ELEMENTS:
3206 case DICTIONARY_ELEMENTS: 3273 case DICTIONARY_ELEMENTS:
3207 case NON_STRICT_ARGUMENTS_ELEMENTS: 3274 case NON_STRICT_ARGUMENTS_ELEMENTS:
3208 UNREACHABLE(); 3275 UNREACHABLE();
3209 break; 3276 break;
3210 } 3277 }
3211 } 3278 }
3212 } 3279 }
3213 3280
3214 3281
3215 void LCodeGen::HandleX87FPReturnValue(LInstruction* instr) {
3216 if (IsX87TopOfStack(instr->result())) {
3217 // Return value is already on stack. If the value has no uses, then
3218 // pop it off the FP stack. Otherwise, make sure that there are enough
3219 // copies of the value on the stack to feed all of the usages, e.g.
3220 // when the following instruction uses the return value in multiple
3221 // inputs.
3222 int count = instr->hydrogen_value()->UseCount();
3223 if (count == 0) {
3224 __ fstp(0);
3225 } else {
3226 count--;
3227 ASSERT(count <= 7);
3228 while (count-- > 0) {
3229 __ fld(0);
3230 }
3231 }
3232 } else {
3233 __ fstp_d(ToOperand(instr->result()));
3234 }
3235 }
3236
3237
3238 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { 3282 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
3239 if (instr->hydrogen()->RequiresHoleCheck()) { 3283 if (instr->hydrogen()->RequiresHoleCheck()) {
3240 int offset = FixedDoubleArray::kHeaderSize - kHeapObjectTag + 3284 int offset = FixedDoubleArray::kHeaderSize - kHeapObjectTag +
3241 sizeof(kHoleNanLower32); 3285 sizeof(kHoleNanLower32);
3242 Operand hole_check_operand = BuildFastArrayOperand( 3286 Operand hole_check_operand = BuildFastArrayOperand(
3243 instr->elements(), instr->key(), 3287 instr->elements(), instr->key(),
3244 instr->hydrogen()->key()->representation(), 3288 instr->hydrogen()->key()->representation(),
3245 FAST_DOUBLE_ELEMENTS, 3289 FAST_DOUBLE_ELEMENTS,
3246 offset, 3290 offset,
3247 instr->additional_index()); 3291 instr->additional_index());
3248 __ cmp(hole_check_operand, Immediate(kHoleNanUpper32)); 3292 __ cmp(hole_check_operand, Immediate(kHoleNanUpper32));
3249 DeoptimizeIf(equal, instr->environment()); 3293 DeoptimizeIf(equal, instr->environment());
3250 } 3294 }
3251 3295
3252 Operand double_load_operand = BuildFastArrayOperand( 3296 Operand double_load_operand = BuildFastArrayOperand(
3253 instr->elements(), 3297 instr->elements(),
3254 instr->key(), 3298 instr->key(),
3255 instr->hydrogen()->key()->representation(), 3299 instr->hydrogen()->key()->representation(),
3256 FAST_DOUBLE_ELEMENTS, 3300 FAST_DOUBLE_ELEMENTS,
3257 FixedDoubleArray::kHeaderSize - kHeapObjectTag, 3301 FixedDoubleArray::kHeaderSize - kHeapObjectTag,
3258 instr->additional_index()); 3302 instr->additional_index());
3259 if (CpuFeatures::IsSupported(SSE2)) { 3303 if (CpuFeatures::IsSupported(SSE2)) {
3260 CpuFeatureScope scope(masm(), SSE2); 3304 CpuFeatureScope scope(masm(), SSE2);
3261 XMMRegister result = ToDoubleRegister(instr->result()); 3305 XMMRegister result = ToDoubleRegister(instr->result());
3262 __ movdbl(result, double_load_operand); 3306 __ movdbl(result, double_load_operand);
3263 } else { 3307 } else {
3264 __ fld_d(double_load_operand); 3308 PushX87DoubleOperand(double_load_operand);
3265 HandleX87FPReturnValue(instr); 3309 CurrentInstructionReturnsX87Result();
3266 } 3310 }
3267 } 3311 }
3268 3312
3269 3313
3270 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { 3314 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
3271 Register result = ToRegister(instr->result()); 3315 Register result = ToRegister(instr->result());
3272 3316
3273 // Load the result. 3317 // Load the result.
3274 __ mov(result, 3318 __ mov(result,
3275 BuildFastArrayOperand(instr->elements(), 3319 BuildFastArrayOperand(instr->elements(),
(...skipping 1028 matching lines...) Expand 10 before | Expand all | Expand 10 after
4304 __ SmiUntag(ToRegister(key)); 4348 __ SmiUntag(ToRegister(key));
4305 } 4349 }
4306 Operand operand(BuildFastArrayOperand( 4350 Operand operand(BuildFastArrayOperand(
4307 instr->elements(), 4351 instr->elements(),
4308 key, 4352 key,
4309 instr->hydrogen()->key()->representation(), 4353 instr->hydrogen()->key()->representation(),
4310 elements_kind, 4354 elements_kind,
4311 0, 4355 0,
4312 instr->additional_index())); 4356 instr->additional_index()));
4313 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { 4357 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
4314 CpuFeatureScope scope(masm(), SSE2); 4358 if (CpuFeatures::IsSafeForSnapshot(SSE2)) {
4315 __ cvtsd2ss(xmm0, ToDoubleRegister(instr->value())); 4359 CpuFeatureScope scope(masm(), SSE2);
4316 __ movss(operand, xmm0); 4360 __ cvtsd2ss(xmm0, ToDoubleRegister(instr->value()));
4361 __ movss(operand, xmm0);
4362 } else {
4363 __ fld(0);
4364 __ fstp_s(operand);
4365 }
4317 } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { 4366 } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
4318 CpuFeatureScope scope(masm(), SSE2); 4367 if (CpuFeatures::IsSafeForSnapshot(SSE2)) {
4319 __ movdbl(operand, ToDoubleRegister(instr->value())); 4368 CpuFeatureScope scope(masm(), SSE2);
4369 __ movdbl(operand, ToDoubleRegister(instr->value()));
4370 } else {
4371 __ fst_d(operand);
4372 }
4320 } else { 4373 } else {
4321 Register value = ToRegister(instr->value()); 4374 Register value = ToRegister(instr->value());
4322 switch (elements_kind) { 4375 switch (elements_kind) {
4323 case EXTERNAL_PIXEL_ELEMENTS: 4376 case EXTERNAL_PIXEL_ELEMENTS:
4324 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: 4377 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
4325 case EXTERNAL_BYTE_ELEMENTS: 4378 case EXTERNAL_BYTE_ELEMENTS:
4326 __ mov_b(operand, value); 4379 __ mov_b(operand, value);
4327 break; 4380 break;
4328 case EXTERNAL_SHORT_ELEMENTS: 4381 case EXTERNAL_SHORT_ELEMENTS:
4329 case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: 4382 case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
(...skipping 14 matching lines...) Expand all
4344 case DICTIONARY_ELEMENTS: 4397 case DICTIONARY_ELEMENTS:
4345 case NON_STRICT_ARGUMENTS_ELEMENTS: 4398 case NON_STRICT_ARGUMENTS_ELEMENTS:
4346 UNREACHABLE(); 4399 UNREACHABLE();
4347 break; 4400 break;
4348 } 4401 }
4349 } 4402 }
4350 } 4403 }
4351 4404
4352 4405
4353 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) { 4406 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4354 CpuFeatureScope scope(masm(), SSE2); 4407 ExternalReference canonical_nan_reference =
4355 XMMRegister value = ToDoubleRegister(instr->value()); 4408 ExternalReference::address_of_canonical_non_hole_nan();
4356
4357 if (instr->NeedsCanonicalization()) {
4358 Label have_value;
4359
4360 __ ucomisd(value, value);
4361 __ j(parity_odd, &have_value); // NaN.
4362
4363 ExternalReference canonical_nan_reference =
4364 ExternalReference::address_of_canonical_non_hole_nan();
4365 __ movdbl(value, Operand::StaticVariable(canonical_nan_reference));
4366 __ bind(&have_value);
4367 }
4368
4369 Operand double_store_operand = BuildFastArrayOperand( 4409 Operand double_store_operand = BuildFastArrayOperand(
4370 instr->elements(), 4410 instr->elements(),
4371 instr->key(), 4411 instr->key(),
4372 instr->hydrogen()->key()->representation(), 4412 instr->hydrogen()->key()->representation(),
4373 FAST_DOUBLE_ELEMENTS, 4413 FAST_DOUBLE_ELEMENTS,
4374 FixedDoubleArray::kHeaderSize - kHeapObjectTag, 4414 FixedDoubleArray::kHeaderSize - kHeapObjectTag,
4375 instr->additional_index()); 4415 instr->additional_index());
4376 __ movdbl(double_store_operand, value); 4416
4417 if (CpuFeatures::IsSafeForSnapshot(SSE2)) {
4418 CpuFeatureScope scope(masm(), SSE2);
4419 XMMRegister value = ToDoubleRegister(instr->value());
4420
4421 if (instr->NeedsCanonicalization()) {
4422 Label have_value;
4423
4424 __ ucomisd(value, value);
4425 __ j(parity_odd, &have_value); // NaN.
4426
4427 __ movdbl(value, Operand::StaticVariable(canonical_nan_reference));
4428 __ bind(&have_value);
4429 }
4430
4431 __ movdbl(double_store_operand, value);
4432 } else {
4433 // Can't use SSE2 in the serializer
4434 if (instr->hydrogen()->IsConstantHoleStore()) {
4435 // This means we should store the (double) hole. No floating point
4436 // registers required.
4437 double nan_double = FixedDoubleArray::hole_nan_as_double();
4438 uint64_t int_val = BitCast<uint64_t, double>(nan_double);
4439 int32_t lower = static_cast<int32_t>(int_val);
4440 int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
4441
4442 __ mov(double_store_operand, Immediate(lower));
4443 Operand double_store_operand2 = BuildFastArrayOperand(
4444 instr->elements(),
4445 instr->key(),
4446 instr->hydrogen()->key()->representation(),
4447 FAST_DOUBLE_ELEMENTS,
4448 FixedDoubleArray::kHeaderSize - kHeapObjectTag + kPointerSize,
4449 instr->additional_index());
4450 __ mov(double_store_operand2, Immediate(upper));
4451 } else {
4452 Label no_special_nan_handling;
4453 ASSERT(x87_stack_depth_ > 0);
4454
4455 if (instr->NeedsCanonicalization()) {
4456 __ fld(0);
4457 __ fld(0);
4458 __ FCmp();
4459
4460 __ j(parity_odd, &no_special_nan_handling);
4461 __ sub(esp, Immediate(kDoubleSize));
4462 __ fst_d(MemOperand(esp, 0));
4463 __ cmp(MemOperand(esp, sizeof(kHoleNanLower32)),
4464 Immediate(kHoleNanUpper32));
4465 __ add(esp, Immediate(kDoubleSize));
4466 Label canonicalize;
4467 __ j(not_equal, &canonicalize);
4468 __ jmp(&no_special_nan_handling);
4469 __ bind(&canonicalize);
4470 __ fstp(0);
4471 __ fld_d(Operand::StaticVariable(canonical_nan_reference));
4472 }
4473
4474 __ bind(&no_special_nan_handling);
4475 __ fst_d(double_store_operand);
4476 }
4477 }
4377 } 4478 }
4378 4479
4379 4480
4380 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) { 4481 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4381 Register value = ToRegister(instr->value()); 4482 Register value = ToRegister(instr->value());
4382 Register elements = ToRegister(instr->elements()); 4483 Register elements = ToRegister(instr->elements());
4383 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; 4484 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
4384 4485
4385 Operand operand = BuildFastArrayOperand( 4486 Operand operand = BuildFastArrayOperand(
4386 instr->elements(), 4487 instr->elements(),
(...skipping 411 matching lines...) Expand 10 before | Expand all | Expand 10 after
4798 4899
4799 Label no_special_nan_handling; 4900 Label no_special_nan_handling;
4800 Label done; 4901 Label done;
4801 if (convert_hole) { 4902 if (convert_hole) {
4802 bool use_sse2 = CpuFeatures::IsSupported(SSE2); 4903 bool use_sse2 = CpuFeatures::IsSupported(SSE2);
4803 if (use_sse2) { 4904 if (use_sse2) {
4804 CpuFeatureScope scope(masm(), SSE2); 4905 CpuFeatureScope scope(masm(), SSE2);
4805 XMMRegister input_reg = ToDoubleRegister(instr->value()); 4906 XMMRegister input_reg = ToDoubleRegister(instr->value());
4806 __ ucomisd(input_reg, input_reg); 4907 __ ucomisd(input_reg, input_reg);
4807 } else { 4908 } else {
4808 if (!IsX87TopOfStack(instr->value())) {
4809 __ fld_d(ToOperand(instr->value()));
4810 }
4811 __ fld(0); 4909 __ fld(0);
4812 __ fld(0); 4910 __ fld(0);
4813 __ FCmp(); 4911 __ FCmp();
4814 } 4912 }
4815 4913
4816 __ j(parity_odd, &no_special_nan_handling); 4914 __ j(parity_odd, &no_special_nan_handling);
4817 __ sub(esp, Immediate(kDoubleSize)); 4915 __ sub(esp, Immediate(kDoubleSize));
4818 if (use_sse2) { 4916 if (use_sse2) {
4819 CpuFeatureScope scope(masm(), SSE2); 4917 CpuFeatureScope scope(masm(), SSE2);
4820 XMMRegister input_reg = ToDoubleRegister(instr->value()); 4918 XMMRegister input_reg = ToDoubleRegister(instr->value());
4821 __ movdbl(MemOperand(esp, 0), input_reg); 4919 __ movdbl(MemOperand(esp, 0), input_reg);
4822 } else { 4920 } else {
4823 __ fld(0); 4921 __ fld(0);
4824 __ fstp_d(MemOperand(esp, 0)); 4922 __ fstp_d(MemOperand(esp, 0));
4825 } 4923 }
4826 __ cmp(MemOperand(esp, sizeof(kHoleNanLower32)), 4924 __ cmp(MemOperand(esp, sizeof(kHoleNanLower32)),
4827 Immediate(kHoleNanUpper32)); 4925 Immediate(kHoleNanUpper32));
4828 Label canonicalize; 4926 Label canonicalize;
4829 __ j(not_equal, &canonicalize); 4927 __ j(not_equal, &canonicalize);
4830 __ add(esp, Immediate(kDoubleSize)); 4928 __ add(esp, Immediate(kDoubleSize));
4831 __ mov(reg, factory()->the_hole_value()); 4929 __ mov(reg, factory()->the_hole_value());
4930 if (!use_sse2) {
4931 __ fstp(0);
4932 }
4832 __ jmp(&done); 4933 __ jmp(&done);
4833 __ bind(&canonicalize); 4934 __ bind(&canonicalize);
4834 __ add(esp, Immediate(kDoubleSize)); 4935 __ add(esp, Immediate(kDoubleSize));
4835 ExternalReference nan = 4936 ExternalReference nan =
4836 ExternalReference::address_of_canonical_non_hole_nan(); 4937 ExternalReference::address_of_canonical_non_hole_nan();
4837 if (use_sse2) { 4938 if (use_sse2) {
4838 CpuFeatureScope scope(masm(), SSE2); 4939 CpuFeatureScope scope(masm(), SSE2);
4839 XMMRegister input_reg = ToDoubleRegister(instr->value()); 4940 XMMRegister input_reg = ToDoubleRegister(instr->value());
4840 __ movdbl(input_reg, Operand::StaticVariable(nan)); 4941 __ movdbl(input_reg, Operand::StaticVariable(nan));
4841 } else { 4942 } else {
4842 __ fstp(0); 4943 __ fstp(0);
4843 __ fld_d(Operand::StaticVariable(nan)); 4944 __ fld_d(Operand::StaticVariable(nan));
4844 } 4945 }
4845 } 4946 }
4846 4947
4847 __ bind(&no_special_nan_handling); 4948 __ bind(&no_special_nan_handling);
4848 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); 4949 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4849 if (FLAG_inline_new) { 4950 if (FLAG_inline_new) {
4850 Register tmp = ToRegister(instr->temp()); 4951 Register tmp = ToRegister(instr->temp());
4851 __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry()); 4952 __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
4852 } else { 4953 } else {
4853 __ jmp(deferred->entry()); 4954 __ jmp(deferred->entry());
4854 } 4955 }
4855 __ bind(deferred->exit()); 4956 __ bind(deferred->exit());
4856 if (CpuFeatures::IsSupported(SSE2)) { 4957 if (CpuFeatures::IsSupported(SSE2)) {
4857 CpuFeatureScope scope(masm(), SSE2); 4958 CpuFeatureScope scope(masm(), SSE2);
4858 XMMRegister input_reg = ToDoubleRegister(instr->value()); 4959 XMMRegister input_reg = ToDoubleRegister(instr->value());
4859 __ movdbl(FieldOperand(reg, HeapNumber::kValueOffset), input_reg); 4960 __ movdbl(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
4860 } else { 4961 } else {
4861 if (!IsX87TopOfStack(instr->value())) { 4962 __ fst_d(FieldOperand(reg, HeapNumber::kValueOffset));
4862 __ fld_d(ToOperand(instr->value()));
4863 }
4864 __ fstp_d(FieldOperand(reg, HeapNumber::kValueOffset));
4865 } 4963 }
4866 __ bind(&done); 4964 __ bind(&done);
4867 } 4965 }
4868 4966
4869 4967
4870 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { 4968 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4871 // TODO(3095996): Get rid of this. For now, we need to make the 4969 // TODO(3095996): Get rid of this. For now, we need to make the
4872 // result register contain a valid pointer because it is already 4970 // result register contain a valid pointer because it is already
4873 // contained in the register pointer map. 4971 // contained in the register pointer map.
4874 Register reg = ToRegister(instr->result()); 4972 Register reg = ToRegister(instr->result());
(...skipping 27 matching lines...) Expand all
4902 if (instr->needs_check()) { 5000 if (instr->needs_check()) {
4903 __ test(ToRegister(input), Immediate(kSmiTagMask)); 5001 __ test(ToRegister(input), Immediate(kSmiTagMask));
4904 DeoptimizeIf(not_zero, instr->environment()); 5002 DeoptimizeIf(not_zero, instr->environment());
4905 } else { 5003 } else {
4906 __ AssertSmi(ToRegister(input)); 5004 __ AssertSmi(ToRegister(input));
4907 } 5005 }
4908 __ SmiUntag(ToRegister(input)); 5006 __ SmiUntag(ToRegister(input));
4909 } 5007 }
4910 5008
4911 5009
5010 void LCodeGen::EmitNumberUntagDNoSSE2(Register input_reg,
5011 Register temp_reg,
5012 bool deoptimize_on_undefined,
5013 bool deoptimize_on_minus_zero,
5014 LEnvironment* env,
5015 NumberUntagDMode mode) {
5016 Label load_smi, done;
5017
5018 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
5019 // Smi check.
5020 __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
5021
5022 // Heap number map check.
5023 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
5024 factory()->heap_number_map());
5025 if (deoptimize_on_undefined) {
5026 DeoptimizeIf(not_equal, env);
5027 } else {
5028 Label heap_number;
5029 __ j(equal, &heap_number, Label::kNear);
5030
5031 __ cmp(input_reg, factory()->undefined_value());
5032 DeoptimizeIf(not_equal, env);
5033
5034 // Convert undefined to NaN.
5035 ExternalReference nan =
5036 ExternalReference::address_of_canonical_non_hole_nan();
5037 __ fld_d(Operand::StaticVariable(nan));
5038 __ jmp(&done, Label::kNear);
5039 __ bind(&heap_number);
5040 }
5041 // Heap number to x87 conversion.
5042 __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
5043 if (deoptimize_on_minus_zero) {
5044 __ fldz();
5045 __ FCmp();
5046 __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
5047 __ j(not_zero, &done, Label::kNear);
5048
5049 // Use general purpose registers to check if we have -0.0
5050 __ mov(temp_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
5051 __ test(temp_reg, Immediate(HeapNumber::kSignMask));
5052 __ j(zero, &done, Label::kNear);
5053
5054 // Pop FPU stack before deoptimizing.
5055 __ fstp(0);
5056 DeoptimizeIf(not_zero, env);
5057 }
5058 __ jmp(&done, Label::kNear);
5059 } else if (mode == NUMBER_CANDIDATE_IS_SMI_OR_HOLE) {
5060 __ test(input_reg, Immediate(kSmiTagMask));
5061 DeoptimizeIf(not_equal, env);
5062 } else if (mode == NUMBER_CANDIDATE_IS_SMI_CONVERT_HOLE) {
5063 __ test(input_reg, Immediate(kSmiTagMask));
5064 __ j(zero, &load_smi);
5065 ExternalReference hole_nan_reference =
5066 ExternalReference::address_of_the_hole_nan();
5067 __ fld_d(Operand::StaticVariable(hole_nan_reference));
5068 __ jmp(&done, Label::kNear);
5069 } else {
5070 ASSERT(mode == NUMBER_CANDIDATE_IS_SMI);
5071 }
5072
5073 __ bind(&load_smi);
5074 __ SmiUntag(input_reg); // Untag smi before converting to float.
5075 __ push(input_reg);
5076 __ fild_s(Operand(esp, 0));
5077 __ pop(input_reg);
5078 __ SmiTag(input_reg); // Retag smi.
5079 __ bind(&done);
5080 }
5081
5082
4912 void LCodeGen::EmitNumberUntagD(Register input_reg, 5083 void LCodeGen::EmitNumberUntagD(Register input_reg,
4913 Register temp_reg, 5084 Register temp_reg,
4914 XMMRegister result_reg, 5085 XMMRegister result_reg,
4915 bool deoptimize_on_undefined, 5086 bool deoptimize_on_undefined,
4916 bool deoptimize_on_minus_zero, 5087 bool deoptimize_on_minus_zero,
4917 LEnvironment* env, 5088 LEnvironment* env,
4918 NumberUntagDMode mode) { 5089 NumberUntagDMode mode) {
4919 Label load_smi, done; 5090 Label load_smi, done;
4920 5091
4921 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { 5092 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
(...skipping 92 matching lines...) Expand 10 before | Expand all | Expand 10 after
5014 __ RecordComment("Deferred TaggedToI: exponent too big"); 5185 __ RecordComment("Deferred TaggedToI: exponent too big");
5015 DeoptimizeIf(no_condition, instr->environment()); 5186 DeoptimizeIf(no_condition, instr->environment());
5016 5187
5017 // Reserve space for 64 bit answer. 5188 // Reserve space for 64 bit answer.
5018 __ bind(&convert); 5189 __ bind(&convert);
5019 __ sub(Operand(esp), Immediate(kDoubleSize)); 5190 __ sub(Operand(esp), Immediate(kDoubleSize));
5020 // Do conversion, which cannot fail because we checked the exponent. 5191 // Do conversion, which cannot fail because we checked the exponent.
5021 __ fisttp_d(Operand(esp, 0)); 5192 __ fisttp_d(Operand(esp, 0));
5022 __ mov(input_reg, Operand(esp, 0)); // Low word of answer is the result. 5193 __ mov(input_reg, Operand(esp, 0)); // Low word of answer is the result.
5023 __ add(Operand(esp), Immediate(kDoubleSize)); 5194 __ add(Operand(esp), Immediate(kDoubleSize));
5024 } else { 5195 } else if (CpuFeatures::IsSupported(SSE2)) {
5025 CpuFeatureScope scope(masm(), SSE2); 5196 CpuFeatureScope scope(masm(), SSE2);
5026 XMMRegister xmm_temp = ToDoubleRegister(instr->temp()); 5197 XMMRegister xmm_temp = ToDoubleRegister(instr->temp());
5027 __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); 5198 __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
5028 __ cvttsd2si(input_reg, Operand(xmm0)); 5199 __ cvttsd2si(input_reg, Operand(xmm0));
5029 __ cmp(input_reg, 0x80000000u); 5200 __ cmp(input_reg, 0x80000000u);
5030 __ j(not_equal, &done); 5201 __ j(not_equal, &done);
5031 // Check if the input was 0x8000000 (kMinInt). 5202 // Check if the input was 0x8000000 (kMinInt).
5032 // If no, then we got an overflow and we deoptimize. 5203 // If no, then we got an overflow and we deoptimize.
5033 ExternalReference min_int = ExternalReference::address_of_min_int(); 5204 ExternalReference min_int = ExternalReference::address_of_min_int();
5034 __ movdbl(xmm_temp, Operand::StaticVariable(min_int)); 5205 __ movdbl(xmm_temp, Operand::StaticVariable(min_int));
5035 __ ucomisd(xmm_temp, xmm0); 5206 __ ucomisd(xmm_temp, xmm0);
5036 DeoptimizeIf(not_equal, instr->environment()); 5207 DeoptimizeIf(not_equal, instr->environment());
5037 DeoptimizeIf(parity_even, instr->environment()); // NaN. 5208 DeoptimizeIf(parity_even, instr->environment()); // NaN.
5209 } else {
5210 UNREACHABLE();
5038 } 5211 }
5039 } else if (CpuFeatures::IsSupported(SSE2)) { 5212 } else if (CpuFeatures::IsSupported(SSE2)) {
5040 CpuFeatureScope scope(masm(), SSE2); 5213 CpuFeatureScope scope(masm(), SSE2);
5041 // Deoptimize if we don't have a heap number. 5214 // Deoptimize if we don't have a heap number.
5042 __ RecordComment("Deferred TaggedToI: not a heap number"); 5215 __ RecordComment("Deferred TaggedToI: not a heap number");
5043 DeoptimizeIf(not_equal, instr->environment()); 5216 DeoptimizeIf(not_equal, instr->environment());
5044 5217
5045 XMMRegister xmm_temp = ToDoubleRegister(instr->temp()); 5218 XMMRegister xmm_temp = ToDoubleRegister(instr->temp());
5046 __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); 5219 __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
5047 __ cvttsd2si(input_reg, Operand(xmm0)); 5220 __ cvttsd2si(input_reg, Operand(xmm0));
(...skipping 24 matching lines...) Expand all
5072 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) 5245 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
5073 : LDeferredCode(codegen), instr_(instr) { } 5246 : LDeferredCode(codegen), instr_(instr) { }
5074 virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); } 5247 virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
5075 virtual LInstruction* instr() { return instr_; } 5248 virtual LInstruction* instr() { return instr_; }
5076 private: 5249 private:
5077 LTaggedToI* instr_; 5250 LTaggedToI* instr_;
5078 }; 5251 };
5079 5252
5080 LOperand* input = instr->value(); 5253 LOperand* input = instr->value();
5081 ASSERT(input->IsRegister()); 5254 ASSERT(input->IsRegister());
5082 ASSERT(input->Equals(instr->result()));
5083
5084 Register input_reg = ToRegister(input); 5255 Register input_reg = ToRegister(input);
5256 ASSERT(input_reg.is(ToRegister(instr->result())));
5085 5257
5086 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); 5258 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
5087 5259
5088 // Smi check.
5089 __ JumpIfNotSmi(input_reg, deferred->entry()); 5260 __ JumpIfNotSmi(input_reg, deferred->entry());
5090 5261 __ SmiUntag(input_reg);
5091 // Smi to int32 conversion
5092 __ SmiUntag(input_reg); // Untag smi.
5093
5094 __ bind(deferred->exit()); 5262 __ bind(deferred->exit());
5095 } 5263 }
5096 5264
5265
5266 void LCodeGen::DoDeferredTaggedToINoSSE2(LTaggedToINoSSE2* instr) {
5267 Label done, heap_number;
5268 Register result_reg = ToRegister(instr->result());
5269 Register input_reg = ToRegister(instr->value());
5270
5271 // Heap number map check.
5272 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
5273 factory()->heap_number_map());
5274 __ j(equal, &heap_number, Label::kNear);
5275 // Check for undefined. Undefined is converted to zero for truncating
5276 // conversions.
5277 __ cmp(input_reg, factory()->undefined_value());
5278 __ RecordComment("Deferred TaggedToI: cannot truncate");
5279 DeoptimizeIf(not_equal, instr->environment());
5280 __ xor_(result_reg, result_reg);
5281 __ jmp(&done, Label::kFar);
5282 __ bind(&heap_number);
5283
5284 // Surprisingly, all of this crazy bit manipulation is considerably
5285 // faster than using the built-in x86 CPU conversion functions (about 6x).
5286 Label right_exponent, adjust_bias, zero_result;
5287 Register scratch = ToRegister(instr->scratch());
5288 Register scratch2 = ToRegister(instr->scratch2());
5289 // Get exponent word.
5290 __ mov(scratch, FieldOperand(input_reg, HeapNumber::kExponentOffset));
5291 // Get exponent alone in scratch2.
5292 __ mov(scratch2, scratch);
5293 __ and_(scratch2, HeapNumber::kExponentMask);
5294 __ shr(scratch2, HeapNumber::kExponentShift);
5295 if (instr->truncating()) {
5296 __ j(zero, &zero_result);
5297 } else {
5298 __ j(not_zero, &adjust_bias);
5299 __ test(scratch, Immediate(HeapNumber::kMantissaMask));
5300 DeoptimizeIf(not_zero, instr->environment());
5301 __ cmp(FieldOperand(input_reg, HeapNumber::kMantissaOffset), Immediate(0));
5302 DeoptimizeIf(not_equal, instr->environment());
5303 __ bind(&adjust_bias);
5304 }
5305 __ sub(scratch2, Immediate(HeapNumber::kExponentBias));
5306 if (!instr->truncating()) {
5307 DeoptimizeIf(negative, instr->environment());
5308 } else {
5309 __ j(negative, &zero_result);
5310 }
5311
5312 // Get the second half of the double. For some exponents we don't
5313 // actually need this because the bits get shifted out again, but
5314 // it's probably slower to test than just to do it.
5315 Register scratch3 = ToRegister(instr->scratch3());
5316 __ mov(scratch3, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
5317 __ xor_(result_reg, result_reg);
5318
5319 const uint32_t non_int32_exponent = 31;
5320 __ cmp(scratch2, Immediate(non_int32_exponent));
5321 // If we have a match of the int32 exponent then skip some logic.
5322 __ j(equal, &right_exponent, Label::kNear);
5323 // If the number doesn't find in an int32, deopt.
5324 DeoptimizeIf(greater, instr->environment());
5325
5326 // Exponent word in scratch, exponent in scratch2. We know that 0 <= exponent
5327 // < 31.
5328 __ mov(result_reg, Immediate(31));
5329 __ sub(result_reg, scratch2);
5330
5331 __ bind(&right_exponent);
5332
5333 // Save off exponent for negative check later.
5334 __ mov(scratch2, scratch);
5335
5336 // Here result_reg is the shift, scratch is the exponent word.
5337 // Get the top bits of the mantissa.
5338 __ and_(scratch, HeapNumber::kMantissaMask);
5339 // Put back the implicit 1.
5340 __ or_(scratch, 1 << HeapNumber::kExponentShift);
5341 // Shift up the mantissa bits to take up the space the exponent used to
5342 // take. We have kExponentShift + 1 significant bits int he low end of the
5343 // word. Shift them to the top bits.
5344 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1;
5345 __ shl(scratch, shift_distance);
5346 if (!instr->truncating()) {
5347 // If not truncating, a non-zero value in the bottom 22 bits means a
5348 // non-integral value --> trigger a deopt.
5349 __ test(scratch3, Immediate((1 << (32 - shift_distance)) - 1));
5350 DeoptimizeIf(not_equal, instr->environment());
5351 }
5352 // Shift down 22 bits to get the most significant 10 bits or the low
5353 // mantissa word.
5354 __ shr(scratch3, 32 - shift_distance);
5355 __ or_(scratch3, scratch);
5356 if (!instr->truncating()) {
5357 // If truncating, a non-zero value in the bits that will be shifted away
5358 // when adjusting the exponent means rounding --> deopt.
5359 __ mov(scratch, 0x1);
5360 ASSERT(result_reg.is(ecx));
5361 __ shl_cl(scratch);
5362 __ dec(scratch);
5363 __ test(scratch3, scratch);
5364 DeoptimizeIf(not_equal, instr->environment());
5365 }
5366 // Move down according to the exponent.
5367 ASSERT(result_reg.is(ecx));
5368 __ shr_cl(scratch3);
5369 // Now the unsigned 32-bit answer is in scratch3. We need to move it to
5370 // result_reg and we may need to fix the sign.
5371 Label negative_result;
5372 __ xor_(result_reg, result_reg);
5373 __ cmp(scratch2, result_reg);
5374 __ j(less, &negative_result, Label::kNear);
5375 __ cmp(scratch3, result_reg);
5376 __ mov(result_reg, scratch3);
5377 // If the result is > MAX_INT, result doesn't fit in signed 32-bit --> deopt.
5378 DeoptimizeIf(less, instr->environment());
5379 __ jmp(&done, Label::kNear);
5380 __ bind(&zero_result);
5381 __ xor_(result_reg, result_reg);
5382 __ jmp(&done, Label::kNear);
5383 __ bind(&negative_result);
5384 __ sub(result_reg, scratch3);
5385 if (!instr->truncating()) {
5386 // -0.0 triggers a deopt.
5387 DeoptimizeIf(zero, instr->environment());
5388 }
5389 // If the negative subtraction overflows into a positive number, there was an
5390 // overflow --> deopt.
5391 DeoptimizeIf(positive, instr->environment());
5392 __ bind(&done);
5393 }
5394
5395
5396 void LCodeGen::DoTaggedToINoSSE2(LTaggedToINoSSE2* instr) {
5397 class DeferredTaggedToINoSSE2: public LDeferredCode {
5398 public:
5399 DeferredTaggedToINoSSE2(LCodeGen* codegen, LTaggedToINoSSE2* instr)
5400 : LDeferredCode(codegen), instr_(instr) { }
5401 virtual void Generate() { codegen()->DoDeferredTaggedToINoSSE2(instr_); }
5402 virtual LInstruction* instr() { return instr_; }
5403 private:
5404 LTaggedToINoSSE2* instr_;
5405 };
5406
5407 LOperand* input = instr->value();
5408 ASSERT(input->IsRegister());
5409 Register input_reg = ToRegister(input);
5410 ASSERT(input_reg.is(ToRegister(instr->result())));
5411
5412 DeferredTaggedToINoSSE2* deferred =
5413 new(zone()) DeferredTaggedToINoSSE2(this, instr);
5414
5415 // Smi check.
5416 __ JumpIfNotSmi(input_reg, deferred->entry());
5417 __ SmiUntag(input_reg); // Untag smi.
5418 __ bind(deferred->exit());
5419 }
5420
5097 5421
5098 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { 5422 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
5099 LOperand* input = instr->value(); 5423 LOperand* input = instr->value();
5100 ASSERT(input->IsRegister()); 5424 ASSERT(input->IsRegister());
5101 LOperand* temp = instr->temp(); 5425 LOperand* temp = instr->temp();
5102 ASSERT(temp == NULL || temp->IsRegister()); 5426 ASSERT(temp == NULL || temp->IsRegister());
5103 LOperand* result = instr->result(); 5427 LOperand* result = instr->result();
5104 ASSERT(result->IsDoubleRegister()); 5428 ASSERT(result->IsDoubleRegister());
5105 5429
5430 Register input_reg = ToRegister(input);
5431 bool deoptimize_on_minus_zero =
5432 instr->hydrogen()->deoptimize_on_minus_zero();
5433 Register temp_reg = deoptimize_on_minus_zero ? ToRegister(temp) : no_reg;
5434
5435 NumberUntagDMode mode = NUMBER_CANDIDATE_IS_ANY_TAGGED;
5436 HValue* value = instr->hydrogen()->value();
5437 if (value->type().IsSmi()) {
5438 if (value->IsLoadKeyed()) {
5439 HLoadKeyed* load = HLoadKeyed::cast(value);
5440 if (load->UsesMustHandleHole()) {
5441 if (load->hole_mode() == ALLOW_RETURN_HOLE) {
5442 mode = NUMBER_CANDIDATE_IS_SMI_CONVERT_HOLE;
5443 } else {
5444 mode = NUMBER_CANDIDATE_IS_SMI_OR_HOLE;
5445 }
5446 } else {
5447 mode = NUMBER_CANDIDATE_IS_SMI;
5448 }
5449 }
5450 }
5451
5106 if (CpuFeatures::IsSupported(SSE2)) { 5452 if (CpuFeatures::IsSupported(SSE2)) {
5107 CpuFeatureScope scope(masm(), SSE2); 5453 CpuFeatureScope scope(masm(), SSE2);
5108 Register input_reg = ToRegister(input);
5109 XMMRegister result_reg = ToDoubleRegister(result); 5454 XMMRegister result_reg = ToDoubleRegister(result);
5110
5111 bool deoptimize_on_minus_zero =
5112 instr->hydrogen()->deoptimize_on_minus_zero();
5113 Register temp_reg = deoptimize_on_minus_zero ? ToRegister(temp) : no_reg;
5114
5115 NumberUntagDMode mode = NUMBER_CANDIDATE_IS_ANY_TAGGED;
5116 HValue* value = instr->hydrogen()->value();
5117 if (value->type().IsSmi()) {
5118 if (value->IsLoadKeyed()) {
5119 HLoadKeyed* load = HLoadKeyed::cast(value);
5120 if (load->UsesMustHandleHole()) {
5121 if (load->hole_mode() == ALLOW_RETURN_HOLE) {
5122 mode = NUMBER_CANDIDATE_IS_SMI_CONVERT_HOLE;
5123 } else {
5124 mode = NUMBER_CANDIDATE_IS_SMI_OR_HOLE;
5125 }
5126 } else {
5127 mode = NUMBER_CANDIDATE_IS_SMI;
5128 }
5129 }
5130 }
5131
5132 EmitNumberUntagD(input_reg, 5455 EmitNumberUntagD(input_reg,
5133 temp_reg, 5456 temp_reg,
5134 result_reg, 5457 result_reg,
5135 instr->hydrogen()->deoptimize_on_undefined(), 5458 instr->hydrogen()->deoptimize_on_undefined(),
5136 deoptimize_on_minus_zero, 5459 deoptimize_on_minus_zero,
5137 instr->environment(), 5460 instr->environment(),
5138 mode); 5461 mode);
5139 } else { 5462 } else {
5140 UNIMPLEMENTED(); 5463 EmitNumberUntagDNoSSE2(input_reg,
5464 temp_reg,
5465 instr->hydrogen()->deoptimize_on_undefined(),
5466 deoptimize_on_minus_zero,
5467 instr->environment(),
5468 mode);
5469 CurrentInstructionReturnsX87Result();
5141 } 5470 }
5142 } 5471 }
5143 5472
5144 5473
5145 void LCodeGen::DoDoubleToI(LDoubleToI* instr) { 5474 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
5146 LOperand* input = instr->value(); 5475 LOperand* input = instr->value();
5147 ASSERT(input->IsDoubleRegister()); 5476 ASSERT(input->IsDoubleRegister());
5148 LOperand* result = instr->result(); 5477 LOperand* result = instr->result();
5149 ASSERT(result->IsRegister()); 5478 ASSERT(result->IsRegister());
5150 CpuFeatureScope scope(masm(), SSE2); 5479 CpuFeatureScope scope(masm(), SSE2);
(...skipping 251 matching lines...) Expand 10 before | Expand all | Expand 10 after
5402 // Heap number 5731 // Heap number
5403 __ bind(&heap_number); 5732 __ bind(&heap_number);
5404 __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); 5733 __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
5405 __ ClampDoubleToUint8(xmm0, xmm1, input_reg); 5734 __ ClampDoubleToUint8(xmm0, xmm1, input_reg);
5406 __ jmp(&done, Label::kNear); 5735 __ jmp(&done, Label::kNear);
5407 5736
5408 // smi 5737 // smi
5409 __ bind(&is_smi); 5738 __ bind(&is_smi);
5410 __ SmiUntag(input_reg); 5739 __ SmiUntag(input_reg);
5411 __ ClampUint8(input_reg); 5740 __ ClampUint8(input_reg);
5412
5413 __ bind(&done); 5741 __ bind(&done);
5414 } 5742 }
5415 5743
5744
5745 void LCodeGen::DoClampTToUint8NoSSE2(LClampTToUint8NoSSE2* instr) {
5746 Register input_reg = ToRegister(instr->unclamped());
5747 Register result_reg = ToRegister(instr->result());
5748 Register scratch = ToRegister(instr->scratch());
5749 Register scratch2 = ToRegister(instr->scratch2());
5750 Register scratch3 = ToRegister(instr->scratch3());
5751 Label is_smi, done, heap_number, valid_exponent,
5752 largest_value, zero_result, maybe_nan_or_infinity;
5753
5754 __ JumpIfSmi(input_reg, &is_smi);
5755
5756 // Check for heap number
5757 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
5758 factory()->heap_number_map());
5759 __ j(equal, &heap_number, Label::kFar);
5760
5761 // Check for undefined. Undefined is converted to zero for clamping
5762 // conversions.
5763 __ cmp(input_reg, factory()->undefined_value());
5764 DeoptimizeIf(not_equal, instr->environment());
5765 __ jmp(&zero_result);
5766
5767 // Heap number
5768 __ bind(&heap_number);
5769
5770 // Surprisingly, all of the hand-crafted bit-manipulations below are much
5771 // faster than the x86 FPU built-in instruction, especially since "banker's
5772 // rounding" would be additionally very expensive
5773
5774 // Get exponent word.
5775 __ mov(scratch, FieldOperand(input_reg, HeapNumber::kExponentOffset));
5776 __ mov(scratch3, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
5777
5778 // Test for negative values --> clamp to zero
5779 __ test(scratch, scratch);
5780 __ j(negative, &zero_result);
5781
5782 // Get exponent alone in scratch2.
5783 __ mov(scratch2, scratch);
5784 __ and_(scratch2, HeapNumber::kExponentMask);
5785 __ shr(scratch2, HeapNumber::kExponentShift);
5786 __ j(zero, &zero_result);
5787 __ sub(scratch2, Immediate(HeapNumber::kExponentBias - 1));
5788 __ j(negative, &zero_result);
5789
5790 const uint32_t non_int8_exponent = 7;
5791 __ cmp(scratch2, Immediate(non_int8_exponent + 1));
5792 // If the exponent is too big, check for special values.
5793 __ j(greater, &maybe_nan_or_infinity, Label::kNear);
5794
5795 __ bind(&valid_exponent);
5796 // Exponent word in scratch, exponent in scratch2. We know that 0 <= exponent
5797 // < 7. The shift bias is the number of bits to shift the mantissa such that
5798 // with an exponent of 7 such the that top-most one is in bit 30, allowing
5799 // detection the rounding overflow of a 255.5 to 256 (bit 31 goes from 0 to
5800 // 1).
5801 int shift_bias = (30 - HeapNumber::kExponentShift) - 7 - 1;
5802 __ lea(result_reg, MemOperand(scratch2, shift_bias));
5803 // Here result_reg (ecx) is the shift, scratch is the exponent word. Get the
5804 // top bits of the mantissa.
5805 __ and_(scratch, HeapNumber::kMantissaMask);
5806 // Put back the implicit 1 of the mantissa
5807 __ or_(scratch, 1 << HeapNumber::kExponentShift);
5808 // Shift up to round
5809 __ shl_cl(scratch);
5810 // Use "banker's rounding" to spec: If fractional part of number is 0.5, then
5811 // use the bit in the "ones" place and add it to the "halves" place, which has
5812 // the effect of rounding to even.
5813 __ mov(scratch2, scratch);
5814 const uint32_t one_half_bit_shift = 30 - sizeof(uint8_t) * 8;
5815 const uint32_t one_bit_shift = one_half_bit_shift + 1;
5816 __ and_(scratch2, Immediate((1 << one_bit_shift) - 1));
5817 __ cmp(scratch2, Immediate(1 << one_half_bit_shift));
5818 Label no_round;
5819 __ j(less, &no_round);
5820 Label round_up;
5821 __ mov(scratch2, Immediate(1 << one_half_bit_shift));
5822 __ j(greater, &round_up);
5823 __ test(scratch3, scratch3);
5824 __ j(not_zero, &round_up);
5825 __ mov(scratch2, scratch);
5826 __ and_(scratch2, Immediate(1 << one_bit_shift));
5827 __ shr(scratch2, 1);
5828 __ bind(&round_up);
5829 __ add(scratch, scratch2);
5830 __ j(overflow, &largest_value);
5831 __ bind(&no_round);
5832 __ shr(scratch, 23);
5833 __ mov(result_reg, scratch);
5834 __ jmp(&done, Label::kNear);
5835
5836 __ bind(&maybe_nan_or_infinity);
5837 // Check for NaN/Infinity, all other values map to 255
5838 __ cmp(scratch2, Immediate(HeapNumber::kInfinityOrNanExponent + 1));
5839 __ j(not_equal, &largest_value, Label::kNear);
5840
5841 // Check for NaN, which differs from Infinity in that at least one mantissa
5842 // bit is set.
5843 __ and_(scratch, HeapNumber::kMantissaMask);
5844 __ or_(scratch, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
5845 __ j(not_zero, &zero_result); // M!=0 --> NaN
5846 // Infinity -> Fall through to map to 255.
5847
5848 __ bind(&largest_value);
5849 __ mov(result_reg, Immediate(255));
5850 __ jmp(&done, Label::kNear);
5851
5852 __ bind(&zero_result);
5853 __ xor_(result_reg, result_reg);
5854 __ jmp(&done);
5855
5856 // smi
5857 __ bind(&is_smi);
5858 if (!input_reg.is(result_reg)) {
5859 __ mov(result_reg, input_reg);
5860 }
5861 __ SmiUntag(result_reg);
5862 __ ClampUint8(result_reg);
5863 __ bind(&done);
5864 }
5865
5416 5866
5417 void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) { 5867 void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
5418 Register reg = ToRegister(instr->temp()); 5868 Register reg = ToRegister(instr->temp());
5419 5869
5420 ZoneList<Handle<JSObject> >* prototypes = instr->prototypes(); 5870 ZoneList<Handle<JSObject> >* prototypes = instr->prototypes();
5421 ZoneList<Handle<Map> >* maps = instr->maps(); 5871 ZoneList<Handle<Map> >* maps = instr->maps();
5422 5872
5423 ASSERT(prototypes->length() == maps->length()); 5873 ASSERT(prototypes->length() == maps->length());
5424 5874
5425 if (instr->hydrogen()->CanOmitPrototypeChecks()) { 5875 if (instr->hydrogen()->CanOmitPrototypeChecks()) {
(...skipping 867 matching lines...) Expand 10 before | Expand all | Expand 10 after
6293 FixedArray::kHeaderSize - kPointerSize)); 6743 FixedArray::kHeaderSize - kPointerSize));
6294 __ bind(&done); 6744 __ bind(&done);
6295 } 6745 }
6296 6746
6297 6747
6298 #undef __ 6748 #undef __
6299 6749
6300 } } // namespace v8::internal 6750 } } // namespace v8::internal
6301 6751
6302 #endif // V8_TARGET_ARCH_IA32 6752 #endif // V8_TARGET_ARCH_IA32
OLDNEW
« no previous file with comments | « src/ia32/lithium-codegen-ia32.h ('k') | src/ia32/lithium-gap-resolver-ia32.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698