OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "effects/GrXfermodeFragmentProcessor.h" | 8 #include "effects/GrXfermodeFragmentProcessor.h" |
9 | 9 |
10 #include "GrFragmentProcessor.h" | 10 #include "GrFragmentProcessor.h" |
(...skipping 60 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
71 | 71 |
72 GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrComposeTwoFragmentProcessor); | 72 GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrComposeTwoFragmentProcessor); |
73 | 73 |
74 const GrFragmentProcessor* GrComposeTwoFragmentProcessor::TestCreate(GrProcessor
TestData* d) { | 74 const GrFragmentProcessor* GrComposeTwoFragmentProcessor::TestCreate(GrProcessor
TestData* d) { |
75 #if SK_ALLOW_STATIC_GLOBAL_INITIALIZERS | 75 #if SK_ALLOW_STATIC_GLOBAL_INITIALIZERS |
76 // Create two random frag procs. | 76 // Create two random frag procs. |
77 // For now, we'll prevent either children from being a shader with children
to prevent the | 77 // For now, we'll prevent either children from being a shader with children
to prevent the |
78 // possibility of an arbitrarily large tree of procs. | 78 // possibility of an arbitrarily large tree of procs. |
79 SkAutoTUnref<const GrFragmentProcessor> fpA; | 79 SkAutoTUnref<const GrFragmentProcessor> fpA; |
80 do { | 80 do { |
81 fpA.reset(GrProcessorTestFactory<GrFragmentProcessor>::CreateStage(d)); | 81 fpA.reset(GrProcessorTestFactory<GrFragmentProcessor>::Create(d)); |
82 SkASSERT(fpA); | 82 SkASSERT(fpA); |
83 } while (fpA->numChildProcessors() != 0); | 83 } while (fpA->numChildProcessors() != 0); |
84 SkAutoTUnref<const GrFragmentProcessor> fpB; | 84 SkAutoTUnref<const GrFragmentProcessor> fpB; |
85 do { | 85 do { |
86 fpB.reset(GrProcessorTestFactory<GrFragmentProcessor>::CreateStage(d)); | 86 fpB.reset(GrProcessorTestFactory<GrFragmentProcessor>::Create(d)); |
87 SkASSERT(fpB); | 87 SkASSERT(fpB); |
88 } while (fpB->numChildProcessors() != 0); | 88 } while (fpB->numChildProcessors() != 0); |
89 | 89 |
90 SkXfermode::Mode mode = static_cast<SkXfermode::Mode>( | 90 SkXfermode::Mode mode = static_cast<SkXfermode::Mode>( |
91 d->fRandom->nextRangeU(0, SkXfermode::kLastCoeffMode)); | 91 d->fRandom->nextRangeU(0, SkXfermode::kLastCoeffMode)); |
92 return SkNEW_ARGS(GrComposeTwoFragmentProcessor, (fpA, fpB, mode)); | 92 return SkNEW_ARGS(GrComposeTwoFragmentProcessor, (fpA, fpB, mode)); |
93 #else | 93 #else |
94 SkFAIL("Should not be called if !SK_ALLOW_STATIC_GLOBAL_INITIALIZERS"); | 94 SkFAIL("Should not be called if !SK_ALLOW_STATIC_GLOBAL_INITIALIZERS"); |
95 return nullptr; | 95 return nullptr; |
96 #endif | 96 #endif |
97 } | 97 } |
98 | 98 |
99 GrGLFragmentProcessor* GrComposeTwoFragmentProcessor::onCreateGLInstance() const
{ | 99 GrGLFragmentProcessor* GrComposeTwoFragmentProcessor::onCreateGLInstance() const
{ |
100 return SkNEW_ARGS(GrGLComposeTwoFragmentProcessor, (*this)); | 100 return SkNEW_ARGS(GrGLComposeTwoFragmentProcessor, (*this)); |
101 } | 101 } |
102 | 102 |
103 ///////////////////////////////////////////////////////////////////// | 103 ///////////////////////////////////////////////////////////////////// |
104 | 104 |
105 void GrGLComposeTwoFragmentProcessor::emitCode(EmitArgs& args) { | 105 void GrGLComposeTwoFragmentProcessor::emitCode(EmitArgs& args) { |
106 | 106 |
107 GrGLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder(); | 107 GrGLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder(); |
108 const GrComposeTwoFragmentProcessor& cs = args.fFp.cast<GrComposeTwoFragment
Processor>(); | 108 const GrComposeTwoFragmentProcessor& cs = args.fFp.cast<GrComposeTwoFragment
Processor>(); |
109 | 109 |
110 // Store alpha of input color and un-premultiply the input color by its alph
a. We will | 110 // Store alpha of input color and un-premultiply the input color by its alph
a. We will |
111 // re-multiply by this alpha after blending the output colors of the two chi
ld procs. | 111 // re-multiply by this alpha after blending the output colors of the two chi
ld procs. |
112 // This is because we don't want the paint's alpha to affect either child pr
oc's output | 112 // This is because we don't want the paint's alpha to affect either child pr
oc's output |
113 // before the blend; we want to apply the paint's alpha AFTER the blend. Thi
s mirrors the | 113 // before the blend; we want to apply the paint's alpha AFTER the blend. Thi
s mirrors the |
114 // software implementation of SkComposeShader. | 114 // software implementation of SkComposeShader. |
115 SkString inputAlpha("inputAlpha"); | 115 const char* opaqueInput = nullptr; |
116 fsBuilder->codeAppendf("float %s = %s.a;", inputAlpha.c_str(), args.fInputCo
lor); | 116 const char* inputAlpha = nullptr; |
117 fsBuilder->codeAppendf("%s /= %s.a;", args.fInputColor, args.fInputColor); | 117 if (args.fInputColor) { |
| 118 inputAlpha = "inputAlpha"; |
| 119 opaqueInput = "opaqueInput"; |
| 120 fsBuilder->codeAppendf("float inputAlpha = %s.a;", args.fInputColor); |
| 121 fsBuilder->codeAppendf("vec4 opaqueInput = vec4(%s.rgb / inputAlpha, 1);
", |
| 122 args.fInputColor); |
| 123 } |
118 | 124 |
119 // declare outputColor and emit the code for each of the two children | 125 // declare outputColor and emit the code for each of the two children |
120 SkString outputColorSrc(args.fOutputColor); | 126 SkString outputColorSrc(args.fOutputColor); |
121 outputColorSrc.append("_src"); | 127 outputColorSrc.append("_src"); |
122 fsBuilder->codeAppendf("vec4 %s;\n", outputColorSrc.c_str()); | 128 fsBuilder->codeAppendf("vec4 %s;\n", outputColorSrc.c_str()); |
123 this->emitChild(0, args.fInputColor, outputColorSrc.c_str(), args); | 129 this->emitChild(0, opaqueInput, outputColorSrc.c_str(), args); |
124 | 130 |
125 SkString outputColorDst(args.fOutputColor); | 131 SkString outputColorDst(args.fOutputColor); |
126 outputColorDst.append("_dst"); | 132 outputColorDst.append("_dst"); |
127 fsBuilder->codeAppendf("vec4 %s;\n", outputColorDst.c_str()); | 133 fsBuilder->codeAppendf("vec4 %s;\n", outputColorDst.c_str()); |
128 this->emitChild(1, args.fInputColor, outputColorDst.c_str(), args); | 134 this->emitChild(1, opaqueInput, outputColorDst.c_str(), args); |
129 | 135 |
130 // emit blend code | 136 // emit blend code |
131 SkXfermode::Mode mode = cs.getMode(); | 137 SkXfermode::Mode mode = cs.getMode(); |
132 fsBuilder->codeAppend("{"); | 138 fsBuilder->codeAppend("{"); |
133 fsBuilder->codeAppendf("// Compose Xfer Mode: %s\n", SkXfermode::ModeName(mo
de)); | 139 fsBuilder->codeAppendf("// Compose Xfer Mode: %s\n", SkXfermode::ModeName(mo
de)); |
134 GrGLBlend::AppendPorterDuffBlend(fsBuilder, outputColorSrc.c_str(), | 140 GrGLBlend::AppendPorterDuffBlend(fsBuilder, outputColorSrc.c_str(), |
135 outputColorDst.c_str(), args.fOutputColor,
mode); | 141 outputColorDst.c_str(), args.fOutputColor,
mode); |
136 fsBuilder->codeAppend("}"); | 142 fsBuilder->codeAppend("}"); |
137 | 143 |
138 // re-multiply the output color by the input color's alpha | 144 // re-multiply the output color by the input color's alpha |
139 fsBuilder->codeAppendf("%s *= %s;", args.fOutputColor, inputAlpha.c_str()); | 145 if (inputAlpha) { |
| 146 fsBuilder->codeAppendf("%s *= %s;", args.fOutputColor, inputAlpha); |
| 147 } |
140 } | 148 } |
141 | 149 |
142 | |
143 const GrFragmentProcessor* GrXfermodeFragmentProcessor::CreateFromTwoProcessors( | 150 const GrFragmentProcessor* GrXfermodeFragmentProcessor::CreateFromTwoProcessors( |
144 const GrFragmentProcessor* src, const GrFragmentProcessor* dst, SkXferm
ode::Mode mode) { | 151 const GrFragmentProcessor* src, const GrFragmentProcessor* dst, SkXferm
ode::Mode mode) { |
145 if (SkXfermode::kLastCoeffMode < mode) { | 152 if (SkXfermode::kLastCoeffMode < mode) { |
146 return nullptr; | 153 return nullptr; |
147 } | 154 } |
148 switch (mode) { | 155 switch (mode) { |
149 case SkXfermode::kClear_Mode: | 156 case SkXfermode::kClear_Mode: |
150 return GrConstColorProcessor::Create(GrColor_TRANS_BLACK, | 157 return GrConstColorProcessor::Create(GrColor_TRANS_BLACK, |
151 GrConstColorProcessor::kIgnore_
InputMode); | 158 GrConstColorProcessor::kIgnore_
InputMode); |
152 break; | 159 break; |
153 case SkXfermode::kSrc_Mode: | 160 case SkXfermode::kSrc_Mode: |
154 return SkRef(src); | 161 return SkRef(src); |
155 break; | 162 break; |
156 case SkXfermode::kDst_Mode: | 163 case SkXfermode::kDst_Mode: |
157 return SkRef(dst); | 164 return SkRef(dst); |
158 break; | 165 break; |
159 default: | 166 default: |
160 return new GrComposeTwoFragmentProcessor(src, dst, mode); | 167 return new GrComposeTwoFragmentProcessor(src, dst, mode); |
161 } | 168 } |
162 } | 169 } |
OLD | NEW |